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“Composing computer programs to solve scientific problems is like writing poetry.
You must choose every word with care and link it with the other words in perfect
syntax. There is no place for verbosity or carelessness. To become fluent in a com-
puter language demands almost the antithesis of modern loose thinking. It requires
many interactive sessions, the hands-on use of the device. You do mot learn a fo-
reign language from a book, rather you have to live in the country for year to let
the language become an automatic part of you, and the same is true for computer
languages.”

James Lovelock, Building Java Programs.

Les actuaires ont toujours été des gros utilisateurs de statistiques, et des manipulateurs de
données. Il n’est donc pas surprenant de vouloir écrire un ouvrage dédié a I’actuariat dans la col-
lection Utilisation de R. Toutefois ce livre n’est pas un livre d’actuariat '. Ce n’est pas non plus un
livre de programmation 2. Nous ne présenterons pas ici les rudiments du langage R, et renvoyons
A plusieurs ouvrages parus récemment . Le but est plutét de proposer un complément pra-
tique et concret a ces ouvrages théoriques, a l'aide d’un langage de programmation qui présente
I’avantage d’étre simple a déchiffrer pour quiconque souhaite comprendre les algorithmes utilisés.

Nous avons ici la modestie de présenter quelques techniques universelles sans aucunement
prétendre a l’exhaustivitié, tout en ayant I’ambition de montrer que R est un logiciel idéal
pour les actuaires et les personnes intéressés aux problématiques de modélisation statistique des
risques.

Il est néanmoins particulierement délicat d’écrire un livre basé sur l'utilisation d’un logiciel.
Ou en l'occurence sur un langage de programmation (le S) et sur une communauté mettant a
disposition des libraries de fonctions (les packages). Délicat d’autant plus que la communauté
est particulierement active. Deés que le livre sera publié, il risque de devenir obsolete assez
rapidement. Mais il nous a semblé que si les packages a venir pourraient simplifier la tache
des actuaires, le contenu du livre devrait garder une relative fraicheur pendant quelques années
encore. C’est tout du moins ce que I’on espere, et qui légitime le fait que 'ouvrage soit maintenant
disponible dans une version reliée.

En R, nous proposons de discuter les modeles économétriques de tarification et de provision-
nement, les calculs d’annuités en assurance vie, les méthodes d’estimation des coefficients de
crédibilité, ou encore du lissage des tables de mortalité prospectives. Il est évident que d’autres
logiciels pourraient faire exactement la méme chose. Mais R présente I’avantage d’étre simple a
comprendre (de part la forme matricielle du langage), d’étre libre (ce qui permet a tout a chacun
de reprendre des codes existants et de les améliorer), et gratuit.

Ce livre est basé sur des notes écrites pour des cours dispensés depuis une petite dizaine
d’années (a I’Université Laval a Québec, a I'Université de Montréal, a I'Université du Québec a
Montréal, a TENSEA de Rabat, a 'ENSAE & Paris, a I’'Université de Rennes 1, ou a I'Institut

1. Nous renvoyons aux ouvrages [Bowers et al.| (1997)), [Denuit & Charpentier| (2004)), |Denuit & Charpentier,
(2005)), |[Kaas et al.| (2009), [de Jong & Zeller| (2008), [Frees| (2009), Dickson et al.| (2009)), [Klugman et al.| (2009),
Ohlsson & Johansson| (2010)), Marceaul (2012) (parmi tant d’autres) qui présentent les fondementaux théoriques
que nous allons évoquer ici sans réellement les justifier.

2. Nous renvoyons aux ouvrages (Chambers| (2009), \Gentle, (2009), Mori (2009), |Cormen et al.| (2009)), [Venables
& Ripley| (2002d), ou encore [Knuth! (1997 alb, |1998) - pour une réfléxion plus profonde sur la programmation - qui
proposent des algorithmes probablement plus efficaces et rapides que la majorité des codes que nous verrons ici.

3. [Zuur et al. (2009), [Maindonald & Braun| (2007, |Chambers (2009), [Dalgaard| (2009), ou encore Krause
(2009) (1a encore parmi tant d’autres) pour des introductions & la programmation en R.



de Sciences Financieres et d’Assurance (ISFA) & Lyon, mais aussi lors de formations données a
des actuaires de différentes compagnies et mutuelles d’assurance en France).

Cet ouvrage va proposer dans le Chapitre [1I| un paranorama des distributions statistiques
utilisées pour la modélisation des sinistres en actuariat (dans l'esprit de Klugman et al. (2009)).
Différentes méthodes d’estimation de parametres et d’ajustement de lois seront évoquées, dont
la majorité sont implémentées dans le package fitdistrplus.

Dans le Chapitre 2, nous aborderons la tarification a priori et 1'utilisation des modeles
linéaires généralisés pour calculer la prime pure d’un contrat d’assurance (en ’occurence en res-
ponsabilité civile automobile). Nous verrons ainsi comment modéliser les fréquences de sinistres
(régression de Poisson et ses extensions) et les cotlits (en évoquant I’écrétement des grands si-
nistres).

Le Chapitre |3| sera dédié aux calculs de provisions pour sinistres a payer, a partir de la
méthode dite Chain Ladder, avec diverses extensions plus récentes, dont 'approche de Mack, et
I'utilisation de la régression Poisson. Ce chapitre s’appuira sur le package ChainLadder tout
en insistant sur ’écriture des algorithmes.

Enfin les Chapitre [4 et [5] présenteront des applications en assurance-vie, avec des calculs de
base dans le Chapitre {4| (proposant de programmer plusieurs grandeurs classiques présentées
dans Bowers et al. (1997) ou Dickson et al.| (2009)). Le Chapitre |5 proposera une application
sur les tables de mortalités prospectives. Ce dernier chapitre s’appuiera essentiellement sur le
package demography, mais mais aussi le package gnm.

Bien que ce livre aborde des sujets aussi divers que les algorithmes récursifs pour les calculs
d’annuités, ou la régression Poissonnienne pour le calcul de provisions pour sinistres a payer,
nous avons essayé d’avoir des notations aussi cohérentes que possibles entre les chapitres, mais
aussi avec les notations internationales usuelles. Nous noterons ainsi  une valeur réelle, X une
variable aléatoire réelle, & un vecteur de R?, et X une matrice d x k. La version sous R sera alors
notée x ou X. Si X est une matrice, sa transposée sera notée X’. Pour les lois de probabilité,
nous noterons [’ la fonction de répartition, et f la densité associée - si elle existe - ou la masse
de probabilitée associée dans le cas discret. Dans les sections traitant d’inférence statistique, 6
désignera l'estimateur d’un parametre ¢ ; et dans les sections ou nous nous attacherons a prédire
diverses quantitées, Y désignera l'estimateur de E(Y), voire E(Y|X = ) lorsque des variables
explicatives seront utilisées. Dans le chapitre d’assurance vie, - désignera un produit, et sera
utilisé afin de séparer clairement les termes (dont les indices de part et d’autre ne permettent
souvent pas une lecture simple).

Avant de conclure cette rapide introduction, nous tenions a remercier plusieurs personnes.
Nous remercions Bernard Mathieu qui a proposé des 2005 d’organiser des formations a R dédiées
aux actuaires, en France. Et nous remercions toutes les personnes qui ont suivi ces formations
pour les questions qu’elles ont soulevées! Nous remercions aussi Frédéric Planchet pour ses relec-
tures des manuscrits, et pour avoir lancé I'idée de publier un livre de R en actuariat. De maniere
assez globale, nous remercions nos étudiants qui ont suivi (ou subi) depuis 7 ans ’évolution de
ces notes qui ont servi de support au livre que vous tenez aujourd’hui entre vos mains. Nous
remercions aussi nos collegues et amis qui ont accepté de relire certaines parties de livre.

Arthur Charpentier & Christophe Dutang, Décembre 2012.
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Chapitre 1

Modeles de sinistres sans variables
explicatives

Plusieurs des techniques actuarielles étudiées dans cet ouvrage requierent de connaitre la loi
de probabilité du montant ou du nombre de sinistres dans un portefeuille d’assurance non-vie. Le
présent chapitre passe en revue les techniques les plus couramment utilisées pour déterminer ces
lois a partir d’échantillon de données. En dehors de données simulées pour évaluer la robustesses
des estimateurs, nous étudierons deux jeux de données : dental et vents contenant des montants
de réclamation en assurance dentaire et des vitesses de vent de deux stations en région Rhone-
Alpes, respectivement.

Nous débutons le chapitre par un rappel des principales lois utilisées en assurance non-
vie dans la section En sections et nous présentons les deux grandes méthodes
d’estimation, a savoir I’approche non-paramétrique et I’approche paramétrique, respectivement.
Enfin, la section [I.4] termine ce chapitre en présentant les méthodes de calibration standard pour
les copules.

1.1 Rappels des lois usuelles en actuariat

De la définition méme des risques d’assurance (et leur caracteére incertain), les actuaires ont
besoin d’utiliser les outils probabilistiques pour modéliser les phénomenes aléatoires. Les lois
de probabilités s’attachent & préciser, formaliser et différencier les phénomenes aléatoires. Cette
section a pour but de rappeler les lois de probabilités usuelles en actuariat non-vie. Pour une
introduction aux probabilités, nous renvoyons le lecteur vers les ouvrages de références, par
exemple, Amiot| (1999), [Moral et al.| (2006), Delmas| (2012).

Notons X une variable aléatoire représentant notre quantité d’intérét, par exemple le montant
du sinistre ou le nombre de sinistres au sein d’'un portefeuille d’assurance. Une fagon classique
de caractériser X est d’en préciser sa fonction de répartition Fx : z — P(X < z) sur R, ou un
domaine D C R pouvant étre borné ou non. Rappelons que Fx doit étre une fonction croissante,
continue a gauche de D dans [0, 1]. Deux cas doivent étre distingués, soit la fonction Fx possede
une dérivée notée fx : cas des variables continues, soit elle n’en possede pas : cas des variables
discretes et/ou des variables mixtes. Ci-dessous, nous présentons donc dans un premier temps
les lois continues. Ensuite, nous décrivons les lois discretes et les mixtes. Enfin, nous terminons
par les lois multivariées et les copules.

En commentaire général sur les distribution les plus classiques, R fournit la densité ou la
fonction de masse de probabilité d, la fonction de répartition p, la fonction quantile q et un



générateur aléatoire r associées. Pour une loi de probabilité de racine toto, on a dons les 4
fonctions dtoto, ptoto, qtoto, rtoto. Si on souhaite utiliser une loi non-implémentée dans
R, de nombreux packages comblent ce manque, voir la “task view” pour une liste exhaustive
http://cran.r-project.org/web /views /Distributions.html. Dans cette longue liste, citons notamment
le package actuar - dédié a 'actuariat - implémentant en plus les 18 lois de probabilités que nous
détaillons dans la section suivante. De plus, actuar fournit également des fonctions auxiliaires
pour les 18 lois et celles de R : les moments ordinaires E(X*), les moments limités E(min(X, z)*),
la fonction génératrice des moments E (etX ) sous réserve que ces quantités existent. Trois préfixes
ont donc été rajoutés m, lev et mgf. Par exemple, la fonction mgfgamma implémente la fonction
génératrice des moments de la loi gamma.

1.1.1 Les lois continues

Dans cette sous-section, nous supposons que la loi de probabilité posséde une densité fx.
En annexe nous rappelons la génese des différentes densités proposées dans la littérature
scientifique a I’aide du systéme de Pearson. Nous renvoyons le lecteur vers Kotz et al.| (1994 alb)
pour plus de détails sur les lois continues.

Les lois classiques en actuariat

Traditionnellement en actuariat, comme les principales quantités d’intérét sont des cotits ou
des durées, les lois de probabilités les plus utilisées sont celles a support positif. Les trois lois
positives les plus courantes sont les suivantes :

— la loi gamma dont la densité dgamma s’écrit :

A
fX(l') _ e—Axxa—l’

oux >0, a,A > 0 (les parametres sont notés shape et rate sous R) et I' représente la
fonction Gamma. Si a = 1, on retrouve la loi exponentielle. La fonction de répartition n’a
de forme explicite puisqu’elle s’exprime a 1’aide de la fonction Gamma incomplete ~(, ) :

Fx(z) = y(a, Az)/T(a),

ol y(a, ) = [ t* te~dt, voir Olver et al.| (2010) pour les détails sur la fonction gamma
incomplete inférieure.

Lorsque o = 1, la distribution est appelée une exponentielle et lorsque oo = r/2 et A\ =
1/2, la distribution est appelée loi du chi-deux avec r degrés de liberté. Le mode de la
distribution est en t =0sia<letenx >0sia>1.

Enfin, une distribution gamma avec parametre « entier est également nommée Erlang.
Dans ce cas, on a

a—1 i
(Az)"
Fx(z)=1- ZTe .
i=0
— la loi log-normale dont la densité dlnorm s’écrit :

1 _ (og(x)—p)?
[ 202 s

fx(z) =

oxy\/ 2T

pour z >0, p € Ret o2 >0 (les parametres sont notés meanlog et sdlog respectivement
sous R). Sa fonction de répartition est simplement

Fy(z) = ® <1g<>—u> |

a


http://cran.r-project.org/web/views/Distributions.html

ou z > 0 et ® dénote la fonction de répartition de la loi normale centrée réduite).
— la loi de Weibull dont la densité dweibull s’écrit :

B a-1,-(2)
fx(@) = Daf1e (),
ns
ouz > 0 and 7,8 > 0 (notés scale et shape respectivement. Sa fonction de répartition
possede ’expression suivante
Fx(x)=1- e~ (3",

Comme le montre la figure [1.1}, ces lois des plus usuelles ont des densités assez différentes et
possedent des propriétés tres différentes. Les parametres ont été choisis de maniere a ce que les
trois lois soient d’espérance 1.
> x <- seq(0,5,.01)
> y <- dlnorm(x, -1/2, 1)
> y2 <- dgamma(x, 2, 2)
> y3 <- dweibull(x, 2, 2/sqrt(pi))
> leg.txt <- c("LN(-1/2,1)","G(2,2)","W(2,2/sqrt(pi))")
> plot(x, y, xlab="x", ylab="f(x)", main="Comparaison des densit\’es",

+ ylim=range(y, y2, y3), col="black", type="1")

> lines(x,y2, lty=2)

> lines(x,y3, 1lty=3)

> legend("topright",leg=leg.txt, col="black",lty=1:3)

Comparaison des densités

— LN(-1/2,1)
N --- G(2,2)
,,,,,, W(2,2/sqrt(pi))
[ce]
2
©
= © 7
X
< _|
o
N
N
o
2

FIGURE 1.1 — Densités de lois usuelles pour des variables positives.

Dans le tableau on a listé par ordre alphabétique les lois continues présentes avec R.
Notons que ce tableau contient des lois a support infini comme la loi normale, des lois a
support borné comme la loi béta ou des lois & support positif comme la loi exponentielle.

Les familles de lois continues

Pour obtenir d’autres lois, on peut appliquer différentes transformations sur ces lois :
— une translation X — ¢ (par exemple la loi lognormale translatée pour X lognormale),



Pour

Lois de probabilité Racine | Lois de probabilité Racine
beta beta logistique logis
Cauchy cauchy | lognormale lnorm
chi-2 chisq | normale norm
exponentielle exp Student t t

Fisher F f uniforme unif
gamma gamma | Weibull weibull

TABLE 1.1 — Loi implémentées dans R.

une mise a I’échelle AX (par exemple la loi normale pour X normale centrée réduite),
une puissance X (par exemple la loi beta type 1 généralisée pour X de loi beta type 1),
un inverse 1/X (par exemple la loi inverse gamma pour X gamma),

un logarithme log(X) (par exemple la loi loglogistique pour X logistique),

une exponentielle eX (par exemple la loi Pareto pour X exponentiel),

un ratio X/(1 — X) (par exemple la loi béta type 2 pour X une loi béta type 1).
chacune des transformations ci-dessus, on peut facilement déduire la densité en calculant

la transformée inverse. Par exemple, pour Y = AX, on a fy(y) = fx(y/A). Dans R, il est facile
de générer des réalisations de telles transformations. Choisissons par exemple Y = log X ou X

est une loi uniforme sur [0,1].

> X <- runif (100)
> y <- -log(x)
> par(mar=c(4, 4, 2, 1), mfrow=c(l, 2))
> hist(y)
> plot(ecdf(y), do.points=FALSE)
> curve(pexp, 0, max(y), add=TRUE, col="grey50")
Comme nous le verrons plus tard, la variable Y est de loi exponentielle de parametre 1, voir la
figure
Histogram of y ecdf(y)
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FI1GURE 1.2 — Transformée logarithmique.

Nous présentons maintenant deux grandes familles de lois basées sur les transformées puis-
sance et ratio, respectivement la famille gamma transformée et béta transformée.



Gamma transformée )

a, T, A

Exponentielle
A

FI1GURE 1.3 — Relations entre les membres de la famille gamma transformée

Gamma transformée Les trois lois de la figure ?? n’étant pas a queue de distribution épaisse,
on utilise trés souvent d’autres lois pour modéliser le montant des sinistres élevés. La famille
gamma transformée est une extension de la famille gamma obtenue par transformation d’une
variable aléatoire gamma. Soit X ~ G(«,1) et

Y = XY/,
alors Y suit une loi gamma transformée GT'(a, 7, A) pour 7 > 0. Elle a pour densité et fonction
de répartition

ST e By () = o, (w))/Ta)

fr(y) =

Lorsque ar < 1, le mode de la distribution est en y = 0. Lorsque a7 > 1, le mode de la densité
est alors en y > 0.

Notons que pour @ = 1, on retrouve la loi de Weibull et pour 7 = 1 la loi gamma. Ces
relations sont illutrées a la figure Si 7 < 0 dans la transformation de X en posant 7% = —7,
alors on obtient

*
T*e_(Ay)iT

= )\T*OéyaT*Jr].]__‘(O[)7 et FY(y) =1- F(a7 ()‘y)iT*)/F(a)‘

fr(y)

Béta transformée La loi béta (de premiere espéce) est une variable aléatoire continue sur
[0,1] et peut étre utilisée quelque fois pour modéliser des taux de destruction. Néanmoins c’est
surtout sa transformée logit % a valeurs dans Ry qui est utilisé pour modéliser le montant
des sinistres. Cette loi est appélée loi béta de seconde espece.

Soit X une variable de loi Béta 1 $1(a,b). Sa densité est donnée par

xa_l(l _ x)b—l
Bla,b)

ouzx € [0,1], a,b > 0 et B(.,.) est la fonction béta, au sens ou B(a,b) = T'(a)T'(b)/T'(a + b). Tres
logiquement sa fonction de répartition s’exprime en fonction d’une fonction béta incomplete

B(a,b,.)

fx(z) =

B(a,b, z)
Fx(z) = —"—"—.
)= 5ab)
On en déduit que la variable Z = % a pour densité
xa—l

fa(z) = B(a,b)(1 + z)* T



1/~
En appliquant deux transformations de plus, ¥ = 0 (%) a pour densité une loi béta

transformée
1 v(y/0)7
MO = Gy ui+ wioye

Sa fonction de réparatition s’exprime par
Bla,b, 115)
B(a,b)

La famille béta transformée compte plusieurs membres dont, entre autres : la loi de Burr(b,~, 6)
lorsque a = 1, la loi de Pareto généralisée(b, a, ) lorsque v = 1, la loi de Pareto (b, 6) lorsque
v = a = 1. Ces relations sont illustrées a la figure

( Béta transformée )

a,vy,T,0 — -

Paralogistique RAKE CParangsthue |nverse>
a0 IS N .0

Fy(y) = , avec v = (y/0)".

Y=« Y=T
Burr Pareto généralisée Burr inverse
«, 70 O(,T,g N ’77779

N N e
a=T { { 7=
T=1
Log-logistique Pareto Pareto inverse
v,0 o, 7,0

FIGURE 1.4 — Relations entre les membres de la famille béta transformée

Comparaison de lois actuarielles

La figure [L.5] trace la densité de trois grandes lois utilisées en actuariat non vie, & savoir la
loi de Pareto, la Béta transformée et la gamma transformée.

