
L’Actuariat avec

Arthur Charpentier, Christophe Dutang

Décembre 2012 – Version numérique

rédigé en LATEX

c©Arthur Charpentier, Christophe Dutang
c©Arthur Charpentier, Christophe Dutang, Vincent Goulet pour les sections 1.2 et 1.3

Cette création est mise à disposition selon le contrat Paternité-Partage à l’indentique 3.0 France
de Creative Commons, cf. http://creativecommons.org/licenses/by-sa/3.0/fr/.

En vertu de ce contrat, vous êtes libre de :
– partager – reproduire, distribuer et communiquer l’oeuvre,
– remixer – adapter l’œuvre,
– utiliser cette oeuvre à des fins commerciales.

Selon les conditions suivantes
Attribution – Vous devez attribuer l’oeuvre de la manière indiquée par l’auteur

de l’oeuvre ou le titulaire des droits (mais pas d’une manière qui suggérerait qu’ils
vous approuvent, vous ou votre utilisation de l’oeuvre).

Partage dans les Mêmes Conditions – Si vous modifiez, transformez ou adap-
tez cette oeuvre, vous n’avez le droit de distribuer votre création que sous une licence
identique ou similaire à celle-ci.

comprenant bien que :

Renonciation – N’importe laquelle des conditions ci-dessus peut être levée si vous avez l’au-
torisation du titulaire de droits.

Domaine Public – Là où l’oeuvre ou un quelconque de ses éléments est dans le domaine public
selon le droit applicable, ce statut n’est en aucune façon affecté par la licence.

Autres droits – Les droits suivants ne sont en aucune manière affectés par la licence : (i)
Vos prérogatives issues des exceptions et limitations aux droits exclusifs ou fair
use ; (ii) Les droits moraux de l’auteur ; (iii) Droits qu’autrui peut avoir soit sur
l’oeuvre elle-même soit sur la façon dont elle est utilisée, comme le droit à l’image
ou les droits à la vie privée.

Remarque – A chaque réutilisation ou distribution de cette oeuvre, vous devez faire ap-
parâıtre clairement au public la licence selon laquelle elle est mise à disposition.
La meilleure manière de l’indiquer est un lien vers cette page web.

http://creativecommons.org/licenses/by-sa/3.0/fr/

“Composing computer programs to solve scientific problems is like writing poetry.
You must choose every word with care and link it with the other words in perfect
syntax. There is no place for verbosity or carelessness. To become fluent in a com-
puter language demands almost the antithesis of modern loose thinking. It requires
many interactive sessions, the hands-on use of the device. You do not learn a fo-
reign language from a book, rather you have to live in the country for year to let
the language become an automatic part of you, and the same is true for computer
languages.”

James Lovelock, Building Java Programs.

Les actuaires ont toujours été des gros utilisateurs de statistiques, et des manipulateurs de
données. Il n’est donc pas surprenant de vouloir écrire un ouvrage dédié à l’actuariat dans la col-
lection Utilisation de R. Toutefois ce livre n’est pas un livre d’actuariat 1. Ce n’est pas non plus un
livre de programmation 2. Nous ne présenterons pas ici les rudiments du langage R, et renvoyons
à plusieurs ouvrages parus récemment 3. Le but est plutôt de proposer un complément pra-
tique et concret à ces ouvrages théoriques, à l’aide d’un langage de programmation qui présente
l’avantage d’être simple à déchiffrer pour quiconque souhaite comprendre les algorithmes utilisés.

Nous avons ici la modestie de présenter quelques techniques universelles sans aucunement
prétendre à l’exhaustivitié, tout en ayant l’ambition de montrer que R est un logiciel idéal
pour les actuaires et les personnes intéressés aux problématiques de modélisation statistique des
risques.

Il est néanmoins particulièrement délicat d’écrire un livre basé sur l’utilisation d’un logiciel.
Ou en l’occurence sur un langage de programmation (le S) et sur une communauté mettant à
disposition des libraries de fonctions (les packages). Délicat d’autant plus que la communauté
est particulièrement active. Dès que le livre sera publié, il risque de devenir obsolète assez
rapidement. Mais il nous a semblé que si les packages à venir pourraient simplifier la tâche
des actuaires, le contenu du livre devrait garder une relative frâıcheur pendant quelques années
encore. C’est tout du moins ce que l’on espère, et qui légitime le fait que l’ouvrage soit maintenant
disponible dans une version reliée.

En R, nous proposons de discuter les modèles économétriques de tarification et de provision-
nement, les calculs d’annuités en assurance vie, les méthodes d’estimation des coefficients de
crédibilité, ou encore du lissage des tables de mortalité prospectives. Il est évident que d’autres
logiciels pourraient faire exactement la même chose. Mais R présente l’avantage d’être simple à
comprendre (de part la forme matricielle du langage), d’être libre (ce qui permet à tout à chacun
de reprendre des codes existants et de les améliorer), et gratuit.

Ce livre est basé sur des notes écrites pour des cours dispensés depuis une petite dizaine
d’années (à l’Université Laval à Québec, à l’Université de Montréal, à l’Université du Québec à
Montréal, à l’ENSEA de Rabat, à l’ENSAE à Paris, à l’Université de Rennes 1, ou à l’Institut

1. Nous renvoyons aux ouvrages Bowers et al. (1997), Denuit & Charpentier (2004), Denuit & Charpentier
(2005), Kaas et al. (2009), de Jong & Zeller (2008), Frees (2009), Dickson et al. (2009), Klugman et al. (2009),
Ohlsson & Johansson (2010), Marceau (2012) (parmi tant d’autres) qui présentent les fondementaux théoriques
que nous allons évoquer ici sans réellement les justifier.

2. Nous renvoyons aux ouvrages Chambers (2009), Gentle (2009), Mori (2009), Cormen et al. (2009), Venables
& Ripley (2002a), ou encore Knuth (1997a,b, 1998) - pour une réfléxion plus profonde sur la programmation - qui
proposent des algorithmes probablement plus efficaces et rapides que la majorité des codes que nous verrons ici.

3. Zuur et al. (2009), Maindonald & Braun (2007), Chambers (2009), Dalgaard (2009), ou encore Krause
(2009) (là encore parmi tant d’autres) pour des introductions à la programmation en R.

de Sciences Financières et d’Assurance (ISFA) à Lyon, mais aussi lors de formations données à
des actuaires de différentes compagnies et mutuelles d’assurance en France).

Cet ouvrage va proposer dans le Chapitre 1 un paranorama des distributions statistiques
utilisées pour la modélisation des sinistres en actuariat (dans l’esprit de Klugman et al. (2009)).
Différentes méthodes d’estimation de paramètres et d’ajustement de lois seront évoquées, dont
la majorité sont implémentées dans le package fitdistrplus.

Dans le Chapitre 2, nous aborderons la tarification a priori et l’utilisation des modèles
linéaires généralisés pour calculer la prime pure d’un contrat d’assurance (en l’occurence en res-
ponsabilité civile automobile). Nous verrons ainsi comment modéliser les fréquences de sinistres
(régression de Poisson et ses extensions) et les coûts (en évoquant l’écrètement des grands si-
nistres).

Le Chapitre 3 sera dédié aux calculs de provisions pour sinistres à payer, à partir de la
méthode dite Chain Ladder, avec diverses extensions plus récentes, dont l’approche de Mack, et
l’utilisation de la régression Poisson. Ce chapitre s’appuira sur le package ChainLadder tout
en insistant sur l’écriture des algorithmes.

Enfin les Chapitre 4 et 5 présenteront des applications en assurance-vie, avec des calculs de
base dans le Chapitre 4 (proposant de programmer plusieurs grandeurs classiques présentées
dans Bowers et al. (1997) ou Dickson et al. (2009)). Le Chapitre 5 proposera une application
sur les tables de mortalités prospectives. Ce dernier chapitre s’appuiera essentiellement sur le
package demography, mais mais aussi le package gnm.

Bien que ce livre aborde des sujets aussi divers que les algorithmes récursifs pour les calculs
d’annuités, ou la régression Poissonnienne pour le calcul de provisions pour sinistres à payer,
nous avons essayé d’avoir des notations aussi cohérentes que possibles entre les chapitres, mais
aussi avec les notations internationales usuelles. Nous noterons ainsi x une valeur réelle, X une
variable aléatoire réelle, x un vecteur de Rd, et X une matrice d×k. La version sous R sera alors
notée x ou X. Si X est une matrice, sa transposée sera notée X ′. Pour les lois de probabilité,
nous noterons F la fonction de répartition, et f la densité associée - si elle existe - ou la masse
de probabilitée associée dans le cas discret. Dans les sections trâıtant d’inférence statistique, θ̂
désignera l’estimateur d’un paramètre θ ; et dans les sections où nous nous attacherons à prédire
diverses quantitées, Ŷ désignera l’estimateur de E(Y), voire E(Y |X = x) lorsque des variables
explicatives seront utilisées. Dans le chapitre d’assurance vie, · désignera un produit, et sera
utilisé afin de séparer clairement les termes (dont les indices de part et d’autre ne permettent
souvent pas une lecture simple).

Avant de conclure cette rapide introduction, nous tenions à remercier plusieurs personnes.
Nous remercions Bernard Mathieu qui a proposé dès 2005 d’organiser des formations à R dédiées
aux actuaires, en France. Et nous remercions toutes les personnes qui ont suivi ces formations
pour les questions qu’elles ont soulevées ! Nous remercions aussi Frédéric Planchet pour ses relec-
tures des manuscrits, et pour avoir lancé l’idée de publier un livre de R en actuariat. De manière
assez globale, nous remercions nos étudiants qui ont suivi (ou subi) depuis 7 ans l’évolution de
ces notes qui ont servi de support au livre que vous tenez aujourd’hui entre vos mains. Nous
remercions aussi nos collègues et amis qui ont accepté de relire certaines parties de livre.

Arthur Charpentier & Christophe Dutang, Décembre 2012.

Table des matières

Avant-propos iii

Table des matières v

1 Modèles de sinistres sans variables explicatives 1

1.1 Rappels des lois usuelles en actuariat . 1

1.2 Estimation non-paramétrique . 16

1.3 Estimation paramétrique . 20

1.4 Estimation des copules . 27

1.5 Exercices . 35

2 La tarification a priori 37

2.1 Les modèles linéaires généralisés . 39

2.2 Régression logistique et arbre de régression . 52

2.3 Modéliser la fréquence de sinistralité . 62

2.4 Les variables qualitatives ou facteurs . 63

2.5 Modéliser les coûts individuels des sinistres . 79

2.6 Exercices . 87

3 Les provisions pour sinistres à payer 91

3.1 La problématique du provisionnment . 91

3.2 Les cadences de paiements et la méthode Chain Ladder 94

3.3 De Mack à Merz & Wüthrich . 97

3.4 Régression Poissonnienne et approches économétriques 108

3.5 Les triangles multivariés . 123

3.6 Borhutter-Fergusson, Benktander et les méthodes bayésiennes 126

3.7 Exercices . 132

4 Calculs de base en assurance vie et décès 133

4.1 Quelques notations . 133

4.2 Calculs d’annuités . 137

4.3 Calculs de provisions mathématiques . 140

4.4 Algorithme récursif en assurance-vie . 147

4.5 Le package lifecontingencies . 150

4.6 Exercices . 155

v

5 Les tables prospectives 159
5.1 Les bases de données prospectives . 159
5.2 Le modèle de Lee & Carter . 166
5.3 Utilisation du modèle de Lee-Carter projeté . 178
5.4 Aller plus loin que le modèle de Lee-Carter . 181
5.5 Exercices . 182

A Annexes 185
A.1 Les lois de probabilités . 185
A.2 Générateurs aléatoires . 187

Bibliographie 195

Index 203

Index des commandes 206

Chapitre 1

Modèles de sinistres sans variables
explicatives

Plusieurs des techniques actuarielles étudiées dans cet ouvrage requièrent de connâıtre la loi
de probabilité du montant ou du nombre de sinistres dans un portefeuille d’assurance non-vie. Le
présent chapitre passe en revue les techniques les plus couramment utilisées pour déterminer ces
lois à partir d’échantillon de données. En dehors de données simulées pour évaluer la robustesses
des estimateurs, nous étudierons deux jeux de données : dental et vents contenant des montants
de réclamation en assurance dentaire et des vitesses de vent de deux stations en région Rhône-
Alpes, respectivement.

Nous débutons le chapitre par un rappel des principales lois utilisées en assurance non-
vie dans la section 1.1. En sections 1.2 et 1.3, nous présentons les deux grandes méthodes
d’estimation, à savoir l’approche non-paramétrique et l’approche paramétrique, respectivement.
Enfin, la section 1.4 termine ce chapitre en présentant les méthodes de calibration standard pour
les copules.

1.1 Rappels des lois usuelles en actuariat

De la définition même des risques d’assurance (et leur caractère incertain), les actuaires ont
besoin d’utiliser les outils probabilistiques pour modéliser les phénomènes aléatoires. Les lois
de probabilités s’attachent à préciser, formaliser et différencier les phénomènes aléatoires. Cette
section a pour but de rappeler les lois de probabilités usuelles en actuariat non-vie. Pour une
introduction aux probabilités, nous renvoyons le lecteur vers les ouvrages de références, par
exemple, Amiot (1999), Moral et al. (2006), Delmas (2012).

NotonsX une variable aléatoire représentant notre quantité d’intérêt, par exemple le montant
du sinistre ou le nombre de sinistres au sein d’un portefeuille d’assurance. Une façon classique
de caractériser X est d’en préciser sa fonction de répartition FX : x 7→ P(X ≤ x) sur R, ou un
domaine D ⊂ R pouvant être borné ou non. Rappelons que FX doit être une fonction croissante,
continue à gauche de D dans [0, 1]. Deux cas doivent être distingués, soit la fonction FX possède
une dérivée notée fX : cas des variables continues, soit elle n’en possède pas : cas des variables
discrètes et/ou des variables mixtes. Ci-dessous, nous présentons donc dans un premier temps
les lois continues. Ensuite, nous décrivons les lois discrètes et les mixtes. Enfin, nous terminons
par les lois multivariées et les copules.

En commentaire général sur les distribution les plus classiques, R fournit la densité ou la
fonction de masse de probabilité d, la fonction de répartition p, la fonction quantile q et un

1

générateur aléatoire r associées. Pour une loi de probabilité de racine toto, on a dons les 4
fonctions dtoto, ptoto, qtoto, rtoto. Si on souhaite utiliser une loi non-implémentée dans
R, de nombreux packages comblent ce manque, voir la “task view” pour une liste exhaustive
http://cran.r-project.org/web/views/Distributions.html. Dans cette longue liste, citons notamment
le package actuar - dédié à l’actuariat - implémentant en plus les 18 lois de probabilités que nous
détaillons dans la section suivante. De plus, actuar fournit également des fonctions auxiliaires
pour les 18 lois et celles de R : les moments ordinaires E(Xk), les moments limités E(min(X,x)k),
la fonction génératrice des moments E

(
etX
)

sous réserve que ces quantités existent. Trois préfixes
ont donc été rajoutés m, lev et mgf. Par exemple, la fonction mgfgamma implémente la fonction
génératrice des moments de la loi gamma.

1.1.1 Les lois continues

Dans cette sous-section, nous supposons que la loi de probabilité possède une densité fX .
En annexe A.1.1, nous rappelons la génèse des différentes densités proposées dans la littérature
scientifique à l’aide du système de Pearson. Nous renvoyons le lecteur vers Kotz et al. (1994a,b)
pour plus de détails sur les lois continues.

Les lois classiques en actuariat

Traditionnellement en actuariat, comme les principales quantités d’intérêt sont des coûts ou
des durées, les lois de probabilités les plus utilisées sont celles à support positif. Les trois lois
positives les plus courantes sont les suivantes :

– la loi gamma dont la densité dgamma s’écrit :

fX(x) =
λα

Γ(α)
e−λxxα−1,

où x ≥ 0, α, λ > 0 (les paramètres sont notés shape et rate sous R) et Γ représente la
fonction Gamma. Si α = 1, on retrouve la loi exponentielle. La fonction de répartition n’a
de forme explicite puisqu’elle s’exprime à l’aide de la fonction Gamma incomplète γ(,) :

FX(x) = γ(α, λx)/Γ(α),

où γ(α, x) =
∫ x

0 t
α−1e−tdt, voir Olver et al. (2010) pour les détails sur la fonction gamma

incomplète inférieure.
Lorsque α = 1, la distribution est appelée une exponentielle et lorsque α = r/2 et λ =
1/2, la distribution est appelée loi du chi-deux avec r degrés de liberté. Le mode de la
distribution est en x = 0 si α ≤ 1 et en x > 0 si α > 1.
Enfin, une distribution gamma avec paramètre α entier est également nommée Erlang.
Dans ce cas, on a

FX(x) = 1−
α−1∑

i=0

(λx)i

i!
e−λx.

– la loi log-normale dont la densité dlnorm s’écrit :

fX(x) =
1

σx
√

2π
e−

(log(x)−µ)2

2σ2 ,

pour x > 0, µ ∈ R et σ2 > 0 (les paramètres sont notés meanlog et sdlog respectivement
sous R). Sa fonction de répartition est simplement

FX(x) = Φ

(
log(x)− µ

σ

)
,

http://cran.r-project.org/web/views/Distributions.html

où x > 0 et Φ dénote la fonction de répartition de la loi normale centrée réduite).
– la loi de Weibull dont la densité dweibull s’écrit :

fX(x) =
β

ηβ
xβ−1e

−(x
η

)β
,

où x > 0 and η, β > 0 (notés scale et shape respectivement. Sa fonction de répartition
possède l’expression suivante

FX(x) = 1− e−(x
β

)η
.

Comme le montre la figure 1.1, ces lois des plus usuelles ont des densités assez différentes et
possèdent des propriétés très différentes. Les paramètres ont été choisis de manière à ce que les
trois lois soient d’espérance 1.
> x <- seq(0,5,.01)

> y <- dlnorm(x, -1/2, 1)

> y2 <- dgamma(x, 2, 2)

> y3 <- dweibull(x, 2, 2/sqrt(pi))

> leg.txt <- c("LN(-1/2,1)","G(2,2)","W(2,2/sqrt(pi))")

> plot(x, y, xlab="x", ylab="f(x)", main="Comparaison des densit\’es",

+ ylim=range(y, y2, y3), col="black", type="l")

> lines(x,y2, lty=2)

> lines(x,y3, lty=3)

> legend("topright",leg=leg.txt, col="black",lty=1:3)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparaison des densités

x

f(x
)

LN(-1/2,1)
G(2,2)
W(2,2/sqrt(pi))

Figure 1.1 – Densités de lois usuelles pour des variables positives.

Dans le tableau 1.1, on a listé par ordre alphabétique les lois continues présentes avec R.
Notons que ce tableau 1.1 contient des lois à support infini comme la loi normale, des lois à
support borné comme la loi béta ou des lois à support positif comme la loi exponentielle.

Les familles de lois continues

Pour obtenir d’autres lois, on peut appliquer différentes transformations sur ces lois :
– une translation X − c (par exemple la loi lognormale translatée pour X lognormale),

Lois de probabilité Racine Lois de probabilité Racine
beta beta logistique logis

Cauchy cauchy lognormale lnorm

chi-2 chisq normale norm

exponentielle exp Student t t

Fisher F f uniforme unif

gamma gamma Weibull weibull

Table 1.1 – Loi implémentées dans R.

– une mise à l’échelle λX (par exemple la loi normale pour X normale centrée réduite),
– une puissance Xα (par exemple la loi beta type 1 généralisée pour X de loi beta type 1),
– un inverse 1/X (par exemple la loi inverse gamma pour X gamma),
– un logarithme log(X) (par exemple la loi loglogistique pour X logistique),
– une exponentielle eX (par exemple la loi Pareto pour X exponentiel),
– un ratio X/(1−X) (par exemple la loi béta type 2 pour X une loi béta type 1).

Pour chacune des transformations ci-dessus, on peut facilement déduire la densité en calculant
la transformée inverse. Par exemple, pour Y = λX, on a fY (y) = fX(y/λ). Dans R, il est facile
de générer des réalisations de telles transformations. Choisissons par exemple Y = logX où X
est une loi uniforme sur [0,1].

> x <- runif(100)

> y <- -log(x)

> par(mar=c(4, 4, 2, 1), mfrow=c(1, 2))

> hist(y)

> plot(ecdf(y), do.points=FALSE)

> curve(pexp, 0, max(y), add=TRUE, col="grey50")

Comme nous le verrons plus tard, la variable Y est de loi exponentielle de paramètre 1, voir la
figure 1.2.

Histogram of y

y

Fr
eq
ue
nc
y

0 1 2 3 4

0
10

20
30

40

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(y)

x

Fn
(x
)

Figure 1.2 – Transformée logarithmique.

Nous présentons maintenant deux grandes familles de lois basées sur les transformées puis-
sance et ratio, respectivement la famille gamma transformée et béta transformée.

18 Actuariat et R

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✙

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✙

Gamma transformée
α, τ, λ

✓
✒

✏
✑
α = 1

Weibull
τ, λ

✓
✒

✏
✑

τ = 1

Exponentielle
λ

✓
✒

✏
✑

α = 1

Gamma
α, λ

✓
✒

✏
✑
τ = 1

Fig. 1.5. Relations entre les membres de la famille gamma transformée

Ces relations sont illutrées à la figure 1.5.
Si τ < 0 dans la transformation (1.8) et τ∗ = −τ , alors on obtient

FY (y) = 1 − Γ(α; (λy)−τ∗
)

et

fY (y) =
τ∗e−(λy)−τ∗

λτ∗αyατ∗+1Γ(α)
,

qui sont les fonctions de répartition et de densité de probabilité de la distribu-
tion Gamma transformée inverse de paramètres α, λ et τ∗. Le mode de cette
distribution est toujours strictement positif. Les membres de cette famille sont les
distributions inverses de celles de la figure 1.5.

1.3.2 Familles bêta et bêta transformée
La distribution bêta est continue et définie sur un intervalle fini. Elle est donc

rarement utilisée pour la modélisation des montants de sinistres. Par contre, elle
joue un rôle important dans la création de nouvelles distributions, comme nous
le verrons plus loin. Lorsque son domaine est restreint à l’intervalle (0, 1), elle est
souvent utilisée comme modèle pour une probabilité.

Soit X ∼ Bêta(α, β, θ). La fonction de densité de probabilité de X est

fX(x) =
1

β(α, β)

1

θ

�x

θ

�α−1 �
1 − x

θ

�β−1

, 0 < x < θ,

où

β(a, b) =

� 1

0

ta−1(1 − t)b−1 dt

=
Γ(a)Γ(b)

Γ(a + b)

Figure 1.3 – Relations entre les membres de la famille gamma transformée

Gamma transformée Les trois lois de la figure ?? n’étant pas à queue de distribution épaisse,
on utilise très souvent d’autres lois pour modéliser le montant des sinistres élevés. La famille
gamma transformée est une extension de la famille gamma obtenue par transformation d’une
variable aléatoire gamma. Soit X ∼ G(α, 1) et

Y = X1/τ/λ,

alors Y suit une loi gamma transformée GT (α, τ, λ) pour τ > 0. Elle a pour densité et fonction
de répartition

fY (y) =
λτα

Γ(α)
τyατ−1e−(λy)τ , et FY (y) = Γ(α, (λy)τ)/Γ(α).

Lorsque ατ ≤ 1, le mode de la distribution est en y = 0. Lorsque ατ > 1, le mode de la densité
est alors en y > 0.

Notons que pour α = 1, on retrouve la loi de Weibull et pour τ = 1 la loi gamma. Ces
relations sont illutrées à la figure 1.3. Si τ < 0 dans la transformation de X en posant τ? = −τ ,
alors on obtient

fY (y) =
τ?e−(λy)−τ

?

λτ?αyατ?+1Γ(α)
, et FY (y) = 1− Γ(α, (λy)−τ

?
)/Γ(α).

Béta transformée La loi béta (de première espèce) est une variable aléatoire continue sur
[0,1] et peut être utilisée quelque fois pour modéliser des taux de destruction. Néanmoins c’est
surtout sa transformée logit X

1−X à valeurs dans R+ qui est utilisé pour modéliser le montant
des sinistres. Cette loi est appélée loi béta de seconde espèce.

Soit X une variable de loi Béta 1 β1(a, b). Sa densité est donnée par

fX(x) =
xa−1(1− x)b−1

β(a, b)
,

où x ∈ [0, 1], a, b > 0 et β(., .) est la fonction béta, au sens où β(a, b) = Γ(a)Γ(b)/Γ(a+ b). Très
logiquement sa fonction de répartition s’exprime en fonction d’une fonction béta incomplète
β(a, b, .)

FX(x) =
β(a, b, x)

β(a, b)
.

On en déduit que la variable Z = X
1−X a pour densité

fZ(x) =
xa−1

β(a, b)(1 + x)a+b
.

En appliquant deux transformations de plus, Y = θ
(

X
1−X

)1/γ
a pour densité une loi béta

transformée

fY (y) =
1

β(a, b)

γ(y/θ)γτ

y(1 + (y/θ)γ)α+τ
.

Sa fonction de réparatition s’exprime par

FY (y) =
β(a, b, v

1+v)

β(a, b)
, avec v = (y/θ)γ .

La famille bêta transformée compte plusieurs membres dont, entre autres : la loi de Burr(b, γ, θ)
lorsque a = 1, la loi de Pareto généralisée(b, a, θ) lorsque γ = 1, la loi de Pareto (b, θ) lorsque
γ = a = 1. Ces relations sont illustrées à la figure 1.4.20 Actuariat et R

❍❍❍❍❍❍❍❍❥
✻

�
�

�
��✠ ❄

❍❍❍❍❍❍❍❍❍❥❄

✟✟✟✟✟✟✟✟✙
✻

❄

❄

❍❍❍❍❍❍❍❍❥

Bêta transformée
α, γ, τ, θ

✓
✒

✏
✑

α = 1

Burr inverse
γ, τ, θ

✓
✒

✏
✑

γ = τ

Paralogistique inverse
τ, θ

✓
✒

✏
✑

γ = α

Pareto inverse
τ, θ

✓
✒

✏
✑

γ = 1

Pareto généralisée
α, τ, θ

✓
✒

✏
✑

τ = 1

Pareto
α, θ

✓
✒

✏
✑

τ = 1

Burr
α, γ, θ

✓
✒

✏
✑

γ = α

Paralogistique
α, θ

✓
✒

✏
✑

α = τ

Log-logistique
γ, θ

✓
✒

✏
✑

α = 1
γ = 1 τ

=
1

Fig. 1.6. Relations entre les membres de la famille bêta transformée

dans R, à l’exception de l’inverse gaussienne et de la log-t mais avec en plus la
log-gamma (Hogg & Klugman, 1984).

Le tableau 1.1 dresse la liste des lois de probabilité supportées par R et actuar
et qui sont couramment utilisées pour la modélisation des montants de sinistres.
On trouvera à l’annexe A les fonctions de densité et de répartition de ces lois, ainsi
que le nom des arguments des fonctions R correspondant à leurs paramètres.

En plus des fonctions d, p, q et r, actuar ajoute des fonctions m, lev et mgf
pour calculer, dans l’ordre, les moments théoriques (1.4), les moments limités (1.5)
et la fonction génératrice des moments

MX(t) = [etX], (1.10)

lorsqu’elle existe. Ces nouvelles fonctions sont définies pour toutes les lois du ta-
bleau 1.1 en plus des suivantes : bêta, khi carré, normale (sauf lev), uniforme et
l’inverse gaussienne du package SuppDists (Wheeler, 2006).

1.4 Estimation paramétrique

L’approche paramétrique consiste à choisir un modèle connu pour le phénomène
sous étude. Ce modèle comportera habituellement des paramètres qu’il faudra dé-
terminer d’une manière ou une autre. En général, on optera pour une technique
ayant un certain degré d’objectivité et se basant sur des observations du phéno-
mène.

En termes plus statistiques, on cherche à estimer le vecteur de paramètres
θ = (θ1, . . . , θp)

� d’une fonction de densité de probabilité ou fonction de masse de
probabilité f(x;θ) à partir d’un échantillon aléatoire X1, . . . , Xn de la population.

Figure 1.4 – Relations entre les membres de la famille béta transformée

Comparaison de lois actuarielles

La figure 1.5 trace la densité de trois grandes lois utilisées en actuariat non vie, à savoir la
loi de Pareto, la Béta transformée et la gamma transformée.

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Densité de Pareto

x

f(x
)

P(2,1)
P(2,2)
P(2,3)
P(3,1)

(a) Loi Pareto

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Densité de la Béta transformée

x

f(x
)

TB(1,2,3,1)
TB(3,2,1,1)
TB(2,1,3,1)
TB(2,2,3,1)

(b) Loi Béta transformée

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Densité de la gamma transformée

x

f(x
)

TG(1,2,1)
TG(3,2,1)
TG(2,3,2)
TG(1,2,2)

(c) Loi gamma transformée

Figure 1.5 – Densités de lois actuarielles

Le tableau 1.1 présentait les lois de base de R. Dans le tableau 1.2, on trouve la liste de
lois très spécifiques et très adaptées à l’actuariat non-vie, proposées dans le package actuar,

(Dutang et al. 2008). Il est composé de colonnes comportant le nom de la famille de lois, le nom
de la loi de probabilité et de la racine de la fonction R correspondante.

Famille Lois de probabilité Racine
Transformed beta Transformed beta trbeta

Burr burr

Loglogistic llogis

Paralogistic paralogis

Generalized Pareto 1 genpareto

Pareto pareto

Inverse Burr invburr

Inverse Pareto invpareto

Inverse paralogistic invparalogis

Transformed gamma Transformed gamma trgamma

Inverse transformed gamma invtrgamma

Inverse gamma invgamma

Inverse Weibull invweibull

Inverse exponential invexp

Other Loggamma lgamma

Single parameter Pareto pareto1

Generalized beta genbeta

Table 1.2 – Loi implémentées dans actuar

1.1.2 Les lois discrètes

Considérons maintenant une variable aléatoire X que l’on associera à un comptage. On
caractérisera ces variables discrètes par leur probabilité élémentaire, ou leur fonction de masse
de probabilité. Les 3 lois usuelles discrètes sont :

– la loi binomiale de fonction de probabilité dbinom donnée par

P(X = k) =

(
n

k

)
pk(1− p)n−k,

où

(
n

k

)
est le nombre de combinaison de k éléments parmi n (i.e.

n!

k!(n− k)!
), k ∈ N et

0 ≤ p ≤ 1 la probabilité de “succès”. Cette loi vérifie EX > V[X].
– la loi de Poisson de fonction de probabilité dpois donnée par

P(X = k) =
λk

k!
e−λ,

où λ > 0 est le paramètre de forme et k ∈ N. Cette loi vérifie EX = V[X].
– la loi binomiale négative de fonction de probabilité dnbinom donnée par

P(X = k) =

(
m+ k − 1

k

)
pm(1− p)k,

où k ∈ N et p ∈ [0, 1]. Lorsque m = 1, on trouve la loi géométrique de paramètre p. Cette
loi vérifie EX < VarX.

1. Attention ceci ne correspond à la loi de Pareto généralisée de la théorie des valeurs extrêmes.

Ces 3 lois permettent de modéliser une majorité des variables discrètes. La figure 1.6 compare
les lois discrètes à espérance égale (E(X) = 5).

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

f(x
)

B(10, 1/2)
NB(5, 1/2)
P(5)

Figure 1.6 – Fonctions de masse de probabilité des lois discrètes usuelles

En fait, ces trois lois font partie de la famille dite de Sundt (a, b, 0), dont les probabilités
élémentaires vérifient

P(X = k + 1)

P(X = k)
= a+

b

k
,

pour k ≥ 0 et a, b deux paramètres. On retrouve la loi binomiale avec

a =
−p

1− p et b =
p(n+ 1)

1− p ,

la loi de Poisson avec

a = 0 et b = λ,

et enfin la loi Binomiale Négative avec

a = 1− p et b = (1− p)(m− 1).

La famille (a, b, 0) va être utilisée pour les lois composées. De manière plus générale, on peut
définir la famille (a, b, n) en tronquant la variable aléatoire pour les valeurs plus petites ou
égales à n− 1. C’est à dire, on a

P(X = k) =





0 si k < n

P(X = k − 1)

(
a+

b

k

)
si k ≥ n ,

De plus, on peut parfois appliquer des transformations à ces lois usuelles comme supprimer la
valeur en k = 0 ou en modifiant la valeur en k = 0. Pour obtenir les lois zéro-tronqués, il suffit
de considérer la famille (a, b, 1).

Les versions zéros-modifiées s’obtiennent à partir des versions zéro-tronquées (a, b, 1). Notons
XM la variable zéro-modifiée obtenu par d’une variable X. On définit les probabilités élémentaire

par

P(XM = k) =





pM0 si k = 0
1− pM0

1− P(X = 0)
P(X = k) sinon

,

où pM0 est la probabilité en 0 et X est la variable aléatoire sous-jacente que l’on considère, e.g.

la loi de Poisson P(X̃ = k) =
λk

k!
e−λ.

Des packages implémentent ces lois usuelles, néanmoins il est facile de les construire à la
main ! Créons la fonction de masse de probabilite

> dpoism <- function(x, p0, ...)

+ ifelse(x == 0, p0, (1-p0)/(1-dpois(0, ...))*dpois(x, ...))

Ensuite, il est facile d’afficher cette fonction en appelant le code suivant :

> x <- 0:10

> y <- dpoism(x, dpois(0, 1), 1)

> y2 <- dpoism(x, 1/2, 1)

> y3 <- dpoism(x, dpois(0, 2), 2)

> y4 <- dpoism(x, 1/3, 2)

> leg.txt <- c("P(1)","P-0M(1)", "P(2)","P-0M(2)")

> plot(x, y, xlab="x", ylab="f(x)", ylim=range(y, y2, y3, y4[-(1:15)]),

+ col="black", type="b")

> lines(x, y2, col="blue", type="b")

> lines(x, y3, col="red", type="b")

> lines(x, y4, col="green", type="b")

> legend("topright",leg=leg.txt, col=c("black","blue","red","green"),lty=1)

Sur la figure 1.7, on peut observer la décrochage en 0 pour la loi de Poisson zéro-modifiée de
paramètre 1 et 2.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

f(x
)

P(1)
P-0M(1)
P(2)
P-0M(2)

Figure 1.7 – La loi de Poisson zéro-modifiée.

Enfin, des lois plus paramétrées comme la loi hypergéométrique peuvent parfois être utilisées.
Pour aller plus loin sur les lois discrètes, nous renvoyons le lecteur intéressé vers Johnson et al.
(2005).

1.1.3 Les lois mixtes

Zéro-modifié

Les lois mixtes sont des lois de probabilité qui sont ni entièrement continues ni entièrement
discrètes. Ce sont généralement des lois continues auxquelles on a rajouté des masses de probabi-
lités. Typiquement pour modéliser le montant des sinistres, il peut être intéressant de considérer
une masse en zéro (i.e. aucun sinistre) et une loi continue au delà de zéro (i.e. occurence d’un
sinistre). Dans la littérature, on appelle ces lois du nom de la loi continue complétée de zéro-
modifié.

Par exemple, la loi exponentielle zéro-modifiée a pour fonction de répartition

FX(x) = q + (1− q)(1− e−λx)

pour x ≥ 0. Cette loi ne possède pas densité puisqu’il y a une discontinuité en zéro : P(X = 0) =
q 6= lim

x→0−
FX(x) = 0. Néanmoins, la variable aléatoire X conditionellement à X > 0 possède la

densité de la loi exponentielle.
Cette approche peut aussi s’appliquer pour les variables discrètes et la modélisation du

nombre de sinistre. Ainsi on peut choisir d’utiliser la loi Poisson zéro-modifiée (ou à inflation
de zéros, qui sera utilisée dans la Section 2.4.6), puisqu’il parait logique que la probabilité de
n’avoir aucun sinistre soit bien différente et plus élevée que d’avoir des sinistres (voir la section
précédente).

MBBEFD

Un exemple plus intéressant de loi mixte sont les lois MBBEFD, introduites et popularisées
Bernegger (1997). MBBEFD est un sigle pour Maxwell-Boltzmann, Bore-Einstein et Fermi-
Dirac. La loi MBBEFD est caractérisée par la fonction de répartition suivante

F (x) =





a

(
a+ 1

a+ bx
− 1

)
if 0 ≤ x < 1

1 if x ≥ 1
,

pour x ∈ R+. C’est donc un mélange d’une loi continue sur]0, 1[et d’une masse de Dirac en 1.
On a en effet une masse de probabilité en 1 :

p = 1− F (1) =
(a+ 1)b

a+ b
.

Les paramètres (a, b) sont définis pour un grand choix d’intervalles :] − 1, 0[×]1,+∞[et
]−∞,−1[∪]0,+∞[×]0, 1[. La forme de la fonction de répartition F a les propriétés suivantes :

– pour (a, b) ∈ I1 =]− 1, 0[×]1,+∞[, F est concave,
– pour (a, b) ∈ I2 =]−∞,−1[×]0, 1[, F est concave,
– pour (a, b) ∈ I3 =]0, b[×]0, 1[, F est concave,
– pour (a, b) ∈ I4 = [b, 1[×]0, 1[, F est convexe puis concave,
– pour (a, b) ∈ I4 = [1,+∞[×]0, 1[, F est convexe.
On peut exprimer la fonction de masse de probabilités à l’aide de la fonction de Dirac δ. On

obtient l’expression suivante :

f(x) =
−a(a+ 1)bx ln(b)

(a+ bx)2
11]0,1[(x) + pδ1(x).

Actuellement, il n’y a pas de packages concernant cette loi. Mais, il est facile de l’implémenter.

> dMBBEFD <- function(x, a, b)

+ -a * (a+1) * b^x * log(b) / (a + b^x)^2 + (a+1) * b / (a+b) * (x == 1)

> pMBBEFD <- function(x, a, b)

+ a * ((a+1) / (a + b^x) - 1) * (x < 1) + 1 * (x >= 1)

La loi MBBEFD a été introduite pour la modélisation des courbes d’exposition et des taux
de destruction pour les traités de réassurance non proportionnelles. Nous renvoyons le lecteur
intéressé vers Bernegger (1997).

Les lois composées

Nous considérons la variable S défini par

S =
N∑

i=1

Xi,

où Xi sont des variables aléatoires i.i.d. et avec comme convention que la somme est nulle si
N = 0. En pratique S représente la charge totale de sinistre et Xi des montants individuels de
sinistres. En conditionnant par rapport au nombre de sinitres, on a

FS(x) =

∞∑

n=0

P(S ≤ x|N = n)P(N = n) =

∞∑

n=0

F ∗nX (x)pn, (1.1)

où FX(x) = P(X ≤ x est la fonction de répartition (commune) des X1, . . . , Xn, pn = P(N = n)
et F ∗nX (x) = P(X1 + · · ·+Xn ≤ x) est le produit de convolution d’ordre n de FX(·).

Il existe différentes stratégies pour calculer la loi de la somme : une formule exacte si les va-
riables aléatoires sont discrètes (algorithme de Panjer ou FFT), des approximations (normale ou
normal-power ou gamma) et une approche par simulation. Toutes ces méthodes sont disponibles
dans la fonction aggregateDist du package actuar.

Si X est une variable aléatoire discrète sur N alors l’équation 1.1 devient

F ∗kX (x) =





11x≥0, k = 0

FX(x), k = 1
x∑

y=0

F
∗(k−1)
X (x− y)P (X = y), k = 2, 3, . . .

(1.2)

Le calcul récursif peut se faire avec l’algorithme de Panjer (1981) si la loi de la variable aléatoire
N appartient à la famille (a, b, 0) ou (a, b, 1). La formula de récursion est la suivante

P(S = x) =

[P(X = 1)− (a+ b)P(X = 0)]P(X = x) +
x∧m∑
y=1

(a+ by/x)P(X = y)P(S = x− y)

1− aP(X = 0)
,

où la récursion démarre par P(S = 0) = GN (P(X = 0)) et GN est la fonction génératrice des pro-
babilités, i.e. GN (z) = E(zN). La récursion s’arrête lorsque les probabilités sont arbitrairement
proche de 0.

La formule est implémentée en C pour diminuer le temps de calcul. Ne connaissant par avance
la valeur x telle que P (S = x) ≈ 0, on démarre avec une taille fixe du tableau contenant les
probabilités élémentaires de S, que l’on double à chaque fois que c’est nécessaire.

En pratique, les montants de sinistres sont rarements discrets, mais on peut discrétiser la
fonction de répartition pour retomber dans le cadre d’application de l’algorithme de Panjer.

Comme pour l’algorithme de Panjer, on suppose que X est à valeurs discrètes. La convolée
d’ordre n F ∗nX (x) de la fonction de répartition de X, utilisée dans l’équation 1.1, peut se calculer à
l’aide de la transformée de Fourrier discrète. Cette transformée est implémentée par l’algorithme
FFT (Fast Fourrier Transform). Dans R, la fonction convolve réalise ceci.

Différentes approximations sont possibles pour évaluer la fonction de répartition de la variable
S. Nous présentons ci-dessous les plus connues.

Approximation normal consiste à calibrer une loi normale sur S par la méthode des mo-
ments :

FS(x) ≈ Φ

(
x− µS
σS

)
,

où µS = E(S) et σ2
S = V ar(S). Nul ne va sans dire que cette approximation est plutot brutale

et peu conservatrice sur la queue de distribution.

Approximation normale-puissance considère la formule suivante

FS(x) ≈ Φ

(
− 3

γS
+

√
9

γ2
S

+ 1 +
6

γS

x− µS
σS

)
,

où γS = E((S − µS)3)/σ
3/2
S . L’approximation est valide pour x > µS seulement et est raisona-

blement bonne pour γS < 1, voir Daykin et al. (n.d.) pour plus de détails.

Simulations L’approche par simulation est simple, cela consiste à simuler un certain nombre
de réalisations. La fonction aggregateDist est même plus général que le modèle décrit plus, car
elle accepte un modèle hiérarchique pour la fréquence et la sévérité des sinistres.

Exemple Présentons maintenant un exemple où le montant de sinistre est de loi gamma et le
nombre de sinistre suit une loi de Poisson.

Considérons le cas où N suit une loi de Poisson de paramètre λ et que les variables Xi sont
i.i.d. de loi gamma de moyenne G(α, β). Dans ce cas, les moments ont pour expression

E [S] = E [N] · E [X] = λα/β,

V[S] = V[N]E [X]2 + E [N]V[X] = λ

(
α+ α(α+ 1)

β2

)
,

et

γS =
E
[
X3
]

√
λE [X2]3/2

=
1√
λ
· α√

α(α+ 1)
.

Comme précisé ci-dessus, l’algorithme de Panjer ne fonctionne qu’avec des lois discrètes, il
convient donc de discrétise la fonction de répartition des montants de sinistre et ensuite d’utiliser
la fonction aggregateDist.
> fx.u <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5,

+ method = "upper")

> Fs.u <- aggregateDist("recursive", model.freq = "poisson",

+ model.sev = fx.u, lambda = 10, x.scale = 0.5)

> fx.l <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5,

+ method = "lower")

> Fs.l <- aggregateDist("recursive", model.freq = "poisson",

+ model.sev = fx.l, lambda = 10, x.scale = 0.5)

> Fs.n <- aggregateDist("normal", moments = c(20, 60))

> Fs.np <- aggregateDist("npower", moments = c(20, 60, 4/sqrt(60)))

> Fs.s <- aggregateDist("simulation",

+ model.freq = expression(y = rpois(10)),

+ model.sev = expression(y = rgamma(2, 1)),

+ nb.simul = 10000)

Sur la figure 1.8, on a tracé la queue de distribution de la somme agrégée S pour toutes les
méthodes. On constate que la méthode par simulation, l’algorithme de Panjer couplé à une
discrétisation sans biais et l’approximation normale-puissance sont toutes très proche. L’approxi-
mation normale et l’algorithme de Panjer couplé à une discrétisation supérieure sur-estiment la
fonction de répartition tandis que l’algorithme de Panjer couplé à une discrétisation inférieure
la sous-estime.

35 40 45 50 55

0.
97

0.
98

0.
99

1.
00

Aggregate Claim Amount Distribution

x

Fs
(x
)

recursive + unbiased
recursive + upper
recursive + lower
simulation
normal approximation
normal-power approximation

Figure 1.8 – Comparaison de méthodes

1.1.4 Les lois multivariées et les copules

Nous abordons dans cette sous-section très rapidement les lois multivariés, c’est à dire la loi
d’un vecteur aléatoire. De plus, il parait difficile de ne pas parler des copules tant leur utilisation
en actuariat n’a cessé d’augmenter ses dernières années, voir, par exemple, Frees & Valdez
(1998), Embrechts et al. (2001), Frees & Wang (2006). Ainsi, nous présentons aussi rapidement
les copules dans cette sous-section.

Les lois multivariées

Notons d la dimension. Comme dans le cas univarié, la loi du vecteur X = (X1, . . . , Xd) peut
se décrire par la fonction de répartition

FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd).

De plus, si X est à valeurs discrètes, on peut utiliser la fonction de masse de probabilité P(X =
x). Si X est à support continu, on peut définir une fonction de densité fX(x). Nous présentons
ci-dessous deux grandes familles de lois : la loi normale et la loi de Pareto.

Loi normale Notons µ ∈ Rd et ΣMd(R) les paramètres. La densité est donnée par

fX(x) =
1

(2π)
d
2 |Σ| 12

e−
1
2

(x−µ)′Σ−1(x−µ)

pour x ∈ Rd et |.| désignant le déterminant. µ est la moyenne du vecteur aléatoire et Σ sa
matrice de variance-covariance. La fonction de répartition a là aussi pas d’expression explicite.
Par définition, on a

FX(x) =

∫ x1

−∞
. . .

∫ xd

−∞

1

(2π)
d
2 |Σ| 12

e−
1
2

(x−µ)′Σ−1(x−µ)dx1 . . . dxd

Loi Pareto Dans le cas univarié, la loi de Pareto se caracterise très souvent par sa queue de
distribution à décroissance polynomiale. Considérons la loi de Pareto IV, on a

P (X > x) =

(
1 +

(
x− µ
σ

) 1
γ

)−α
.

L’extension multivariée est donnée dans Arnold (1983) :

P (X > x) =

(
1 +

d∑

i=1

(
xi − µi
σi

) 1
γi

)−α

pour x ≥ µ, σ le vecteur des paramètres d’échelle, γ ceux de forme et α ceux de décroissance. Il
est possible d’obtenir la densité en dérivant par rapport à chaque variable. Pour plus de détails,
voir Arnold (1983) et sa version plus récente Arnold (2008).

Autres : D’autres lois multivariées existent, voir Kotz et al. (1994a,b) pour les lois continues
et Johnson et al. (1997) pour les lois discrètes.

Les copules

L’utilisation des copules permet de construire de lois multivariées de manière générique en
spécifiant des lois marginales et une structure de dépendance. Les copules ont été introduits
par Sklar (1959) dans le but de caractériser un vecteur X = (X1, . . . , Xd) ayant des lois mar-
ginales (i.e. P (Xi ≤ xi)) données. Par le théorème de Sklar, on a que pour toutes fonctions de
répartitions multivariées F à marginales F1, . . . , Fd, il existe une fonction copule C telle que

F (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd) = C(F1(x1), . . . , Fd(xd)).

La fonction multivariée C : [0, 1]d 7→ [0, 1] appelée doit remplir les conditions suivantes pour que
l’expression reste une fonction de répartition : condition au bord C(. . . , ui−1, 0, ui+1, . . .) = 0,
C(. . . , 1, ui, 1, . . .) = ui et d-croissance. Ces contraintes garantissent que C est une fonction de
répartition multivariée dont les lois marginales sont uniformes sur [0, 1].

Cette représentation a l’énorme avantage de séparer les marginales Fi de la structure “inter-
ne” de dépendance C. La copule la plus simple est la copule indépendance

C(u1, . . . , ud) =

d∏

i=1

ui = C⊥(u1, . . . , ud) = Π(u1, . . . , ud).

Deux autres fonctions tout aussi importantes sont les bornes de Fréchet :

M(u1, . . . , ud) = min(u1, . . . , ud) et W (u1, . . . , ud) =

(
d∑

i=1

ui − (d− 1)

)

+

.

La première est une copule quelle que soit la dimension d, alors que la seconde n’est une copule
que si d = 2.Elles sont telles que toute copule C vérifie W ≤ C ≤M . Il existe plusieurs familles
de copules possédant des propriétés intéressantes pour certaines applications. Nous présentons
les deux plus courantes.

Famille elliptique Les copules elliptiques se construisent à partir des lois ellyptiques (dont
font partie la loi Gaussienne, ou la loi de Student). Notons Ed (resp. E1) une fonction de
répartition de dimension d (resp. 1) d’une telle famille. Une copule elliptique se définit par

C(u1, . . . , ud) = Ed(E
−1
1 (u1), . . . , E−1

1 (ud)).

On retrouvera comme cas particulier est la copule Gaussienne, pour laquelle Ed = FN (0,Σ) et
E1 = FN (0,1). On trouve aussi dans cette famille, la copule de Student, voir Embrechts et al.
(2001).

Famille archimédienne Une autre grande famille de copules, popularisée grace aux livres
de Nelsen (1999, 2006), est la famille archimédienne. Les copules sont construites de la manière
suivante :

C(u1, . . . , ud) = φ−1

(
d∑

i=1

φ(ui)

)
,

où φ : [0, 1] 7→ [0,∞] est une fonction infiniment continue, complètement monotone et inversible
(des conditions plus faibles peuvent être demandé si la dimension d est fixée : par exemple en
dimension 2, φ doit être décroissante et convexe). Pour plus de détails sur cette construction,
nous renvoyons le lecteur vers le théorème 2.1 de Marshall & Olkin (1988). Les trois copules les
plus connues sont celles de Clayton φ(t) = t−α − 1, celle de Gumbel φ(t) = (− log(t))−α et celle

de Frank φ(t) = − log

(
eαt − 1

eα − 1

)
.

Famille des copules extrêmes Ce sont les copules C qui vérifient la propriété suivante dite
de max-stabilité

C(u1, . . . , ud) =
(
C(u

1/k
1 , . . . , u

1/k
d)

)k
,

pour tout k > 0. Cette propriété est issue de la théorie des valeurs extrêmes (si k ∈ N, la
copule de droite est la copule du vecteur (max{X1,1, . . . , X1,k}, . . . ,max{Xd,1, . . . , Xd,k}) pour
des vecteurs (X1, . . . , Xd) i.i.d. de copule sous-jacente C).

Parmi les lois des copules extrêmes, nous ne présentons que la copule de Gumbel, mais
d’autres copules existens, notamment la copule de Galambos, Huler-Reiss, Marshall-Olkin, . . .La
copule de Gumbel qui est aussi archimédienne est donnée par

C (u1, . . . , un) = exp


−

[
n∑

i=1

(− lnui)
α

]1/α

 ,

où α > 0. C’est la copule que nous allons utilisé dans la section 1.4.6. Il est important de noter
que la copule gaussienne n’appartient pas à la famille des copules extrêmes.

1.2 Estimation non-paramétrique

Pour le reste du chapitre, on pose que X représente la variable aléatoire (continue) du mon-
tant d’un sinistre avec fonction de répartition F (x). L’assureur dispose d’observationsX1, . . . , Xn

(sous forme individuelles ou groupées) que l’on suppose former un échantillon aléatoire de la va-
riable aléatoire X. Dans cette section, on va chercher à construire, à partir des données, des
estimateurs de F (x), de la fonction de densité de probabilité f(x) et de certaines quantités liées
sans faire d’hypothèse quant à la distribution de X. Cette approche sera dite non paramétrique.
Elle a comme avantages d’être flexible et de bien prendre en compte la disparité des données.
De plus, elle peut être très précise lorsque le nombre de données est grand. Par contre, elle est
souvent moins efficace qu’une approche paramétrique et l’inférence statistique qui en résulte est
plus compliquée.

1.2.1 Fonctions de répartition et densité empiriques

La première étape d’un processus de modélisation consiste souvent à tracer des graphiques
tels que ceux présentés à la figure 1.2 permettant de déterminer globalement la distribution des
données. Les fonctions sous-jacentes à ces graphiques constituent en fait des estimateurs de la
fonction de répartition et de la fonction de densité de probabilité.

Dans le cas de données individuelles, on construit la fonction de répartition empirique, Fn(x),
et la fonction de masse de probabilité empirique, fn(x), en attribuant à chacune des n données
un poids de 1/n. On a donc

Fn(x) =
1

n

n∑

j=1

11{Xj≤x},

et par “différentiation”,

fn(x) =
1

n

n∑

j=1

11{Xj=x},

où 11A est une fonction indicatrice valant 1 lorsque la condition A est vraie, et 0 sinon. Pour la
densité empirique, l’estimateur ci-dessus est une somme de masse de Dirac, c’est pourquoi on
considère en général un estimateur lissé à l’aide de fonction noyau.

fK,n(x) =
1

nhn

n∑

j=1

K

(
x−Xj

hn

)
,

où K est une fonction noyau (fonction positive d’intégrale 1) et hn une taille de fenêtre. Si on
prend un noyau rectangulaire K(u) = 1/211[−1,1[(u), alors on obtient un histogramme glissant.
D’autres noyaus existent : le noyau gaussien (celui par défaut dans R, via la fonction density)

se definit par K(u) =
1√
2π
e−

u2

2 , le noyau d’Epanechnikov K(u) =
3

4
√

5
(1− u2/5)11[−

√
5,
√

5[(u).

Le théorème de Glivencko-Cantelli assure la convergence presque sûre de ces deux estima-
teurs. La fonction ecdf de R retourne une fonction pour calculer Fn(x) en tout x, tandis que la
fonction density permet de calculer fK,n sur une grille.

Aux fins d’illustration, nous allons utiliser les données dental distribuées avec actuar. Il
s’agit de 10 montants de réclamation en assurance dentaire avec une franchise de 50 :

> data(dental, package = "actuar")

> dental

[1] 141 16 46 40 351 259 317 1511 107 567

On définit une fonction R pour calculer Fn(x) avec

> Fn <- ecdf(dental)

Les méthodes de summary et knots fournissent de l’information plus détaillées sur l’objet :

> summary(Fn)

Empirical CDF: 10 unique values with summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

16.0 61.2 200.0 336.0 342.0 1510.0

> knots(Fn)

[1] 16 40 46 107 141 259 317 351 567 1511

On peut évaluer la fonction de répartition empirique à ses noeuds ou en tout autre point :

> Fn(knots(Fn))

[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> Fn(c(20, 150, 1000))

[1] 0.1 0.5 0.9

Enfin, le graphique de gauche de la figure 1.9 a été tracé tout simplement avec

> plot(Fn)

Pour la densité empirique, le principe est le même. On se contente ici de l’afficher sur l’histo-
gramme.

> hist(dental, prob=TRUE, breaks=c(0, 25, 100, 500, 1000, 2000))

> lines(density(dental), lty=2)

Voir le graphique de droite de la figure 1.9.

1.2.2 Quantiles

La fonction quantile d’une variable aléatoire X de fonction de répartition F est définie à
l’aide de l’inverse généralisée

qX(p) = inf
x∈R

(F (x) ≥ p),

aussi noté F−1(p). Hyndman & Fan (1996) propose une approche unifiée pour le calcul des
quantiles empiriques où le quantile empirique une combinaison convexe des valeurs observées
encadrant le quantile recherché.

Pour des variables continues, le quantile de type 7, celui utilisé par défaut dans R, est une
interpolation linéaire entre la b(n+ 1)pc e et la d(n+ 1)pe e statistique d’ordre :

q̂p = (1− h)x(j) + hx(j+1)

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(dental)

x

Fn
(x
)

Histogram of dental

dental

D
en
si
ty

0 500 1000 1500 2000

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

density

Figure 1.9 – Exemple de fonction de répartition empirique (gauche) et d’histogramme (droite)
de données individuelles

avec

j = b1 + (n− 1)pc,

h = 1 + (n− 1)p− j,

où x(j) est la je valeur de l’échantillon trié en ordre croissant, bxc est le plus grand entier inférieur
ou égal à x, et dxe est le plus petit entier supérieur ou égal à x. Le théorème de Mosteller nous
assure la convergence en loi de ces estimateurs.

Pour des variables discrètes, le quantile empirique de type 2 est défini par la moyenne des 2
valeurs les plus proches :

q̂p =

{1

2
(x(j) + x(j+1)) si np ∈ N

x(j) sinon
,

avec j = bnpc. Avec l’algorithme ci-dessus, sur les données dental on a par exemple les quantiles
suivant pour p = 0.1, 0.5, 0.9.

> quantile(dental, c(0.1, 0.5, 0.9))

10% 50% 90%

37.6 200.0 661.4

On remarquera que ces valeurs ne correspondent pas avec celles de la fonction de répartition
empirique (non lissée) calculées à l’exemple 1.2.1.

1.2.3 Moments

Les moments constituent des mesures des tendances centrales d’une distribution et, par le
fait même, de la forme générale de celle-ci. Il n’est donc pas rare de comparer les moments
empiriques d’un échantillon aux moments théoriques d’une distribution. On nomme, lorsqu’il
existe, moment (ordinaire) d’ordre k de la variable aléatoire X l’espérance de cette dernière

élevée à la puissance k :

µ′k = E
[
Xk
]

=

∫ ∞

0
xkdF (x),

tandis que le moment centré d’ordre k est définit par

µk = E
[
(X − E[X])k

]
=

∫ ∞

0
(x− E[X])kdF (x).

En particulier, on a E[X] = µ′1 et µ1 = 0.

Pour développer des estimateurs des moments théoriques, il suffit de remplacer la fonction de
répartition F (x) par la fonction de répartition empirique Fn(x). Pour un ensemble de données
individuelles, on a donc

µ̂′k =

∫ ∞

0
xkdFn(x) =

1

n

n∑

j=1

(xj)
k.

Le théorème de Slutsky garantit la convergence en loi des estimateurs empiriques vers leur
équivalent théorique. Dans R, les premiers moments s’obtiennent à l’aide des fonctions mean,
var ou en calculant explicitement les sommes pour les autres moments.

1.2.4 Espérances limitée et résiduelle

On a déjà définit X, la variable aléatoire du montant d’un sinistre. On définit maintenant
X ∧ u, la variable aléatoire du montant limité à u :

X ∧ u = min(X,u) =

{
X, X < u

u, X ≥ u.

Ainsi, le moment limité d’ordre k de la variable aléatoire X est :

E
[
(X ∧ u)k

]
=

∫ ∞

0
min(x, u)k dF (x)

=

∫ u

0
xk dF (x) + uk(1− F (u)).

(1.3)

Dans la suite, on s’intéressera plus particulièrement au premier moment de X ∧ u, soit
l’espérance limitée de X :

E [X ∧ u] =

∫ u

0
x dF (x) + u(1− F (u)). (1.4)

L’espérance limitée peut s’interpréter comme l’espérance d’un sinistre avec une limite de sous-
cription u.

Une valeur liée est l’espérance résiduelle. Celle-ci représente l’excédent moyen des valeurs
d’une variable aléatoire supérieures à x. En termes de durée de vie, l’espérance résiduelle est
appelée espérance de vie résiduelle (ou future) d’un individu d’âge x. Mathématiquement, on a

e(x) = E [X − x|X > x]

=
1

1− F (x)

∫ ∞

x
(y − x) dF (y).

Il n’est pas difficile de démontrer que l’on a entre l’espérance résiduelle et l’espérance limitée la
relation

e(x) =
E [X]− E [X ∧ x]

1− FX(x)
. (1.5)

L’espérance résiduelle s’interprète aussi comme la prime stop-loss pour une franchise x.

La version empirique de l’espérance limitée pour des données individuelle est

Ê[X ∧ u] =

∫ u

0
x dFn(x) + u(1− Fn(u))

=
1

n

∑

xj<u

xj + u(1− Fn(u))

=
1

n

n∑

j=1

min(xj , u).

Pour une limite fixe, il est simple de calculer cette quantité avec R :

> mean(pmin(dental, 1200))

[1] 304.4

1.3 Estimation paramétrique

L’approche paramétrique consiste à choisir un modèle connu pour le phénomène sous étude.
Ce modèle comportera habituellement des paramètres qu’il faudra dé- terminer d’une manière
ou une autre. En général, on optera pour une technique ayant un certain degré d’objectivité et
se basant sur des observations du phéno- mène. En termes plus statistiques, on cherche à estimer
le vecteur de paramètres θ = (θ1, . . . , θp)

T d’une fonction de densité de probabilité ou fonction
de masse de probabilité f(x, θ) à partir d’un échantillon aléatoire X1, . . . , Xn de la population.
On note (x1, . . . , xn) les observations correspondantes.

1.3.1 Maximum de vraisemblance

La vraisemblance de l’échantillon s’exprime de la manière suivante

L(θ, x1, . . . , xn) =
n∏

i=1

fXi(xi, θ) =
n∏

i=1

f(xi, θ),

où f désigne la fonction de masse de probabilité ou la densité suivant la loi retenue. L’estimateur
du maximum de vraisemblance (EMV) de θ est la valeur θ̂ qui maximise la fonction de vraisem-
blance L(θ, x1, . . . , xn, θ) par rapport à θ (pour un jeux d’observation donné) sur son domaine
de définition. De plus, ceci est équivalent à maximiser le logarithme de la vraisemblance (appelée
log-vraisemblance) :

l(θ) =

n∑

i=1

ln f(xi, θ).

On définit les fonctions de score

Sj(θ) =
∂

∂θj
lnL(θ), pour j = 1, . . . , p.

La maximisation de L(θ) se résume donc à résoudre les équations normales

Sj(θ) = 0, pour j = 1, . . . , p.

Généralement, il n’existe pas de formules fermées pour ces équations, on les résout numériquement.
Dans le cas de données groupées, où nj représente le nombre de données dans la classe

]cj−1, cj], j = 1, . . . , r, la probabilité qu’une donnée tombe dans l’intervalle]cj−1, cj] est F (cj)−
F (cj−1). La fonction de vraisemblance est donc

L(θ, x1, . . . , xn) =

r∏

i=1

[F (cj , θ)− F (cj−1, θ)]
nj .

Ainsi la log-vraisemblance s’écrit

l(θ) =
r∑

i=1

nj ln [F (cj , θ)− F (cj−1, θ)] .

On trouvera dans tout bon livre de statistique mathématique (par exemple Hogg et al.
(2005), Saporta (2006), Dagnelie (2007), Dalgaard (2008)) une étude détaillée des propriétés de
l’estimateur du maximum de vraisemblance. Aussi nous contenterons-nous, ici, de ne présenter
que les principaux résultats.