DY — P21) — TB(1,23.1) © E — TG(1.21)
i - P22) ~ --- TBB2,1,1) ~ i --- TG(3.21)
R P(2,3) - T TB(2,1,3,1) L TG(2.3,2)
a | I - P31) o ' - TB(22,3,1) . i - TG(1,22)
- = N [

0.8
|
1.5

f(x)
1.0
f(x)
04
f(x)
05 1.0

0.2

0.0

0.0

(a) Loi Pareto (b) Loi Béta transformée (¢) Loi gamma transformée

FIGURE 1.5 — Densités de lois actuarielles

Le tableau présentait les lois de base de R. Dans le tableau on trouve la liste de
lois tres spécifiques et tres adaptées a I'actuariat non-vie, proposées dans le package actuar,



(Dutang et al.|2008). 11 est composé de colonnes comportant le nom de la famille de lois, le nom
de la loi de probabilité et de la racine de la fonction R correspondante.

Famille Lois de probabilité Racine
Transformed beta Transformed beta trbeta
Burr burr
Loglogistic llogis
Paralogistic paralogis
Generalized Pareto ! genpareto
Pareto pareto
Inverse Burr invburr
Inverse Pareto invpareto
Inverse paralogistic invparalogis
Transformed gamma Transformed gamma trgamma
Inverse transformed gamma invtrgamma
Inverse gamma invgamma
Inverse Weibull invweibull
Inverse exponential invexp
Other Loggamma lgamma
Single parameter Pareto paretol
Generalized beta genbeta

TABLE 1.2 — Loi implémentées dans actuar

1.1.2 Les lois discreétes

Considérons maintenant une variable aléatoire X que l'on associera a un comptage. On
caractérisera ces variables discretes par leur probabilité élémentaire, ou leur fonction de masse
de probabilité. Les 3 lois usuelles discretes sont :

— la loi binomiale de fonction de probabilité dbinom donnée par

n

P(X =k) = <k>p’“(1 -p)" ",

n!

m),kENet

ol est le nombre de combinaison de k éléments parmi n (i.e.

k
0 < p <1 la probabilité de “succes”. Cette loi vérifie EX > V[X].
— la loi de Poisson de fonction de probabilité dpois donnée par

o
]P)(X = k) = pe 5

ol A > 0 est le parametre de forme et k € N. Cette loi vérifie EX = V[X].
— la loi binomiale négative de fonction de probabilité dnbinom donnée par
m+k—1
P(X = k)= ( " )pm(l -»)",

ou k € Net pel0,1]. Lorsque m = 1, on trouve la loi géométrique de parametre p. Cette
loi vérifie EX < VarX.

1. Attention ceci ne correspond a la loi de Pareto généralisée de la théorie des valeurs extrémes.




Ces 3 lois permettent de modéliser une majorité des variables discretes. La figure [1.6| compare
les lois discretes a espérance égale (E(X) = 5).

— B(10, 1/2)
3 --- NB(5, 1/2)
s P(5)
]
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o
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FIGURE 1.6 — Fonctions de masse de probabilité des lois discretes usuelles

En fait, ces trois lois font partie de la famille dite de Sundt (a,b, 0), dont les probabilités
élémentaires vérifient

P(X =k+1) b

PX =k T &

pour k > 0 et a,b deux parametres. On retrouve la loi binomiale avec

— 1
o= P o p=P2tD
1-p 1-p
la loi de Poisson avec
a=0 et b=,

et enfin la loi Binomiale Négative avec
a=1—p et b=(1-p)(m—1).

La famille (a, b, 0) va étre utilisée pour les lois composées. De maniere plus générale, on peut
définir la famille (a, b, n) en tronquant la variable aléatoire pour les valeurs plus petites ou
égales a n — 1. C’est a dire, on a

0 si k<n

P(X:k1)<a+z> si k>n’
De plus, on peut parfois appliquer des transformations a ces lois usuelles comme supprimer la
valeur en £ = 0 ou en modifiant la valeur en & = 0. Pour obtenir les lois zéro-tronqués, il suffit
de considérer la famille (a, b, 1).

Les versions zéros-modifiées s’obtiennent a partir des versions zéro-tronquées (a, b, 1). Notons
XM 1a variable zéro-modifiée obtenu par d’une variable X . On définit les probabilités élémentaire



par

! si k=20
P(XM = k) = 1—pt ,
—— P(X =k ’
T—P(X=0) ( )  sinon
ou pg/f est la probabilité en 0 et X est la variable aléatoire sous-jacente que ’on considere, e.g.
- Ak
la loi de Poisson P(X = k) = ﬁe_A

Des packages implémentent ces lois usuelles, néanmoins il est facile de les construire a la
main! Créons la fonction de masse de probabilite
> dpoism <- function(x, pO, ...)
+ ifelse(x == 0, p0, (1-p0)/(1-dpois(0, ...))*dpois(x, ...))
Ensuite, il est facile d’afficher cette fonction en appelant le code suivant :
> x <- 0:10
> y <- dpoism(x, dpois(0, 1), 1)
> y2 <- dpoism(x, 1/2, 1)
> y3 <- dpoism(x, dpois(0, 2), 2)
> y4 <- dpoism(x, 1/3, 2)
> leg.txt <= c("P(1)","P-OM(1)", "P(2)","P-OM(2)")
> plot(x, y, xlab="x", ylab="f(x)", ylim=range(y, y2, y3, y4[-(1:15)]1),
+ col="black", type="b")
> lines(x, y2, col="blue", type="b")
> lines(x, y3, col="red", type="b")
> lines(x, y4, col="green", type="b")
> legend("topright",leg=leg.txt, col=c("black","blue","red","green"),lty=1)
Sur la figure on peut observer la décrochage en 0 pour la loi de Poisson zéro-modifiée de
parametre 1 et 2.

v
= — P(1)
-—— P-OM(1)
""" P(2)
< _| == P-0M(2)
o
« |
o
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N
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S ‘:o‘
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FIGURE 1.7 — La loi de Poisson zéro-modifiée.

Enfin, des lois plus paramétrées comme la loi hypergéométrique peuvent parfois étre utilisées.
Pour aller plus loin sur les lois discretes, nous renvoyons le lecteur intéressé vers |[Johnson et al.

(2005).



1.1.3 Les lois mixtes
Zéro-modifié

Les lois mixtes sont des lois de probabilité qui sont ni entierement continues ni entierement
discretes. Ce sont généralement des lois continues auxquelles on a rajouté des masses de probabi-
lités. Typiquement pour modéliser le montant des sinistres, il peut étre intéressant de considérer
une masse en zéro (i.e. aucun sinistre) et une loi continue au dela de zéro (i.e. occurence d’un
sinistre). Dans la littérature, on appelle ces lois du nom de la loi continue complétée de zéro-
modifié.

Par exemple, la loi exponentielle zéro-modifiée a pour fonction de répartition

Fx(z)=q+(1—-q)(1—e)

pour x > 0. Cette loi ne possede pas densité puisqu’il y a une discontinuité en zéro : P(X = 0) =
q # lim Fx(x) = 0. Néanmoins, la variable aléatoire X conditionellement & X > 0 possede la
rz—0~

densité de la loi exponentielle.

Cette approche peut aussi s’appliquer pour les variables discretes et la modélisation du
nombre de sinistre. Ainsi on peut choisir d’utiliser la loi Poisson zéro-modifiée (ou a inflation
de zéros, qui sera utilisée dans la Section , puisqu’il parait logique que la probabilité de
n’avoir aucun sinistre soit bien différente et plus élevée que d’avoir des sinistres (voir la section
précédente).

MBBEFD

Un exemple plus intéressant de loi mixte sont les lois MBBEFD, introduites et popularisées
Bernegger, (1997). MBBEFD est un sigle pour Maxwell-Boltzmann, Bore-Einstein et Fermi-
Dirac. La loi MBBEFD est caractérisée par la fonction de répartition suivante

1
a2 1) fo<a<t
a -+ b*

1 if >1

F(x) =

9

pour x € Ry. C’est donc un mélange d’une loi continue sur |0, 1[ et d’une masse de Dirac en 1.
On a en effet une masse de probabilité en 1 :

(a+1)b
—1-FQ) =272
P L) a+b
Les parametres (a,b) sont définis pour un grand choix d’intervalles : | — 1,0[x]1, +o0] et
| — 00, —1[U]0, +00[%]0, 1[. La forme de la fonction de répartition F' a les propriétés suivantes :
— pour (a,b) € I =] — 1,0[x]1, +o0[, F est concave,
— pour (a,b) € Iy =] — 0o, —1[x]0, 1[, F' est concave,

(
(a,b
— pour (a,b) € I3 =]0,b[x]0, 1[, F est concave,
— pour (a,b) € Iy = [b,1[x]0, 1], F' est convexe puis concave,
— pour (a,b) € Iy = [1,400[x]0,1[, F est convexe.
On peut exprimer la fonction de masse de probabilités a ’aide de la fonction de Dirac 6. On
obtient ’expression suivante :

—a(a + 1)b* In(b)
(a+ b®)?

Actuellement, il n’y a pas de packages concernant cette loi. Mais, il est facile de 'implémenter.

flz) =

Lyo,1((@) + pd1(z).



> dMBBEFD <- function(x, a, b)

+ -a * (a+l) * b"x * log(b) / (a + b"x)"2 + (a+l) * b / (atb) * (x == 1)
> pMBBEFD <- function(x, a, b)
+ a*x ((atl) / (@a+Db'x) - 1) *x (x<1) +1x% (x> 1)

La loi MBBEFD a été introduite pour la modélisation des courbes d’exposition et des taux
de destruction pour les traités de réassurance non proportionnelles. Nous renvoyons le lecteur
intéressé vers Bernegger| (1997)).

Les lois composées

Nous considérons la variable S défini par

ou X; sont des variables aléatoires i.i.d. et avec comme convention que la somme est nulle si
N = 0. En pratique S représente la charge totale de sinistre et X; des montants individuels de
sinistres. En conditionnant par rapport au nombre de sinitres, on a

Fs( ZIP’ (S < z|N =n)P( Z Z)Pns (1.1)

ou Fx(z) =P(X < x est la fonction de répartition (commune) des Xi,..., X, pp = P(IN =n)
et F'(z) =P(X1 +---+ X, < ) est le produit de convolution d’ordre n de Fx(-).

Il existe différentes stratégies pour calculer la loi de la somme : une formule exacte si les va-
riables aléatoires sont discretes (algorithme de Panjer ou FFT), des approximations (normale ou
normal-power ou gamma) et une approche par simulation. Toutes ces méthodes sont disponibles
dans la fonction aggregateDist du package actuar.

Si X est une variable aléatoire discrete sur N alors I’équation devient

11207 k=0

Fi¥ () = (1.2)

SRS V@ -y P(X =y), k=23,...

Le calcul récursif peut se faire avec 1’algorithme de Panjer| (1981)) si la loi de la variable aléatoire
N appartient a la famille (a,b,0) ou (a, b, 1). La formula de récursion est la suivante

P(X =1)—(a+b)P(X =0)|P(X =z)+ xgn(a +by/z)P(X =y)P(S =2 —y)
P(S = z) = =
1— aP(X = 0) ’

ou la récursion démarre par P(S = 0) = Gy (P(X = 0)) et G est la fonction génératrice des pro-
babilités, i.e. Gy (z) = E(z"). La récursion s’arréte lorsque les probabilités sont arbitrairement
proche de 0.

La formule est implémentée en C pour diminuer le temps de calcul. Ne connaissant par avance
la valeur z telle que P(S = z) ~ 0, on démarre avec une taille fixe du tableau contenant les
probabilités élémentaires de S, que 'on double a chaque fois que c’est nécessaire.



En pratique, les montants de sinistres sont rarements discrets, mais on peut discrétiser la
fonction de répartition pour retomber dans le cadre d’application de ’algorithme de Panjer.

Comme pour 'algorithme de Panjer, on suppose que X est a valeurs discretes. La convolée
d’ordre n F{*(x) de la fonction de répartition de X, utilisée dans l’équation peut se calculer &
I’aide de la transformée de Fourrier discrete. Cette transformée est implémentée par ’algorithme
FFT (Fast Fourrier Transform). Dans R, la fonction convolve réalise ceci.

Différentes approximations sont possibles pour évaluer la fonction de répartition de la variable
S. Nous présentons ci-dessous les plus connues.

Approximation normal consiste a calibrer une loi normale sur S par la méthode des mo-

ments :
Fs(z) = ® ($ _'us> ,
gs

ol pg = E(S) et 0% = Var(S). Nul ne va sans dire que cette approximation est plutot brutale
et peu conservatrice sur la queue de distribution.

Approximation normale-puissance considere la formule suivante

3 9 6 x—
Fs(x)%q)<——|—\/2—|—1+ MS),
Vs Vs Ys 08

ot 75 = E((S — pns)?)/ Ug/ ?. L’approximation est valide pour z > pg seulement et est raisona-
blement bonne pour g < 1, voir Daykin et al.| (n.d.)) pour plus de détails.

Simulations L’approche par simulation est simple, cela consiste a simuler un certain nombre
de réalisations. La fonction aggregateDist est méme plus général que le modele décrit plus, car
elle accepte un modele hiérarchique pour la fréquence et la sévérité des sinistres.

Exemple Présentons maintenant un exemple ol le montant de sinistre est de loi gamma et le
nombre de sinistre suit une loi de Poisson.

Considérons le cas ou IV suit une loi de Poisson de parametre A et que les variables X; sont
i.i.d. de loi gamma de moyenne G(«, 3). Dans ce cas, les moments ont pour expression

E[S]=E[N]-E[X] = Aa/B,
9 a+ala+1)
VI[S] = VIN]E [X]" 4+ E[N] V[X] :/\<52 ,
et
E [X3] 1 o
VS = = =~ .
VAE X232 VX Vala+1)
Comme précisé ci-dessus, ’algorithme de Panjer ne fonctionne qu’avec des lois discretes, il
convient donc de discrétise la fonction de répartition des montants de sinistre et ensuite d’utiliser
la fonction aggregateDist.
> fx.u <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5,
+ method = "upper")
> Fs.u <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx.u, lambda = 10, x.scale = 0.5)



fx.1 <- discretize(pgamma(x, 2, 1), from = 0, to = 22, step = 0.5,
method = "lower")
Fs.l <- aggregateDist("recursive", model.freq = "poisson",

model.sev = fx.1l, lambda = 10, x.scale = 0.5)
Fs.n <- aggregateDist("normal", moments = c(20, 60))
Fs.np <- aggregateDist("npower", moments = c(20, 60, 4/sqrt(60)))
Fs.s <- aggregateDist("simulation",
model.freq = expression(y = rpois(10)),
model.sev = expression(y = rgamma(2, 1)),
nb.simul = 10000)

Sur la figure [I.8] on a tracé la queue de distribution de la somme agrégée S pour toutes les
méthodes. On constate que la méthode par simulation, l’algorithme de Panjer couplé a une
discrétisation sans biais et 'approximation normale-puissance sont toutes tres proche. L’approxi-
mation normale et I’algorithme de Panjer couplé a une discrétisation supérieure sur-estiment la
fonction de répartition tandis que ’algorithme de Panjer couplé a une discrétisation inférieure

+ + + V V.V 4+ V + V

la sous-estime.
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1.1.4 Les lois multivariées et les copules

Nous abordons dans cette sous-section tres rapidement les lois multivariés, c’est a dire la loi
d’un vecteur aléatoire. De plus, il parait difficile de ne pas parler des copules tant leur utilisation
en actuariat n’a cessé d’augmenter ses derniéres années, voir, par exemple, [Frees & Valdez
(1998), Embrechts et al.| (2001)), Frees & Wang] (2006). Ainsi, nous présentons aussi rapidement
les copules dans cette sous-section.



Les lois multivariées

Notons d la dimension. Comme dans le cas univarié, la loi du vecteur X = (X7, ..., Xy) peut
se décrire par la fonction de répartition

Fx(x) =P(X; <z1,...,Xq < xq).

De plus, si X est & valeurs discretes, on peut utiliser la fonction de masse de probabilité P(X =
x). Si X est a support continu, on peut définir une fonction de densité fx(x). Nous présentons
ci-dessous deux grandes familles de lois : la loi normale et la loi de Pareto.

Loi normale Notons p € R? et ©My(R) les parametres. La densité est donnée par

o~ 5 (@—p)ST (z—p)

fx(@) = ——

(2m)2 3|2
pour & € R? et |.| désignant le déterminant. g est la moyenne du vecteur aléatoire et ¥ sa

matrice de variance-covariance. La fonction de répartition a la aussi pas d’expression explicite.
Par définition, on a

B LS TE e e
Fx(x) = ———€ 2 dzy...dxg
o s (2m)3]5))2

Loi Pareto Dans le cas univarié, la loi de Pareto se caracterise tres souvent par sa queue de
distribution & décroissance polynomiale. Considérons la loi de Pareto IV, on a

P(X > )= <1+<x;“>i>_a.

L’extension multivariée est donnée dans Arnold| (1983)) :

P(X >x) = (1+i}<w)¢>

pour x > p, o le vecteur des parametres d’échelle, v ceux de forme et a ceux de décroissance. Il
est possible d’obtenir la densité en dérivant par rapport a chaque variable. Pour plus de détails,
voir |Arnold, (1983)) et sa version plus récente |Arnold, (2008)).

—

Autres : D’autres lois multivariées existent, voir [Kotz et al.| (1994a,b) pour les lois continues
et |[Johnson et al.| (1997) pour les lois discretes.

Les copules

L’utilisation des copules permet de construire de lois multivariées de maniere générique en
spécifiant des lois marginales et une structure de dépendance. Les copules ont été introduits
par [Sklar| (1959) dans le but de caractériser un vecteur X = (X1,..., Xy) ayant des lois mar-
ginales (i.e. P(X; < z;)) données. Par le théoreme de Sklar, on a que pour toutes fonctions de
répartitions multivariées I’ & marginales F, ..., Fy, il existe une fonction copule C' telle que

F(xy,...,2q9) = P(X1 <21,...,Xg < xq) =C(Fi(11),...,Fi(xg)).



La fonction multivariée C : [0, 1]% ~ [0, 1] appelée doit remplir les conditions suivantes pour que
Pexpression reste une fonction de répartition : condition au bord C(...,u;—1,0,ut1,...) = 0,
C(...,1u;1,...) = u; et d-croissance. Ces contraintes garantissent que C' est une fonction de
répartition multivariée dont les lois marginales sont uniformes sur [0, 1].

Cette représentation a I’énorme avantage de séparer les marginales F; de la structure “inter-
ne” de dépendance C. La copule la plus simple est la copule indépendance

d

Cug,y...,ug) = Hul = C’J‘(ul,...,ud) =I(uq,...,uq).
=1

Deux autres fonctions tout aussi importantes sont les bornes de Fréchet :

d
M(uy,...,ug) = min(ug,...,uq) et Wiug,..., uqg) = (Zui—(d—1)>
i=1

J’_

La premiere est une copule quelle que soit la dimension d, alors que la seconde n’est une copule
que si d = 2.Elles sont telles que toute copule C vérifie W < C < M. 1l existe plusieurs familles
de copules possédant des propriétés intéressantes pour certaines applications. Nous présentons
les deux plus courantes.

Famille elliptique Les copules elliptiques se construisent & partir des lois ellyptiques (dont
font partie la loi Gaussienne, ou la loi de Student). Notons E; (resp. Fj) une fonction de
répartition de dimension d (resp. 1) d’une telle famille. Une copule elliptique se définit par

C(ub ... ,ud) = Ed(Efl(ul), ... ,E;l(ud)).