Invariance Pour toute fonction bijective g, si θ̂ est l’EMV de θ, alors g(θ̂) est l’EMV de g(θ),
soit

ĝ(θ) = g(θ̂).

Biais et efficacité asymptotique Sous des conditions de régularité, l’EMV est asymptoti-
quement sans biais et efficace. C’est-à-dire que si θ̂n est l’EMV de θ pour un échantillon (i.i.d.)
de taille n, alors

E
[
θ̂n,i

]
−→

n→+∞
θi et V[θ̂n,i] −→

n→+∞

1

In(θ)ii
, pour i ∈ {1, . . . , p},

où In(θ) désigne la matrice d’information de Fisher de taille p×p dont l’élément (i, j) est donné
par

In(θ)ij = −nE
[

∂2

∂θi∂θj
ln f(X, θ)

]
.

(In(θ)ii)
−1 est appélée borne de Cramer-Rao.

Normalité asymptotique La distribution asymptotique de l’EMV est une loi normale mul-
tivariée de moyenne θ et avec matrice de variance-covariance In(θ)−1, i.e.

θ̂n → N (θ, In(θ)−1),

où In(θ) est la matrice d’information de Fisher donnée ci-dessus.
Concentrons-nous pour un instant sur le cas univarié (p = 1), plus simple. Par la propriété

de normalité asymptotique, on a que, pour de grands échantillons,

P

[
−zα/2 <

θ̂n − θ√
In(θ)−1

< zα/2

]
= 1− α,

où zα est le 100(1 − α)e centile d’une N(0, 1). On peut réécrire l’expression ci-dessus sous la
forme

P
[
θ̂n − zα/2

√
In(θ)−1 < θ < θ̂n + zα/2

√
In(θ)−1

]
= 1− α,

d’où]
θ̂n − zα/2

√
In(θ)−1 , θ̂n + zα/2

√
In(θ)−1

[

est un intervalle de confiance de niveau 1− α pour θ.
En pratique, la forme de l’information In(θ) rend souvent le calcul de l’intervalle de confiance

ci-dessus impossible. Deux cas de figure se présentent :

1. l’information est connue, mais dépend de θ d’une manière compliquée. On remplace alors
θ par son estimation θ̂, ce qui résulte en une estimation de la variance et donc à l’intervalle
de confiance]

θ̂n − zα/2
√
In(θ̂n)−1, θ̂n + zα/2

√
In(θ̂n)−1

[
.

2. l’information est inconnue, par exemple si l’espérance est trop compliquée. Dans un tel
cas, on remplace l’espérance par une moyenne empirique : c’est l’information observée

În(θ̂n) = −
n∑

i=1

∂2

∂θ2
ln f(xi; θ)

∣∣∣∣
θ=θ̂

= − ∂2

∂θ2
l(θ;xi, . . . , xn)

∣∣∣∣
θ=θ̂n

.

L’intervalle de confiance pour θ est alors
]
θ̂n − zα/2

√
Î−1
n (θ̂n), θ̂n + zα/2

√
Î−1
n (θ̂n)

[
.

Ces idées se généralisent au concept d’ellipse ou d’ellipsöıde de confiance dans le cas multivarié.
En pratique, il n’est pas rare que l’on souhaite estimer non pas θ, mais une fonction h(θ)

de θ. On sait déjà que l’EMV de h(θ) est h(θ̂n), mais qu’en est-il d’un intervalle de confiance
pour cette estimation ? En général, il s’agit d’un calcul difficile car la distribution de h(θ̂n) peut
être très compliquée. On peut alors utiliser la méthode delta, qui est valide pour les grands
échantillons. Ainsi dans le cas univarié et pour h continument différentiable, lorsque n→∞,

h(θ̂n) ∼ N
(
h(θ), [h′(θ)]2I−1(θ)

)
,

d’où un intervalle de confiance de h(θ) est

]
h(θ̂n)− zα/2

√
[h′(θ)]2I(θ) , h(θ̂n) + zα/2

√
[h′(θ)]2I(θ)

[
.

Ce résultat s’étend aussi au cas multivarié. Si l’on souhaite estimer une fonction h(θ1, . . . , θp)
des paramètres inconnus θ1, . . . , θp, alors par la méthode delta, on a asymptotiquement

h(θ̂n) ∼ N (h(θ),∇hT In(θ)−1∇h),

où ∇hT représente la transposée du gradient ∇h et ∇h est donné par

∇h(θ) =




∂

∂θ1
h(θ)

...
∂

∂θp
h(θ)



.

Un intervalle de confiance de niveau 1− α pour h(θ) est donc

]
h(θ̂n)− zα/2

√
∇hT In(θ)−1∇h, h(θ̂n) + zα/2

√
∇hT In(θ)−1∇h

[
.

Considérons l’exemple trivial : on choisit de calibrer la loi exponentielle de paramètre λ, alors
on a

logL(λ, x1, . . . , xn) = log

(
λn

n∏

i=1

e−λxi

)
= n log(λ) +

n∑

i=1

(−λ)xi.

D’où l’estimateur de maximum de vraisemblance est n/
∑n

i=1Xi.
En pratique, il est plutôt rare de pouvoir obtenir explicitement l’expression du maximum de

la fonction de vraisemblance. Dans de tels cas, il faut avoir recours à des méthodes numériques
pour résoudre les équations normales (par exemple avec la méthode de Newton-Raphson) ou
alors pour directement maximiser la fonction de vraisemblance ou, plus communément, de log-
vraisemblance.

Le package fitdistrplus fournit une fonction mledist qui se charge d’appeler les algorithmes
d’optimisation implémentés dans R (voir les fonctions optim ou optimize implémentant une
méthode de quasi-Newton avec recherche linéaire et une méthode de recherche dichotomique,
respectivement pour des fonctions multivariées et univariées). Dans la suite, nous allons tester
l’estimateur de maximum de vraisemblance sur un échantillon gamma et un échantillon Pareto
et tester leur robustesse.

> library(fitdistrplus)

> x <- rgamma(1000, 2, 3)

> mledist(x, "gamma")

$estimate

shape rate

2.031030 2.921142

$convergence

[1] 0

$loglik

[1] -516.0789

$hessian

shape rate

shape 632.6279 -342.3319

rate -342.3319 238.0188

$optim.function

[1] "optim"

La fonction fitdist englobant la fonction mledist fournit des informations plus détaillées
concernant les estimations, notamment les erreurs standards.
> fit1.gam <- fitdist(x, "gamma", method="mle")

> summary(fit1.gam)

Fitting of the distribution ’ gamma ’ by maximum likelihood

Parameters :

estimate Std. Error

shape 2.031030 0.08443494

rate 2.921142 0.13765460

Loglikelihood: -516.0789 AIC: 1036.158 BIC: 1045.973

Correlation matrix:

shape rate

shape 1.0000000 0.8822011

rate 0.8822011 1.0000000

Noter l’écart relativement grand entre les vraies valeurs des paramètre (2, 3) et leur estimation
(2.031030, 2.921142). Sur le graphique 1.10, on peut constater la convergence relativement lente
des estimateurs MLE.

0 2000 4000 6000 8000 10000

-0
.2

-0
.1

0.
0

0.
1

0.
2

Erreur relative pour le paramètre de forme

Taille d'échantillon

er
re
ur

0 2000 4000 6000 8000 10000
-0
.2

-0
.1

0.
0

0.
1

0.
2

Erreur relative pour le paramètre de taux

Taille d'échantillon

er
re
ur

Figure 1.10 – Erreur relative sur les paramètres de la loi Gamma

On peut faire la même procédure pour un échantillon de loi de Pareto. A notre grand regret,
l’estimateur de maximum de vraisemblance s’avère encore plus lent pour un échantillon de loi
de Pareto, cf. figure 1.11.

0 2000 4000 6000 8000 10000

-0
.2

-0
.1

0.
0

0.
1

0.
2

Erreur relative pour le paramètre de forme

Taille d'échantillon

er
re
ur

0 2000 4000 6000 8000 10000

-0
.2

-0
.1

0.
0

0.
1

0.
2

Erreur relative pour le paramètre de taux

Taille d'échantillon

er
re
ur

Figure 1.11 – Erreur relative sur les paramètres de la loi Pareto

1.3.2 Méthodes des moments

La méthode des moments est probablement la plus ancienne méthode utilisée pour faire de
l’estimation ponctuelle. C’est une méthode d’estimation simple et intuitive, mais les estimateurs
obtenus possèdent généralement peu de “belles” propriétés. Pour déterminer les estimateurs des

moments des paramètres θ1, . . . , θp, on impose que les p premiers moments théoriques soient
identiques aux p premiers moments empiriques (au moins). On doit donc résoudre

E[Xk] =
1

n

n∑

i=1

Xk
i , pour k = 1, . . . , p.

Il n’y a aucune garantie que la solution au système d’équations soit unique ou même qu’elle
n’existe. Bien qu’ils ne réunissent peu de propriétés d’optimalité souhaitables pour des esti-
mateurs ponctuels, les estimateurs des moments demeurent populaires, si ce n’est qu’à titre
de points de départ pour d’autres méthodes. On remarquera que pour les lois inverse, il vaut
souvent mieux utiliser les moments négatifs (k = −1,−2, . . .).

Reprenons le cas de la loi exponentielle, l’espérance est donnée par 1
λ . Le système d’équation

se réduit à
1

n

n∑

i=1

Xi =
1

λ
⇔ λ =

n∑n
i=1Xi

,

qui est aussi l’estimateur de maximum de vraisemblance. Ceci n’est évidemment qu’un pur
hasard.

Le package fitdistrplus permet d’utiliser la méthode des moments soit directement avec la
fonction mmedist soit via la fonction fitdist. Dans R, cela donne les commandes suivantes :

> library(fitdistrplus)

> x <- rexp(1000, 1)

> mmedist(x, "exp", order=1)

$estimate

rate

0.991603

$convergence

[1] 0

$order

[1] 1

$memp

NULL

$loglik

[1] -1008.432

$method

[1] "closed formula"

Reprenons nos échantillons simulés gamma et Pareto, i.e. deux échantillons de taille 1000,
dont on cherche à estimer les paramètres. Même si il peut être intéressant de tester des cali-
brations de moments d’ordre supérieurs, on se limite en pratique à égaliser les deux premiers
moments.

Sur la figure 1.12, on a tracé la fonction de répartition empirique et les fonctions de répartition
calibrées par maximum de vraisemblance et par la méthode des moments. Les deux sous-figures
1.12a et 1.12b montrent que les ajustements ne sont pas trop mauvais, même dans les queues
de distribution.

Cependant, les estimations pour la loi de Pareto sont très loin de la vraie valeur des pa-
ramètres. Quant à la fonction de répartition empirique, elle sous estime probabilité la queue de
distribution, puisque sur un échantillon de taille 1000, il y a peu de valeurs extrêmes pour une
loi de Pareto. Ainsi, on sous-estime la queue de distribution de la vrai Pareto.

1.0 1.5 2.0 2.5 3.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Gamma

x

Fn
(x
)

ecdf
MME
MLE
theo.

(a) Loi gamma

0 2 4 6 8 10 12

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Pareto

x

Fn
(x
)

ecdf
MME
MLE
theo.

(b) Loi Pareto

Figure 1.12 – Comparaison des calibrations – Echantillon taille 1000

1.3.3 Méthodes des quantiles

La méthodes des quantiles consiste à égaler les quantiles empiriques avec les quantiles
théoriques. Dans l’esprit, elle est très similaire à la méthode des moments. Mais en pratique
elle peut se révéler plus robuste, d’une part car les quantiles existent toujours et d’autre part
cela permet de calibrer les données dans un endroit particulier de la fonction de répartition, le
cœur ou les queues de distribution.

La méthode des quantiles consiste à résoudre les équations

qn,pk = F−1(pk), pour k = 1, . . . , p

où qn,pk dénote le quantile empirique et F−1(pk) le quantile théorique.

La fonction de quantile de la loi exponentielle est Q(p) = − log(1−p)
λ . Il suffit donc de résoudre

l’équation

Qn(1/2) = − log(1/2)

λ
⇔ λ = − log(1/2)

Qn(1/2)
,

dans le cas où l’on veut calibrer sur la médiane (i.e. p = 1/2).
Le package fitdistrplus permet aussi d’utiliser la méthode des quantiles soit directement

avec la fonction qmedist soit via la fonction fitdist. Dans R, cela donne les commandes
suivantes :
> x <- rexp(1000, 1)

> qmedist(x, "exp", probs=1/2)

$estimate

rate

0.9577806

$convergence

[1] 0

$value

[1] 5.657381e-13

$hessian

rate

rate 1.141883

$probs

[1] 0.5

$optim.function

[1] "optim"

$loglik

[1] -1009.352

> qmedist(x, "exp", probs=4/5)

$estimate

rate

1.003066

$convergence

[1] 0

$value

[1] 2.279133e-12

$hessian

rate

rate 5.117578

$probs

[1] 0.8

$optim.function

[1] "optim"

$loglik

[1] -1008.839

Contrairement à la méthode des moments, où égaliser des moments de hauts degrés était plutôt
sans intérêt, pour la méthode des moments le choix de tels ou tels quantiles peut être totalement
justifié. Sur l’exemple précédent, on a choisi la médiane et le quantile à 80%, et l’on constate
des estimations assez différente.

Enfin sur la figure 1.13, on a continué la comparaison des fonctions de répartition entre
les trois méthodes paramétriques et la méthode non paramétrique. Notons que l’ordre entre
le maximum de vraisemblances et la méthodes des moments semble de nouveau respecté. Par
contre, pour le choix de quantiles considérés (1/3, 2/3), la méthode des quantiles peut ou ne pas
être plus conservateur.

1.4 Estimation des copules

Dans cette section, nous présentons les méthodes d’estimation pour calibrer une copule. Nous
renvoyons le lecteur à la section 1.4.6 pour un exemple d’application.

1.4.1 Méthode des moments

Cette méthode consiste à estimer les paramètres θ des lois marginales et le paramètre α de
la copule par la méthode des moments :

1.0 1.5 2.0 2.5 3.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Gamma

x

Fn
(x
)

ecdf
MME
MLE
QME
theo.

(a) Loi gamma

0 2 4 6 8 10

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Pareto

x

Fn
(x
)

ecdf
MME
MLE
QME
theo.

(b) Loi Pareto

Figure 1.13 – Comparaison des calibrations – Echantillon taille 1000

1. résoudre le système à d équations et d inconnues





Xn = f(θ1, . . . , θd)
S2
n = g(θ1, . . . , θd)

µ3,n = h(θ1, . . . , θd)
...

,

où d désigne la dimension de θ, f , g et h sont les expressions des moments (ordinaires)
d’ordre 1, 2 et 3 en fonction du paramètre θ. Répeter cette étape pour toutes les marginales,

2. égaler une mesure de dépendance avec son équivalent empirique. Si la copule possède une
formule fermée, on peut directement inverser le tau de Kendall ou le rho de Spearman
pour obtenir le paramètre α de la copule.

Notons que si la copule a plusieurs paramètres, il faut trouver plusieurs équations pour déterminer
les paramètres de la copule, voir par exemple Joe (1997).

Pour des marginales exponentielles E(λ) et une copule de Gumbel, on trouve

λ̂n =
1

Xn

et α̂n =
1

1− τn
,

où τn désigne le tau de Kendall empirique, disponible dans la fonction cor.

1.4.2 Maximum de vraisemblance exact

Dans le cas où la densité de la copule existe, on peut utiliser les estimateurs de maximum
de vraisemblance. Pour simplifier, on suppose qu’on utilise une copule bivariée Cα, ayant une
densité et que les lois des marginales possèdent des densités. On note θ1 et θ2 les paramètres

des lois marginales. La log vraisemblance s’écrit :

lnL(α, θ1, θ2, x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

ln (c (F1(xi, θ1), F2(yi, θ2), α))

+

n∑

i=1

ln (f1(xi, θ1)) +

n∑

i=1

ln (f2(yi, θ2)) .

Bien souvent, il n’existe pas d’expressions explicites des estimateurs maximisant lnL, et on
réalise donc une maximisation numérique.

1.4.3 Inférence sur les marginales

Toujours dans l’hypothèse où la copule a une densité, on peut mélanger les deux premières
approches, en estimant d’abord les paramètres des lois marginales, puis en estimant le paramètre
de la copule. Cela consiste à :

1. estimer les paramètres θ1 et θ2 par maximum de vraisemblance,

2. construire les pseudo données ∀1 ≤ i ≤ n, ui = F1(xi, θ̂1) et vi = F2(yi, θ̂2)

3. estimer le(s) paramètre(s) α en maximisant la log-vraisemblance,

lnL(α, u1, . . . , un, v1, . . . , vn) =

n∑

i=1

ln (c (ui, vi, α)) .

Cette méthode présente l’avantage d’utiliser les estimateurs “classiques” de maximum vraisem-
blance des marginales.

1.4.4 Maximum de vraisemblance canonique

C’est une méthode semi-paramétrique, qui se base sur la méthode précédente :

1. calculer les fonctions de répartition empirique F1,n et F2,n,

2. construire les pseudo données ∀1 ≤ i ≤ n, ui = F1,n(xi) et vi = F2,n(yi),

3. estimer le(s) paramètre(s) α en maximisant la log-vraisemblance,

lnL(α, u1, . . . , un, v1, . . . , vn) =
n∑

i=1

ln (c (ui, vi, α)) .

1.4.5 Choix de la copule

Le choix de la copule doit être en relation avec l’élément modélisé. Par conséquent, si on
cherche à modéliser un évènement extrême, on doit se concentrer la famille des copules extrêmes.
Ceci exclut donc la copule gaussienne.

A une famille donnée, différents critères statistiques peuvent être comparés pour valider ou
non une copule. Il existe des critères liés à la log-vraisemblance : la log-vraisemblance (simple)
lnL, le critère d’Aikake (AIC) 2k− 2 lnL ou encore le critère de Schwarz (BIC) −2 lnL+ k lnn,
où k est le nombre de paramètres (à estimer) et n la taille de l’échantillon.

Une autre catégorie de critères s’intéresse à des distances statistiques entre la distribu-
tion empirique et la distribution théorique (calibrée). Typiquement, on utilise la distance de
Kolmogorov-Smirnov, d’Anderson-Darling ou encore la distance L2, voir Saporta (2006).

1.4.6 Application aux couvertures de produits indiciels

Dans cette sous-section, nous présentons une application des copules à la couverture de
produit indiciel, où nous allons prendre en compte la dépendance entre stations météorologiques
pour la construction d’un indice. Nous nous concentrons sur l’aspect pédagogique de l’utilisation
et ne cherchons pas à présenter le modèle parfait. Nous avons choisi la copule de Gumbel, car elle
appartient aux copules extrêmes et aux copules Archimédiennes. Tout en ayant une expression
simple et explicite, la copule de Gumbel a l’avantage de décrire les dépendances asymétriques,
où les coefficients de queue inférieure et de queue supérieure diffèrent. Elle possède donc la
caractéristique de pouvoir représenter des risques dont la structure de dépendance est accentuée
sur la queue supérieure et est particulièrement adaptée en assurance et en finance pour étudier
l’impact de la survenance d’événements de forte intensité sur la dépendance entre plusieurs
variables d’intérêts.

Présentation

Nous avons utilisé la copule de Gumbel pour valoriser les couvertures indicielles cat[as-
trophe]. Ces contrats sont des dérivés climatiques adaptés à la réassurance d’évènement catas-
trophe (tempête, vague de froid,. . .) basé sur un indice climatique (force du vent, température,. . .).
Cette application numérique est basée sur l’article Dubreuil & Vendé (2005).

L’indice climatique doit refléter au mieux les caractérisques des montants des sinistres as-
sociés au risque météo pour diminuer le risque de base. En général, on choisit un panier de n
stations (peu éloignées des régions assurées) dans lesquelles on mesure la variable climatique
Xi(t) au cours de la période [t − 1, t]. Ensuite, l’indice journalier d’une station i est construit
par Ii(t) = min(Li −Ki, Xi(t) −Ki) où Ki et Li sont le seuil et la limite par station. Sur une
période T , l’indice d’une station est donc défini par Si(T) =

∑T
t=1 Ii(t) et l’indice cumulé par

ST =
∑n

i=1 piSi(T) pour une pondération p1, . . . , pn. Enfin le flux engendré par la couverture
indicielle est celui d’un call spread :

CT = N ×min
(
L−K, (ST −K)+

)
,

où K et L sont la franchise et la limite du contrat, et N le montant nominal.

Pour notre exemple, on traite le risque “tempête” en Rhône Alpes. Xi(t) désigne donc la
force maximale du vent (en m/s) par jour. Nous avons choisi deux stations Saint Martin en Haut
(variable X) et Echirolles (variable Y) avec les seuils respectifs 10 et 9, et les limites 16 et 15 2.
On prend T = 633 jours, N = 1, K = 50 et L = 200.

Calibration

Il nous faut calibrer la copule de Gumbel sur nos données recueillies sur internet entre août
2005 et avril 2007. Les données sont livrées avec le package gumbel et il suffit de les charger avec
la fonction data(). Comme les jeux de données windEchirolles et windStMartin possèdent
un nombre d’enregistrements différents en 2007, on sélectionne le plus petit sous-ensemble. On
enlève ausssi les données manquantes.

> library("gumbel")

> data(windEchirolles)

> data(windStMartin)

> n <- min(NROW(windStMartin), NROW(windEchirolles))

2. les seuils sont volontairement bas.

> id2keep <- !is.na(windStMartin$WIND.HIGH[1:n]) &

+ !is.na(windEchirolles$WIND.HIGH[1:n])

> x <- windStMartin$WIND.HIGH[1:n][id2keep]/3.6

> y <- windEchirolles$WIND.HIGH[1:n][id2keep]/3.6

Pour calibrer la copule de Gumbel, un choix de marginales s’impose. L’exemple de cette sous-
section étant à but pédagogique, nous avons choisi de tester seulement deux lois : exponentielle
et gamma. A l’aide de mledist, on obtient facilement les paramètres calibrés.

> library(fitdistrplus)

> xpar_gamma <- mledist(x, "gamma")

> ypar_gamma <- mledist(y, "gamma")

> xpar_exp <- mledist(x, "exp")

> ypar_exp <- mledist(y, "exp")

En traçant les fonctions de répartitions empiriques et calibrées pour chaque marginale, figure
1.14, on constate que la loi exponentielle n’est pas du tout adapté. On peut se convaincre par
des tests d’adéquation : le test de Kolmogorov Smirnov rejette outrageusement l’hypothèse que
les données suivent une loi exponentielle. On choisit donc la loi gamma. Notons les paramètres
de forme et de taux sont notés αX , λX pour Saint Martin en Haut et αY , λY pour Echirolles.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vitesse max du vent, St Martin en haut

x

Fn
(x
)

gamma
exp

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vitesse max du vent, Echirolles

x

Fn
(x
)

gamma
exp

Figure 1.14 – Fonctions de répartitions empiriques (marche) et calibrées (courbes)

Calcul du paramètre de la copule On pose αcop le paramètre de la copule de Gumbel.
Nous utilisons les fonctions du package gumbel

– la méthode des moments (“Moment-Based Estimation”) : gumbel.MBE,
– le maximum de vraisemblance exacte (“Exact Maximum Likelihood”) : gumbel.EML,
– l’inférence sur les marginales (“Inference For Margins”) : gumbel.IFM,
– le maximum de vraisemblance canonique (“Canonical Maximum Likelihood”) : gumbel.CML.

Pour obtenir le paramètre de la copule de Gumbel, il suffit d’appeler les fonctions précédemment
listées.

> res <- cbind(

+ MBE=gumbel.MBE(x, y, marg="gamma"),

+ EML=gumbel.EML(x, y, marg="gamma"),

+ IFM=gumbel.IFM(x, y, marg="gamma"),

+ CML=c(rep(NA, 4), gumbel.CML(x, y))

+)

> rownames(res) <- c("shape-x","rate-x","shape-y","rate-y","copula")

> res <- cbind(res, avg=apply(res, 1, mean, na.rm=TRUE))

Le tableau 1.3 ci-dessous récapitule nos résultats d’estimation (variable res ci-dessus) pour les
4 méthodes présentées en section 1.4.

Méthodes MBE EML IFM CML moyenne
α̂X 6,99 7,022 7,395 - 7,135

λ̂X 1,156 1,155 1,223 - 1,178
α̂Y 5,04 5,105 4,969 - 5,038

λ̂Y 0,7649 0,7712 0,7541 - 0,7634
α̂cop 1,524 1,454 1,44 1.47 1,472

Table 1.3 – Estimations des paramètres

Le bon ajustement des marginales étant déjà été établi sur les graphes de la figure 1.14,
il nous faut choisir une valeur pour les différents paramètres : celui de la copule et ceux des
marginales. Pour la suite, nous choisissons les moyennes des estimations comme valeur de nos
paramètres, c’est à dire la dernière colonne.

La bonne adéquation de la copule de Gumbel aux vitesses de vent maximales est confirmé
par le tracé d’un qqplot empirique (cf. figure 1.15). C’est à dire, il nous faut tracer le nuage
de points (FX,n(Xi), FY,n(Yi)) pour 1 ≤ i ≤ n où FX,n (resp. FY,n) représente la fonction
de répartition empirique de X (resp. Y). Cela revient à tracer les rangs normalisés, puisque
FX,n(Xi) = rang(Xi)/n. Pour comparer ce nuage de points observés à la copule calibrée, nous
simulons un échantillon de couples aléatoires (Ui, Vi)1≤i≤n de loi de Gumbel de paramètre αcop
et traçons les rangs des couples. Les nuages semblent équivalents.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rangs des observations (empirique)

St Martin en haut

E
ch
iro
lle
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rangs des observations (simulation)

St Martin en haut

E
ch
iro
lle
s

Figure 1.15 – qqplot empirique vs simulé

On peut aussi tester l’adéquation de nos données à la famille des copules extrêmes en se
basant sur Genest et al. (2011). Le test statistique est implémenté dans le package copula par
la fonction gofEVCopula. Comme on peut le constater ci-dessous, on ne rejette pas l’hypothèse
que les données soient issues d’une copule de Gumbel. De plus, si l’on teste aussi la copule de
Husler-Reiss, voir par exemple Joe (1997), la statistique de Cramer-von Mises est plus faible
pour l’hypothèse Gumbel que l’hypothèse de Husler-Reiss. Par conséquent, on conclut que la
copule de Gumbel est adaptée à nos données.

> library(copula)

> gofEVCopula(gumbelCopula(1), cbind(x, y), optim.method="BFGS", N=1000,

+ m=500, print.every=-1)

Parameter estimate(s): 1.477927

Cramer-von Mises statistic: 0.01389476 with p-value 0.3171828

> gofEVCopula(huslerReissCopula(1), cbind(x, y), optim.method="BFGS", N=1000,

+ m=500, print.every=-1)

Parameter estimate(s): 1.173151

Cramer-von Mises statistic: 0.01443714 with p-value 0.2482517

Evaluation du payoff

Maintenant que l’on a calibré notre copule (et les marginales), on va estimer le payoff CT
par une méthode de Monte Carlo. Nous avons réalisé 10000 simulations de période de T = 633
jours pour nos deux stations. Pour ce faire, nous crééons une fonction calculant CT pour un
échantillon donné. Notons qu’historiquement, le payoff est évalué à 80,64 unités monétaires.

> payoffIndice <- function(vent1, vent2, k1, k2, l1, l2, K, L, p1=1/2, p2=1/2)

+ {

+ S1 <- sum(pmin(vent1-k1, l1-k1)*(vent1 > k1))

+ S2 <- sum(pmin(vent2-k2, l2-k2)*(vent2 > k2))

+ S <- p1*S1 + p2*S2

+ return(min(max(S - K, 0), L - K))

+ }

> payoffIndice(x, y, 9, 10, 16, 15, 50, 200)

[1] 80.63889

Ensuite, on simule des échantillons de vitesses de vent maximum pour lesquels on calcule les
payoffs avec la fonction payoffIndice. Les paramètres du produit indiciel sont K1 = 9, K2 = 10,
L1 = 16, L2 = 15, K = 50 et L = 200. On constate que le payoff moyen est proche du payoff
observé 80,64.

> priceIndHedCat <- function(nbday, nbsimu, param, k1, k2, l1, l2, K, L,

+ p1=1/2, p2=1/2)

+ {

+ f <- function()

+ {

+ ventSim <- rgumbel(nbday, param["copula"], dim=2)

+ ventSim[,1] <- qgamma(ventSim[,1], param["shape-x"], param["rate-x"])

+ ventSim[,2] <- qgamma(ventSim[,2], param["shape-y"], param["rate-y"])

+

+ payoffIndice(ventSim[,1], ventSim[,2], k1, k2, l1, l2, K, L, p1, p2)

+ }

+ replicate(nbsimu, f())

+ }
> finalpar <- res[,"avg"]
> payoff <- priceIndHedCat(633, 10000, finalpar, 9, 10, 16, 15, 50, 200)
> summary(payoff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
19.35 68.53 79.10 79.75 90.61 144.30

Sur la �gure 1.16 , nous avons trac�e l'histogramme des payo� simul�es. Nous pouvons constater
que la distribution des sinistres est l�eg�erement asym�etrique, surtout autour de sa moyenne. Par
ailleurs, nous avons ajout�e l'estimation de la densit�e par la m�ethode du noyau d'Epanechnikov.

Figure 1.16 { Histogrammes �a pas �xe et �a même e�ectif.

Nous avons aussi fait une analyse de sensibilit�e au param�etre de la copule. La valeur calibr�ee
est �̂ cop = 1 ; 472. Nous obtenons les r�esultats donn�es dans le tableau 1.4. On constate qu'une
augmentation de la d�ependance (i.e. ^� cop augmente) entraine une plus grande volatilit�e du payo�
tant au niveau de l'�ecart-type que des quantiles �a 75% et 90%. Cependant, la moyenne du payo�
reste stable.

� cop -25% -10% (valeur estim�ee) +10% +25%
moyenne 79,93 79,68 79,75 79,61 79,69
�ecart-type 14,86 15,95 16,4 16,89 17,55
VaR75% 89,78 90,17 90,61 90,47 91,28
VaR90% 99,39 100,3 101,2 101.5 102,7

Table 1.4 { Statistiques des payo� CT simul�es

Maintenant, il ne reste plus qu'�a choisir un principe de primes et calculer le prix de ce produit
de couverture indiciel virtuel. Pour conclure sur cette application num�erique, il est important de
souligner qu'on ne tient pas compte de la d�ependance s�erielle entre les maximums des vitesses

La loi Gamma caractèrisèe par la densitè suivante,

f(y|µ, ν) =
1

Γ(ν)

(
ν

µ

)ν
yν−1 exp

(
−ν
µ
y

)
, y ∈ R+,

est également dans la famille exponentielle. Il faut choisir θ = − 1

µ
, a(φ) = φ, b(θ) = − log(−θ),

c(y, φ) =

(
1

φ
− 1

)
log(y)− log

(
Γ

(
1

φ

))

et φ = ν−1.
Pour une variable aléatoire Y dont la densité est de la forme exponentielle, alors

E(Y) = b′(θ) et V(Y) = b′′(θ)φ,

de telle sorte que la variance de Y apparâıt comme le produit de deux fonctions,
– la première, b′′(θ) , qui dépend uniquement du paramètre θ est appelée fonction variance,
– la seconde est indépendante de θ et dépend uniquement de φ.

En notant µ = E(Y), on voit que le paramètre θ est lié à la moyenne µ. La fonction variance
peut donc être définie en fonction de µ , nous la noterons dorénavant V (µ).

Example 2.1.5.

Dans le cas de la loi normale, V (µ) = 1, dans le cas de la loi de Poisson, V (µ) = µ alors que
dans le cas de la loi Gamma, V (µ) = µ2.

Notons que la fonction variance caractérise complètement la loi de la famille exponentielle.
Chacune des lois de la famille exponentielle possède une fonction de lien spécifique, dite fonction
de lien canonique, permettant de relier l’espérance µ au paramètre naturel (ou canonique) θ. Le
lien canonique est tel que g?(µ) = θ. Or, µ = b′(θ) donc g?(·) = b′(·)−1.

Example 2.1.6.

Dans le cas de la loi normale, θ = µ (link=’identity’), dans le cas de la loi de Poisson,
θ = log(µ) (link=’log’) alors que dans le cas de la loi Gamma, θ = 1/µ (link=’inverse’).

Sous R, la syntaxe des modèles linéaires généralisées est (par exemple) :
> glm(Y~X1+X2+X3+offset(log(Z)), family = quasipoisson(link=’log’),

+ data = base, weights)

ce qui correspond à un modèle

E(Yi|Xi) = µi = g−1
(
X ′iβ + ξi

)
et V(Yi|Xi) =

φV (µi)

ωi

où Y est le vecteur des Yi que l’on cherche à modéliser (le nombre de sinistres de la police i par
exemple), X1, X2 et X3 sont les variables explicatives qui peuvent être qualitatives (on parlera
de facteurs) ou quantitatives, link=’log’ indique que g est la fonction log, family=poisson
revient à choisir une fonction variance V identité, alors que family=quasipoisson revient à
choisir une fonction variance V identité avec un paramètre de dispersion φ à estimer, offset
correspond à la variable ξi, et weights le vecteur ωi.

Cette fonction glm calcule alors des estimateurs de β et φ, entre autres, car comme pour
le modèle linéaire gaussien (la fonction lm) on peut obtenir des prédictions, des erreurs, ainsi
qu’un grand nombre d’indicateurs relatifs à la qualité de l’ajustement.

2.1.2 Approche économétrique de la tarification

Cette famille de lois (dite exponentielle) va s’avérer être particulièrement utile pour construire
des modèles économétriques beaucoup plus généraux que le modèle Gaussien usuel. On suppose
disposer d’un échantillon (Yi,Xi), où les variablesXi sont des informations exogènes sur l’assuré
ou sur le bien assuré, et où Yi est la variable d’intérêt, qui sera

– une variable booléenne prenant les valeurs {0, 1}, par exemple l’assuré i a-t-il été victime
d’un accident l’an dernier, ou le sinistre i était-il très important,

– une variable de comptage, à valeurs dans N, par exemple le nombre d’accidents de l’assuré
i l’an passé,

– une variable positive, à valeurs dans R+, par exemple le coût du sinistre i, ou bien la durée
entre la survenance et la déclaration du sinistre.

On supposera que, conditionnellement aux variables explicatives X, les variables Y sont
indépendantes et identiquement distribuées. En particulier, on partira d’un modèle de la forme

f(yi|θi, φ) = exp

(
yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
,

où l’on supposera que
g(µi) = ηi = X ′iβ,

pour une fonction de lien g(·) donnée (on gardera ainsi un score linéaire en les variables expli-
catives), et où, pour rappel,

µi = E(Yi|Xi).

La fonction lien est la fonction qui permet de lier les variables explicatives X à la prédiction
µ, alors que la loi apparâıt via la fonction variance, sur la forme de l’hétéroscédasticité et
l’incertitude associée à la prédiction. Le petit exemple ci-dessous permet de visualiser sur un
petit de données simple six régressions GLM différentes,

> x <- c(1,2,3,4,5)

> y <- c(1,2,4,2,6)

> base <- data.frame(x,y)

> regNId <- glm(y~x,family=gaussian(link="identity"))

> regNlog <- glm(y~x,family=gaussian(link="log"))

> regPId <- glm(y~x,family=poisson(link="identity"))

> regPlog <- glm(y~x,family=poisson(link="log"))

> regGId <- glm(y~x,family=Gamma(link="identity"))

> regGlog <- glm(y~x,family=Gamma(link="log"))

La prédiction (ainsi qu’un intervalle de confiance) pour chacun de ces modèles est présentée
sur la Figure 2.3. Le code de base pour obtenir la prédiction avec un intervalle de confiance (à
95%) est simplement
> visuel=function(regression,titre){

+ plot(x,y,pch=19,cex=1.5,main=titre,xlab="",ylab="")

+ abs <- seq(0,7,by=.1)

+ yp <- predict(regression,newdata=data.frame(x=abs),se.fit = TRUE,

+ type="response")

+ polygon(c(abs,rev(abs)),c(yp$fit+2*yp$se.fit,rev(yp$fit-2*yp$se.fit)),

+ col="light grey",border=NA)

+ points(x,y,pch=19,cex=1.5)

+ lines(abs,yp$fit,lwd=2)

+ lines(abs,yp$fit+2*yp$se.fit,lty=2)

+ lines(abs,yp$fit-2*yp$se.fit,lty=2)}

Pour les 6 modèles ajustés sur le petit jeu de données,
> par(mfrow = c(2, 3))

> visuel(regNId,"Gaussienne, lien identité")

> visuel(regPId,"Poisson, lien identité")

> visuel(regGId,"Gamma, lien identité")

> visuel(regNlog,"Gaussienne, lien logarithmique")

> visuel(regPlog,"Poisson, lien logarithmique")

> visuel(regGlog,"Gamma, lien logarithmique")

●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

Gaussienne, lien identité

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

Poisson, lien identité

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

Gamma, lien identité

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

Gaussienne, lien logarithmique

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

Poisson, lien logarithmique

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

1
2

3
4

5
6

Gamma, lien logarithmique

●

●

●

●

●

Figure 2.3 – Prédiction par 6 modèles linéaires différents, 3 lois et 2 fonctions de lien, avec les
intervalles de confiance de prédiction.

Remark 2.1.7. De la même manière qu’en économétrie linéaire, il est aussi possible d’allouer
des poids à chacune des observations ωi. Mais nous n’en parlerons pas trop ici. Il peut s’agir de
pondération décroisantes avec le temps, attribuées à des années trop anciennes, si l’on utilise
des données sur une période plus longue, par exemple.

2.1.3 Estimation des paramètres

La loi de Y sachant X étant spécifiée, on peut obtenir numériquement les estimateurs de
β et φ par maximisation de la vraisemblance, manuellement (en travaillant toutefois sur un
échantillon de la base)
> set.seed(1)

> echantillon=sample(1:nrow(baseFREQ),size=100)

> logvraisemblance <- function(beta){

+ L=beta[1]+beta[2]*baseFREQ[echantillon,"ageconducteur"]

+ -sum(log(dpois(baseFREQ[echantillon,"nbre"],exp(L))))}

> optim(par=c(-3,.01),fn=logvraisemblance)$par

[1] -3.414 -0.027

ou directement via la fonction glm implèmentant un algorithme spècifique aux GLMs :
> glm(nbre~ ageconducteur,data=baseFREQ[echantillon,],family=poisson)

Call: glm(formula = nbre ~ ageconducteur, family = poisson,

data = baseFREQ[echantillon,])

Coefficients:

(Intercept) ageconducteur

-3.4154 -0.0269

Degrees of Freedom: 99 Total (i.e. Null); 98 Residual

Null Deviance: 9.21

Residual Deviance: 9.09 AIC: 15.1

Notons qu’il est aussi possible d’utiliser une régression linéaire pondérée. En effet, on cherche
à maximiser ici une (log)-vraisemblance (ou une déviance comme nous le verrons plus tard), qui
s’écrit dans le cas des modèles exponentiels,

log(L(θ1, . . . , θn, φ, y1, . . . , yn)) =

n∑

i=1

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
. (2.1)

On cherche les paramètres β, il nous suffit de dèriver la log-vraisemblance par rapport au
paramètre β.

Notons µi = E(Yi) et ηi = g(µi) = Xiβ, le prèdicteur linèaire pour la iême observation parmi
n.

Pour i et j donnè, on a

∂ ln(Li)
∂βj

=
∂ ln(Li)
∂µi

× ∂µi
∂βj

= (g−1)′(g(µi))×
yi − µi
V(Yi)

Xij .

Ainsi on obtient les èquations du score :

∑

i

∂ ln(Li)
∂βj

=
∑

i

(g−1)′(Xiβ)× yi − µi
V(Yi)

Xij = 0,

pour tout j.
Ce qui correspondrait à la condition du premier ordre dans une régression pondérée, où la

matrice de poids serait W = [wi,j], où wi,j = 0 si i 6= j, et sinon

wi,i =
1

V(Yi)

Mais cette matrice de poids étant inconnue (elle dépend des paramètres que l’on cherche à
estimer), on met en place une itération de régression pondérée, la matrice de poids étant calculée
à partir des coefficients de l’étape précédante.

Dans le cas d’une régression log-Poisson, le code devient,

> X=baseFREQ[echantillon,"ageconducteur"]

> Y=baseFREQ[echantillon,"nbre"]

> beta=c(-1,1)

> BETA=matrix(NA,101,2)

> BETA[1,]=beta

> for(i in 2:101){

+ eta=beta[1]+beta[2]*X

+ mu=exp(eta)

+ w=mu

+ z=eta+(Y-mu)/mu

+ REG=lm(z~X,weights=w)

+ beta=REG$coefficients

+ BETA[i,]=beta

+ }

> BETA[85:101,]

[,1] [,2]

[1,] -9.01 0.0960

[2,] -6.64 0.0505

[3,] -4.85 0.0111

[4,] -3.83 -0.0149

[5,] -3.47 -0.0254

[6,] -3.42 -0.0269

[7,] -3.42 -0.0269

[8,] -3.42 -0.0269

[9,] -3.42 -0.0269

[10,] -3.42 -0.0269

[11,] -3.42 -0.0269

[12,] -3.42 -0.0269

[13,] -3.42 -0.0269

[14,] -3.42 -0.0269

[15,] -3.42 -0.0269

[16,] -3.42 -0.0269

[17,] -3.42 -0.0269

qui converge très rapidement (vers les valeurs trouvées par la fonction glm).

2.1.4 Interprétation d’une régression

Considérons tout simplement une régression de la fréquence annuelle de sinistre sur l’âge du
conducteur. On supposera un modèle Poissonnien.

> reg1 <- glm(nbre~ageconducteur+offset(log(exposition)),

+ data=baseFREQ,family=poisson(link="log"))

> summary(reg1)

Call:

glm(formula = nbre ~ ageconducteur + offset(log(exposition)),

family = poisson(link = "log"), data = baseFREQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.568 -0.353 -0.261 -0.142 13.326

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.13774 0.02078 -102.9 <2e-16 ***

ageconducteur -0.01017 0.00044 -23.1 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 171819 on 678012 degrees of freedom

Residual deviance: 171273 on 678011 degrees of freedom

AIC: 222045

Number of Fisher Scoring iterations: 6

Avec un lien logarithmique, le modèle est multplicatif. Le multiplicateur est ici

> exp(coefficients(reg1)[2])

ageconducteur

0.9898836

Autrement dit, tous les ans, la probabilité d’avoir un accident diminue de 1− 0.9898 = 1.011%.

Si l’on considère des classes d’âges (définies a priori, nous reviendrons par la suite sur la
construction optimale des classes), on obtient la régression suivante :

> seuils <- c(17,21,25,30,40,50,60,70,80,120)

> baseFREQ$agecut <- cut(baseFREQ$ageconducteur,breaks=seuils)

> reg2 <- glm(nombre~agecut+offset(log(exposition)),data=

+ baseFREQ,family=poisson(link="log"))

> summary(reg2)

Call:

glm(formula = nombre ~ agecut + offset(log(exposition)),

family = poisson(link = "log"),

data = baseFREQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.657 -0.351 -0.260 -0.140 13.332

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.5542 0.0328 -47.4 <2e-16 ***

agecut(21,25] -0.5272 0.0419 -12.6 <2e-16 ***

agecut(25,30] -0.9518 0.0387 -24.6 <2e-16 ***

agecut(30,40] -1.1175 0.0353 -31.6 <2e-16 ***

agecut(40,50] -1.0277 0.0350 -29.4 <2e-16 ***

agecut(50,60] -1.1172 0.0356 -31.4 <2e-16 ***

agecut(60,70] -1.2318 0.0387 -31.8 <2e-16 ***

agecut(70,80] -1.2689 0.0428 -29.7 <2e-16 ***

agecut(80,120] -1.2402 0.0674 -18.4 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 171919 on 678012 degrees of freedom

Residual deviance: 170594 on 678004 degrees of freedom

AIC: 221425

Number of Fisher Scoring iterations: 6

Notons qu’il est aussi possible de taper directement

> reg2 <- glm(nbre~cut(ageconducteur,breaks=seuils)+offset(log(exposition)),

+ data=baseFREQ,family=poisson(link="log"))

La classe de référence est ici celle des jeunes conducteurs (17,21]. Relativement à cette
classe, on note que toutes les classes ont une probabilité d’avoir un accident plus faible. Pour un
conducteur de la classe (30,45], on note qu’il a 66% de chances en moins d’avoir un accident
dans l’année qu’un jeune conducteur,

> exp(coefficients(reg2)[4])

cut(ageconducteur, breaks = seuils)(30,45]

0.3373169

On peut changer la classe de référence, par exemple (30,40],

> baseFREQ$agecut =relevel(baseFREQ$agecut,"(30,40]")

> reg2 <- glm(nbre~agecut+offset(log(exposition)),data=

+ baseFREQ,family=poisson(link="log"))

> summary(reg2)

Call:

glm(formula = nbre ~ agecut + offset(log(exposition)), family = poisson(link = "log"),

data = baseFREQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.657 -0.351 -0.260 -0.140 13.332

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.67e+00 1.31e-02 -203.52 < 2e-16 ***

agecut(17,21] 1.12e+00 3.53e-02 31.67 < 2e-16 ***

agecut(21,25] 5.89e-01 2.92e-02 20.17 < 2e-16 ***

agecut(25,30] 1.65e-01 2.43e-02 6.79 1.1e-11 ***

agecut(40,50] 8.94e-02 1.80e-02 4.98 6.4e-07 ***

agecut(50,60] 5.37e-05 1.91e-02 0.00 0.998

agecut(60,70] -1.16e-01 2.44e-02 -4.74 2.1e-06 ***

agecut(70,80] -1.51e-01 3.05e-02 -4.95 7.5e-07 ***

agecut(80,120] -1.22e-01 6.04e-02 -2.02 0.043 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 171819 on 678012 degrees of freedom

Residual deviance: 170496 on 678004 degrees of freedom

AIC: 221282

Number of Fisher Scoring iterations: 6

qui inciterait à fusionner les classes (30,40] et (50,60], ou avec comme classe de référence
(70,90],

> baseFREQ$agecut =relevel(baseFREQ$agecut,"(70,80]")

> reg2 <- glm(nbre~agecut+offset(log(exposition)),data=

+ baseFREQ,family=poisson(link="log"))

> summary(reg2)

Call:

glm(formula = nbre ~ agecut + offset(log(exposition)), family = poisson(link = "log"),

data = baseFREQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.657 -0.351 -0.260 -0.140 13.332

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.8230 0.0275 -102.64 < 2e-16 ***

agecut(30,40] 0.1508 0.0305 4.95 7.5e-07 ***

agecut(17,21] 1.2689 0.0428 29.66 < 2e-16 ***

agecut(21,25] 0.7396 0.0379 19.52 < 2e-16 ***

agecut(25,30] 0.3162 0.0343 9.22 < 2e-16 ***

agecut(40,50] 0.2402 0.0301 7.98 1.5e-15 ***

agecut(50,60] 0.1509 0.0308 4.90 9.5e-07 ***

agecut(60,70] 0.0350 0.0344 1.02 0.31

agecut(80,120] 0.0287 0.0650 0.44 0.66

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 171819 on 678012 degrees of freedom

Residual deviance: 170496 on 678004 degrees of freedom

AIC: 221282

Number of Fisher Scoring iterations: 6

qui inciterait ici à fusionner les dernières classes. Toutefois, comme il s’agit de fusionner 3 classes
d’âge ensemble, il convient de faire ici un test multiple,

> library(car)

> linearHypothesis(reg2,c("agecut(60,70]=0","agecut(80,120]=0"))

Linear hypothesis test

Hypothesis:

agecut(60,70] = 0

agecut(80,120] = 0

Model 1: restricted model

Model 2: nbre ~ agecut + offset(log(exposition))

Res.Df Df Chisq Pr(>Chisq)

1 678006

2 678004 2 1.05 0.59

ce qui autorise la fusion des trois classes (et définir une classe des plus de 60 ans).

Au lieu de comparer à la classe des jeunes conducteurs, on peut aussi comparer au conducteur
moyen.

> seuils = c(17,21,25,30,45,55,65,80,120)

> reg2 = glm(nombre~0+cut(ageconducteur,breaks=seuils),

+ data=nombre,family=poisson(link="log"),offset=log(exposition))

Les multiplicateurs sont alors

> reg2b <- glm(nombre~1,data=nombre,family=poisson(link="log"),

+ offset=log(exposition))

> moyenne <- exp(coefficients(reg2b))

> reg2c <- glm(nombre~0+cut(ageconducteur,breaks=seuils),

+ data=nombre,family=poisson(link="log"),offset=log(exposition))

> exp(coefficients(reg2c))/moyenne

Une personne de la classe (17,21] a ainsi 2.86 fois plus de chance que l’assuré moyen d’avoir
un accident.

2.1.5 Extension à d’autres familles de lois

Les modèles linéaires généralisés ont été définis pour des lois (de Y , conditionnelles aux
variables explicatives X) appartenant à la famille exponentielle. Il est toutefois possible de
généraliser. Les lois de library(gamlss) sont des lois à quatre paramètres, (µ, σ, ν, τ), où µ est
un paramètre de localisation (e.g. la moyenne), σ un paramètre d’échelle (e.g. l’écart-type), et où
ν et τ sont des paramètres d’asymétrie et d’épaisseur de queue (e.g. la skewness et la kurtosis).
Ces quatre paramètres peuvent être fonction des variables explicatives au travers d’une fonction
de lien, 




µ = g−1
µ (Xα)

σ = g−1
σ (Xβ)

ν = g−1
ν (Xγ)

τ = g−1
τ (Xδ)

Parmi les lois classiques, on retrouvera celles données dans la Table 2.1.

Dans sa version la plus simple, on retrouve le modèle proposé par Gerber & Shiu (1994),

{
Yi = X ′iβ + εi,modèle en moyenne
log ε2

i = Z ′iα+ ui,modèle en variance

où ui est un bruit i.i.d. suivant une loi Gamma. Cette fonction particulière est obtenue à l’aide
de la fonction lm.disp de library(dispmod).

loi R µ σ ν τ
Binomiale BI logit - - -
Normale NO identité log - -
Poisson PO log - - -
Gamma GA logit - - -
inverse Gaussienne IG log log - -
Gumbel GU identité log - -
lognormale LNO log log - -
binomiale négative (Poisson-Gamma) NBI log log - -
Poisson-inverse Gaussien PIG log log - -
Weibull WEI log log - -
zero inflated Poisson ZIP log logit - -

Table 2.1 – Les différentes lois et modèles de library(gamlss).

2.1.6 De la qualité d’une régression

Pour mesurer les performances d’une régression, ou plus généralement d’un modèle quel
qu’il soit, il faut se donner une fonction de risque R(·, ·) qui mesure la distance entre Y et
sa prédiction Ŷ (on notera indifféremment Ŷ ou µ̂). Classiquement, on utilise la norme L2,
correspond à l’erreur quadratique R(Y, Ŷ) = [Y − Ŷ]2 ou la norme L1 , correspondant à l’erreur
absolue R(Y, Ŷ) = |Y − Ŷ |.

Si on reprend l’exemple de la section 2.1.2, les résidus sont représenté sur la Figure 2.4. Les
résidus bruts correspondent à la différence entre Yi et Ŷi. Les résidus de Pearson sont des résidus
standardisés,

ε̂i =
Yi − Ŷi√
V (Ŷi)

où V est la fonction variance. Si on reprend le jeu de données utilisé pour introduire les GLM,
utilisons la fonction suivante pour visualiser l’allure des résidus

> residus <- function(regression,titre){

+ RNIr <- residuals(regression,type="response")

+ RNIp <- residuals(regression,type="pearson")

+ RNId <- residuals(regression,type="deviance")

+ plot(x,RNIr,type="b",col="grey",main=titre,xlab="",ylab="")

+ lines(x, RNIp,type="b",pch=19)

+ lines(x, RNId,type="b",pch=3,lty=2)}

La Figure 2.4 permet de visualier les trois sortes de résidus, bruts en gris (Y − Ŷ), et les
résidus de Pearson et de déviance en noir.

> par(mfrow = c(2, 3))

> residus(regNId,"Gaussienne, lien identité")

> residus(regPId,"Poisson, lien identité")

> residus(regGId,"Gamma, lien identité")

> residus(regNlog,"Gaussienne, lien logarithmique")

> residus(regPlog,"Poisson, lien logarithmique")

> residus(regGlog,"Gamma, lien logarithmique")

Les résidus de Pearson permettent de prendre en compte de l’hétéroscédasticité qui ap-

● ●

●

●

●

1 2 3 4 5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Gaussienne, lien identité

● ●

●

●

●

● ●

●

●

●

1 2 3 4 5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Poisson, lien identité

● ●

●

●

●

● ●

●

●

●

1 2 3 4 5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Gamma, lien identité

● ●

●

●

●

●

●

●

●

●

1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Gaussienne, lien logarithmique

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Poisson, lien logarithmique

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Gamma, lien logarithmique

●

●

●

●

●

Figure 2.4 – Résidus bruts, de Pearson et de déviance sur 6 régressions GLM.

parâıtra dès lors que l’on quite le modèle Gaussien (la fonction variance ne sera alors plus
constante). Davison & Snell (1991) revient longuement sur l’analyse des résidus dans le cadre
de modèles linéaires généralisés. Rappelons que l’outil de base pour quantifier la qualité de la
régression est la déviance

D(β) = −2[logL(β̂|Y)− logL?(Y)]

où logL(β|Y) désigne la log-vraisemblance du modèle, et où logL?(Y) est la log-vraisemblance
saturée (obtenue avec un modèle parfait).

> par(mfrow = c(1, 1))

>

> logLik(reg1)

’log Lik.’ -111021 (df=2)

> deviance(reg1)

[1] 171273

> AIC(reg1)

[1] 222045

> -2*logLik(reg1)+2*2

[1] 222045

attr(,"nobs")

[1] 678013

attr(,"df")

[1] 2

attr(,"class")

[1] "logLik"

Dans un souci de partimonie, on pénalise souvent log-vraisemblance par le nombre de pa-
ramètres, ce qui correspond au critère d’information d’Akaike (AIC, en multipliant par 2). On

peut également définir le critère de Schwartz,
{
AIC : −2 logL(β̂) + 2k

BIC : −2 logL(β̂) + k log(n)

Il existe aussi un critère d’Aikaike corrigé (introduit par Hurvich & Tsai (1995)) dans le
cas où l’on a trop peu d’observations. Toutes ces fonctions peuvent être obtenues à l’aide de la
fonction AIC de library(aod) ou BIC de library(BMA), ou encore extractAIC avec comme
paramètre k=log(nrow(base)).

> extractAIC(reg1,k=2)[2]

[1] 222045

> extractAIC(reg1,k=log(nrow(baseFREQ)))[2]

[1] 222068

On peut comparer tous les modèles via
> AIC(reg1,reg2)

df AIC

reg1 2 222045

reg2 9 221282

2.2 Régression logistique et arbre de régression

Avant de modéliser la fréquence de sinistre, et le coût inidividuel des sinistres, nous allons
évoquer rapidement les modèles binomiaux (avec une variable réponse Y de type 0 ou 1), en
présentant la solution proposée par les GLM (régression logistique) mais aussi parler de l’utili-
sation des arbres de régression.

2.2.1 La régression logistique ou probit

La régression logistique suppose que si π(Y |X) = P(Y = 1|X), alors

π(Y |X)

1− π(Y |X)
=

P(Y = 1|X)

P(Y = 0|X)
= exp (Xβ)

Dans le cas du modèle probit, on suppose qu’il existe un modèle latent Gaussien, tel que

Y ?
i = X ′iβ + εi

et que Yi = 0 si Y ?
i < s, et Yi = 1 si Y ?

i > s, et εi ∼ N (0, σ2).
La synthaxe de ces deux modèles est très proche, car seule la fonction de lien change.

> baseFREQ$touche=baseFREQ$nbre>0

> reglogit <- glm(touche~ageconducteur,

+ data= baseFREQ,family=binomial(link="logit"))

> regprobit <- glm(touche~ageconducteur,

+ data= baseFREQ,family=binomial(link="probit"))

> age <- seq(17,100)

> AGE <- data.frame(ageconducteur=age,exposition=1)

> Yl <- predict(reglogit,AGE,type="response")

> Yp <- predict(regprobit,AGE,type="response")

On notera que ces deux modèles donnent des prédictions très proches, comme le montre la
Figure 2.5 (différence - en valeur absolue - inférieure à 0.5%).

20 40 60 80 100

0.
03

4
0.

03
5

0.
03

6
0.

03
7

0.
03

8

age

P
ro

ba
bi

lit
y

to
 h

av
e

m
or

e
th

an
 1

 a
cc

id
en

t

20 40 60 80 100

−
0.

05
0.

00
0.

05

age

D
iff

er
en

ce
 P

ro
bi

t−
Lo

gi
t (

in
 %

)

Figure 2.5 – Régression logistique (logit) versus modèle latent Gaussien (probit) pour prédire
la probabilité d’avoir au moins un accident dans l’année, en fonction de l’âge du conducteur
principal. .

2.2.2 Les arbres de régression

Les arbres de régression sont des outils nonparamétriques de segmentation. Dans un arbre
de décision, on cherche à détecter des critères permettant de répartir les individus en 2 classes,
caractérisées par Y = 0 et Y = 1. On commence par choisir la variable, qui, par ses modalités,
sépare le mieux les individus de chacune des classes. On constitue alors un premier noeud. On
réintère alors la procédure sur chaque nouveau noeud. Dans la méthode CART (Classification
And Regression Tree), on regarde toutes les possibilités. On continue soit jusqu’à ce qu’il ne
reste plus qu’un seul individu dans chaque noeud, soit suivant un critère d’arrêt. Les critères de
discrimination et de constitution des noeuds sont généralement les suivants,

– lorsque les variables explicatives Xj sont qualitatives, ou discrètes, on utilise la distance
du χ2 (on parle d’arbre CHAID),

– en présence de variables de tous types, on peut utiliser l’indice de Gini (méthode CART),
– ou l’entropie (méthode C5.0),

Pour un variable continue, on distinguera {X1 ≤ s} et {X1 > s}. Pour une variable qualita-
tive, on distinguera {X1 ∈ A} et {X1 /∈ A}.

Pour chacune des variables, on regarde l’ensemble des classifications possibles. Par exemple
pour l’âge du conducteur, on posera

> ages <- sort(unique(baseFREQ$ageconducteur))

> k <- 5

> classe0 <- baseFREQ$ageconducteur<=ages[k]

> classe1 <- baseFREQ $ageconducteur> ages[k]

Une fois constituées les 2 classes, on calcule un des critères possibles (distance du chi-deux,
critère de Gini, etc).

Si on regarde la décomposition obtenue sur le premier noeud, on observe que pour les conduc-
teurs de moins de 25 ans, la probabilité d’avoir un accident est de 10%, contre 5% pour les
conducteurs de plus de 25 ans. Dans le cas des régions, avec une distance du chi-deux, on

cherche à minimiser

χ2 = −
∑

classe∈{0,1}

∑

y∈{0,1}

[nclasse,y − n⊥classe,y]
2

n⊥classe,y

où nclasse,y désigne le nombre de personnes dans la classe considérée pour lesquelles la variable
Y prend la modalité y.

> DISTANCE <- rep(NA,length(ages))

> names(DISTANCE)=ages

> for(k in 2:(length(ages)-1)){

+ classe0 <- baseFREQ$ageconducteur<=ages[k]

+ classe1 <- baseFREQ $ageconducteur> ages[k]

+ M=matrix(

+ rbind(c(sum(baseFREQ$touche[classe0]==FALSE),

+ sum(baseFREQ$touche[classe0]==TRUE)),

+ c(sum(baseFREQ$touche[classe1]==FALSE),

+ sum(baseFREQ$touche[classe1]==TRUE))),2,2)

+ DISTANCE[k] <- (-chisq.test(M)$statistic)}

Ici, le meilleur découpage possible est (17,23] et (23,85],

> which.min(DISTANCE)

23

6

ce que l’on peut visualiser sur la Figure 2.6,

> plot(ages,DISTANCE,type="b",ylab="distance du chi-deux",pch=3)

avec une borne supérieure entre 21 et 24 ans (optimale semble-t-il à 23 ans).

20 40 60 80 100

−
60

0
−

40
0

−
20

0
0

ages

di
st

an
ce

 d
u

ch
i−

de
ux

Figure 2.6 – Evolution de χ2 lors du découpage en 2 classes(17, k] et (k, 100] .

Manifestement, la première leçon que l’on peut tirer de ce graphique est que s’il convient de
découper l’âge du conducteur principal en 2 classes, elles opposeront les jeunes conducteurs aux
autres. A la seconde étape, on cherche une autre partition, en considérant la précédente comme
acquise,

> k1 <- which.min(DISTANCE)

> DISTANCE <- rep(NA,length(ages))

> names(DISTANCE)=ages

> for(k in 2:(length(ages)-1)){

+ if(k!=k1){

+ classe0 <- (baseFREQ$ageconducteur<=ages[k])&(baseFREQ$ageconducteur<=ages[k1])

+ classe2 <- (baseFREQ$ageconducteur>ages[k])&(baseFREQ$ageconducteur>ages[k1])

+ classe1 <- 1-classe0-classe2

+ M=matrix(

+ rbind(c(sum(baseFREQ$touche[classe0]==FALSE),

+ sum(baseFREQ$touche[classe0]==TRUE)),

+ c(sum(baseFREQ$touche[classe1]==FALSE),

+ sum(baseFREQ$touche[classe1]==TRUE)),

+ c(sum(baseFREQ$touche[classe2]==FALSE),

+ sum(baseFREQ$touche[classe2]==TRUE))),3,2)

+ DISTANCE[k] <- (-chisq.test(M)$statistic)

+ }}

> which.min(DISTANCE)

99

82

En regardant la Figure 2.7, on observe qu’une fois fixé la borne supérieure caractérisant les
’jeunes’, la troisième classe constituée est une classe de personnes âgées (un peu au delà de 80
ans),
> plot(ages,DISTANCE,type="b",ylab="distance du chi-deux",pch=3)

20 40 60 80 100

−
40

00
0

−
20

00
0

0

ages

di
st

an
ce

 d
u

ch
i−

de
ux

Figure 2.7 – Evolution de χ2 lors du découpage en 3 classes (17, k], (17, 23] et (23, 100], ou
(17, 23], (23, k] et (k, 100].

Parmi les autres critères, on peut aussi utiliser la distance de Gini,

G = −
∑

classe∈{0,1}

nclasse

n

∑

y∈{0,1}

nclasse,y

nclasse

(
1− nclasse,y

nclasse

)

ou l’entropie,

E = −
∑

classe∈{0,1}

nclasse

n

∑

y∈{0,1}

nclasse,y

nclasse
log

(
nclasse,y

nclasse

)

Les arbres permettent une lecture relativement aisée pour l’utilisateur, et reposent sur des
techniques nonparamétriques. Aussi, contrairement aux méthodes GLM que nous verrons par la
suite, le choix des lois ou la recherche d’éventuelles nonlinéarités n’intervient pas ici. Les arbres

sont également peu sensibles aux points abèrrants (outliers en anglais). Mais les arbres, de par
leur construction, posent aussi certains soucis. En particulier, on ne peut pas revenir en arrière,
et le séquencement est très important.

2.2.3 Probabilité d’avoir (au moins) un sinistre dans l’année

A titre d’illustration, étudions la probabilité d’avoir au moins un sinistre dans l’année. Par
défaut, l’arbre crée autant de classes que l’on a d’âges (vus en tant que variable discrete),

> library(tree)

> arbre=tree((nombre>0)~ageconducteur,data=baseFREQ,split="gini")

> age=data.frame(ageconducteur=18:90)

> y=predict(arbre,newdata=data.frame(ageconducteur=age))

> plot(age$ageconducteur,y,xlab="",ylab="")

Si l’on souhaite coupe les branches de l’arbre, on peut utiliser l’option mincut pour dire qu’on
ne peut couper davantage qu’à condition de constituer des classes dont le nombre d’invidus à
l’intérieur soit suffisamment élevé. ,

> arbre2=tree((nombre>0)~ageconducteur,data=baseFREQ,split="gini",mincut=50000)

> y2=predict(arbre2,newdata=data.frame(ageconducteur=age))

> lines(age$ageconducteur,y2,type="s",lwd=2)

> arbre3=tree((nombre>0)~ageconducteur,data=baseFREQ,split="gini",mincut=200000)

> y3=predict(arbre3,newdata=data.frame(ageconducteur=age))

> lines(age$ageconducteur,y3,type="s",col="grey",lwd=2)

On obtient alors les classes décrites sur la figure 2.8.

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

● ● ●

●
● ●

●
● ●

●

● ●

●

●

●
● ●

●

● ● ●

●
● ●

●
● ●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

20 30 40 50 60 70 80 90

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

Figure 2.8 – Prédiction par arbre de régression, avec plus ou moins de classes d’âge, les points
correspondent aux moyennes empiriques par âge (un noeud par âge), et les traits aux classes
obtenues en imposant une taille suffisante par classe.

Mais le gros intérêt des arbres est de pouvoir visualiser le découpage et la structure d’arbre,
comme sur la figure 2.9.

> plot(arbre2)

> text(arbre2)

> plot(arbre3)

> text(arbre3)

Sur ces arbres, la hauteur des branches reflète le gain (si on regarde l’arbre de manière descen-
dante) ou la perte (si on le regarde de manière ascendante) en terme d’indice de Gini que l’on
a en coupant les classes. Plus la branche est longue, plus la discrimination est forte.

|
ageconducteur < 27.5

ageconducteur < 40.5

ageconducteur < 36.5ageconducteur < 32.5 ageconducteur < 54.5

ageconducteur < 43.5
ageconducteur < 50.5

ageconducteur < 67.5
ageconducteur < 58.5

0.04978

0.031790.032470.03337

0.035730.039490.038430.034790.034080.03786

|
ageconducteur < 30.5

ageconducteur < 40.5

ageconducteur < 54.5

ageconducteur < 46.5

0.04273

0.03244

0.03719 0.03925
0.03550

Figure 2.9 – Stucture des arbres de régression, avec arbre2 à gauche, et arbre3 à droite.

On notera toutefois que la stratégie optimale n’est peut être pas de supposer le risque constant
par classe, comme le montre la Figure 2.10,,

> plot(age$ageconducteur,y,xlab="",ylab="")

> lines(age$ageconducteur,y3,type="s",col="grey",lwd=2)

> reg01.splines <- glm((nombre>0)~bs(ageconducteur,10),

+ family=binomial(link="logit"),data=baseFREQ)

> pred01.splines <- predict(reg01.splines,newdata=age,type="response")

> lines(age$ageconducteur,pred01.splines,lwd=2,col="black")

2.2.4 Probabilité d’avoir beaucoup de sinistres dans l’année

Une variable particulièrement intéressante est la probabilité d’avoir beaucoup d’accidents
dans l’année. Mais une (grosse) partie des assurés n’étant dans la base que quelques semaines,
ou quelques mois, il convient de recalculer les nombres annuels de sinistres, en divisant le nombre
de sinistres observé par l’exposition, et en mettant un poids proportionnel à l’exposition (comme
nous l’avions mentionné au début du chapitre).

Sur la Figure 2.11, on retrouve le fait que les jeunes conducteurs ont un comportement
particulièrement risqué (à condition d’autoriser les classes de faible effectif).,,

> arbre1 <- tree((nbre/exposition>2) ~ ageconducteur ,

+ data=baseFREQ,weights=exposition,split="gini",mincut = 10000)

> plot(arbre1,type="proportional")

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

● ● ●

●
● ●

●
● ●

●

● ●

●

●

●
● ●

●

● ● ●

●
● ●

●
● ●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

20 30 40 50 60 70 80 90

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

Figure 2.10 – Prédiction par arbre de régression, avec une régression logisitique sur une variable
lissée (par splines).

> text(arbre1)

> arbre2 <- tree((nbre/exposition>2) ~ ageconducteur ,

+ data=baseFREQ,weights=exposition,split="gini",mincut = 100000)

> plot(arbre2,type="proportional")

> text(arbre2)

|
ageconducteur < 21.5

ageconducteur < 23.5

ageconducteur < 25.5

ageconducteur < 78.5ageconducteur < 73.5ageconducteur < 68.5
ageconducteur < 64.5ageconducteur < 44.5ageconducteur < 40.5ageconducteur < 36.5ageconducteur < 33.5ageconducteur < 31.5ageconducteur < 29.5ageconducteur < 28.5ageconducteur < 35.5ageconducteur < 39.5ageconducteur < 38.5ageconducteur < 43.5ageconducteur < 42.5 ageconducteur < 60.5ageconducteur < 58.5ageconducteur < 56.5ageconducteur < 54.5ageconducteur < 53.5ageconducteur < 52.5ageconducteur < 51.5ageconducteur < 49.5ageconducteur < 48.5ageconducteur < 47.5ageconducteur < 46.5

0.031420

0.018720

0.014670

0.0103500.0081560.0080740.0070840.0064050.0065770.0066330.0059680.0063620.0062550.0070570.007560
0.0070410.0080090.0066440.0068670.0067380.0067100.0066480.0065600.0062110.0053600.0045960.004930

0.0044460.003611
0.0042850.003662

|
ageconducteur < 30.5

ageconducteur < 53.5

ageconducteur < 46.5

0.013330

0.006748 0.006900 0.004865

Figure 2.11 – Stucture des arbres de régression, avec arbre1 à gauche, et arbre2 à droite.

On peut d’ailleurs visualiser ces probabilités sur la Figure 2.12,

> ARBRE <- tree((nbre/exposition>2) ~ ageconducteur ,

+ data=baseFREQ,weights=exposition,split="gini",mincut = 10000)

> age=data.frame(ageconducteur=18:90)

> y=predict(ARBRE,newdata=data.frame(ageconducteur=age))

> y2=predict(ARBRE2,newdata=data.frame(ageconducteur=age))

> plot(age$ageconducteur,y,xlab="",ylab="")

> lines(age$ageconducteur,y2,type="s",col="grey",lwd=2)

> reg02.splines <- glm((nbre/exposition>2)~bs(ageconducteur,10),

+ family=binomial(link="logit"),weights=exposition,data=baseFREQ)

> pred02.splines <- predict(reg02.splines,newdata=age,type="response")

> lines(age$ageconducteur,pred02.splines,lwd=2,col="black")

● ● ● ●

● ●

● ●

● ● ●

● ● ●

● ●
● ● ● ● ●

●
● ● ●

●
●

● ●

●

● ● ● ● ● ● ●
● ●

● ●

● ●
● ● ● ●

● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

20 30 40 50 60 70 80 90

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

Age

P
ro

ba
bi

lit
é

d'
av

oi
r

au
 m

oi
ns

 3
 a

cc
id

en
ts

 p
ar

 a
n

Figure 2.12 – Probabilité d’avoir au moins 3 accidents par an, arbre et régression logistique
(sur variable lissée par splines).

Mais au lieu de n’étudier que l’âge du conducteur, on peut regarder aussi l’impact des autres
varaibles. Sur la Figure 2.13, on retrouve le fait que les jeunes conducteurs ont un comportement
particulièrement risqué (à condition d’autoriser les classes de faible effectif), mais que la zone
d’habitation est aussi un facteur important, avec un risque plus élevé dans les villes : dans les
zones d, e et f (plus de 500 habitants par km2), la probabilité d’avoir au moins trois accidents
est deux fois plus élevée - en tous les cas pour les conducteurs de plus de 30 ans - que dans les
zones a, b et c

> arbre1 <- tree((nbre/exposition>2) ~ ageconducteur ,

+ data=baseFREQ,weights=exposition,split="gini",mincut = 10000)

> plot(arbre1,type="proportional")

> text(arbre1)

> arbre2 <- tree((nbre/exposition>2) ~ ageconducteur ,

+ data=baseFREQ,weights=exposition,split="gini",mincut = 100000)

> plot(arbre2,type="proportional")

> text(arbre2)

|
ageconducteur < 21.5

zone:abc

ageconducteur < 25.5

puissance < 8.5ageconducteur < 75.5ageconducteur < 70.5ageconducteur < 64.5ageconducteur < 59.5ageconducteur < 55.5ageconducteur < 52.5ageconducteur < 49.5ageconducteur < 46.5ageconducteur < 43.5ageconducteur < 41.5ageconducteur < 39.5ageconducteur < 37.5ageconducteur < 35.5puissance < 6.5ageconducteur < 33.5
ageconducteur < 57.5

ageconducteur < 56.5

puissance < 7.5ageconducteur < 48.5ageconducteur < 42.5ageconducteur < 37.5puissance < 6.5ageconducteur < 33.5
puissance < 6.5ageconducteur < 49.5zone:d

0.031420

0.012940

0.0056100.0046890.0061880.0048580.0042190.0045360.0055500.0053180.0057670.0054030.0044650.0043870.0029500.0031900.0023370.0023460.0061700.004106
0.0115500.0079670.0133700.0083920.0094490.0080100.0082440.0112800.0099420.0050660.008112

|
ageconducteur < 30.5

zone:abc
0.013330

0.004581 0.008286

Figure 2.13 – Stucture des arbres de régression, avec arbre1 à gauche, et arbre2 à droite.

2.2.5 Probabilité d’avoir un gros sinistre dans l’année

Cette étude sera particulièrement intéressante pour écrêter les gros sinistres (nous revien-
drons sur ce point dans la section 2.5.3), lors de la modélisation des coûts individuels de sinistres.
On supposera (arbitrairement) que les gros sinistres sont ceux dont le montant dépasse 20 000
euros, ce qui concerne un peu plus de 200 sinistres,,,

> sum(baseCOUT$cout>20000)

[1] 215

Au lieu de modéliser les variables qui pourrait expliquer le fait d’avoir (ou pas) un accident,
comme dans la section précédante, on va essayer de voir s’il y a des variables qui pourraient
expliquer le fait d’avoir (ou pas) un très gros sinistre.

> gs <- baseCOUT$nocontrat[baseCOUT$cout>30000]

> baseFREQ$GS=0

> baseFREQ$GS[baseFREQ$nocontrat%in% gs]=1

> ARBRE <- tree(GS ~ puissance + agevehicule + puissance + zone+ ageconducteur ,

+ data=baseFREQ,split="gini",mincut = 50000)

> ARBRE

node), split, n, deviance, yval

* denotes terminal node

1) root 678013 150.000 2.212e-04

2) ageconducteur < 27.5 61023 25.990 4.261e-04 *

3) ageconducteur > 27.5 616990 124.000 2.010e-04

6) puissance < 5.5 212815 27.000 1.269e-04

12) ageconducteur < 50.5 128654 12.000 9.327e-05

24) ageconducteur < 36.5 51423 7.999 1.556e-04 *

25) ageconducteur > 36.5 77231 4.000 5.179e-05 *

13) ageconducteur > 50.5 84161 15.000 1.782e-04 *

7) puissance > 5.5 404175 96.980 2.400e-04

14) zone: B,C,E,F 251268 49.990 1.990e-04

28) agevehicule < 6.5 134878 20.000 1.483e-04

56) ageconducteur < 49.5 76446 7.999 1.046e-04 *

57) ageconducteur > 49.5 58432 12.000 2.054e-04 *

29) agevehicule > 6.5 116390 29.990 2.578e-04

58) agevehicule < 11.5 61902 17.990 2.908e-04 *

59) agevehicule > 11.5 54488 12.000 2.202e-04 *

15) zone: A,D 152907 46.990 3.074e-04

30) puissance < 6.5 52214 20.990 4.022e-04 *

31) puissance > 6.5 100693 25.990 2.582e-04

62) ageconducteur < 46.5 50219 13.000 2.589e-04 *

63) ageconducteur > 46.5 50474 13.000 2.576e-04 *

On note qu’en fonction de la zone d’habitation, de la puissance du véhicule et de l’ancienneté
du véhicule, on peut déterminer avec une bonne assurance la probabilité d’avoir un très gros
sinistre. Et manifestement, une variable particulièrement importante est l’âge du conducteur
(avec là encore un risque élevé pour les jeunes conducteurs) mais aussi la puissance du véhicule
(si on veut suffisamment d’assurés par classes, l’âge du conducteur disparait au profit de la
puissance, faute d’effectifs suffisants). Si on trace l’arbre, on obtient le dessin de la Figure 2.14

> ARBRE2 <- tree(GS ~ puissance + agevehicule + puissance + zone+ ageconducteur ,

+ data=baseFREQ,split="gini",mincut = 100000)

> plot(ARBRE,type="proportional")

> text(ARBRE)

> plot(ARBRE2,type="proportional")

> text(ARBRE2)

|
ageconducteur < 27.5

puissance < 5.5

ageconducteur < 50.5

ageconducteur < 36.5
zone:bcef

agevehicule < 6.5

ageconducteur < 49.5 agevehicule < 11.5

puissance < 6.5

ageconducteur < 46.5

4.261e−04

1.556e−04 5.179e−05
1.782e−04

1.046e−04 2.054e−04
2.908e−04 2.202e−04

4.022e−04 2.589e−04 2.576e−04

Figure 2.14 – Arbres de régression, pour expliquer la probabilité d’avoir (ou pas) un gros
sinistre, en fonction de la densité de population, de l’ancienneté du véhicule, et de sa puissance.

2.3 Modéliser la fréquence de sinistralité

Nous avions vu en introduction à ce chapitre que la formule de base pour calculer une prime
pure qui tiendrait compte de variables explicatives X est

E(S|X) = E(N |X) · E(Yi|X).

La première étape est de pouvoir modéliser la fréquence de sinistres E(N |X). Classiquement, les
actuaires ont longtemps raisonné par classes de risques, c’est à dire en supposant les variables X
qualitatives. Nous commencerons par évoquer ce cas (et en particulier la méthode des marges)
pour introduire ensuite le cas où des variables explicatives sont continues.

2.3.1 Un peu d’analyse descriptive

Une hypothèse forte de la loi de Poisson est que E(N) = V(N). Si l’on compare les valeurs
numériques, cela donne l’ajustement suivant, si l’on estime le paramètre par la méthode des
moments (ou par maximum de vraisemblance, ML qui ici cöıncident) :

> N <- baseFREQ$nbre

> library(vcd)

> gof <- goodfit(N,type= "poisson",method= "ML")

> gof

Observed and fitted values for poisson distribution

with parameters estimated by ‘ML’

count observed fitted

0 653069 6.520780e+05

1 23571 2.543248e+04

2 1298 4.959614e+02

3 62 6.447862e+00

4 5 6.287020e-02

5 2 4.904153e-04

6 1 3.187879e-06

7 0 1.776204e-08

8 1 8.659485e-11

9 1 3.752655e-13

10 0 1.463618e-15

11 2 5.189485e-18

12 0 1.686678e-20

13 0 5.060319e-23

14 0 1.409740e-25

15 0 3.665531e-28

16 1 8.935236e-31

> plot(gof)

La Figure 2.15 permet de visualiser la qualité de l’ausjtement.

La différence entre la valeur prédite par le modèle Poissonnien et les valeurs observées nous
poussent à essayer de mieux comprendre l’hétérogénéité qui existe au sein de nos données (sans
prendre en compte la non-prise en compte de l’exposition).

0

200

400

600

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Occurrences

sq
rt

(F
re

qu
en

cy
)

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 2.15 – Modélisation de la fréquence - globale - de sinistre par une loi de Poisson.

2.4 Les variables qualitatives ou facteurs

Les facteurs sont des codifications de variables qualitatives. Dans la base, nous disposons de
plusieurs variables qualitatives comme le carburant carburant codé en E pour essence et D pour
diesel, ou encore region pour la région.,

2.4.1 La méthode des marges

Bailey (1963) a proposé une méthode relativement simple pour faire de la tarification, appelée
method of marginal totals. Avant de présenter cette méthode, notons que Jung (1968) a retrouvé
cette méthode en faisant du maximum de vraisemblance sur un modèle Poissonnien. PlaÁons
nous dans le cas où les variables exogène X sont qualitatifs, de telle sorte que l’on puisse définir
des classes de risques. Alors,

P(N = n|X = X) = exp[−λX]
λnX
n!

où λX = exp[−X ′β]

ce qui donne une log-vraisemblance de la forme

L(β|ni,Xi) =
n∑

i=1

[−λXi] + ni log[λXi]− log[ni!]

dont la condition du premier ordre donne les équations normales,

∑

i,Xi=X

ni =
∑

i,Xi=X

λX

pour toute classe de risque X.,,,

Supposons que l’on prenne en compte ici deux classes de risques.

> N <- baseFREQ$nbre

> E <- baseFREQ$exposition

> X1 <- baseFREQ$carburant

> X2 <- cut(baseFREQ$agevehicule,c(0,3,10,101),right=FALSE)

> names1 <- levels(X1)

> names2 <- levels(X2)

> (POPULATION=table(X1,X2))

X2

X1 [0,3) [3,10) [10,101)

D 102293 138763 91080

E 85854 126926 133097

> EXPOSITION=POPULATION

> for(k in 1:nrow(EXPOSITION)){

+ EXPOSITION[k,]=tapply(E[X1==names1[k]],

+ X2[X1==names1[k]],sum)}

> EXPOSITION

X2

X1 [0,3) [3,10) [10,101)

D 42160.49 76744.38 51756.02

E 37015.56 73352.42 77470.57

> SINISTRE=POPULATION

> for(k in 1:nrow(SINISTRE)){

+ SINISTRE[k,]=tapply(N[X1==names1[k]],

+ X2[X1==names1[k]],sum)}

> SINISTRE

X2

X1 [0,3) [3,10) [10,101)

D 3273 6350 3827

E 2474 5360 5160

> (FREQUENCE=SINISTRE/EXPOSITION)

X2

X1 [0,3) [3,10) [10,101)

D 0.07763192 0.08274222 0.07394309

E 0.06683675 0.07307189 0.06660594

Notons Yi,j la fréquence empirique observée lorsque la première variable (i.e. X1) prend la
valeur i (ici i prend deux valeurs, homme ou femme) et la seconde variable (i.e. C) prend la
valeur j (ici j prend trois valeurs, ville, banlieue et campagne). La matrice Y = [Yi,j] est ici
FREQUENCE. On suppose qu’il est possible de modéliser Y à l’aide d’un modèle multiplicatif à
deux facteurs, associés à chaque des des variables. On suppose que

Yi,j = Li · Cj .
On notera Ei,j l’exposition, i.e. EXPOSITION. L’estimation de L = (Li) et de C = (Cj) se fait
généralement de trois manières : par moindres carrés, par minimisation d’une distance (e.g. du
chi-deux) ou par un principe de balancement (ou méthode des marges). Les deux premières
méthodes seront abordées en exercices. Dans la méthode des marges (selon la terminologie de
Bailey (1963)), formellement, on veut

∑

j

Ni,jYi,j =
∑

j

Ni,jLi · Cj ,

en somment sur la ligne i, pour tout i, ou sur la colonne j,

∑

i

Ni,jYi,j =
∑

i

Ni,jLi · Cj .

La première équation donne

Li =

∑
j Ni,jYi,j∑
j Ni,jCj

et la seconde

Cj =

∑
iNi,jYi,j∑
iNi,jLi

.

On résoud alors ce petit systeme de maniere itérative (car il n’y a pas de solution analytique
simple).

> (m=sum(SINISTRE)/sum(EXPOSITION))

[1] 0.1020388

> L<-matrix(NA,100,2);C<-matrix(NA,100,3)

> L[1,]<-rep(m,2);colnames(L)=names1

> C[1,]<-rep(m,3);colnames(C)=names2

> for(j in 2:100){

+ L[j,1]<-sum(SINISTRE[1,])/sum(EXPOSITION[1,]*C[j-1,])

+ L[j,2]<-sum(SINISTRE[2,])/sum(EXPOSITION[2,]*C[j-1,])

+ C[j,1]<-sum(SINISTRE[,1])/sum(EXPOSITION[,1]*L[j,])

+ C[j,2]<-sum(SINISTRE[,2])/sum(EXPOSITION[,2]*L[j,])

+ C[j,3]<-sum(SINISTRE[,3])/sum(EXPOSITION[,3]*L[j,])

+ }

> L[1:5,]

D E

[1,] 0.07376302 0.07376302

[2,] 1.06843870 0.93781996

[3,] 1.06467985 0.94125969

[4,] 1.06463149 0.94130395

[5,] 1.06463087 0.94130452

> C[1:5,]

[0,3) [3,10) [10,101)

[1,] 0.07376302 0.07376302 0.07376302

[2,] 0.07205381 0.07765869 0.07023750

[3,] 0.07208196 0.07767731 0.07019804

[4,] 0.07208232 0.07767755 0.07019753

[5,] 0.07208233 0.07767756 0.07019752

> PREDICTION2=SINISTRE

> PREDICTION2[1,]<-L[100,1]*C[100,]

> PREDICTION2[2,]<-L[100,2]*C[100,]

> PREDICTION2

X2

X1 [0,3) [3,10) [10,101)

D 0.07674107 0.08269792 0.07473445

E 0.06785142 0.07311823 0.06607725

On notera que les marges sont identiques, par exemple pour la première ligne

> sum(PREDICTION2[1,]*EXPOSITION[1,])

[1] 13450

> sum(SINISTRE[1,])

[1] 13450

Cette technique est équivalente ùtiliser une régression log-Poisson sur les deux variables
qualitatives,

> donnees <- data.frame(N,E,X1,X2)

> regpoislog <- glm(N~X1+X2,offset=log(E),data=donnees,

+ family=poisson(link="log"))

> newdonnees <- data.frame(X1=factor(rep(names1,3)),E=rep(1,6),

+ X2=factor(rep(names2,each=2)))

> matrix(predict(regpoislog,newdata=newdonnees,

+ type="response"),2,3)

[,1] [,2] [,3]

[1,] 0.07674107 0.08269792 0.07473445

[2,] 0.06785142 0.07311823 0.06607725

Parmi les autres variables que l’on considèrera comme qualitatitive, il y a la région d’ha-
bitation, dont l’influence sur la fréquence de sinistre peut être visualisé sur la Figure 2.16.,,

> library(maptools)

> library(maps)

> departements<-readShapeSpatial("DEPARTEMENT.SHP")

> legend(166963,6561753,legend=names(attr(colcode,"table")),

+ fill=attr(colcode, "palette"), cex=0.6, bty="n")

> region<-tapply(baseFREQ[,"nbre"],as.factor(baseFREQ[,"region"]),sum)/

+ tapply(baseFREQ[,"exposition"],as.factor(baseFREQ[,"region"]),sum)

> depFREQ=rep(NA,nrow(departements))

> names(depFREQ)=as.character(departements$CODE_REG)

> for(nom in names(region)){

+ depFREQ[names(depFREQ)==nom] <- region[nom]

+}

> plot(departements,col=gray((depFREQ-.05)*20))

> legend(166963,6561753,legend=seq(1,0,by=-.1)/20+.05,

+ fill=gray(seq(1,0,by=-.1)),cex=1.25, bty="n")

2.4.2 Prise en compte de l’exposition et variable offset

Dans un modèle collectif, on a besoin de connâıtre le nombre de sinistres survenus sur une
police d’assurance. Dans l’optique de tarifer un contrat, il faut pouvoir prédire le nombre de
sinistres qui surviendront, en moyenne, l’année suivante. Or si certains polices n’ont été observées
que 6 mois dans la base, il convient de pondérer la fréquence de sinistre par l’exposition. Compte
tenu de la propriété multiplicative d’un processus de Poisson, une police observée 1 an aura,
en moyenne, 4 fois plus de sinistres qu’une police observée 3 mois. Dans le cas d’un modèle
log-Poisson, il est alors naturel de supposer que

Y |X ∼ P(exp[Xβ + log(e)])

où e désigne l’exposition, mesurée en années.

0.1
0.095
0.09
0.085
0.08
0.075
0.07
0.065
0.06
0.055
0.05

Figure 2.16 – Fréquence de sinistres en fonction de la région d’habitation.

Remark 2.4.1. Plus formellement, on retrouve ici une propriété du processus de Poisson.
Si la survenance d’accident pour un individu peut être modélisée par un processus de Poisson
homogène de paramètre λ, λ est l’espérance du nombre de sinistre sur un intervalle de longueur
1 (e.g. [0, 1]). Pour un assuré présent pour une durée t (disons au cours de l’intervalle de temps
[0, t]) l’espérance du nombre de sinistres est λt, i.e. il est proportionnel à la durée d’exposition
rélle au risque.

Dans le cas des régressions de Poisson, cela peut se faire de la manière suivante

> reg <- glm(nombre~0+puissance+region,

+ data=nombre,family=poisson(link="log"),offset=log(exposition))

On peut noter que la régression pouvait s’écrire

Y |X ∼ P(exp[β0 + β1X1 + · · ·+ βkXk + e])

autrement dit, on rajoute l’exposition dans la régression, tout en fora̧nt le coefficient à être égal
à 1. Ceci légitime ainsi la seconde écriture possible

> reg <- glm(nombre~0+puissance+region+offset(exposition),

+ data=nombre,family=poisson(link="log"))

On notera qu’il est possible d’intérgrer une variable offset dans la méthode des marges, en
notant qu’il convient de faire une moyenne du nombre de sinistres, divisé par la moyenne de
l’exposition. Par exemple pour reprendre une régression présentée en introduction

> seuils <- c(17,21,25,30,50,80,120)

> reg2 <- glm(nombre~cut(ageconducteur,breaks=seuils),data=sinistres,

+ family=poisson(link="log"),offset=log(exposition))

> predict(reg2,newdata=data.frame(ageconducteur=20,exposition=1),

+ type="response")

[1] 0.2113669

> I <- (sinistres$ageconducteur>=17)&(sinistres$ageconducteur<=21)

> mean(sinistres$nombre[I==TRUE])/mean(sinistres$exposition[I==TRUE])

[1] 0.2113669

Une autre manière d’écrire cette grandeur est de faire une moyenne pondérée (par l’exposi-
tion) du nombre annualisé de sinistres,

> weighted.mean(sinistres$nombre[I==TRUE]/sinistres$exposition[I==TRUE],

+ w=sinistres$exposition[I==TRUE])

[1] 0.2113669

2.4.3 Les variables tarifaires continues et la nonlinéarité

Le but de la tarification (et plus généralement de toute prédiction) est d’estimer une espérance
conditionnelle,

E(S|X = x) = ϕ(x) ou S = ϕ(X1, · · · , Xk) + ε

où ϕ : Rk → R. Supposer un modèle linéaire est problement une hypothèse trop forte. Mais on
se doute qu’estimer une fonction définie sur Rk serait trop complexe numériquement. Un bon
compromis est proposé par les modèles dit additifs.

Pour commencer, on peut récupérer les fréquences empiriques par âge

> freq.emp<-tapply(baseFREQ[,"nbre"],as.factor(baseFREQ[,"ageconducteur"]),sum)

+ /tapply(baseFREQ[,"exposition"],as.factor(baseFREQ[,"ageconducteur"]),sum)

A titre d’illustration, la Figure 2.17 permet de visualiser l’impact de l’âge du conducteur
principal sur la fréquence de sinistre. Les points noirs correspondent à la fréquence moyenne
empirique observée,

> age <- seq(18,92)

> pred.emp <- freq.emp[as.character(age)]

> reg.splines <- glm(nbre~bs(ageconducteur,10)+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ)

> age <- seq(18,100)

> pred.splines <- predict(reg.splines,newdata=data.frame(ageconducteur=

+ age,exposition=1),type="response",se=TRUE)

> plot(age,pred.splines$fit,lwd=2,type="l",ylab="",xlab="Age du conducteur principal",

+ ylim=c(0,0.25))

> polygon(c(age,rev(age)),

+ c(pred.splines$fit+2*pred.splines$se.fit,

+ rev(pred.splines$fit-2*pred.splines$se.fit)),

+ col="grey",border=NA)

> lines(age,pred.splines$fit,lwd=2)

> lines(age,pred.splines$fit+2*pred.splines$se.fit,lty=2)

> lines(age,pred.splines$fit-2*pred.splines$se.fit,lty=2)

> abline(h=sum(baseFREQ[,"nbre"])/sum(baseFREQ[,"exposition"])

+ ,lty=2,lwd=.5)

> points(18:92,pred.emp,pch=19,cex=.7,type="b")

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Age du conducteur principal

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

● ● ●
●

● ● ●
● ●

●

●
●

●

●

● ● ● ● ●
●

●

●
● ●

●
● ●

● ●

● ●

●

●
●

●
● ●

●

●

● ●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.17 – Fréquence de sinistres en fonction de l’âge du conducteur principal, régression
de Poisson avec splines.

Les modèles GAM

Les modèles additifs ont été introduits par Stone (1985) qui notait qu’estimer une fonction
ϕ : Rk → R serait numériquement trop complexe (et probablement peu robuste). Les GAMs ont
ètè popularisès ensuite par le livre Hastie & Tibshirani (1990). On cherche ici une décomposition
de la forme

S = ϕ1(X1) + · · ·+ ϕk(Xk) + ε

où les fonctions ϕj : R→ R sont supposées suffisament régulières.

On peut reprendre l’exemple traité avec des splines dans un modèle GLM, directement sous
forme d’un modèle GAM, que l’on peut visualiser sur la Figure 2.18,

> reg.gam <- gam(nbre~s(ageconducteur)+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ)

> pred.gam <- predict(reg.gam,,newdata=data.frame(ageconducteur=age,exposition=1),

+ type="response",se=TRUE)

> plot(age,pred.gam$fit,lwd=2,type="l",ylab="",xlab="Age du conducteur principal",

+ ylim=c(0,0.25))

> polygon(c(age,rev(age)),

+ c(pred.gam $fit+2* pred.gam $se.fit,rev(pred.gam $fit-2*pred.gam $se.fit)),

+ col="grey",border=NA)

> lines(age, pred.gam $fit,lwd=2)

> lines(age, pred.gam $fit+2* pred.gam $se.fit,lty=2)

> lines(age, pred.gam $fit-2* pred.gam $se.fit,lty=2)

> abline(h=sum(baseFREQ[,"nbre"])/sum(baseFREQ[,"exposition"]),lty=2,lwd=.5)

> points(18:92,pred.emp,pch=19,cex=.7,type="b")

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Age du conducteur principal

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

● ● ●
●

● ● ●
● ●

●

●
●

●

●

● ● ● ● ●
●

●

●
● ●

●
● ●

● ●

● ●

●

●
●

●
● ●

●

●

● ●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.18 – Fréquence de sinistres en fonction de l’âge du conducteur principal, régression
GAM.

Notons que les modèles sont additifs, aussi, avec une variable continue et un facteur (par
exemple le carburant) on aurait

S = ϕ1(X1) + β2X2 + ε = ϕ1(X1) + βD2 1(X2 = D) + ε,

où X1 est l’âge du conducteur, et X2 le carburant du véhicule. Notons qu’il serait aussi possible
de considérer un modèle de la forme

S =

{
ϕ1,E(X1) + ε si X2 = essence
ϕ1,D(X1) + ε si X2 = diesel

Le premier modèle (additif) est estimé ci-dessous.

> regC.gam <- gam(nbre~s(ageconducteur)+carburant+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ)

> predCE.gam <- predict(regC.gam,,newdata=data.frame(ageconducteur=age,

+ exposition=1,carburant="E"),type="response")

> predCD.gam <- predict(regC.gam,,newdata=data.frame(ageconducteur=age,

+ exposition=1,carburant="D"),type="response")

On peut visualiser le lien entre la fréquence anuelle de sinistre et l’âge sur la Figure 2.19,

> plot(age,predCD2.gam,lwd=2,type="l",ylab="",xlab=

+ "Age du conducteur principal",ylim=c(0,0.25))

> lines(age,predCE2.gam,lwd=2,col="grey")

> lines(age,predCD.gam,lty=2)

> lines(age,predCE.gam,lty=2,col="grey")

> legend(80,.23,c("Diesel","Essence"),col=c("black","grey"),

+ lwd=2,lty=1,bty="n")

20 30 40 50 60 70 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Age du conducteur principal

Diesel
Essence

Figure 2.19 – Modèle GAM addifif, S = ϕ1(X1)+β2X2 +ε où X2 désigne le type de carburant.

En revanche, pour estimer le second modèle, il convient de faire deux régressions distinctes,

> regCE.gam <- gam(nbre~s(ageconducteur)+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ[baseFREQ$carburant=="E",])

> regCD.gam <- gam(nbre~s(ageconducteur)+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ[baseFREQ$carburant=="D",])

> predCE2.gam <- predict(regCE.gam,,newdata=data.frame(ageconducteur=age,exposition=1),

+ type="response")

> predCD2.gam <- predict(regCD.gam,,newdata=data.frame(ageconducteur=age,exposition=1),

+ type="response")

On peut visualiser le lien entre la fréquence anuelle de sinistre et l’âge sur la Figure 2.20,

> plot(age,predCD2.gam,lwd=2,type="l",ylab="",xlab=

+ "Age du conducteur principal",ylim=c(0,0.25))

> lines(age,predCE2.gam,lwd=2,col="grey")

> lines(age,predCD.gam,lty=2)

> lines(age,predCE.gam,lty=2,col="grey")

> legend(80,.23,c("Diesel","Essence"),col=c("black","grey"),

+ lwd=2,lty=1,bty="n")

20 30 40 50 60 70 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Age du conducteur principal

Diesel
Essence

Figure 2.20 – Modèle GAM, S = ϕ1,E(X1) + ε si X2 = essence ou S = ϕ1,D(X1) + ε si
X2 = diesel où X2 désigne le type de carburant.

L’estimation de ces modèles peut se faire de plusieurs manières sous R. Il y a tout d’abord la
fonction gam de library(gam), basé sur l’algorithme proposé par Hastie & Tibshirani (1990).
La fonction gam de library(mgcv) repose sur la méthodologie développée par Wood (2000).
Enfin d’autres packages proposent aussi des estimations de ces transformations nonlinéaires,
dont library(gmlss) ou library(gss).

2.4.4 Les modèles nonlinéaires multivariés

On peut s’autoriser éventuellement encore un peu plus de souplesse en prenant en compte le
couple constitué de deux variables continues (comme discuté dans Friedman (1991)),

S = ϕ(X1, X2) + ε

où ϕ : R2 → R, au lieu d’un modèle GAM classique,

S = ϕ1(X1) + ϕ2(X2) + ε

Cette option est proposée par exemple dans la fonction gam de library(mgcv),mais pour
des raisons de volume de données, on va se limiter à un échantillon de la base
> set.seed(1)

> echantillon=sample(1:nrow(baseFREQ),size=200000)

> reg.gam2 <- gam(nbre~s(ageconducteur,agevehicule)+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ[echantillon,])

La Figure 2.21, permet de visualiser la surface de prédiction de la fréquence annuelle de
sinistre, en fonction de l’âge du conducteur et de l’ancienneté du véhicule,
> pred.gam2 <- predict(reg.gam2,,newdata=data.frame(ageconducteur=

+ C,agevehicule=V,exposition=1),type="response")

> P2 <- matrix(pred.gam2,length(agec),length(agev))

> ZL<-range(P2)

> persp(agec,agev,P2,theta=30,xlab="age conducteur",ylab="age vehicule",zlab="",zlim=ZL)

age conducteur

ag
e

ve
hi

cu
le

Figure 2.21 – Modèle GAM bivariée s(X1, X2) .

On peut comparer ce modèle joint à un modèle strictement additif, comme sur la Figure
2.22,

> reg.gam3 <- gam(nbre~s(ageconducteur)+s(agevehicule)+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ[echantillon,])

> pred.gam3 <- predict(reg.gam3,,newdata=data.frame(ageconducteur=

+ C,agevehicule=V,exposition=1),type="response")

> P3 <- matrix(pred.gam3,length(agec),length(agev))

> persp(agec,agev,P2,theta=30,xlab="age conducteur",ylab="age vehicule",zlab="",zlim=ZL)

age conducteur
ag

e
ve

hi
cu

le

Figure 2.22 – Modèle GAM (réellement additif) s1(X1) + s(X2) .

Enfin, à titre de comparaison, on peut aussi visualiser sur la Figure 2.23 ce que donne un
modèle GLM sans lissage,

> reg.glm4 <- glm(nbre~ageconducteur+agevehicule+offset(log(exposition)),

+ family=poisson(link="log"),data=baseFREQ[echantillon,])

> pred.glm4 <- predict(reg.glm4,,newdata=data.frame(ageconducteur=

+ C,agevehicule=V,exposition=1),type="response")

> P4 <- matrix(pred.glm4,length(agec),length(agev))

> persp(agec,agev,P4,theta=30,xlab="age conducteur",ylab="age vehicule",zlab="",zlim=ZL)

2.4.5 Prise en compte de la surdispersion

Dans une régression poissonnienne, on suppose que dans une classe de risque (ou conditionnel-
lement aux variables explicatives), la fréquence et l’espérance cöıncident, i.e. V(Y |X) = E(Y |X).
Dans l’exemple ci-dessous, on considère le nombre de sinistres RC. On constitue quelques classes
tarifaires (les âges des conducteurs croisés avec le carburant)

> sumnb = tapply(baseFREQ$nbre , baseFREQ[,c("ageconducteur",

+ "carburant")], sum)

> sumnb2 = tapply(baseFREQ$nbre^2 , baseFREQ[,c("ageconducteur",

+ "carburant")], sum)

> expo = tapply(baseFREQ$exposition , baseFREQ[,c("ageconducteur",

age conducteur

ag
e

ve
hi

cu
le

Figure 2.23 – Modèle GLM (linéaire) β1X1 + β2X2 .

+ "carburant")], sum)

> M= sumnb/expo

> V=sumnb2/expo-M^2

> plot(as.vector(M),as.vector(V),xlab="moyenne empirique",

+ ylab="variance empirique")

> abline(a=0,b=1)

> abline(lm(as.vector(V)~as.vector(M)),lty=2)

La Figure 2.24 permet de visualiser l’hypothèse d’égalité de la variance et de la moyenne par
classe de risque (i.e. conditionnellement à X).

●

●

●

●

●●

●

●

●

●●●●●

●
●●●●●

●●
●

●●
●●

●

●

●

●
●

●●
●●●

●
●●●

●
●

●
●

●● ●●

●

● ●●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●
●●

●●●

●

●

●
●●
●

●●
●●
●

●
●

●

●

●

●
●●

●
●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

0.0 0.1 0.2 0.3 0.4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

moyenne empirique

va
ria

nc
e

em
pi

riq
ue

Figure 2.24 – Moyenne empirique et variance empirique, par classe de risque.

On peut commencer par faire un premier test, afin de voir si la pente de la régression semble
significativement différente de 1

> library(AER)

> regression=lm(as.vector(V)~as.vector(M),

+ weight=as.vector(expo))

> linearHypothesis(regression,"as.vector(M)=1")

Linear hypothesis test

Hypothesis:

as.vector(M) = 1

Model 1: restricted model

Model 2: as.vector(V) ~ as.vector(M)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 163 50.786

2 162 50.025 1 0.76148 2.466 0.1183

Manifestement, la droite de régression ne semblerait pas significativement différente de la première
bissectrice (comme le montrait la Figure 2.24).

Si malgré tout on pense que cette surdispersion est importance, une manière de la quantifier
peut être de prendre non une loi de poisson, mais une loi quasipoisson, telle que V(Y |X) =
φE(Y |X), où φ devient un paramètre à estimer (tout comme la volatilité des résidus dans une
régression linéaire Gaussienne).

> regglm <- glm(nbre~bs(ageconducteur)+carburant+ offset(log(exposition)),

+ data=baseFREQ,family=quasipoisson)

> summary(regglm)

Call:

glm(formula = nbre ~ bs(ageconducteur) + carburant + offset(log(exposition)),

family = quasipoisson, data = baseFREQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.6249 -0.3542 -0.2589 -0.1419 13.4432

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.63342 0.04214 -38.763 < 2e-16 ***

bs(ageconducteur)1 -2.42084 0.14018 -17.270 < 2e-16 ***

bs(ageconducteur)2 0.72919 0.15282 4.772 1.83e-06 ***

bs(ageconducteur)3 -2.70146 0.23513 -11.489 < 2e-16 ***

carburantE -0.12726 0.01655 -7.690 1.48e-14 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 1.781494)

Null deviance: 171819 on 678012 degrees of freedom

Residual deviance: 170731 on 678008 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 6

> (summary(regglm)$dispersion)

[1] 1.781494

I.e. sur cette régression, φ̂ = 1.78. Pour tester la significativité de cette éventuelle surdisper-
sion, on peut noter que la surdispersion correspond à une hétérogénéité résiduelle, c’est à dire
un effet aléatoire. Par exemple on peut supposer que

(Y |X = X,Z = z) ∼ P(exp[X ′β + z′α])

de telle sorte que si u = z′α− E(Z ′α|X = X), alors

(Y |X = X,Z = z) ∼ P(exp[X ′γ + u])

On a un modèle dit à effets fixes, au sens où

(Y |X = X) ∼ P(exp[X ′γ + U]),

où U = Z ′α− E(Z ′α|X = X). Par exemple, si on suppose que U ∼ γ(a, a), i.e. d’espérance 1
et de variance σ2 = 1/a, alors

(Y |U = u) ∼ P(λu) où λ = exp[X ′γ],

de telle sorte que E(Y |U = u) = V(Y |U = u). Mais si on regarde la loi nonconditionnelle,
E(Y) = λ alors que

V(Y) = V(E[Y |U]) + E(V(Y |)) = λ+ λ2σ2.

On peut alors proposer un test de la forme suivante : on suppose que

V(Y |X = X) = E(Y |X = X) + τ · E(Y |X = X)2,

on on cherche à tester
H0 : τ = 0 contre τ > 0.

Parmi les statistiques de test classique, on pourra considérer

T =

∑n
i=1[(Yi − µ̂i)2 − Yi]√

2
∑n

i=1 µ̂
2
i

qui suit, sous H0, une loi normale centrée réduite. Sous R, ce test est programmé dans la fonction
dispersiontest() de library(MASS).

> library(AER)

> regglm2 <- glm(nbre~bs(ageconducteur)+carburant+ offset(log(exposition)),

+ data=baseFREQ,family=poisson)

> dispersiontest(regglm2)

Overdispersion test

data: regglm2

z = 3.8802, p-value = 5.218e-05

alternative hypothesis: true dispersion is greater than 1

sample estimates:

dispersion

1.222467

Une autre possibilité est de faire une régression binomiale négative (qui permettra de prendre
en compte de la surdispersion). Elle se fait à l’aide de la fonction glm.nb() de library(MASS).

> library(MASS)

> regbn <- glm.nb(nbre~bs(ageconducteur)+carburant+

+ offset(log(exposition)),data=baseFREQ)

Remark 2.4.2. La loi Binomial Négative est obtenue comme un mélange Poisson-Gamma.
Dans library(gamlss) on parle de loi binomiale négative de type I. Une loi de type II est
obtenue en considérant un mélange Poisson-inverse Gaussienne.

On peut comparer les deux modèles sur la Figure 2.25, avec une représentation des coeffi-
cients.

> regp <- glm(nbre~bs(ageconducteur)+carburant+

+ offset(log(exposition)),data=baseFREQ,family=poisson)

> plot(regbn$coefficients,regp$coefficients)

> abline(a=0,b=1,lty=2,col="grey")

> cbind(regbn$coefficients,regp$coefficients)

[,1] [,2]

(Intercept) -1.6174987 -1.6334197

bs(ageconducteur)1 -2.4311047 -2.4208431

bs(ageconducteur)2 0.7144625 0.7291903

bs(ageconducteur)3 -2.7009294 -2.7014616

carburantE -0.1260395 -0.1272581

> plot(regbn$coefficients,regp$coefficients,

+ xlab="régression binomiale négative",

+ ylab="régression de Poisson")

●

●

●

●

●

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

−
2.

5
−

1.
5

−
0.

5
0.

0
0.

5

régression binomiale négative

ré
gr

es
si

on
 d

e
P

oi
ss

on

Figure 2.25 – Comparaison des coefficients d’une régression binomiale et d’une régression de
Poisson.

La surdispersion est ici relativement faible, sauf au sein de quelques classes d’âge, et la
meilleure solution serait de continuer à chercher d’autres variables explicatives, permettant de
supprimer cette hétérogénéité résiduelle.

2.4.6 Les modèles zèros modifiés, ou à inflation de zéros (zero-inflated)

Afin d’éviter l’aléa moral, il n’est pas rare de mettre en place des contrats participatifs.
En assurance, l’exemple le plus connu est probablement le mécanisme de bonus-malus. Une
personne qui n’a pas d’accident responsable une année a le droit à un rabais l’année suivante
(un bonus) alors qu’une personne ayant eu un ou plusieurs sinistres subit une majoration de
prime (un malus). D’un point de vue économétrique, cette solution présente un biais puisqu’elle
peut insiter des personnes à ne pas déclarer certains sinistres (dès lors que la majoration excède
le coût du sinistre). Il n’est alors pas rare d’observer trop de personnes non-sinistrées dans la
population totale (par rappport à un modèle Poissonnien).

Un modèle dit zèro modifié (zero inflated) est un mélange entre une masse en 0 et un modèle
classique de comptage, typiquement un modèle de Poisson, ou binomial négatif. Pour modéliser
la probabilité de ne pas déclarer un sinistre (et donc d’avoir un surpoids en 0), considérons un
modèle logistique par exemple,

πi =
exp[X ′iβ]

1 + exp[X ′iβ]

Pour le modèle de comptable, on note pi(k) la probabilité que l’individu i ait k sinistres (corres-
pondant à la loi si la personne décide de déclarer ses sinistres, classiquement modélisé par une
loi de Poisson). Aussi,

P(Ni = k) =

{
πi + [1− πi] · pi(0) si k = 0,
[1− πi] · pi(k) si k = 1, 2, · · ·

Si pi correspond à un modèle Poissonnien (de moyenne λi), on peut alors montrer facilement
que E(Ni) = [1− πi]λi et V(Ni) = πiλi + πiλ

2
i [1− πi].

La library(gamlss) propose la fonction ZIP (pour zero inflated Poisson), mais aussi ZINBI
(lorsque pi correspond à une loi binomiale négative), ou ZIPIG (pour un mélange Poisson-inverse
Gaussien), par exemple. La library(pscl) propose également une fonction zeroinfl plus
simple d’utilisation, proposant aussi bien un modèle de Poisson qu’un modèle binomial négatif.

Il existe aussi des modèles dits zero adapted, où l’on suppose que

P(Ni = k) =





πi si k = 0,

[1− πi] ·
pi(k)

1− pi(0)
si k = 1, 2, · · ·

Dans library(gamlss) il s’agit du modèle ZAP. Et comme auparavant, il existe des fonctions
ZANBI ou ZAPIG .

Ces modèles à inflation de zéros peuvent être particulièrement utiles pour prendre en compte
un excès de non-déclarations de sinistres, généralement attribuées à une peur de perdre un
niveau intéressant de bonus-malus : la perte financière associée au malus des années suivantes
peut excéder l’indemnité versée aujourd’hui. On peut ajuster ici un modèle zero-inflated (logit)
avec une loi de Poisson afin d’expliquer la sinistralité en fonction de l’âge du conducteur (en
prenant en compte l’âge via une fonction nonlinéaire que l’on estimera à l’aide de splines).

> library(pscl)

> regNZI <- glm(nbre~bs(ageconducteur,5)+offset(log(exposition)),

+ data=baseFREQ,family=poisson(link="log"))

> regZI <- zeroinfl(nbre~bs(ageconducteur) |

+ bs(ageconducteur),offset=log(exposition),

+ data = baseFREQ,dist = "poisson",link="logit")

On peut s’intéresser plus particulièrement à l’impact de l’âge sur la probabilité de ne pas
déclarer de sinistres (correspondant au paramètre de la loi binomiale), présentée sur la Figure
2.26.

> age<-data.frame(ageconducteur=18:90,exposition=1)

> pred0 <- predict(regZI,newdata=age,type="zero")

> plot(age$ageconducteur,pred0,type="l",xlab="",lwd=2,

+ ylim=c(0,1),ylab="Probabilité de ne pas déclarer un sinistre")

20 30 40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
é

de
 n

e
pa

s
dé

cl
ar

er
 u

n
si

ni
st

re

Figure 2.26 – Prédiction à l’aide de modèles zero-inflated (logit) avec une loi de Poisson de la
sinistralité en fonction du taux de bonus.

La principale explication avancée - en France - pour la non déclaration de sinistre est l’exis-
tence du système bonus-malus. Les personnes ayant un très bon taux (proche de 50%) ayant
intérêt à ne pas déclarer de sinistre s’ils ne veulent pas voir leur prime s’envoler l’année suivante

> regZIbm <- zeroinfl(nbre~1 |

+ bs(bonus),offset=log(exposition),

+ data = baseFREQ,dist = "poisson",link="logit")

> B <- data.frame(bonus=50:200,exposition=1)

> pred0 <- predict(regZIbm,newdata=B,type="zero")

> plot(age$ageconducteur,pred0,type="l",xlab="",lwd=2,

+ ylim=c(0,1),ylab="Probabilité de ne pas déclarer un sinistre")

2.5 Modéliser les coûts individuels des sinistres

Les coûts (individuels) de sinistres sont des variables positives.

> mean(baseCOUT$cout)

[1] 2265.513

> quantile(baseCOUT$cout,prob=c(.5,.9,.95,.99))

50% 90% 95% 99%

1172.000 2767.604 4765.093 16451.224

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Taux de bonus

P
ro

ba
bi

lit
é

de
 n

e
pa

s
dé

cl
ar

er
 u

n
si

ni
st

re

Figure 2.27 – Prédiction à l’aide de modèles zero-inflated (logit) avec une loi de Poisson de la
sinistralité en fonction de l’âge du conducteur.

Remark 2.5.1. En présence de coûts fixes (bris de glace par exemple), la loi des coûts de
sinistres sera une loi continue, avec des masses de Dirac (là on l’on observe des coûts fixes). La
loi est alors

f(y) = (1− p)f?(y) + p1(y = C)

où p désigne la probabilité d’avoir un coût qui soit précisément C, et f? est la densité des autres
coûts de sinistres. Dans notre approche économétrique, on peut envisager un modèle de la forme

f(y|X = x) = (1− p(x))f?(y|X = x) + p(x)1(y = C)

où p(x) peut être modélisée par une régression logistique, et où f?(y|X = x) est une loi positive
à densité. On peut alors chercher à modéliser cette loi continue sur la base où les coûts fixes ont
été écartés.

2.5.1 Modèle Gamma et modèle lognormal

Les deux modèles les plus classiques permettant de modéliser les coûts individuels de sinistre
sont

– le modèle Gamma sur les coûts individuels Yi,
– le modèle log-normal sur les coûts individuels Yi, ou plutôt un modèle Gaussien sur le

logarithme des coûts, log(Yi) : la loi lognormale n’appartient pas à la famille exponentielle.

Le(s) modèle(s) Gamma

La loi Gamma, de paramètres α et β, de densité

f(y) =
βα

Γ(α)
yα−1 exp(−βy), pour y ≥ 0,

vérifie E(Y) =
α

β
et V(X) =

α

β

2
. Autrement dit, le coefficient de variation vaut ici

CV =

√
V(X)

E(Y)
=

1√
α
,

qui peut être analysé comme un cofficient de dispersion. En fait, si φ = 1/α, on peut écrire

V(Y) =
1

α

α2

β2
= φ · E(Y)2,

où on retrouve ici une fonction variance de forme quadratique.

Remarque 2.5.1. Le cas particulier φ = 1 corrrespond à la loi exponentielle.

Bien que le lien canonique de la loi Gamma soit la fonction inverse, il est plus fréquent d’uti-
liser un lien logarithmique. En effet, la forme multiplicative donne des interprétations simples
dans le cas des modèles multiples.

> reggamma <- glm(cout~ageconducteur,family=Gamma(link="log"),

+ data=baseCOUT)

> summary(reggamma)

Call:

glm(formula = cout ~ ageconducteur, family = Gamma(link = "log"),

data = baseCOUT)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.632 -0.977 -0.611 -0.392 52.599

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.180643 0.208009 39.328 <2e-16 ***

ageconducteur -0.010440 0.004383 -2.382 0.0172 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Gamma family taken to be 109.7107)

Null deviance: 46482 on 26443 degrees of freedom

Residual deviance: 45637 on 26442 degrees of freedom

AIC: 458704

Number of Fisher Scoring iterations: 9

Si on s’intéresse à la valeur prédite pour une personne d’âge ageconducteur=50, on obtient
> predict(reggamma,newdata=data.frame(ageconducteur=50),

+ type="response")

1

2118.879

Le modèle lognormal

La régression lognormale peut être obtenue en considérant une régression linéaire (Gaus-
sienne) sur le logarithme du coût,

log(Yi) = X ′iβ + εi,

avec εi ∼ N (0, σ2). En effet, par définition de la loi lognormale, Y ∼ LN(µ, σ2) si et seulement
si log Y ∼ N (µ, σ2). Le principal soucis dans cet écriture est que





E(Y) = exp

(
µ+

σ2

2

)
6= exp(µ) = exp[E(log Y)]

V(Y) = exp
(
2µ+ σ2

) [
exp

(
σ2
)
− 1
]
6= exp(σ2) = exp[V(log Y)]

Autrement dit, pour passer des estimations faites à partir du modèle sur log Y à des prédictions
sur le coût Y , il ne faudra pas oublier de multiplier par exp(σ2/2). Une régression sur le loga-
rithme des coûts donnerait par exemple,
> reglm <- lm(log(cout)~ageconducteur,data=baseCOUT)

> summary(reglm)

Call:

lm(formula = log(cout) ~ ageconducteur, data = baseCOUT)

Residuals:

Min 1Q Median 3Q Max

-6.8699 -0.3110 0.2063 0.2926 8.4297

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7501521 0.0224328 300.905 < 2e-16 ***

ageconducteur 0.0021392 0.0004727 4.525 6.06e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.13 on 26442 degrees of freedom

Multiple R-squared: 0.0007738, Adjusted R-squared: 0.0007361

F-statistic: 20.48 on 1 and 26442 DF, p-value: 6.059e-06

> (sigma <- summary(reglm)$sigma)

[1] 1.129607

Si on s’intéresse à la valeur prédite pour une personne d’âge ageconducteur=50, on obtient
> mu <- predict(reglm,newdata=data.frame(ageconducteur=50))

> exp(mu+sigma^2/2)

1

1799.239

On notera que les deux modèles donnent des résultats très sensiblement différents : l’âge
semble avoir un impact sur le coût significatif pour les deux modèle, mais en sens inverse ! On
peut comparer les prédictions sur la Figure 2.28
> reggamma.sp <- glm(cout~bs(ageconducteur,5),family=Gamma(link="log"),

+ data=baseCOUT)

> Pgamma <- predict(reggamma.sp,newdata=data.frame(ageconducteur=

+ age),type="response")

> reglm.sp <- lm(log(cout)~bs(ageconducteur,5),data=baseCOUT)

> sigma <- summary(reglm.sp)$sigma

> mu <- predict(reglm.sp,newdata=data.frame(ageconducteur=age))

> Pln <- exp(mu+sigma^2/2)

20 30 40 50 60 70 80 90

10
00

15
00

20
00

25
00

30
00

35
00

age du conducteur principal

Gamma
Log−normale

20 30 40 50 60 70 80 90

10
00

15
00

20
00

25
00

30
00

35
00

age du conducteur principal

Gamma
Log−normale

Figure 2.28 – Régressions lognormale versus Gamma, où le coût individuel est expliqué par
l’âge du conducteur sans lissage (en haut) et avec lissage (en bas).

> plot(age,Pgamma,xlab="age du conducteur principal",ylab="",

+ type="l",ylim=c(1000,3500))

> lines(age,Pln,col="grey",lwd=2)

> legend(70,3300,c("Gamma","Log-normale"),col=c("black",

+ "grey"),lwd=c(1,2),lty=1,bty="n")

> Pgamma <- predict(reggamma,newdata=data.frame(ageconducteur=age),

+ type="response")

> mu <- predict(reglm,newdata=data.frame(ageconducteur=age))

> Pln <- exp(mu+sigma^2/2)

> plot(age,Pgamma,xlab="age du conducteur principal",ylab="",

+ type="l",ylim=c(1000,3500))

> lines(age,Pln,col="grey",lwd=2)

> legend(70,3300,c("Gamma","Log-normale"),col=c("black",

+ "grey"),lwd=c(1,2),lty=1,bty="n")

La Figure 2.29 montre les mêmes types de modèles si l’on cherche à expliquer le coût par
l’ancienneté du véhicule.

> age <- 0:25

> reggamma.sp <- glm(cout~bs(agevehicule),family=Gamma(link="log"),

+ data=baseCOUT)

> Pgamma <- predict(reggamma.sp,newdata=data.frame(agevehicule =age),type="response")

0 5 10 15 20 25

10
00

15
00

20
00

25
00

30
00

35
00

age du véhicule

Gamma
Log−normale

Figure 2.29 – Régressions lognormale versus Gamma, où le coût individuel est expliqué par
l’âge du véhicule avec lissage.

> reglm.sp <- lm(log(cout)~bs(agevehicule),data=baseCOUT)

> sigma <- summary(reglm.sp)$sigma

> mu <- predict(reglm.sp,newdata=data.frame(agevehicule =age))

> Pln <- exp(mu+sigma^2/2)

> plot(age,Pgamma,xlab="age du véhicule",ylab="",type="l",ylim=c(1000,3500))

> lines(age,Pln,col="grey",lwd=2)

> legend(3,3300,c("Gamma","Log-normale"),col=c("black","grey"),lwd=c(1,2),lty=1,bty="n")

En fait, la divergence entre les deux modèles vient du fait que le modèle Gamma (quelle
que soit la variable explicative) est très sensible aux valeurs extrêmes. Un avantage du modèle
lognormal est qu’en prenant le logarithme des coûts, on atténue l’importance des sinistres de
coût exceptionnel. En écartant les sinistres tels que sinistres$cout est supérieur à 100 000,
on obtient des modèles comparables (et proches de ce que donnait la régression lognormale sur
l’ensemble de la base)

> indice <- baseCOUT$cout<100000

> reggamma.sp <- glm(cout~bs(ageconducteur,5),family=Gamma(link="log"),

+ data=baseCOUT[indice,])

> Pgamma <- predict(reggamma.sp,newdata=data.frame(ageconducteur=

+ age),type="response")

> reglm.sp <- lm(log(cout)~bs(ageconducteur,5),data=baseCOUT[indice,])

> sigma <- summary(reglm.sp)$sigma

> mu <- predict(reglm.sp,newdata=data.frame(ageconducteur=age))

> Pln <- exp(mu+sigma^2/2)

> plot(age,Pgamma,xlab="age du conducteur principal",ylab="",

+ type="l",ylim=c(1000,3500))

> lines(age,Pln,col="grey",lwd=2)

> legend(70,3300,c("Gamma","Log-normale"),col=c("black",

+ "grey"),lwd=c(1,2),lty=1,bty="n")

Nous reviendrons plus en détails sur la prise en compte de ces sinistres exceptionnels (qui ici
ont simplement été écartés) dans la section suivante. L’idée est de dire que les coûts sinistres de
taille modérée peuvent être expliqués par des variables a priori (avec une relative robustesse).
Mais pas les sinistres exceptionnels.

20 30 40 50 60 70 80 90

10
00

15
00

20
00

25
00

30
00

35
00

age du conducteur principal

Gamma
Log−normale

Figure 2.30 – Régressions lognormale versus Gamma, où le coût individuel est expliqué par
l’âge du véhicule avec lissage, en écartant les sinistres de plus de 100,000.

2.5.2 Modélisation des grands sinistres

Il existe un grand nombre de faÁons de définir les lois à queues épaisses. La plus élégante
d’un point de vue actuarielle est probablement la famille des lois sous exponentielles (décrites
dans Embrechts et al. (1997)). Une loi de fonction de survie F sera dite sous-exponentielle si
pour tout n ≥ 2,

lim
x→∞

F ?n(x)

F (x)
= n

ou bien, si X1, · · · , Xn, · · · sont des variables i.i.d. de loi F ,

P(X1 + · · ·+Xn > x) ∼ P(max{X1, · · · , Xn} > x).

Autrement dit, la loi de la charge totale dans un portefeuille a des queues des distributions qui
se comportent comme le plus gros sinistres. Ce sont donc des lois qui sont très influencées par
ces très gros sinistres. Parmi les lois de la famille sous-exponentielle,

– la loi lognormale, f(y) ∝ 1

yσ
exp

(
−[log y − µ]2/2σ2

)

– la loi de Weibull, f(y) ∝ xk−1 exp
(

[−xk]
)

si k < 1

mais la loi la plus utilisée, en particulier en réassurance, n’est pas dans la famille exponentielle,

– la loi de Pareto, f(y) ∝ [µ+ y]−α−1

Dans ces familles de lois à queues épaisses, on va ainsi retrouver une autre classe relativement
connue, à savoir les lois dite à variation régulière. Ces lois sont aussi dite de type Pareto, au sens
où

P(Y > y) = y−αL(y),

où L est une fonction à variation lente, i.e.

lim
x→∞

L(tx)

L(x)
= 1 pour tout t > 0.