On retrouvera comme cas particulier est la copule Gaussienne, pour laquelle Eq = Fyr(x) et
E1 = Fy(0,1)- On trouve aussi dans cette famille, la copule de Student, voir Embrechts et al.
(2001)).

Famille archimédienne Une autre grande famille de copules, popularisée grace aux livres
de Nelsen| (1999, 2006]), est la famille archimédienne. Les copules sont construites de la maniere

suivante : ]
C(u17 s ,Ud) = ¢_1 (Z ¢(ul)> )
i=1

ou ¢ : [0, 1] — [0, o0] est une fonction infiniment continue, complétement monotone et inversible
(des conditions plus faibles peuvent étre demandé si la dimension d est fixée : par exemple en
dimension 2, ¢ doit étre décroissante et convexe). Pour plus de détails sur cette construction,
nous renvoyons le lecteur vers le théoreme 2.1 de Marshall & Olkin| (1988)). Les trois copules les
plus connues sont celles de Clayton ¢(t) =t~* — 1, celle de Gumbel ¢(t) = (—log(t))~* et celle

et —1
de Frank ¢(t) = —log | — L)
e —_—

Famille des copules extrémes Ce sont les copules C' qui vérifient la propriété suivante dite
de max-stabilité

k
C(ul, . ,ud) = (C(ui/k, “e ,ucl/k)> s



pour tout k£ > 0. Cette propriété est issue de la théorie des valeurs extrémes (si & € N, la
copule de droite est la copule du vecteur (max{Xi1,...,X1},...,max{Xg1,...,Xqxr}) pour
des vecteurs (X7q,...,Xy) i.i.d. de copule sous-jacente C').

Parmi les lois des copules extrémes, nous ne présentons que la copule de Gumbel, mais
d’autres copules existens, notamment la copule de Galambos, Huler-Reiss, Marshall-Olkin, .. .La
copule de Gumbel qui est aussi archimédienne est donnée par

n

1/
C(u1,...,un) =exp [ — [Z(—lnui)a] )

i=1

ou a > 0. C’est la copule que nous allons utilisé dans la section Il est important de noter
que la copule gaussienne n’appartient pas a la famille des copules extrémes.

1.2 Estimation non-paramétrique

Pour le reste du chapitre, on pose que X représente la variable aléatoire (continue) du mon-
tant d’un sinistre avec fonction de répartition F'(x). L’assureur dispose d’observations X1, ..., X,
(sous forme individuelles ou groupées) que I’on suppose former un échantillon aléatoire de la va-
riable aléatoire X. Dans cette section, on va chercher & construire, a partir des données, des
estimateurs de F'(z), de la fonction de densité de probabilité f(z) et de certaines quantités liées
sans faire d’hypotheése quant a la distribution de X. Cette approche sera dite non paramétrique.
Elle a comme avantages d’étre flexible et de bien prendre en compte la disparité des données.
De plus, elle peut étre tres précise lorsque le nombre de données est grand. Par contre, elle est
souvent moins efficace qu'une approche paramétrique et I'inférence statistique qui en résulte est
plus compliquée.

1.2.1 Fonctions de répartition et densité empiriques

La premiere étape d’un processus de modélisation consiste souvent a tracer des graphiques
tels que ceux présentés a la figure 1.2 permettant de déterminer globalement la distribution des
données. Les fonctions sous-jacentes & ces graphiques constituent en fait des estimateurs de la
fonction de répartition et de la fonction de densité de probabilité.

Dans le cas de données individuelles, on construit la fonction de répartition empirique, F, (),
et la fonction de masse de probabilité empirique, f,(x), en attribuant a chacune des n données
un poids de 1/n. On a donc

1 n
Fn<m) = n Z H{ngx}a
7=1
et par “différentiation”,

1 n
fn(x) = ﬁ Z H{Xj:a:}7
j=1

ou 1 4 est une fonction indicatrice valant 1 lorsque la condition A est vraie, et 0 sinon. Pour la
densité empirique, ’estimateur ci-dessus est une somme de masse de Dirac, c’est pourquoi on
considere en général un estimateur lissé a I’aide de fonction noyau.

1 - .’L’—Xj
o) = 0 20 (552,




ou K est une fonction noyau (fonction positive d’intégrale 1) et h,, une taille de fenétre. Si on
prend un noyau rectangulaire K (u) = 1/21_; ;j(u), alors on obtient un histogramme glissant.
D’autres noyaus existent : le noyau gausswn (celui par défaut dans R via la fonction density)

se definit par K(u) =

271'
Le théoreme de Glivencko-Cantelli assure la convergence presque stire de ces deux estima-

teurs. La fonction ecdf de R retourne une fonction pour calculer F,,(x) en tout x, tandis que la
fonction density permet de calculer fg , sur une grille.

, le noyau d’Epanechnikov K (u) = 4\[(1—u2/5) vEva(W)-

Aux fins d’illustration, nous allons utiliser les données dental distribuées avec actuar. Il
s’agit de 10 montants de réclamation en assurance dentaire avec une franchise de 50 :
> data(dental, package = "actuar")
> dental
[1] 141 16 46 40 351 259 317 1511 107 567
On définit une fonction R pour calculer F,(x) avec
> Fn <- ecdf(dental)
Les méthodes de summary et knots fournissent de I'information plus détaillées sur 'objet :
> summary (Fn)
Empirical CDF: 10 unique values with summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
16.0 61.2 200.0 336.0 342.0 1510.0
> knots(Fn)
[1] 16 40 46 107 141 259 317 351 567 1511
On peut évaluer la fonction de répartition empirique a ses noeuds ou en tout autre point :
> Fn(knots(Fn))
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> Fn(c (20, 150, 1000))
[1] 0.1 0.5 0.9
Enfin, le graphique de gauche de la figure a été tracé tout simplement avec
> plot(Fn)
Pour la densité empirique, le principe est le méme. On se contente ici de 'afficher sur I'histo-
gramme.
> hist(dental, prob=TRUE, breaks=c(0, 25, 100, 500, 1000, 2000))
> lines(density(dental), lty=2)
Voir le graphique de droite de la figure

1.2.2 Quantiles

La fonction quantile d’une variable aléatoire X de fonction de répartition F' est définie a
I'aide de l'inverse généralisée

ax(p) = inf (F(z) > p),
zeR
aussi noté F~1(p). Hyndman & Fan| (1996) propose une approche unifiée pour le calcul des
quantiles empiriques ou le quantile empirique une combinaison convexe des valeurs observées
encadrant le quantile recherché.
Pour des variables continues, le quantile de type 7, celui utilisé par défaut dans R, est une
interpolation linéaire entre la |(n + 1)p| e et la [(n + 1)p]| e statistique d’ordre :

Gp = (1= h)z () + haja
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FIGURE 1.9 — Exemple de fonction de répartition empirique (gauche) et d’histogramme (droite)
de données individuelles

avec

j=14(n—1)p],
h=1+(n-1)p-j,

ou z(; est la j° valeur de I’échantillon trié en ordre croissant, | ] est le plus grand entier inférieur
ou égal a x, et [z] est le plus petit entier supérieur ou égal & z. Le théoreme de Mosteller nous
assure la convergence en loi de ces estimateurs.

Pour des variables discretes, le quantile empirique de type 2 est défini par la moyenne des 2
valeurs les plus proches :

1 .
- {me tag) s oapeN

X ( j) sinon

avec j = |np|. Avec lalgorithme ci-dessus, sur les données dental on a par exemple les quantiles
suivant pour p = 0.1,0.5,0.9.
> quantile(dental, c(0.1, 0.5, 0.9))
10%  50%  90%
37.6 200.0 661.4
On remarquera que ces valeurs ne correspondent pas avec celles de la fonction de répartition
empirique (non lissée) calculées a I'exemple

1.2.3 Moments

Les moments constituent des mesures des tendances centrales d’une distribution et, par le
fait méme, de la forme générale de celle-ci. Il n’est donc pas rare de comparer les moments
empiriques d’un échantillon aux moments théoriques d’une distribution. On nomme, lorsqu’il
existe, moment (ordinaire) d’ordre k de la variable aléatoire X l'espérance de cette derniere



élevée a la puissance k :

W, =E [Xk} = /OOO a2 dF (z),

tandis que le moment centré d’ordre k est définit par
=B [(0X ~BX)] = [ (@~ BIX) P (@),
0

En particulier, on a E[X] = p} et u3 = 0.
Pour développer des estimateurs des moments théoriques, il suffit de remplacer la fonction de
répartition F'(x) par la fonction de répartition empirique Fj,(z). Pour un ensemble de données

individuelles, on a donc
n

N o 1
jio= [P @) = 13w
j=1

Le théoreme de Slutsky garantit la convergence en loi des estimateurs empiriques vers leur
équivalent théorique. Dans R, les premiers moments s’obtiennent & ’aide des fonctions mean,
var ou en calculant explicitement les sommes pour les autres moments.

1.2.4 Espérances limitée et résiduelle

On a déja définit X, la variable aléatoire du montant d’un sinistre. On définit maintenant
X Aw, la variable aléatoire du montant limité a w :

X, X<u

X ANu=min(X,u) =
u, X >u.

Ainsi, le moment limité d’ordre k de la variable aléatoire X est :

E [(X A u)k} = /000 min(x,u)k dF (zx) 13
y 1.3
_ /0 oF dF () + (1 — F(u)).

Dans la suite, on s’intéressera plus particulierement au premier moment de X A u, soit
I’espérance limitée de X :

E[X A u] :/Ou:ch(ac)—i-u(l—F(u)). (1.4)

L’espérance limitée peut s’interpréter comme l’espérance d’un sinistre avec une limite de sous-
cription wu.

Une valeur liée est 'espérance résiduelle. Celle-ci représente 1'excédent moyen des valeurs
d’une variable aléatoire supérieures a x. En termes de durée de vie, 'espérance résiduelle est
appelée espérance de vie résiduelle (ou future) d’un individu d’age x. Mathématiquement, on a

e(z) =E[X — z|X > z]

1 (o]
:1—F(x)/x (y —x)dF(y).



Il n’est pas difficile de démontrer que ’on a entre ’espérance résiduelle et ’espérance limitée la

relation
E[X]-E[X A z]

1— Fx(x)

e(zr) = (1.5)

L’espérance résiduelle s’interpreéte aussi comme la prime stop-loss pour une franchise x.
La version empirique de ’espérance limitée pour des données individuelle est

A

E[X Au| = /Ouxan(x) +u(l — Fy(u))

> x4 u(l = Fy(u))

T <u

1 n
= Z min(z;, u).
J=1

1
n

Pour une limite fixe, il est simple de calculer cette quantité avec R :
> mean(pmin(dental, 1200))
[1] 304.4

1.3 Estimation paramétrique

L’approche paramétrique consiste a choisir un modele connu pour le phénomene sous étude.
Ce modele comportera habituellement des parametres qu’il faudra dé- terminer d’une maniere
ou une autre. En général, on optera pour une technique ayant un certain degré d’objectivité et
se basant sur des observations du phéno- meéne. En termes plus statistiques, on cherche a estimer

le vecteur de parametres 6 = (61, ...,0,)T d'une fonction de densité de probabilité ou fonction
de masse de probabilité f(z, ) a partir d’un échantillon aléatoire X1, ..., X,, de la population.
On note (z1,...,2,) les observations correspondantes.

1.3.1 Maximum de vraisemblance

La vraisemblance de ’échantillon s’exprime de la maniere suivante

n n

L0, a1, zn) = [ [ fx, (@i, 0) = [ ] £(2s,0),

=1 =1

ou f désigne la fonction de masse de probabilité ou la densité suivant la loi retenue. L’estimateur
du maximum de vraisemblance (EMV) de 6 est la valeur 6 qui maximise la fonction de vraisem-
blance £(0,x1,...,zy,0) par rapport a 6 (pour un jeux d’observation donné) sur son domaine
de définition. De plus, ceci est équivalent & maximiser le logarithme de la vraisemblance (appelée
log-vraisemblance) :

100) = Inf(x;0).
=1

On définit les fonctions de score

S;(0) = (;;lnﬁ(e), pour j=1,...,p.
J



La maximisation de £(6) se résume donc a résoudre les équations normales
S;j(#) =0, pour j=1,...,p.

Généralement, il n’existe pas de formules fermées pour ces équations, on les résout numériquement.

Dans le cas de données groupées, ou nj représente le nombre de données dans la classe
lej—1,¢5), 5 =1,...,r, la probabilité quune donnée tombe dans I'intervalle |c;_1, ¢;] est F(c;) —
F(cj—1). La fonction de vraisemblance est donc

T

L(0,a1,...,2n) = [[[F(c;,0) = Flcj-1,0)]" .

=1

Ainsi la log-vraisemblance s’écrit
1(0) = n;In[F(c;,0) — F(cj-1,0)].
i=1

On trouvera dans tout bon livre de statistique mathématique (par exemple Hogg et al.
(2005)), [Saportal (2006), Dagnelie| (2007)), Dalgaard| (2008])) une étude détaillée des propriétés de
Iestimateur du maximum de vraisemblance. Aussi nous contenterons-nous, ici, de ne présenter
que les principaux résultats.

Invariance Pour toute fonction bijective g, si 6 est PEMV de 6, alors g(é) est 'TEMV de ¢(0),
soit

3(6) = 9(9).

Biais et efficacité asymptotique Sous des conditions de régularité, 'EMV est asymptoti-
quement sans biais et efficace. C’est-a-dire que si 0, est 'EMV de 6 pour un échantillon (i.i.d.)
de taille n, alors

_> 1
n—-+oo In(e)”

E [ém} — 6; et V[ém] , pour i€ {l,...,p},
n—+oo
ou I,,(0) désigne la matrice d’information de Fisher de taille p x p dont I’élément (7, j) est donné
par
2

1n®)ig = —nE | 55 50,

In f(X,0)]|.
(I,(0):)~! est appélée borne de Cramer-Rao.

Normalité asymptotique La distribution asymptotique de 'EMV est une loi normale mul-
tivariée de moyenne @ et avec matrice de variance-covariance I,,(0) 7!, i.e.

0, — N(0,1,(0)71),

ou I,,(0) est la matrice d’information de Fisher donnée ci-dessus.
Concentrons-nous pour un instant sur le cas univarié (p = 1), plus simple. Par la propriété
de normalité asymptotique, on a que, pour de grands échantillons,

A~

P —Za/2< Za/2 =1-aq,

I,(0)~1 =



ou z4 est le 100(1 — «)° centile d’'une N(0,1). On peut réécrire l'expression ci-dessus sous la

forme
P [én — 20/ Tn(0) L < 0 < b, + za/Qx/In(e)—l} —1—a,
i|én — Ra/2V In(e)il ) én + Raj2V In(e)il |:

est un intervalle de confiance de niveau 1 — « pour 6.
En pratique, la forme de I'information I,,(#) rend souvent le calcul de I'intervalle de confiance
ci-dessus impossible. Deux cas de figure se présentent :

d’ou

1. Pinformation est connue, mais dépend de 6 d’une maniere compliquée. On remplace alors
0 par son estimation 6, ce qui résulte en une estimation de la variance et donc a 'intervalle

de confiance
:| én — Za/2 In<én)_17 én =+ Za/2'\/ In<én)_1 I:

2. l'information est inconnue, par exemple si ’espérance est trop compliquée. Dans un tel
cas, on remplace ’espérance par une moyenne empirique : ¢’est I’information observée

n 2

A A 0
1,(0,) = — 20 In f(z;;0)
i=1

82
= T a2 l(Q,ZC“ s 7xn)
0=0 06°

=0,

L’intervalle de confiance pour 8 est alors

}én —-za/gx/fgl(én),én-+-za/2\/f;1(én)[.

Ces idées se généralisent au concept d’ellipse ou d’ellipsoide de confiance dans le cas multivarié.
En pratique, il n’est pas rare que l'on souhaite estimer non pas 6, mais une fonction h(f)

de 6. On sait déja que 'EMV de h(6) est h(6,), mais qu’en est-il d’un intervalle de confiance
pour cette estimation ? En général, il s’agit d’un calcul difficile car la distribution de h(6,) peut
étre tres compliquée. On peut alors utiliser la méthode delta, qui est valide pour les grands

échantillons. Ainsi dans le cas univarié et pour h continument différentiable, lorsque n — oo,
h(0n) ~ N (h(0), [1(0))PT7(6)) ,

d’olt un intervalle de confiance de h(f) est

[1(00) = 20 T OZIO) . h(0a) + 20/ T O)PI(E) |

Ce résultat s’étend aussi au cas multivarié. Sil’on souhaite estimer une fonction h(6y,...,6p)
des parametres inconnus 61, ..., 0,, alors par la méthode delta, on a asymptotiquement

h(By,) ~ N (h(8), VhTI,(0)"'Vh),

ou VAT représente la transposée du gradient Vh et Vh est donné par

0
a9, ")

Vh(0) = :
0
76, 10



Un intervalle de confiance de niveau 1 — o pour h(6) est donc

]h(én) — a2\ VAT Ly (0) 1, h(0) + Zajo0/ VHT L, (0) 1V h [

Considérons ’exemple trivial : on choisit de calibrer la loi exponentielle de parametre A, alors
on a

IOg ﬁ()\, L1y - ,1'”) = log (}\n H 6—)\961'> = nlog(A) + Z(—)\)l'z
=1 i=1

D’ou Pestimateur de maximum de vraisemblance est n/ Y ;" | X;.

En pratique, il est plutét rare de pouvoir obtenir explicitement 1’expression du maximum de
la fonction de vraisemblance. Dans de tels cas, il faut avoir recours a des méthodes numériques
pour résoudre les équations normales (par exemple avec la méthode de Newton-Raphson) ou
alors pour directement maximiser la fonction de vraisemblance ou, plus communément, de log-
vraisemblance.

Le package fitdistrplus fournit une fonction mledist qui se charge d’appeler les algorithmes
d’optimisation implémentés dans R (voir les fonctions optim ou optimize implémentant une
méthode de quasi-Newton avec recherche linéaire et une méthode de recherche dichotomique,
respectivement pour des fonctions multivariées et univariées). Dans la suite, nous allons tester
I'estimateur de maximum de vraisemblance sur un échantillon gamma et un échantillon Pareto

et tester leur robustesse.

> library(fitdistrplus)
> x <- rgamma(1000, 2, 3)
> mledist(x, "gamma")

$estimate

shape rate
2.031030 2.921142
$convergence
(11 0
$loglik
[1] -516.0789
$hessian

shape rate

shape 632.6279 -342.3319
rate -342.3319 238.0188
$optim.function
[1] "optim"
La fonction fitdist englobant la fonction mledist fournit des informations plus détaillées
concernant les estimations, notamment les erreurs standards
> fitl.gam <- fitdist(x, "gamma", method="mle")
> summary(fitl.gam)
Fitting of the distribution ’ gamma ’ by maximum likelihood
Parameters :
estimate Std. Error
shape 2.031030 0.08443494
rate 2.921142 0.13765460
Loglikelihood: -516.0789 AIC: 1036.158 BIC: 1045.973
Correlation matrix:



shape rate
shape 1.0000000 0.8822011
rate 0.8822011 1.0000000
Noter I’écart relativement grand entre les vraies valeurs des parametre (2, 3) et leur estimation
(2.031030, 2.921142). Sur le graphique on peut constater la convergence relativement lente
des estimateurs MLE.
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FIGURE 1.10 — Erreur relative sur les parametres de la loi Gamma,

On peut faire la méme procédure pour un échantillon de loi de Pareto. A notre grand regret,
I'estimateur de maximum de vraisemblance s’avere encore plus lent pour un échantillon de loi

de Pareto, cf. figure [[.11]
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FIGURE 1.11 — Erreur relative sur les parameétres de la loi Pareto

1.3.2 Meéthodes des moments

La méthode des moments est probablement la plus ancienne méthode utilisée pour faire de
I’estimation ponctuelle. C’est une méthode d’estimation simple et intuitive, mais les estimateurs
obtenus possedent généralement peu de “belles” propriétés. Pour déterminer les estimateurs des



moments des parametres 61,...,0,, on impose que les p premiers moments théoriques soient
identiques aux p premiers moments empiriques (au moins). On doit donc résoudre

1 n
]E[Xk] :EZXf’ pour k=1,...,p.
=1

Il n’y a aucune garantie que la solution au systéeme d’équations soit unique ou méme qu’elle
n’existe. Bien qu’ils ne réunissent peu de propriétés d’optimalité souhaitables pour des esti-
mateurs ponctuels, les estimateurs des moments demeurent populaires, si ce n’est qu’a titre
de points de départ pour d’autres méthodes. On remarquera que pour les lois inverse, il vaut
souvent mieux utiliser les moments négatifs (k = —1,-2,...).