La library(gamlss) propose d’autres familles de lois, comme les lois Reverse Gumbel ou
Power Exponential

Il est possible de définir une famille dite beta généralisée de seconde espèce, notée GB2. On
suppose que

log Y
L
= µ+ σ log

Γ1

Γ2

où Γ ∼ G(αi, 1) sont indépendantes. Si Γ2 est une constante (α2 →∞) on obtient la loi gamma
généralisée.

La densité de cette loi s’écrit :

f(y) ∝ y−1

[
exp

(
log y − µ

σ

)]α1
[
1 + exp

(
log y − µ

σ

)]−(α1+α2)

Supposons que µ soit une fonction linéaire des variables explicatives, µ = X ′β. Alors

E(Y |X) = C exp[µ(X)] = C exp[X ′β]

Ces modèles sont détaillés dans McDonald & Butler (1990).

2.5.3 Ecrêtement des grands sinistres

Si l’on considère des modèles économétriques basés uniquement sur des variables catégorielles
(en particulier des classes pour les variables continues) la prime pure est alors généralement la
moyenne empirique dans la classe considérée (c’est en tous les cas ce que préconise par exemple la
méthode des marges). Mais cette méthode devient alors vite très sensible aux sinistres extrêmes
(d’autant plus que les classes sont d’effectif restreint).

Afin d’éviter ce problème, il n’est pas rare d’écrêter les sinistres : on calcule la prime moyenne
par groupe tarifaire en écartant les gros sinistres, qui seront répartis sur l’ensemble de la popu-
lation. On peut bien entendu raffiner cette méthode en considérant des modèles hiérarchiques
et en répartissant simplement sur une surclasse.

Supposons que les sinistres extrêmes soient ceux qui dépassent un seuil s (connu, ou au moins
fixé a priori). Rappelons que la formule des probabilités totales permet d’écrire que (dans le cas
discret pour faire simple)

P(A) =
∑

i

P(A ∩Bi)
∑

i

P(A|Bi) · P(Bi),

où (Bi) forme une partition de Ω. En particulier

P(A) = P(A|B) · P(B) + P(A|Bc) · P(Bc),

oùBc désigne le complémentaire deB. En passant à l’espérance, et en travaillant sur des variables
aléatoires plutôt que des ensembles, on peut écrire

E(Y) = E(Y |B) · P(B) + E(Y |Bc) · P(Bc).

Si on prend comme cas particulier B = {Y ≤ s} et Bc = {Y > s}, alors

E(Y) = E(Y |Y ≤ s) · P(Y ≤ s) + E(Y |Y > s) · P(Y > s).

finallement, on note que la probabilité P n’a joué aucun rôle ici, et on peut parfaitement la
remplacer par une probabilité conditionnelle, PX , i.e.

E(Y |X) = E(Y |X, Y ≤ s) · P(Y ≤ s|X) + E(Y |X, Y > s) · P(Y > s|X),

Le premier terme correspond aux sinistres ‘normaux’ , que l’on pourra modéliser par une loi
évoquée précédemment (régression Gamma par exemple). Pour le second terme, on notera que
E[E(Y |X, Y > s)] = E(Y |Y > s). Autrement dit, on peut être tenté par ne plus distinguer par
classe le coût moyen des très très gros sinistres : on répartira proportionnellement à la fréquence
des gros sinistres sinistres.

La prédiction sera donc basée sur trois parties, la première pour les sinistres usuels (plus
petits que s), et la seconde pour les grands sinistres (pour les sinistres excédant s), avec comme
troisième terme que sera la probabilité, par classe tarifaire, d’avoir un sinistre excédant le seuil
s.

> seuil=50000

> sinistres.inf = baseCOUT[baseCOUT$cout<=seuil,]

> sinistres.sup = baseCOUT[baseCOUT$cout>seuil,]

> baseCOUT$indic = baseCOUT$cout>seuil

> proba=gam(indic~s(ageconducteur),data= baseCOUT,

+ family=binomial)

> probpred=predict(proba,newdata=data.frame(ageconducteur=age),

+ type="response")

> reg=gam(cout~s(ageconducteur),data= sinistres.inf,

+ family=Gamma(link="log"))

> Y.inf=predict(reg,newdata=data.frame(ageconducteur=

+ age),type="response")

> Y.sup=mean(sinistres.sup$cout)

> Y=Y.inf*(1-probpred)+Y.sup*probpred

> plot(age,Y,type="l",lwd=2,xlab="age du conducteur principal",

+ ylab="",ylim=c(1000,3500))

> lines(age,Pgamma,col="grey")

> legend(70,1800,c("Ecrêté","Brut"),col=c("black","grey"),

+ lwd=c(1,2),lty=1,bty="n")

La Figure 2.31 permet de visualiser la différence entre les deux modèles, avec ou sans
écrêtement (avec un seuil à 50,000).

La Figure 2.32 permet de visualiser la différence entre les deux modèles, avec ou sans
écrêtement avec un seuil beaucoup plus faible (à 5 000). Dans ce cas, la majorité est sinistres
sont répartis entre tous les assurés, qui payent la même quantité (l’espérance au delà du seuil
d’écrêtement).

2.6 Exercices

Exercise 2.6.1. Parmi les méthodes proches de celles évoquées dans la section 2.4.1 sur la
méthode des marges, il est aussi possible d’utiliser une méthode par moindres carrés. On va
chercher à minimiser la somme des carrés des erreurs, i.e.

D =
∑

i,j

Ei,j(Yij − Li · Cj)2

La condition du premier ordre donne ici

∂D

∂Li
= −2

∑

j

CjNi,j(Yi.j − Li · Cj) = 0

20 30 40 50 60 70 80 90

10
00

15
00

20
00

25
00

30
00

35
00

age du conducteur principal

Ecrêté
Brut

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

20 30 40 50 60 70 80 90

−
50

0
50

10
0

age du conducteur

br
ut

 v
er

su
s

ec
rê

té
 (

en
 %

)

Figure 2.31 – Estimation de E(Y |X) avec ou sans écrêment (les sinistres dépassant le seuil
fixé sont ici répartis entre les assurés, proportionnellement à leur probabilité d’avoir un gros
sinistre), avec un seuil de gros sinistre 50 000. Le graphique du bas compare les prédictions des
espérances de coût individuel, avec ou sans écrêment (en variation)

20 30 40 50 60 70 80 90

10
00

15
00

20
00

25
00

30
00

35
00

age du conducteur principal

Ecrêté
Brut

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●

●

●

●

●

20 30 40 50 60 70 80 90

−
60

−
40

−
20

0
20

40

age du conducteur

br
ut

 v
er

su
s

ec
rê

té
 (

en
 %

)

Figure 2.32 – Estimation de E(Y |X) avec ou sans écrêment , avec un seuil d’écrêtement à 5
000. Le graphique du bas compare les prédictions des espérances de coût individuel, avec ou sans
écrêment

soit

Li

∑
j CjNi,jYi.j∑
j Ni,jC2

j

L’autre condition du premier ordre donne

Cj

∑
i LiNi,jYi.j∑
iNi,jL2

i

On résoud alors ce petit systeme de maniere itérative (car il n’y a pas de solution analytique
simple). Programmer et comparer avec la méthode des marges.

Exercise 2.6.2. Parmi les méthodes proches de celles évoquées dans la section 2.4.1 sur la
méthode des marges, il est aussi possible d’utiliser une méthode basée sur la distance du chi-
deux. On va chercher à minimiser

Q =
∑

i,j

Ni,j(Yi,j − Li · Cj)2

Li · Cj

Là encore on utilise les conditions du premier ordre, et on obtient

Li =




∑
j

(
Ni,jY

2
i,j

Cj

)

∑
j Ni,jCj




1
2

et une expression du même genre pour Cj. Programmer et comparer avec la méthode des marges.

méthode des marges

Chapitre 3

Les provisions pour sinistres à payer

Dans ce chapitre, nous allons étudier les méthodes pour calculer le montant des provisions
pour sinistres à payer, et plus particulièrement, des méthodes permettant de quantifier la marge
d’erreur associée. Comme les définit Simonet (1998), “les provisions techniques sont les pro-
visions destinées à permettre le règlement intégral des engagements pris envers les assurés et
bénéfi-ciaires de contrats. Elles sont liées à la technique même de l’assurance, et imposées par
la règlementation”. D’un point de vue plus formel, à la date t, la compagnie d’assurance est
tenue de constituer une provision pour les sinistres survenus avant la date t qu’elle sera tenu
d’indemniser. Elle doit donc estimer le coût des sinistres survenus, et retrancher les montants
déjà versés. Il s’agit donc fondamentalement d’un problème de prévision.

3.1 La problématique du provisionnment

Parmi les méthodes reconnues par les autorités de contrôles, les plus classiques sont basées
sur les cadences de paiements. On raisonne pour cela par année de survenance de sinistre, et on
suppose une certaine régularité dans la cadence de paiement.

3.1.1 Quelques définitions et notations, aspects règlementaires et comptables

La plupart des méthodes présentées ici sont détaillées dans Denuit & Charpentier (2005),
Partrat et al. (2008)ou Wüthrich & Merz (2008). Classiquement, on notera

– i (en ligne) l’année de survenance des sinistres,
– j (en colonne) l’année de développement,
– i+ j (en diagonale) l’année calendaire de paiement (pour les incréments),
– Yi,j les incréments de paiments, pour l’année de développement j, pour les sinistres sur-

venus l’année i, Table 3.1,
– Ci,j les paiments cumulés, au sens où Ci,j = Yi,0+Yi,1+· · ·+Yi,j , pour l’année de survenance
j, Table 3.2

– Pi la prime acquise pour l’année i, Table 3.3,
– Ni,j le nombre cumulé de sinistres pour l’année de survenance i vu au bout de j années,

Table 3.4,
– Γi,j la charge dossier par dossier cumulée (estimées par les gestionnaires de sinistres sur les
Ni,j connus, ou partiellement connus), pour l’année de développement j, pour les sinistres
survenus l’année i, Table 3.7 (cette matrice ne sera explotée que dans la méthode dite
Munich Chain Ladder).

91

0 1 2 3 4 5
0 3209 1163 39 17 7 21
1 3367 1292 37 24 10
2 3871 1474 53 22
3 4239 1678 103
4 4929 1865
5 5217

Table 3.1 – Triangle des incréments de paiements, Y = (Yi,j).

0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730
2 3871 5345 5398 5420
3 4239 5917 6020
4 4929 6794
5 5217

Table 3.2 – Triangle des paiements cumulés, C = (Ci,j).

Formellement, toutes ces données sont stockées dans des matrices (ou un vecteur pour la
prime), avec des valeurs manquantes NA pour les valeurs futures. Ils seront dénommés respecti-
vement PAID, PREMIUM, NUMBER et INCURRED

> PAID

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3209 4372 4411 4428 4435 4456

[2,] 3367 4659 4696 4720 4730 NA

[3,] 3871 5345 5398 5420 NA NA

[4,] 4239 5917 6020 NA NA NA

[5,] 4929 6794 NA NA NA NA

[6,] 5217 NA NA NA NA NA

Le triangle des incréments se déduit facilement du triangle des cumulés

> nc <- ncol(PAID)

> nl <- nrow(PAID)

> INC <- PAID

> INC[,2:nc] <- PAID[,2:nc]-PAID[,1:(nc-1)]

> INC

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3209 1163 39 17 7 21

[2,] 3367 1292 37 24 10 NA

[3,] 3871 1474 53 22 NA NA

[4,] 4239 1678 103 NA NA NA

[5,] 4929 1865 NA NA NA NA

[6,] 5217 NA NA NA NA NA

Dans sa version la plus simple, le but des méthodes de provisionnement est de compléter
la partie inférieure des triangles de paiements. Dans la littérature anglo-saxonne, on parlera

Année i 0 1 2 3 4 5
Pi 4591 4672 4863 5175 5673 6431

Table 3.3 – Vecteur des primes acquises, P = (Pi).

0 1 2 3 4 5
0 1043.4 1045.5 1047.5 1047.7 1047.7 1047.7
1 1043.0 1027.1 1028.7 1028.9 1028.7
2 965.1 967.9 967.8 970.1
3 977.0 984.7 986.8
4 1099.0 1118.5
5 1076.3

Table 3.4 – Triangle des nombres de sinistres, cumulés, en milliers, N = (Ni,j).

d’IBNR (incurred but not reported).

3.1.2 Formalisation du problème du provisionnement

Le provisionnement est un problème de prédiction, conditionnelle à l’information dont on
dispose à la date n. On notera Hn l’information disponible à la date n, soit

Hn = {(Xi,j), i+ j ≤ n} = {(Ci,j), i+ j ≤ n}.

On cherche à étudier, par année de survenance, la loi conditionnelle de Ci,∞ (la charge ultime
pour une année de survenance donnée) sachant Hn, ou encore, si l’on suppose les sinistres clos
au bout de n années la loi de Ci,n sachant Hn. Si l’on se focalise sur une année de survenance
particulière, on pourra noter

Fi,n−i = {(Xi,j), j = 0, · · · , n− i)} = {(Ci,j), j = 0, · · · , n− i)}.

Cette notation permet de prendre en compte que l’information disponible change d’une ligne à
l’autre. On cherchera par la suite à prédire le montant des sinistres à payer pour l’année i, i.e.

Ĉ
(n−i)
i,n = E[Ci,n|Fi,n−i]

et la différence entre ce montant et le montant déjà payé constituera la provision pour sinistres
à payer,

R̂i = Ĉ
(n−i)
i,n − Ci,n−i.

On essayera ensuite de quantifier l’incertitude associée à cette prédiction. Comme on le verra
les méthodes usuelles visaient à calculer

V[Ci,n|Fi,n−i] ou V[Ĉ
(n−i)
i,n]

ce que l’on appelera “incertitude à horizon ultime”. Mais ce n’est pas ce que propose Solvabilité
II, demandant plutôt de mesurer une incertitude dite à un an. Pour cela, on va s’intéresser à la
prédiction qui sera faite dans un an,

Ĉ
(n−i+1)
i,n = E[Ci,n|Fi,n−i+1]

et plus particulièrement le changement dans l’estimation de la charge ultime

∆n
i = Ĉ

(n−i+1)
i,n − Ĉ(n−i)

i,n = CDRi(n),

parfois noté CDR (claims development result). Si cette différence est positive, on parle de mali
(il faudra gonfler la provision afin de pouvoir payer les sinistres), et si elle est négative, on parle
de boni. On peut montrer que E[∆n

i |Fi,n−i] = 0, autrement dit, on ne peut espérer faire ni boni,
ni mali, en moyenne. Les contraintes règlementaires imposéeés par Solvabilité II demandent de
calculer V[∆n

i |Fi,n−i].

3.2 Les cadences de paiements et la méthode Chain Ladder

L’utilisation des cadences de paiements pour estimer la charge future date des années 1930.
On suppose qu’il existe une relation de récurrence de la forme

Ci,j+1 = λj · Ci,j pour tout i, j = 1, · · · , n.

Un estimateur naturel pour λj , basé sur l’expérience passée est alors le ratio moyen basé sur les
n− j années observées :

λ̂j =

∑n−j
i=1 Ci,j+1∑n−j
i=1 Ci,j

pour tout j = 1, · · · , n− 1.

De telle sorte que l’on peut alors prédire la charge pour la partie non-observée dans le triangle,

Ĉi,j =
[
λ̂n+1−i · · · λ̂j−1

]
· Ci,n+1−i.

> k <- 1

> weighted.mean(x=PAID[,k+1]/PAID[,k],w=PAID[,k],na.rm=TRUE)

[1] 1.380933

> sum(PAID[1:(nl-k),k+1])/sum(PAID[1:(nl-k),k])

[1] 1.380933

On fait alors une boucle pour estimer tous les coefficients de transition

> LAMBDA <- rep(NA,nc-1)

> for(k in 1:(nc-1)){

+ LAMBDA[k]=(sum(PAID[1:(nl-k),k+1])/sum(PAID[1:(nl-k),k]))}

> LAMBDA

[1] 1.380933 1.011433 1.004343 1.001858 1.004735

Notons qu’au lieu de calculer les facteurs de développement, on peut aussi des taux de
développement, cumulés ou non. Autrement dit, au lieu d’écrire Ci,j+1 = λj · Ci,j pour tout
i, j = 1, · · · , n, on suppose que

Ci,j = γj · Ci,n ou Yi,j = ϕj · Ci,n.

On notera que

> (GAMMA <- rev(cumprod(rev(1/LAMBDA))))

[1] 0.7081910 0.9779643 0.9891449 0.9934411 0.9952873

> (PHI <- c(GAMMA[1],diff(GAMMA)))

[1] 0.708191033 0.269773306 0.011180591 0.004296183 0.001846141

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

Figure 3.1 – Cadence de paiement des sinistres, en fonction de la charge ultime, de la première
année (année calendaire de survenance du sinistre) à la cinquième année.

0 1 2 3 4 n
λj 1,38093 1,01143 1,00434 1,00186 1,00474 1,0000
γj 70,819% 97,796% 98,914% 99,344% 99,529% 100,000%
ϕj 70,819% 26,977% 1,118% 0,430% 0,185% 0,000%

Table 3.5 – Facteurs de développement, λ̂ = (λ̂i), exprimés en cadence de paiements par rapport
à la charge utlime, en cumulé (i.e. γ̂), puis en incréments (i.e. ϕ̂).

Ce dernier coefficient permet de visualiser la cadence de paiement (en pourcentage de la
charge ultime). On peut visualiser ce coefficient sur la Figure 3.1

> barplot(PHI,names=1:5)

On notera qu’il est possible de voir l’estimateur Chain-Ladder λ̂j comme une moyenne
pondérée des facteurs de transition individuels, i.e.

λ̂j =

n−j∑

i=1

ωi,j · λi,j où ωi,j =
Ci,j∑n−j
i=1 Ci,j

et λi,j =
Ci,j+1

Ci,j
.

Aussi, on peut obtenir ces coefficients à l’aide de régressions linéaires pondérées sans constantes,
en régressant les C·,j+1 sur les C·,j . Ainsi, pour la première valeur,

> lm(PAID[,k+1]~0+PAID[,k],weights=1/PAID[,k])$coefficients

PAID[, k]

1.380933

Le gros avantage numérique de cette méthode est que si des valeurs sont manquantes dans
le tables, la fonction reste valide

> LAMBDA <- rep(NA,nc-1)

> for(k in 1:(nc-1)){

+ LAMBDA[k]=lm(PAID[,k+1]~0+PAID[,k],

+ weights=1/PAID[,k])$coefficients}

> LAMBDA

[1] 1.380933 1.011433 1.004343 1.001858 1.004735

Une fois estimé le facteur de développement, rien de plus simple que de compléter le triangle,
toujours en itérant, colonne après colonne :

> TRIANGLE <- PAID

> for(i in 1:(nc-1)){

+ TRIANGLE[(nl-i+1):(nl),i+1]=LAMBDA[i]*TRIANGLE[(nl-i+1):(nl),i]}

> TRIANGLE

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3209 4372.000 4411.000 4428.000 4435.000 4456.000

[2,] 3367 4659.000 4696.000 4720.000 4730.000 4752.397

[3,] 3871 5345.000 5398.000 5420.000 5430.072 5455.784

[4,] 4239 5917.000 6020.000 6046.147 6057.383 6086.065

[5,] 4929 6794.000 6871.672 6901.518 6914.344 6947.084

[6,] 5217 7204.327 7286.691 7318.339 7331.939 7366.656

0 1 2 3 4 5
0 3209 4372 4411 4428 4435 4456
1 3367 4659 4696 4720 4730 4752.4
2 3871 5345 5398 5420 5430.1 5455.8
3 4239 5917 6020 6046.15 6057.4 6086.1
4 4929 6794 6871.7 6901.5 6914.3 6947.1
5 5217 7204.3 7286.7 7318.3 7331.9 7366.7

Table 3.6 – Triangle des paiements cumulés, C = (Ci,j)i+j≤n avec leur projection future Ĉ =

(Ĉi,j)i+j>n

Le montant de provisions est alors la différence entre ce que l’on pense payer pour chaque
année de survenance (la dernière colonne, si on suppose qu’au bout de n années tous les sinistres
auront été clôturés, sinon on rajoute un facteur supplémentaire comme nous le verrons dans la
section ??) et que ce l’on a déjà payé (la seconde diagonale)

> facteur=1

> chargeultime <- TRIANGLE[,nc]*facteur

> paiements <- diag(TRIANGLE[,nc:1])

> (RESERVES <- chargeultime-paiements)

[1] 0.00000 22.39684 35.78388 66.06466 153.08358 2149.65640

On note qu’ici sum(RESERVES) vaut 2426.985, ce qui correspond au montant total de réserves
qu’il convient d’allouer. Un algorithme plus rapide est d’utiliser directement la formule basée
sur le produit des coefficients de transition. On a alors

> DIAG <- diag(TRIANGLE[,nc:1])

> PRODUIT <- c(1,rev(LAMBDA))

> sum((cumprod(PRODUIT)-1)*DIAG)

[1] 2426.985

Pour la suite, on pourra développer la function Chainladder() qui renverra la charge ultime
par ligne et les réserves

> Chainladder<-function(TR,f=1){

+ nc <- ncol(TR); nl <- nrow(TR)

+ L <- rep(NA,nc-1)

+ for(k in 1:(nc-1)){

+ L[k]=lm(TR[,k+1]~0+ TR[,k],

+ weights=1/TR[,k])$coefficients}

+ TRc <- TR

+ for(i in 1:(nc-1)){

+ TRc[(nl-i+1):(nl),i+1]=L[i]* TRc[(nl-i+1):(nl),i]}

+ C <- TRc[,nc]*f

+ R <- (cumprod(c(1,rev(L)))-1)*diag(TR[,nc:1])

+ return(list(charge=C,reserves=R,restot=sum(R)))

+ }

> Chainladder(PAID)

$charge

[1] 4456.000 4752.397 5455.784 6086.065 6947.084 7366.656

$reserves

[1] 0.00000 22.39684 35.78388 66.06466 153.08358 2149.65640

$restot

[1] 2426.985

3.3 De Mack à Merz & Wüthrich

La méthode dite Chain Ladder, que nous venons de voir, est une méthode dite déterministe,
au sens où l’on ne construit pas de modèle probabiliste permettant de mesurer l’incertitude
associée à la prédiction du montant des réserves. Différents modèles ont été proposés à partir
des années 90, à partir du modèles de Mack, jusqu’à l’approche proposée par Merz & Wüthrich
qui introduira la notion d’incertitude à un an.

3.3.1 Quantifier l’incertitude dans une prédiction

Nous avons obtenu, par la méthode Chain Ladder, un estimateur du montant de provision,
R̂. Classiquement, pour quantifier l’erreur associée à un estimateur, on calcul la mean squared
error - mse - associée,

E
(

[R̂−R]2
)

Formellement, comme R est ici une variable aléatoire, on ne parle pas de mse, mais de mse de
prédiction, notée msep (on ne prédit pas sur les données passées, mais on utilisera les donnéees
pour calibrer un modèle qui servira ensuite à faire de la prédiction pour les années futures).
Aussi

msep(R̂) = E
(

[R̂−R]2
)
.

Ce terme peut se décomposer en deux (en faisant une approximation au premier ordre), au sens
où

E
(

[R̂−R]2
)
≈ E

(
[R̂− E(R)]2

)

︸ ︷︷ ︸
mse(R̂)

+E
(
[R− E(R)]2

)
︸ ︷︷ ︸

V(R)

où le terme de gauche est l’erreur d’estimation, compte tenu du fait que nous avons dû estimer
le montant de provisions à partir de la partie supérieure du triangle, et le terme de droite est
l’erreur classique de modèle (tout modèle comportant une partie résiduelle orthogonale aux
observations, et donc imprévisible).

En fait, en toute rigueur (et nous en aurons besoin par la suite), on cherche plutôt à calculer
un msep conditionnel à l’information dont on dispose au bout de n années,

msepn(R̂) = E([R̂−R]2|Hn).

3.3.2 Le formalisme de Mack

Mack (1993a) a proposé un cadre probabiliste afin de justifier l’utilisation de la méthode
Chain-Ladder. Pour cela, on suppose que (Ci,j)j≥0 est un processus Markovien, et qu’il existe
λ = (λj) et σ = (σ2

j) tels que

{
E(Ci,j+1|Hi+j) = E(Ci,j+1|Ci,j) = λj · Ci,j
Var(Ci,j+1|Hi+j) = Var(Ci,j+1|Ci,j) = σ2

j · Ci,j

On note que sous ces hypothèses,

E(Ci,j+k|Hi+j) = E(Ci,j+k|Ci,j) = λj · λj+1 · · ·λj+k−1Ci,j

Mack (1993a) rajoute une hypothèse supplémentaire d’indépendance entre les années de surve-
nance, autrement dit (Ci,j)j=1,...,n et

(
Ci′,j

)
j=1,...,n

sont indépendant pour tout i 6= i′.
Une réécriture du modèle est alors de supposer que

Ci,j+1 = λjCi,j + σj
√
Ci,j · εi,j ,

où les résidus (εi,j) sont i.i.d., centrés et de variance unitaire. A partir de cette écriture, il peut
parâıtre légitime d’utiliser les méthodes des moindres carrés pondérés pour estimer ces coeffi-
cients, en notant que les poids doivent être inversement proportionnels à la variance, autrement
dit aux Ci,j , i.e. à j donné, on cherche à résoudre

min

{
n−j∑

i=1

1

Ci,j
(Ci,j+1 − λjCi,j)2

}
.

Pour tester ces deux premières hypothèses, on commence par représenter les C·,j+1 en fonc-
tion des C·,j à j donné. Si la première hypothèse est vérifiée, les points doivent être alignés
suivant une droite passant par l’origine.

> par(mfrow = c(1, 2))

> j=1

> plot(PAID[,j],PAID[,j+1],pch=19,cex=1.5)

> abline(lm(PAID[,j+1]~0+PAID[,j],weights=1/PAID[,j]))

> j=2

> plot(PAID[,j],PAID[,j+1],pch=19,cex=1.5)

> abline(lm(PAID[,j+1]~0+PAID[,j],weights=1/PAID[,j]))

> par(mfrow = c(1, 1))

La Figure 3.2 permet de visualiser l’hypothèse de cadence de paiements stale dans le temps.
La régression est pondérée avec les mêmes poids que ceux utilisés pour estimer les coefficients
de transition par régression,

Pour la seconde, on peut étudier les résidus standardisés (Mack (1993a) parle de weighted

residuals), εi,j =
Ci,j+1 − λ̂jCi,j√

Ci,j
.

●

●

●

●

●

3500 4000 4500 5000

45
00

50
00

55
00

60
00

65
00

PAID[, j]

PA
ID

[,
j +

 1
]

●

●

●

●

4500 5000 5500 6000 6500

45
00

50
00

55
00

60
00

PAID[, j]
PA

ID
[,

j +
 1

]

Figure 3.2 – Nuage des C·,j+1 en fonction des C·,j pour j = 1 à gauche, et j = 2 à droite. La
droite de régression passe par l’origine et les poids sont inversement proportionnels au montant
de paiements.

> j=1

> RESIDUS <- (PAID[,j+1]-LAMBDA[j]*PAID[,j])/sqrt(PAID[,j])

L’utilisation des résidus standardisés nous donnent d’ailleurs une idée simple pour estimer
le paramètre de volatilité.

σ̂2
j =

1

n− j − 1

n−j−1∑

i=0

(
Ci,j+1 − λ̂jCi,j√

Ci,j

)2

ce qui peut aussi s’écrire

σ̂2
j =

1

n− j − 1

n−j−1∑

i=0

(
Ci,j+1

Ci,j
− λ̂j

)2

· Ci,j

(ce qui est à rapprocher de l’écriture du facteur de transition λj comme moyenne pondérée des
facteurs de transitions observés).

> lambda <- PAID[,2:nc]/PAID[,1:(nc-1)]

> SIGMA <- rep(NA,nc-1)

> for(i in 1:(nc-1)){

+ D <- PAID[,i]*(lambda[,i]-t(rep(LAMBDA[i],nc)))^2

+ SIGMA[i] <- 1/(nc-i-1)*sum(D[,1:(nc-i)])}

> SIGMA[nc-1] <- min(SIGMA[(nc-3):(nc-2)])

> (SIGMA=sqrt(SIGMA))

[1] 0.72485777 0.32036422 0.04587297 0.02570564 0.02570564

Cette méthode permet d’estimer les différents paramètres intervenants dans le modèle de
Mack (1993a).

3.3.3 La notion de tail factor

Pour l’instant, nous supposions que la première ligne de notre triangle est close : il n’y a
plus de sinistres ouverts, et donc le montant de provision pour cette année de survenance est
nul. Cette ligne servira de base pour tous les développements ultérieurs. Cette hypothèse peut
être un peu trop forte pour les branches à déroulement long. Mack (1993b) a posé les bases des
premiers modèles toujours utilisés permettant de s’affranchir de cette hypothèse. On supposera
qu’il existe alors un λ∞ > 1 tel que

Ci,∞ = Ci,n × λ∞.

Une méthode (qui a souvent été utilisée) repose sur l’idée que l’on pouvait projeter les λi par
une extrapolation exponentielle (ou une extrapolation linéaire des log(λk − 1)), puis on pose

λ∞ =
∏

k≥n
λ̂k.

Mais mieux vaut faire attention, en particulier s’il y a des valeurs aberrantes.

> logL <- log(LAMBDA-1)

> tps <- 1:(nc-1)

> modele <- lm(logL~tps)

> plot(tps,logL,xlim=c(1,20),ylim=c(-30,0))

> abline(modele)

> tpsP <- seq(6,1000)

> logP <- predict(modele,newdata=data.frame(tps=tpsP))

> points(tpsP,logP ,pch=0)

> (facteur <- prod(exp(logP)+1))

[1] 1.000707

Autrement dit, cette méthode prévoit de rajouter 0.07% de charge par rapport à la prédiction
faite par les méthodes classiques, en supposant la première année close. Numériquement, cela
donnerait pour le montant de provision

> chargeultime <- TRIANGLE[,nc]*facteur

> paiements <- diag(TRIANGLE[,nc:1])

> (RESERVES <- chargeultime-paiements)

[1] 3.148948 25.755248 39.639346 70.365538 157.992918 2154.862234

> sum(RESERVES)

[1] 2451.764

La Figure 3.3 permet de visualiser le modèle linéaire ajusté sur le logarithme des facteurs de
transition

3.3.4 Des estimateurs des paramètres à l’incertitude sur le montant des pro-
visions

A partir de tous ces estimateurs, on peut estimer le msep du montant de provision par année
de survenance, R̂i, mais aussi agrégé, toutes années de survenances confondues. Les formules sont
données dans Mack (1993b) ou Denuit & Charpentier (2005) ou Mack (1994). Numériquement,
on peut utiliser la fonction MackChainLadder de library(ChainLadder).

> library(ChainLadder)

> MackChainLadder(PAID)

●

●
●

●
●

5 10 15 20

−
30

−
20

−
10

0

tps

lo
gL

Figure 3.3 – Evolution des log(λj − 1) et prédiction par un modèle linéaire.

MackChainLadder(Triangle = PAID)

Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)

1 4,456 1.000 4,456 0.0 0.000 NaN

2 4,730 0.995 4,752 22.4 0.639 0.0285

3 5,420 0.993 5,456 35.8 2.503 0.0699

4 6,020 0.989 6,086 66.1 5.046 0.0764

5 6,794 0.978 6,947 153.1 31.332 0.2047

6 5,217 0.708 7,367 2,149.7 68.449 0.0318

Totals

Latest: 32,637.00

Ultimate: 35,063.99

IBNR: 2,426.99

Mack S.E.: 79.30

CV(IBNR): 0.03

On retrouve l’estimation du montant total de provisions R̂, IBNR, qui vaut 2,426.99, ainsi
que msep(R̂) correspondant au Mack S.E. qui vaut ici 79.30. Les informations par année de
survenance i sont indiqués dans la première partie du tableau.

On obtient également plusieurs graphiques en utilisant la fonction plot(), correspondant
aux Figures 3.4, 3.5 et 3.6

3.3.5 Un mot sur Munich-Chain Ladder

La méthode dite Munich-Chain-Ladder, developpée dans Quarg & Mack (2004), propose
d’utiliser non seulement les paiements cumulés, mais aussi une autre information disponible :
l’estimation des charges des différents sinistres faites par les gestionnaires de sinistres. Les tri-
angles de paiements étaient basés sur des mouvements financiers ; ces triangles de charges sont
basées sur des estimations faites par des gestionnaires compte tenu de l’information à leur dis-
position. Les sinistres tardifs ne sont pas dedans, et certains sinistres seront classés sans suite.
Toutefois, il peut parâıtre légimite d’utiliser cette information.

Dans la méthode Munich-Chain-Ladder, on dispose des triangles (Ci,j) correspond aux pai-
ments cumulés, et (Γi,j) les charges dites dossier/dossier. En reprenant les notations de Quarg

1 2 3 4 5 6

Forecast

Latest

Mack Chain Ladder Results

Origin period

V
a

lu
e

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0

●

●

●

●

●

●

1 2 3 4 5 6
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0

Chain ladder developments by origin period

Development period

A
m

o
u

n
t

1

1 1 1 1 1

2

2 2 2 2

3

3 3 3

4

4
4

5

5

6

Figure 3.4 – Comparaison entre la charge finale estimée et la somme déjà payée, à gauche, et
les cadences de paiements prédites par la méthode Chain Ladder.

& Mack (2004) on définie les ratio paiement/charge, et charge/paiement,

Qi,j =
Ci,j
Γi,j

et Q−1
i,j =

Γi,j
Ci,j

Comme dans le modèle Chain-Ladder de base, on suppose que

{
E(Ci,j+1|FCi+j) = λCj Ci,j et V(Ci,j+1|FCi+j) = [σCj]2Ci,j
E(Γi,j+1|FΓ

i+j) = λΓ
j Γi,j et V(Γi,j+1|FΓ

i+j) = [σΓ
j]2Γi,j

On rajoute également une information sur les λi,j . Si

λCi,j−1 =
Ci,j
Ci,j−1

et λΓ
i,j−1 =

Γi,j
Γi,j−1

on suppose que

E(λCi,j−1|Fi+j) = λCj−1 + λC
√

V(λCi,j−1|FCi+j) ·
Q−1
i,j−1 − E(Q−1

i,j−1|Fi+jC)
√
V(Q−1

i,j−1|Fi+jC)

et

E(λΓ
i,j−1|Fi+j) = λΓ

j−1 + λΓ
√

V(λΓ
i,j−1|Fi+j)Γ · Qi,j−1 − E(Qi,j−1|Fi+jΓ)√

V(Qi,j−1|Fi+jΓ)
.

4500 5000 5500 6000 6500

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

Fitted

S
ta

n
d
a
rd

is
e
d
 r

e
s
id

u
a
ls

1 2 3 4 5
−

1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

Origin period

S
ta

n
d
a
rd

is
e
d
 r

e
s
id

u
a
ls

Figure 3.5 – Evolution des résidus standardisés en fonction des Ĉi,j et des i.

On notera qu’il s’agit d’une extension du modèle Chain-Ladder, et en particulier

E(λΓ
i,j−1|FCi+j) = E[E(λΓ

i,j−1|Fi+j)|Fi+j)C] = λCj−1.

Les termes λC et λΓ sont alors simplement des coefficients de corrélation conditionnelle. Plus
précisément

λC = Cor(Γi,j−1, Ci,j |FCi+j−1)

Sous ces hypothèses, il est possible de construire des estimateurs sans biais de E(Ci,j |Ci,j−1),
de E(Γi,j |Γi,j−1), de E(Qi,j |FΓ

i+j) et de E(Q−1
i,j |FCi+j).

Pour estimer les deux dernières quantités, posons

Q̂j =

∑nj
i=0Ci,j∑nj
i=0 Γi,j

=
1

Q̂−1
j

On peut aussi estimer les variances conditionnelles. Par exemple

V̂(Qi,j ||FΓ
i+j) = ()−1

n−j∑

i=0

Γi,j [Qi,j − Q̂j]2

et une expression analogue pour V̂(Q−1
i,j |FCi+j).

1 2 3 4 5

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

Calendar period

S
ta

n
d
a
rd

is
e
d
 r

e
s
id

u
a
ls

1.0 1.5 2.0 2.5 3.0 3.5 4.0
−

1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

Development period

S
ta

n
d
a
rd

is
e
d
 r

e
s
id

u
a
ls

Figure 3.6 – Evolution des résidus standardisés en fonction de j et i+ j.

A partir de ces quantités, posons enfin

Q̃i,j =
Qi,j − Q̂j√
V̂(Qi,j |FΓ

i+j)
,

λ̃Γ
i,j =

√
Γi,j−1

[σ̂Ij−1]2[λi,j−1 − λ̂j−1]

et

λ̂Γ =

∑
Q̃i,j−1λ̃

Γ
i,j∑

Q̃2
i,j−1

.

L’estimateur Munich-Chain-Ladder est construit de manière intérative. Le détails des formules
est donné dans Quarg & Mack (2004) ou Wüthrich & Merz (2008).

> (MNCL=MunichChainLadder(Paid=PAID,

+ Incurred=INCURRED))

MunichChainLadder(Paid = PAID, Incurred = INCURRED)

Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred Ult. P/I Ratio

1 4,456 4,456 1.000 4,456 4,456 1

2 4,730 4,750 0.996 4,753 4,750 1

0 1 2 3 4 5
0 4795 4629 4497 4470 4456 4456
1 5135 4949 4783 4760 4750
2 5681 5631 5492 5470
3 6272 6198 6131
4 7326 7087
5 7353

Table 3.7 – Triangle des estimations de charges dossier/dossier cumulées, Γ = (Γi,j)

3 5,420 5,470 0.991 5,455 5,454 1

4 6,020 6,131 0.982 6,086 6,085 1

5 6,794 7,087 0.959 6,983 6,980 1

6 5,217 7,353 0.710 7,538 7,533 1

Totals

Paid Incurred P/I Ratio

Latest: 32,637 35,247 0.93

Ultimate: 35,271 35,259 1.00

De même que pour la fonction MackChainLadder, plusieurs graphiques peuvent être obtenus
afin de mieux comprendre les évolutions des paiements, mais aussi de la charge dossier/dossier
estimée par les gestionnaires de sinistres, présentés sur les Figures 3.7 et 3.8.

Si on compare les deux triangles, qui ont été complétés en tenant compte des interactions,
on obtient des choses relativement proches,

> MNCL$MCLPaid

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3209 4372.000 4411.000 4428.000 4435.000 4456.000

[2,] 3367 4659.000 4696.000 4720.000 4730.000 4752.569

[3,] 3871 5345.000 5398.000 5420.000 5429.716 5455.324

[4,] 4239 5917.000 6020.000 6046.090 6057.284 6085.875

[5,] 4929 6794.000 6890.045 6932.247 6949.447 6982.539

[6,] 5217 7251.382 7419.621 7478.759 7502.149 7538.194

> sum(MNCL$MCLPaid[,6]-diag(MNCL$MCLPaid[,6:1]))

[1] 2633.502

> MNCL$MCLIncurred

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 4975 4629.000 4497.00 4470.000 4456.000 4456.000

[2,] 5135 4949.000 4783.00 4760.000 4750.000 4750.415

[3,] 5681 5631.000 5492.00 5470.000 5454.691 5454.445

[4,] 6272 6198.000 6131.00 6100.978 6084.986 6084.770

[5,] 7326 7087.000 6988.37 6984.274 6979.284 6979.732

[6,] 7353 7349.795 7493.64 7522.809 7532.206 7533.461

> sum(MNCL$MCLIncurred[,6]-diag(MNCL$MCLPaid[,6:1]))

[1] 2621.823

On peut également utiliser cette technique pour visualiser les cadences de paiement, mais
aussi d’estimation de charge dossier par dossier, comme sur la Figure 3.9. On utilise la fonction

MCL Paid

MCL Incurred

Munich Chain Ladder Results

origin period

A
m

o
u

n
ts

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0

1 2 3 4 5 6

Mack P/I

MCL P/I

Munich Chain Ladder vs. Standard Chain Ladder

origin period

%

0
2

0
4

0
6

0
8

0
1

0
0

Figure 3.7 – Comparaison des méthodes Chain Ladder, et Munich Chain Ladder, en montant
à gauche, et en valeurs relatives à droite.

> munich=function(k){

+ plot(0:(nc+1-k),c(0,MNCL$MCLPaid[k,1:(nc+1-k)]),pch=19,type="b",

+ ylim=c(0,max(c(MNCL$MCLPaid[k,],MNCL$MCLIncurred[k,]))),xlim=c(0,nc),

+ ylab="",xlab="")

+ lines(0:(nc+1-k),c(0,MNCL$MCLIncurred[k,1:(nc+1-k)]),pch=19,type="b")

+ lines((nc+1-k):nc,MNCL$MCLPaid[k,(nc+1-k):nc],pch=1,type="b")

+ lines((nc+1-k):nc,MNCL$MCLIncurred[k,(nc+1-k):nc],pch=1,type="b")

+ abline(v=nc+1-k,col="grey")

+ }

que l’on peut appeler pour deux années de développement différentes, une année close à
gauche, et vu après 2 années de développement à droite

3.3.6 L’incertitude à un an de Merz & Wüthrich

Merz & Wüthrich (2008) ont étudier la variation du boni/mali d’une année sur l’autre (appelé
CDRi(n), claims development result), c’est à dire du changement dans la prédiction de la charge
totale. Ils ont en particulier montré que

m̂sepcn−1(CDRi(n)) = Ĉ2
i,∞

(
Γ̂i,n + ∆̂i,n

)

−2 −1 0 1 2

−
2

−
1

0
1

2
Paid residual plot

Paid residuals

In
c
u

rr
e

d
/P

a
id

 r
e

s
id

u
a

ls

−2 −1 0 1 2

−
2

−
1

0
1

2

Incurred residual plot

Incurred residuals

P
a

id
/I

n
c
u

rr
e

d
 r

e
s
id

u
a

ls

Figure 3.8 – Corrélations entre les triangles de développement des paiements, et des charges
dossier/dossier.

où

∆̂i,n =
σ̂2
n−i+1

λ̂2
n−i+1S

n+1
n−i+1

+
n−1∑

j=n−i+2

(
Cn−j+1,j

Sn+1
j

)2
σ̂2
j

λ̂2
jS

n
j

et

Γ̂i,n =

(
1 +

σ̂2
n−i+1

λ̂2
n−i+1Ci,n−i+1

)
n−1∏

j=n−i+2

(
1 +

σ̂2
j

λ̂2
j [S

n+1
j]2

Cn−j+1,j

)
− 1

Merz & Wüthrich (2008) ont alors approché ce terme par

Γ̂i,n ≈
σ̂2
n−i+1

λ̂2
n−i+1Ci,n−i+1

+
n−1∑

j=n−i+2

(
Cn−j+1,j

Sn+1
j

)2
σ̂2
j

λ̂2
jCn−j+1,j

en faisant tout simplement un développement de la forme
∏

(1 + ui) ≈ 1 +
∑
ui, mais qui n’est

valide que si ui est petit, soit ici
σ̂2
j

λ̂2
j

<< Cn−j+1,j .

Ces estimation peuvent être obtenues à l’aide de la fonction MackMerzWuthrich() (de Lacoume
(2009)), avec le MSEP de Mack, puis les deux de Merz & Wüthrich (avec ou non le terme
approché), avec les 6 années de survenance en ligne, et en bas le cumul toutes années confondues,

●

●

● ● ● ● ●

0 1 2 3 4 5 6

0
10

00
20

00
30

00
40

00
50

00

●

●

●

● ● ● ●●●

●

●

●

0 1 2 3 4 5 6

0
20

00
40

00
60

00

●

●

●

●
● ● ● ●

●
● ● ● ●

Figure 3.9 – Evolution des paiements, et de la charge dossier par dossier.

> MackMerzWuthrich(PAID)

MSEP Mack MSEP MW app. MSEP MW ex.

1 0.0000000 0.000000 0.000000

2 0.6393379 1.424131 1.315292

3 2.5025153 2.543508 2.543508

4 5.0459004 4.476698 4.476698

5 31.3319292 30.915407 30.915407

6 68.4489667 60.832875 60.832898

tot 79.2954414 72.574735 72.572700

3.4 Régression Poissonnienne et approches économétriques

Dans cette section, nous nous éloignerons des modèles récursifs inspirés de la méthode Chain
Ladder, et nous reviendrons sur des classes de modèles très utilisés dans les années 70, appelés
modèles à facteurs, remis au goût du jour en proposant une relecture économétrique de ces
modèles, permettant ainsi d’obtenir des intervalles de confiance des différentes grandeurs (comme
initié par Verrall (2000)).

3.4.1 Les modèles à facteurs, un introduction historique

Avant de présenter l’utilisation des modèles de régression, on peut commencer par évoquer
des modèles plus anciens. Par exemple Taylor (1977) supposait que

Yi,j = rj · µi+j , pour tout i, j,

i.e. un effet colonne, de cadence de paiement, et un effet diagonal, que Taylor interprète comme
un facteur d’inflation. Ce modèle peut se réécrire, dès lors qu’il n’y a pas d’incrément positif,

log Yi,j = αi + γi+j

qui prend alors une forme linéaire. On montrera par la suite que le cas

log Yi,j = αi + βj

s’apparent à un modèle de type Chain-Ladder. En effet, cela suppose que

Yi,j = ai × bj

que l’on peut rapprocher du modèle de développement Yi,j = Ci,n × ϕj . Zehnwirth (1985) avait
également proposé d’utiliser une courbe d’Hoerl, c’est à dire

log Yi,j = αi + βi · log(j) + γi · j.

3.4.2 Les modèles de de Vylder et de Christophides

De Vylder (22-28) a été un des premiers modèles économétriques de provisionnement. On
suppose que

Yi,j ∼ N (αi · βj , σ2), pour tout i, j.

On peut estimer les coefficients par moindres carrés,

(α̂, β̂) = argmin




∑

i,j

[Yi,j − αi · βj]2


 .

Les équations normales s’écrivent ici

α̂i =

∑
j Yi,j · β̂j∑

j β̂
2
j

et β̂j =

∑
i Yi,j · α̂i∑

i α̂
2
i

,

ce qui ne résoud pas explicitement. Pour le résoudre, Christofides (1989) a suggéré de le réécrire
comme un modèle log-linéaire, i.e.

log Yi,j ∼ N (ai + bj , σ
2), pour tout i, j.

> ligne <- rep(1:nl, each=nc); colonne <- rep(1:nc, nl)

> INC <- PAID

> INC[,2:6] <- PAID[,2:6]-PAID[,1:5]

> Y <- as.vector(INC)

> lig <- as.factor(ligne)

> col <- as.factor(colonne)

> reg <- lm(log(Y)~col+lig)

> summary(reg)

Call:

lm(formula = log(Y) ~ col + lig)

Residuals:

Min 1Q Median 3Q Max

-0.26374 -0.05681 0.00000 0.04419 0.33014

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.9471 0.1101 72.188 6.35e-15 ***

col2 0.1604 0.1109 1.447 0.17849

col3 0.2718 0.1208 2.250 0.04819 *

col4 0.5904 0.1342 4.399 0.00134 **

col5 0.5535 0.1562 3.543 0.00533 **

col6 0.6126 0.2070 2.959 0.01431 *

lig2 -0.9674 0.1109 -8.726 5.46e-06 ***

lig3 -4.2329 0.1208 -35.038 8.50e-12 ***

lig4 -5.0571 0.1342 -37.684 4.13e-12 ***

lig5 -5.9031 0.1562 -37.783 4.02e-12 ***

lig6 -4.9026 0.2070 -23.685 4.08e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1753 on 10 degrees of freedom

(15 observations deleted due to missingness)

Multiple R-squared: 0.9975, Adjusted R-squared: 0.9949

F-statistic: 391.7 on 10 and 10 DF, p-value: 1.338e-11

On peut alors simplement utiliser cette régression pour construire le triangle de base du
modèle. Comme nous l’avions noté dans la Section 2.5.1, on ne peut pas utiliser , Ŷi,j = exp[âi+

b̂j] car cet estimateur est toutefois biaisé. Si l’on corrige du biais (car exp(E(log(Y))) 6= E(Y))

en posant Ŷi,j = exp[âi + b̂j + σ̂2/2], on obtient alors

> sigma <- summary(reg)$sigma

> (INCpred <- matrix(exp(logY+sigma^2/2),nl,nc))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2871.209 1091.278 41.66208 18.27237 7.84125 21.32511

[2,] 3370.826 1281.170 48.91167 21.45193 9.20570 25.03588

[3,] 3767.972 1432.116 54.67438 23.97937 10.29030 27.98557

[4,] 5181.482 1969.357 75.18483 32.97495 14.15059 38.48403

[5,] 4994.082 1898.131 72.46559 31.78233 13.63880 37.09216

[6,] 5297.767 2013.554 76.87216 33.71498 14.46816 39.34771

> sum(exp(logY[is.na(Y)==TRUE]+sigma^2/2))

[1] 2481.857

qui est très proche de ce que nous avions eu dans la section précédante.

3.4.3 La régression poissonnienne de Hachemeister & Stanard

Hachemeister & Stanard (1975), Kremer (1982) et enfin Mack (1991) ont montré que dans
une régression log-Poisson sur les incréments, la somme des prédictions des paiments à venir
correspond à l’estimateur Chain Ladder. On retrouve ici un résultat pouvant être relié à la
méthode des marges présentée dans la section 2.4.1.

> CL <- glm(Y~lig+col, family=poisson)

> summary(CL)

Call:

glm(formula = Y ~ lig + col, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3426 -0.4996 0.0000 0.2770 3.9355

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.05697 0.01551 519.426 < 2e-16 ***

lig2 -0.96513 0.01359 -70.994 < 2e-16 ***

lig3 -4.14853 0.06613 -62.729 < 2e-16 ***

lig4 -5.10499 0.12632 -40.413 < 2e-16 ***

lig5 -5.94962 0.24279 -24.505 < 2e-16 ***

lig6 -5.01244 0.21877 -22.912 < 2e-16 ***

col2 0.06440 0.02090 3.081 0.00206 **

col3 0.20242 0.02025 9.995 < 2e-16 ***

col4 0.31175 0.01980 15.744 < 2e-16 ***

col5 0.44407 0.01933 22.971 < 2e-16 ***

col6 0.50271 0.02079 24.179 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 46695.269 on 20 degrees of freedom

Residual deviance: 30.214 on 10 degrees of freedom

(15 observations deleted due to missingness)

AIC: 209.52

Number of Fisher Scoring iterations: 4

Notons dès à présent que le modèle de Poisson n’est pas forcément le plus adapté. En effet,
il y a une (forte) surdispersion des paiements,

> CL <- glm(Y~lig+col, family=quasipoisson)

> summary(CL)

Call:

glm(formula = Y ~ lig + col, family = quasipoisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3426 -0.4996 0.0000 0.2770 3.9355

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.05697 0.02769 290.995 < 2e-16 ***

lig2 -0.96513 0.02427 -39.772 2.41e-12 ***

lig3 -4.14853 0.11805 -35.142 8.26e-12 ***

lig4 -5.10499 0.22548 -22.641 6.36e-10 ***

lig5 -5.94962 0.43338 -13.728 8.17e-08 ***

lig6 -5.01244 0.39050 -12.836 1.55e-07 ***

col2 0.06440 0.03731 1.726 0.115054

col3 0.20242 0.03615 5.599 0.000228 ***

col4 0.31175 0.03535 8.820 4.96e-06 ***

col5 0.44407 0.03451 12.869 1.51e-07 ***

col6 0.50271 0.03711 13.546 9.28e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 3.18623)

Null deviance: 46695.269 on 20 degrees of freedom

Residual deviance: 30.214 on 10 degrees of freedom

(15 observations deleted due to missingness)

AIC: NA

Number of Fisher Scoring iterations: 4

Il y a ici un 2n − 1 paramètres à estimer, γ, c = (c1, · · · , cn−1) et r = (r1, · · · , rn−1) (sans
compter le paramètre phi de surdispersion). Compte tenu du choix des facteurs (ici un facteur
ligne r et un facteur colonne c), une fois estimés ces paramètres, il est possible de prédire la
partie inférieure du triangle très simplement, i.e.

Ŷi,j = µ̂i,j = exp[γ̂ + r̂i + ĉj]

> Ypred <- predict(CL,newdata=data.frame(lig,col),type="response")

> (INCpred <- matrix(Ypred,nl,nc))

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3155.699 1202.110 49.82071 19.14379 8.226405 21.00000

[2,] 3365.605 1282.070 53.13460 20.41717 8.773595 22.39684

[3,] 3863.737 1471.825 60.99889 23.43904 10.072147 25.71173

[4,] 4310.096 1641.858 68.04580 26.14685 11.235734 28.68208

[5,] 4919.862 1874.138 77.67250 29.84594 12.825297 32.73985

[6,] 5217.000 1987.327 82.36357 31.64850 13.599887 34.71719

On retrouve ici l’estimateur obtenu par la méthode Chain-Ladder,

> sum(Ypred[is.na(Y)==TRUE])

[1] 2426.985

La valeur de référence est la valeur dans le coin supérieur gauche. Compte tenu de la forme
logarithmique du modèle, on a une interprétation simple de toutes les valeurs, relativement à
cette première valeur

E(Yi,j |Fn) = E(Y0,0|Fn) · exp[ri + cj].

3.4.4 Incréments négatifs

Dans certains triangles, il n’est pas rare d’avoir des incréments négatifs. Considérons par
exemple le triangle de paiements suivant,

> PAIDneg

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3209 4372 4411 4428 4435 4456

[2,] 3367 4659 4696 4720 4730 NA

[3,] 3871 5345 5338 5420 NA NA

[4,] 4239 5917 6020 NA NA NA

[5,] 4929 6794 NA NA NA NA

[6,] 5217 NA NA NA NA NA

> INCneg=PAIDneg

> INCneg[,2:6]=PAIDneg[,2:6]-PAIDneg[,1:5]

> INCneg

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 3209 1163 39 17 7 21

[2,] 3367 1292 37 24 10 NA

[3,] 3871 1474 -7 82 NA NA

[4,] 4239 1678 103 NA NA NA

[5,] 4929 1865 NA NA NA NA

[6,] 5217 NA NA NA NA NA

Cet incrément négatif de paiement ne perturbe aucunement la méthode Chain Ladder,

> LAMBDAneg <- rep(NA,nc-1)

> for(k in 1:(nc-1)){

+ LAMBDAneg[k]=lm(PAIDneg[,k+1]~0+PAIDneg[,k],

+ weights=1/PAIDneg[,k])$coefficients}

> TRIANGLEneg <- PAIDneg

> for(i in 1:(nc-1)){

+ TRIANGLEneg[(nl-i+1):(nl),i+1]=LAMBDAneg[i]*

+ TRIANGLEneg[(nl-i+1):(nl),i]}

> chargeultimeneg <- TRIANGLEneg[,nc]

> paiementsneg <- diag(TRIANGLEneg[,nc:1])

> RESERVESneg <- chargeultimeneg-paiementsneg

> sum(RESERVESneg)

[1] 2469.703

En revanche, les deux méthodes de régression que l’on vient de présenter ne peuvent plus être
appliquées. Si malgré tout on souhaite utiliser cette technique, une première solution consiste
à rebalancer des paiments d’une année sur l’autre. On peut alors prendre à gauche ou à droite
de manière à ne plus avoir cet incrément de paiement négatif. Une autre stratégie peut être
de faire des translations de certains incréments. Si on translate toutes les observations, le code
ressemblerait à
> predict(glm((Y+k)~X),type="response")-k

En effet, dans un modèle linéaire Gaussien, translater les observations Y vers le haut puis
translater vers le bas les prédictions Ŷ (d’un même montant) donne exactement les mêmes
prédictions. Mais ce n’est pas le cas dans les modèles GLM.

Supposons que l’on translate les incréments de la colonne où figure l’incrément négatif, de
telle sorte que tous les incréments soient alors positifs. On peut alors faire tourner une régression

de Poisson. En translatant de manière à annuler l’incrément négatif, on obtient le montant de
provision suivant

> translation<-function(k){

+ Y=as.vector(INCneg)

+ Y[col==3]=Y[col==3]+k

+ base<-data.frame(Y,lig,col)

+ reg<-glm(Y~lig+col,

+ data=base,family=poisson(link="log"))

+ Yp=predict(reg,type="response",

+ newdata=base)

+ Yp[col==3]=Yp[col==3]-k

+ sum(Yp[is.na(Y)==TRUE])}

> translation(7)

[1] 2471.444

Une solution peut être alors de translater pour un certain nombre de valeurs, puis d’extra-
poler la prédiction pour k nul,

> K<-7:20

> reserves<-Vectorize(translation)(K)

> (pRes<-predict(lm(reserves~K),newdata=(K=0)))

1

2469.752

On peut d’ailleurs visualiser cette extrapolation sur la Figure 3.10

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0 5 10 15 20

24
70

24
72

24
74

Translation

P
ro

vi
so

n

●

Figure 3.10 – Extrapolation du montant de provision sur pour une régression Poissonnienne
avec un incrément négatif (avec translations).

3.4.5 Incertitude dans un modèle de régression

Nous avions noté auparavant qu’obtenir une estimation du montant de sinistres restant à
payer ne suffisait pas, et qu’il fallait avoir un intervalle de confiance, ou au moins une mesure
de la dispersion du vrai montant autour de cette valeur prédite, voire un quantile.

Les formules économétriques fermées

Les modèles de régressions pourraient parâıtre très intéressants car il existe des formules
fermés pour toutes sortes de prédiction. Par exemple, dans une régression GLM avec un lien

logarithmique, rappelons que

E(Yi,j |Fn) = µi,j = exp[ηi,j]

ou encore

Ŷi,j = µ̂i,j = exp[η̂i,j].

La delta method nous permet d’écrire que

V(Ŷi,j) ≈
∣∣∣∣
∂µi,j
∂ηi,j

∣∣∣∣
2

· V(η̂i,j),

ce qui se simplifie dans le cas où le lien est logarithmique, i.e.

∂µi,j
∂ηi,j

= µi,j

Aussi, pour une loi de Poisson surdispersée (comme dans Renshaw & Verrall (1998)),

E
(

[Yi,j − Ŷi,j]2
)
≈ φ̂ · µ̂i,j + µ̂2

i,j · V̂(η̂i,j)

pour la partie inférieure du triangle. De plus, car il sera nécessaire de sommer tous les termes
de la partie inférieure du triangle pour déterminer le montant total de provisions,

Cov(Ŷi,j , Ŷk,l) ≈ µ̂i,j · µ̂k,l · Ĉov(η̂i,j , η̂k,l).

Le montant de provision que l’on cherche à estimer étant la somme des prédictions de paiements
à venir, R̂ =

∑
i+j>n Ŷi,j , alors

E
(

[R− R̂]2
)
≈


 ∑

i+j>n

φ̂ · µ̂i,j


+ µ̂′F · V̂(η̂F) · µ̂F ,

où les vecteurs µ̂F et η̂F sont des restrictions des vecteurs µ̂ et η̂ aux indices i + j > n (i.e. à
la partie inférieure du triangle à prédire).

Remark 3.4.1. Cette formule est malheureusement asymptotique, ce qui est rarement le cas en
provisionnement où l’on dispose de très peu de données (et de beaucoup de facteurs).

> p <- nl+nc-1;

> phi <- sum(residuals(CL,"pearson")^2)/(sum(is.na(Y)==FALSE)-p)

> Sig <- vcov(CL)

> X <- model.matrix(glm(Ypred~lig+col, family=quasipoisson))

> Cov.eta <- X%*%Sig%*%t(X)

> Ypred <-predict(CL,newdata=data.frame(lig,col),type="response")*(is.na(Y)==TRUE)

> se2 <- phi * sum(Ypred) + t(Ypred) %*% Cov.eta %*% Ypred

> sqrt(se2)

[,1]

[1,] 131.7726

Les méthodes de simulations

Les méthodes de simulation sont une bonne alternative si on dispose de trop peu de données
pour invoquer des théorèmes asymptotiques. Rappelons, comme le notait Mack (1993a) qu’il
existe 2 sources d’incertitude,

– l’erreur de modèle (on parle de process error)
– l’erreur d’estimation (on parle de variance error)
Il sera alors nécessaire d’utiliser deux algorithmes pour quantifier ces deux erreurs.
Afin de quantifier l’erreur d’estimation, il est naturel de simuler des faux triangles (supérieurs),

puis de regarder la distribution des estimateurs de montant de provisions obtenus pour chaque
triangles (par exemple par la méthode Chain Ladder, à l’aide de la fonction Chainladder

développée auparavant, ou en refaisant une régression de Poisson). A l’étape b, on génère un
pseudo triangle à l’aide des résidus de Pearson. Rappelons que pour une régression de Poisson,

ε̂i,j =
Yi,j − Ŷi,j√

Ŷi,j

.

Toutefois, ces résidus ont besoin d’être ajustés afin d’avoir une variance unitaire. On considère
alors classiquement

ε̂i,j =

√
n

n− k ·
Yi,j − Ŷi,j√

Ŷi,j

,

où k est le nombre de paramètres estimés dans le modèle.
> (residus=residuals(CL,type="pearson"))

1 2 3 4 5 6 7 8

9.49e-01 2.40e-02 1.17e-01 -1.08e+00 1.30e-01 -1.01e-13 -1.13e+00 2.77e-01

9 10 11 13 14 15 16 19

5.67e-02 8.92e-01 -2.11e-01 -1.53e+00 -2.21e+00 -1.02e+00 4.24e+00 -4.90e-01

20 21 25 26 31

7.93e-01 -2.97e-01 -4.28e-01 4.14e-01 -6.20e-15

> n=sum(is.na(Y)==FALSE)

> k=ncol(PAID)+nrow(PAID)-1

> (residus=sqrt(n/(n-k))*residus)

1 2 3 4 5 6 7 8

1.37e+00 3.49e-02 1.69e-01 -1.57e+00 1.89e-01 -1.46e-13 -1.63e+00 4.02e-01

9 10 11 13 14 15 16 19

8.22e-02 1.29e+00 -3.06e-01 -2.22e+00 -3.21e+00 -1.48e+00 6.14e+00 -7.10e-01

20 21 25 26 31

1.15e+00 -4.31e-01 -6.20e-01 6.00e-01 -8.99e-15

> epsilon <- rep(NA,nl*nc)

> epsilon[is.na(Y)==FALSE]=residus

> matrix(epsilon,nl,nc)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.37e+00 -1.6346 -2.22 -0.710 -0.62 -8.99e-15

[2,] 3.49e-02 0.4019 -3.21 1.149 0.60 NA

[3,] 1.69e-01 0.0822 -1.48 -0.431 NA NA

[4,] -1.57e+00 1.2926 6.14 NA NA NA

[5,] 1.89e-01 -0.3059 NA NA NA NA

[6,] -1.46e-13 NA NA NA NA NA

En simulant des erreurs (qui sont supposées indépendantes et identiquement distribuée), ε̃b =
(ε̃bi,j), on pose alors

Y b
i,j = Ŷi,j +

√
Ŷi,j · ε̃bi,j .

Pour générer des erreurs, la méthode la plus usuelle est d’utiliser une simulation nonparamétrique,
c’est à dire que l’on va bootstrapper les résidus parmi les pseudo-résidus obtenus. Sinon il est
aussi possible d’utiliser un modèle paramétrique (par exemple supposer une loi normale, même
si rien théoriquement ne justifie l’utilisation de cette loi). La distribution des résidus peut être
obtenue par le code suivant, et visualisé sur la Figure 3.11
> par(mfrow = c(1, 2))

> hist(residus,breaks=seq(-3.5,6.5,by=.5),col="grey",proba=TRUE)

> u <- seq(-4,5,by=.01)

> densite <- density(residus)

> lines(densite,lwd=2)

> lines(u,dnorm(u,mean(residus),sd(residus)),lty=2)

> plot(ecdf(residus),xlab="residus",ylab="Fn(residus)")

> lines(u,pnorm(u,mean(residus),sd(residus)),lty=2)

> Femp <- cumsum(densite$y)/sum(densite$y)

> lines(densite$x,Femp,lwd=2)

> par(mfrow = c(1, 1))

Histogram of residus

residus

D
en

si
ty

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(residus)

residus

F
n(

re
si

du
s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.11 – Histogramme et densité des résidus (à gauche) et fonctions de répartition (à
droite), avec l’ajustement Gaussien en pointillés..

Une fois simulé un pseudo-triangle d’incréments de paiments, on prédit un montant de provi-
sion R̂b (par exemple via une méthode Chain Ladder). La variance des R̂b correspond à l’erreur
d’estimation.

Afin de prendre en compte l’erreur de modèle, plusieurs méthodes peuvent être utilisées. La
première, et la plus simple, consiste à noter qu’à partir du pseudo triangle Y b

i,j , peut obtenir des

prédictions pour la partie inférieure, Ŷ b
i,j . Compte tenu du modèle Poissonnien, on peut alors

simuler une trajectoire possible d’incréments de paiements en simulant les Y b
i,j à l’aide de loi de

Poisson de paramètre Ŷ b
i,j . Le code est alors le suivant

> CLsimul1<-function(triangle){

+ rpoisson(length(triangle),lambda=triangle)}

Toutefois, simuler des lois de Poisson risque d’être trop conservateur. En effet, comme nous
l’avions vu sur la régression quasiPoisson, le paramètre de surdispersion φ est significatif,

> (summary(CL)$dispersion)

[1] 3.19

Il peut alors être pertinent de générer des lois avec davantage de variance (abusivement, on
parlera de simulation d’une loi quasiPoisson). La première idée pourra être d’utiliser une loi
Gamma. En notant que E(Y) = λ et V(Y) = φλ, la loi de Gamma G(α, β) vérifiera αβ = λ et
αβ2 = φλ. Aussi, on utilisera

> rqpoisG <- function(n, lambda, phi, roundvalue = TRUE) {

+ b <- phi

+ a <- lambda/phi

+ r <- rgamma(n, shape = a, scale = b)

+ if(roundvalue){r<-round(r)}

+ return(r)}

On utilise la fonction round afin de renvoyer un entier (ce qui est attendu pour un modèle
de Poisson, mais n’a pas grande importance dans un contexte de modélisation de paiements).
Une autre idée peut être d’utiliser le lien qui existe entre la loi de Poisson et la loi binomiale
négative (qui est un mélange de lois de Poisson, i.e. dont l’hétérogénéité résiduelle n’a pas pu
être modélisée par nos facteurs lignes et colonnes). Pour une loi binomiale négative de moyenne
µ et de variance µ+ µ2/k, on pose µ = λ et k = λ(φλ− 1)−1, i.e.

> rqpoisBN = function(n, lambda, phi) {

+ mu <- lambda

+ k <- mu/(phi * mu - 1)

+ r <- rnbinom(n, mu = mu, size = k)

+ return(r)}

On utilise alors le code suivant pour générer des scenarios de paiements,

> CLsimul2<-function(triangle,surdispersion){

+ rqpoissonG(length(triangle),lambda=triangle,phi=surdispersion)}

La seconde méthode est d’utiliser une relecture du modèle de Mack (1993a), proposée
par England & Verrall (1999). A partir du pseudo triangle, on va utiliser les facteurs de
développement λ̂j et les variances associés σ̂2

j obtenus sur le triangle initial. On prolonge alors
le triangle dans la partie inférience via le modèle dynamique

Ĉbi,j+1|Ĉbi,j ∼ N (λ̂jĈ
b
i,j , σ̂

2
j Ĉ

b
i,j).

Le code est alors le suivant, où triangle est un triangle de paiements cumulés (et non plus des
incréments sous forme vectorielle), l correspond à un vecteur de facteurs de développement, et
s à un vecteur de volatilités,

> CLsimul3<-function(triangle,l,s){

+ m<-nrow(triangle)

+ for(i in 2:m){

+ triangle[(m-i+2):m,i]<-rnorm(i-1,

+ mean=triangle[(m-i+2):m,i-1]*l[i-1],

+ sd=sqrt(triangle[(m-i+2):m,i-1])*s[i-1])

+ }

+ return(triangle) }

L’algorithme global pour générer des estimations de charges finales, mais aussi des scenarios
de paiements futurs est alors le suivant

> ns<-20000

> set.seed(1)

> Yp <- predict(CL,type="response",newdata=base)

> Rs <- R <- rep(NA,ns)

> for(s in 1:ns){

+ serreur <- sample(residus,size=nl*nc,replace=TRUE)

+ E <- matrix(serreur,nl,nc)

+ sY <- matrix(Yp,6,6)+E*sqrt(matrix(Yp,6,6))

+ if(min(sY[is.na(Y)==FALSE])>=0){

+ sbase <- data.frame(sY=as.vector(sY),lig,col)

+ sbase$sY[is.na(Y)==TRUE]=NA

+ sreg <- glm(sY~lig+col,

+ data=sbase,family=poisson(link="log"))

+ sYp <- predict(sreg,type="response",newdata=sbase)

+ R[s] <- sum(sYp[is.na(Y)==TRUE])

+ sYpscenario <- rqpoisG(36,sYp,phi=3.18623)

+ Rs[s] <- sum(sYpscenario[is.na(Y)==TRUE])

+ }}

Lors de la génération de pseudo triangles, des incréments négatifs peuvent apparâıtre. En

effet, pour deux valeurs de Ŷi,j , il est possible que ε̂
√
Ŷi,j soit négatif (si le résidu est le plus

petit résidu obtenu)

> sort(residus)[1:2]

14 13

-3.21 -2.22

> sort(sqrt(Yp[is.na(Y)==FALSE]))[1:4]

25 26 19 20

2.87 2.96 4.38 4.52

La solution retenue est de ne pas prendre en compte les triangles avec des incréments négatifs,
ce qui devrait nous faire surestimer les quantiles inférieurs. Toutefois, en provisionnement, les
quantiles inférieurs n’ont que peu d’intérêt. Les quantiles d’ordre élévés sont estimés ici par

> Rna <- R

> Rna[is.na(R)==TRUE]<-0

> Rsna <- Rs

> Rsna[is.na(Rs)==TRUE]<-0

> quantile(Rna,c(.75,.95,.99,.995))

75% 95% 99% 99.5%

2470 2602 2700 2729

> quantile(Rsna,c(.75,.95,.99,.995))

75% 95% 99% 99.5%

2496 2645 2759 2800

À partir de ces 20 000 triangles simulés, on peut obtenir la distribution des montants de
provisions estimés (stockées dans le vecteur R) mais aussi des scenarios de paiements (et donc

de provisions nécessaires, dans le vecteur Rs). On va pour cela supprimer les 10% des scenarios
ayant donné lieu à des valeurs manquantes.
> Rnarm <- R[is.na(R)==FALSE]

> Rsnarm <- Rs[is.na(Rs)==FALSE]

On notera que les quantiles supérieurs sont biaisés (avec un biais positif), mais faiblement
> quantile(Rnarm,c(.75,.95,.99,.995))

75% 95% 99% 99.5%

2478 2609 2704 2733

> quantile(Rsnarm,c(.75,.95,.99,.995))

75% 95% 99% 99.5%

2507 2653 2764 2805

La Figure 3.12 permet d’avoir une estimation de la distribution de R̂ mais aussi de R.

> plot(density(Rnarm),col="grey",main="")

> lines(density(Rsnarm),lwd=2)

> boxplot(cbind(Rnarm,Rsnarm),

+ col=c("grey","black"),horizontal=TRUE)

● ●●●●● ●●● ●● ● ●●●● ●● ● ●●● ●● ●●●● ●●●● ●●● ●● ●●● ●●●●●●● ●●● ● ●● ● ●●●●●●● ● ● ●● ●● ●●● ● ●● ● ●●● ●●● ●●●● ●●● ●●●● ● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●● ●● ●● ● ●●● ● ●●●● ●●● ● ●● ●●●●●● ●● ●● ● ● ●●● ●● ● ●●●●●●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ●●● ●● ●●●● ●● ●● ●●● ●●●● ●● ●● ●●● ● ● ●●●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ● ● ●●● ●●● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ● ●●● ●● ● ●● ●●● ●●●● ●●●● ● ●●● ●●●● ● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●●●● ● ●●● ●● ●● ●●● ●●●● ● ● ●● ●●●●●●● ● ●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●●●●● ●●●● ● ●●● ●●●● ●● ●●●● ●●● ● ● ●●● ●● ●●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ● ● ●●● ●● ●

●● ● ● ●●●● ●●●● ●● ●● ●● ●●● ● ● ●● ●● ●●●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●●●●● ● ●●● ●●●● ● ●●●● ●● ●●● ●● ●●● ●● ●●● ●● ●●●● ● ●● ●●● ●● ●●● ●●●●●● ●● ●●● ●●● ● ●● ● ●●●● ●●● ●●● ●● ● ●● ●●● ●● ● ●● ● ● ●●●●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ● ●● ●●●● ● ●● ●● ● ●●●●● ●●● ● ●● ●● ●● ● ●● ● ●●●● ● ●●●● ●●● ● ●●●● ● ●●●● ●●●●

R
na

rm
R

sn
ar

m

2000 2200 2400 2600 2800 3000

2200 2400 2600 2800 3000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

N = 18079 Bandwidth = 11.07

D
en

si
ty

Figure 3.12 – Boxplot et densité estimée de R̂ (estimation error) et de R (estimation error et
process error) .

Notons que les quantitées obtenues sont très proches de celles obtenues par la fonction
bootChainLadder de library(ChainLadder),

> BootChainLadder(PAID,20000,"od.pois")

BootChainLadder(Triangle = PAID, R = 20000, process.distr = "od.pois")

Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95%

1 4,456 4,456 0.0 0.0 0 0

2 4,730 4,752 22.1 12.0 28 44

3 5,420 5,455 35.3 15.3 44 63

4 6,020 6,085 65.5 19.8 77 101

5 6,794 6,946 152.4 28.6 170 203

6 5,217 7,363 2,146.2 111.6 2,216 2,337

Totals

Latest: 32,637

Mean Ultimate: 35,059

Mean IBNR: 2,422

SD IBNR: 132

Total IBNR 75%: 2,504

Total IBNR 95%: 2,651

3.4.6 Quel modèle de régression ?

Comme nous l’avons mentionné dans le chapitre 2, deux paramètres fondamentaux inter-
viennent dans une régression linéaire généralisée,

– la fonction lien, qui lie la prédiction aux facteurs, ici Ŷi,j = E(Yi,j |Fn) = exp[γ̂ + α̂i + β̂j],
– la loi ou la fonction variance, qui donne la forme de l’intervalle de confiance, ici V(Yi,j |Fn) =
φ · E(Yi,j |Fn),

L’unique motivation du modèle de Poisson (ou quasi-Poisson) est qu’il permet d’obtenir
exactement le même montant que la méthode Chain Ladder. Mais aucun critère statistique n’a
été évoqué, pour l’instant, afin de légitimer ce modèle.

Les modèles Tweedie sont une famille de sur-modèle, incluant le modèle Poissonnien. On
suppose que

– la fonction lien, est une fonction puissance, ou plutôt une tranformée de Box-Cox, Ŷi,j =

g−1
λ [γ̂ + α̂i + β̂j] où gλ(x) = λ−1[xλ − 1] si λ > 0 avec le cas limite g0(x) = log(x).

– la fonction variance, qui donne la forme de l’intervalle de confiance, ici V(Yi,j |Fn) =
φ · E(Yi,j |Fn)µ

où les paramètres λ et µ sont inconnus.

La densité 1 d’une loi Tweedie de paramètre mu est ici

> ftweedie <- function(y,p,mu,phi){

+ if(p==2){f <- dgamma(y, 1/phi, 1/(phi*mu))} else

+ if(p==1){f <- dpois(y/phi, mu/phi)} else

+ {lambda <- mu^(2-p)/phi /(2-p)

+ if(y==0){ f <- exp(-lambda)} else

+ { alpha <- (2-p)/(p-1)

+ beta <- 1 / (phi * (p-1) * mu^(p-1))

+ k <- max(10, ceiling(lambda + 7*sqrt(lambda)))

+ f <- sum(dpois(1:k,lambda) * dgamma(y,alpha*(1:k),beta))

+ }}

+ return(f)}

1. où le terme densité s’entend au sens large, à savoir une probabilité dans le cas discret.

Afin de juger de la pertinance de l’ajustement, on peut calculer la log-vraisemblance du
modèle, en gardant un lien logarithmique par exemple (ce qui est parfois plus simple au niveau
numérique, mais aussi au niveau de l’interprétation),

> pltweedie <- function(puissance){

+ regt <- glm(Y~lig+col, tweedie(puissance,0))

+ reserve <- sum(predict(regt,type="response",newdata=

+ data.frame(lig,col))[is.na(Y)==TRUE])

+ dev <- deviance(regt)

+ phi <- dev/n

+ mu <- predict(regt,type="response",newdata=data.frame(lig,col))

+ hat.logL <- 0

+ for (k in which(is.na(Y)==FALSE)){

+ hat.logL <- hat.logL + log(ftweedie(Y[k], puissance, mu[k], phi)) }

+ return(list(puissance= puissance,phi=phi,reserve=reserve,logL=hat.logL))

+ }

Si on calcule la log-vraisemblance pour 5 valeurs, comprises entre 1 et 2 (correspondant
respectivement au cas d’une régression Poisson et une régression Gamma), on obtient

> pltweedie(puissance=1.25)

$puissance

[1] 1.25

$phi

[1] 0.466

$reserve

[1] 2427

$logL

[1] -96

> pltweedie(puissance=1.5)

$puissance

[1] 1.5

$phi

[1] 0.155

$reserve

[1] 2428

$logL

[1] -99.2

La Figure 3.13 permet de visualiser l’influence du paramètre de la puissance de la fonction
variance. Visiblement la vraisemblance est maximal pour une puissance proche de 1 (ce qui
correspond au modèle de Poisson) avec un lien logarithmique,

> puiss <- seq(1.02,1.98,by=.01)

> plot(puiss,Vectorize(TW)(puiss),type="l",

+ xlab="Puissance de la loi Tweedie",ylab="log vraisemblance")

1.0 1.2 1.4 1.6 1.8 2.0

−
10

4
−

10
2

−
10

0
−

98
−

96
−

94

Puissance de la loi Tweedie

lo
g

vr
ai

se
m

bl
an

ce

Figure 3.13 – Évolution de la log-vraisemblance profilée en fonction de µ .

> TW <- function(p){pltweedie(p)$logL}

> optimize(TW, c(1.01,1.99), tol=1e-4,maximum = TRUE)

$maximum

[1] 1.01

$objective

[1] -92.2

3.5 Les triangles multivariés

Comme nous l’avions expliqué dans l’introduction, l’utilisation des triangles, et des méthodes
de cadences de paiements, n’est possible que si les triangles sont stables, et homogènes. Or il n’est
pas rare qu’un triangle comporte des risques relativement différents dans leur développement.
Par exemple en assurance auto, les accidents matériels et corporels sont sensiblement différents.

3.5.1 Hypohtèse d’indépendance entre les triangles, et lois paramétriques

En s’insiprant de l’idée de Mack (1993a), on peut supposer que R̂i suive une loi LN(µi, σ
2
i)

pour i = 1, 2. Si l’on suppose les risques indépendant, la loi de la somme est simplement
la convolée des deux lois. On peut utiliser les familles de distribution au format S4 et la
library(distr). Rappelons que pour si X ∼ LN(µ, σ2),

µ = log[E(X)]− 1

2
log

(
1 +

V(X)

E(X)2

)
et σ2 = log

(
1 +

V(X)

E(X)2

)
.

A partir des moyennes et variances - données par la méthode de Mack (1993a) par exemple -
on en déduit les lois des deux montants de provision. Si on suppose que les deux triangles sont
indépendants, alors

> library(distr)

> n=nrow(P.mat)

> V=MackChainLadder(P.mat)$Total.Mack.S.E^2

> E=sum(MackChainLadder(P.mat)$FullTriangle[,n]-

+ diag(MackChainLadder(P.mat)$FullTriangle[n:1,]))

> mu = log(E) - .5*log(1+V/E^2)

> sigma2 = log(1+V/E^2)

> LM = Lnorm(meanlog=mu,sdlog=sqrt(sigma2))

> V=MackChainLadder(P.corp)$Total.Mack.S.E^2

> E=sum(MackChainLadder(P.corp)$FullTriangle[,n]-

+ diag(MackChainLadder(P.corp)$FullTriangle[n:1,]))

> mu = log(E) - .5*log(1+V/E^2)

> sigma2 = log(1+V/E^2)

> LC = Lnorm(meanlog=mu,sdlog=sqrt(sigma2))

> LT=LM+LC

On peut alors comparer la loi convolée, et la loi lognormale ajustée sur le triangle cumulé,

> P.tot = P.mat + P.corp

> library(ChainLadder)

> V=MackChainLadder(P.tot)$Total.Mack.S.E^2

> E=sum(MackChainLadder(P.tot)$FullTriangle[,n]-

+ diag(MackChainLadder(P.tot)$FullTriangle[n:1,]))

> mu = log(E) - .5*log(1+V/E^2)

> sigma2 = log(1+V/E^2)

La Figure 3.14 compare la distribution obtenue en convolant deux lois lognormales (suppo-
sant une indépendance entre les triangles, et que le montant de provision peut être modélisé
par une loi lognormale) et la distribution du montant de provision obtenu en agrégeant les deux
triangles de paiements.

> u=seq(E-4*sqrt(V),E+4*sqrt(V),length=101)

> vtotal=dlnorm(u,mu,sqrt(sigma2))

> vconvol=d(LT)(u)

> plot(u,vconvol,col="grey",type="l",

+ xlab="montant de provision",ylab="")

> lines(u,vtotal,lwd=2)

> legend(470000,1.2e-05,

+ c("convolution","somme des triangles"),

+ col=c("grey","black"),lwd=c(1,2),bty="n")

Les quantiles à 95% sont alors respectivement

> q(LT)(.95)

[1] 434616

> qlnorm(.95,mu,sqrt(sigma2))

[1] 467687

pour la loi convolée et pour la somme des deux triangles. Deux interprétations sont alors pos-
sibles : supposer les triangles comme étant indépendants est probablement une hypothèse trop
forte et travailler sur un triangle agrégé (et donc peu homogène) introduit une incertitude
supplémentaire.

300000 350000 400000 450000 500000

0.
0e

+
00

5.
0e

−
06

1.
0e

−
05

1.
5e

−
05

montant de provision

convolution
somme des triangles

Figure 3.14 – Distribution du montant total de provision, en sommant les provisions par tri-
angles - supposés indépendants - et en travaillant sur le triangle agrégé.

3.5.2 Le modèle de Mack bivarié

Pröhl & Schmidt (2005) a proposé une méthode de type Chain-Ladder dans un cadre mul-
tivarié. On note

λi,j = (λ
(k)
i,j) où λ

(k)
i,j =

C
(k)
i,j

C
(k)
i,j−1

et Ci,j = (C
(k)
i,j) ∈ RK On suppose qu’il existe λj =∈ RK

E[Ci,j |Ci,j−1] = diag(λj−1) ·Ci,j−1

et
Cov[Ci,j ,Ci,j |Ci,j−1] = diag(

√
Cj−1) ·Σj−1 · diag(

√
Cj−1)

Alors sous ces hypothèses, comme dans le cas univarié, on peut écrire

E[Ci,n|Ci,n−i] =

n−1∏

j=n−i
diag(λj)Ci,n−i.

L’estimateur du facteur de transition est

λ̂j =

[
n−j−1∑

i=0

diag(
√
Ci,j) ·Σ−1

j · diag(
√
Ci,j)

]−1

·
n−j−1∑

i=0

diag(
√
Ci,j) ·Σ−1

j · diag(
√
Ci,j)λi,j+1

L’estimateur Chain-Ladder de la charge ultime est

Ĉi,n =
n−1∏

j=n−i
diag(λ̂j)Ci,n−i.

Cet estimateur vérifie les mêmes propriétés que dans le cas univarié. En particulier, cet estima-
teur est un estimateur sans biais de E[Ci,n|Ci,n−i] mais aussi de E[Ci,n].

Il est aussi possible de calculer les mse de prédiction.

3.5.3 Modèles économétriques pour des risques multiples

L’idée dans les modèles économétriques est de supposer que les résidus peuvent être corrélés,

> ligne = rep(1:n, each=n); colonne = rep(1:n, n)

> PAID=P.corp; INC=PAID

> INC[,2:n]=PAID[,2:n]-PAID[,1:(n-1)]

> I.corp = INC

> PAID=P.mat; INC=PAID

> INC[,2:n]=PAID[,2:n]-PAID[,1:(n-1)]

> I.mat = INC

> Ym = as.vector(I.mat)

> Yc = as.vector(I.corp)

> lig = as.factor(ligne)

> col = as.factor(colonne)

> base = data.frame(Ym,Yc,col,lig)

> regm=glm(Ym~col+lig,data=base,family="poisson")

> regc=glm(Yc~col+lig,data=base,family="poisson")

> res.corp=residuals(regc,type="pearson")

> res.mat=residuals(regm,type="pearson")

> cor(res.mat,res.corp)

[1] 0.296

On notera ainsi que la corrélation n’est pas nulle.

Une fois notée qu’il existe probablement une dépendance entre les deux triangles, il semble
légitime de la prendre en compte dans les algorithmes de simulations évoqués dans la partie
3.4.5.

– pour l’erreur d’estimation, quand on tire les résidus, on ne les tire pas indépendement dans
les deux triangles. On tire alors les paires de résidus (ε̂matériel,b

i,j , ε̂corporel
i,j , b)

– pour l’erreur, on peut tirer une loi de Poisson bivariée si on utilise une régression Poisson-
nienne bivariée (implémentée dans library(bivpois) ou un vecteur Gaussien bivarié.

Dans le second cas,

(
Cmatériel
i,j+1

Ccorporel
i,j+1

)
∼ N

((
λmj C

matériel
i,j

λcjC
corporel
i,j

)
,

(
σm2
j Cmatériel

i,j ?

? σc2j C
corporel
i,j

))
.

3.6 Borhutter-Fergusson, Benktander et les méthodes bayésiennes

Les deux premières méthodes que nous allons voir ont souvent été proposées comme une
alternative à la méthode Chain Ladder, car elles introduisent un a priori sur la charge ultime.

3.6.1 Le modèle de Borhutter-Ferguson et l’introduction d’un avis d’expert

Classiquement, on continue ici à supposer que

– les années de survenance sont indépendantes les unes des autres
– il existe µi et des facteurs de développement β1, β2, · · · , βn - avec βn = 1 - tels que

E(Ci,1) = β1µi

E(Ci,j+k|Ci,1, · · · , Ci,j) = Ci,j + [βj+k − βj]µi

Sous ces hypothèses, pour tout i, j, E(Ci,j) = βjµi. Ce qui peut rappeler les modèles à fac-
teurs évoqués auparavant. Sauf qu’ici, seul β = (β1, β2, · · · , βn) sera à estimer statistiquement,
µ = µ̂i étant obtenu par avis d’expert, µ̂i étant un estimateur de E(Ci,n). Moyennant ces deux
estimations, on en déduit l’estimateur de E(Ci,n|Ci,1, · · · , Ci,j) de la forme

Ĉi,n = Ci,j + [1− β̂j−i]µ̂i.

L’estimateur proposé par Bornhutter-Ferguson est alors simplement obtenu à partir de la
méthode Chain-Ladder, en posant

β̂j =
n∏

k=j+1

1

λ̂k

Enfin, pour estimer µ̂i, on suppose disposer d’un ratio sinistre/prime cible, par exemple de 105%,
par année de survenance. Dans ces conditions, on peut alors estimer simplement le montant de
provision,

> mu <- 1.05*PREMIUM

> beta <- rev(cumprod(rev(1/LAMBDA)))

> Cdiag <- diag(PAID[,nc:1])

> Cultime <- Cdiag+(1-c(1,rev(beta)))*mu

> Cultime-Cdiag

[1] 0.0 23.1 33.5 59.0 131.3 1970.5

> sum(Cultime-Cdiag)

[1] 2217

i 0 1 2 3 4 5
prime 4591 4692 4863 5175 5673 6431
µ̂i 4821 4927 5106 5434 5957 6753
λi 1,380 1,011 1,004 1,002 1,005
βi 0,708 0,978 0,989 0,993 0,995

Ĉi,n 4456 4753 5453 6079 6925 7187

R̂i 0 23 33 59 131 1970

Table 3.8 – Estimation du montant de provision par Borhutter-Ferguson, avec un ratio si-
nistres/primes de 105%.

3.6.2 Benktander

L’estimateur de Benktander (1976), repris quelques années plus tard par Hovinen (1981),
repose sur un estimateur a priori de la charge ultime Ci,n, noté µi. On suppose également qu’il
existe une cadence de paiements β = (β1, · · · , βn), connue, telle que

E(Ci,j) = µiβj

Sous ces hypothèses, le montant de provision devrait être

R̂i = Ĉi,n − Ci,n−i = [1− βn−i]µi

Au lieu de se baser uniquement sur µi, Benktander (1976) avait proposé un estimateur crédibilisé
de la charge ultime, de la forme

βn−iĈ
CL
i,n + [1− βn−i]µi

Il s’agit d’utiliser l’estimateur Chain-Ladder, moyenné avec l’estimation a priori de la charge
ultime. Alors

R̂BH
i = Ĉi,n − Ci,n−i = [1− βn−i]

(
βn−iĈ

CL
i,n + [1− βn−i]µi

)

On notera que

R̂BH
i = (1− βn−i)ĈBF

i

si la cadence β = (β1, · · · , βn) est construite à partir des facteurs de développement induits par
la méthode Chain-Ladder. Une autre écriture de cette expression est d’écrire la charge ultime
(et non plus le montant de provision),

ĈBH
i = Ci,n−i + (1− βn−i)ĈBF

i = βn−iĈ
CL
i + (1− βn−i)ĈBF

i

ce qui permet de voir la prédiction de Benktander comme une combinaison convexe des estima-
teurs Chain-Ladder et de Bornhuetter-Ferguson.

3.6.3 La méthode dite Cape-Code

Dans cette approche, on utilise là encore un avis d’expert. L’idée est de réécrire l’expression

Ci,n = Ci,n−i +

(
1− Ci,n−i

Ci,n

)
Ci,n

sous la forme

Ci,n = Ci,n−i +

(
1− Ci,n−i

Ci,n

)
LRi · Pi,

où LRi correspond au loss ratio pour l’année i, i.e. LRi = Ci,n/Pi. L’idée de la méthode dite
Cape-Code est d’écrire une forme plus générale,

Ci,n = Ci,n−i + (1− πn−i)LRiPi

où πn−i correspond à une cadence de paiement, et peut être estimé par la méthode Chain Ladder.
Quant aux LRi il s’agit des loss ratio cibles, correspondant à un avis d’expert. On peut aussi
proposer un même ratio cible pour plusieurs années de survenance. On posera alors

Ri = Ci,n − Ci,n−i = (1− πn−i)LRAPi.

pour i ∈ A, où

LRA =

∑
k∈ACn,n−k∑
k∈A πn−kPk

.

Dans un premier temps, on peut calculer les πi à partir de la méthode Chain Ladder, i.e.

πn−i =
Ci,n−i
Ci,n

où la charge ultime est celle prédite pas la méthode Chain-Ladder.

> Cultime=MackChainLadder(PAID)$FullTriangle[,nc]

> (PI <- (1-Cdiag/Cultime))

1 2 3 4 5 6

0.00000 0.00471 0.00656 0.01086 0.02204 0.29181

> LR <- TRIANGLE[,nc]/PREMIUM

> Cdiag <- diag(PAID[,nc:1])

> (Cultime-Cdiag)/(LR*PREMIUM)

1 2 3 4 5 6

0.00000 0.00471 0.00656 0.01086 0.02204 0.29181

Si on suppose ensuite que A = {1, 2, · · · , n}, alors

> LR=sum(TRIANGLE[,6])/sum(PREMIUM)

> PI*LR*PREMIUM

1 2 3 4 5 6

0.0 24.6 35.6 62.7 139.6 2095.3

> sum(PI*LR*PREMIUM)

[1] 2358

On obtient ici un montant de provision total inférieur à celui obtenu par la méthode Chain
Ladder puisque le montant de provisions vaut ici 2357.756.

3.6.4 Les approches Bayésiennes

Les approches Bayésiennes ont été popularisées en sciences actuarielles par la théorie de la
crédibilité, correspondant à une approche Bayésienne dans un cadre linéaire. Mais il est possible
d’aller plus loin (plus générallement, sur l’alternative bayésienne en statistique, nous renverrons
à Parent & Bernier (2007) ou Robert (2006)). Classiquement, supposons que l’on s’intéresse à
Y dont la loi serait f(·|θ), où très généralement, Y = (Yi,j) et θ = (θi,j). Y peut être ici le
triangle des paiements cumulés C, le triangle des incréments Y , ou le triangle des coefficients
de transition des cadences de paiements λ = Ci,j+1/Ci,j .

Example 3.6.1.

Dans l’approche de Mack (1993a), on cherche à modéliser Y peut être ici le triangle des
paiements cumulés C, et θj = (λj , σ

2
j).

Application aux cadences de paiements

Ici, on s’intéresse à la loi de λ, qui dépendra de θ = (θj) où θj = (γj , σ
2
j), où, pour des sim-

plicités de notations (et éviter de confondre avec les λi,j) on note γj le facteur de développement
sous-jacent.

λi,j |(γj , σ2
j) ∼ N

(
γj ,

σ2
j

Ci,j

)

Ici, σ2 ne sont pas les paramètres d’intérêt, et sont supposés estimés séparément (comme nous
le faisions déjà dans les modèles linéaires généralisés). Quant aux Ci,j , ils sont interprétés ici
comme des poids, et sont supposés connus. La log-vraisemblance est ici

logL(λ|γ) =
∑

i,j

1

2

(
log

[
Ci,j−1

σ2
j

]
− Ci,j−1

σ2
j

[λi,j − γj]2
)
.

En utilisant la formule de Bayes, la log-densité de γ conditionnelle aux λ est simplement

log[g(γ|λ)] = log[π(γ)] + log[L(λ|γ)] + constante,

où π(·) est une loi a priori de γ (par exemple un vecteur Gaussien).

L’algorithme de Gibbs et généralisations

On cherche ici à générer un ensemble de vecteurs aléatoires γ = (γ1, · · · , γm) ∈ Rm. Contrai-
rement aux méthodes de Monte Carlo où l’on cherche à générer des vecteurs indépendants les uns
des autres, on va essayer de construire une suite de manière récurente, vérifiant des propriétés
d’ergodicité.

On part d’un vecteur initial γ(0) = (γ
(0)
1 , · · · , γ(0)

m), par exemple les valeurs obtenues par la
méthode Chain Ladder puis on génère, de manière itérée





γ
(k+1)
1 ∼ f(·|γ(k)

2 , · · · , γ(k)
m , λ)

γ
(k+1)
2 ∼ f(·|γ(k+1)

1 , γ
(k)
3 , · · · , γ(k)

m , λ)

γ
(k+1)
3 ∼ f(·|γ(k+1)

1 , γ
(k+1)
2 , γ

(k)
4 , · · · , γ(k)

m , λ)
...

γ
(k+1)
m−1 ∼ f(·|γ(k+1)

1 , γ
(k+1)
2 , γ

(k+1)
m−2 , γ

(k)
m , λ)

γ
(k+1)
m ∼ f(·|γ(k+1)

1 , γ
(k+1)
2 , · · · , γ(k+1)

m−1 , λ)

Ces lois conditionnelles n’ayant pas forcément de forme simple, l’algorithme de metropolis
(d’acceptation-rejet) peut alors être utiliser pour simuler ces différentes lois conditionnelle.

3.6.5 Approche bayésienne sur les facteurs de développement

En s’inspirant de la relecture du modèle de Mack (1993a),

Ĉbi,j+1|Ĉbi,j ∼ N (λ̂jĈ
b
i,j , σ̂

2
j Ĉ

b
i,j).

nous pouvons supposer que les facteurs de développements λi,j suivent une loi lognormale, comme
le suggérait Balson (2008). La fonction bayes-triangle() donne ici

> set.seed(1)

> RESERVES <- bayes-triangle(PAID)$reserves

> res.tot <- RESERVES[,7]

On peut visualiser sur la Figure 3.15 montre les 1,000 valeurs générées pour R̂

> plot(res.tot,ylab="Montant de provision")

> abline(h=mean(res.tot))

> abline(h=quantile(res.tot,c(.05,.95)),col="grey")

La Figure 3.16 montre ainsi la distribution du montant de provision estimé R̂ obtenu par cet
algorithme (avec en trait grisé la distribution obtenue par bootstrap des résidus dans le modèle
quasiPoisson)

> plot(density(res.tot),lwd=2,main="")

> lines(density(Rnarm),col="grey")

> boxplot(cbind(res.tot,Rnarm),

+ col=c("black","grey"),horizontal=TRUE)

●●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●
●●
●

●
●●

●
●●

●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●
●

●
●

●
●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●
●
●
●

●●●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●
●●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●
●

●
●
●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●●
●

●

●

●
●

●●
●

●

●

●

●
●●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

22
00

24
00

26
00

Index

M
on

ta
nt

 d
e

pr
ov

is
io

n

Figure 3.15 – Génération d’une suite de montants de provisions R̂.

●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●● ●●●●● ●

● ●●●●● ●●● ●● ● ●●●● ●● ● ●●● ●● ●●●● ●●●● ●●● ●● ●●● ●●● ● ●●● ●●● ● ●● ● ●●●●●●● ● ● ●● ●● ●●● ● ●● ● ●●● ●●● ●●●● ●●● ●●●● ● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ● ●● ●●●●●● ●● ●● ● ● ●●● ●● ● ●●●●●●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ● ●● ●● ●●● ●●●● ●● ●● ●●● ● ● ●●●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ● ● ●●● ●●● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ● ●●● ●● ● ●● ●●● ●●●● ●●●● ● ●●● ●●●● ● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ● ●● ● ●●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ● ●● ●● ●●●● ● ●●● ●● ●● ●●● ●●●● ● ● ●● ●●●● ●●● ● ●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●●●●● ●●●● ● ●●● ●●●● ●● ●●●● ●●● ● ● ●●● ●● ●●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ● ● ●●● ●● ●

re
s.

to
t

R
na

rm

2200 2400 2600 2800 3000

2100 2200 2300 2400 2500 2600 2700

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

N = 1001 Bandwidth = 18.23

D
en

si
ty

Figure 3.16 – Boxplot et densité de la distribution du montant de provisions R̂, en noir, avec
en grisé les la distribution obtenue par bootstrap des résidus dans le modèle quasi-Poisson.

Pour conclure, notons que la méthode bayésienne (qui est fondamentalement basée sur un
modèle autorégressif) donne une dispersion du montant de provision proche du modèle de Mack.

> MackChainLadder(PAID)$Total.Mack.S.E

[1] 79.3

> sd(rest.tot)

[1] 80.7

> sd(Rnarm)

[1] 97.4

En revanche, la méthode de bootstrap génère des paiements possibles futurs beaucoup plus
grand (compte tenu du résidu très important), et donc la volatilité est plus grande.

3.7 Exercices

Exercise 3.7.1. Programmer les alogrithmes permettant de modéliser deux triangles supposés
non-indépendants.

Exercise 3.7.2. Déterminer le quantile à 95% du montant de provision pour le triangle de
paiements cumulés triangle1.

Exercise 3.7.3. Déterminer le quantile à 95% du montant de provision pour le triangle de
paiements cumulés triangle2.

Exercise 3.7.4. Déterminer le quantile à 95% du montant de provision pour le triangle de
paiements cumulés triangle3.

Exercise 3.7.5. Déterminer le quantile à 95% du montant de provision pour le triangle de
paiements cumulés triangle4.

Chapitre 4

Calculs de base en assurance vie et
décès

L’assurance-vie repose essentiellement sur des calculs de valeurs actuelles probables, c’est
à dire des calculs d’expressions de la forme c′p =

∑
j cjpj , où c est un vecteur de flux futurs

actualisés, de la forme (1 + i)−jcj où i est le taux d’actualisation (en retenant les notations
usuelles) et cj un flux de paiements qui peut survenir à la date j, et pj est la probabilité que le
jème paiement soit effectué (généralement une probabilité qu’une personne soit en vie pour le
calcul des rentes, ou la probabilité qu’une personne décède à cette date pour l’assurance décès).

R est un langage idéal pour les calculs de ces valeurs actuelles probables compte tenu de la
forme vectorielle de la plupart des expressions. Nous allons voir dans ce chapitre les bases des
calculs actuariels, en présentant quelques calculs d’annuités classiques, ainsi que les valorisa-
tions de provisions mathématiques. Enfin, nous présenterons un algorithme utilisant des formes
récursives de plusieurs grandeurs utilisées en assurance-vie.

Si nous allons définir toutes les grandeurs qui seront calculées, nous renvoyons à Petauton
(2004), Denuit & Robert (2007), Hess (2000), Dickson et al. (2009) ou Vylder (2010) pour une
présentation plus poussée des notions et des différents concepts.

4.1 Quelques notations

Si l’assurance non-vie repose essentiellement sur des modélisation stochastique des sinistres à
venir, l’assurance-vie consiste fondamentalement à actualiser des flux futurs, incluant généralement
un part d’incertitude (associée au décès ou à la survie d’un assuré). De la même manière que
nous nous étions attachés à calculer des primes à l’aide d’espérance de flux en assurance non-vie
(conditionnelles à des variables tarifaires dans le chapitre 2 par exemple), nous allons ici calculer
des grandeurs de la forme :

E

(∞∑

k=1

Ck
(1 + i)Tk

· 1(paiement à la date Tk)

)
,

où l’assureur s’est engagé à verser un capital Ci à des dates Tk (connues), à condition qu’une
hypothèse soit vérifiée à la date Tk. Compte-tenu de la linéarité de l’espérance, si l’on suppose
le taux d’actualisation non aléatoire, on peut réécrire cette dernière expression sous la forme :

∞∑

k=1

Ck
(1 + i)Tk

P(paiement à la date Tk) =
∞∑

k=1

Ck · νTk · P(paiement à la date Tk),

133

où le facteur d’actualisation ν = (1 + i)−1 permettra d’éviter - autant que possible - la notation
i, réservée aux taux d’actualisation en assurance-vie, mais désignant un indice de ligne dans les
algorithmes.

4.1.1 Les probabilités de décès, ou de survie

Comme le montre la formule précédante, un des points essentiels lors de la valorisation est de
disposer de ces probabilités p, liées souvent à la survie - ou au décès - d’un assuré (en particulier
les taux d’actualisation sont supposés ici connus, et constants).

Considérons un individu d’âge x à la souscription d’un contrat d’assurance (correspondant
à la variable x sous R), et notons classiquement Tx sa durée de vie résiduelle (qui est aléatoire).
On pose kqx = P(Tx ≤ k) la probabilité de ne plus être en vie à l’âge x+k (c’est à dire k années
après la souscription), et kpx = P(Tx > k) la probabilité d’être encore en vie à l’âge x+ k. A x
donné, k 7→ kpx = P(Tx > k) est alors la fonction de survie de la variable Txqx.. On peut alors
considérer des vecteurs px et qx. Parmi les autres notations, la probabilité de décéder pendant
une période particulière, disons entre les âges x+ k et x+ k + h, sera notée

k|hqx = P(k < Tx ≤ k + h) = kpx − k+hpx.

Par abus de notation, on notera parfois px la quantité 1px et qx la quantité 1qx. Et on notera

kdx = k|1qx la probabilité qu’une personne d’âge x décède à l’âge x+ k (ce qui n’a toutefois rien
d’officiel, mais permettra des simplifications sous R par la suite).

Ces grandeurs sont obtenues numériquement à l’aide des tables de mortalité, c’est à dire un
vecteur L de Lx pour tous les âges x, correspondant au nombre de survivants ayant atteint l’âge
x au sein d’une cohorte de taille L0 intialement (à la naissance, avec souvent L0 = 100000, par
convention). La première valeur du vecteur L, i.e. L[1] correspondra alors à L0. Il conviendra
d’être particulièrement prudent dans la manipulation des indices. Afin d’illustrer ces calculs, nous
utiliseront les anciennes tables françaises (qui présentent l’avantage d’être simples d’utilisation)
dites TV88-90 (TV, en cas de vie) et TD88-90 (TD, en cas de décès) .

Les tables étant un comptage de survivants, on en déduit aisément un estimateur des proba-
bilité de survie (et donc aussi de décès, même si nous reviendrons plus longuement sur ce point
dans le prochain chapitre). La probabilité pour un individu d’âge x = 40 ans d’être encore en
vie k = 10 ans plus tard (et donc d’atteindre les 50 ans) s’écrit

kpx =
Lx+k

Lx
, avec ici x = 40 et k = 10.

> TD[39:52,]

Age Lx

39 38 95237

40 39 94997

41 40 94746

42 41 94476

43 42 94182

44 43 93868

45 44 93515

46 45 93133

47 46 92727

48 47 92295

49 48 91833

50 49 91332

51 50 90778

52 51 90171

> TD$Lx[TD$Age==50]

[1] 90778

> x <- 40

> h <- 10

> TD$Lx[TD$Age==x+h]/TD$Lx[TD$Age==x]

[1] 0.9581196

> TD$Lx[x+h+1]/TD$Lx[x+1]

[1] 0.9581196

Sous cette forme, on retrouve des formules classiques de probabilités conditionnelles (car on
conditionne toujours par le fait que l’individu est en vie à l’âge x) par exemple

k+hpx =
Lx+k+h

Lx
=
Lx+k+h

Lx+k
· Lx+k

Lx
= hpx+k · kpx

soit

P(Tx > k + h) = P(T > x+ k + h|T > x) = P(T > x+ k + h|T > x+ k) · P(T > x+ k|T > x).

Cette relation sera discutée plus en détails dans le Chapitre 5.
Nous verrons par la suite l’intérêt de toutes ces formules itératives, mais on peut déjà noter

que comme il semble intéressant de parfois changer l’âge de l’individu (ici en regardant par
exemple un individu d’âge x+ k), on peut voir kpx comme le terme générique d’une matrice p,
dépendant des paramètres x et k (avec toujours x = 0, 1, 2, 3, · · · ce qui posera des problèmes
d’indexation, et k = 1, 2, 3, · · ·). Avec cette écriture, nous aurons des soucis pour travailler avec
les âges x = 0. Toutefois, les produits d’assurance-vie étant souvent destiné à des personnes
d’âge plus avancé, nous garderons cette simplification dans la première partie de ce chapitre.

> Lx <- TD$Lx

> m <- length(Lx)

> p <- matrix(0,m,m); d <- p

> for(i in 1:(m-1)){

+ p[1:(m-i),i] <- Lx[1+(i+1):m]/Lx[i+1]

+ d[1:(m-i),i] <- (Lx[(1+i):(m)]-Lx[(1+i):(m)+1])/Lx[i+1]}

> diag(d[(m-1):1,]) <- 0

> diag(p[(m-1):1,]) <- 0

> q <- 1-p

La matrice p contient les jpi, la matrice q contient les jqi, alors que la matrice d contient
les jdi. On vérifiera sans trop de difficultés que la somme des éléments de d par colonne (donc
à âge fixé) vaut 1,

> apply(d,2,sum)[1:10]

[1] 1 1 1 1 1 1 1 1 1 1

Aussi, p[10,40] correspondra à 10p40 :
> p[10,40]

[1] 0.9581196

On peut ainsi représenter les fonctions de survie résiduelle, et calculer une espérance de vie
résiduelle, en notant que

ex = E(Tx) =
∞∑

k=1

k · k|1qx =
∞∑

k=1

kpx

> x <- 45

> S <- p[,45]/p[1,45]

> sum(S)

[1] 30.46237

On peut aussi écrire une petite fonction permettant de calculer l’espérance de vie résiduelle
à l’âge x, pour x > 0 (pour des raisons d’indexation de matrice expliquées auparavant),

> esp.vie=function(x){sum(p[1:nrow(p),x])}

> esp.vie(45)

[1] 30.32957

On peut aussi utiliser TGH-05 (pour les hommes, base de donnée TGH sous R) et TGF-05
(pour les femmes, notée TGF) qui ont été construites à partir d’une population de rentiers (et
non plus sur l’ensemble de la population française comme les tables TV88-90 et TD88-90).

Ces tables sont différentes au sens où elles intègrent un aspect temporel que nous n’avons
pas mentionné jusqu’à présent. Compte-tenu des améliorations des conditions de vie, on imagine
que quelqu’un ayant 70 ans en 2010 n’a probablement pas la même fonction de survie résiduelle
qu’une personne qui atteindra 70 ans en 2050. Et compte-tenu de la durée des engagements en
assurance-vie, il semble légitime d’intégrer cet aspect temporel dans les calculs (ce point fera
l’objet du prochain chapitre).

Si on considère une personne d’âge x l’année t, son année de naissance est alors t−x, colonne
qui va permettre de récupérer les Lx+k utiles pour les calculs.

> annee <- 2010

> age <- 45

> an <- annee-age; if(an>2005){an=2005}

> nom <- paste("X",an,sep="")

> LH <- TGH[,nom]

> LF <- TGF[,nom]

4.1.2 Calculs de valeurs actuelles probables

La valeur actuelle probable s’écrit, de manière très générale,

k∑

j=1

Cj · pj
(1 + i)j

=

k∑

j=1

νj · Cj · pj

où C = (C1, · · · , Ck) est l’ensemble des montants à verser (correspondant à un vecteur C), i est
le taux d’actualisation, et p = (p1, · · · , pk) est le vecteur des probabilités de verser le capital
aux différentes dates {1, 2, ..., k} (correspondant à un vecteur P).

> k <- 20; x <- 40; i <- 0.03

> C <- rep(100,k)

> P <- p[1:k,x]

> sum((1/(1+i)^(1:k))*P*C)

[1] 1417.045

> sum(cumprod(rep(1/(1+i),k))*P*C)

[1] 1417.045

Rappelons que ce calcul peut se faire au sein d’une fonction générique,
> LxTD<-TD$Lx

> VAP <- function(capital=1,m=1,n,Lx=TD$Lx,age,taux=.03)

+ {

+ proba <- Lx[age+1+m:n]/Lx[age+1]

+ vap <- sum((1/(1+taux)^(m:n))*proba*capital)

+ return(vap)

+ }

> VAP(capital=100,n=20,age=40)

[1] 1417.045

On peut ainsi rapidement changer la table,

> VAP(capital=100,n=20,age=40,L=TV$Lx)

[1] 1457.646

> VAP(capital=100,n=20,age=40,L=LH)

[1] 1472.078

> VAP(capital=100,n=20,age=40,L=LF)

[1] 1472.598

ou les taux d’actualisation

> VAP(capital=100,n=20,age=40,taux=.04)

[1] 1297.245

Il est aussi possible de visualiser la sensibilité de ces valeurs actuelles probables en fonction
des taux, d’actualisation, ou de l’âge de l’assuré, comme sur la Figure 4.1

> VAPtaux <- function(T){VAP(capital=100,n=20,age=40,taux=T)}

> vVAPtaux <- Vectorize(VAPtaux)

> TAUX <- seq(.01,.07,by=.002)

> VAPage <- function(A){VAP(capital=100,n=20,age=A,taux=.035)}

> vVAPage <- Vectorize(VAPage)

> AGE <- seq(20,60)

> par(mfrow = c(1, 2))

> plot(100*TAUX,vVAPtaux(TAUX),xlab="Taux d’actualisation (%)",

+ ylab="Valeur Actuelle Probable")

> plot(AGE,vVAPage(AGE),xlab="Age de l’assuré",ylab="Valeur Actuelle Probable")

> par(mfrow = c(1, 1))

4.2 Calculs d’annuités

A partir du moment où nous disposons de toutes les probabilités kpx, il est possible de faire
tous les calculs imaginables d’actualisation de flux futurs probables. Nous allons reprendre ici les
produits les plus classiques, et notant que tous les produits complexes d’assurance-vie peuvent
être vus comme des combinaisons linéaires de ces produits simples. Par linéarité de l’espérance,
la valorisation pourra être faite en faisant la même combinaison linéaire de ces valeurs actuelles
probables.

4.2.1 Valeurs actuelles probables de capital différé

Le plus simple est probablement la valeur actuelle probable d’un capital différé (pure en-
dowment) kEx, correspondant à la valeur actuelle probable d’un capital de 1 dans le cas où une
personne actuellement d’âge x soit encore en vie à au bout de k années, i.e.

kEx =
1

(1 + i)k
· P(T > x+ k|T > x) =

1

(1 + i)k
· kpx

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

Taux d'actualisation (%)

V
al

eu
r

A
ct

ue
lle

 P
ro

ba
bl

e

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 30 40 50 60

11
50

12
00

12
50

13
00

13
50

14
00

Age de l'assuré
V

al
eu

r
A

ct
ue

lle
 P

ro
ba

bl
e

Figure 4.1 – Evolution de la valeur actuelle probable de 20 versements de 100 conditionnels à la
survie de l’assuré d’âge x au premier versement, en fonction du taux d’actualisation (à gauche),
et de l’âge de l’assuré (à droite).

Là encore, kEx peut être vu comme le terme générique d’une matrice que l’on notera E.

> E <- matrix(0,m,m)

> i <- .035

> for(j in 1:m){

+ E[,j] <- (1/(1+i)^(1:m))*p[,j]

+ }

> E[10,45]

[1] 0.663491

> p[10,45]/(1+i)^10

[1] 0.663491

4.2.2 Exemples d’assurance en cas de vie

Considérons le cas du versement d’une unité monétaire, commençant dès aujourd’hui, et
continuant tant que l’assuré sera vivant. On parlera d’annuité “vie entière”. On supposera l’an-
nuité payable d’avance. On peut noter que

äx =
∞∑

k=0

1

(1 + i)k
· kpx =

∞∑

k=0

kEx

Plus généralement, on veut considérer non pas des assurance “vie entière”, mais dites “tem-
poraires”, d’une durée de n années (avec n versements), i.e.

näx =
n−1∑

k=0

1

(1 + i)k
kpx =

n−1∑

k=0

kEx

Le code est alors le suivant :
> adot<-matrix(0,m,m)

> for(j in 1:(m-1)){

+ adot[,j]<-cumsum(1/(1+i)^(0:(m-1))*c(1,p[1:(m-1),j]))

+ }

> adot[nrow(adot),1:5]

[1] 26.63507 26.55159 26.45845 26.35828 26.25351

Notons que l’on peut également différer de h années,

h|näx =
h+n−1∑

k=h

1

(1 + i)k
· kpx =

h+n−1∑

k=h

kEx

A h fixé, on peut construire la matrice adot, contenant les [h|näx] (indicé ici en n et x),

> h <- 1

> adoth <- matrix(0,m,m-h)

> for(j in 1:(m-1-h)){

+ adoth[,j]<-cumsum(1/(1+i)^(h+0:(m-1))*p[h+0:(m-1),j])

+ }

> adoth[nrow(adoth),1:5]

[1] 25.63507 25.55159 25.45845 25.35828 25.25351

Dans cet exemple numérique, on décale d’un an, autrement dit, au lieu de considérer des
versements payables d’avance, on considère des versements à terme échu. Classiquement, ces

1|∞äx sont notés ax,

ax =
∞∑

k=1

1

(1 + i)k
· kpx =

∞∑

k=1

kEx

> a<-matrix(0,m,m)

> for(j in 1:(m-1)){

+ a[,j]<-cumsum(1/(1+i)^(1:(m))*p[1:m,j])

+ }

> a[nrow(a),1:5]

[1] 25.63507 25.55159 25.45845 25.35828 25.25351

La dernière ligne de la matrice (présentée ci-dessus) donne les valeurs des annuités “vie entière”
en fonction de l’âge de l’assuré. On retrouve ce qu’aurait donné un calcul direct à l’aide des kEx
> apply(E,2,sum)[1:5]

[1] 25.63507 25.55159 25.45845 25.35828 25.25351

Pour les nouvelles tables, TGH et TGF, il est possible d’utiliser le code suivant, pour calculer
la valeur d’une rente de 1 euro, versée pendant une durée (avec une distinction suivant que le
versement survient en début ou en fin d’année)

> PRIX <- function(annee=2011,age,sex="HOM",taux=0.04,duree,C=1){

+ an <- annee-age; if(an>2005){an=2005}

+ nom <- paste("X",an,sep="")

+ if(sex=="HOM"){L <- TGH[,nom]}

+ if(sex=="FEM"){L <- TGF[,nom]}

+ Q <- L[(age+1):length(L)]/L[(age+1)]

+ actualisation <- (1+taux)^(0:min(duree,120-age))

+ prixsup <- sum(Q[2:(min(duree,120-age)+1)]/

+ actualisation[2:(min(duree,120-age)+1)])

+ prixinf <- sum(Q[1:(min(duree,120-age))]/

+ actualisation[1:(min(duree,120-age))])

+ return(C*c(prixinf,prixsup))}

> PRIX(age=45,duree=20)

[1] 13.95699 13.39479

Cette fonction permet d’avoir le prix de la rente versée en début d’année en cas de vie, ou
en fin d’année.

4.2.3 Exemples d’assurance en cas de décès

Comme précédemment, le cas le plus simple est probablement l’assuranc décès vie entière,
dont la valeur actuelle probable s’écrit, pour un assuré d’âge x qui souhaite le versement d’une
unité à la fin de l’année de son décès,

Ax = E

((
1

1 + i

)Tx+1
)

=

∞∑

k=0

E

((
1

1 + i

)Tx+1 ∣∣Tx = k

)
=

∞∑

k=1

1

(1 + i)k
· k−1px · 1qx+k−1.

Plus générallement, on peut définir une assurance “temporaire décès”, où le versement du capital
n’a lieu que si le décès survient dans les n années qui suivent la signature du contrat,

nAx =

n∑

k=1

1

(1 + i)k
· k−1px · 1qx+k−1.

En utilisant la matrice d définie auparavant, et ν = (1 + i)−1 le facteur d’actualisation, on a
alors
> A<- matrix(NA,m,m-1)

> for(j in 1:(m-1)){

+ A[,j]<-cumsum(1/(1+i)^(1:m)*d[,j])

+ }

> Ax <- A[nrow(A),1:(m-2)]

On peut alors visualiser ces fonctions, et aussi comparer E
(
ν1+Tx

)
avec

(
ν1+E(Tx)

)
si on

considère des versements à terme échu (qui pourraient être vu comme des approximations de
ce montant). Afin de faciliter les calculs, on peut utiliser une version vectorisée de la fonction
esp.vie,
> EV <- Vectorize(esp.vie)

On peut alors visualiser la différence sur la figure 4.2
> plot(0:105,Ax,type="l",xlab="Age",lwd=1.5)

> lines(1:105,v^(1+EV(1:105)),col="grey")

> legend(1,.9,c(expression(E((1+r)^-(Tx+1))),expression((1+r)^-(E(Tx)+1))),

+ lty=1,col=c("black","grey"),lwd=c(1.5,1),bty="n")

A partir de ces contrats de base, il est possible de calculer toutes les valeurs actuelles pro-
bables de flux futurs aléatoires.

4.3 Calculs de provisions mathématiques

En assurance-vie, les engagements de l’assuré et de l’assureur sont, le plus souvent, répartis
dans le temps sur de longues périodes. Pour les rentes par exemple, l’assuré paye ses primes (du-
rant plusieurs années de cotisation), et ensuite seulement l’assureur verse une rente. Il y a alors

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

Age

A
x

E((1 + r)−(Tx+1))
(1 + r)−(E(Tx)+1)

Figure 4.2 – Comparison de x 7→ Ax = E
(
ν1+Tx

)
et
(
ν1+E(Tx)

)
.

un décalage entre les prime payée par l’assurée et la couverture du risque par l’assureur, décalage
qui doit être présenté dans les comptes annuels, intégrant les prévisions de dépenses constituées
sous forme de “provisions” (dites mathématiques). Pour reprendre la définition de Petauton
(2004) et du Code des Assurances, les provisions mathématiques sont “à l’époque de l’évaluation
la différence entre d’une part la valeur actuelle probable des engagements pris par l’assureur [...]
et d’autre part la valeur actuelle probable des engagements pris par les souscripteurs”.

Notons V AP t0[t1,t2](assuré) la valeur actuelle probable, en t0, des engagements de l’assuré

pour la période [t1, t2]. Aussi, V AP 0
[0,k](assuré) sera la valeur actuelle probable, en 0, des k

premières primes annuelles. Et on notera V AP 0
[k+1,n](assuré) la valeur actuelle probable, en 0,

des engagements de l’assuré pour la période [k + 1, n], i.e. la valeur actuelle probable des n− k
dernières primes annuelles.

De manière analogue, notons V AP t0[t1,t2](assureur) la valeur actuelle probable, en t0, des

engagements de l’assureur pour la période [t1, t2]. Compte tenu du principe fondamental de
valorisation 1, pour un contrat arrivant à échéance au bout de n années, on doit avoir

V AP 0
[0,n](assuré) = V AP 0

[0,n](assureur)

pour un contrat soucrit à la date 0 et tel qu’il n’y a plus d’engagement de part et d’autre part
n années. Aussi, pour k compris entre 0 et n,

V AP 0
[0,k](assuré) + V AP 0

[k+1,n](assuré) = V AP 0
[0,k](assureur) + V AP 0

[k+1,n](assureur)

avec, de manière générale

V AP 0
[0,k](assuré) ≥ V AP 0

[0,k](assureur)

1. Tous les calculs sont nets, au sens où aucune marge de sécurité n’est considérée, et qu’aucun frais n’est prélevé
afin de permettre à la compagnie de fonctionner. À la souscription, la valeur actuelle probable des engagements
de l’assuré doit être égale à la valeur actuelle probable des engagements de l’assureur.

et
V AP 0

[k+1,n](assuré) ≤ V AP 0
[k+1,n](assureur)

(d’où le principe d’inversion du cycle de production de l’assurance). La provision mathématique
(pure) de l’année k sera notée kVx(t) si elle est actualisée à la date t. La référence étant kVx =

kVx(k) (i.e. on actualise en k). On définie kVx(0) par

kVx(0) = V AP 0
[0,k](assuré)− V AP 0

[0,k](assureur).

Cette définition sera dite rétrospective (car on se place sur la période antérieure à k). On peut
aussi écrire, de manière équivalente (compte tenu du principe de valorisation)

kVx(0) = V AP 0
[k+1,n](assureur)− V AP 0

[k+1,n](assuré).

Cette définition sera dite prospective (car on se place sur la période postérieure à k). Enfin, il
existe une dernière méthode, correspondant à une simple mise à jour, i.e.

k−1Vx(k − 1) + V AP k−1
[k−1,k](assuré)− V AP k−1

[k−1,k](assureur) = kVx(k − 1).

Cette méthode sera dite itérative, voire en l’occurence itérative ascendante, car on initialise
avec 0Vx(0) = 0. Mais il sera aussi possible de construire une méthode itérative descendante,
commençant à la fin du contrat (ici la récursion est ascendante).

4.3.1 Exemple d’une assurance temporaire décès

Le principe fondamental de valorisation nous garantit que

V AP 0(assuré) = V AP 0(assureur)

en faisant une valorisation à la date 0, c’est à dire à la date de souscription du contrat.
Plaçons nous du point de vue de l’assuré (d’âge x à la souscription) : il souhaite payer une

prime annuelle constante πn,x, noté plus simplement π, tant qu’il est en vie i.e.

V AP 0(assuré) =
n−1∑

k=0

π

(1 + i)k
· P(Tx > k) = π · näx,

où

näx =
n−1∑

k=0

1

(1 + i)k
· kpx,

(on utilise ici ä car le paiement se faisant ici en début de période). De même,

V AP 0(assureur) =

n∑

k=1

1

(1 + i)k
· P(k − 1 < Tx ≤ k) = nAx,

où

nAx =

n∑

k=1

1

(1 + i)k
· k−1px · 1qx+k−1,

(l’indemnité étant versée par l’assureur à terme échu). On en déduit que la prime annuelle est
alors

π =
nAx

näx
.