Reprenons le cas de la loi exponentielle, I’espérance est donnée par % Le systeme d’équation
se réduit a

E?:l X’

qui est aussi lestimateur de maximum de vraisemblance. Ceci n’est évidemment qu'un pur
hasard.

1 < 1
—EXZ-:f@A: z
n 4 A

=1

Le package fitdistrplus permet d’utiliser la méthode des moments soit directement avec la
fonction mmedist soit via la fonction fitdist. Dans R, cela donne les commandes suivantes :
> library(fitdistrplus)
> x <- rexp(1000, 1)
> mmedist(x, "exp", order=1)
$estimate

rate
0.991603
$convergence
(11 0
$order
(11 1
$memp
NULL
$loglik
[1] -1008.432
$method
[1] "closed formula"

Reprenons nos échantillons simulés gamma et Pareto, i.e. deux échantillons de taille 1000,
dont on cherche a estimer les parametres. Méme si il peut étre intéressant de tester des cali-
brations de moments d’ordre supérieurs, on se limite en pratique a égaliser les deux premiers
moments.

Sur la figure[1.12] on a tracé la fonction de répartition empirique et les fonctions de répartition
calibrées par maximum de vraisemblance et par la méthode des moments. Les deux sous-figures
et montrent que les ajustements ne sont pas trop mauvais, méme dans les queues
de distribution.

Cependant, les estimations pour la loi de Pareto sont tres loin de la vraie valeur des pa-
rametres. Quant a la fonction de répartition empirique, elle sous estime probabilité la queue de
distribution, puisque sur un échantillon de taille 1000, il y a peu de valeurs extrémes pour une
loi de Pareto. Ainsi, on sous-estime la queue de distribution de la vrai Pareto.
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1.3.3 Meéthodes des quantiles

La méthodes des quantiles consiste a égaler les quantiles empiriques avec les quantiles
théoriques. Dans 'esprit, elle est tres similaire a la méthode des moments. Mais en pratique
elle peut se révéler plus robuste, d’une part car les quantiles existent toujours et d’autre part
cela permet de calibrer les données dans un endroit particulier de la fonction de répartition, le

coeur ou les queues de distribution.
La méthode des quantiles consiste a résoudre les équations

qn’pk = F_l(pk))a pour k == 1,. ..’p

ol g p, dénote le quantile empirique et F~!(py) le quantile théorique.

La fonction de quantile de la loi exponentielle est Q(p) = —log(%p). Il suffit donc de résoudre
I’équation
log(1/2) log(1/2)
Qn(l/2)=———""—"S = ——"—"7-,
UR===5 Qu(1/2)

dans le cas ou l'on veut calibrer sur la médiane (i.e. p = 1/2).

Le package fitdistrplus permet aussi d’utiliser la méthode des quantiles soit directement
avec la fonction gmedist soit via la fonction fitdist. Dans R, cela donne les commandes
suivantes :
> x <- rexp(1000, 1)
> gmedist(x, "exp", probs=1/2)
$estimate

rate
0.9577806
$convergence
[1] ©



$value
[1] 5.657381e-13
$hessian
rate
rate 1.141883
$probs
(1] 0.5
$optim.function
[1] "optim"
$loglik
[1] -1009.352
> gmedist(x, "exp", probs=4/5)
$estimate
rate
1.003066
$convergence
(1] o
$value
[1] 2.279133e-12
$hessian
rate
rate 5.117578
$probs
[1] 0.8
$optim.function
[1] "optim"
$loglik
[1] -1008.839
Contrairement a la méthode des moments, ou égaliser des moments de hauts degrés était plutot
sans intérét, pour la méthode des moments le choix de tels ou tels quantiles peut étre totalement
justifié. Sur I'exemple précédent, on a choisi la médiane et le quantile & 80%, et ’on constate
des estimations assez différente.

Enfin sur la figure [1.13] on a continué la comparaison des fonctions de répartition entre
les trois méthodes paramétriques et la méthode non paramétrique. Notons que 'ordre entre
le maximum de vraisemblances et la méthodes des moments semble de nouveau respecté. Par
contre, pour le choix de quantiles considérés (1/3, 2/3), la méthode des quantiles peut ou ne pas
étre plus conservateur.

1.4 Estimation des copules

Dans cette section, nous présentons les méthodes d’estimation pour calibrer une copule. Nous
renvoyons le lecteur & la section [I.4.6] pour un exemple d’application.

1.4.1 Méthode des moments

Cette méthode consiste a estimer les parametres 6 des lois marginales et le parametre a de
la copule par la méthode des moments :
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1. résoudre le systeme a d équations et d inconnues

X, = fO1,...,04)
S?L :g(Gl,...,Hd)
p3n = h(01,...,0q) >

ou d désigne la dimension de 6, f, g et h sont les expressions des moments (ordinaires)
d’ordre 1, 2 et 3 en fonction du parametre 0. Répeter cette étape pour toutes les marginales,

2. égaler une mesure de dépendance avec son équivalent empirique. Si la copule possede une
formule fermée, on peut directement inverser le tau de Kendall ou le rho de Spearman

pour obtenir le parametre « de la copule.

Notons que si la copule a plusieurs parametres, il faut trouver plusieurs équations pour déterminer
les parametres de la copule, voir par exemple Joe| (1997)).
Pour des marginales exponentielles £(A) et une copule de Gumbel, on trouve
. 1 1

)
n 1-—7,

ou 7, désigne le tau de Kendall empirique, disponible dans la fonction cor.

1.4.2 Maximum de vraisemblance exact

Dans le cas ou la densité de la copule existe, on peut utiliser les estimateurs de maximum
de vraisemblance. Pour simplifier, on suppose qu’on utilise une copule bivariée C,, ayant une
densité et que les lois des marginales possedent des densités. On note 61 et 02 les parametres



des lois marginales. La log vraisemblance s’écrit :
1n£(o<791,92,a:1,...,zn,yl,...,yn Zln F1 sz,el) Fg(yi,eg),a))

+ Zln (fi(zi,61)) + Zln (f2(yi, 62))

i=1 i=1

Bien souvent, il n’existe pas d’expressions explicites des estimateurs maximisant In £, et on
réalise donc une maximisation numérique.

1.4.3 Inférence sur les marginales

Toujours dans ’hypothese ou la copule a une densité, on peut mélanger les deux premieres
approches, en estimant d’abord les parametres des lois marginales, puis en estimant le parametre
de la copule. Cela consiste & :

1. estimer les parametres 61 et o par maximum de vraisemblance,
2. construire les pseudo données V1 < i < n, u; = Fy(z;, 91) et v; = Fy(y;, ég)

3. estimer le(s) parametre(s) o en maximisant la log-vraisemblance,
InL(a,u1,. .., Uy, V1,...,0n Zln ¢ (ug, v, @)) .

Cette méthode présente 'avantage d’utiliser les estimateurs “classiques” de maximum vraisem-
blance des marginales.

1.4.4 Maximum de vraisemblance canonique

C’est une méthode semi-paramétrique, qui se base sur la méthode précédente :
1. calculer les fonctions de répartition empirique Fy,, et Fb p,
2. construire les pseudo données V1 < i < n, u; = Fi ,(x;) et v; = Fo,(yi),

3. estimer le(s) parametre(s) o en maximisant la log-vraisemblance,

InL(a,u1, ... Up, U1, Up Zln ¢ (ug, v, @)) .

1.4.5 Choix de la copule

Le choix de la copule doit étre en relation avec I’élément modélisé. Par conséquent, si on
cherche & modéliser un évenement extréme, on doit se concentrer la famille des copules extrémes.
Ceci exclut donc la copule gaussienne.

A une famille donnée, différents criteres statistiques peuvent étre comparés pour valider ou
non une copule. Il existe des criteres liés a la log-vraisemblance : la log-vraisemblance (simple)
In £, le critere d’Aikake (AIC) 2k — 21n £ ou encore le critére de Schwarz (BIC) —21In £+ klnn,
ou k est le nombre de parametres (& estimer) et n la taille de I’échantillon.

Une autre catégorie de criteres s’intéresse a des distances statistiques entre la distribu-
tion empirique et la distribution théorique (calibrée). Typiquement, on utilise la distance de
Kolmogorov-Smirnov, d’Anderson-Darling ou encore la distance L2, voir [Saportal (2006).



1.4.6 Application aux couvertures de produits indiciels

Dans cette sous-section, nous présentons une application des copules a la couverture de
produit indiciel, ou nous allons prendre en compte la dépendance entre stations météorologiques
pour la construction d’un indice. Nous nous concentrons sur ’aspect pédagogique de 1'utilisation
et ne cherchons pas a présenter le modele parfait. Nous avons choisi la copule de Gumbel, car elle
appartient aux copules extrémes et aux copules Archimédiennes. Tout en ayant une expression
simple et explicite, la copule de Gumbel a ’avantage de décrire les dépendances asymétriques,
ou les coefficients de queue inférieure et de queue supérieure different. Elle possede donc la
caractéristique de pouvoir représenter des risques dont la structure de dépendance est accentuée
sur la queue supérieure et est particulierement adaptée en assurance et en finance pour étudier
I'impact de la survenance d’événements de forte intensité sur la dépendance entre plusieurs
variables d’intéréts.

Présentation

Nous avons utilisé la copule de Gumbel pour valoriser les couvertures indicielles cat|as-
trophe]. Ces contrats sont des dérivés climatiques adaptés a la réassurance d’événement catas-
trophe (tempéte, vague de froid,. . .) basé sur un indice climatique (force du vent, température,. . .).
Cette application numérique est basée sur larticle Dubreuil & Vendé| (2005).

L’indice climatique doit refléter au mieux les caractérisques des montants des sinistres as-
sociés au risque météo pour diminuer le risque de base. En général, on choisit un panier de n
stations (peu éloignées des régions assurées) dans lesquelles on mesure la variable climatique
X;(t) au cours de la période [t — 1,t]. Ensuite, 'indice journalier d’une station i est construit
par [;(t) = min(L; — K;, X;(t) — K;) ou K; et L; sont le seuil et la limite par station. Sur une
période T, I'indice d’une station est donc défini par S;(T") = Zle I;(t) et l'indice cumulé par
St = > piSi(T) pour une pondération pi,...,p,. Enfin le flux engendré par la couverture
indicielle est celui d’un call spread :

CT:Nxmin(L—K,(ST—K)+)7

ou K et L sont la franchise et la limite du contrat, et N le montant nominal.

Pour notre exemple, on traite le risque “tempéte” en Rhone Alpes. X;(t) désigne donc la
force maximale du vent (en m/s) par jour. Nous avons choisi deux stations Saint Martin en Haut
(variable X) et Echirolles (variable Y) avec les seuils respectifs 10 et 9, et les limites 16 et 15 2.
On prend T = 633 jours, N =1, K =50 et L = 200.

Calibration

Il nous faut calibrer la copule de Gumbel sur nos données recueillies sur internet entre aott
2005 et avril 2007. Les données sont livrées avec le package gumbel et il suffit de les charger avec
la fonction data(). Comme les jeux de données windEchirolles et windStMartin possedent
un nombre d’enregistrements différents en 2007, on sélectionne le plus petit sous-ensemble. On
enleve ausssi les données manquantes.
> library("gumbel")
> data(windEchirolles)
> data(windStMartin)
> n <- min(NROW(windStMartin), NROW(windEchirolles))

2. les seuils sont volontairement bas.



> id2keep <- !is.na(windStMartin$WIND.HIGH[1:n]) &

+ lis.na(windEchirolles$WIND.HIGH[1:n])

> x <- windStMartin$WIND.HIGH[1:n] [id2keep]/3.6

> y <- windEchirolles$WIND.HIGH[1:n] [id2keep] /3.6

Pour calibrer la copule de Gumbel, un choix de marginales s’impose. L’exemple de cette sous-
section étant a but pédagogique, nous avons choisi de tester seulement deux lois : exponentielle
et gamma. A ’aide de mledist, on obtient facilement les parametres calibrés.

> library(fitdistrplus)

> xpar_gamma <- mledist(x, "gamma")

> ypar_gamma <- mledist(y, "gamma")

> xpar_exp <- mledist(x, "exp")

> ypar_exp <- mledist(y, "exp")

En tragant les fonctions de répartitions empiriques et calibrées pour chaque marginale, figure
1.14] on constate que la loi exponentielle n’est pas du tout adapté. On peut se convaincre par
des tests d’adéquation : le test de Kolmogorov Smirnov rejette outrageusement ’hypothese que
les données suivent une loi exponentielle. On choisit donc la loi gamma. Notons les parametres
de forme et de taux sont notés ax, Ax pour Saint Martin en Haut et ay, Ay pour Echirolles.

Vitesse max du vent, St Martin en haut Vitesse max du vent, Echirolles
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FIGURE 1.14 — Fonctions de répartitions empiriques (marche) et calibrées (courbes)

Calcul du parametre de la copule On pose oy le parametre de la copule de Gumbel.
Nous utilisons les fonctions du package gumbel

— la méthode des moments (“Moment-Based Estimation”) : gumbel.MBE,

— le maximum de vraisemblance exacte (“Exact Maximum Likelihood”) : gumbel .EML,

— Dinférence sur les marginales (“Inference For Margins”) : gumbel.IFM,

— le maximum de vraisemblance canonique (“Canonical Maximum Likelihood”) : gumbel .CML.
Pour obtenir le parameétre de la copule de Gumbel, il suffit d’appeler les fonctions précédemment
listées.
> res <- cbind(

+ MBE=gumbel .MBE(x, y, marg="gamma"),



+ EML=gumbel.EML (x,
+ IFM=gumbel.IFM(x,
+ CML=c(rep(NA, 4),
+)

>
>

y, marg="gamma"),
y, marg="gamma"),
gumbel.CML(x, y))

rownames (res) <- c("shape-x","rate-x","shape-y","rate-y","copula")
res <- cbind(res, avg=apply(res, 1, mean, na.rm=TRUE))

Le tableau ci-dessous récapitule nos résultats d’estimation (variable res ci-dessus) pour les
4 méthodes présentées en section [1.4

Méthodes | MBE  EML IFM CML moyenne
ax 6,99 7,022 7,395 - 7,135
Ax 1,156 1,155 1,223 - 1,178
Qy 504 5,105 4,969 - 5,038
Ay 0,7649 0,7712 0,7541 - 0,7634
Gieop 1,524 1454 1,44 147 1472

TABLE 1.3 — Estimations des parametres

Le bon ajustement des marginales étant déja été établi sur les graphes de la figure [1.14]

il nous faut choisir une valeur pour les différents parametres :

celui de la copule et ceux des

marginales. Pour la suite, nous choisissons les moyennes des estimations comme valeur de nos

parametres, c’est a dire

la derniére colonne.

La bonne adéquation de la copule de Gumbel aux vitesses de vent maximales est confirmé
par le tracé d’un qgplot empirique (cf. figure . C’est a dire, il nous faut tracer le nuage
de points (Fxn(X;), Fyn(Y;)) pour 1 < i < n ot Fx, (resp. Fy,) représente la fonction
de répartition empirique de X (resp. Y). Cela revient a tracer les rangs normalisés, puisque
Fx »(X;) = rang(X;)/n. Pour comparer ce nuage de points observés a la copule calibrée, nous
simulons un échantillon de couples aléatoires (U;, V;)1<i<n de loi de Gumbel de parametre g
et tracons les rangs des couples. Les nuages semblent équivalents.

rangs des observations (empirique)

rangs des observations (simulation)
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FIGURE 1.15 — qqgplot empirique vs simulé




On peut aussi tester 'adéquation de nos données a la famille des copules extrémes en se
basant sur |Genest et al.| (2011). Le test statistique est implémenté dans le package copula par
la fonction gofEVCopula. Comme on peut le constater ci-dessous, on ne rejette pas ’hypothese
que les données soient issues d’une copule de Gumbel. De plus, si I'on teste aussi la copule de
Husler-Reiss, voir par exemple Joe (1997), la statistique de Cramer-von Mises est plus faible
pour ’hypothese Gumbel que I'hypothése de Husler-Reiss. Par conséquent, on conclut que la
copule de Gumbel est adaptée a nos données.
> library(copula)
> gofEVCopula(gumbelCopula(l), cbind(x, y), optim.method="BFGS", N=1000,

+ m=500, print.every=-1)

Parameter estimate(s): 1.477927

Cramer-von Mises statistic: 0.01389476 with p-value 0.3171828

> gofEVCopula(huslerReissCopula(l), cbind(x, y), optim.method="BFGS", N=1000,
+ m=500, print.every=-1)

Parameter estimate(s): 1.173151

Cramer-von Mises statistic: 0.01443714 with p-value 0.2482517

Evaluation du payoff

Maintenant que l'on a calibré notre copule (et les marginales), on va estimer le payoff Cp
par une méthode de Monte Carlo. Nous avons réalisé 10000 simulations de période de T' = 633
jours pour nos deux stations. Pour ce faire, nous crééons une fonction calculant C'r pour un
échantillon donné. Notons qu’historiquement, le payoff est évalué a 80,64 unités monétaires.
> payoffIndice <- function(ventl, vent2, ki, k2, 11, 12, K, L, pi=1/2, p2=1/2)
+ {

+ S1 <- sum(pmin(venti-k1, 11-k1)*(ventl > k1))
+ S2 <- sum(pmin(vent2-k2, 12-k2)*(vent2 > k2))
+ S <- pl*S1 + p2*S2

+ return( min(max(S - K, 0), L - K) )

+ }

> payofflIndice(x, y, 9, 10, 16, 15, 50, 200)

[1] 80.63889

Ensuite, on simule des échantillons de vitesses de vent maximum pour lesquels on calcule les
payoffs avec la fonction payoffIndice. Les parametres du produit indiciel sont K1 = 9, Ko = 10,
L1 =16, L2 =15, K = 50 et L = 200. On constate que le payoff moyen est proche du payoff
observé 80,64.

> priceIndHedCat <- function(nbday, nbsimu, param, k1, k2, 11, 12, K, L,

+ pl=1/2, p2=1/2)

+ {

+ f <- function()

+ {

+ ventSim <- rgumbel (nbday, param["copula"], dim=2)

+ ventSim[,1] <- ggamma(ventSim[,1], param["shape-x"], param["rate-x"])
+ ventSim[,2] <- qgamma(ventSim[,2], param["shape-y"], param["rate-y"])
+

+ payoffIndice(ventSim[,1], ventSim[,2], k1, k2, 11, 12, K, L, pl, p2)
+ }

+ replicate(nbsimu, £Q))



+}
> finalpar <- res[,"avg"]
> payoff <- pricelndHedCat(633, 10000, finalpar, 9, 10, 16, 15, 50, 200)
> summary(payoff)
Min. 1st Qu. Median Mean 3rd Qu. Max.

19.35 6853 79.10 79.75 90.61 144.30
Sur la gure 1.16 , nous avons tra@ I'histogramme des payo simuks. Nous pouvons constater
gue la distribution des sinistres est Egerement asynetrique, surtout autour de sa moyenne. Par
ailleurs, nous avons ajouk l'estimation de la densit par la nethode du noyau d'Epanechnikov.

Figure 1.16 { Histogrammesa pas xe eta méme e ectif.