À partir des grandeurs (ou de ces matrices de grandeurs) calculées auparavant, on peut
calculer la prime annuelle des contrats décès

> x <-50; n <-30

> prime <-A[n,x]/adot[n,x]

> sum(prime/(1+i)^(0:(n-1))*c(1,p[1:(n-1),x]))

[1] 0.3047564

> sum(1/(1+i)^(1:n)*d[1:n,x])

[1] 0.3047564

La méthode prospective

Pour le calcul de la provision mathématique du contrat d’assurance “temporaire décès”, la
méthode prospective permet d’écrire

kVx(0) = V AP 0
[k+1,n](assureur)− V AP 0

[k+1,n](assuré)

Notons que kVx(0) = kVx(k) · kEx où kEx est la valeur actuelle probable d’un capital différé,
relatif au versement d’un euro dans k années, conditionnée par la survie de l’assuré d’âge x à la
souscription, i.e.

kEx =
1

(1 + i)k
· P(Tx > k) = νk · kpx

Si l’on se place à la date k (car c’est le plus simple, mais l’assuré a alors l’âge x + k), notons
que la différence entre les valeurs actuelles probables des engagements des deux parties donne,
simplement

kVx(k) = n−kAx+k − π · n−käx+k

car d’un côté, on a une assurance “temporaire décès” sur les n − k années restantes pour un
assuré d’âge x + k, et de l’autre, l’assuré a pris l’engagement de verser sa prime (qui reste
inchangée) pendant n− k années s’il vit. Aussi,

kVx(0) = kVx(k) · kEx = k|n−kAx − π · k|n−käx

où l’on considère des assurances décès différées. On peut aussi écrire

kVx(k) =
k|n−kAx − π · k|n−käx

kEx

> VR <- (prime*adot[1:n,x]-A[1:n,x])/E[1:n,x]

> plot(0:n,c(0,VR),xlab="",ylab="Provisions mathématiques",type="b")

La méthode retrospective

Pour la méthode rétrospective, on écrit simplement

kVx(0) = V AP 0
[0,k](assuré)− V AP 0

[0,k](assureur)

i.e. kVx(k) = πkäx − kAx. Or kVx(0) = kVx(k) · kEx, et donc

kVx(k) =
πkäx − kAx

kEx
.

> VP <- diag(A[n-(0:(n-1)),x+(0:(n-1))])-

+ primediag(adot[n-(0:(n-1)),x+(0:(n-1))])

> points(0:n,c(VP,0),pch=4)

La méthode itérative

Enfin, pour la dernière méthode, l’idée est ici de décrire la variation de la provision mathématique
entre deux dates en fonction des variations des engagements de part et d’autre. D’un côté il y
a le paiement de la prime (en début de période, donc pas de problème d’actualisation et de
non-paiement), et de l’autre, une assurance décès sur un an. Aussi kVx(k− 1) = k−1Vx(k− 1) +
π − 1Ax+k−1. Or kVx(k − 1) = kVx(k) · 1Ex+k−1 ce qui donne, finalement

kVx(k) =
k−1Vx(k − 1) + π − 1Ax+k−1

1Ex+k−1

avec la convention que la première provision est nulle (de part notre principe fondamental de
valorisation).

> VI<-0

> for(k in 1:n){

+ VI <- c(VI,(VI[k]+prime-A[1,x+k-1])/E[1,x+k-1])

+ }

> points(0:n,VI,pch=5)

Comme le montre la Figure 4.3, ces trois méthodes cöıncident (on ne distingue plus les trois
points),

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

P
ro

vi
si

on
s

m
at

hé
m

at
iq

ue
s

Figure 4.3 – Évolution de la provision mathématique pour un contrat d’assurance “temporaire
décès”, x = 50, n = 30 et i = 3.5%.

4.3.2 Exemple d’une assurance en cas de vie

On considère ici un assuré d’âge x, cotisant pendant m années pour sa retraite, et touchant
au bout de n années de cotisation une rente annuelle d’un montant C, payé tous les ans à

terme échu s’il est en vie, jusqu’à son décès (i.e. une annuité viagère). La prime pure unique
(correspondant à la valeur actuelle probable des engagements de l’assureur) serait

Π = V AP0 =

∞∑

j=n

C

(1 + i)j
Pr(Tx > j),

soit, avec les notations actuarielles, V AP0 = C · n|ax (i.e. la valeur actuelle probable d’une
annuité viagère différée de n années). Si l’assuré paye une prime annuelle constante pendant ces
n années, en début d’année, alors la prime est

π =
V AP0

näx
= C · n|

ax

näx

On peut alors passer au calcul de la provision mathématique, en notant qu’il faudra distinguer
les n premières années (période où l’assuré paye sa prime) et les dernières (période où l’assureur
verse la rente). Pour le calcul des n|ax, on va utiliser la matrice adiff

> adiff=matrix(0,m,m)

> for(i in 1:(m-1)){

+ adiff[(1+0:(m-i-1)),i] <- E[(1+0:(m-i-1)),i]*a[m,1+i+(0:(m-i-1))]

+ }

La prime annuelle peut être calculée de plusieurs manières pour une personne souscrivant
un contrat à x = 35 ans.
> x <- 35

> n <- 30

> a[n,x]

[1] 17.31146

> sum(1/(1+i)^(1:n)*c(p[1:n,x]))

[1] 17.31146

> (prime <- adiff[n,x] / (adot[n,x]))

[1] 0.1661761

> sum(1/(1+i)^((n+1):m)*p[(n+1):m,x])/sum(1/(1+i)^(1:n)*c(p[1:n,x]))

[1] 0.17311

Une fois obtenue la cotisation à payer (annuellement) pendant n année (notée prime), on peut
calculer les provisions mathématiques, en distinguant la période de cotisation (où la provision
devrait augmenter avec le temps) de la période de retraite (où la provision devrait baisser).

Méthode prospective

On se place ici au bout de k années. Si k < n (l’assuré paye encore sa prime), en faisant la
différence entre les engagements restants de l’assureur et ceux de l’assuré, on obtient

kVx(0) = C · n−k|ax+k − n−käx+k.

Si en revanche on suppose que k ≥ n (seul l’assureur a encore des engagements) alors

kVx(0) = C · ax+k.

Tout simplement. En effet, dans le premier cas, l’assuré a vieilli, et il a moins de versements à
venir (c’est la partie de droite). Pour l’assureur, il s’agit toujours d’une annuité différée. Dans
le second cas, l’assureur doit verser une rente viagère tant que l’assuré est en vie.

> VP <- rep(NA,m-x)

> VP[1:(n-1)] <- diag(adiff[n-(1:(n-1)),x+(1:(n-1))] -

+ adot[n-(1:(n-1)),x+(1:(n-1))]*prime)

> VP[n:(m-x)] <- a[m,x+n:(m-x)]

> plot(x:m,c(0,VP),xlab="Age de l’assuré",

+ ylab="Provisions mathématiques")

Méthode rétrospective

Là aussi, il faut distinguer suivant la valeur de k. Si k ≤ n, on obtient simplement que

kVx(0) =
π · käx
kEx

puisque sur cette période, seul l’assuré a pris des engagements. Pour rappel, kEx est la valeur
actuelle probable du capital diffféré, i.e.

kEx =
kpx

(1 + i)k
.

Pour la seconde période, si k > n,

kVx(0) =
π · näx − C · n|kax

kEx

avec à gauche un terme constant (les engagements de l’assuré étant passés), et à droite les
engagements qu’avait pris l’assureur, i.e. les k − n années qui ont suivi l’année n.

Pour les calculs, on utilise le fait que

n|kax =

n+k∑

j=n+1

jEx = n|ax − n+k|ax

On peut alors utiliser (comme l’indice x ne change pas) une matrice fonction des deux
premiers indices,

> adiff[n,x]

[1] 2.996788

> adiff[min(which(is.na(adiffx[,n])))-1,n]

[1] 2.996788

> adiff[10,n]

[1] 2.000453

> adiff[n,x]- adiff[n+10,x]

[1] 2.000453

A l’aide de ces fonctions, on peut calculer les provisions de manière retrospective,

> VR <- rep(NA,m-x)

> VR[1:(n)] <- adot[1:n,x]*prime/E[1:n,x]

> VR[(n+1):(m-x)] <- (adot[n,x]*prime - (adiff[(n),x]-

+ adiff[(n+1):(m-x),x]))/E[(n+1):(m-x),x]

> points(x:m,c(0,VR),pch=4)

Méthode itérative

Pour la méthode itérative, on notera que si k ≤ n,

kVx(0) =
k−1Vx(0) + π

1Ex+k−1

alors que si k > n

kVx(0) =
k−1Vx(0)

1Ex+k−1
− C.

Avant la retraite, la provision augmente du montant de la prime, et lorsque l’assuré prend sa
retraite, la provision diminue du montant de la rente annuelle versée.

> VI<-0

> for(k in 1:n){

+ VI<-c(VI,((VI[k]+prime)/E[1,x+k-1]))

+ }

> for(k in (n+1):(m-x)){

+ VI<-c(VI,((VI[k])/E[1,x+k-1]-1))

+ }

> points(x:m,VI,pch=5)

Comme auparavant, les trois méthodes donnent des résultats identiques, et on peut visualiser
l’évolution de la provision mathématique sur la Figure 4.4

> provision<-data.frame(k=0:(m-x),

+ retrospective=c(0,VR),prospective=c(0,VP),

+ iterative=VI)

> head(provision)

k retrospective prospective iterative

1 0 0.0000000 0.0000000 0.0000000

2 1 0.1723554 0.1723554 0.1723554

3 2 0.3511619 0.3511619 0.3511619

4 3 0.5367154 0.5367154 0.5367154

5 4 0.7293306 0.7293306 0.7293306

6 5 0.9293048 0.9293048 0.9293048

> tail(provision)

k retrospective prospective iterative

69 68 0.6692860 0.6692860 6.692860e-01

70 69 0.5076651 0.5076651 5.076651e-01

71 70 0.2760524 0.2760524 2.760525e-01

72 71 0.0000000 0.0000000 1.501743e-10

73 72 NaN 0.0000000 Inf

74 73 NaN 0.0000000 Inf

4.4 Algorithme récursif en assurance-vie

Giles (1993) a noté que, comme la plupart des quantitées utilisés en assurance vie pouvaient
être obtenues de manière récursive, il était possible d’utiliser des algorithmes sur les suites
définies par récurrence, pour calculer la plupart des grandeurs usuelles.

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ●

40 60 80 100

0
2

4
6

8
10

Age de l'assuré

P
ro

vi
si

on
s

m
at

hé
m

at
iq

ue
s

Figure 4.4 – Évolution de la provision mathématique pour un contrat d’assurance retraite,
avec cotisation annuelle pendant n années puis versement d’une rente viagère, x = 35, n = 30
et i = 3.5%.

4.4.1 Quelques exemples de relations de récurrence

En notant k|qx = P(k < Tx ≤ k+1), la probabilité de décèder à l’âge x+k, la valeur actuelle
probable d’un euro payé au décès d’une personne d’âge x aujourd’hui (à terme échu), s’écrit :

Ax = E(νTx+1) =
∞∑

k=0

vk+1
k|qx.

On notera qu’il existe une relation liant Ax et Ax+1,

Ax = νqx + νpxAx+1

Considérons maintenant une rente vie entière :

äx =
∞∑

k=0

νkkpx,

qui peut se limiter également à n années :

äx:nq =
n−1∑

k=0

νkkpx =
1−Ax:nq

1− ν o ù Ax:nq = νnnpx

Si l’on considère des paiements immédiats, et non plus à terme échu, on obtient

ax:nq =

n∑

k=1

νkkpx = äx:nq − 1 + νnnpx.

Dans le cas où on ne limite plus à n années, on a aussi :

äx = 1 + νpxäx+1.

4.4.2 Algorithme de calculs itératifs

Les formules obtenues par récurrence sont particulièrement intéressants, car il est facile de
les mettre en oeuvre. Supposons que u = (un) satisfasse une équation de la forme

un = an + bnun+1,

pour n = 1, 2, · · · ,m de telle sorte que um+1 est connu, où a = (an) et b = (bn) sont connus. La
solution générale est alors donnée par

un =
um+1

∏m
i=0 bi +

∑m
j=n aj

∏j−1
i=0 bi∏n−1

i=0 bi

avec la convention b0 = 1. On peut utiliser le code générique suivant pour résoudre numériquement
de telles relations de récurrence,
> recurrence <- function(a,b,ufinal){

+ s <- rev(cumprod(c(1, b)));

+ return(rev(cumsum(s[-1] * rev(a))) + s[1] * ufinal)/rev(s[-1])

+ }

Par exemple pour les calculs d’espérance de vie,

ex = px + px · ex+1

Le code est alors tout simplement,
> Lx <- TD$Lx

> x <- 45

> kpx <- Lx[(x+2):length(Lx)]/Lx[x+1]

> sum(kpx)

[1] 30.32957

> esp.vie(x)

[1] 30.32957

> px <- Lx[(x+2):length(Lx)]/Lx[(x+1):(length(Lx)-1)]

> e<- recurrence(px,px,0)

> e[1]

[1] 30.32957

On retrouve la même espérance de vie restante pour une personne de 45 ans que le calcul
direct, sauf qu’ici on a le vecteur des espérances de vie résiduelles à différents âges.

Pour les calculs de valeur actuelle probable, on peut regarder une assurance décès, avec un
payement à terme échu, l’année du décés de l’assuré,

Ax = νqx + νpxAx+1

Là encore, on peut utiliser l’écriture par récurrence,

> x <- 20

> qx <- 1-px

> v <- 1/(1+i)

> Ar <- recurrence(a=v*qx,b=v*px,xfinal=v)

Si on regarde la valeur de Ax pour x = 20,
> Ar[1]

[1] 0.1812636

> Ax[20]

[1] 0.1812636

Pour les calculs de provisions mathématiques

nVx = vqx+n − px + vpx+nn+1Vx

> x <- 50

> px <- L[(x+2):length(L)]/L[(x+1):(length(L)-1)]

> px <- px[-length(px)]

> qx <- 1-px

> V=recurrence(a=v*qx+px[1],b=v*px,xfinal=0)

4.5 Le package lifecontingencies

Toutes ces fonctions - ou presque - ont été programmées dans le package lifecontingencies.

4.5.1 Les quantités démographiques

> library(lifecontingencies)

A partir de TD$Lx correspondant au vecteur (Lx), il est possible de calculer à l’aide de la
classe lifetable une table de mortalité, comportant pour tous les âges x les probabiliés de
survie px, mais aussi les espérances de vie résiduelles ex.

> TD8890 <- new("lifetable",x=TD$Age,lx=TD$Lx,name="TD8890")

removing NA and 0s

> TV8890 <- new("lifetable",x=TV$Age,lx=TV$Lx,name="TV8890")

removing NA and 0s

> TV8890

Life table TV8890

x lx px ex

1 0 100000 0.9935200 80.2153857

2 1 99352 0.9994162 79.2619494

3 2 99294 0.9996677 78.2881343

4 3 99261 0.9997481 77.3077311

5 4 99236 0.9997783 76.3247626

6 5 99214 0.9997984 75.3400508

7 6 99194 0.9998286 74.3528792

8 7 99177 0.9998387 73.3647956

9 8 99161 0.9998386 72.3765545

10 9 99145 0.9998386 71.3881558

Cet objet (de la classe S4) peut alors être appelé en utilisant différentes fonctions, comme la
probabilité de survie 10p40,

> pxt(TD8890,x=40,t=10)

[1] 0.9581196

> p[10,40]

[1] 0.9581196

qui correspondent aux calculs effectués auparavant.
Plusieurs autres fonctions peuvent être utilisées pour calculer d’autres quantités, comme

10q40, ou encore
◦
e40:10q,

> qxt(TD8890,40,10)

[1] 0.0418804

> exn(TD8890,40,10)

[1] 9.796076

Il est aussi possible de calculer des hpx pour des durées h non entières. Plusieurs interpolations
sont proposées, linéaire, avec une force de mortalité constante, ou encore hyperbolique,

> pxt(TD8890,90,.5,"linear")

[1] 0.8961018

> pxt(TD8890,90,.5,"constant force")

[1] 0.8900582

> pxt(TD8890,90,.5,"hyperbolic")

[1] 0.8840554

On peut visualiser ces trois méthodes d’interpolation sur la Figure 4.5
> pxtL <- function(u){pxt(TD8890,90,u,"linear")}

> pxtC <- function(u){pxt(TD8890,90,u,"constant force")}

> pxtH <- function(u){pxt(TD8890,90,u,"hyperbolic")}

> PXTL <- Vectorize(pxtL)

> PXTC <- Vectorize(pxtC)

> PXTH <- Vectorize(pxtH)

> u=seq(0,1,by=.025)

> plot(u,PXTL(u),type="l",xlab="Année",ylab="Probabilité de survie")

> lines(u,PXTC(u),col="grey")

> lines(u,PXTH(u),pch=3,lty=2)

> legend(.45,.99,c("Linéaire","Force de mortalité constante",

+ "Hyperbolique"),lty=c(1,1,2),

+ col=c("black","grey","black"),bty="n")

Pour le premier, on utilise tout simplement une interpolation linéaire entre [h]px et [h]+1px
(en notant [h] la partie entière de h ≥ 0),

hp̃x = (1− h+ [h]) [h]px + (h− [h]) [h]+1px

Pour le second, on utilise le fait que

hpx = exp

(
−
∫ h

0
µx+sds

)
.

Supposons que h ∈ [0, 1), et que s 7→ µx+s est constante sur l’intervalle [0, 1), alors la formule
précédante devient

hpx = exp

(
−
∫ h

0
µx+sds

)
= exp[−µx · h] = (px)h .

Enfin, la dernière (toujours dans le cas où h ∈ [0, 1)), proposée par Baldacci, repose sur l’utili-
sation d’une relation de la forme

1

hpx
=

1− h+ [h]

[h]px
+
h− [h]

[h]+1px

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Année

P
ro

ba
bi

lit
é

de
 s

ur
vi

e

Linéaire
Force de mortalité constante
Hyperbolique

●

●

Figure 4.5 – Interpolation de hpx pour x = 90 et h ∈ [0, 1].

Cette relation peut également s’écrire

hpx =
[h]+1px

1− (1− h+ [h]) [h+1]hqx

> .5*pxt(TD8890,90,1)+.5*1

[1] 0.8961018

> pxt(TD8890,90,1)^.5

[1] 0.8900582

> pxt(TD8890,90,1)/(1-.5*qxt(TD8890,90,1))

[1] 0.8840554

> (.5/1+.5/pxt(TD8890,90,1))^(-1)

[1] 0.8840554

On peut aussi travailler sur plusieurs têtes, par exemple un homme (dont la table est TD88-
90) et une femme (dont la table est TV88-90). On peut alors calculer des probabilités de survie
jointe, hpxy, ou ‘au contraire’ la probabilité qu’au moins une personne soit encore en vie hpxy,

> pxyt(TD8890,TV8890,x=40,y=42,t=10,status="joint")

[1] 0.9376339

> pxyt(TD8890,TV8890,x=40,y=42,t=10,status="last")

[1] 0.9991045

On peut aisément retrouver des propriétés classiques, comme

hpxy = hpx · hpy,
(en supposant les survies indépendantes) mais aussi

hpxy = hpx + hpy − hpxy.

> pxt(TD8890,40,10)*pxt(TV8890,42,10)

[1] 0.9376339

> pxt(TD8890,40,10)+pxt(TV8890,42,10)-

+ pxyt(TD8890,TV8890,x=40,y=42,t=10,status="joint")

[1] 0.9991045

Pour l’analyse de la survie sur deux têtes, on peut ainsi visualiser les fonctions de survie des
durées restantes avant le premier et le dernier décès, sur la Figure 4.6
> JOINT=rep(NA,65)

> LAST=rep(NA,65)

> for(t in 1:65){

+ JOINT[t]=pxyt(TD8890,TV8890,x=40,y=42,t-1,status="joint")

+ LAST[t]=pxyt(TD8890,TV8890,x=40,y=42,t-1,status="last") }

> plot(1:65,JOINT,type="l",col="grey",xlab="",ylab="Probabilité de survie")

> lines(1:65,LAST)

> legend(5,.15,c("Dernier survivant","Vie jointe"),lty=1,

+ col=c("black","grey"),bty="n")

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
é

de
 s

ur
vi

e

Dernier survivant
Vie jointe

Figure 4.6 – Evolution de h 7→ hpxy et h 7→ hpxy pour x = 40 et y = 42.

On peut également obtenir les espérances de ces deux lois,

> exyt(TD8890,TV8890,x=40,y=42,status="joint")

[1] 30.39645

> exyt(TD8890,TV8890,x=40,y=42,status="last")

[1] 44.21737

4.5.2 Les quantités actuarielles classiques

La valeur probable d’un capital différé est kEx, qui peut être calculé par

> Exn(TV8890,x=40,n=10,i=.04)

[1] 0.6632212

> pxt(TV8890,x=40,10)/(1+.04)^10

[1] 0.6632212

Les calculs d’annuités sont eux aussi relativement simples à obtenir, et à recalculer, par
exemple les näx

> Ex <- Vectorize(function(N){Exn(TV8890,x=40,n=N,i=.04)})

> sum(Ex(0:9))

[1] 8.380209

> axn(TV8890,x=40,n=10,i=.04)

[1] 8.380209

ou encore les nAx,

> Axn(TV8890,40,10,i=.04)

[1] 0.01446302

Il est aussi possible d’avoir des flux croissants (Increasing) ou décroissants (Decreasing) de
manière arithmétique, i.e.

nIAx =

n−1∑

k=0

k + 1

(1 + i)k
· k−1px · 1qx+k−1,

ou

nDAx =

n−1∑

k=0

n− k
(1 + i)k

· k−1px · 1qx+k−1,

> DAxn(TV8890,40,10,i=.04)

[1] 0.07519631

> IAxn(TV8890,40,10,i=.04)

[1] 0.08389692

Dans le cas où le capital n’est pas versé en début d’années, mais fractionné (par exemple
tous les mois), les calculs sont un peu différents. Par exemple, si on ne verse plus 1 (euro) en
début d’année, mais 1/12 tous les mois, la valeur actuelle probable des flux futurs est

> sum(Ex(seq(0,5-1/12,by=1/12))*1/12)

[1] 4.532825

Ce montant est obtenu directement à l’aide du paramètre k dans la fonction axn,

> axn(TV8890,40,5,i=.04,k=12)

[1] 4.532825

4.5.3 Exemple de calculs de primes et de provisions mathématiques

Considérons un contrat d’assurance décès où un capital K est versé aux ayant-droits si le
décès d’une personne x survient entre l’âge x et x+m. On suppose qu’une prime constante est
versée annuellement entre l’âge x et x+ n (avec n ≤ m). La prime π est alors solution de

K ·Ax:mq = π · äx:nq, i.e. π = K · Ax:mq

äx:nq
.

Ainsi, si un personne de x = 35 ans souhaite un contrat assurant le versement d’un capital
de K = 100000 à son décès s’il survient avant qu’il n’ait 75 ans, et qu’il verse une prime constant
jusqu’à ses 75 ans (au plus, il ne verse plus de prime s’il décède), alors la prime est donnée par

> (p <- 100000*Axn(TV8890,35,40,i=.04)/axn(TV8890,35,40,i=.04))

[1] 366.3827

On parle ici classiquement de benefit premium. On peut également calculer la provision
mathématique associée à ce contrat, i.e. benefit reserve. On se placera dans le cas où m = n. La
provision est donnée, à la date k, comprise entre 0 et n par

kVx = K ·Ax+k:n−k| − π · äx+k:n−k|

(en écriture prospective).

> V <- Vectorize(function(k){100000*Axn(TV8890,35+k,40-k,i=.04)-

+ p*axn(TV8890,35+k,40-k,i=.04)})

> V(0:5)

[1] 0.0000 290.5141 590.8095 896.2252 1206.9951 1521.3432

La Figure 4.7 permet de visualiser l’évolution de la provision
> plot(0:40,c(V(0:39),0),type="b",ylab="provisions mathématiques",xlab="k")

4.6 Exercices

Exercise 4.6.1. Le modèle de Gompertz suppose que la fonction de survie associée à une vie
humaine pouvait s’écrire

Lx = κγc
x
.

A partir des tables TV88-90 et TD88-90, et de 10p50, 10p60 et 10p70, proposer des estimateurs
des paramètres κ, c et γ.

Exercise 4.6.2. On suppose que µx = a+bcxdx
2
. Construire une fonction permettant de calculer

kpx.

Exercise 4.6.3. Montrer qu’il existe une relation de récurence sur les IAx:nq. En utilisant
l’algorithme présenté dans la Section 4.4, les calculer.

Exercise 4.6.4. On supposera que les durées de vie résiduelles ne sont plus indépendentes, mais
que

tpxy = P(Tx > t, Ty > t) = C(tpx, tpy)

où C est une copule. Pour les tables TV88-90 et TD88-90, et pour des assurés d’âge x = 40 et
y = 45, tracer

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

0 10 20 30 40

0
20

00
40

00
60

00

k

pr
ov

is
io

ns
 m

at
hé

m
at

iq
ue

s

Figure 4.7 – Evolution de h 7→ hpxy et h 7→ hpxy pour x = 40 et y = 42.

1. la prime d’une rente de veuvage (versée entre le premier et le dernier décès, à terme échu)
en fonction de θ où Cθ est une copule Gaussienne

2. la prime d’une rente de veuvage en fonction de θ où Cθ est une copule de Clayton

3. la prime d’une rente de veuvage en fonction de θ où Cθ est une copule de Gumbel

Exercise 4.6.5. Considérons une assurance de prêt : un individu d’âge x a emprunté un capital
d’un montant C et s’est engagé à le rembourser en n annuitiés de montant ρ, payables à terme
échu. On suppose qu’à la date de prise d’effet du contrat de prêt, il souscrit une assurance
garantissant un remboursement des sommes restant dues si l’assuré décède avant d’avoir atteint
l’âge +n. On notera t le taux d’intérêt du prêt (qui est a priori différent du taux d’actualisation
i).

1. Exprimer t en fonction de C, de r et de n. Ecrire la fonction permettant de calculer ce
taux.

2. On note Ck le capital restant dû à la fin de la kème année, montrer que

Ck = C − (r − tC)
(1 + t)k − 1

t

Ecrire la fonction renvoyant le vecteur de ces capitaux (C,C1, · · · , Cn).

3. Montrer que la prime pure unique du contrat d’assurance s’écrit

π =
n∑

k=1

k−1px · 1qx+k−1Ck−1
1

(1 + i)k

Écrire une fonction permettant de calculer cette prime en fonction de l’âge de l’assuré x,
du taux d’actualisation i, de la table de mortalité retenue L, du capital C, de la durée du
prêt n et du taux du prêt t.

4. En supposant que la prime d’assurance soit payée annuellement (et est constante dans le
temps), pendant m années (1 ≤ m ≤ n), et en notant que la prime annuelle s’écrit π/mäx,
calculer la provision mathématique par une des trois méthodes (prospective, rétrospective
ou recursive).

5. En supposant que la prime d’assurance n’est pas plus constante dans le temps, mais pro-
portionnelle au capital restant du (payée aux dates 0, 1, ..., n − 1) montrer que la prime
est

πk =
πCk∑n−1

j=0 kpxCk(1 + i)−k
.

Ecrire une fonction renvoyant le vecteur des primes, et représenter graphique l’évolution
de la provision mathématique.

Exercise 4.6.6. Representer l’évolution des provisions mathématiques pour un contrat avec
capital différé (de n années pour un assuré d’âge x) avec contre-assurance, au sens où l’assureur
rembourse les primes en cas de décès avant l’échéance.

Chapitre 5

Les tables prospectives

De même que le provisionnement (évoqué dans le chapitre 3) posait le problème de la dy-
namique de la vie des sinistres (dont le montant n’est pas connu le jour de la survenance du
sinistre), les contrats d’assurance-vie sont liés à des probabilités de décès (ou de survie) dans un
futur plus ou moins lointain. Ces calculs doivet donc faire intervenir un aspect temporel. Par
exemple, lorsque nous écrivions la formule

k+hpx = hpx+k · kpx,

nous omettons le fait que les probabilités ne devraient pas être calculées à la même date. Si la
personne est d’âge x à la date t, elle aura un âge x+ k à la date t+ k. Par exemple, en notant
en puissance l’année où la probabilité est calculée, on aurait

25+25p
(2010)
x = 25p

(2035)
x+25 · 25p

(2010)
x ,

ou

35+15p
(2010)
x = 15p

(2045)
x+35 · 35p

(2010)
x .

Si k est elevé, on imagine que les probabilités de survie doivent tenir compte des améliorations
de santé, notamment les conditions de vie, les avancées en médecine. Pour des compléments
théoriques sur les outils présentés ici, nous renvoyons à Pitacco et al. (2009), Denuit & Robert
(2007) ou encore Cairns et al. (2008)

5.1 Les bases de données prospectives

Dans le cadre statique de l’assurance-vie, détaillé dans le Chapitre 4, toutes les grandeurs
pouvaient être construites à partir des Lx, ou des 1px, où x était l’âge des individus. Ici, nous
allons intégrer la dimension temporelle, en notant qu’une table de mortalité est construite à une
date t. Aussi, formellement, on notera Lx,t le nombre de personnes d’âge x en vie à la date t.

Les données que nous allons utilisées sont tirées du site internet http://www.mortality.org, et
il s’agit de données françaises, avec respectivement la mortalité des femmes, des hommes, et de
l’ensemble de la population, entre 1899 et 2005. Ici on dispose de Dx,t le nombre de personnes
décédées à l’âge x l’année t (la base Deces), et Ex,t l’exposition (la base Expo). Un léger travail
sur les données du site est nécessaire (car un âge 110+ existe dans la base est rend les âges non
numériques),

> Deces$Age <- as.numeric(as.character(Deces$Age))

> Deces$Age[is.na(Deces$Age)] <- 110

159

http://www.mortality.org

> Expo$Age <- as.numeric(as.character(Expo$Age))

> Expo$Age[is.na(Expo$Age)] <- 110

Pour commencer, on peut visualiser l’évolution de la surface du taux de mortalité, afin de
mieux comprendre la nécessité d’une analyse dynamique de la démographie, où

µx,t =
Dx,t

Ex,t
.

L’évolution de cette surface est repésentée sur la Figure 5.1, avec (x, t) 7→ logµx,t.

> MU <- Deces[,3:5]/Expo[,3:5]

> Ages <- unique(Deces$Age)

> Annees <- unique(Deces$Year)

> matriceMU <- matrix(MU[,3],length(Ages),length(Annees))

> persp(Ages[1:100],Annees,log(matriceMU[1:100,]), theta=-30,

+ xlab="Age",zlab="Taux de décès (log)")

Age

0
20

40
60

80

Annees

1900

1920

1940

1960
1980
2000

Taux de décès (log)

-8

-6

-4

-2

Figure 5.1 – Surface de mortalité (x, t) 7→ logµx,t pour les Hommes, en France, entre 1899 et
2005, et entre 0 et 110 ans.

5.1.1 La lecture longitudinale des tables

Ces données ne sont pas sous le format que nous avions vu dans le chapitre 4. Toutefois, on
va pouvoir construire des fonctions proches de celles construites alors. On peut par exemple en
placer l’année an=1900 ou an=2000 pour décrire la mortalité cette année là.

> mu.an <- function(a, pointille=1, cex=1.5){

+ Da <- Deces[Deces$Year==a,]

+ Ea <- Expo[Expo$Year==a,]

+ MUa <- Da[,3:5]/Ea[,3:5]

+ titre <- paste("Taux de mortalit\’e",a,sep=" ")

+ plot(Ages,log(MUa[,1]), type="l", xlab="Age", ylab="Taux de d\’ecès (log)",

+ main=titre, lwd=1.7, ylim=c(-9.8,.5), lty=pointille, cex=cex, cex.axis=cex,

+ cex.lab=cex, cex.main=cex)

+ lines(Ages,log(MUa[,2]),col="grey",lwd=1.7,lty=pointille)

+ legend(75,-6,c("Femmes","Hommes"),lty=pointille,lwd=1.7,

+ col=c("grey","black"),bty="n")

+ }

Cette petite fonction permet de tracer x 7→ logµx,t à t fixé, où µx,t = Dx,t/Ex,t. La Figure 5.2,
permet de comparer ces deux fonctions, en 1900 et en 2000.

Remark 5.1.1. Il ne s’agit pas ici du suivi d’une cohorte, mais de l’étude de la mortalité pour
des personnes d’âge différents (et nées à des périodes différentes) à une date t bien précise.

> par(mfrow = c(1, 2))

> mu.an(1900)

> mu.an(2000)

> par(mfrow = c(1, 1))

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Taux de mortalité 1900

Age

Ta
ux

 d
e

dé
cè

s
(lo

g)

Femmes
Hommes

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Taux de mortalité 2000

Age

Ta
ux

 d
e

dé
cè

s
(lo

g)

Femmes
Hommes

Figure 5.2 – Logarithmes des taux de mortalité x 7→ logµx,t pour les Hommes et les Fennes,
en France, entre 0 et 110 ans, en 1900 à gauche, et en 2000 à droite.

Compte tenu du lien entre le taux de hasard et les fonctions de survie, on peut en déduire
les fonctions de survie à la naissance (c’est à dire x=0). On utilise (comme dans le chapitre

précédant)

hpx,t = exp(−
∫ x+h

x
µs,tds).

Là encore, une fonction générique permettra de comparer des courbes à plusieurs dates.

> proba.survie <- function(x, a, cex=1.5){

+ Da <- Deces[Deces$Year==a,]

+ Ea <- Expo[Expo$Year==a,]

+ MUa <- Da[,3:5]/Ea[,3:5]

+ titrey <- paste("Probabilit\’e de survie à l’âge",x,"en",a,sep=" ")

+ titre <- paste("Probabilit\’e de survie en",a,sep=" ")

+ plot(1:length(Ages),exp(-cumsum(MUa[(x+1):length(Ages),2])), type="l", xlab="Age",

+ ylab=titrey, main=titre, lwd=1.7, ylim=c(0,1), cex=cex, cex.axis=cex, cex.lab=cex,

+ cex.main=cex)

+ lines(1:length(Ages),exp(-cumsum(MUa[(x+1):length(Ages),1])),col="grey",lwd=1.7)

+ legend(0,.2,c("Femmes","Hommes"),lty=1,lwd=1.7,col=c("grey","black"),bty="n")

+ }

La Figure 5.3, permet de comparer ces deux fonctions, en 1900 et en 2000.
> par(mfrow = c(1, 2))

> proba.survie(0,1900)

> proba.survie(0,2000)

> par(mfrow = c(1, 1))

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probabilité de survie en 1900

Age

P
ro

ba
bi

lit
é

de
 s

ur
vi

e
à

l'â
ge

 0
 e

n
19

00

Femmes
Hommes

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probabilité de survie en 2000

Age

P
ro

ba
bi

lit
é

de
 s

ur
vi

e
à

l'â
ge

 0
 e

n
20

00

Femmes
Hommes

Figure 5.3 – Fonctions de survie à la naissance h 7→ hp0,t pour les Hommes - à gauche - et les
Femmes - à droite - en France, entre 0 et 110 ans, entre 1900 (foncé) et 2000 (clair).

Enfin, la figure 5.4, permet de visualiser la rectangularisation des fonctions de survie.
> cex <- 1.5

>

> par(mfrow = c(1, 2))

> plot(Ages, prob.par.annee(1900, 2), type="l", xlab="Age",

+ ylab="Probabilit\’e de survie à la naissance", main="Mortalit\’e des hommes",

+ ylim=c(0,1), col=gray(1), xlim=c(0,120), cex=cex, cex.axis=cex, cex.lab=cex,

+ cex.main=cex)

> for(a in 1901:2000){

+ lines(Ages, prob.par.annee(a, 2), col=gray((a-1900)/100))

+ polygon(c(112,112,123,123),(c(a,a-1,a-1,a)-1900)/100, border=NA,

+ col=gray((a-1900)/100))

+ }

> for(a in seq(1900,2000,by=10)){

+ text(104,(a-1900)/100,a)

+ }

>

> plot(Ages, prob.par.annee(1900, 1), type="l", xlab="Age",

+ ylab="Probabilit\’e de survie à la naissance", main="Mortalit\’e des femmes",

+ ylim=c(0,1), col=gray(1), xlim=c(0,120), cex=cex, cex.axis=cex, cex.lab=cex,

+ cex.main=cex)

> for(a in 1901:2000){

+ lines(Ages, prob.par.annee(a, 1),col=gray((a-1900)/100))

+ polygon(c(112,112,123,123),(c(a,a-1,a-1,a)-1900)/100,border=NA,col=gray((a-1900)/100))

+ }

> for(a in seq(1900,2000,by=10)){

+ text(104,(a-1900)/100,a)

+ }

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mortalité des hommes

Age

P
ro

ba
bi

lit
é

de
 s

ur
vi

e
à

la
 n

ai
ss

an
ce

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mortalité des femmes

Age

P
ro

ba
bi

lit
é

de
 s

ur
vi

e
à

la
 n

ai
ss

an
ce

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

Figure 5.4 – Fonctions de survie à la naissance h 7→ hp0 pour les Hommes et les Fennes, en
France, entre 0 et 110 ans, en 1900 à gauche, et en 2000 à droite.

Pour alléger le calcul, on a une petite fonction auxiliaire qui extrait et calcul la probabilité
de survie pour un sexe donné.

> prob.par.annee <- function(annee, sexe=1)

+ {

+ MUa <- subset(Deces, Year==annee)[, 3:5]/subset(Expo, Year==annee)[, 3:5]

+ exp(-cumsum(MUa[1:length(Ages), sexe]))

+ }

5.1.2 La lecture transversale des tables

En fait, cette lecture longitudinale des tables (bien que correspondant à ce que nous avions
fait jusqu’à présent, et en particulier dans le chapitre précédant) ne parâıt pas forcément très
intéressante en assurance-vie, comme nous l’évoquions dans l’introduction. Aussi, afin de lire la
fonction de survie pour un individu (ou une cohorte), on ne lit plus la base par année (ou par
colonne dans une reprénsation matricielle Lx,t), mais suivant une diagonale (à t−x constant). Il
s’agit en effet de suivre un individu (ou ici une cohorte, par année de naissance) afin de valoriser
un produit d’assurance-vie pour un individu (ou des individus de la même génération. Ces trois
dimensions x (âge), t (date) et t− x (année de naissance) n’est pas sans rappeler la lecture des
triangles de provisionnement j (développement, ou âge d’un sinistre), i + j (année calendaire,
ou date de paiement) et i (année de survenance, ou année de naissance du sinistre). Aussi, afin
de lire la fonction de survie pour un individu (ou une cohorte), on ne lit plus la base par année,
mais suivant une diagonale (comme le suggèrait le diagramme de Lexis).

> Nannee <- max(Deces$Year)

> deces.trans <- function(naissance){

+ taille <- Nannee - naissance

+ Vage <- seq(0,length=taille+1)

+ Vnaissance <- seq(naissance,length=taille+1)

+ Cagreg <- Deces$Year*1000+ Deces$Age

+ Vagreg <- Vnaissance*1000+Vage

+ indice <- Cagreg %in% Vagreg

+ return(list(DecesT=Deces[indice,],ExpoT=Expo[indice,]))

+ }

> head(deces.trans(1950)$DecesT)

Year Age Female Male Total

5662 1950 0 18943.05 25912.38 44855.43

5774 1951 1 2078.41 2500.70 4579.11

5886 1952 2 693.20 810.32 1503.52

5998 1953 3 375.08 467.12 842.20

6110 1954 4 287.04 329.09 616.13

6222 1955 5 205.03 246.07 451.10

> tail(deces.trans(1950)$DecesT)

Year Age Female Male Total

11262 2000 50 1051 2532 3583

11374 2001 51 1047 2702 3749

11486 2002 52 1246 2801 4047

11598 2003 53 1361 2985 4346

11710 2004 54 1371 3042 4413

11822 2005 55 1396 3217 4613

C’est à partir de cette extraction que l’on peut construire les mêmes types de graphiques
qu’auparavant. Sur la Figure 5.5, on peut ainsi comparer l’impact sur le taux de mortalité d’une
lecture tranversale. La fonction générique est ici

> mu.an.transv <- function(a,add=TRUE){

+ Da <- deces.trans(a)$DecesT

+ Ea <- deces.trans(a)$ExpoT

+ MUa <- Da[,3:5]/Ea[,3:5]

+ titre <- paste("Taux de mortalit\’e",a,sep=" ")

+ if(add==FALSE){plot(0:(nrow(MUa)-1),log(MUa[,1]),type="l",

+ xlab="Age",ylab="Taux de d\’ecès (log)",main=titre,lwd=1.7,

+ ylim=c(-9.8,.5))}

+ lines(0:(nrow(MUa)-1),log(MUa[,1]),type="l",lwd=1.7,ylim=c(-9.8,.5),lty=1)

+ lines(0:(nrow(MUa)-1),log(MUa[,2]),col="grey",lwd=1.7,lty=1)

+ legend(75,-7.5,c("Femmes","Hommes"),lty=1,lwd=1.7,

+ col=c("grey","black"),bty="n")

+ if(add==TRUE){text(90,-7.45,"Transversale");text(90,-6,"Longitudinale")}}

On peut alors comparer les taux de mortalité pour les personnes née en 1900 et celles née
en 1950 (comme on travaille ici par cohorte, celle n’est en 1950 n’aura été observée que partiel-
lement),

> par(mfrow = c(1, 2))

> mu.an(1900,pointille=2)

> mu.an.transv(1900,add=TRUE)

> mu.an(1950,pointille=2)

> mu.an.transv(1950,add=TRUE)

> par(mfrow = c(1, 1))

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Taux de mortalité 1900

Age

Ta
ux

 d
e

dé
cè

s
(lo

g)

Femmes
Hommes

Femmes
Hommes

Transversale

Longitudinale

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Taux de mortalité 1950

Age

Ta
ux

 d
e

dé
cè

s
(lo

g)

Femmes
Hommes

Femmes
Hommes

Transversale

Longitudinale

Figure 5.5 – Logarithmes des taux de décès : lecture transversale versus lecture longitudinale,
pour une personne née en 1900 (à gauche) ou en 1950 (à droite).

Si la lecture transversale semble plus pertinante pour suivre une individu ou une cohorte, on
est limité par le fait qu’il faudra prévoir les taux de mortalité pour les personnes les plus jeunes
pour les années à venir. Les sections suivantes vont présenter la mise en oeuvre de plusieurs
modèles permettant de prédire le taux de mortalité.

5.2 Le modèle de Lee & Carter

La modélisation retenue par Lee & Carter (1992) pour le taux instantané de mortalité est la
suivante :

logµxt = αx + βxkt + εxt,

avec les variables aléatoires εxt i.i.d. L’idée du modèle est donc d’ajuster à la série (doublement
indicée par x et t) des logarithmes des taux instantanés de décès une structure paramétrique
(déterministe) à laquelle s’ajoute un phénomène aléatoire ; le critère d’optimisation retenu va
consister à maximiser la variance expliquée par le modèle, ce qui revient à minimiser la variance
des erreurs. On retient en général les deux contraintes d’identifiabilité suivantes :

xM∑

x=xm

βx = 1 et

tM∑

t=tm

kt = 0.

L’estimation des paramètres s’effectue en résolvant un problème de type “moindres carrés” :

(
α̂x, β̂x, kt

)
= arg min

∑

x,t

(logµxt − αx − βxkt)2 .

5.2.1 La library(demography)

Le package demography propose une implémentation de Lee-Carter, avec en plus des fonc-
tions permettant de projeter les taux de mortalité dans le futur. Dans un premier temps on
prépare les données en vue de leur utilisation avec la fonction lca.

> library(forecast)

> library(demography)

> YEAR <- unique(Deces$Year);nC=length(Annees)

> AGE <- unique(Deces$Age);nL=length(Ages)

> MUF <- matrix(Deces$Female/Expo$Female,nL,nC)

> MUH <- matrix(Deces$Male/Expo$Male,nL,nC)

> POPF <- matrix(Expo$Female,nL,nC)

> POPH <- matrix(Expo$Male,nL,nC)

On a alors les données prêtes à être transformées dans des données de demography,

> BASEH <- demogdata(data=MUH, pop=POPH, ages=AGE,

+ years=YEAR, type="mortality",

+ label="France", name="Hommes", lambda=1)

> BASEF <- demogdata(data=MUF, pop=POPF,ages=AGE,

+ years=YEAR, type="mortality",

+ label="France", name="Femmes", lambda=1)

Estimation des coefficients αx, βx et κt

On peut alors utiliser les fonctions de démographie, dont la fonction permettant d’estimer
les paramètres du modèle de Lee-Carter. La Figure 5.6 permet ainsi de visualiser l’évolution de
x 7→ αx et x 7→ βx

> par(mfrow = c(1, 2))

> LCH <- lca(BASEH)

> plot(LCHage,LCHax)

> plot(LCHage,LCHbx)

> par(mfrow = c(1, 1))

●

●

●

●

●

●
●
●
●
●●●●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●●

●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●●●
●

●

0 20 40 60 80 100

−
7

−
6

−
5

−
4

−
3

−
2

−
1

LCH$age

LC
H

$a
x

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●

●●●●●●●
●
●
●
●●

●
●
●

●
●

●
●

●

●

●

●
●
●

●
●
●●

●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●

●●●
●●

●
●●

●

●

0 20 40 60 80 100

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

LCH$age

LC
H

$b
x

Figure 5.6 – Evolution de x 7→ αx (à gauche) et x 7→ βx (à droite) .

Projection des κt

Une fois l’ajustement réalisé sur les données disponibles, on peut réaliser des projections de la
mortalité future. En particulier, library(forecast) propose de nombreuses fonctions possibles
pour prédire les valeurs κt futures.

Par exemple, les méthodes de lissage exponentiel,

> Y <- LCH$kt

> (ETS <- ets(Y))

ETS(A,N,N)

Call:

ets(y = Y)

Smoothing parameters:

alpha = 0.8923

Initial states:

l = 71.5007

sigma: 12.3592

AIC AICc BIC

1042.074 1042.190 1047.420

> (ARIMA <- auto.arima(Y,allowdrift=TRUE))

Series: Y

ARIMA(0,1,0) with drift

Coefficients:

drift

-1.9346

s.e. 1.1972

sigma^2 estimated as 151.9: log likelihood=-416.64

AIC=837.29 AICc=837.41 BIC=842.62

Graphiquement, il est alors possible de visualiser les prédictions obtenues pour ces deux
modèles, avec respectivement un lissage exponentiel, et une marche aléatoire (ARIMA(0,1,0))
avec une tendance linéaire, comme le montre la Figure 5.7

> par(mfrow = c(1, 2))

> plot(forecast(ETS,h=100),type="p",ylim=c(-560,120))

> plot(forecast(ARIMA,h=100),type="p",ylim=c(-560,120))

> par(mfrow = c(1, 1))

●●●●●●●●
●●●

●
●
●●

●
●
●
●

●

●

●●●●●●●●●
●
●●●●●●●●●●

●

●●
●

●

●

●●
●
●
●●●

●
●●●●

●●●●
●●
●●●●●

●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●

●●

Forecasts from ETS(A,N,N)

1900 1950 2000 2050 2100

−
50

0
−

40
0

−
30

0
−

20
0

−
10

0
0

10
0

●●●●●●●●
●●●

●
●
●●

●
●
●
●

●

●

●●●●●●●●●
●
●●●●●●●●●●

●

●●
●

●

●

●●
●
●
●●●

●
●●●●

●●●●
●●
●●●●●

●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●

●●

Forecasts from ARIMA(0,1,0) with drift

1900 1950 2000 2050 2100

−
50

0
−

40
0

−
30

0
−

20
0

−
10

0
0

10
0

Figure 5.7 – Projection des κt du modèle de Lee-Carter par un modèle de lissage exponentiel
(à gauche) et une marche aléatoire avec une tendance linéaire (à droite) .

Le modèle initial de Lee-Carter proposait de considérer un processus ARMA(1,1) sur la série
différenciée (une fois),

∆κt = φ∆κt−1 + δ + ut − θut−1

où ∆κt = κt − κt−1, i.e. un processus ARIMA(1,1,1). Mais il est aussi possible (et c’est ce qui
avait été retenu ici) d’utiliser un processus ARIMA autour d’une tendance linéaire

κt = α+ βt+ φκt−1 + ut − θut−1.

Restriction des données à la période après guerre

La volatilité de la prédiction semble venir de la prise en compte des deux séries de sauts des
coefficients κt correspondant à la surmortalité pendant les deux guerres mondiales, 1914-1918
et 1939-1945 (avec également l’épisode de grippe espagnole en 1918).

> LCH0=lca(BASEH,years=1948:2005)

> Y0 <- LCH0$kt

> Ys <- Y[((length(Y)-length(Y0)):length(Y))]

> Y0s <- (Y0-mean(Y0))/sd(Y0)*sd(Ys)+mean(Ys)

> (ARIMA0 <- auto.arima(Y0s,allowdrift=TRUE))

Series: Y0s

ARIMA(1,1,0) with drift

Coefficients:

ar1 drift

-0.5417 -2.4717

s.e. 0.1180 0.3834

sigma^2 estimated as 19.64: log likelihood=-165.92

AIC=337.84 AICc=338.29 BIC=343.96

En se restraignant à la période après guerre, le meilleur modèle ARIMA - autour de la
tendance linéaire - continu à être intégré (d = 1), mais la volatilité du bruit blanc est ici
beaucoup plus faible que sur le jeu de données incluant les deux guerres. Graphiquement, les
prédictions peuvent se comparer sur la Figure 5.8

> par(mfrow = c(1, 2))

> plot(forecast(ARIMA,h=100),type="p",ylim=c(-560,120),xlim=c(1900,2100))

> plot(forecast(ARIMA0,h=100),type="p",ylim=c(-560,120),xlim=c(1900,2100))

> abline(v=1948,lty=2)

> par(mfrow = c(1, 1))

On peut également comparer les estimateurs des coefficients α et β sur les deux jeux de
données, comme sur la Figure 5.9, avec en trait plein les estimations sur les données après
guerre et en grisé les coefficients précédants,

> par(mfrow = c(1, 2))

> plot(LCHage,LCHax,col="grey",ylim=range(LCH0$ax))

> lines(LCH0$age,LCH0$ax,lwd=2)

> plot(LCHage,LCHbx,col="grey")

> lines(LCH0$age,LCH0$bx,lwd=2)

> par(mfrow = c(1, 1))

Projection de différentes quantités actuarielles

Pour commencer, le plus simple est de regarder l’évolution de l’espérance de vie en 2005 pour
une personne d’âge x, que l’on peut visualiser sur la Figure 5.10

> LCHf<-forecast(LCH,h=100)

> LCHT<-lifetable(LCHf)

> LCHTu<-lifetable(LCHf,"upper")

> LCHTl<-lifetable(LCHf,"lower")

●●●●●●●●
●●●

●
●
●●

●
●
●
●

●

●

●●●●●●●●●
●
●●●●●●●●●●

●

●●
●

●

●

●●
●
●
●●●

●
●●●●

●●●●
●●
●●●●●

●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●

●●

Forecasts from ARIMA(0,1,0) with drift

1900 1950 2000 2050 2100

−
50

0
−

40
0

−
30

0
−

20
0

−
10

0
0

10
0

●
●
●
●
●
●
●●●●

●●●●
●●
●●●●●

●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●

Forecasts from ARIMA(1,1,0) with drift

1900 1950 2000 2050 2100

−
50

0
−

40
0

−
30

0
−

20
0

−
10

0
0

10
0

Figure 5.8 – Projection des κt du modèle de Lee-Carter par un modèle de marche aléatoire
avec une tendance linéaire avec les données complètes (à gauche) et les données après guerre (à
droite).

●

●

●

●

●
●
●
●
●●●●●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●

●●
●●

●
●●●

●
●
●●

●●
●
●●

●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●

●

0 20 40 60 80 100

−
8

−
6

−
4

−
2

LCH$age

LC
H

$a
x

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●

●●●●●●●
●
●
●
●●

●
●
●

●
●

●
●

●

●

●

●
●
●

●
●
●●

●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●

●●●
●●

●
●●

●

●

0 20 40 60 80 100

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

LCH$age

LC
H

$b
x

Figure 5.9 – Evolution de x 7→ αx (à gauche) et x 7→ βx (à droite), avec l’estimation sur les
données après guerre en noir, et sur le XXème siècle en grisé.

> plot(0:100,LCHT$ex[,5],type="l",lwd=2,main="Esp\’erance de vie en 2005",

+ ylab="Esp\’erance de vie r\’esiduelle",xlab="Age")

> polygon(c(0:100,100:0),c(LCHTu$ex[,5],rev(LCHTl$ex[,5])),

+ border=NA,col="grey")

> lines(0:100,LCHT$ex[,5],type="l",lwd=2)

0 20 40 60 80 100

0
20

40
60

80
Espérance de vie en 2005

Age

E
sp

ér
an

ce
 d

e
vi

e
ré

si
du

el
le

Figure 5.10 – Espérance de vie résiduelle à l’âge x, en 2005.

Les résidus du modèle

Dans le modèle de Lee-Carter, nous avions

logµx,t = αx + βx · κt + εx,t,

où les résidus εx,t sont supposés i.i.d. Notons ε̂x,t les pseudo-résidus obtenus lors de l’estimation,
i.e.

ε̂x,t = logµx,t −
(
α̂x + β̂x · κ̂t

)
.

Il est important de vérifier que les résidus peuvent être considérés comme i.i.d. On peut visualiser
les erreurs ε̂x,t en fonction de x sur la Figure 5.11 et de t sur la Figure 5.12.

> RES<-residuals(LCH)

> couleur<-gray(seq(0,1,by=1/length(RES$x)))

> plot(rep(RES$y,length(RES$x)),RES$z,col=

+ couleur[rep(RES$x-RES$x[1]+1,each=length(RES$y))],

+ xlim=c(0,120),ylim=c(-1.62,1.62),

+ xlab="Age",ylab="")

> for(a in 1901:2000){

+ polygon(c(112,112,123,123),(c(a,a-1,a-1,a)-1900)/

+ 100*3-1.5,border=NA,col=gray((a-1900)/100))}

> for(a in seq(1900,2000,by=10)){

+ text(106,(a-1900)/100*3-1.5,a)}

●

●
●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●●

●

●●
●

●
●

●
●●

●

●

●●
●

●●
●

●

●
●

●●●

●
●●●

●

●

●

●

●

●●●

●
●

●

●
●

●●●
●

●●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●●
●●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●●

●●●

●

●

●
●●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●●

●●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●●●

●
●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●●●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●●

●●
●

●
●

●

●

●

●●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●●●
●

●

●

●
●

●●

●

●

●

●●
●

●
●

●

●●●

●

●

●
●

●●●

●

●

●
●

●

●

●

●●
●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●●

●

●

●
●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●●

●

●

●
●●

●

●●

●
●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●●
●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●●
●●

●
●

●

●●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●
●●

●
●

●
●

●●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●
●●●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●
●●

●
●

●

●
●●

●
●●●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●
●●●

●●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●●

●

●●
●

●
●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●●●●

●●
●●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●●

●●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●●
●●

●
●

●

●

●●
●●

●

●

●●●●

●

●

●●

●●

●

●

●
●

●

●

●●

●

●●

●

●●

●●●
●●●

●●●
●

●
●●

●●

●

●

●

●
●

●●

●
●●●

●
●

●
●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●
●●

●
●

●

●

●●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●●
●

●●●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●●

●●

●
●●●

●
●

●
●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●
●●

●●●

●

●

●●●
●

●

●

●
●

●
●

●●

●

●

●●
●●

●
●●

●●
●

●
●●

●

●

●

●

●

●
●

●

●
●●●●

●●
●

●

●
●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●

●
●

●

●

●●

●

●
●

●●

●
●

●●
●

●
●

●
●●

●
●●●

●

●●
●

●

●

●●

●

●
●

●
●●

●
●

●●●
●

●
●

●

●

●●

●

●

●●

●

●

●

●●●
●

●●

●●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●

●●

●●
●

●

●●
●

●●

●
●

●●

●

●

●
●●

●
●

●
●

●
●

●

●
●

●●●
●

●●
●

●●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●●●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●
●●

●●

●

●

●
●●

●
●●

●

●
●

●
●

●●
●●

●

●

●

●●●

●

●

●●

●
●

●

●
●

●●
●

●
●●

●
●

●
●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●
●●

●●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●

●●●

●●

●
●●

●

●

●

●
●

●●
●●●●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●
●●

●
●●

●

●

●
●

●●

●

●
●

●

●

●
●●

●

●●

●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●●●
●

●
●●●

●●
●

●●●

●
●

●
●

●●●●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●●

●

●●

●●●
●

●
●●

●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●●●

●●

●

●

●

●
●

●●●
●●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●●●

●

●●
●

●

●●
●●

●

●●

●●
●

●

●

●

●●

●

●●
●

●●●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●
●

●

●
●

●

●●
●

●

●
●●

●

●
●

●

●●
●

●
●

●

●●
●●

●●

●

●●

●
●

●●
●

●●●●●●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●
●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●●

●
●●

●
●

●

●
●

●

●

●●

●
●

●●●

●

●

●●

●
●

●

●

●●●
●●●

●●

●

●●

●
●

●
●

●
●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●

●●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●●

●

●
●

●●●

●
●

●●
●

●●

●
●

●●
●

●●
●

●
●

●●
●

●

●

●●

●●●

●
●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●●●

●
●

●
●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●●●

●
●

●●
●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●●

●

●

●

●
●

●
●

●●●
●●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●●
●●●●

●

●
●●●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●●●
●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●●

●

●●
●

●●

●

●

●
●

●●●
●●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●●●●●
●

●

●
●

●
●●

●

●

●
●●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●●

●●

●●

●
●

●●●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●●
●

●●
●

●

●●

●●
●●●●●●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●●●
●●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●
●●

●●●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●●

●●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●●●

●
●

●
●

●
●

●
●●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●●●
●

●

●
●

●
●●

●●●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●
●

●●

●●

●

●
●

●

●

●

●
●

●●
●

●
●●

●●
●

●

●●

●●
●

●
●

●
●●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●
●●●

●
●

●

●

●●
●●●●

●●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●●●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●
●