Nous avons aussi fait une analyse de sensibilie au paranetre de la copule. La valeur calibee
est "cop = 1;472. Nous obtenons les esultats donres dans le tableau 1.4. On constate qu'une
augmentation de la cependance (i.e. op augmente) entraine une plus grande volatilie du payo
tant au niveau de lecart-type que des quantilesa 75% et 90%. Cependant, la moyenne du payo
reste stable.

cop -25% -10% (valeur estinee) +10% +25%
moyenne | 79,93 79,68 79,75 79,61 79,69
ecart-type | 14,86 15,95 16,4 16,89 17,55
VaR 750 89,78 90,17 90,61 90,47 91,28
VaRggo 99,39 100,3 101,2 1015 102,7

Table 1.4 { Statistiqgues des payo Cy simuks

Maintenant, il ne reste plus qua choisir un principe de primes et calculer le prix de ce produit
de couverture indiciel virtuel. Pour conclure sur cette application nunerique, il est important de
souligner qu'on ne tient pas compte de la dependance srielle entre les maximums des vitesses





















La loi Gamma caracterisee par la densite suivante,

f@U%V):]iL)(:) y”lexp(—:y),szR+,

1
est également dans la famille exponentielle. Il faut choisir § = ——, a(¢) = ¢, b(0) = —log(—0),
i

ct.0) = (1) e ~ 1oz (13 ))
et o =v~ L

Pour une variable aléatoire Y dont la densité est de la forme exponentielle, alors
E(Y)=0V(0) et V(Y)=0b"(0)e,

de telle sorte que la variance de Y apparait comme le produit de deux fonctions,
— la premiere, b”(6) , qui dépend uniquement du parametre 6 est appelée fonction variance,
— la seconde est indépendante de 6 et dépend uniquement de ¢.
En notant p = E(Y), on voit que le parametre 0 est lié & la moyenne p. La fonction variance
peut donc étre définie en fonction de p , nous la noterons dorénavant V().

Example 2.1.5.

Dans le cas de la loi normale, V(1) = 1, dans le cas de la loi de Poisson, V(1) = p alors que
dans le cas de la loi Gamma, V(u) = p?.

Notons que la fonction variance caractérise completement la loi de la famille exponentielle.
Chacune des lois de la famille exponentielle possede une fonction de lien spécifique, dite fonction
de lien canonique, permettant de relier ’espérance p au parametre naturel (ou canonique) 6. Le

lien canonique est tel que g,(p) = 6. Or, u = b'(#) donc g.(-) = b'(-)~L.
Example 2.1.6.

Dans le cas de la loi normale, § = p (1ink=’identity’), dans le cas de la loi de Poisson,
0 = log(p) (1ink=’1og’) alors que dans le cas de la loi Gamma, § = 1/p (1ink=’inverse’).
Sous R, la syntaxe des modeles linéaires généralisées est (par exemple) :
> glm(Y"X1+X2+X3+offset (log(Z)), family = quasipoisson(link=’log’),
+ data = base, weights)
ce qui correspond a un modele

oV (1)

Wi

E(Yi|Xi) = pi =g " (XiB+&) et V(Vi|X;) =

ou Y est le vecteur des Y; que 'on cherche & modéliser (le nombre de sinistres de la police i par
exemple), X1, X2 et X3 sont les variables explicatives qui peuvent étre qualitatives (on parlera
de facteurs) ou quantitatives, 1link=’1log’ indique que g est la fonction log, family=poisson
revient a choisir une fonction variance V identité, alors que family=quasipoisson revient a
choisir une fonction variance V' identité avec un parametre de dispersion ¢ a estimer, offset
correspond a la variable &;, et weights le vecteur w;.

Cette fonction glm calcule alors des estimateurs de B et ¢, entre autres, car comme pour
le modele linéaire gaussien (la fonction 1m) on peut obtenir des prédictions, des erreurs, ainsi
qu'un grand nombre d’indicateurs relatifs a la qualité de I'ajustement.



2.1.2 Approche économétrique de la tarification

Cette famille de lois (dite ezponentielle) va s’avérer étre particulierement utile pour construire
des modeles économétriques beaucoup plus généraux que le modele Gaussien usuel. On suppose
disposer d’un échantillon (Y;, X;), ot les variables X ; sont des informations exogenes sur ’assuré
ou sur le bien assuré, et ou Y; est la variable d’intérét, qui sera

— une variable booléenne prenant les valeurs {0, 1}, par exemple I'assuré i a-t-il été victime

d’un accident ’an dernier, ou le sinistre ¢ était-il trés important,

— une variable de comptage, a valeurs dans N, par exemple le nombre d’accidents de ’assuré

7 ’an passé,

— une variable positive, & valeurs dans R, par exemple le cotit du sinistre 4, ou bien la durée

entre la survenance et la déclaration du sinistre.

On supposera que, conditionnellement aux variables explicatives X, les variables Y sont
indépendantes et identiquement distribuées. En particulier, on partira d’un modele de la forme

£ (il6:,8) = exp (W

e +C(yz',¢)> ,

ou 'on supposera que
9(ps) = mi = X33,
pour une fonction de lien g(-) donnée (on gardera ainsi un score linéaire en les variables expli-

catives), et ol, pour rappel,
i = (Y| X5).

La fonction lien est la fonction qui permet de lier les variables explicatives X a la prédiction
u, alors que la loi apparait via la fonction variance, sur la forme de 1'hétéroscédasticité et
I'incertitude associée a la prédiction. Le petit exemple ci-dessous permet de visualiser sur un
petit de données simple six régressions GLM différentes,

> x <- ¢(1,2,3,4,5)

>y <= c(1,2,4,2,6)

> base <- data.frame(x,y)

> regNId <- glm(y~x,family=gaussian(link="identity"))
> regNlog <- glm(y~x,family=gaussian(link="1log"))

> regPId <- glm(y~x,family=poisson(link="identity"))
> regPlog <- glm(y~x,family=poisson(link="1log"))

> regGId <- glm(y~x,family=Gamma(link="identity"))

> regGlog <- glm(y~x,family=Gamma(link="log"))

La prédiction (ainsi qu’'un intervalle de confiance) pour chacun de ces modeles est présentée
sur la Figure . Le code de base pour obtenir la prédiction avec un intervalle de confiance (&
95%) est simplement
> visuel=function(regression,titre){

+ plot(x,y,pch=19,cex=1.5,main=titre,xlab="",ylab="")

+ abs <- seq(0,7,by=.1)

+ yp <- predict(regression,newdata=data.frame(x=abs),se.fit = TRUE,

+ type="response")

+ polygon(c(abs,rev(abs)),c(yp$fit+2*yp$se.fit,rev(yp$fit-2*yp$se.fit)),
+ col="light grey",border=NA)

+ points(x,y,pch=19,cex=1.5)

+ lines(abs,yp$fit,lwd=2)



+ lines(abs,yp$fit+2*xyp$se.fit,1ty=2)
lines(abs,yp$fit-2*yp$se.fit,1ty=2)}

Pour les 6 modeles ajustés sur le petit jeu de données,
par (mfrow = c(2, 3))

visuel(regNId, "Gaussienne, lien identité")
visuel (regPId,"Poisson, lien identité")

visuel (regGId, "Gamma, lien identité")

visuel (regNlog, "Gaussienne, lien logarithmique")
visuel (regPlog,"Poisson, lien logarithmique")
visuel (regGlog,"Gamma, lien logarithmique")

<+

V V V V V VvV V

Gaussienne, lien identité Poisson, lien identité Gamma, lien identité

Gaussienne, lien logarithmique Poisson, lien logarithmique Gamma, lien logarithmique

FIGURE 2.3 — Prédiction par 6 modeles linéaires différents, 3 lois et 2 fonctions de lien, avec les
intervalles de confiance de prédiction.

Remark 2.1.7. De la méme maniére qu’en économétrie linéaire, il est aussi possible d’allouer
des poids a chacune des observations w;. Mais nous n’en parlerons pas trop ici. Il peut s’agir de
pondération décroisantes avec le temps, attribuées a des années trop anciennes, si l’'on utilise
des données sur une période plus longue, par exemple.

2.1.3 Estimation des parametres

La loi de Y sachant X étant spécifiée, on peut obtenir numériquement les estimateurs de
B et ¢ par maximisation de la vraisemblance, manuellement (en travaillant toutefois sur un
échantillon de la base)
> set.seed(1)
echantillon=sample (1:nrow(baseFREQR) ,size=100)
logvraisemblance <- function(beta){
L=betal[1]+beta[2] *baseFREQ[echantillon, "ageconducteur"]
-sum(log(dpois(baseFREQ[echantillon, "nbre"],exp(L))))}

+ + VvV V



> optim(par=c(-3,.01),fn=logvraisemblance)$par

[1] -3.414 -0.027

ou directement via la fonction glm implémentant un algorithme specifique aux GLMs :
> glm(nbre~ ageconducteur,data=baseFREQ[echantillon,],family=poisson)

Call: glm(formula = nbre ~ ageconducteur, family = poisson,
data = baseFREQ[echantillon,])

Coefficients:
(Intercept) ageconducteur
-3.4154 -0.0269

Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 9.21
Residual Deviance: 9.09 AIC: 15.1

Notons qu’il est aussi possible d’utiliser une régression linéaire pondérée. En effet, on cherche
a maximiser ici une (log)-vraisemblance (ou une déviance comme nous le verrons plus tard), qui
s’écrit dans le cas des modeles exponentiels,

3 [Mw(%,@ . (2.1)

10g(/;(01,...,Gn,gﬁ,yh-u,yn)) = Z a(¢)

i=1

On cherche les parametres 3, il nous suffit de deriver la log-vraisemblance par rapport au
parametre (3.

Notons p; = E(Y;) et n; = g(pi) = X3, le prédicteur lineaire pour la iéme observation parmi
n.

Pour i et j donne, on a

Oln(L;)  OIn(Ly)  Owi  , _qy , Yi = Hi 5
aﬁj = alul X (%’] - (g ) (g<,ul)) X V(Yz) XU'

Ainsi on obtient les equations du score :

2 %’fi) =Y (971 (XiB) x yv(—ylg Xy =0,

pour tout j.
Ce qui correspondrait a la condition du premier ordre dans une régression pondérée, ou la
matrice de poids serait W = [w; ;], ol w; ; = 0 si i # j, et sinon

1
Wi

TV

Mais cette matrice de poids étant inconnue (elle dépend des parametres que I'on cherche a
estimer), on met en place une itération de régression pondérée, la matrice de poids étant calculée
a partir des coefficients de I'étape précédante.

Dans le cas d’une régression log-Poisson, le code devient,
> X=baseFREQ[echantillon, "ageconducteur"]

> Y=baseFREQ[echantillon, "nbre"]
> beta=c(-1,1)



BETA=matrix (NA,101,2)
BETA[1,]=beta
for(i in 2:101){
eta=betal[1]+betal[2]*X
mu=exp (eta)
w=mu
z=eta+(Y-mu) /mu
REG=1m(z"X,weights=w)
beta=REG$coefficients
BETA[i,]l=beta
}
BETA[85:101,]

[,1] [,2]
[1,] -9.01 0.0960
[2,] -6.64 0.0505
[3,] -4.85 0.0111
[4,] -3.83 -0.0149
[5,] -3.47 -0.0254
[6,] -3.42 -0.0269
[7,] -3.42 -0.0269
[8,]1 -3.42 -0.0269
[9,] -3.42 -0.0269
[10,]1 -3.42 -0.0269
[11,1 -3.42 -0.0269
[12,]1 -3.42 -0.0269
[13,] -3.42 -0.0269
[14,]1 -3.42 -0.0269
[15,]1 -3.42 -0.0269
[16,]1 -3.42 -0.0269
[17,]1 -3.42 -0.0269

qui converge tres rapidement (vers les valeurs trouvées par la fonction glm).

V + + + + 4+ 4+ + +V VYV

2.1.4 Interprétation d’une régression

Considérons tout simplement une régression de la fréquence annuelle de sinistre sur I’dge du
conducteur. On supposera un modele Poissonnien.

> regl <- glm(nbre~ageconducteur+offset(log(exposition)),
+ data=baseFREQ,family=poisson(link="1log"))
> summary(regl)

Call:
glm(formula = nbre ~ ageconducteur + offset(log(exposition)),
family = poisson(link = "log"), data = baseFREQ)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.568 -0.353 -0.261 -0.142 13.326



Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -2.13774 0.02078 -102.9 <2e-16 **x
ageconducteur -0.01017 0.00044 -23.1 <2e-16 *x*x

Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 171819 on 678012 degrees of freedom
Residual deviance: 171273 on 678011 degrees of freedom
AIC: 222045

Number of Fisher Scoring iterations: 6

Avec un lien logarithmique, le modele est multplicatif. Le multiplicateur est ici
> exp(coefficients(regl) [2])
ageconducteur
0.9898836
Autrement dit, tous les ans, la probabilité d’avoir un accident diminue de 1 — 0.9898 = 1.011%.
Si l'on considere des classes d’ages (définies a priori, nous reviendrons par la suite sur la
construction optimale des classes), on obtient la régression suivante :
seuils <- c(17,21,25,30,40,50,60,70,80,120)
> baseFREQ$agecut <- cut(baseFREQ$ageconducteur,breaks=seuils)
> reg2 <- glm(nombre~agecut+offset(log(exposition)) ,data=
+ baseFREQ, family=poisson(link="1log"))
> summary(reg2)

A\

Call:

glm(formula = nombre ~ agecut + offset(log(exposition)),
family = poisson(link = "log"),
data = baseFREQ)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.657 -0.351 -0.260 -0.140 13.332

Coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.5542 0.0328 -47.4 <2e-16 **x
agecut (21,25] -0.5272 0.0419 -12.6 <2e-16 **x*
agecut (25,30] -0.9518 0.0387 -24.6 <2e-16 ***
agecut(30,40] -1.1175 0.0353 -31.6 <2e-16 *x**
agecut (40,50] -1.0277 0.0350 -29.4 <2e-16 ***
agecut (50,60] -1.1172 0.0356 -31.4 <2e-16 **x*
agecut(60,70] -1.2318 0.0387 -31.8 <2e-16 *x*x
agecut (70,80] -1.2689 0.0428 -29.7 <2e-16 *x*x
agecut(80,120] -1.2402 0.0674 -18.4 <2e-16 **x



Signif. codes: 0 “**x’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢~
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 171919 on 678012 degrees of freedom
Residual deviance: 170594 on 678004 degrees of freedom

AIC: 221425

Number of Fisher Scoring iterations: 6
Notons qu’il est aussi possible de taper directement

1

> reg2 <- glm(nbre~cut(ageconducteur,breaks=seuils)+offset(log(exposition)),

+ data=baseFREQ, family=poisson(link="1log"))
La classe de référence est ici celle des jeunes conducteurs (17,21].

Relativement a cette

classe, on note que toutes les classes ont une probabilité d’avoir un accident plus faible. Pour un
conducteur de la classe (30,45], on note qu’il a 66% de chances en moins d’avoir un accident

dans ’année qu’un jeune conducteur,
> exp(coefficients(reg2) [4])
cut (ageconducteur, breaks = seuils) (30,45]
0.3373169

On peut changer la classe de référence, par exemple (30,40],
> baseFREQ$agecut =relevel (baseFREQ$agecut," (30,40]")
> reg2 <- glm(nbre~agecut+offset(log(exposition)),data=
+ baseFREQ,family=poisson(link="1log"))
> summary(reg2)

Call:
glm(formula = nbre ~ agecut + offset(log(exposition)), family
data = baseFREQR)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.657 -0.351 -0.260 -0.140 13.332

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -2.67e+00 1.31e-02 -203.52 < 2e-16 ***
agecut (17,21] 1.12e+00 3.53e-02 31.67 < 2e-16 *x*x
agecut (21,25] 5.89e-01 2.92e-02 20.17 < 2e-16 ***
agecut (25,30] 1.65e-01  2.43e-02 6.79 1.le-11 **xx
agecut (40,50] 8.94e-02 1.80e-02 4.98 6.4e-07 *xx
agecut (50,60] 5.37e-05 1.91e-02 0.00 0.998
agecut(60,70] -1.16e-01 2.44e-02 -4.74 2.1e-06 **x*
agecut(70,80] -1.51e-01 3.05e-02 -4.95 7.5e-07 **x*
agecut(80,120] -1.22e-01 6.04e-02 -2.02 0.043 *

Signif. codes: O ‘**x*%’ 0.001 ‘*x*’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢~

(Dispersion parameter for poisson family taken to be 1)

= poisson(link = "log"),

1



Null deviance: 171819 on 678012 degrees of freedom
Residual deviance: 170496 on 678004 degrees of freedom
AIC: 221282

Number of Fisher Scoring iterations: 6

qui inciterait & fusionner les classes (30,40] et (50,60], ou avec comme classe de référence
(70,901,

> baseFREQ$agecut =relevel (baseFREQ$agecut," (70,80]")

> reg2 <- glm(nbre~agecut+toffset(log(exposition)) ,data=

+ baseFREQ, family=poisson(link="log"))

> summary(reg2)

Call:
glm(formula = nbre
data = baseFREQ)

agecut + offset(log(exposition)), family = poisson(link = "log"),

Deviance Residuals:
Min 1Q Median 3Q Max
-0.657 -0.351 -0.260 -0.140 13.332

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) -2.8230 0.0275 -102.64 < 2e-16 **x
agecut (30,40] 0.1508 0.0305 4.95 7.5e-07 *x*x
agecut (17,21] 1.2689 0.0428 29.66 < 2e-16 *x*x
agecut (21,25] 0.7396 0.0379 19.52 < 2e-16 **x
agecut (25,30] 0.3162 0.0343 9.22 < 2e-16 **x
agecut (40,50] 0.2402 0.0301 7.98 1.5e-15 *xx
agecut (50,60] 0.1509 0.0308 4.90 9.5e-07 *x*x
agecut (60,70] 0.0350 0.0344 1.02 0.31
agecut (80,120] 0.0287 0.0650 0.44 0.66

Signif. codes: O ‘%%’ 0.001 ‘**’ 0.01 ‘x> 0.056 ‘.’ 0.1 ¢ ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 171819 on 678012 degrees of freedom
Residual deviance: 170496 on 678004 degrees of freedom
AIC: 221282

Number of Fisher Scoring iterations: 6

qui inciterait ici & fusionner les derniéres classes. Toutefois, comme il s’agit de fusionner 3 classes
d’age ensemble, il convient de faire ici un test multiple,

> library(car)

> linearHypothesis(reg2,c("agecut(60,70]=0","agecut (80,120]1=0"))

Linear hypothesis test



Hypothesis:
agecut (60,70] = 0
agecut(80,120] = 0

Model 1: restricted model
Model 2: nbre ~ agecut + offset(log(exposition))

Res.Df Df Chisq Pr(>Chisq)
1 678006
2 678004 2 1.05 0.59
ce qui autorise la fusion des trois classes (et définir une classe des plus de 60 ans).
Au lieu de comparer a la classe des jeunes conducteurs, on peut aussi comparer au conducteur
moyen.

> seuils = c¢(17,21,25,30,45,55,65,80,120)
> reg2 = glm(nombre~0+cut(ageconducteur,breaks=seuils),
+ data=nombre,family=poisson(link="1log") ,offset=log(exposition))

Les multiplicateurs sont alors

reg2b <- glm(nombre~1,data=nombre,family=poisson(link="log"),
offset=log(exposition))

moyenne <- exp(coefficients(reg2b))

reg2c <- glm(nombre~0+cut(ageconducteur,breaks=seuils),
data=nombre,family=poisson(link="1log") ,offset=log(exposition))
exp(coefficients(reg2c))/moyenne

vV + V V + V

Une personne de la classe (17,21] a ainsi 2.86 fois plus de chance que ’assuré moyen d’avoir
un accident.