●

●●
●

●●

●
●

●●

●
●

●

●
●

●

●●
●●●●

●
●●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●●
●●

●

●
●●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●
●●●●

●●●
●

●●
●

●●●●●●●

●
●

●
●

●

●
●●

●
●●

●

●●

●
●

●●

●
●

●●

●●

●

●●●

●
●

●●

●

●

●●●
●

●●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●
●●●

●●●

●●

●

●

●
●●

●
●

●●●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●●
●

●

●

●●

●

●
●

●
●●

●
●●●●

●
●

●●
●

●
●

●
●

●

●

●

●●●

●
●

●
●

●

●●
●

●

●
●

●

●
●

●
●●

●●●●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●
●

●●
●

●
●●

●

●●
●

●

●●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●●
●

●
●

●
●

●
●●

●
●

●
●

●

●●●
●

●

●

●●

●

●

●●

●
●●

●

●●

●
●

●●

●

●

●●
●●

●●●●

●
●

●
●

●

●●

●

●●

●

●

●

●●●
●●

●
●●●

●

●
●●

●

●●●●
●

●

●

●●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●●
●

●●

●●●
●

●

●
●

●
●

●

●
●●

●●

●●
●

●
●

●●●

●
●●

●
●

●
●●

●
●

●●

●

●
●

●
●

●●

●
●

●
●●

●●
●

●●

●
●

●

●●

●

●
●

●

●

●

●●

●●●●●●●●

●
●●

●

●
●

●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●

●●
●

●

●●●
●

●

●
●●

●●
●●

●●

●
●

●

●●●

●

●●
●●

●●
●●

●

●
●

●●
●●●●

●●●●●
●●

●

●

●
●●

●

●

●

●
●

●
●

●●●

●●
●

●
●●●

●●●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●●●
●

●

●
●

●●
●

●
●

●

●
●

●

●●●●●●●
●●●

●

●
●●

●
●

●

●●

●

●●
●

●●●

●
●

●

●●

●
●●

●
●

●

●●
●

●
●

●●
●

●
●●

●

●
●

●
●

●
●

●

●

●
●●

●
●●

●●●
●

●
●●●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●●

●
●●●

●
●

●
●

●

●
●

●

●●
●

●●
●

●
●●●

●
●

●●●●●●●●
●

●●
●

●

●
●

●
●

●
●

●

●

●●
●

●●●●
●●

●

●

●

●
●●●●●●

●●●

●

●

●

●

●
●

●

●
●

●●●
●●

●

●

●

●

●●

●
●

●
●

●●●●●
●

●
●

●
●●●●

●●

●

●
●

●●●
●

●●

●

●●●

●
●

●

●
●●

●
●●

●

●
●

●
●●●

●●
●●

●●●●

●

●

●

●

●

●

●

●

●

●●●
●

●
●●

●●●

●
●

●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●●●

●●●
●●●●

●●
●

●
●

●
●

●●
●

●●

●●

●●
●

●●
●

●
●●

●

●
●

●

●
●

●
●

●
●●

●
●●●●●●

●

●
●

●

●

●

●

●

●

●●
●●

●●
●

●●●

●
●

●
●

●●
●

●●
●●

●

●

●

●

●
●●

●

●

●●●

●

●

●●
●

●

●
●●

●

●

●●●
●●●

●
●●

●●●
●

●●●●
●●

●

●●

●
●●●

●
●●

●
●●

●●
●●

●●●

●

●

●

●

●●
●

●●
●●

●
●

●

●

●
●●

●
●

●
●

●

●

●
●

●●
●●

●●●●
●

●
●●

●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●●

●

●

●●●
●

●●
●

●
●

●
●

●●
●

●

●●
●

●

●●
●

●
●

●
●●●●

●
●

●

●
●

●●
●●

●

●
●

●

●

●●
●

●
●

●
●●

●●●●
●

●●

●●

●●

●

●
●

●

●●
●●●

●●●●
●

●●●
●●●

●●

●
●

●
●

●

●
●

●

●

●
●

●●
●●●●

●
●

●

●

●
●

●

●●
●●

●
●

●
●

●●
●●●

●
●●

●●●

●●

●

●●
●●●

●
●

●

●●

●
●●

●●●
●●

●
●

●
●

●●●
●

●●

●
●●●

●

●
●

●

●

●
●

●
●

●●
●●

●●●●●
●

●

●●●●
●

●
●●●●

●

●
●

●

●

●
●

●

●
●

●●

●

●●●●●●
●

●
●

●
●

●
●

●
●●●●

●
●●●●

●●
●●

●
●●●

●
●

●
●●

●●
●

●

●
●

●●
●●

●
●

●●
●●

●

●●●
●●

●
●

●
●

●●

●

●●

●
●

●
●

●●
●

●
●

●
●

●●
●

●●

●

●●
●●●●●●●

●

●

●
●

●

●

●
●

●
●

●●●●
●

●●
●●

●●●

●

●
●

●

●
●●

●
●

●●●
●●

●●●●●

●

●

●

●
●●

●
●●

●●
●●

●
●

●
●●

●
●

●
●●

●
●

●

●●●
●●

●
●

●●●
●

●

●●

●

●●●

●

●
●●

●●
●

●
●●

●

●
●

●
●●●●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●●●●

●●●

●
●

●
●●

●
●

●
●

●

●●●
●

●●●●
●

●
●●

●
●●●●

●
●

●
●

●
●●

●●●
●●

●
●

●
●●

●
●

●●

●
●

●●
●●

●
●●●●●

●
●

●

●
●

●●

●

●●

●
●

●
●●●

●●●

●
●●

●●
●

●●●●

●

●

●
●

●

●

●
●

●

●
●

●●●●●●●

●
●●●

●

●

●

●●
●

●

●●●●●●●
●●●

●
●●●

●●●●
●

●
●●

●●
●

●
●

●
●●●

●
●

●●
●●

●

●●
●●●

●●

●
●

●
●

●

●●

●
●

●

●

●●●
●

●
●

●
●

●●●

●●
●

●
●●

●●●●●

●

●

●
●

●

●
●

●

●

●
●●●

●

●
●●●●

●●
●●

●

●

●

●
●

●

●
●●●●●

●●●●●●●●
●●●●

●
●

●

●

●●●
●●

●
●●●●

●
●●

●
●

●

●●

●
●

●
●●

●●●
●

●

●●

●
●

●

●

●●
●●

●
●●

●●
●●

●
●

●
●●●

●
●

●●
●

●

●

●

●

●

●
●●

●
●

●●●
●●●●

●●●●
●

●●●

●

●

●●
●

●
●●●●

●
●●●

●●●●
●●●

●
●●●●

●

●

●

●●
●●●

●●●
●●

●●

●
●●●

●
●

●●
●●

●
●

●

●●

●
●●●

●
●●●●

●
●

●
●

●●

●●
●●●

●●●
●

●●

●

●

●

●

●

●●
●

●●●●●●●
●●●

●●●
●●

●●●

●

●

●●
●

●
●

●●
●

●●●●●●●●●●●●●●

●
●

●

●●●●●●●●
●●●

●
●

●●
●●●

●

●●●●
●●

●
●

●

●●●
●

●

●●●
●

●
●

●
●

●●●●●●●
●●●●●●

●

●

●

●
●

●
●

●
●

●

●●
●●●●●

●

●●●●●
●●

●
●

●

●

●●●

●

●
●●●

●●

●
●●●

●●●
●

●●●●●●

●

●
●●●

●●
●●●●●●

●

●●●
●

●●●

●

●
●●●●●

●
●●

●
●

●●●
●●●●

●
●●

●●●●●
●●●●

●●

●

●

●

●
●

●●●

●
●

●●●●●●●
●●●

●●
●●●●●●

●

●

●

●

●

●
●

●●●●
●●●●●●●

●●
●●●

●●●
●

●
●●

●
●●

●
●

●
●●

●
●●

●
●

●
●●

●●●
●●

●
●

●

●●

●
●

●●●●
●

●●
●

●●
●●●●

●●●●●●●

●

●

●

●

●
●●

●

●
●

●●
●●

●
●●●●●●●●●●

●
●●

●
●

●
●

●

●

●

●●●●●
●●

●
●

●●●●●●
●●

●●●

●

●●
●●●

●●●
●●

●
●

●●

●●

●●

●●●
●

●

●●

●●●
●

●

●
●●

●
●

●●●

●
●●●●●

●●●
●

●
●

●

●

●

●

●
●

●●
●●●

●●●
●●●●●

●●●●
●●

●●●●●●●

●
●●

●

●

●●●●●●
●●●●●

●●●●

●●●●●
●

●●
●

●●
●●●●

●

●
●

●
●

●
●●

●●●
●

●
●●

●
●

●
●●

●
●●

●●●●●
●●

●●●●●●
●

●●

●
●

●

●

●

●
●

●●●●●

●
●●

●●●●●●●
●●●●●●●●●

●
●●

●

●

●

●

●

●●●●●
●●●●●●●

●●●●●●
●●

●●
●●●●

●
●

●

●

●●●
●●

●●
●●●●●●

●

●●●

●
●

●
●

●
●

●

●●
●●

●●

●●●●●
●

●●●●

●

●

●
●●

●●●

●
●

●●
●

●
●●

●●
●●●●●●●●●●●●

●●

●

●

●
●

●

●

●●●●
●

●
●●●

●
●

●
●●●●●●●●●

●●●●●●●
●

●●
●

●●

●
●

●●●
●●●

●

●
●●

●
●

●●
●

●
●

●●●

●
●●

●
●●●●●●●●●

●

●
●

●
●

●●●
●●●

●●
●

●
●

●●
●

●●●●
●

●
●

●●
●●

●●●
●

●

●
●

●

●
●●

●●
●●●

●●●●
●●●●●

●●●●

●

●
●●●

●
●

●
●

●
●

●
●

●●

●●●
●●

●
●

●●●

●

●

●
●●

●●●●●
●●

●●
●

●●●
●●●●●

●

●
●

●●●●●

●●
●●●

●●
●●●●●●●●●●●●●

●●
●●●

●

●

●

●●
●

●

●●●●
●●●●●●●●●●●●●●●●

●
●

●●
●●●

●

●●●●●
●

●

●
●

●●●●

●
●

●

●

●

●
●●

●●
●●

●●●●●●●
●●●●●●

●

●

●●

●●●●●

●●●●●●●●●
●●●

●●●
●●●●●

●●
●

●●●●
●

●

●●
●

●
●●

●
●●

●●
●

●●
●

●●
●●●

●
●

●●
●

●●●●
●

●●●
●

●

●●
●●

●●
●●●

●
●●

●
●

●
●

●●●

●
●●

●●
●●●

●●

●●●●●●

●

●

●

●●●●●

●
●●

●●●●●
●●

●
●●●●

●
●●●●●●

●●●●●●
●

●

●
●

●

●
●●●●●●●●

●●●
●●●●

●●●
●

●

●●
●●

●

●●●●●

●●●

●
●

●
●

●●

●●●●
●

●
●●

●●
●●●●●●●●●●●

●
●●●●

●

●
●

●●●●
●

●●●●●●●●
●●

●
●

●●●●
●●●●●

●●
●●●

●●
●

●

●

●●

●

●

●●
●

●●
●●●●●●●●●●

●
●

●
●●●

●●●

●

●●●●
●●

●

●
●●

●
●

●

●●●
●

●

●
●

●
●

●●●●●●
●

●●●●●●
●

●●●
●

●
●

●
●

●●●
●

●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●

●

●

●
●

●

●
●●●●●●●●●●

●
●●●

●●
●●●●●

●●
●●

●●●●●

●
●●

●●●●

●●
●

●

●

●●●

●
●●●●

●●
●

●●●●●●●
●●●

●

●●

●
●●

●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●

●●●●●●
●

●

●●
●

●

●●●●
●

●●●●●●
●●●

●●●●●
●

●

●
●

●●●●
●●●

●
●

●●●●

●
●●

●

●

●●
●

●
●

●●●●●
●

●●●●●
●●●●●

●

●●

●
●

●●
●

●●●●
●

●
●●●●●●●●●●

●
●●●

●●
●●●●●●

●●
●

●
●

●
●

●

●

●
●●

●●●●
●●●

●●
●●●●●●●●

●●

●
●●●

●
●●

●●
●

●●●
●

●●●

●

●

●●●
●●

●●
●

●
●

●
●

●
●

●●●●●
●

●

●

●●

●●
●●●●

●●●●
●

●●
●●

●●●●●●●
●●

●●●

●●●
●●

●
●

●●●●

●

●
●●

●

●
●●●●●●●●●●●●●●

●●
●

●●
●

●
●

●●●●●
●●

●
●●

●●

●
●

●
●

●

●
●●

●●●●●●
●

●●●●●●●●●
●●●

●●

●
●

●●●
●

●●●●●●●●
●

●
●●

●
●●●●

●●●●●
●●

●●●●●●●●
●

●

●

●●

●

●

●●●
●●●●●●●●●

●●●
●●●

●
●●●●●

●●
●

●
●

●
●●●

●●●

●

●

●
●●

●
●

●●●
●●

●
●

●●●●●●
●

●●

●

●●

●
●

●
●●

●●
●●●

●
●●●●●●

●●
●

●
●●●●●

●
●

●●●
●●●●●●

●●●
●

●
●

●

●

●

●●●
●●●●●

●●
●●●●

●●●
●

●
●●●●●●

●●
●

●●
●

●

●●
●

●
●

●●
●

●
●●●●●●●●●●●●●●●●

●

●●
●

●
●

●
●●

●●
●

●●●●●●●
●●●●

●●●●●
●●

●

●
●●

●●●●●●●●●●●
●

●

●●

●

●

●
●

●●●●●●●
●●●●●

●●
●

●
●●●●●●

●
●

●
●●●

●

●

●
●

●

●

●●
●

●
●

●
●●●

●

●
●

●●●●●●●●●
●

●●

●
●

●
●●●

●
●●●●

●●
●●

●●●●●
●●●●●●●

●●
●●●●●●●●

●●●●●
●

●

●●

●

●
●

●●
●

●●
●●●●●●

●●
●

●
●●●●●

●
●

●
●●

●●
●●

●●●

●

●

●
●●

●

●
●

●
●●●

●
●

●
●●

●
●●

●●
●

●

●
●

●●
●

●
●

●

●●●
●

●
●●●●

●
●●●●●●●●●

●
●

●●●●●●●●●●●●
●●●

●

●

●

●●
●

●

●●●●
●●●●

●●●●●●

●
●

●
●●●●●●

●
●

●
●

●●

●●
●

●

●

●●
●●

●
●●●●●

●

●
●

●●●
●●●●

●

●

●
●

●

●

●
●●●

●●●●
●●●●●●●●

●●
●●●●●●

●
●●●●●●●●

●●●●
●●●●●

●

●
●

●

●

●

●●●
●●●●●●●●●●●

●
●

●
●●●●

●

●
●

●●
●●

●●
●

●

●

●●●

●

●
●●●●

●
●

●
●●●

●
●●●●

●

●
●●

●

●
●

●●●

●
●

●●
●

●
●●●

●
●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●
●

●
●●

●

●
●●●●●●●●●

●
●●●

●●●●
●●●

●
●

●
●

●
●●

●
●

●

●

●

●●●

●●●●●●●
●

●

●
●

●
●

●●●●●
●

●
●

●●
●●

●●
●●●●

●
●●●●●●●

●
●●

●
●

●●●●●●
●●●●●●●●●●●●●●

●●●
●

●

●●

●

●
●●●●●●●●●●●

●●
●●●●●●

●

●
●

●
●

●●

●

●
●

●

●

●●●

●

●

●
●●●●

●

●
●●●●●●

●●
●

●

●●

●
●

●
●

●
●

●
●

●
●

●
●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●

●

●

●●
●

●

●
●●●●●●

●
●●●

●

●●
●●●

●●
●

●●●
●

●

●
●●

●

●

●
●●

●

●
●

●
●●

●

●

●
●●●●●●

●●
●

●

●
●

●

●
●

●●
●

●
●

●●
●

●●●
●

●●●●
●●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●●●●●●●●
●●

●●
●●

●●
●

●
●

●
●●●●

●
●

●

●

●

●●
●

●
●●●

●●
●

●
●

●
●●●

●●
●●

●
●

●●

●
●

●●●●
●●●

●
●

●
●

●●
●

●●
●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●
●

●

●

●
●●●●●●●●●

●●●
●

●●●●

●
●●●

●●

●
●●

●

●

●
●●

●

●
●●●

●

●

●

●

●
●

●●●●
●●

●
●

●●

●
●

●
●●●

●

●

●

●

●
●●

●
●●

●
●●●

●
●●●●●●

●●●●●●●●
●

●●●●●
●●●●●

●●●
●

●

●

●●
●

●
●●●●●●●●

●
●

●
●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●●●●●
●

●

●●●

●
●●

●●
●

●

●
●

●

●
●

●●●

●
●●●●

●●●●●●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●

●

●

●●

●

●

●●●●
●●

●
●

●
●

●●●●●
●

●●●

●●

●

●

●

●

●

●
●

●

●
●●

●●●
●

●

●

●
●

●
●●●

●
●

●●●
●

●
●

●●●
●

●●
●

●

●

●
●●

●●●●
●

●●
●●

●
●●

●
●●●●●●●●

●●●●
●●●

●
●●●

●●●●●
●

●

●
●●

●

●
●●●●●

●

●
●●●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●
●

●●●
●

●

●
●●●

●
●●●●●●

●●

●
●

●●●●

●
●

●
●●●●

●
●●●●

●
●●

●●●
●●●●●●

●●●●
●

●●●●●●
●

●
●●●●●●

●
●

●●

●

●

●●
●

●
●●●●●

●●●●●●
●●

●
●

●●

●●

●

●
●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●
●

●
●●

●
●●●

●●

●
●

●
●●

●

●
●

●
●

●

●

●●
●●●●

●
●

●●●●●●●●●●●
●

●●●●●●●
●●●

●●●●●●●●●●●●

●

●

●●

●

●
●●●●

●
●

●●●●●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●●●
●

●

●

●

●●●
●

●●
●●●

●
●●

●
●

●●●
●

●
●●

●

●

●
●

●
●●●●●

●●
●●●●●●●●

●
●

●●●
●

●
●

●●
●

●
●●●●●●●●●●●●●●

●

●

●●

●

●

●
●

●

●

●
●

●●●●
●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●●●●●
●

●

●

●

●
●

●

●

●
●

●●
●●

●
●

●
●

●●●
●

●
●

●
●●●●●

●●
●

●
●

●●
●●●●●●●●●●●●

●●
●●●●●●●●●

●●●●●●●●●●●●
●

●

●●

●

●
●●

●
●●

●
●

●●
●●

●

●

●

●
●

●

●
●

●

●

●●●
●

●
●

●●
●

●

●

●

●

●●
●

●●

●
●

●●
●

●

●●

●●●
●

●
●

●
●

●
●●

●

●
●

●
●●

●●

●
●

●
●●

●●
●

●
●

●
●

●
●

●●●●●
●●●●●●●●●●

●●●●●
●●

●

●

●
●

●

●
●

●
●●

●●
●●

●
●

●●
●

●

●

●
●●

●

●

●

●
●

●

●●
●

●●
●

●

●

●
●●

●

●
●●●

●
●●●

●●
●●

●

●

●
●

●

●
●

●
●●●

●
●●

●

●
●

●
●

●●

●
●●

●●●●●
●

●●●●
●●●●●●●

●●●●●●●●●●●●●
●

●

●●

●

●
●

●●

●
●

●
●●

●
●

●

●

●●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●●

●●●●
●

●

●
●

●

●
●

●●●
●●

●

●

●

●●

●
●

●
●

●●
●

●●
●

●
●●

●
●

●●
●

●●●
●●●

●●●●●●●●●●●●●●

●

●

●●●

●

●
●●

●●●●
●●●

●

●●

●
●

●

●

●

●●●

●

●
●

●●
●

●●

●

●
●

●

●

●●●●●
●●

●

●●
●

●

●
●

●
●

●●
●

●●
●

●●●●●
●●

●
●

●●
●

●●
●

●

●
●●●●●●●

●●●●●●

●

●●●
●

●●●●●●●●
●●●

●

●

●
●

●●
●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●●●●

●
●●

●●

●

●

●

●

●

●
●●

●
●

●●
●

●
●

●●
●

●

●
●

●
●

●
●●

●
●●●

●

●

●
●

●●

●
●

●●

●

●

●
●●●●●●

●
●●●●●●

●●●●●●●●●●●
●●●●●●

●●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●●

●●
●

●

●

●

●

●
●

●

●

●●
●

●●
●

●

●●
●●

●●

●●
●●

●
●●●●

●●

●

●

●●

●
●

●
●●

●●●●●
●

●
●

●●●
●●●●

●
●●●●●●●●●●●●●●

●●●●
●

●

●
●

●
●

●
●

●

●
●●●

●

●●

●●
●

●

●●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●●●
●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●●●●

●
●

●●

●
●●●

●
●●

●
●●

●
●●●●●

●●●●
●

●●●●
●●●●●

●●●
●●

●●●●●●●
●●●

●

●●
●●

●●
●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●
●

●

●●

●
●●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●
●●

●

●

●
●●

●●
●

●

●

●

●
●●

●
●

●●
●

●
●

●●
●●

●
●●●●●●●

●●

●●●
●

●
●

●●

●●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●●
●●

●

●●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●●

●

●

●
●

●
●

●

●
●●

●●
●

●●
●●●●

●
●

●●●●
●

●●
●●●●

●

●
●●

●
●●

●

●
●

●●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●●●●
●

●

●●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●
●●●

●
●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●●

●●●●

●
●

●●
●

●
●

●

●
●●

●●
●●

●

●

●●●
●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●●●

●

●
●●

●●

●
●

●●

●

●
●

●

●
●

●

●

●●●●

●

●

●●
●●

●

●●

●●
●

●
●●●

●●

●●
●

●●
●●

●●●●●●●

●

●●
●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●●●
●●

●
●●●

●

●●
●

●●●
●

●●
●

●●
●●

●

●
●●

●
●

●●●●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●●

●

●
●●●

●

●
●●

●
●

●●
●

●

●
●●

●
●●●●

●●●
●

●●●●
●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●
●

●

●
●

●
●●●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●
●●

●

●
●●●

●●●

●
●

●●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●●

●

●

●●

●
●

●

●

●

●●

●●

●

●●

●●
●●

●
●

●

0 20 40 60 80 100 120

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Age

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

Figure 5.11 – Visualisation des pseudo-résidus, x 7→ ε̂x,t.

Pour l’évolution des résidus en fonction de t, le code est :
> couleur=gray(seq(0,1,by=1/length(RES$y)))

> plot(rep(RES$x,each=length(RES$y)),RES$z,col=

+ couleur[rep(RES$y-RES$y[1]+1,length(RES$x))],

+ xlim=c(1899,2020),ylim=c(-1.62,1.62),

+ xlab="Ann\’ee",ylab="")

> for(a in 1:110){

+ polygon(c(2012,2012,2023,2023),(c(a,a-1,a-1,a))/

+ 110*3-1.5,border=NA,col=gray(a/110))}

> for(a in seq(0,110,by=10)){

+ text(2009,a/100*3-1.5,a)}

5.2.2 Les fonctions de LifeMetrics

Le package LifeMetrics 1 proposé par JP Morgan propose une implémentation simple à mettre
en oeuvre du modèle de Lee-Carter et de certaines variantes (notamment avec la prise en compte
de cohortes).

Une fois le script chargé (via l’instruction source("fitModels.r")), il suffit de passer en pa-
ramètres deux tableau etx et dtx de dimensions (nombre d’années) × (nombre d’âges) contenant
respectivement les expositions au risque l’année t à l’âge x et le nombre de décès. L’ajustement
s’effectue par l’appel :

> res=fit701(x, y, etx, dtx, wa)

où x est une vecteur contenant les âges, y les années et wa est une matrice de poids (non utilisée
dans le modèle standard, il suffit de la passer avec wa=1. On reprend ici l’exemple utilisé à la

1. Les codes sont en ligne sur http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/
software.

http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/software
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/software

●

●
●●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●
●
●

●
●●●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●
●●

●●

●

●●
●
●
●

●
●●
●

●

●●
●
●●
●
●

●
●

●●●

●
●●●

●

●

●

●

●

●●●

●
●

●

●
●

●●●
●

●●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●
●

●

●
●
●●
●●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●
●

●

●

●●
●
●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●
●

●

●

●

●

●
●●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●●
●●●

●

●

●
●●

●
●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●●
●●
●

●

●

●

●

●
●
●
●

●
●
●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●●
●
●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●●

●
●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●●●

●●

●

●●

●

●

●
●
●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●
●●●

●
●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●●●

●
●
●

●
●
●●

●

●●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●●●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●●

●
●

●●

●●
●

●
●

●

●

●

●●

●●
●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●

●

●

●
●

●

●●

●●●
●

●

●

●
●

●●

●

●

●

●●
●

●
●

●

●●●

●

●

●
●

●●●

●

●

●
●

●

●

●

●●
●
●
●

●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●●
●

●

●

●
●●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●
●
●
●

●●

●
●
●
●

●

●

●

●
●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●●
●
●

●●

●
●

●

●

●●

●

●

●
●●

●

●●

●
●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●
●
●
●
●

●●●

●

●
●
●●
●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●●●

●
●
●

●●
●●

●
●
●

●●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●
●●

●
●
●
●

●●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●
●
●

●
●
●

●●
●
●

●

●

●
●
●
●
●
●
●

●

●

●
●
●●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●
●
●

●
●●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●
●●●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●
●

●

●●

●
●●

●
●

●

●
●●

●
●●●

●●

●

●

●

●

●

●

●●●
●
●

●

●

●

●
●

●

●
●

●
●●●

●●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●●●

●

●●
●

●
●
●

●

●
●

●

●
●●
●

●
●
●
●

●

●

●●

●

●
●
●

●

●
●●

●

●
●

●
●

●

●
●
●
●
●

●●

●
●
●
●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●●●●

●●●●
●

●
●

●●

●

●

●

●
●
●

●

●

●
●●

●●●

●
●

●

●
●

●
●
●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●●●●

●
●

●

●

●●
●●

●

●

●●●●

●

●

●●

●●

●

●

●
●

●

●

●●

●

●●

●

●●

●●●●●●
●●●

●

●
●●

●●

●

●

●

●
●

●●

●
●●●
●
●
●
●

●
●
●●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●
●●

●●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●
●●
●
●

●

●

●●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●●●
●●●

●
●
●
●

●

●
●●
●

●
●
●

●

●

●●

●●

●
●●●
●
●

●
●
●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●●

●

●
●
●●
●

●

●

●

●

●
●●

●●●

●

●

●●
●
●

●

●

●
●

●
●
●●

●

●

●●
●●

●
●●
●●●

●
●●
●

●

●

●

●

●
●

●

●
●●●●
●●●

●

●
●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●●
●●
●

●
●

●

●

●●

●

●
●
●●

●
●

●●
●
●
●

●
●●
●
●●●

●

●●
●

●

●

●●

●

●
●

●
●●
●
●
●●●
●

●
●
●

●

●●

●

●

●●

●

●

●

●●
●
●
●●

●●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●
●
●

●

●
●
●●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●●●

●

●

●
●
●
●
●

●●

●●
●
●

●●
●
●●

●
●
●●

●

●

●
●●
●
●

●
●

●
●

●

●
●

●●●
●
●●●
●●●
●

●
●
●
●

●

●

●

●

●

●

●
●

●

●●
●●
●●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●●●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●
●●
●●

●

●

●
●●
●
●●

●

●
●

●
●
●●
●●
●

●

●

●●
●

●

●

●●

●
●

●

●
●
●●●
●
●●
●
●
●
●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●
●●

●●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●●

●
●
●
●
●

●

●

●

●

●

●
●
●●●

●

●

●
●
●

●

●
●

●
●

●

●

●

●
●

●
●
●

●
●

●
●●

●

●

●●●

●●

●
●●

●

●

●

●
●

●●
●●●●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●
●

●
●

●
●
●
●●

●

●

●
●

●

●
●
●●
●

●
●
●

●

●
●●

●
●

●

●
●

●
●
●
●
●
●

●

●

●

●
●

●●
●
●
●●
●
●●
●

●

●
●

●●

●

●
●

●

●

●
●●
●

●●

●
●

●

●

●

●

●●
●
●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●
●
●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●
●●●
●
●
●●●

●●
●

●●●

●
●

●
●

●●●●
●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●
●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●
●
●

●

●
●

●

●

●
●

●

●

●●●

●

●●

●●●
●

●
●●

●●●

●
●
●
●

●

●
●

●
●
●
●
●

●

●●

●

●

●●●

●●

●

●

●

●
●
●●●
●●

●

●
●
●

●

●
●

●
●●

●

●

●

●
●
●●●

●

●●●

●

●●
●●
●

●●

●●
●

●

●

●

●●

●

●●
●

●●●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●
●●

●
●

●

●
●

●

●●
●
●

●
●●

●

●
●

●

●●
●

●
●

●

●●
●●
●●

●

●●

●
●

●●
●
●●●●●●
●
●

●
●

●

●

●

●
●

●

●

●
●●
●
●
●

●
●

●

●
●●
●
●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●●

●
●●●
●

●

●
●
●

●

●●

●
●

●●●

●

●

●●

●
●
●

●

●●●
●●●

●●

●

●●

●
●

●
●
●
●
●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●
●●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●
●●●

●
●

●●
●

●
●
●●
●

●●

●
●

●●
●

●●
●
●
●

●●
●
●

●

●●

●●●

●
●

●
●●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●●●

●
●
●
●

●

●
●
●
●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●
●

●●

●

●

●

●●●

●
●

●●
●

●

●

●

●
●
●
●

●
●
●
●
●●
●

●●

●

●

●

●
●
●
●
●●●
●●

●
●

●

●

●●

●
●
●

●

●

●

●

●
●
●●
●●
●●

●

●
●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●
●

●●
●
●

●

●

●●

●
●
●

●
●

●

●

●

●
●

●●

●

●●
●

●●

●

●

●
●

●●●
●●
●
●

●
●
●
●

●

●

●

●

●●
●

●

●

●

●

●●●●●
●

●

●
●

●
●●
●

●

●
●●●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●●
●●

●●

●
●
●●●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●
●

●

●
●

●●●
●

●●
●

●

●●

●●
●●●●●●
●
●●
●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●●●
●●
●
●
●●

●

●●

●

●

●

●

●●

●

●

●
●●

●●●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●
●

●●

●●
●

●
●
●
●
●

●

●

●
●

●
●
●

●

●
●
●●
●
●

●●●

●
●

●
●
●
●
●
●●
●●
●
●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●●●●

●

●
●
●
●●
●●●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●●●
●

●
●

●

●

●

●

●●

●

●
●
●

●

●
●
●
●
●
●
●

●

●●
●

●●

●●

●

●
●
●

●

●

●
●

●●
●

●
●●
●●
●
●

●●

●●
●
●
●

●
●●
●
●

●
●

●

●●

●
●

●

●

●

●

●
●
●

●
●●●
●
●
●

●

●●
●●●●
●●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●
●

●

●●

●●●
●
●

●

●
●

●

●

●
●

●
●

●

●
●
●
●
●

●●

●

●

●
●
●

●●
●

●●

●
●

●●

●
●

●

●
●

●

●●
●●●●

●
●●●●
●

●

●●

●

●

●

●

●

●

●

●
●
●
●●
●●
●●

●

●
●●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●
●●●
●

●●●
●

●●
●
●●●●●●●

●
●

●
●

●

●
●●
●
●●

●

●●

●
●

●●

●
●

●●

●●

●

●●●

●
●
●●

●

●

●●●
●
●●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●
●●
●
●●●

●●

●

●

●
●●
●
●
●●●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●●
●
●

●

●●

●

●
●
●
●●
●
●●●●

●
●
●●
●
●
●

●
●

●

●

●

●●
●

●
●
●
●

●

●●
●
●

●
●
●

●
●

●
●●
●●●●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●
●
●●
●
●
●●

●

●●
●

●

●●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●

●●
●

●
●
●
●
●
●●

●
●
●
●
●

●●
●
●
●

●

●●

●

●

●●

●
●●

●

●●

●
●
●●

●

●

●●
●●
●●●●

●
●
●
●

●

●●

●

●●

●

●

●

●●
●
●●

●
●●●
●

●
●●
●

●●●●
●

●

●

●●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●●
●
●●

●●●
●
●

●
●
●
●

●

●
●●
●●

●●
●

●
●

●●●

●
●●

●
●

●
●●
●
●
●●

●

●
●
●
●

●●

●
●
●
●●●●
●

●●

●
●
●

●●

●

●
●
●

●

●

●●

●●●●●●●●

●
●●
●

●
●
●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●

●●
●

●

●●●
●

●

●
●●
●●
●●

●●

●
●
●

●●
●

●

●●
●●
●●
●●
●

●
●

●●
●●●●
●●●●●
●●

●

●

●
●●

●

●

●

●
●
●
●
●●●

●●●

●
●●●
●●●
●●
●

●

●

●

●

●

●

●
●

●

●
●
●
●●
●●●●

●

●
●

●●
●
●
●
●

●
●
●

●●●●●●●
●●●
●

●
●●
●
●
●

●●

●

●●
●

●●●

●
●
●

●●

●
●●

●
●

●

●●
●
●
●
●●
●
●
●●

●

●
●

●
●
●
●

●

●

●
●●

●
●●
●●●
●

●
●●●

●
●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●
●

●

●
●

●
●
●

●
●
●
●
●
●
●

●●

●
●●●
●
●

●
●

●

●
●
●

●●
●
●●
●

●
●●●

●
●

●●●
●●●●●
●
●●
●

●

●
●

●
●

●
●

●

●

●●
●
●●●●
●●
●

●

●

●
●●●●●●
●●●

●

●

●

●

●
●

●

●
●
●●●
●●

●

●

●

●

●●

●
●

●
●
●●●●●
●
●
●

●
●●●●

●●

●

●
●

●●●
●
●●

●

●●●

●
●
●

●
●●
●
●●
●

●
●

●
●●●●●
●●

●●●●

●

●

●

●

●

●

●

●

●

●●●
●
●
●●
●●●

●
●
●●
●

●
●

●
●
●
●
●

●

●

●

●
●
●

●

●
●●
●
●
●
●

●

●

●
●

●

●

●
●

●
●

●
●●●
●●
●
●●
●●
●●
●
●
●
●
●

●●
●
●●

●●

●●
●
●●
●
●
●●
●

●
●
●

●
●

●
●
●
●●
●
●●●●●●

●

●
●
●

●

●

●

●

●

●●
●●
●●●
●●●

●
●
●
●
●●
●
●●
●●
●

●

●

●

●
●●

●

●

●●●

●

●

●●
●

●

●
●●

●

●

●●●
●●●
●
●●
●●
●
●
●●●●
●●

●

●●

●
●●●
●
●●
●
●●
●●
●●
●●●

●

●

●

●

●●
●
●●
●●

●
●
●

●

●
●●
●
●
●
●

●

●

●
●
●●
●●●●●●
●
●
●●
●●
●
●●
●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●●

●

●

●●●
●
●●●

●
●
●
●
●●
●

●

●●
●

●

●●
●
●
●
●
●●●
●

●
●
●

●
●
●●
●●●

●
●

●

●

●●
●
●
●
●
●●

●●●●
●

●●

●●

●●

●

●
●
●

●●
●●●●●●
●
●
●●●●●●

●●

●
●

●
●

●

●
●
●

●

●
●
●●●●●
●
●
●

●

●

●
●

●

●●
●●
●
●
●
●
●●
●●●
●
●●
●●●

●●

●

●●
●●
●
●
●

●

●●

●
●●

●●●
●●

●
●

●
●
●●●
●

●●

●
●●●

●

●
●

●

●

●
●

●
●
●●
●●

●●●●●
●
●

●●●●
●
●
●●●●
●

●
●

●

●

●
●

●

●
●
●●

●

●●●●●●
●
●
●
●
●

●
●
●
●●●
●
●
●●
●●
●●
●●
●
●●●
●
●
●
●●

●●
●
●

●
●
●●
●●
●
●
●●
●●

●

●●●●●
●
●
●
●
●●

●

●●

●
●
●
●

●●
●
●
●
●
●
●●

●
●●

●

●●
●●●●●●●

●

●

●
●

●

●

●
●

●
●
●●●●
●
●●
●●
●●●

●

●
●

●

●
●●
●
●
●●●
●●
●●●●●

●

●

●

●
●●
●
●●

●●
●●
●
●
●
●●
●
●

●
●●
●
●

●

●●●
●●

●
●
●●●
●
●

●●

●

●●●

●

●
●●
●●
●
●
●●
●

●
●

●
●●
●●●
●
●●

●

●

●
●

●

●

●

●
●

●
●●●
●●

●●●

●
●
●
●●
●
●
●
●

●

●●●
●
●●●●
●

●
●●
●
●●●●●
●
●
●
●
●●
●●
●
●●
●
●
●
●●
●
●
●●

●
●
●●
●●
●
●●●●●
●
●
●

●
●

●●

●

●●

●
●
●
●●●
●●●

●
●●

●●
●
●●●●

●

●

●
●

●

●

●
●

●

●
●
●●●●●●●

●
●●●
●

●

●

●●
●

●

●●●
●●●
●
●●●
●
●●●
●●●●
●
●
●●
●●
●
●
●
●
●●
●
●
●
●●
●●

●

●●
●●●
●●

●
●
●
●
●

●●

●
●
●

●

●●●
●

●
●
●
●
●●●

●●
●
●
●●
●●●●●

●

●

●
●

●

●
●
●

●

●
●●●●

●
●●●●
●●
●●
●

●

●

●
●
●

●
●●
●●
●
●●●
●●●
●●
●●●●
●
●
●

●

●●●
●●●
●●●●
●
●●
●
●

●

●●

●
●
●
●●
●●●
●
●

●●

●
●
●

●

●●
●●
●
●●
●●
●●
●
●
●
●●●
●
●
●●●

●

●

●

●

●

●
●●

●
●

●●●●●●
●
●●●●●
●●●

●

●

●●
●

●
●●●●
●
●●●
●●●●●●●
●
●●●●

●

●

●

●●
●●
●
●●●
●●

●●

●
●●●
●
●

●●
●●
●
●

●

●●

●
●●●

●
●●
●●
●
●

●
●
●●

●●
●●
●
●●●
●
●●

●

●

●

●

●

●●
●

●●●●●●
●
●●●
●●●●●
●●●

●

●

●●
●

●
●
●●
●
●●●●●
●●●●●●●●●

●
●

●

●●●●●●●
●
●●●

●
●

●●●●●
●

●●●●
●●
●
●
●

●●●
●
●

●●
●
●
●
●
●
●
●●
●●●●●
●●●●●●

●

●

●

●
●
●
●
●
●
●

●●
●●●●
●
●

●●●●●●●
●
●
●

●

●●●

●

●
●●●
●●

●
●●●
●●●
●
●●●●●●

●

●
●●●
●●
●●●
●●●

●

●●●
●
●●●

●

●
●●●●●

●
●●

●
●

●●●
●●●●
●
●●
●●●●●
●●
●●
●●

●

●

●

●
●

●●●

●
●
●●●
●●●
●
●●●
●●
●●●●●●
●

●

●

●

●

●
●
●●●●
●●●
●●●●

●●
●●●
●●●
●
●
●●
●
●●
●
●
●
●●

●
●●●
●
●
●●

●●●
●●

●
●

●

●●

●
●

●●
●●●
●●
●
●●
●●●●
●●●●●
●●

●

●

●

●

●
●●
●

●
●
●●
●●
●
●●●●●●●●●●●
●●
●
●

●
●

●

●

●

●●●●●
●●
●
●
●●●●●●
●●●●●

●

●●
●●●
●●
●
●●

●
●
●●

●●

●●

●●●
●
●

●●

●●●
●
●

●
●●
●
●
●●●

●
●●
●●●
●●●
●
●
●
●

●

●

●

●
●

●●
●●●
●●●
●●●●
●
●●●●
●●●●●●●●
●

●
●●

●

●

●●●●●
●
●●●●●●●●●

●●●●●
●
●●
●
●●
●●●●

●

●
●
●
●
●
●●
●●●
●
●
●●

●
●
●
●●

●
●●
●●●●●
●●

●●●●●●
●
●●

●
●

●

●

●

●
●

●●●
●●

●
●●
●●●●●●●●●●●●●●●●

●
●●

●

●

●

●

●

●●●●●
●●●●●●●●●●●●●●●
●●
●●●
●
●
●
●

●

●●●
●●
●●
●●●●●●●

●●●

●
●

●
●
●
●
●

●●
●●
●●

●●●●●
●
●●●
●

●

●

●
●●
●●●

●
●
●●
●
●
●●
●●
●●
●●●●

●●●●●●●●

●

●

●
●
●

●

●●●●
●
●
●●●
●
●
●
●●●●●●●●●
●●●
●●
●●
●

●●
●
●●

●
●
●●●●●●
●

●
●●
●
●

●●
●
●
●
●●●

●
●●●
●●●
●●●●●●
●

●
●

●
●
●●●
●●●
●●
●
●

●
●●
●
●●●●
●
●
●
●●●●
●●●
●

●

●
●
●

●
●●●●
●●
●
●●●
●
●●●●●
●●●●

●

●
●●●
●
●

●
●
●
●
●
●
●●

●●●
●●
●
●

●●●

●

●

●
●●
●●●
●●
●●
●●
●
●●●
●●●●●

●

●
●

●●●●●

●●
●●●
●●
●●●●●●●●
●●●●
●
●●
●●●
●

●

●

●●
●

●

●●●●
●●●●●●●●●●●●●●●●
●
●
●●
●●●
●

●●●●●
●
●

●
●

●●●
●

●
●
●

●

●

●
●●
●●
●●●●●●●
●●
●●●●●●
●

●

●●

●●●●●

●●●●●
●●
●●
●●●
●●●
●●●●●●●●
●●●●
●

●

●●
●

●
●●●
●●
●●
●
●●
●
●●
●●●●
●
●●
●
●●●
●
●
●●●
●
●

●●
●●
●●
●●
●

●
●●
●
●

●
●
●●●

●
●●
●●
●●●●●

●●●●●●

●

●

●

●●●●●

●
●●
●●●
●●
●●
●
●●●●
●
●●●●●●●●●●●●
●

●

●
●

●

●
●●●
●●●●
●
●●●●●●●●●●
●

●

●●
●●
●

●●●●●

●●
●

●
●

●
●
●●

●●●
●
●

●
●●
●●
●●●●●●●●●●●

●
●●●●

●

●
●

●●●●●

●●●●●
●●●
●●
●
●
●●●●
●●●●●
●●
●●●
●●
●
●

●

●●

●

●

●●●
●●●●
●●●●●●●●●
●
●
●●●
●●●

●

●●●●
●●

●

●
●●
●
●

●

●●●
●

●

●
●
●
●
●●

●●●●
●
●●●●●●
●
●●
●
●

●
●

●
●

●●●
●
●●●●●●
●●●●●
●●●
●●●●●●
●
●●●●●●●●

●

●

●
●

●

●
●●●●●●●●●●
●
●●●
●●
●●●●●
●●
●●
●●
●●
●

●
●●
●●●●

●●
●

●

●

●●
●

●
●●
●●
●●
●
●●●●●●●
●●●

●

●●

●
●●
●●
●
●●●●●
●●●
●●●●
●●
●●●●●●●●●●
●●●●●●
●

●

●●
●

●

●●●●
●
●●●●●●●●●
●●●●●
●
●

●
●
●●●●
●●
●
●
●

●●●●

●
●●

●

●

●●
●
●
●
●●●●●
●
●●●●●
●●●●●

●

●●

●
●
●●
●

●●●●●
●
●●●
●●●●
●●
●
●
●●●●●●●●●●●
●●
●
●
●

●
●

●

●

●
●●●●●●
●●●
●●●●●●●●●●
●●

●
●●●
●
●●

●●
●

●●●
●

●●●

●

●

●●
●
●●
●●●
●
●
●
●
●
●
●●●●●●
●

●

●●

●●
●●●●
●●●●
●
●●
●●
●●●●
●●●
●●●●
●

●●●●●
●
●
●●●●

●

●
●●

●

●
●●●●●●●●
●●●●●●●●
●
●●
●

●
●
●●●
●●
●●
●
●●●●

●
●
●
●

●

●
●●
●●●●●●●
●●●●●●
●●●●●●
●●

●
●

●●●
●
●●●●
●●●●
●

●
●●●
●●●●
●●●●●
●●●●●●●●●●
●
●

●

●●

●

●

●●●
●●●●
●●●●●●●●

●●●
●
●●●●●
●●
●

●
●
●
●●●

●●●

●

●

●
●●
●
●
●●●●●
●
●
●●●●●
●
●
●●

●

●●

●
●
●
●●
●●
●●●
●
●●●●●●
●●
●
●
●●
●●●
●
●
●●
●
●●●●●●
●●●
●

●
●
●

●

●

●●●
●●●●

●
●●
●●●●
●●●
●
●
●●
●●●
●
●●
●
●●
●
●

●●
●
●
●

●●
●

●
●●
●●●●●●●
●●●●●●●
●

●●
●

●
●

●
●●
●●●
●●●●●
●●
●●●●
●●
●●●
●●
●

●
●●
●●●●●●●●●●●
●

●

●●

●

●

●
●
●●
●●●●●●●●●●
●●
●

●
●●●
●●●
●
●
●
●●●
●

●

●
●

●

●

●●
●
●
●

●
●●●●

●
●
●●●●●●●
●●
●
●●

●
●
●
●●●
●
●●●
●
●●
●●
●●●●●
●●●●●
●●●●
●●●●●●●●
●●●●●

●

●

●●

●

●
●
●●
●
●●
●●●●●●●●●
●
●●●●●
●
●

●
●●●●
●●

●●●

●

●

●
●●

●

●
●
●
●●●
●
●
●
●●●
●●
●●
●

●

●
●

●●
●
●
●
●

●●●●
●
●●●
●
●
●●●●●●●●●
●
●
●●●●●●●●●●●●

●●●●

●

●

●●
●

●

●●●●
●●●●●●●●●●

●
●

●
●●●
●●●●
●
●
●

●●

●●
●
●

●

●●
●●
●
●●●●●
●

●
●
●●●
●●●●
●

●

●
●

●

●

●
●●
●
●●●●
●●●●●●●
●
●●
●●●●●
●
●
●●●●●●●●●●●●

●●●●●

●

●
●
●

●

●

●●●
●●●●●●●●●●
●
●
●
●
●●●
●
●

●
●
●●●●

●●
●

●

●

●●●

●

●
●●●●
●
●
●
●●●●
●●●●
●

●
●●

●

●
●

●●●

●
●
●●
●
●
●●●
●
●●●●●●●●●●

●
●●●●●●●●●●●●●●
●●●●
●

●
●●
●

●
●●●
●●●●●●
●
●●●
●●●●
●●●

●
●
●
●
●
●●

●
●

●

●

●

●●●

●●●●●●●
●

●

●
●
●
●
●●●●
●
●

●
●

●●
●●
●●
●●●●
●
●●●
●●●●

●
●●
●
●
●●
●●●●
●●●●●●●●●●●●●●
●●●
●

●

●●

●

●
●●●
●●●●●●●●
●●
●●●
●●●

●

●
●
●
●
●●

●

●
●

●

●

●●●

●

●

●
●●●●

●

●
●●●●●●
●●
●
●

●●

●
●

●
●
●
●

●
●
●
●

●
●●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●
●

●

●●
●

●

●
●●●●●●
●
●●●

●

●●
●●●
●●●
●●●●
●

●
●●

●

●

●
●●

●

●
●
●
●●●

●

●
●●●●●●●●
●

●

●
●

●

●
●

●●
●

●
●
●●
●
●●
●
●
●●●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●

●

●

●●●●●●
●●
●●

●●
●●
●●
●
●
●

●
●●●●

●
●
●

●

●

●●
●

●
●●●
●●
●
●
●
●
●●●
●●
●●
●
●

●●

●
●
●●
●●
●●
●
●
●

●
●
●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●●●●●●●
●●●●●

●

●
●

●

●

●
●●●●●●
●●●
●●●
●
●●●
●

●
●●
●

●●

●
●●

●

●

●
●●

●

●
●●●
●

●

●

●

●
●
●●
●●

●●
●
●

●●

●
●
●
●●●

●

●

●

●

●
●●
●
●●
●
●●●
●
●●●●●
●
●●●●
●●●●
●
●●●●●●●●●●●●●●
●

●

●●
●

●
●●●●●●●●
●
●
●
●
●
●●

●

●
●

●

●

●
●

●
●
●

●

●

●●
●

●
●
●●●●●
●

●

●●●

●
●●●●
●
●

●
●

●

●
●

●●●

●
●●●
●
●●●●●●●●
●●
●●
●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●
●

●

●●

●

●

●●●●
●●
●
●
●
●
●●●●●●
●●●

●●

●

●

●

●

●

●
●
●

●
●●

●●●
●

●

●

●
●
●
●●
●

●
●
●●●
●

●
●

●●
●
●

●●
●

●

●

●
●●
●●●●
●
●●
●●●
●●●
●●●●●●●●
●●●
●
●●●
●
●●●
●●●●●●

●

●
●●

●

●
●●●●●

●

●
●●●●
●●

●

●

●
●
●

●
●

●

●

●

●

●

●●●
●
●
●
●●●●
●

●
●●●

●
●●●●●●

●●

●
●
●●●●

●
●

●
●●●●
●
●●●
●
●
●●●●●
●●●●●●
●●●●●
●●●●●●
●
●
●●●●●●
●
●
●●

●

●

●●
●

●
●●●●
●
●●●●●●
●●

●
●
●●

●●

●

●
●

●

●

●
●
●
●
●
●●●
●

●

●

●

●

●
●
●
●●
●
●●●
●●

●
●

●
●●
●

●
●
●
●

●

●

●●
●●●●●
●
●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●

●

●

●●

●

●
●●●●
●
●
●●●●●

●

●
●
●
●

●
●

●
●
●

●

●

●
●
●

●

●●
●●
●

●

●

●

●●●
●
●●●●
●
●
●●

●
●

●●●●

●
●●
●

●

●
●

●
●●●●●
●●
●●●●●●●●●
●
●●●●
●
●
●●●

●
●●●●●●●●●●●●●●

●

●

●●

●

●

●
●
●

●

●
●

●●●●
●
●
●
●

●

●
●

●
●
●

●

●

●●
●
●●●●●
●
●

●

●

●
●
●

●

●
●
●●
●●
●
●

●
●
●●●●

●
●
●
●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●
●

●

●●

●

●
●●
●
●●
●
●
●●
●●

●

●

●

●
●

●

●
●

●

●

●●●
●

●
●
●●
●

●

●

●

●

●●
●
●●

●
●
●●
●

●

●●

●●●
●

●
●
●
●
●
●●
●

●
●
●
●●
●●

●
●

●
●●●●
●
●
●
●
●
●
●
●●●●●
●●●●●●●●●●
●●●●●

●●
●

●

●
●

●

●
●
●
●●
●●
●●
●
●

●●
●

●

●

●
●●

●

●

●

●
●

●

●●
●
●●
●
●

●

●
●●

●

●
●●●
●
●●
●

●●
●●
●

●

●
●

●

●
●
●
●●●

●
●●
●

●
●

●
●

●●

●
●●
●●●●●
●
●●●●
●●●●
●●●
●●●●●●●●●●●

●●
●

●

●●

●

●
●

●●

●
●
●
●●

●
●
●

●

●●

●
●
●

●

●

●
●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●●●

●●●●
●
●

●
●

●

●
●
●●
●
●●

●

●

●

●●

●
●
●
●
●●
●
●●
●
●
●●
●
●
●●
●
●●●

●●●
●●●●●●●●
●●●●●●

●

●

●●●

●

●
●●

●●●●●●●

●

●●

●
●
●

●

●

●●●

●

●
●
●●
●

●●

●

●
●
●

●

●●●●
●
●●
●

●●
●

●

●
●

●
●
●●
●
●●
●
●●●●●
●●

●
●
●●
●

●●
●

●

●
●●●●●●●

●●●●●●

●

●●●●
●●
●●●●●
●
●●●

●

●

●
●

●●
●

●

●

●
●
●●
●

●

●

●
●

●

●
●

●

●

●
●

●●●●

●
●●
●●

●

●

●

●

●

●
●●

●
●

●●
●

●
●
●●
●

●

●
●

●
●
●
●●
●
●●●
●

●

●
●

●●

●
●
●●

●

●

●
●●●●●●
●
●●●●●
●
●●●●
●●●●●●●
●●●●●●
●●

●

●
●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●●

●●
●

●

●

●

●

●
●

●

●

●●●

●●
●
●

●●
●●
●●

●●
●●
●
●●●●
●●

●

●

●●

●
●
●
●●●●●●●●
●
●
●●●●●●
●
●
●●●●●●●●●●●●
●●
●●●●
●

●

●
●
●
●
●
●
●

●
●●●●

●●

●●●

●

●●

●

●

●

●

●
●●

●
●
●
●

●

●

●

●●●
●●●●
●

●

●
●

●
●
●

●

●

●

●

●

●

●
●●●●
●
●

●
●●

●
●●●

●
●●
●
●●
●
●●●●●●●●●●
●●●
●
●●●●●
●●●
●●
●●●●●●●
●●●
●

●●
●●

●●
●●
●

●

●

●

●

●

●

●
●
●

●●
●

●

●
●●
●
●
●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●
●

●

●●

●
●●
●

●

●
●

●

●●
●
●

●

●
●

●

●

●
●●●

●

●
●●
●●
●

●

●

●

●
●●
●
●
●●
●
●
●
●●
●●
●
●●●
●●●●
●●

●●●
●
●
●

●●

●●

●

●
●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●

●

●
●

●●

●

●●
●●
●

●●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●
●
●

●●

●

●

●
●
●
●
●

●
●●
●●
●
●●●●●●
●
●
●●●
●
●
●●
●●●●
●

●
●●
●
●●

●

●
●
●●
●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●
●●●
●

●●●●
●

●

●●

●
●
●
●

●

●
●
●

●

●
●

●
●

●●
●●●
●
●

●

●

●
●

●
●
●●

●

●

●

●
●

●

●
●●

●●●●

●
●
●●
●
●
●

●

●
●●

●●
●●
●

●

●●●
●●●●●●●●●●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●●●

●

●
●●

●●

●
●
●●

●

●
●

●

●
●

●

●

●●●●

●

●

●●
●●
●

●●

●●
●
●
●●●●●

●●
●
●●●●
●●●●●●●

●

●●
●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●●●
●●
●
●●●
●

●●
●

●●●
●
●●
●
●●
●●●

●
●●
●
●
●●●●
●
●
●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●●

●

●
●

●

●●

●

●●

●
●
●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●●

●

●
●●●

●

●
●●
●
●

●●
●
●

●
●●
●
●●●●
●●●●
●●
●●
●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●
●
●

●

●

●
●

●
●

●●●
●
●

●

●
●

●

●
●
●
●●●
●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●

●

●

●●

●
●●

●

●
●●●
●●
●

●
●

●●
●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●●●

●

●

●●

●
●

●

●

●

●●

●●

●

●●

●●
●●
●
●

●

1900 1920 1940 1960 1980 2000 2020

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Année

0

10

20

30

40

50

60

70

80

90

100

110

Figure 5.12 – Visualisation des pseudo-résidus, t 7→ ε̂x,t.

section précédente, pour lesquels on calcule les logarithmes des taux de décès instantanés (pour
l’année an=1986) :

> source("fitModels.r")

> Deces <- Deces[Deces$Age<90,]

> Expo <- Expo[EXPOSURE$Age<90,]

> XV <- unique(Deces$Age)

> YV <- unique(Deces$Year)

> ETF <- t(matrix(Expo[,3],length(XV),length(YV)))

> DTF <- t(matrix(Deces[,3],length(XV),length(YV)))

> ETH <- t(matrix(Expo[,4],length(XV),length(YV)))

> DTH <- t(matrix(Deces[,4],length(XV),length(YV)))

> WA <- matrix(1,length(YV),length(XV))

> LCF <- fit701(xv=XV,yv=YV,etx=ETF,dtx=DTF,wa=WA)

> LCH <- fit701(xv=XV,yv=YV,etx=ETH,dtx=DTH,wa=WA)

On peut ainsi comparer les coefficients αx et βx entre les hommes et les femmes, comme sur
la Figure 5.13

> par(mfrow = c(1, 2))

> plot(LCFx,LCFbeta1,type="l",xlab="Age")

> lines(LCHx,LCHbeta1,col="grey")

> legend(40,-6,c("Femmes","Hommes"),lty=1,

+ lwd=1,col=c("grey","black"),bty="n")

> plot(LCFx,LCFbeta2,type="l",xlab="Age")

> lines(LCHx,LCHbeta2,col="grey")

> legend(40,.022,c("Femmes","Hommes"),lty=1,

+ lwd=1,col=c("grey","black"),bty="n")

> par(mfrow = c(1, 1))

0 20 40 60 80

−
7

−
6

−
5

−
4

−
3

−
2

Age

LC
F

$b
et

a1

Femmes
Hommes

0 20 40 60 80
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Age

LC
F

$b
et

a2

Femmes
Hommes

Figure 5.13 – Evolution de x 7→ αx (à gauche) et x 7→ βx (à droite), pour les Hommes - en
trait sombre - et pour les Femmes - en trait grisé.

Il est aussi possible d’estimer les coefficients κt sur la période passée, que l’on peut visualiser
sur la Figure 5.14

> plot(LCFy,LCFkappa2,type="l",xlab="Ann\’ee")

> lines(LCHy,LCHkappa2,col="grey")

Notons que plusieurs fonctions sont proposées ici, correspondant soit à des

– logµ(x, t) = β
(1)
x + β

(2)
x κ

(2)
t ,

– logµ(x, t) = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γ

(3)
t−x,

– logµ(x, t) = β
(1)
x + κ

(2)
t + γ

(3)
t−x,

– logitq(x, t) = logit(1− e−µ(x,t)) = κ
(1)
t + (x− α)κ

(2)
t ,

– logitq(x, t) = logit(1− e−µ(x,t)) = κ
(1)
t + (x− α)κ

(2)
t + γ

(3)
t−x.

5.2.3 La library(gnm)

Les deux exemples ci-dessus s’appuyaient sur des implémentations (directes) du modèle de
Lee-Carter. Avec des algorithmes optimisés pour estimer les coefficients αx, βx et κt. Mais on
peut effectuer l’estimation des paramètres du modèle en s’appuyant sur sa variante log-Poisson,
qui conduit formellement à mettre en oeuvre un modèle linéaire généralisé. Ou plutôt nonlinéaire
car les facteurs interviennent sous la forme αx+βx ·κt, que ne peut pas se mettre sous une forme
linéaire. On peut donc utiliser la library(gnm), et lancer une régression à l’aide d’un outil plus
général.

> library(gnm)

> Y <- Deces$Male

> E <- Expo$Male

1900 1920 1940 1960 1980 2000

−
15

0
−

10
0

−
50

0
50

10
0

Année

LC
F

$k
ap

pa
2

Figure 5.14 – Evolution de t 7→ κt pour les Hommes - en trait sombre - et pour les Femmes -
en trait grisé.

> Age <- Deces$Age

> Year <- Deces$Year

> I <- (Deces$Age<100)

> base <- data.frame(Y=Y[I],E=E[I],Age=Age[I],Year=Year[I])

> REG <- gnm(Y~factor(Age)+Mult((factor(Age)),factor(Year)),

+ data=base,offset=log(E),family=quasipoisson)

Initialising

Running start-up iterations..

Running main iterations.........................

Done

Comme il y a plus de 300 coefficients estimés, il convient d’aller chercher les αx, les βx et les
κt au bon endroit.

> names(REG$coefficients[c(1:5,93:103)])

> nomvar <- names(REG$coefficients)

> nb3 <- substr(nomvar,nchar(nomvar)-3,nchar(nomvar))

> nb2 <- substr(nomvar,nchar(nomvar)-1,nchar(nomvar))

> nb1 <- substr(nomvar,nchar(nomvar),nchar(nomvar))

> nb <- nb3

> nb[substr(nb,1,1)=="g"]<- nb1[substr(nb,1,1)=="g"]

> nb[substr(nb,1,1)=="e"]<- nb2[substr(nb,1,1)=="e"]

> nb <- as.numeric(nb)

> I <- which(abs(diff(nb))>1)

Par exemple pour les coefficients αx et β, le code R est le suivant, et les coefficients peut être
visualisés sur la Figure 5.15

> par(mfrow = c(1, 2))

> plot(nb[2:I[1]],REG$coefficients[2:I[1]],xlab="Age")

> plot(nb[(I[1]+1):(I[2])],REG$coefficients[(I[1]+1):(I[2])],xlab="Age")

> par(mfrow = c(1, 1))

●

●

●

●

●

●
●
●
●●●●

●

●

●

●

●

●●
●
●●●●●●●●●●●●●

●●●
●●●

●●
●
●
●
●
●
●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●●●
●

0 20 40 60 80 100

−
4

−
3

−
2

−
1

0
1

2

Age

R
E

G
$c

oe
ffi

ci
en

ts
[2

:I[
1]

]

●

●
●

●

●

●
●
●
●●●

●
●
●

●
●
●●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●

●
●●●

●
●
●

●
●

●

0 20 40 60 80 100

−
0.

8
−

0.
6

−
0.

4
−

0.
2

Age

R
E

G
$c

oe
ffi

ci
en

ts
[(

I[1
] +

 1
):

(I
[2

])
]

Figure 5.15 – Evolution de x 7→ αx (à gauche) et x 7→ βx (à droite) pour les Hommes, en
France.

On peut aussi visualiser les coefficients κt, comme sur la Figure 5.16

> plot(nb[(I[2]+1):length(nb)],REG$coefficients[(I[2]+1):length(nb)],

+ xlab="Ann\’ee",type="l")

Le code peut être un peu long à faire tourner, mais ce code permet d’implémenter n’importe
quel modèle de démographie (nous présenterons une application dans la dernière section en
introduisant un effet cohorte). De plus, cette fonction ne permet pas de prendre en compte les
contraintes d’identifiabilité imposées avec les deux autres fonctions. D’où une estimation des κ
opposée à celle obtenue avec les deux autres fonctions

5.2.4 Comparaison des trois algorithmes

Afin de faire une comparaison rapide, plaçons nous en un point particulier de la surface de
mortalité, e.g. x = 40 et t = 1980. Les trois jeux d’estimateurs des coefficients sont les suivants

> x <- 40

> t <- 1980

> param <- matrix(NA,3,3)

> param[1,] <- c(LCH.lca$ax[LCH.lca$age==x],

+ LCH.lca$bx[LCH.lca$age==x],

+ LCH.lca$kt[LCH.lca$year==t])

> param[2,] <- c(LCH.fit701$beta1[LCH.fit701$x==x],

1900 1920 1940 1960 1980 2000

−
4

−
2

0
2

4

Année

R
E

G
$c

oe
ffi

ci
en

ts
[(

I[2
] +

 1
):

le
ng

th
(n

b)
]

Figure 5.16 – Evolution de t 7→ κt pour les Hommes, en France.

+ LCH.fit701$beta2[LCH.fit701$x==x],

+ LCH.fit701$kappa2[LCH.fit701$y==t])

> param[3,] <- c(REG$coefficients[41]+

+ REG$coefficients[1],REG$coefficients[141],

+ REG$coefficients[282])

> param

[,1] [,2] [,3]

[1,] -5.175210 0.01128062 -44.2225390

[2,] -5.168065 0.01114861 -45.5798063

[3,] -5.604863 0.55793271 -0.1244905

avec en ligne respectivement la fonction lca, la fonction fit701 et la fonction gnm, et en colonne
αx, βx et κt. Les deux premières fonctions utilisent la même containte sur les βx, il est donc
rassurant d’avoir les mêmes ordres de grandeurs :

> sum(LCH.lca$bx)

[1] 1

> sum(LCH.fit701$beta2)

[1] 1

Toutefois, si on compare les prédictions faites sur les taux de mortalité, les ordres de gran-
deurs sont comparables,

> exp(param[,1]+param[,2]*param[,3])

[1] 0.003433870 0.003426497 0.003433001

pour les trois modèles.

5.3 Utilisation du modèle de Lee-Carter projeté

A l’aide des techniques présentées auparavant, c’est à dire l’estimation des αx, βx, κt, et
des κt projetśur le futur, il est possible de calculer d’autres quantités, dans un contexte de
valorisation de produits d’assurance-vie.

5.3.1 Calcul des espérances de vie

Utilisons par exemple les sorties de la fonction lca de library(demography) pour calculer
des estimations des taux de mortalité, ainsi que des projections pour le futur,

> LCH <- lca(BASEH)

> LCHf<-forecast(LCH,h=100)

> A <- LCH$ax

> B <- LCH$bx

> K1 <- LCH$kt

> K2 <- K1[length(K1)]+LCHf$kt.f$mean

> K <- c(K1,K2)

> MU <- matrix(NA,length(A),length(K))

> for(i in 1:length(A)){

+ for(j in 1:length(K)){

+ MU[i,j] <- exp(A[i]+B[i]*K[j])

+ }}

Au début du chapitre, nous avions visualisé la surface du taux de mortalité log µx,t entre
1900 et 2005. Il est alors possible de visualiser en plus log µ̂x,t entre 2005 et 2105, comme sur la
Figure 5.17

> persp(LCH$age,c(LCH$year,LCHf$year),log(MU),

+ xlab="Age",ylab="Ann\’ee",

+ zlab="Taux de d\’ecès (log)",theta=30)

On peut alors en déduire l’analogue dynamique des kpx, en t = 2000, en fonction de k (i.e.
la fonction de survie de la durée de vie résiduelle)

> t <- 2000

> x <- 40

> s <- seq(0,99-x-1)

> MUd <- MU[x+1+s,t+s-1898]

> (Pxt <- cumprod(exp(-diag(MUd))))

[1] 0.99838440 0.99663098 0.99469369 0.99248602 0.99030804 0.98782725 0.98504242

[8] 0.98193715 0.97845243 0.97467199 0.97047250 0.96582764 0.96088832 0.95550220

[15] 0.94965857 0.94336539 0.93658314 0.92930373 0.92154725 0.91319233 0.90438349

[22] 0.89480210 0.88472880 0.87396961 0.86265381 0.85073003 0.83801863 0.82466285

[29] 0.81038237 0.79546804 0.77988277 0.76302933 0.74551160 0.72697144 0.70739380

[36] 0.68689788 0.66487519 0.64171557 0.61723877 0.59149492 0.56434547 0.53479039

[43] 0.50445361 0.47249581 0.43977367 0.40591799 0.37078337 0.33562397 0.29958914

[50] 0.26442814 0.22994614 0.19533606 0.16340038 0.13465331 0.10752312 0.08461961

[57] 0.06521622 0.04858994 0.03578809

On peut ainsi calculer les espérances de vie résiduelles pour des individus âgés de x = 40
ans, à différentes dates,

Age

A
nn

ée
Taux de décès (log)

Figure 5.17 – Evolution de (x, t) 7→ log µ̂x,t pour les Hommes, en France.

> x <- 40

> E <- rep(NA,150)

> for(t in 1900:2040){

+ s <- seq(0,90-x-1)

+ MUd <- MU[x+1+s,t+s-1898]

+ Pxt <- cumprod(exp(-diag(MUd)))

+ ext <- sum(Pxt)

+ E[t-1899] <- ext}

La Figure 5.18 (à gauche) permet de visualiser l’espérance de vie résiduelle à 40 ans, et son
évolution au cours du temps (entre 1900 et 2050)

> plot(1900:2049,E,xlab="Ann\’ee",ylab="Esp\’erance de vie r\’esiduelle

+ (à 40 ans)",main="Esp\’erance de vie r\’esiduelle (à 40 ans)",type="l")

5.3.2 Valorisation de contrats d’assurance

On peut aussi valoriser des contrats d’assurance-vie. Considérons ainsi un individu qui sou-
haite une rente vie entière différée. On cherche alors la valeur actuelle probable du contrat achet’e
par un assuré d’âge x = 40, qui souhaite toucher 1 (à terme échu) jusqu’̀’a sa mort, à partir de
x+ n = 70 ans (i.e. différées de n = 30 ans).

> x <- 40

> r <- .035

> m <- 70

> VV <- rep(NA,141)

> for(t in 1900:2040){

+ s <- seq(0,90-x-1)

+ MUd <- MU[x+1+s,t+s-1898]

+ Pxt <- cumprod(exp(-diag(MUd)))

+ h <- seq(0,30)

+ V <- 1/(1+r)^(m-x+h)*Pxt[m-x+h]

+ VV[t-1899] <- sum(V,na.rm=TRUE)}

> plot(1900:2040,VV,xlab="Ann\’ee",ylab="",

+ main="VAP d’une rente vie entière",type="l")

> par(mfrow = c(1, 1))

L’évolution du prix d’un tel contrat peut être visualisé sur la Figure 5.18

1900 1950 2000 2050

30
35

40

Espérance de vie résiduelle

Année

E
sp

ér
an

ce
 d

e
vi

e
ré

si
du

el
le

 à
 4

0
an

s

1900 1920 1940 1960 1980 2000 2020 2040

1.
5

2.
0

2.
5

3.
0

3.
5

VAP d'une rente vie entière

Année

Figure 5.18 – Evolution de l’espérance de vie résiduelle pour les Hommes de 40 ans, en France,
à gauche, et évolution de la valeur actuelle probable d’une rente vie entière différée achetée
l’année t par un assuré de 40 ans.

Approche fonctionnelle des taux de mortalité

Les taux de mortalitéau peuvent être vues comme des fonctions.

> library(fts)

> rownames(MUH)=AGE

> colnames(MUH)=YEAR

> rownames(MUF)=AGE

> colnames(MUF)=YEAR

> MUH=MUH[1:90,]

> MUF=MUF[1:90,]

> MUHF=fts(x = AGE[1:90], y = log(MUH), xname = "Age",

+ yname = "Log Mortality Rate")

> MUFF=fts(x = AGE[1:90], y = log(MUF), xname = "Age",

+ yname = "Log Mortality Rate")

On peut aussi projeter les fonctions sur les deux deux premiers axes d’une analyse en com-
posantes principales,

> par(mfrow = c(1, 2))

> fboxplot(data = MUHF, plot.type = "functional", type = "bag")

> fboxplot(data = MUHF, plot.type = "bivariate", type = "bag")

> par(mfrow = c(1, 1))

0 20 40 60 80

−
8

−
6

−
4

−
2

Age

Lo
g

M
or

ta
lit

y
R

at
e

1914
1915
1916
1917
1918

1919
1940
1943
1944
1945

−5 0 5 10 15

0
1

2
3

4

PC score 1

P
C

 s
co

re
 2

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●●

●

●
●

●

●
●

●●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●
●

●●●
●

●

●

●
●

●

●

●

●
●

●●●

●●

●●●

●

●

●

●

●
●
●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

19141915

1916

1917

1918

1919

1940

1943

1944

1945

Figure 5.19 – Détection d’années ‘aberrantes’ dans le modèle de Lee-Carter.

5.4 Aller plus loin que le modèle de Lee-Carter

5.4.1 Prise en compte d’un effet cohorte

L’idée est ici de rajouter un nouveau terme dans le modèle de Lee-Carter, intégrant un effet
cohorte, c’est à dire un terme dépendant de l’année de naissance t− x. On a ainsi

logµx,t = αx + βx · κt + γx · δt−x + ηx,t,

en reprenant la modélisation proposée dans Renshaw & Haberman (2006).
A l’aide de la fonction gnm il est facile de rajouter autant de terme que l’on veut dans le

modèle (à condition que le modèle soit identifiable, moyennant souvent quelques contraintes
supplémentaires). Ici, on va donc créer un troisième facteur, en plus de l’âge x et de la date t,

> library(gnm)

> Y <- Deces$Male

> E <- Expo$Male

> Age <- Deces$Age

> Year <- Deces$Year

> Cohorte <- Year-Age

> I <- (Deces$Age<100)

> base <- data.frame(Y=Y[I],E=E[I],Age=Age[I],Year=Year[I], Cohorte = Cohorte[I])

> REG <- gnm(Y~factor(Age)+Mult((factor(Age)),factor(Year))+

+ Mult((factor(Age)),factor(Cohorte)),

+ data=base,offset=log(E),family=quasipoisson)

Initialising

Running start-up iterations..

Running main iterations..

Done

L’avantage est qu’il n’est pas nécessaire de projeter le coefficient de cohorte puisque l’on
considère uniquement des projections pour des personnes qui pourraient acheter des contrats
aujourd’hui, et dont la cohorte a pu être observée. Comme auparavant, il faut aller chercher les
coefficients dans la sortie de la régression,

> nomvar <- names(REG$coefficients)

> nb3 <- substr(nomvar,nchar(nomvar)-3,nchar(nomvar))

> nb2 <- substr(nomvar,nchar(nomvar)-1,nchar(nomvar))

> nb1 <- substr(nomvar,nchar(nomvar),nchar(nomvar))

> nb <- nb3

> nb[substr(nb,1,1)=="g"]<- nb1[substr(nb,1,1)=="g"]

> nb[substr(nb,1,1)=="e"]<- nb2[substr(nb,1,1)=="e"]

> nb <- as.numeric(nb)

> I <- which(abs(diff(nb))>1)

On peut alors représenter l’ensemble des coefficients. Le coefficient α a la même allure qu’au-
paravant (ce qui est normal car il représente la mortalité moyenne par âge). En revanche, pour
les coefficients liés au temps ou à la cohorte, on a les résultats suivants. La Figure 5.20 représente
l’évolution des βx et κt (respectivement à gauche et à droite),

> par(mfrow = c(1, 2))

> #plot(nb[2:I[1]],REG$coefficients[2:I[1]],xlab="Age")

> plot(nb[(I[1]+1):(I[2])],REG$coefficients[(I[1]+1):(I[2])],xlab="Age")

> plot(nb[(I[2]+1):(I[3])],REG$coefficients[(I[2]+1):(I[3])],xlab="Ann\’ee")

> par(mfrow = c(1, 1))

La Figure 5.21 représente l’évolution des coefficients γx et δt−x (respectivement à gauche et
à droite),

> par(mfrow = c(1, 2))

> plot(nb[(I[3]+1):(I[4])],REG$coefficients[(I[3]+1):(I[4])],xlab="Age")

> plot(nb[(I[4]+1):length(nb)],REG$coefficients[(I[4]+1):length(nb)],

+ xlab="Ann\’ee (cohorte)",ylim=c(-5,3))

> par(mfrow = c(1, 1))

5.5 Exercices

Exercise 5.5.1. A l’aide des modèles ajustés sur les données françaises, commentez l’affirma-
tion ”tous les ans, on gagne un trimestre d’espérance de vie”.

Exercise 5.5.2. A l’aide des tables de mortalités Canadiennes CAN.Deces et CAN.Expo, calibrer
un modèle de Lee-Carter, et comparer les espérances de vie à la naissance entre les Canadiens
et les Français.

●

●●
●
●

●
●●●●

●●●●●
●

●

●

●

●●●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●

●

●

0 20 40 60 80 100

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

Age

R
E

G
$c

oe
ffi

ci
en

ts
[(

I[1
] +

 1
):

(I
[2

])
]

●●
●●

●●●●●
●●

●
●
●●

●
●

●

●

●

●

●●
●●●●●

●●●
●●

●●
●●

●●●
●

●

●
●

●

●

●

●
●
●●

●●

●●
●●●●

●●●
●●●

●●●●
●●

●●●
●
●●

●
●
●●

●
●
●●

●
●
●
●●

●●
●
●●

●
●
●
●
●
●
●●

●
●

●●

1900 1920 1940 1960 1980 2000

−
4

−
2

0
2

Année
R

E
G

$c
oe

ffi
ci

en
ts

[(
I[2

] +
 1

):
(I

[3
])

]

Figure 5.20 – Evolution des coefficients βx et κt pour les Hommes en France dans le modèle
avec un effet cohorte.

●

●●

●

●

●

●
●

●
●
●
●
●
●

●
●

●

●

●

●●●●
●
●●

●
●
●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●
●
●
●●

●●●●●
●●

●
●●

●●●●●●●
●●

●●
●●●

●●●
●
●●●

●

●
●

●

●●

●●

●

●

●

●

●

0 20 40 60 80 100

−
5

0
5

10

Age

R
E

G
$c

oe
ffi

ci
en

ts
[(

I[3
] +

 1
):

(I
[4

])
]

●

●
●

●

●

●

●

●
●
●●
●●●

●●
●●
●
●●
●●●●

●●●●
●●●●●●●●●

●●●
●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●●●●
●●●●●●●

●●●●
●●●

●●
●●●●

●●●
●●●

●●
●●●

●●
●●

●
●●

●

●
●
●●
●●●

●●●
●●
●
●●
●●
●●●

●
●●●●

●

●
●

●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●●
●
●●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●●●

●●
●
●
●
●

●●
●●
●●●

●●
●

●

1800 1850 1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Année (cohorte)

R
E

G
$c

oe
ffi

ci
en

ts
[(

I[4
] +

 1
):

le
ng

th
(n

b)
]

Figure 5.21 – Evolution des coefficients γx et δt−x pour les Hommes en France dans le modèle
avec un effet cohorte.

Exercise 5.5.3. A l’aide des tables de mortalités Japonaises JAP.Deces et JAP.Expo, calibrer
un modèle de Lee-Carter, et comparer les espérances de vie à la naissance entre les Japonais et
les Français. Comparer les probabilités d’atteindre 100 ans dans les deux pays.

Exercise 5.5.4. A l’aide des tables de mortalités Suisses CH.Deces et CH.Expo, calibrer un
modèle de Lee-Carter, et comparer les espérances de vie à la naissance entre les Suisses et les
Français.

Exercise 5.5.5. A l’aide des tables de mortalités Belges BEL.Deces et BEL.Expo, calibrer un
modèle de Lee-Carter, et comparer les espérances de vie à la naissance entre les Belges et les
Français.

Exercise 5.5.6. A l’aide des tables de mortalités Néo-Zélandaises NZM.Deces, NZM.Expo, NZNM.Deces
et NZNM.Expo, calibrer deux modèles de Lee-Carter, sur la population Maori (NZM) et non-Maori
(NZNM), et comparer les espérances de vie à la naissance.

Annexe A

Annexes

A.1 Les lois de probabilités

A.1.1 Les lois continues

Traitons le cas où il existe une dérivée à la fonction de répartition appelée fonction de densité
ou plus simplement densité. Il y a une infinité de fonctions qui peuvent et pourraient servir de
densités à une variable aléatoire.

Le système de Pearson

Pearson (1895) a étudié ce sujet et a proposé une approche globale et unifiée à partir d’une
équation différentielle. Une densité f serait solution de l’équation différentielle :

1

f(x)

df(x)

dx
= − a+ x

c0 + c1x+ c2x2
. (A.1)

Comme f doit représenter une densité, il faut que f soit positive sur D et normalisée
∫
D f(x)dx =

1. Ceci impose des contraintes sur les coefficients a, c0, c1, c2.
L’équation A.1 possède les cas particuliers suivants :
- type 0 : les coefficients c1, c2 sont nuls, alors on la solution de A.1 est

f(x) = Ke
− (2a+x)x

2c0 .

On reconnait la loi normale.
- type I : le polynome c0 + c1x+ c2x

2 possède des racines réelles a1, a2 de signes opposées a1 <
0 < a2. Donc f a pour expression

f(x) = K(x− a1)m1(a2 − x)m2 ,

où m1 = a+a1
c2(a2−a1) , m2 = − a+a2

c2(a2−a1) pour x ∈]−a1, a1[∩]−a2, a2[. On reconnait la loi Béta de
première espèce. Si m1 et m2 sont du même signes alors f a une forme en U, sinon une forme
en cloche.

- type II : Le type II correspond au cas où m1 = m2 = m.
- type III : si c2 = 0 et c0, c1 6= 0 alors le polynome c0 + c1x + c2x

2 devient de premier degré.
Par conséquent, f devient

f(x) = K(c0 + c1x)me−x/c1 ,

pour x ≥ − c0
c1

ou x ≤ − c0
c1

. On reconnaitra les lois gamma (incluant donc la loi exponentielle).

185

- type IV : le polynome c0 + c1x + c2x
2 n’a pas de solutions réelles 1. On peut néanmoins en

déduire une expression pour f :

f(x) = K
(
C0 + c2(x+ C1)2

)−(2c2)−1

e
− a−c1√

c2c0
tan−1

(
x+c1√
c0/c2

)
.

Barndoff-Nielsen utilise une approximation de l’expression supra pour obtenir la loi inverse
Gaussienne généralisée.

- type V : si le polynome c0 + c1x+ c2x
2 est un carré parfait, alors l’expression de la densité est

la suivante

f(x) = K(x+ C1)−1/c2e
a−C1

c2(x+C1) ,

pour x ≥ −C1 ou x ≤ −C1. Si le terme exponentiel s’annule alors on a le particulier f(x) =
K(x+ C1)−1/c2 , où c2 > 0 (c2 < 0) corresponds au type VIII (type IX respectivement).

- type VI : si le polynome c0 + c1x+ c2x
2 possède des racines réelles a1, a2 de même signe alors

on obtient
f(x) = K(x− a1)m1(x− a2)m2 ,

pour x ≥ max(a1, a2). Ceci corresponds à la loi Béta généralisée.
- type VII : enfin le type VII corresponds au cas “dégénéré” lorsque c1 = a = 0. Ainsi la solution

est
f(x) = K(c0 + c2x

2)−(2c2)−1
.

Le type VII corresponds à la loi Student et la loi de Cauchy.
Du système de Pearson, on peut construire toutes les autres lois continunes à l’aide de transfor-
mations “simples” : transformation linéaire, transformation puissance, transformation exponen-
tielle ou logarithme (e.g. la loi log-normale).
Le package PearsonDS implémente les lois de probabilité selon le système de Pearson. Le code
ci-dessous est un exemple très succint de graphiques. Sur la figure A.1, on observe des lois à
supports bornés (Pearson I, II et VI), d’autres à supports positifs (Pearson III, V) ou sur R tout
entier (Pearson 0, IV).

> library(PearsonDS)

> x <- seq(-1, 6, 0.001)

> y0 <- dpearson0(x, 2, 1/2)

> y1 <- dpearsonI(x, 1.5, 2, 0, 2)

> y2 <- dpearsonII(x, 2, 0, 1)

> y3 <- dpearsonIII(x, 3, 0, 1/2)

> y4 <- dpearsonIV(x, 2.5, 1/3, 1, 2/3)

> y5 <- dpearsonV(x, 2.5, -1, 1)

> y6 <- dpearsonVI(x, 1/2, 2/3, 2, 1)

> y7 <- dpearsonVII(x, 3, 4, 1/2)

> plot(x, y0, type="l", ylim=range(y0, y1, y2, y3, y4, y5, y7), ylab="f(x)",

> main="Système de Pearson",lty=1)

> lines(x[y1 != 0], y1[y1 != 0], lty=2)

> lines(x[y2 != 0], y2[y2 != 0], lty=3)

> lines(x[y3 != 0], y3[y3 != 0], lty=4)

> lines(x, y4, col="grey",lty=1)

> lines(x, y5, col="grey",lty=2)

> lines(x[y6 != 0], y6[y6 != 0], col="grey",lty=3)

1. il est toujours strictement positif et peut se réécrire C0 + c2(x+ C1)2.

> lines(x[y7 != 0], y7[y7 != 0], col="grey",lty=4)

> legend("topright", leg=paste("Pearson", 0:7), lty=c(1:4,1:4),

+ col=c(rep("black",4),rep("grey",4)))

−1 0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

Système de Pearson

x

f(
x)

Pearson 0
Pearson 1
Pearson 2
Pearson 3
Pearson 4
Pearson 5
Pearson 6
Pearson 7

Figure A.1 – Système de Pearson et formes de principales densités.

A.2 Générateurs aléatoires

Les générateurs aléatoires ont montré un intérêt croissant de la part des scientifiques avec le
développement des méthodes de Monte-Carlo, méthodes consistant à simuler n fois un modèle,
un problème et d’en prendre la quantité empirique désirée (moyenne, quantile, etc. . .). Dans un
premier temps, nous présentons la génération de nombres aléatoires de loi uniforme sur [0, 1] et
dans un second temps leur utilisation pour générer n’importe quelles lois.

A.2.1 Loi uniforme

A ses débuts, la génération de nombre aléatoire se faisait par une mesure de phénomènes phy-
siques aléatoires, telles que le taux de radioactivité de sources nucléaires ou le bruit thermique
de semi-conducteurs. Ces méthodes avaient un gros avantage à savoir générer des nombres par-
faitement aléatoires mais souffraient d’un défaut majeur : leur cout en temps et en prix.

Avec le développement de l’ordinateur, les chercheurs mirent au point des algorithmes complètement
déterministes pour générer une suite de nombres à partir d’un nombre initial (appelée graine,
seed en anglais). Les nombres générés sur un ordinateur nous paraissent aléatoires seulement
par ce que la graine est calculée à partir du temps machine (secondes et micro-secondes).

Dans la littérature, trois notions d’aléatoire sont à distinguer : les générateurs vraiment aléatoire
(true randomness en anglais) liés à des mesures de phénomènes physiques, les générateurs pseudo-
aléatoires (pseudo randomness) et les générateurs quasi-aléaoires (quasi randomness) qui sont
des algorithmes déterministes.

Générateurs pseudo-aléatoires

Comme précisé dans L’Ecuyer (1990), un générateur aléatoire se caractérise par un ensemble
d’états S, une loi de probabilité initiale µ sur S, une fonction de transition f : S 7→ S, d’un
ensemble de sortie U ⊂ R et d’une fonction de sortie g : S 7→ U . D’un état initial s0 donné par
µ, on génére la suite d’états sn = f(sn−1) et de nombres réels un = g(sn).

Jusqu’au début des années 90, f était la fonction congruentielle f(x) = (ax+c) mod m et S = N
et g la fonction proportion g(x) = x/m. Ainsi pour certains a, c,m bien choisis 2, on pouvait
générer des entiers aléatoires sur entre 0 et 232 et des réels sur 32 bits avec une période dépendant
des paramètres a, c,m. Tout l’enjeu résidait dans le choix de ses paramètres de manière à maxi-
miser la période 3.

Cette approche comporte des défauts à savoir un temps de calcul élevé 4 et une période courte
(nombres d’états entre deux états identiques). Heureusement pour la science, Matsumoto &
Nishimura (1998) publièrent le très célèbre générateur Mersenne-Twister, révolutionnaire sur
deux points : son temps de calcul et sa période.

Les deux auteurs exploitèrent la structure binaire des ordinateurs à savoir que n’importe quel
entier est representé par ω bits (e.g. ω = 32) et que les opérations élémentaires sont extrêment
peu couteuses.

La récurrence du n+ ième terme de MT est la suivante :

xi+n = xi+m ⊕ (xuppi |xlowi+1)A,

où n > m sont des entiers constants, xuppi (respectivement xlowi) désigne la partie supérieure
(inférieure) ω − r (r) bits du terme xi et A 5, une ω × ω matrice de {0, 1}. | est l’opérateur de
concaténation, donc xuppi |xlowi+1 concatène les ω− r bits supérieurs de xi avec les r bits inférieurs
de xi+1.

Matsumoto & Nishimura (1998) ajoute une étape d’ajustement après chaque récurrence pour
augementer l’équidistribution dans l’hypercube unité (voir l’article). Les auteurs fournissent
un jeu de paramètres sélectionné de manière à maximiser la période et assurer une bonne
équidistribution :

– (ω, n,m, r) = (32, 624, 397, 31),
– a = 0x9908B0DF, b = 0x9D2C5680, c = 0xEFC60000,
– u = 11, l = 18, s = 7 et t = 15.

La période est de 2nω−r − 1 = 219937 − 1, d’où le nom du générateur MT19937.

L’implémentation de MT19937 en C, disponible sur la page des auteurs 6, est très rapide du fait
de l’utilisation d’opérations systématique bit à bit. D’autres générateurs ont depuis été inventé
utilisant ce formalisme, notamment les générateurs WELL de L’Ecuyer et SFMT de Matsumoto.

MT19937 et ses extensions rentrent dans la catégorie des générateurs pseudo-aléatoires et sont
utilisés dans les méthodes de Monte-Carlo. Par la loi des grands nombres, la moyenne empirique
de l’échantillon (X1, . . . , Xn) converge presque surement vers la moyenne théorique E(X). Le
théorème centrale limite nous donne la vitesse de convergence : 1√

n
.

2. Pour m = 231 − 1, a = 16807 et c = 0, on obtient le générateur de Park-Miller d’une période de 231.
3. Voir le théorème de Knuth
4. L’opération modulo nécessite un grand nombre de opérations arithmétiques élementaires.

5. La matrice A est égale à

(
0 Iω−1

a

)
où la multiplication à droite est faite par un décalage de bit à bit

et une addition avec un entier a.
6. Téléchargeable à l’adresse http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Par conséquent, on construit l’intervalle de confiance suivant :

[
Xn −

1√
n
Sntn−1,α;Xn +

1√
n
Sntn−1,α

]
,

où Sn la variance empirique débiaisée et tn−1,α le quantile de la loi de Student à n− 1 degré de
liberté 7.
Dans R, le générateur aléatoire utilisé est MT19937 via la fonction runif. D’autres générateurs
sont disponibles notamment Wichman-Hill, Knuth-TAOCP,. . .via la fonction RNGkind. De plus,
le package randtoolbox implémentent des générateurs pseudo-aléatoires plus récents et ran-
dom propose des variables vraiment aléatoires via le site http://www.random.org.

Générateurs quasi-aléatoires

Les méthodes de Monte-Carlo présentent un défaut : une convergence lente. Pour combler ce
problème, deux approches sont envisagées soit par réduction de la variance soit par des méthodes
quasi-aléatoires. Nous détaillerons dans cette section, les méthodes dites quasi-aléatoires.
Soient Id l’hypercube unité de dimension d et f une fonction multivariée bornée et intégrable
sur Id. Les méthodes de Monte-Carlo consiste à approximer l’intégrale de f par

∫

Id
f(x)dx ≈ 1

n

n∑

i=1

f(Xi),

où (Xi)1≤i≤n sont des variables aléatoires independantes sur Id. La loi des grands nombres nous
assurent la convergence presque sûre de l’estimateur de Monte-Carlo. Et le théorème centrale
limite nous précise que la vitesse de convergence est en O(1√

n
).

La gross différence entre les méthodes pseudo Monte-Carlo et quasi Monte-Carlo (QMC) est de
ne plus considérer les points (xi)1≤i≤n comme réalisations de variables aléatoires mais comme
points déterministes. Contrairement au tests statistiques, l’intégration numérique ne dépends
pas sur le caractère aléatoire. Les méthodes QMC datent des années 50 pour des problèmes
d’interpolation et de résolution d’intégrales.
Dans la suite, nous considérons les points (ui)1≤i≤n de Id comme déterministes. La condition
de convergence de 1

n

∑n
i=1 f(ui) vers

∫
Id f(x)dx repose sur la bonne répartition des points dans

l’hypercube Id.
On dit que les points sont uniformément distribués si

∀J ⊂ Id, lim
n→+∞

1

n

n∑

i=1

11J(ui) = λd(J),

où λd désigne le volume en dimension d. Le problème est que ce critère est trop restrictif puisqu’il
y aura toujours un sous ensemble de l’hypercube avec aucun points à l’intérieur.
Par conséquent, on définit une définition plus flexible de l’uniformité à l’aide des cardinaux
CardE(u1, . . . , un) =

∑n
i=1 11E(ui). La discrépance d’une suite (ui)1≤i≤n de Id est

Dn(u) = sup
J∈J

∣∣∣∣
CardJ(u1, . . . , un)

n
− λd(J)

∣∣∣∣

où J corresponds à la famille de tous les sous-intervalles du type
∏d
i=1[ai, bi].

7. i.e. P (|Y | > tn−1,α) = α où Y est une variable aléatoire Student.

http://www.random.org

La discrépance Dn(u) d’une suite nous permet de borner l’erreur de la manière suivante
∣∣∣∣∣
1

n

n∑

i=1

f(ui)−
∫

Id
f(x)dx

∣∣∣∣∣ ≤ Vd(f)Dn(u),

où Vd(f) est la variation d-dimensionelle au sens de Hardy et Krause (cf. Niederreiter (1992)).
D’où l’intérêt pour les suites à discrépance faible. Les plus connues sont les suites de Van Der
Corput, de Halton et de Sobol.
Dans R, le package randtoolbox implémentent plusieurs suites à discrépance faible, tandis que
le package lhs propose la méthode “Latin Hypercube Sampling”, une méthode hybride quasi et
pseudo aléatoire.

A.2.2 Loi quelconque

En pratique, on ne simule pas des lois uniformes par une loi discrète ou continue particulière.
D’une suite de nombres aléatoires uniformes U1, . . . , Un, on va donc générer une suite X1, . . . , Xn

de fonction de répartition F .
On notera que sous R, la plupart des lois usuelles peuvent être simulées directement via des
algorithmes optimisés. La fonction rpois permettra de générer des suites indépendantes suivant
une loi de Poisson, alors que rnorm permettra de générer des suites indépendantes suivant une
loi normale.
Pour simuler suivant une loi composée (e.g. Poisson-exponentielles), on peut utiliser tout sim-
plement
> sum(rexp(rpois(1,lambda),mu)

On peut utiliser ce code pour comparer les résultats de la Figure ?? par la méthode de Panjer,
pour calculer la probabilité que la loi composée dépasse 25,
> nsim <- 100000

> set.seed(1)

> N <- rpois(nsim,lambda)

> X <- rexp(sum(N))

> I <- rep(1:nsim,N)

> S <- as.vector(tapply(X,I,sum))

> sum(S>25)/nsim

[1] 0.00361

Méthode de la transformée inverse

Notons F−1 l’inverse de la fonction de répartition

F−1(u) = inf
x
F (x) ≥ u,

pour u ∈ [0, 1]. Il est facile de voir que la variable F−1(U1) a la même fonction de répartition
que X1. La méthode de la transformée inverse utilise cette propriété pour donner l’algorithme
suivant
– générer U1, . . . , Un

iid∼ U(0, 1),
– calculer Xi = F−1(Ui).
Notons que si X est une variable discrète, F est une fonction en escalier et l’inverse se calcule
par une suite de if-else. Au contraire si X est une variable continue, l’inverse de F peut être une
formule exacte comme pour la loi exponentielle F−1(u) = − log(1−u)

λ . Dans ce cas, la génération
est très rapide.

Méthode Alias

La méthode Alias permet de générer des variables aléatoires discrètes décrites par les probabilités
élémentaires P (X = xk) pour k = 1, . . . , n. Toutes variables discrètes avec au plus n valeurs
peut être représenté par un mélange équiprobable de n− 1 variables discrètes bimodales (i.e. à
2 valeurs). On a

P (X = x) =
1

n− 1

n−1∑

i=1

qi(x),

où qi(x) sont des fonctions de masse de probabilité non nulles pour deux valeurs xi et yi.

L’algorithme devient

– générer U, V de loi uniforme U(0, 1),
– k = d(n− 1)Ue,
– si V < qk alors retourner xk sinon retourner yk.

Voir Walker (1977).

Inversion numérique

Dans le cas d’une variable continue X, il n’existe pas forcément d’expression explicite pour
F−1. Une inversion numérique est néanmoins possible. Leydold et Hormann propose une in-
terpolation polynomiale nécessitant à partir du calcul de p points (ui = F (xi), xi, fi = f(xi)).
Ensuite F−1(u) est interpolé par un polynome d’Hermite d’ordre 3 ou 5 8 en utilisant les points
(ui, xi, fi)i.

L’erreur de ces méthodes d’inversion numérique est evidemment controlable. En pratique (Ley-
dold et Hormann), le temps de calcul de ces méthodes est tout à fait acceptable car p (envirion 300
pour une précision de 10−6) est relativement faible comparitivement au nombre de réalisations
voulues n. Il existe même des versions pour n’utilisant que la densité f(xi) et pas la fonction de
répartition. Ceci est particulièrement apprécié pour la loi normale et ses extensions par exemple

Ces méthodes sont disponibles dans le package Runuran écrit par Leydold & Hörmann (2011).

Algorithme du rejet

Si X possède une densité f , l’algorithme du rejet-acceptation consiste à tirer dans des variables
aléatoires d’un loi proche de f (mais plus facile à simuler) et de ne garder que celle qui répondent
à une certaine contrainte.

Notons Y une variable aléatoire de densité et fonction de répartition g et U une variable aléatoire
uniforme. S’il existe une constante C ≥ 1 telle que on a la majoration ∀x, f(x) ≤ cg(x), alors la
loi conditionnelle de Y sachant que cUg(Y) < f(Y) égale celle de X.

Pour générer Xi, l’algorithme est le suivant

Répéter :
– générer U ∼ U(0, 1),
– générer Y selon g,
tant que cUg(Y) < f(Y).
affecter Xi = Y .

Le nombre de rejet suit une loi géométrique de paramètre 1/C. Par conséquent plus l’approxi-
mation est bonne (C proche de 1), plus le nombre de rejets est faible.

8. l’interpolation linéaire (d’ordre 1) n’est pas efficace car le nombre p de points est trop élevé.

A.2.3 Processus aléatoires et Variables multivariées

Des applications d’actuariat nécessiteront la simulation de processus aléatoires et pas seulement
de variables indépendantes. Dans ce cas, l’équation différentielle stochastique doit être discrétisée
de manière à simuler la ième trajectoire “complète” (Xt0,i, . . . XtT ,i) sur [t0, tT]. Par conséquent
le nombre de points n(T+1) grandit rapidement. Il faut donc bien réfléchir si toute la trajectoire
du processus est nécessaire ou si seule la valeur terminale où le supremum nous intéresse.

Par exemple, considérons la simulation d’un processus de Poisson. Si on s’intéresse à un processus
de Poisson homogène, d’intensité λ, on va générer les durées entre sauts, qui sont exponentielles.
Pour générer un vecteur de dates de sauts sur un intervalle de temps [0, T] on considère le code
suivant

> nmax <- 10000

> ST <- cumsum(rexp(nmax,lambda))

> ST <- ST[ST<=T]

On peut alors construire la fonction t 7→ Nt sous la forme

> Nt <- function(t) sum(ST<=t)

Si le processus de Poisson est non-homogène, d’intensité λ(t) (que l’on supposera bornée par
λ), il est possible d’utiliser l’algorithme suivant pour générer un processus : on va générer un
processus de Poisson d’intensité λ, et on utilise une méthode de type acceptation-rejet pour
savoir si on garde un saut.

– poser T0 = 0 et T? = 0,
– générer E exponentielle de moyenne 1λ et poser T? = T? + E,
– générer U uniforme sur [0, 1] : si U > λ(T?)/λ on retourne à la seconde étape, et on tire un

nouveau E, sinon on pose Ti = T?.

Une autre possibilité est de noter que pour un processus de Poisson homogène, on partait de
T0 = 0, et on utilisait

Ti = Ti−1 + F−1(U),

où F est la fonction de répartition de la loi exponentielle de moyenne 1/λ. Ici, on va utiliser

Ti = Ti−1 + F−1
Ti−1

(U),

où Fs est la fonction de répartition du temps d’attente entre le Nsième saut, et le suivant, i.e.

Fs(t) = 1− P(Ns+t −Ns = 0) = 1− exp

(∫ s+t

s
λ(u)du

)
.

Ces fonctions sont programmée dans le package PtProcess.

La simulation multivariée nécessite aussi du doigté, car en dehors d’une loi à composante
indépendante, la ième réalisation du vecteur (U1,i, . . . , Ud,i) n’est pas triviale à calculer. Par
exemple, l’algorithme de rejet/acceptation sur la suite (V1,i = 1 − 2U1,i, . . . , Vd,i = 1 − 2Ud,i)i
avec la condition

∑
j V

2
j,i ≤ 1 simule une loi uniforme dans la sphère unité d-dimensionnelle.

La génération d’une loi normale multivariée N (µ,Σ) est un peu plus complexe :

– générer d variables indépendantes Xi ∼ N (0, 1),
– calculer la décomposition de Cholesky Σ = C ′C,
– calculer Y = µ+ C ′X.

Notons que si l’on veut simuler une variable multivariée sur l’hyperellypse définie par {x, xTΣx ≤
r}, il suffit de remplacer la première étape par la génération de d variables uniformément dis-
tribuées dans la sphère unité.

> set.seed(1)

> rmultinormal <- function(n,S){

+ Z <- matrix(NA,n,ncol(S))

+ C <- chol(S)

+ for(i in 1:n){Z[i,] <- t(C) %*% rnorm(3)}

+ return(Z)}

> Sigma <- matrix(c(1,.7,.3,.7,1,-.3,.3,-.3,1),3,3)

> rmultinormal(1,Sigma)

[,1] [,2] [,3]

[1,] -0.6264538 -0.3073701 -0.8475816

> cor(rmultinormal(10000,Sigma))

[,1] [,2] [,3]

[1,] 1.0000000 0.7034906 0.2989346

[2,] 0.7034906 1.0000000 -0.2918081

[3,] 0.2989346 -0.2918081 1.0000000

Bibliographie

Amiot, E. (1999), Introduction aux probabilités et à la statistique, Gaetan Morin. 1

Arnold, B. C. (1983), Pareto Distributions, International Co-operative Publishing House. 14

Arnold, B. C. (2008), Pareto distributions, in ‘Encyclopedia of Statistical Sciences’, Wiley In-
terscience. 14

Bailey, A. L. (1950), ‘Credibility procedures, Laplace’s generalization of Bayes’ rule and the
combination of collateral knowledge with observed data’, Proceedings of the Casualty Actuarial
Society 37, 7–23.

Bailey, R. (1963), ‘Insurance rates with minimum bias’, Proceedings of the Society of Actuaries
50, 4–11. 63, 64

Balson, N. (2008), Mesure d’incertitude sur l’estimation des provisions de sinistres en Assurance
Non Vie, Institut des Actuaires - ENSAE. 130

Belhadj, H., Goulet, V. & Ouellet, T. (2009), ‘On parameter estimation in hierarchical credibi-
lity’, ASTIN Bulletin 39(2).

Benktander, G. (1976), ‘An approach to credibility in calculating ibnr for casualty excess rein-
surance’, Actuarial Review 3, 7–31. 127, 128

Bernegger, S. (1997), ‘The swiss re exposure curves and the mbbefd distribution class’, Astin
Bull. 27(1), 99–111. 10, 11

Bowers, N. L., Jones, D. A., Gerber, H. U., Nesbitt, C. J. & Hickman, J. C. (1997), Actuarial
Mathematics, 2nd Edition, SOA. iii, iv

Bühlmann, H. (1967), ‘Experience rating and credibility’, ASTIN Bulletin 4, 199–207.

Bühlmann, H. (1969), ‘Experience rating and credibility’, ASTIN Bulletin 5, 157–165.

Bühlmann, H. & Gisler, A. (1997), ‘Credibility in the regression case revisited’, ASTIN Bulletin
27, 83–98.

Bühlmann, H. & Gisler, A. (2005), A Course in Credibility Theory and its Applications, Springer.

Bühlmann, H. & Jewell, W. S. (1987), ‘Hierarchical credibility revisited’, Bulletin of the Swiss
Association of Actuaries 87, 35–54.

Bühlmann, H. & Straub, E. (1970), ‘Glaubwürdigkeit fur schadensätze’, Bulletin of the Swiss
Association of Actuaries 70, 111–133.

195

Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D. & Epstein, D. (2008), ‘A Quantitative
Comparison of Stochastic Mortality Models using Data from England and Wales and the
United States’, North American Actuarial Journal 13(1), 1–35. 159

Chambers, J. (2009), Software for Data Analysis : Programming with R, Springer Verlag. iii

Christofides, S. (1989), Regression models based on log-incremental payments, in I. of Actuaries,
ed., ‘Claims Reserving Manual’. 109

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009), Introduction to Algorithms,
The MIT Press. iii

Dagnelie, P. (2007), Statistique théorique et appliquée, De Boeck Université. 21

Dalgaard, P. (2008), Introductory Statistics with R, Springer. 21

Dalgaard, P. (2009), Introductory Statistics with R, Springer Verlag. iii

Davison, A. & Snell, E. (1991), Residuals and diagnostics, in N. R. D.V. Hinkley & E. Snell,
eds, ‘Statistical Theory and Modelling’, Chapman and Hall. 51

Daykin, C. D., Pentikainen, T. & Pesonen, M. (n.d.), Practical Risk Theory for Actuaries,
Chapman and Hall. 12

de Jong, P. & Zeller, G. (2008), Generalized Linear Models for Insurance Data, Cambridge
University Press. iii, 39

De Vylder, F. (1981), ‘Practical credibility theory with emphasis on parameter estimation’,
ASTIN Bulletin 12, 115–131.

De Vylder, F. (22-28), Estimation of ibnr claims by least squares, in ‘Proc. First Meeting
Contact-group Actuarial Sciencesl’. 109

Delmas, J.-F. (2012), Introduction aux probabilités et à la statistique, Ensta. 1

Denuit, M. & Charpentier, A. (2004), Mathématiques de l’assurance non-vie : principes fonda-
mentaux de théorie du risque. Tome 1., Economica. iii, 37

Denuit, M. & Charpentier, A. (2005), Mathématiques de l’assurance non-vie : Tarification et
provisionnement. Tome 2., Economica. iii, 37, 39, 91, 100

Denuit, M. & Robert, C. (2007), Actuariat des Assurances de Personnes : Modélisation, Tarifi-
cation et Provisionnement, Economica. 133, 159

Dickson, D. C., Hardy, M. R. & Waters, R. H. (2009), Actuarial Mathematics for Life Contingent
Risks, Cambridge University Press. iii, iv, 133

Dubey, A. & Gisler, A. (1981), ‘On parameter estimation in credibility’, Bulletin of the Swiss
Association of Actuaries 81, 187–211.

Dubreuil, E. & Vendé, P. (2005), Les couvertures indicielles en réassurance catastrophe. Prise
en compte de la dépendance spatiale dans la tarification. 30

Dutang, C., Goulet, V. & Pigeon, M. (2008), ‘actuar : An R package for actuarial science’,
Journal of Statistical Software 25(7). 7

Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997), Modelling Extremal Events, Springer. 85

Embrechts, P., Lindskog, F. & McNeil, A. (2001), Modelling dependence with copulas and ap-
plications to risk management, Technical report, ETH Zurich. 13, 15

England, P. D. & Verrall, R. J. (1999), ‘Analytic and bootstrap estimates of prediction errors
in claims reserving’, Insurance : Mathematics and Economics 25, 281–293. 118

Frees, E. (2009), Regression modeling with actuarial and financial applications, Cambridge Uni-
versity Press. iii, 39

Frees, E. W. & Valdez, E. (1998), ‘Understanding Relationships Using Copulas’, North American
Actuarial Journal 2(1). 13

Frees, E. W. & Wang, P. (2006), ‘Copula credibility for aggregate loss models’, Insurance :
Mathematics and Economics 38, 360–373. 13

Friedman, J. (1991), ‘Multivariate additive regression splines’, Annals of Statistics 19(1), 1–67.
72

Genest, C., Kojadinovic, I., Nešlehová, J. & Yan, J. (2011), ‘A goodness-of-fit test for bivariate
extreme-value copulas’, Bernoulli 17(1), 253–275. 33

Gentle, J. (2009), Computational Statistics, Springer Verlag. iii

Gerber, H. & Shiu, E. (1994), ‘Option pricing by esscher transforms’, Transactions of the Society
of Actuaries Society of Actuaries 46, 99–191. 49

Giles, T. L. (1993), ‘Life insurance application of recursive formulas’, Journal of Actuarial Prac-
tice 1(2), 141–151. 147

Gilks, W. & Wild, P. (2004), ‘Adaptive rejection sampling from log-concave density’, Applied
Statistics 42, 701–709.

Goovaerts, M. J. & Hoogstad, W. J. (1987), Credibility Theory, number 4 in ‘Surveys of actuarial
studies’, Nationale-Nederlanden N.V., Netherlands.

Goulet, V. (2008), Credibility, in E. Melnick & B. Everitt, eds, ‘Encyclopedia of Quantitative
Risk Analysis and Assessment’, Wiley.

Hachemeister, C. A. (1975), Credibility for regression models with application to trend, in ‘Cre-
dibility, theory and applications’, Proceedings of the Berkeley actuarial research conference
on credibility, Academic Press, New York, pp. 129–163.

Hachemeister, C. A. & Stanard, J. N. (1975), Ibnr claims count estimation with static lag
functions, in ‘12th ASTIN Colloquium’, Portimao, Portugal. 110

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman and Hall. 69, 72

Hess, C. (2000), Méthodes actuarielles de l’assurance vie, Economica. 133

Hogg, R. V., Craig, A. T. & McKean, J. W. (2005), Introduction to Mathematical Statistics, 6
edn, Prentice Hall, Upper Saddle River, NJ. 21

Hogg, R. V. & Klugman, S. A. (1984), Loss Distributions, Wiley, New York.

Hovinen, E. (1981), Additive and continuous ibnr, in ‘ASTIN Colloquium’, Loen, Norway. 127

Hsiao, C., Kim, C. & Taylor, G. (1990), ‘A statistical perspective on insurance rate-making’,
Journal of Econometrics 44(1-2), 5 – 24.

Hurvich, C. M. & Tsai, C.-L. (1995), ‘Model selection for extended quasi-likelihood models in
small samples’, Biometrics 51, 1077–1084. 52

Hyndman, R. J. & Fan, Y. (1996), ‘Sample quantiles in statistical packages’, American Statis-
tician 50, 361–365. 17

Ihaka, R. & Gentleman, R. (1996), ‘R : A language for data analysis and graphics’, Journal of
Computational and Graphical Statistics 5(3), 299–314.

Jeffrey, A. & Dai, H.-H. (2008), Handbook of mathematical formulas and integrals, Academic
Press.

Jewell, W. S. (1974), ‘Credible means are exact bayesian for exponential families’, Astin Bull.
8, 77–90.

Jewell, W. S. (1975), ‘The use of collateral data in credibility theory : A hierarchical model’,
Giornale dell’Istituto Italiano degli Attuari 38, 1–16.

Joe, H. (1997), Multivariate dependence measure and data analysis, in ‘Monographs on Statistics
and Applied Probability’, Vol. 73, Chapman & Hall. 28, 33

Johnson, N. L., Kotz, S. & Balakrishnan, N. (1997), Discrete Multivariate Distributions, Wiley
Interscience. 14

Johnson, N. L., Kotz, S. & Kemp, A. W. (2005), Univariate discrete distributions, 3rd edn,
Wiley Interscience. 9

Jung, J. (1968), ‘On automobile insurance ratemaking’, ASTIN Bulletin 5, 41–48. 63

Kaas, R., Goovaerts, M., Dhaene, J. & Denuit, M. (2009), Modern Actuarial Risk Theory, Sprin-
ger Verlag. iii, 39

Klugman, S. A., Panjer, H. H. & Willmot, G. (1998), Loss Models : From data to Decisions,
Wiley, New York.

Klugman, S. A., Panjer, H. H. & Willmot, G. E. (2009), Loss Models : From Data to Decisions,
Wiley Series in Proability and Statistics. iii, iv

Knuth, D. E. (1997a), The Art of Computer Programming, volume 1 : Fundamental algorithms,
Massachusetts : Addison-Wesley. iii

Knuth, D. E. (1997b), The Art of Computer Programming, volume 2 : Seminumerical Algorithms,
Massachusetts : Addison-Wesley. iii

Knuth, D. E. (1998), The Art of Computer Programming, volume 3 : Sorting and Searching,
Massachusetts : Addison-Wesley. iii

Kotz, S., Balakrishnan, N. & Johnson, N. L. (1994a), Continuous Multivariate Distributions,
Vol. 2, Wiley Interscience. 2, 14

Kotz, S., Balakrishnan, N. & Johnson, N. L. (1994b), Continuous Multivariate Distributions,
Vol. 1, Wiley Interscience. 2, 14

Kotz, S., Balakrishnan, N. & Johnson, N. L. (2002), Continuous Multivariate Distributions,
Vol. 1, Wiley Interscience.

Krause, A. (2009), The Basics of S-PLUS, Springer Verlag. iii

Kremer, E. (1982), ‘Ibnr claims and the two-way model of anova’, Scandinavian Actuarial Jour-
nal pp. 47–55. 110

Lacoume, A. (2009), Mesure du risque de réserve sur un horizon de un an, Institut des Actuaires
- ISFA. 107

L’Ecuyer, P. (1990), ‘Random numbers for simulation’, Communications of the ACM 33, 85–98.
188

Lee, R. & Carter, L. (1992), ‘Modeling and forecasting u.s. mortality’, Journal of the American
Statistical Association 87(419), 659–671. 166

Leydold, J. & Hörmann, W. (2011), Runuran : R interface to the UNU.RAN random variate
generators. 191

Mack, T. (1991), ‘A simple parametric model for rating automobile insurance or estimating ibnr
claims reserves’, ASTIN Bulletin 21, 93–109. 110

Mack, T. (1993a), ‘Distribution-free calculation of the standard error of chain-ladder reserve
estimates’, ASTIN Bulletin 15, 133–138. 98, 99, 116, 118, 123, 129, 130

Mack, T. (1993b), ‘The standard error of chain-ladder reserve estimates : Recursive calculation
and inclusion of a tail factor’, ASTIN Bulletin 29, 361–366. 100

Mack, T. (1994), ‘Which stochastic model is underlying the chain-ladder method ?’, Insurance :
Mathematics and Economics 23, 213–225. 100

Maindonald, J. & Braun, W. J. (2007), Data Analysis and Graphics Using R : An Example-Based
Approach, Cambridge University Press. iii

Marceau, E. (2012), Modélisation et évaluation des risques en actuariat, Springer. iii

Marshall, A. W. & Olkin, I. (1988), ‘Families of multivariate distributions’, Journal of the Ame-
rican Statistical Association 83(403), 834–841. 15

Matsumoto, M. & Nishimura, T. (1998), ‘Mersenne twister : A 623-dimensionnally equidistri-
buted uniform pseudorandom number generator’, ACM Trans. on Modelling and Computer
Simulation 8(1), 3–30. 188

Mayerson, A. L. (1964), ‘A bayesian view of credibility’, Proceedings of the Casualty Actuarial
Society 51, 85–104.

McCullagh, P. & Nelder, J. (1991), Generalized Linear Models, CRC Press. 39

McDonald, J. & Butler, R. (1990), ‘Regression models for positive random variables’, Journal
of Econometrics 43, 227–251. 86

Merz, M. & Wüthrich, M. V. (2008), ‘Modelling the claims development result for solvency
purposes’, CAS E-Forum pp. 542–568. 106, 107

Moral, P. D., Remillard, B. & Rubenthaler, S. (2006), Introduction aux probabilités, Ellipses. 1

Mori, Y. (2009), Handbook of Computational Statistics, Springer Verlag. iii

Mowbray, A. H. (1914), ‘How extensive a payroll exposure is necessary to give a dependable
pure premium ?’, Proceedings of the Casualty Actuarial Society 1, 25–30.

Nelsen, R. B. (1999), An introduction to copulas, Springer. 15

Nelsen, R. B. (2006), An introduction to copulas, Springer. 15

Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, SIAM,
Philadelphia. 190

Ohlsson, E. & Johansson, B. (2010), Non-Life Insurance Pricing with Generalized Linear Models,
Springer Verlag.

Ohlsson, E. & Johansson, B. (2010), Non-life insurance pricing with Generalized Linear Models,
Springer Verlag. iii, 39

Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W., eds (2010), NIST Handbook of
Mathematical Functions, Cambridge University Press.
URL: http ://dlmf.nist.gov/ 2

Panjer, H. H. (1981), ‘Recursive evaluation of a family of compound distributions’, Astin Bull.
12(1), 22–26. 11

Parent, E. & Bernier, J. (2007), Le raisonnement bayésien, Springer Verlag. 129

Partrat, C., Lecoeur, E., Nessi, J., Nisipasu, E. & Reiz, O. (2008), Provisionnement technique
en Assurance non vie, Economica. 91

Pearson, K. (1895), ‘Contributions to the mathematical theory of evolution, ii : Skew variation
in homogeneous material’, Philosophical Transactions of the Royal Society of London . 185

Petauton, P. (2004), Théorie et pratique de l’assurance vie, Dunod. 133, 141

Pitacco, E., Denuit, M., Haberman, S. & Olivieri, A. (2009), Modelling Longevity Dynamics for
Pensions and Annuity Business, Oxford University Press. 159

Planchet F., T. P. (2006), Modèles de durée & applications actuarielles, Economica.

Pröhl, C. & Schmidt, K. D. (2005), Multivariate chain-ladder, in ‘ASTIN Colloquium’, Zurich.
125

Quarg, G. & Mack, T. (2004), ‘Munich chain-ladder and a reserving method that reduces the
gap between ibnr projections based on paid losses and ibnr projections based on incurred
losses’, Variances 2, 267–299. 101, 104

Renshaw, A. E. & Haberman, S. (2006), ‘A cohort-based extension to the lee-carter model for
mortality reduction factors’, Insurance : Mathematics and Economics 58, 556–570. 181

Renshaw, A. E. & Verrall, R. J. (1998), ‘A stochastic model underlying the chain-ladder tech-
nique’, British Actuarial Journal 4, 903–923. 115

Robert, C. (2006), Le choix bayésien, Principes et pratique, Springer Verlag. 129

Saporta, G. (2006), Probabilités, analyse de donnés et statistique, Technip. 21, 29

Simonet, G. (1998), Comptabilité des entreprises d’assurance, L’Argus de l’Assurance. 91

Sklar, A. (1959), ‘Fonctions de répartition à n dimensions et leurs marges’, Publications de
l’ISUP de Paris 8 8, 229–231. 14

Stone, C. (1985), ‘Additive regression and other nonparametric models’, Annals of Statistics
13(2), 689–705. 69

T., M. & T., S. (2006), Dynamic Regression Models for Survival Data, Springer Verlag.

Tanner, M. A. & Wong, W. H. (1983), ‘The estimation of the hazard function from randomly
censored data by the kernel method’, The Annals of Statistics .

Taylor, G. (1977), ‘Separation of inflation and other effects from the distribution of non-life
insurance claim delays’, ASTIN Bulletin 9, 217–230. 108

Therneau, T. (2009), survival : Survival Analysis, Including Penalised Likelihood. R package
version 2.35-4. Original R port by Thomas Lumley.

Venables, W. N. & Ripley, B. D. (2002a), Modern Applied Statistics with S, 4th edn, Springer.
iii

Venables, W. N. & Ripley, B. D. (2002b), Modern Applied Statistics with S, 4 edn, Springer,
New York.

Verrall, R. J. (2000), ‘An investigation into stochastic claims reserving models and the chain-
ladder technique’, Insurance : Mathematics and Economics 26, 91–99. 108

Vylder, E. D. (2010), Life Insurance Theory : Actuarial Perspectives, Springer Verlag. 133

Walker, A. J. (1977), ‘An efficient method for generating discrete random variables with general
distributions’, ACM Transactions on Mathematical Software 3, 253–256. 191

Wheeler, B. (2006), SuppDists : Supplementary Distributions. R package version 1.1-0.
URL: http ://www.bobwheeler.com/stat

Whitney, A. W. (1918), ‘The theory of experience rating’, Proceedings of the Casualty Actuarial
Society 4, 275–293.

Wood, S. (2000), ‘Additive regression and other nonparametric models’, Annals of Statistics
62(2), 413–428. 72

Wüthrich, M. V. & Merz, M. (2008), Stochastic Claims Reserving Methods in Insurance, Wiley
Interscience. 91, 104

Zehnwirth, B. (1985), Interactive claims reserving forecasting system (ICRFS), Benhar Nominees
Pty Ltd. Tarramurra N.S.W., Australia. 109

Zuur, A. F., Ieno, E. N. & Meesters, E. (2009), A Beginner’s Guide to R, Springer Verlag. iii

Index

additif, 68
AIC, 52
algorithme récursif, 147
année, 164
annuité vie entière, 138
approximation, 12
arbre, 53
ARIMA, 168
Ax, 140, 148, 149
äx, 138, 148

nDAx, 154

nIAx, 154
ax:nq, 148

Bailey, 63
Baldacci, 151
bayésien

provisions, 131
benefit premium, 155
Benktander, 127
BIC, 52
binomiale, 52
binomiale négative, 7, 8, 118
boni-mali, 94, 106
bonus-malus, 78
bootstrap, 116
Borhutter-Ferguson, 126
Box-Cox, 121

calendaire, 164
Cape Code, 128
capital différé, 137
carte, 66
Chain Ladder, 94, 96
charge ultime, 95, 128
chi-deux, 55, 90
Cholesky, 192
claims development result, 94, 106
classification and regression tree, 53
cohorte, 181

colonne, 112

convolution, 124

copules, 14, 27, 30, 155

Archimédiennes, 15

elliptiques, 15

extrêmes, 15

mélange, 29

corrélation, 123

cumuls

nombres, 91

paiements, 91

décés, 140

développement, 94

déviance, 51

diagonale, 164

dispersion, 41

dossier-dossier, 91, 101

ecrêtement, 86

entropie, 53

Epanechnikov, 17

error

process, 116

variance, 116

espérance, 19

espérance de vie, 178

espérance limitée, 19

esprérance de vie, 149

estimation

méthode des moments, 24

méthode des quantiles, 26

maximum de vraisemblance, 21

non-paramétrique, 16

paramétrique, 20, 43

kEx, 137

ex, 135, 149, 178

expert, 126

exposition, 39, 63, 66, 159, 172

203

facteur, 63, 108, 174
facteurs de transition, 94
Fast Fourier Transform, 12
Fn, 16
fn, 16

gamma, 2, 5, 118, 122
generalized additive models, 69
generalized linear models, 39
Gibbs, 130
Gini, 53
Glivenko-Cantelli, 17
Gompertz, 155

hétérogénéité, 37
histogramme, 17, 35

IAx, 155
IBNR, 93
incréments

négatifs, 113
paiements, 91

inflation de zéros, 10, 78
interpolation, 151

L, 20
λj , 94
λ∞, 100
Lee-Carter, 166

αx, 166, 172, 174, 177
βx, 166, 172, 174, 177
κt, 166, 168, 172, 174
résidus, 171

Lexis, 164
lien, 41
LifeMetrics, 172
ligne, 112
lissage, 16, 72
log-linéaire, 109
log-normale, 2, 123
logit, 52, 174
loi

Beta, 185
beta, 5
binomiale, 7, 40, 52
binomiale négative, 7, 73, 77, 118
Cauchy, 186
chi-deux, 2
composée, 11, 37

continue, 3
discrete, 7
Erlang, 2
exp, 31
exponentielle, 23, 25, 26, 81, 185
expontielle, 35
famille exponentielle, 40, 121
gamma, 2, 5, 6, 23, 25, 31, 41, 42, 80,

118, 121, 185
inverse Gaussienne, 186
log-normale, 2, 35, 80, 109, 123, 186
MBBEFD, 10
normale, 14, 40, 42, 80, 185
Pareto, 6, 14, 23, 25, 35, 85
Poisson, 7, 9, 40, 42, 62, 73, 108, 110,

118, 121
Poisson composée, 121
quasi-Poisson, 118
simulations, 12
Student, 186
tronquée, 9
Tweedie, 121
Weibull, 3, 5
zéro-modifiée, 10

longitudinale, 164
loss ratio, 128
Lx, 134

méthode des marges, 63, 110
Mack, 98
Markov, 98, 135
maximisation, 21, 43
mean squared error, 97, 115
Merz & Wüthrich, 106
moindres carrés, 87, 166
moment, 19
µ, 19
µx,t, 160, 174

Newton-Raphson, 23, 43
normale, 14
noyau, 16

offset, 66

paiements
cumulés, 91
incréments, 91

Panjer, 11

Pareto, 14
Pearson, 185
Poisson, 7, 9, 110, 122

processus, 192
predict, 119
prime

acquise, 91
pure, 37, 38, 141, 142, 145

probabilité
décés, 134, 159
survie, 134

probit, 52
provisions mathématiques, 141, 155, 157

itérative, 142, 144, 147
prospective, 142, 143, 145
retrospective, 142, 143, 146

provisions pour sinistres à payer, 91
pseudo triangle, 118

kpx, 134, 150, 159

kpxy, 152, 155

hpxy, 152

quantile, 120, 124
quasi-Poisson, 118

kqx, 134, 151

réassurance, 11, 30, 85
résidus, 50, 98, 116, 126, 171
Renshaw, 115
rente, 145

vie entière, 179
reserves, 96

S4, 150
σ2
j , 98

simulations, 187
splines, 57, 68
surdispersion, 73, 111, 118

table
prospective, 159
rectangularisation, 162
TD88-90, 134, 150
TGF-05, 136
TGH-05, 136
TV88-90, 134, 150

tail factor, 100
Taylor, 108
tempête, 30

temporaire décès, 142
test, 48
transervale, 164
triangle, 91

automobile, 91
corporel, 123
matériel, 123

Tweedie, 122

valeur actuelle probable, 133, 141
variance, 41
vraisemblance, 20, 28, 43, 51

kVx, 142–145, 147, 150
de Vylder, 109

Weibull, 3

Index des commandes

actuar, 11, 17
AER, 75
ageconducteur, 38
agevehicule, 38
aggregateDist, 11
AIC, 29, 52
aod, 52
arima, 168
as.factor, 109, 174, 181
auto.arima, 167, 169
Axn, 154
axn, 154

baseCOUT, 38
baseFREQ, 38
bayes-triangle, 130
BIC, 29, 52
binomiale, 40
BMA, 52
BootChainLadder, 120
boxplot, 130
bs, 57, 68, 77, 82

car, 48
carburant, 38
ChainLadder, 100
Chainladder, 96, 116
chol, 192
contrat, 38
convolution, 11
convolve, 12
cut, 46, 63

danish, 35
DAxn, 154
Deces, 159
Expo, 174
demogdata, 166
demography, 166
density, 17, 130

dental, 17
deviance, 50
dispersiontest, 76
dispomod, 49
distr, 123
dlnorm, 124
dtx, 172

ecdf, 17
esp.vie, 136
ets, 167
etx, 172
evir, 35
Exn, 153
Expo, 159
ext, 151
extractAIC, 52
exyt, 153

factor, 109, 174, 181
fboxplot, 181
fit701, 172
fitdist, 26
fitdistrplus, 23, 26
forecast, 166, 167
fts, 181
ftweedie, 121

gam, 69, 70
gamlss, 78, 85
gamlss, 49
gamma, 41, 80, 122
gaussian, 40, 80
gini, 57, 60
glm, 40–42, 44, 66, 67, 110, 111, 122, 126
glm.nb, 77
gmlss, 72
gnm, 174, 181
goodfit, 62
gss, 72

206

IAxn, 154
INCURRED, 92
is.na, 119

knots, 17

lca, 166
lifecontingencies, 150
lifetable, 169
linearHypothesis, 48, 75
lm, 82, 95, 109
lm.disp, 49
log-normal, 80
logLik, 51
loi

mixte, 10

MackChainLadder, 100
MunichChainLadder, 104
MackMerzWuthrich, 107
maps, 66
maptools, 66
MASS, 76, 77
mean, 79
merge, 38
mgcv, 72
mincut, 56
mledist, 23
model.matrix, 115

NA, 92
NUMBER, 92

offset, 66, 159, 174, 181
offsetoffset, 45
optimize, 23, 122

PAID, 92
pearson, 50, 126
PearsonDS, 186
persp, 160
poisson, 40, 44, 66, 110, 122, 174
predict, 42, 52, 56, 68, 70, 72, 82, 112, 113
PREMIUM, 92, 127
PtProcess, 192
pxt, 150
pxyt, 152

qmedist, 26
quantile, 120

quasipoisson, 73, 111, 118, 174, 181
qxt, 151

readShapeSpatial, 66
region, 38
residuals, 50, 115, 171
rqpoisBN, 118
rqpoisG, 118

S4, 124
sample, 116
set.seed, 119, 190
sigma, 110
sinistre, 38
splines, 73
summary, 17, 82, 109

tapply, 63, 68
TD, 134, 150
TGF, 136
TGH, 136
tree, 56, 57, 60
TV, 134, 150
tweedie, 122

vcd, 62
Vectorize, 114, 137

weights, 95

ZAP, 78
zeroinfl, 78
ZINBI, 78
ZIP, 78

	Avant-propos
	Table des matières
	Modèles de sinistres sans variables explicatives
	Rappels des lois usuelles en actuariat
	Estimation non-paramétrique
	Estimation paramétrique
	Estimation des copules
	Exercices

	La tarification a priori
	Les modèles linéaires généralisés
	Régression logistique et arbre de régression
	Modéliser la fréquence de sinistralité
	Les variables qualitatives ou facteurs
	Modéliser les coûts individuels des sinistres
	Exercices

	Les provisions pour sinistres à payer
	La problématique du provisionnment
	Les cadences de paiements et la méthode Chain Ladder
	De Mack à Merz & Wüthrich
	Régression Poissonnienne et approches économétriques
	Les triangles multivariés
	Borhutter-Fergusson, Benktander et les méthodes bayésiennes
	Exercices

	Calculs de base en assurance vie et décès
	Quelques notations
	Calculs d'annuités
	Calculs de provisions mathématiques
	Algorithme récursif en assurance-vie
	Le package lifecontingencies
	Exercices

	Les tables prospectives
	Les bases de données prospectives
	Le modèle de Lee & Carter
	Utilisation du modèle de Lee-Carter projeté
	Aller plus loin que le modèle de Lee-Carter
	Exercices

	Annexes
	Les lois de probabilités
	Générateurs aléatoires

	Bibliographie
	Index
	Index des commandes