2.1.5 Extension a& d’autres familles de lois

Les modeles linéaires généralisés ont été définis pour des lois (de Y, conditionnelles aux
variables explicatives X) appartenant & la famille exponentielle. Il est toutefois possible de
généraliser. Les lois de library(gamlss) sont des lois & quatre parametres, (u,o,v,7), ol  est
un parametre de localisation (e.g. la moyenne), o un parametre d’échelle (e.g. ’écart-type), et ou
v et 7 sont des parametres d’asymétrie et d’épaisseur de queue (e.g. la skewness et la kurtosis).
Ces quatre parametres peuvent étre fonction des variables explicatives au travers d’une fonction
de lien,

9 (Xa)
9,1 (XB)
9, (X)
=97 (X9)

Parmi les lois classiques, on retrouvera celles données dans la Table

u=
o =
v =
T

Dans sa version la plus simple, on retrouve le modele proposé par |Gerber & Shiu| (1994]),

Y; = X3 + &;, modele en moyenne
loge? = Zia + u;, modele en variance

ol u; est un bruit i.i.d. suivant une loi Gamma. Cette fonction particuliere est obtenue a ’aide
de la fonction 1m.disp de library(dispmod).



loi R I o v T
Binomiale BI logit - - -
Normale NO  identité log - -
Poisson PO log - - -
Gamma GA logit - - -
inverse Gaussienne IG log log - -
Gumbel GU identité log - -
lognormale LNO log log - -
binomiale négative (Poisson-Gamma) NBI log log - -
Poisson-inverse Gaussien PIG log log - -
Weibull WEI log log - -
zero inflated Poisson ZIP log logit - -

TABLE 2.1 — Les différentes lois et modeles de library(gamlss).

2.1.6 De la qualité d’une régression

Pour mesurer les performances d’une régression, ou plus généralement d’un modele quel
qu’il soit, il faut se donner une fonction de risque R(-,-) qui mesure la distance entre Y et
sa prédiction Y (on notera indifféremment Y ou fi). Classiquement, on utilise la norme L2,
correspond & Derreur quadratique R(Y,Y) = [Y — Y12 ou la norme L! | correspondant & 'erreur
absolue R(Y,Y) =y — Y.

Si on reprend ’exemple de la section les résidus sont représenté sur la Figure Les
résidus bruts correspondent a la différence entre Y; et }A/Z Les résidus de Pearson sont des résidus
standardisés,

ou V est la fonction variance. Si on reprend le jeu de données utilisé pour introduire les GLM,
utilisons la fonction suivante pour visualiser ’allure des résidus

residus <- function(regression,titre){

RNIr <- residuals(regression,type="response")

RNIp <- residuals(regression,type="pearson")

RNId <- residuals(regression,type="deviance")

plot (x,RNIr,type="b",col="grey" ,main=titre,xlab="",ylab="")

lines(x, RNIp,type="b",pch=19)

lines(x, RNId,type="b",pch=3,1ty=2)}

La Figure permet de visualier les trois sortes de résidus, bruts en gris (Y — XA/), et les
résidus de Pearson et de déviance en noir.

+ + 4+ + + + VvV

par (mfrow = c(2, 3))

residus(regNId, "Gaussienne, lien identité")

residus(regPId, "Poisson, lien identité")

residus(regGId,"Gamma, lien identité")

residus(regNlog,"Gaussienne, lien logarithmique")

residus(regPlog,"Poisson, lien logarithmique")

residus(regGlog, "Gamma, lien logarithmique")

Les résidus de Pearson permettent de prendre en compte de I’hétéroscédasticité qui ap-

V V V V V VvV V



Gaussienne, lien identité

Poisson, lien identité

Gamma, lien identité
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FIGURE 2.4 — Résidus bruts, de Pearson et de déviance sur 6 régressions GLM.

paraitra des lors que l'on quite le modele Gaussien (la fonction variance ne sera alors plus
constante). |[Davison & Snell (1991)) revient longuement sur l’analyse des résidus dans le cadre
de modeles linéaires généralisés. Rappelons que l'outil de base pour quantifier la qualité de la
régression est la déviance

ou log L(B]Y') désigne la log-vraisemblance du modele, et ou log £,(Y) est la log-vraisemblance

saturée (obtenue avec un modele parfait).

> par(mfrow = c(1, 1))

>
> logLik(regl)

'log Lik.’ -111021 (df=2)

> deviance(regl)
[1] 171273
> AIC(regl)
[1] 222045

> -2*logLik(regl)+2*2

[1] 222045
attr(,"nobs")
[1] 678013
attr(,"df")
[1] 2
attr(,"class")
[1] "logLik"

Dans un souci de partimonie, on pénalise souvent log-vraisemblance par le nombre de pa-
rametres, ce qui correspond au critére d’information d’Akaike (AIC, en multipliant par 2). On

D(B) = —2[log L(B]Y) — log L.(Y)]




peut également définir le critére de Schwartz,

AIC : —2log L(B) + 2k
BIC : —2log L(3) + klog(n)

Il existe aussi un critere d’Aikaike corrigé (introduit par Hurvich & Tsai (1995)) dans le
cas ou l'on a trop peu d’observations. Toutes ces fonctions peuvent étre obtenues a l'aide de la
fonction AIC de library(aod) ou BIC de library(BMA), ou encore extractAIC avec comme
parametre k=log(nrow(base)).
> extractAIC(regl,k=2) [2]

[1] 222045
> extractAIC(regl,k=log(nrow(baseFREQ))) [2]
[1] 222068

On peut comparer tous les modeles via
> AIC(regl,reg2)
df AIC
regl 2 222045
reg2 9 221282

2.2 Régression logistique et arbre de régression

Avant de modéliser la fréquence de sinistre, et le cott inidividuel des sinistres, nous allons
évoquer rapidement les modeles binomiaux (avec une variable réponse Y de type 0 ou 1), en
présentant la solution proposée par les GLM (régression logistique) mais aussi parler de I'utili-
sation des arbres de régression.

2.2.1 La régression logistique ou probit
La régression logistique suppose que si 7(Y|X) = P(Y = 1|X), alors
(Y |X) P(Y =1|X)

= v X) By —ox) PP

Dans le cas du modele probit, on suppose qu’il existe un modele latent Gaussien, tel que
Y =XiB+ei

etqueY; =0si V¥ <s et Y;=1siY*>s, ete ~N(0,02).
La synthaxe de ces deux modeles est tres proche, car seule la fonction de lien change.
baseFREQ$touche=baseFREQ$nbre>0

reglogit <- glm(touche~ageconducteur,

data= baseFREQ,family=binomial (link="logit"))
regprobit <- glm(touche~ageconducteur,

data= baseFREQ,family=binomial (1ink="probit"))
age <- seq(17,100)

AGE <- data.frame(ageconducteur=age,exposition=1)
Y1l <- predict(reglogit,AGE,type="response")

Yp <- predict(regprobit,AGE,type="response")

V VV V 4+ V + Vv V

On notera que ces deux modeles donnent des prédictions tres proches, comme le montre la
Figure (différence - en valeur absolue - inférieure a 0.5%).



0.038
|
0.05
|

0.037
|

0.00
|

0.035
|
Difference Probit-Logit (in %)

Probability to have more than 1 accident
0.036
|

-0.05

0.034
|

20 40 60 80 100 20 40 60 80 100

age age

FIGURE 2.5 — Régression logistique (logit) versus modele latent Gaussien (probit) pour prédire
la probabilité d’avoir au moins un accident dans l’année, en fonction de I’dge du conducteur
principal. .

2.2.2 Les arbres de régression

Les arbres de régression sont des outils nonparamétriques de segmentation. Dans un arbre
de décision, on cherche a détecter des criteres permettant de répartir les individus en 2 classes,
caractérisées par Y = 0 et Y = 1. On commence par choisir la variable, qui, par ses modalités,
sépare le mieux les individus de chacune des classes. On constitue alors un premier noeud. On
réintere alors la procédure sur chaque nouveau noeud. Dans la méthode CART (Classification
And Regression Tree), on regarde toutes les possibilités. On continue soit jusqu’a ce qu’il ne
reste plus qu'un seul individu dans chaque noeud, soit suivant un critére d’arrét. Les criteres de
discrimination et de constitution des noeuds sont généralement les suivants,

— lorsque les variables explicatives X; sont qualitatives, ou discretes, on utilise la distance
du x? (on parle d’arbre CHAID),

— en présence de variables de tous types, on peut utiliser I'indice de Gini (méthode CART),

— ou l'entropie (méthode C5.0),

Pour un variable continue, on distinguera {X; < s} et {X; > s}. Pour une variable qualita-
tive, on distinguera {X; € A} et {X; ¢ A}.

Pour chacune des variables, on regarde ’ensemble des classifications possibles. Par exemple
pour I’age du conducteur, on posera

> ages <- sort(unique(baseFREQ$ageconducteur))

>k <-5

> classe0 <- baseFREQ$ageconducteur<=ages [k]

> classel <- baseFREQ $ageconducteur> ages[k]

Une fois constituées les 2 classes, on calcule un des critéres possibles (distance du chi-deux,
critere de Gini, etc).

Si on regarde la décomposition obtenue sur le premier noeud, on observe que pour les conduc-
teurs de moins de 25 ans, la probabilité d’avoir un accident est de 10%, contre 5% pour les
conducteurs de plus de 25 ans. Dans le cas des régions, avec une distance du chi-deux, on



cherche a minimiser

L 2
X2 _ [nclasse,y - nclasse,y]
N Z Z T
n
classe€{0,1} y€{0,1} classe,y

Ol Nlasse,y désigne le nombre de personnes dans la classe considérée pour lesquelles la variable
Y prend la modalité y.

DISTANCE <- rep(NA,length(ages))

names (DISTANCE) =ages

for(k in 2:(length(ages)-1)){

classe0 <- baseFREQ$ageconducteur<=ages [k]
classel <- baseFREQ $ageconducteur> ages [k]

M=matrix(

rbind (c (sum(baseFREQ$touche [classe0]==FALSE),
sum(baseFREQ$touche [classe0]==TRUE)),
c(sum(baseFREQ$touche[classel]==FALSE),
sum(baseFREQ$touche [classel1]==TRUE))),2,2)

DISTANCE[k] <- (-chisq.test(M)$statistic)}

Ici, le meilleur découpage possible est (17,23] et (23,85],
> which.min(DISTANCE)
23
6
ce que l'on peut visualiser sur la Figure [2.6
> plot(ages,DISTANCE,type="b",ylab="distance du chi-deux",pch=3)
avec une borne supérieure entre 21 et 24 ans (optimale semble-t-il & 23 ans).
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FIGURE 2.6 — Evolution de x? lors du découpage en 2 classes(17, k] et (k,100] .

Manifestement, la premiere lecon que ’on peut tirer de ce graphique est que s’il convient de
découper ’dge du conducteur principal en 2 classes, elles opposeront les jeunes conducteurs aux
autres. A la seconde étape, on cherche une autre partition, en considérant la précédente comme
acquise,
> k1 <- which.min(DISTANCE)
> DISTANCE <- rep(NA,length(ages))
> names (DISTANCE) =ages
> for(k in 2:(length(ages)-1)){



+ if(k'=k1){

+ classe0 <- (baseFREQ$ageconducteur<=ages [k])&(baseFREQ$ageconducteur<=ages[k1])
+ classe2 <- (baseFREQ$ageconducteur>ages[k])&(baseFREQ$ageconducteur>ages[k1])
+ classel <- 1-classe0O-classe2

+ M=matrix(

+ rbind(c(sum(baseFREQ$touche [classe0]==FALSE),

+ sum(baseFREQ$touche[classe0]==TRUE)),

+ c(sum(baseFREQ$touche[classel]==FALSE),

+ sum(baseFREQ$touche[classel]==TRUE)),

+ c(sum(baseFREQ$touche[classe2]==FALSE),

+ sum(baseFREQ$touche [classe2]==TRUE))),3,2)

+ DISTANCE[k] <- (-chisq.test(M)$statistic)

+ 1}

> which.min(DISTANCE)

En regardant la Figure on observe qu’'une fois fixé la borne supérieure caractérisant les
"jeunes’, la troisieme classe constituée est une classe de personnes agées (un peu au dela de 80
ans),
> plot(ages,DISTANCE,type="b",ylab="distance du chi-deux",pch=3)
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FIGURE 2.7 — Evolution de x? lors du découpage en 3 classes (17,k], (17,23] et (23,100], ou
(17, 23], (23, k] et (k,100].

Parmi les autres criteres, on peut aussi utiliser la distance de Gini,

G = — Z Nclasse Z Nclasse,y <1 _ nclasse,y)

n n n
classe€{0,1} ye{0,1} classe classe

ou ’entropie,

B=_ Z Nclasse Z Nclasse,y log (nclasse,y>

n n n
classe€{0,1} ye{0,1} classe classe

Les arbres permettent une lecture relativement aisée pour l'utilisateur, et reposent sur des
techniques nonparamétriques. Aussi, contrairement aux méthodes GLM que nous verrons par la
suite, le choix des lois ou la recherche d’éventuelles nonlinéarités n’intervient pas ici. Les arbres



sont également peu sensibles aux points aberrants (outliers en anglais). Mais les arbres, de par
leur construction, posent aussi certains soucis. En particulier, on ne peut pas revenir en arriere,
et le séquencement est tres important.

2.2.3 Probabilité d’avoir (au moins) un sinistre dans I’année

A titre d’illustration, étudions la probabilité d’avoir au moins un sinistre dans ’année. Par
défaut, 'arbre crée autant de classes que 'on a d’ages (vus en tant que variable discrete),

> library(tree)

arbre=tree ((nombre>0) “ageconducteur,data=baseFREQ,split="gini")
age=data.frame(ageconducteur=18:90)

y=predict (arbre,newdata=data.frame (ageconducteur=age))

plot (age$ageconducteur,y,xlab="",ylab="")

vV V V V

Si ’on souhaite coupe les branches de I'arbre, on peut utiliser I'option mincut pour dire qu’on
ne peut couper davantage qu’a condition de constituer des classes dont le nombre d’invidus a
I'intérieur soit suffisamment élevé. ,

arbre2=tree ((nombre>0) “ageconducteur,data=baseFREQ, split="gini" ,mincut=50000)
y2=predict (arbre2,newdata=data.frame(ageconducteur=age))
lines(age$ageconducteur,y2,type="s",lwd=2)

arbre3=tree((nombre>0) “ageconducteur,data=baseFREQ,split="gini" ,mincut=200000)
y3=predict(arbre3,newdata=data.frame(ageconducteur=age))
lines(age$ageconducteur,y3,type="s",col="grey",1lwd=2)

V V V V V V

On obtient alors les classes décrites sur la figure 2.8
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FI1GURE 2.8 — Prédiction par arbre de régression, avec plus ou moins de classes d’age, les points
correspondent aux moyennes empiriques par age (un noeud par age), et les traits aux classes
obtenues en imposant une taille suffisante par classe.

Mais le gros intérét des arbres est de pouvoir visualiser le découpage et la structure d’arbre,
comme sur la figure [2.9



> plot(arbre2)

> text(arbre2)

> plot(arbre3d)

> text(arbre3)

Sur ces arbres, la hauteur des branches reflete le gain (si on regarde 1’arbre de maniére descen-
dante) ou la perte (si on le regarde de maniere ascendante) en terme d’indice de Gini que I'on
a en coupant les classes. Plus la branche est longue, plus la discrimination est forte.

agecondugteur <275 ageconduﬁteur < 30.5
agecondugteur < 40.5
0.04273
agecondugteur < 40.5
0.04978
agecondugteur < 54.5
agecageaensygesr. 5 36.5 agecondudteur < 54.5 0.03244
0.03179.03240.033gjécondugteur < 43.5&%(%econdu teur < 67.5 agecondudteur < 46.5
eagedihay i 0.03550
0.03573.03949.0384@3.03479.03408.03786 0.03719 0.03925

FIGURE 2.9 — Stucture des arbres de régression, avec arbre2 a gauche, et arbre3 a droite.

On notera toutefois que la stratégie optimale n’est peut étre pas de supposer le risque constant
par classe, comme le montre la Figure [2.10],
plot(age$ageconducteur,y,xlab="",ylab="")
lines(age$ageconducteur,y3,type="s",col="grey",lwd=2)
reg0l.splines <- glm((nombre>0) “bs(ageconducteur,10),
family=binomial (link="logit") ,data=baseFREQ)
predOl.splines <- predict(regOl.splines,newdata=age,type="response")
lines(age$ageconducteur,pred0l.splines,lwd=2,col="black")

V V + V VvV V

2.2.4 Probabilité d’avoir beaucoup de sinistres dans ’année

Une variable particulierement intéressante est la probabilité d’avoir beaucoup d’accidents
dans année. Mais une (grosse) partie des assurés n’étant dans la base que quelques semaines,
ou quelques mois, il convient de recalculer les nombres annuels de sinistres, en divisant le nombre
de sinistres observé par ’exposition, et en mettant un poids proportionnel & I'exposition (comme
nous ’avions mentionné au début du chapitre).

Sur la Figure [2.11) on retrouve le fait que les jeunes conducteurs ont un comportement
particulierement risqué (& condition d’autoriser les classes de faible effectif).,,
> arbrel <- tree((nbre/exposition>2) ~ ageconducteur ,
+ data=baseFREQ,weights=exposition,split="gini",mincut = 10000)
> plot(arbrel,type="proportional")
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FI1GURE 2.10 — Prédiction par arbre de régression, avec une régression logisitique sur une variable
lissée (par splines).

> text (arbrel)
> arbre2 <- tree((nbre/exposition>2) ~ ageconducteur ,
+ data=baseFREQ,weights=exposition,split="gini",mincut = 100000)
> plot(arbre2,type="proportional")
> text(arbre2)
agecondugteur < 21.5 agecondugteur <30.5

agecondugteur < 23.5

0.031420

agecondugteur < 25.5

0.018720

aged8ht 73555 agecondugteur < 53.5
onad 6

0.014670 6652 0.013330

agecondugteur < 46.5
0.006748 0.006900 0.004865

FIGURE 2.11 — Stucture des arbres de régression, avec arbrel a gauche, et arbre2 a droite.

On peut d’ailleurs visualiser ces probabilités sur la Figure [2.12
> ARBRE <- tree((nbre/exposition>2) ~ ageconducteur ,
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FIGURE 2.12 — Probabilité d’avoir au moins 3 accidents par an, arbre et régression logistique

data=baseFREQ,weights=exposition,split="gini",mincut = 10000)
age=data.frame(ageconducteur=18:90)

y=predict (ARBRE,newdata=data.frame (ageconducteur=age))

y2=predict (ARBRE2,newdata=data.frame (ageconducteur=age))
plot(age$ageconducteur,y,xlab="",ylab="")
lines(age$ageconducteur,y2,type="s",col="grey",lwd=2)

reg02.splines <- glm((nbre/exposition>2) “bs(ageconducteur,10),
family=binomial(link="logit") ,weights=exposition,data=baseFREQ)
pred02.splines <- predict(reg02.splines,newdata=age,type="response")
lines(age$ageconducteur,pred02.splines,lwd=2,col="black")

0.010 0.015 0.020 0.025 0.030
| | |

Probabilité d'avoir au moins 3 accidents par an

0.005
|

Age

(sur variable lissée par splines).

Mais au lieu de n’étudier que ’dge du conducteur, on peut regarder aussi 'impact des autres
varaibles. Sur la Figure [2.13] on retrouve le fait que les jeunes conducteurs ont un comportement
particulierement risqué (a condition d’autoriser les classes de faible effectif), mais que la zone
d’habitation est aussi un facteur important, avec un risque plus élevé dans les villes :
zones d, e et £ (plus de 500 habitants par km?), la probabilité d’avoir au moins trois accidents
est deux fois plus élevée - en tous les cas pour les conducteurs de plus de 30 ans - que dans les

zones a, b et ¢

vV V + V V V + V

arbrel <- tree((nbre/exposition>2) ~ ageconducteur ,

data=baseFREQ,weights=exposition,split="gini",mincut = 10000)
plot(arbrel,type="proportional")

text (arbrel)

arbre2 <- tree((nbre/exposition>2) ~ ageconducteur |,
data=baseFREQ,weights=exposition,split="gini" ,mincut = 100000)

plot(arbre2,type="proportional")
text (arbre2)



agecondugteur < 21.5 agecondugteur < 30.5
t t

zong:abc

0.031420

zong:abc

0.013330

agecondudteur < 25.5 agecondudteur < 56.5

0.004581 0.008286

FIGURE 2.13 — Stucture des arbres de régression, avec arbrel a gauche, et arbre2 a droite.

2.2.5 Probabilité d’avoir un gros sinistre dans ’année

Cette étude sera particulierement intéressante pour écréter les gros sinistres (nous revien-
drons sur ce point dans la section, lors de la modélisation des couts individuels de sinistres.
On supposera (arbitrairement) que les gros sinistres sont ceux dont le montant dépasse 20 000
euros, ce qui concerne un peu plus de 200 sinistres,,,
> sum(baseCOUT$cout>20000)

[1] 215
Au lieu de modéliser les variables qui pourrait expliquer le fait d’avoir (ou pas) un accident,
comme dans la section précédante, on va essayer de voir s’il y a des variables qui pourraient
expliquer le fait d’avoir (ou pas) un tres gros sinistre.
> gs <- baseCOUT$nocontrat [baseCOUT$cout>30000]
> baseFREQ$GS=0
baseFREQ$GS [baseFREQ$nocontrat%ini, gsl=1
> ARBRE <- tree(GS ~ puissance + agevehicule + puissance + zone+ ageconducteur ,
+ data=baseFREQ,split="gini" ,mincut = 50000)
> ARBRE
node), split, n, deviance, yval
* denotes terminal node

A\

1) root 678013 150.000 2.212e-04
2) ageconducteur < 27.5 61023 25.990 4.261e-04 *
3) ageconducteur > 27.5 616990 124.000 2.010e-04
6) puissance < 5.5 212815 27.000 1.269e-04
12) ageconducteur < 50.5 128654 12.000 9.327e-05
24) ageconducteur < 36.5 51423  7.999 1.556e-04 *
25) ageconducteur > 36.5 77231 4.000 5.179e-05 *
13) ageconducteur > 50.5 84161 15.000 1.782e-04 *
7) puissance > 5.5 404175 96.980 2.400e-04



14) zone: B,C,E,F 251268 49.990 1.990e-04
28) agevehicule < 6.5 134878 20.000 1.483e-04
56) ageconducteur < 49.5 76446 7.999 1.046e-04 *
57) ageconducteur > 49.5 58432 12.000 2.054e-04 *
29) agevehicule > 6.5 116390 29.990 2.578e-04
58) agevehicule < 11.5 61902 17.990 2.908e-04 *
59) agevehicule > 11.5 54488 12.000 2.202e-04 *
15) zone: A,D 152907 46.990 3.074e-04
30) puissance < 6.5 52214 20.990 4.022e-04 *
31) puissance > 6.5 100693 25.990 2.582e-04
62) ageconducteur < 46.5 50219 13.000 2.589e-04 *
63) ageconducteur > 46.5 50474 13.000 2.576e-04 *

On note qu’en fonction de la zone d’habitation, de la puissance du véhicule et de I’ancienneté
du véhicule, on peut déterminer avec une bonne assurance la probabilité d’avoir un tres gros
sinistre. Et manifestement, une variable particulierement importante est 1’age du conducteur
(avec la encore un risque élevé pour les jeunes conducteurs) mais aussi la puissance du véhicule
(si on veut suffisamment d’assurés par classes, I’age du conducteur disparait au profit de la
puissance, faute d’effectifs suffisants). Si on trace larbre, on obtient le dessin de la Figure

> ARBRE2 <- tree(GS ~ puissance + agevehicule + puissance + zone+ ageconducteur ,
+ data=baseFREQ,split="gini",mincut = 100000)

> plot (ARBRE,type="proportional")

> text (ARBRE)

> plot (ARBRE2,type="proportional")

> text (ARBRE2)

agecondugteur < 27.5
T

puissange <5.5

4.261e-04

agecondudteur < 50.5 zonetbeef
agecondudteur < 36.5

1.782e-04
1.556e-04 5.179e-05

agevehidule < 6.5 puissange < 6.5

agecondu[J;eur <495 El\e <115 agecondulteur <46.5

[ ‘ f 1 4.022e-04 2.589e-04 2.576e-04
2.908e-04 2.202e-04
1.046e-04 2.054e-04

FIGURE 2.14 — Arbres de régression, pour expliquer la probabilité d’avoir (ou pas) un gros
sinistre, en fonction de la densité de population, de ’ancienneté du véhicule, et de sa puissance.



2.3 Modéliser la fréquence de sinistralité

Nous avions vu en introduction a ce chapitre que la formule de base pour calculer une prime
pure qui tiendrait compte de variables explicatives X est

E(S|X) = E(N|X) - E(Yi| X).

La premiere étape est de pouvoir modéliser la fréquence de sinistres E(/N|X). Classiquement, les
actuaires ont longtemps raisonné par classes de risques, c’est a dire en supposant les variables X
qualitatives. Nous commencerons par évoquer ce cas (et en particulier la méthode des marges)
pour introduire ensuite le cas ou des variables explicatives sont continues.

2.3.1 Un peu d’analyse descriptive

Une hypothese forte de la loi de Poisson est que E(IN) = V(N). Si 'on compare les valeurs
numériques, cela donne l'ajustement suivant, si 'on estime le parametre par la méthode des
moments (ou par maximum de vraisemblance, ML qui ici coincident) :
> N <- baseFREQ$nbre

> library(ved)
> gof <- goodfit(N,type= "poisson",method= "ML")
> gof

Observed and fitted values for poisson distribution
with parameters estimated by ‘ML’

count observed fitted
0 653069 6.520780e+05
1 23571 2.543248e+04
2 1298 4.959614e+02
3 62 6.447862e+00
4 5 6.287020e-02
5 2 4.904153e-04
6 1 3.187879e-06
7 0 1.776204e-08
8 1 8.659485e-11
9 1 3.752655e-13
10 0 1.463618e-15
11 2 5.189485e-18
12 0 1.686678e-20
13 0 5.060319e-23
14 0 1.409740e-25
15 0 3.665531e-28
16 1 8.935236e-31

> plot(gof)

La Figure permet de visualiser la qualité de ’ausjtement.

La différence entre la valeur prédite par le modele Poissonnien et les valeurs observées nous
poussent a essayer de mieux comprendre I’hétérogénéité qui existe au sein de nos données (sans
prendre en compte la non-prise en compte de I'exposition).
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FIGURE 2.15 — Modélisation de la fréquence - globale - de sinistre par une loi de Poisson.

2.4 Les variables qualitatives ou facteurs

Les facteurs sont des codifications de variables qualitatives. Dans la base, nous disposons de
plusieurs variables qualitatives comme le carburant carburant codé en E pour essence et D pour
diesel, ou encore region pour la région.,

2.4.1 La méthode des marges

Bailey (1963) a proposé une méthode relativement simple pour faire de la tarification, appelée
method of marginal totals. Avant de présenter cette méthode, notons que |Jung (1968)) a retrouvé
cette méthode en faisant du maximum de vraisemblance sur un modele Poissonnien. PlaAons
nous dans le cas ol les variables exogene X sont qualitatifs, de telle sorte que ’on puisse définir
des classes de risques. Alors,

An
P(N =n|X = X) = exp[-Ax] =% out Ax = exp[- XS]
n.

ce qui donne une log-vraisemblance de la forme

n

L(BIni, Xi) = > _[~Ax,] + nilog[Ax,] — log[n,!]

i=1

dont la condition du premier ordre donne les équations normales,

S o= Y

i, X=X i, X=X

pour toute classe de risque X .,,,
Supposons que 'on prenne en compte ici deux classes de risques.



> N <- baseFREQ$nbre
> E <- baseFREQ$exposition
> X1 <- baseFREQ$carburant
> X2 <- cut(baseFREQ$agevehicule,c(0,3,10,101),right=FALSE)
> namesl <- levels(X1)
> names2 <- levels(X2)
> (POPULATION=table(X1,X2))
X2
X1 [0,3) [3,10) [10,101)
D 102293 138763 91080
E 85854 126926 133097
EXPOSITION=POPULATION
for(k in 1:nrow(EXPOSITION)){
EXPOSITION [k,]=tapply (E[X1==names1[k]],
X2[X1==names1[k]],sum)}
EXPOSITION
X2
X1 [0,3) [3,10) [10,101)
D 42160.49 76744.38 51756.02
E 37015.56 73352.42 77470.57
SINISTRE=POPULATION
for(k in 1:nrow(SINISTRE)){
SINISTRE[k,]=tapply (N[X1==names1[k]],
X2 [X1==names1[k]],sum)}
SINISTRE
X2
X1 [0,3) [3,10) [10,101)
D 3273 6350 3827
E 2474 5360 5160
> (FREQUENCE=SINISTRE/EXPOSITION)
X2
X1 [0,3) [3,10) [10,101)
D 0.07763192 0.08274222 0.07394309
E 0.06683675 0.07307189 0.06660594
Notons Y; ; la fréquence empirique observée lorsque la premiere variable (i.e. X;) prend la
valeur 7 (ici 7 prend deux valeurs, homme ou femme) et la seconde variable (i.e. C') prend la
valeur j (ici j prend trois valeurs, ville, banlieue et campagne). La matrice Y = [Y] ;] est ici
FREQUENCE. On suppose qu’il est possible de modéliser Y a 'aide d’un modele multiplicatif a
deux facteurs, associés & chaque des des variables. On suppose que

Yij = Li-Cj.

vV + + Vv V

vV + + Vv V

On notera F; ; 'exposition, i.e. EXPOSITION. L’estimation de L = (L;) et de C' = (C}) se fait
généralement de trois manieres : par moindres carrés, par minimisation d’une distance (e.g. du
chi-deux) ou par un principe de balancement (ou méthode des marges). Les deux premieres
méthodes seront abordées en exercices. Dans la méthode des marges (selon la terminologie de
Bailey| (1963)), formellement, on veut

ZNW‘Y}J = ZNi,jLi -Gy,
J J



en somment sur la ligne ¢, pour tout 4, ou sur la colonne j,
Y NiYig =Y NiyLi-Cj.
i i

La premiere équation donne

L= Zj Ni,jYw
Zj Ni,jCJ
et la seconde
C - 2 NigYij
> NijLi

On résoud alors ce petit systeme de maniere itérative (car il n’y a pas de solution analytique
simple).

> (m=sum(SINISTRE)/sum(EXPOSITION))

[1] 0.1020388

> L<-matrix(NA,100,2) ;C<-matrix(NA,100,3)
> L[1,]1<-rep(m,2) ;colnames(L)=names1
> C[1,]<-rep(m,3) ;colnames(C)=names?2
> for(j in 2:100){
+ L[j,1]<-sum(SINISTRE[1,])/sum(EXPOSITION[1,]1*C[j-1,1)
+ L[j,2]<-sum(SINISTRE[2,])/sum(EXPOSITION[2,]*C[j-1,])
+ C[j,1]<-sum(SINISTRE[,1])/sum(EXPOSITION([,1]1*L[j,])
+ C[j,2]<-sum(SINISTRE[,2])/sum(EXPOSITION[,2]*L[j,])
+ C[j,3]<-sum(SINISTRE[,3])/sum(EXPOSITION[,3]*L[j,])
+ }
> L[1:5,]
D E

[1,] 0.07376302 0.07376302
[2,] 1.06843870 0.93781996
[3,] 1.06467985 0.94125969
[4,] 1.06463149 0.94130395
[5,] 1.06463087 0.94130452
> C[1:5,]

[0,3) [3,10) [10,101)
[1,] 0.07376302 0.07376302 0.07376302
[2,] 0.07205381 0.07765869 0.07023750
[3,] 0.07208196 0.07767731 0.07019804
[4,] 0.07208232 0.07767755 0.07019753
[5,] 0.07208233 0.07767756 0.07019752

A\

PREDICTION2=SINISTRE
PREDICTION2[1,]<-L[100,1]*C[100,]
PREDICTION2[2,]1<-L[100,2]1*C[100,]
PREDICTION?2

X2

X1 [0,3) [3,10)  [10,101)
D 0.07674107 0.08269792 0.07473445
E 0.06785142 0.07311823 0.06607725

On notera que les marges sont identiques, par exemple pour la premiére ligne

vV V V



> sum(PREDICTION2[1,]*EXPOSITION[1,])

[1] 13450
> sum(SINISTRE[1,])
[1] 13450
Cette technique est équivalente utiliser une régression log-Poisson sur les deux variables
qualitatives,
> donnees <- data.frame(N,E,X1,X2)
> regpoislog <- glm(N"X1+X2,offset=log(E),data=donnees,
+ family=poisson(link="log"))
> newdonnees <- data.frame(Xl=factor(rep(names1,3)),E=rep(1,6),
+ X2=factor(rep(names2,each=2)))
> matrix(predict(regpoislog,newdata=newdonnees,
+ type="response"),2,3)

[,1] [,2] [,3]

[1,]1 0.07674107 0.08269792 0.07473445

[2,] 0.06785142 0.07311823 0.06607725
Parmi les autres variables que 1'on considérera comme qualitatitive, il y a la région d’ha-
bitation, dont linfluence sur la fréquence de sinistre peut étre visualisé sur la Figure [2.16],,

> library(maptools)

> library(maps)

> departements<-readShapeSpatial ("DEPARTEMENT.SHP")

> legend(166963,6561753,legend=names (attr(colcode, "table")),

+ fill=attr(colcode, "palette"), cex=0.6, bty="n")

> region<-tapply(baseFREQ[, "nbre"],as.factor (baseFREQ[,"region"]),sum)/
+ tapply(baseFREQ[, "exposition"],as.factor(baseFREQ[, "region"]) ,sum)
> depFREQ=rep (NA,nrow(departements))

> names (depFREQ)=as.character (departements$CODE_REG)

> for(nom in names(region)){

+ depFREQ [names (depFREQ)==nom] <- region[nom]

> plot(departements,col=gray((depFREQ-.05)*20))
> legend(166963,6561753,legend=seq(1,0,by=-.1)/20+.05,
+ fill=gray(seq(1,0,by=-.1)),cex=1.25, bty="n")

2.4.2 Prise en compte de ’exposition et variable offset

Dans un modele collectif, on a besoin de connaitre le nombre de sinistres survenus sur une
police d’assurance. Dans 'optique de tarifer un contrat, il faut pouvoir prédire le nombre de
sinistres qui surviendront, en moyenne, I’année suivante. Or si certains polices n’ont été observées
que 6 mois dans la base, il convient de pondérer la fréquence de sinistre par I’exposition. Compte
tenu de la propriété multiplicative d’un processus de Poisson, une police observée 1 an aura,
en moyenne, 4 fois plus de sinistres qu’une police observée 3 mois. Dans le cas d’un modeéle
log-Poisson, il est alors naturel de supposer que

Y|X ~ P(exp[X 3 + log(e)])

ou e désigne I'exposition, mesurée en années.
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FIGURE 2.16 — Fréquence de sinistres en fonction de la région d’habitation.

Remark 2.4.1. Plus formellement, on retrouve ici une propriété du processus de Poisson.
Si la survenance d’accident pour un individu peut étre modélisée par un processus de Poisson
homogéne de parametre X, A est l’espérance du nombre de sinistre sur un intervalle de longueur
1 (e.g. [0,1]). Pour un assuré présent pour une durée t (disons au cours de l'intervalle de temps
[0,t]) U’espérance du nombre de sinistres est At, i.e. il est proportionnel & la durée d’exposition
rélle au risque.

Dans le cas des régressions de Poisson, cela peut se faire de la maniére suivante
> reg <- glm(nombre~O+puissance+region,
+ data=nombre,family=poisson(link="log") ,offset=log(exposition))

On peut noter que la régression pouvait s’écrire

Y|X ~ Plexplfo + 1. X1 + -+ BrXi + ¢€])

autrement dit, on rajoute l'exposition dans la régression, tout en forant le coefficient a étre égal
a 1. Ceci légitime ainsi la seconde écriture possible

> reg <- glm(nombre~O+puissance+region+offset(exposition),

+ data=nombre,family=poisson(link="log"))



On notera qu’il est possible d’intérgrer une variable offset dans la méthode des marges, en
notant qu’il convient de faire une moyenne du nombre de sinistres, divisé par la moyenne de
I’exposition. Par exemple pour reprendre une régression présentée en introduction
> seuils <- ¢(17,21,25,30,50,80,120)
reg2 <- glm(nombre~cut (ageconducteur,breaks=seuils) ,data=sinistres,
family=poisson(link="log") ,offset=log(exposition))
predict(reg2,newdata=data.frame(ageconducteur=20,exposition=1),
type="response")

[1] 0.2113669

> I <- (sinistres$ageconducteur>=17)&(sinistres$ageconducteur<=21)

> mean(sinistres$nombre [I==TRUE]) /mean(sinistres$exposition[I==TRUE])
[1] 0.2113669

Une autre maniere d’écrire cette grandeur est de faire une moyenne pondérée (par 1’exposi-
tion) du nombre annualisé de sinistres,
> weighted.mean(sinistres$nombre [I==TRUE] /sinistres$exposition[I==TRUE],

+ w=sinistres$exposition[I==TRUE])
(1] 0.2113669

>
+
>
+

2.4.3 Les variables tarifaires continues et la nonlinéarité

Le but de la tarification (et plus généralement de toute prédiction) est d’estimer une espérance
conditionnelle,

ES|X =x)=¢(x) ou S =o(Xy, -+, Xi) +¢

ot p : R¥ — R. Supposer un modele linéaire est problement une hypothese trop forte. Mais on
se doute qu’estimer une fonction définie sur R¥ serait trop complexe numériquement. Un bon
compromis est proposé par les modeles dit additifs.

Pour commencer, on peut récupérer les fréquences empiriques par age
> freq.emp<-tapply(baseFREQ[,"nbre"],as.factor(baseFREQ[, "ageconducteur"]) ,sum)
+ /tapply(baseFREQ[, "exposition"],as.factor(baseFREQ[, "ageconducteur"]) ,sum)

A titre d’illustration, la Figure permet de visualiser 'impact de ’age du conducteur
principal sur la fréquence de sinistre. Les points noirs correspondent a la fréquence moyenne
empirique observée,
age <- seq(18,92)
pred.emp <- freq.emp[as.character(age)]
reg.splines <- glm(nbre~bs(ageconducteur,10)+offset(log(exposition)),
family=poisson(link="log") ,data=baseFREQ)
age <- seq(18,100)
pred.splines <- predict(reg.splines,newdata=data.frame(ageconducteur=
age,exposition=1) ,type="response",se=TRUE)
plot(age,pred.splines$fit,lwd=2,type="1",ylab="",xlab="Age du conducteur principal",
ylim=c(0,0.25))
polygon(c(age,rev(age)),
c(pred.splines$fit+2*pred.splines$se.fit,
rev(pred.splines$fit-2*pred.splines$se.fit)),
col="grey" ,border=NA)
lines(age,pred.splines$fit,lwd=2)
lines(age,pred.splines$fit+2*pred.splines$se.fit,lty=2)
lines(age,pred.splines$fit-2*pred.splines$se.fit,lty=2)

VVYV + 4+ +V 4+ V 4+ VYV 4+ V VYV



> abline(h=sum(baseFREQ[, "nbre"])/sum(baseFREQ[, "exposition"])
+ ,1ty=2,1lwd=.5)
> points(18:92,pred.emp,pch=19,cex=.7,type="b")
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FIGURE 2.17 — Fréquence de sinistres en fonction de ’age du conducteur principal, régression
de Poisson avec splines.

Les modeles GAM

Les modeles additifs ont été introduits par [Stone| (1985) qui notait qu’estimer une fonction
¢ : R¥ — R serait numériquement trop complexe (et probablement peu robuste). Les GAMs ont
éte popularises ensuite par le livre Hastie & Tibshirani| (1990)). On cherche ici une décomposition
de la forme

S=o1(X1) 4+ ou(Xp) +¢

ou les fonctions ¢; : R — R sont supposées suffisament régulieres.

On peut reprendre ’exemple traité avec des splines dans un modele GLM, directement sous
forme d’'un modele GAM, que 'on peut visualiser sur la Figure [2.18
reg.gam <- gam(nbre~s(ageconducteur)+offset(log(exposition)),
family=poisson(link="log") ,data=baseFREQ)
pred.gam <- predict(reg.gam, ,newdata=data.frame(ageconducteur=age,exposition=1),
type="response",se=TRUE)
plot(age,pred.gam$fit,lwd=2,type="1",ylab="",xlab="Age du conducteur principal",
ylim=c(0,0.25))
polygon(c(age,rev(age)),
c(pred.gam $fit+2* pred.gam $se.fit,rev(pred.gam $fit-2*pred.gam $se.fit)),
col="grey" ,border=NA)
lines(age, pred.gam $fit,lwd=2)
lines(age, pred.gam $fit+2* pred.gam $se.fit,lty=2)
lines(age, pred.gam $fit-2% pred.gam $se.fit,lty=2)
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> abline(h=sum(baseFREQ[, "nbre"])/sum(baseFREQ[, "exposition"]),1ty=2,1lwd=.5)
> points(18:92,pred.emp,pch=19,cex=.7,type="b")
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FIGURE 2.18 — Fréquence de sinistres en fonction de ’age du conducteur principal, régression
GAM.

Notons que les modeles sont additifs, aussi, avec une variable continue et un facteur (par
exemple le carburant) on aurait

S = p1(X1) + BaXo + e = ¢1(X1) + BP1(Xo = D) +e,

ou X7 est I’age du conducteur, et Xo le carburant du véhicule. Notons qu’il serait aussi possible
de considérer un modele de la forme

S — o1,5(X1) +e st Xo = essence
v1,p(X1) +e  si Xo = diesel

Le premier modele (additif) est estimé ci-dessous.

regC.gam <- gam(nbre~s(ageconducteur)+carburant+offset(log(exposition)),
family=poisson(link="log") ,data=baseFREQR)
predCE.gam <- predict(regC.gam, ,newdata=data.frame(ageconducteur=age,
exposition=1,carburant="E"),type="response")
predCD.gam <- predict(regC.gam, ,newdata=data.frame(ageconducteur=age,
exposition=1,carburant="D") ,type="response")

On peut visualiser le lien entre la fréquence anuelle de sinistre et I’age sur la Figure [2.19
plot(age,predCD2.gam,lwd=2,type="1",ylab="",xlab=

"Age du conducteur principal",ylim=c(0,0.25))
lines(age,predCE2.gam,lwd=2,col="grey")

lines(age,predCD.gam,lty=2)

lines(age,predCE.gam,1ty=2,col="grey")

legend (80, .23,c("Diesel","Essence"),col=c("black","grey"),
1wd=2,1ty=1,bty="n")
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FIGURE 2.19 — Modele GAM addifif, S = p1(X1) + f2 X2+ ou Xo désigne le type de carburant.

En revanche, pour estimer le second modele, il convient de faire deux régressions distinctes,
regCE.gam <- gam(nbre~s(ageconducteur)+offset(log(exposition)),
family=poisson(link="1log") ,data=baseFREQ[baseFREQ$carburant=="E",])
regCD.gam <- gam(nbre~s(ageconducteur)+offset(log(exposition)),
family=poisson(link="1log") ,data=baseFREQ[baseFREQ$carburant=="D",])
predCE2.gam <- predict(regCE.gam, ,newdata=data.frame(ageconducteur=age,exposition=1),
type="response")
predCD2.gam <- predict(regCD.gam, ,newdata=data.frame(ageconducteur=age,exposition=1),
type="response")

+ VvV + VvV + Vv 4+ V

On peut visualiser le lien entre la fréquence anuelle de sinistre et ’age sur la Figure [2.20
plot(age,predCD2.gam,lwd=2,type="1",ylab="",xlab=

"Age du conducteur principal",ylim=c(0,0.25))
lines(age,predCE2.gam,1lwd=2,col="grey")

lines(age,predCD.gam,1ty=2)

lines(age,predCE.gam,1ty=2,col="grey")

legend (80, .23,c("Diesel","Essence"),col=c("black","grey"),
lwd=2,1ty=1,bty="n")
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FIGURE 2.20 — Modele GAM, S = ¢ p(X1) + € si Xo = essence ou S = ¢ p(X1) + € si
Xo = diesel ou Xy désigne le type de carburant.



L’estimation de ces modeéles peut se faire de plusieurs manieres sous R. Il y a tout d’abord la
fonction gam de library(gam), basé sur l’algorithme proposé par Hastie & Tibshirani (1990).
La fonction gam de library(mgcv) repose sur la méthodologie développée par |Wood| (2000).
Enfin d’autres packages proposent aussi des estimations de ces transformations nonlinéaires,
dont 1library(gmlss) ou library(gss)

2.4.4 Les modeles nonlinéaires multivariés

On peut s’autoriser éventuellement encore un peu plus de souplesse en prenant en compte le
couple constitué de deux variables continues (comme discuté dans Friedman| (1991))),

S = (p(Xl,XQ) +e€
oll ¢ : R? = R, au lieu d’un modele GAM classique,
S =¢1(X1) + p2(X2) + £

Cette option est proposée par exemple dans la fonction gam de library(mgcv),mais pour
des raisons de volume de données, on va se limiter a un échantillon de la base
> set.seed(1)
> echantillon=sample (1:nrow(baseFREQ) ,size=200000)
> reg.gam2 <- gam(nbre~s(ageconducteur,agevehicule)+offset(log(exposition)),
+ family=poisson(link="log"),data=baseFREQ[echantillon,])
La Figure [2.2I] permet de visualiser la surface de prédiction de la fréquence annuelle de
sinistre, en fonction de I’age du conducteur et de ’ancienneté du véhicule,
pred.gam2 <- predict(reg.gam2, ,newdata=data.frame(ageconducteur=

A\

+ C,agevehicule=V,exposition=1),type="response")

> P2 <- matrix(pred.gam2,length(agec),length(agev))

> ZL<-range (P2)

> persp(agec,agev,P2,theta=30,xlab="age conducteur",ylab="age vehicule",zlab="",zlim=ZL)
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FIGURE 2.21 — Modele GAM bivariée s(X1, Xa) .



On peut comparer ce modele joint a un modele strictement additif, comme sur la Figure
222,
reg.gam3 <- gam(nbre~s(ageconducteur)+s(agevehicule)+offset(log(exposition)),
family=poisson(link="log") ,data=baseFREQ[echantillon,])
pred.gam3 <- predict(reg.gam3, ,newdata=data.frame(ageconducteur=
C,agevehicule=V,exposition=1),type="response")
P3 <- matrix(pred.gam3,length(agec),length(agev))
persp(agec,agev,P2,theta=30,x1lab="age conducteur",ylab="age vehicule",zlab="",zlim=ZL)
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FIGURE 2.22 — Modele GAM (réellement additif) s1(X1) + s(X2) .

Enfin, & titre de comparaison, on peut aussi visualiser sur la Figure [2.23| ce que donne un
modele GLM sans lissage,
reg.glmd4 <- glm(nbre~ageconducteur+agevehicule+offset(log(exposition)),
family=poisson(link="log") ,data=baseFREQ[echantillon,])
pred.glm4 <- predict(reg.glmé, ,newdata=data.frame(ageconducteur=
C,agevehicule=V,exposition=1),type="response")
P4 <- matrix(pred.glm4,length(agec),length(agev))
persp(agec,agev,P4,theta=30,xlab="age conducteur",ylab="age vehicule",zlab="",zlim=ZL)

VvV V. + V + V

2.4.5 Prise en compte de la surdispersion

Dans une régression poissonnienne, on suppose que dans une classe de risque (ou conditionnel-
lement aux variables explicatives), la fréquence et ’espérance coincident, i.e. V(Y| X) = E(Y|X).
Dans I’exemple ci-dessous, on considere le nombre de sinistres RC. On constitue quelques classes
tarifaires (les ages des conducteurs croisés avec le carburant)
> sumnb = tapply(baseFREQ$nbre , baseFREQ[,c("ageconducteur",

"carburant")], sum)

sumnb2 = tapply(baseFREQ$nbre~2 , baseFREQ[,c("ageconducteur",
"carburant")], sum)

expo = tapply(baseFREQ$exposition , baseFREQ[,c("ageconducteur",

vV + Vv +



FIGURE 2.23 — Modele GLM (linéaire) £ X1 + B2X2 .

"carburant")], sum)
M= sumnb/expo
V=sumnb2/expo-M~2
plot(as.vector (M) ,as.vector(V),xlab="moyenne empirique",
ylab="variance empirique")
abline(a=0,b=1)
abline(1lm(as.vector (V) “as.vector(M)),lty=2)
La Figure permet de visualiser ’hypothese d’égalité de la variance et de la moyenne par
classe de risque (i.e. conditionnellement a X).
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FIGURE 2.24 — Moyenne empirique et variance empirique, par classe de risque.



On peut commencer par faire un premier test, afin de voir si la pente de la régression semble
significativement différente de 1
> library(AER)
> regression=1m(as.vector (V) “as.vector(M),
+ weight=as.vector (expo))
> linearHypothesis(regression,"as.vector(M)=1")
Linear hypothesis test

Hypothesis:
as.vector(M) =1

Model 1: restricted model
Model 2: as.vector(V) ~ as.vector(M)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 163 50.786
2 162 50.025 1 0.76148 2.466 0.1183
Manifestement, la droite de régression ne semblerait pas significativement différente de la premiere
bissectrice (comme le montrait la Figure [2.24)).

Si malgré tout on pense que cette surdispersion est importance, une maniére de la quantifier
peut étre de prendre non une loi de poisson, mais une loi quasipoisson, telle que V(Y |X) =
¢E(Y|X), ou ¢ devient un parametre a estimer (tout comme la volatilité des résidus dans une
régression linéaire Gaussienne).
> regglm <- glm(nbre~bs(ageconducteur)+carburant+ offset(log(exposition)),

+ data=baseFREQ,family=quasipoisson)
> summary(regglm)

Call:
glm(formula = nbre ~ bs(ageconducteur) + carburant + offset(log(exposition)),
family = quasipoisson, data = baseFREQR)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.6249 -0.3542 -0.2589 -0.1419 13.4432

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -1.63342 .04214 -38.763 < 2e-16 *xx*
bs(ageconducteur)1 -2.42084 .14018 -17.270 < 2e-16 *x*x
bs(ageconducteur)2 0.72919 .15282  4.772 1.83e-06 **x
bs (ageconducteur)3 -2.70146 .23513 -11.489 < 2e-16 *x*x
carburantE -0.12726 .01655 -7.690 1.48e-14 xx**

Signif. codes: O ‘“x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1

O O O O O

(Dispersion parameter for quasipoisson family taken to be 1.781494)

Null deviance: 171819 on 678012 degrees of freedom



Residual deviance: 170731 on 678008 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

> (summary (regglm)$dispersion)
[1] 1.781494

I.e. sur cette régression, gg = 1.78. Pour tester la significativité de cette éventuelle surdisper-
sion, on peut noter que la surdispersion correspond a une hétérogénéité résiduelle, c’est a dire
un effet aléatoire. Par exemple on peut supposer que

(Y|X =X,Z=2z2) ~Plexp[X'B+ 2'a])
de telle sorte que si u = 2z’a — E(Z'a|X = X), alors
(Y|X =X,Z = z) ~ Plexp[X'~ + u])
On a un modele dit a effets fixes, au sens ou
(Y[X = X) ~ P(exp[ X'y + U]),

ou U =Z'a—E(Z' a|X = X). Par exemple, si on suppose que U ~ ~(a,a), i.e. d’espérance 1
et de variance 02 = 1/a, alors

(YU = u) ~ P(Au) o A = exp[X'v],

de telle sorte que E(Y|U = u) = V(Y|U = u). Mais si on regarde la loi nonconditionnelle,
E(Y) = A alors que
V(Y) = VE[Y|U]) + E(V(Y])) = A + A0,

On peut alors proposer un test de la forme suivante : on suppose que
VY|X =X)=EY|X =X)+7 -EY|X = X)?,
on on cherche a tester
Hy: 7 =0 contre 7 > 0.

Parmi les statistiques de test classique, on pourra considérer

o Sl )’ - Vi
SV

qui suit, sous Hp, une loi normale centrée réduite. Sous R, ce test est programmé dans la fonction
dispersiontest() de library(MASS).

> library(AER)

> regglm2 <- glm(nbre~bs(ageconducteur)+carburant+ offset(log(exposition)),

+ data=baseFREQ,family=poisson)

> dispersiontest(regglm?2)

Overdispersion test



data: regglm?2
z = 3.8802, p-value = 5.218e-05
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion
1.222467

Une autre possibilité est de faire une régression binomiale négative (qui permettra de prendre
en compte de la surdispersion). Elle se fait & l’aide de la fonction glm.nb() de library(MASS).
> library(MASS)
> regbn <- glm.nb(nbre~bs(ageconducteur)+carburant+
+ offset(log(exposition)) ,data=baseFREQ)

Remark 2.4.2. La loi Binomial Négative est obtenue comme un mélange Poisson-Gamma.
Dans library(gamlss) on parle de loi binomiale négative de type I. Une loi de type II est
obtenue en considérant un mélange Poisson-inverse Gaussienne.

On peut comparer les deux modeles sur la Figure avec une représentation des coeffi-

cients.
> regp <- glm(nbre~bs(ageconducteur)+carburant+
offset(log(exposition)),data=baseFREQ,family=poisson)
plot(regbn$coefficients,regp$coefficients)
abline(a=0,b=1,1ty=2,col="grey")
cbind (regbn$coefficients,regp$coefficients)

[,1] [,2]
(Intercept) -1.6174987 -1.6334197
bs(ageconducteur)l -2.4311047 -2.4208431
bs(ageconducteur)2 0.7144625 0.7291903
bs (ageconducteur)3 -2.7009294 -2.7014616
carburantE -0.1260395 -0.1272581
> plot(regbn$coefficients,regp$coefficients,
+ xlab="régression binomiale négative",
+ ylab="régression de Poisson")
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FiGURE 2.25 — Comparaison des coefficients d’une régression binomiale et d’une régression de
Poisson.



La surdispersion est ici relativement faible, sauf au sein de quelques classes d’age, et la
meilleure solution serait de continuer a chercher d’autres variables explicatives, permettant de
supprimer cette hétérogénéité résiduelle.

2.4.6 Les modeles zéros modifiés, ou a inflation de zéros (zero-inflated)

Afin d’éviter ’aléa moral, il n’est pas rare de mettre en place des contrats participatifs.
En assurance, l'exemple le plus connu est probablement le mécanisme de bonus-malus. Une
personne qui n’a pas d’accident responsable une année a le droit a un rabais I’année suivante
(un bonus) alors qu’une personne ayant eu un ou plusieurs sinistres subit une majoration de
prime (un malus). D’un point de vue économétrique, cette solution présente un biais puisqu’elle
peut insiter des personnes a ne pas déclarer certains sinistres (des lors que la majoration excede
le cotit du sinistre). Il n’est alors pas rare d’observer trop de personnes non-sinistrées dans la
population totale (par rappport a un modele Poissonnien).

Un modele dit zero modifié (zero inflated) est un mélange entre une masse en 0 et un modele
classique de comptage, typiquement un modele de Poisson, ou binomial négatif. Pour modéliser
la probabilité de ne pas déclarer un sinistre (et donc d’avoir un surpoids en 0), considérons un
modele logistique par exemple,

S J2.8Tc)
1 + exp| X0

Pour le modeéle de comptable, on note p;(k) la probabilité que I'individu ¢ ait k sinistres (corres-
pondant a la loi si la personne décide de déclarer ses sinistres, classiquement modélisé par une
loi de Poisson). Aussi,

- . 772“"[1_77'1']‘ Z‘(O)Sik:O,
P(Ni = k) = {[1—7@] -pi(k:)psi k=12

Si p; correspond a un modele Poissonnien (de moyenne );), on peut alors montrer facilement
que E(N@) = [1 — 71'1]/\Z et V(Nl) =i\ + Wi)\?[l — 7I‘i].

La library(gamlss) propose la fonction ZIP (pour zero inflated Poisson), mais aussi ZINBI
(lorsque p; correspond & une loi binomiale négative), ou ZIPIG (pour un mélange Poisson-inverse
Gaussien), par exemple. La library(pscl) propose également une fonction zeroinfl plus
simple d’utilisation, proposant aussi bien un modele de Poisson qu’un modele binomial négatif.

Il existe aussi des modeles dits zero adapted, ou I’on suppose que

Dans library(gamlss) il s’agit du modele ZAP. Et comme auparavant, il existe des fonctions
ZANBI ou ZAPIG .

Ces modeles a inflation de zéros peuvent étre particulierement utiles pour prendre en compte
un exces de non-déclarations de sinistres, généralement attribuées a une peur de perdre un
niveau intéressant de bonus-malus : la perte financiere associée au malus des années suivantes
peut excéder I'indemnité versée aujourd’hui. On peut ajuster ici un modele zero-inflated (logit)
avec une loi de Poisson afin d’expliquer la sinistralité en fonction de I’age du conducteur (en
prenant en compte 1’age via une fonction nonlinéaire que ’on estimera a ’aide de splines).

> library(pscl)
> regNZI <- glm(nbre~bs(ageconducteur,5)+offset(log(exposition)),



+ data=baseFREQ,family=poisson(link="1log"))
> regZl <- zeroinfl(nbre~bs(ageconducteur) |
+ bs(ageconducteur) ,offset=log(exposition),
+ data = baseFREQ,dist = "poisson",link="logit")

On peut s’intéresser plus particulierement a I'impact de I’age sur la probabilité de ne pas
déclarer de sinistres (correspondant au parametre de la loi binomiale), présentée sur la Figure
2.26]

> age<-data.frame(ageconducteur=18:90,exposition=1)

> pred0 <- predict(regZI,newdata=age,type="zero")

> plot(age$ageconducteur,predO,type="1",xlab="",1wd=2,

+ ylim=c(0,1),ylab="Probabilité de ne pas déclarer un sinistre")
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FIGURE 2.26 — Prédiction a 'aide de modeles zero-inflated (logit) avec une loi de Poisson de la
sinistralité en fonction du taux de bonus.

La principale explication avancée - en France - pour la non déclaration de sinistre est ’exis-
tence du systéme bonus-malus. Les personnes ayant un trés bon taux (proche de 50%) ayant
intérét a ne pas déclarer de sinistre s’ils ne veulent pas voir leur prime s’envoler I’année suivante
regZIbm <- zeroinfl(nbre~1 |
bs(bonus) ,offset=log(exposition),
data = baseFREQ,dist = "poisson",link="logit")

B <- data.frame(bonus=50:200,exposition=1)

pred0 <- predict(regZIlbm,newdata=B,type="zero")
plot(age$ageconducteur,pred0,type="1",xlab="",1wd=2,
ylim=c(0,1) ,ylab="Probabilité de ne pas déclarer un sinistre")

+ V V V + + V

2.5 Modéliser les couts individuels des sinistres

Les couts (individuels) de sinistres sont des variables positives.
> mean(baseCOUT$cout)
[1] 2265.513
> quantile(baseCOUT$cout,prob=c(.5,.9,.95,.99))
50% 90% 95% 99%
1172.000 2767.604 4765.093 16451.224
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FIGURE 2.27 — Prédiction & l’aide de modeles zero-inflated (logit) avec une loi de Poisson de la
sinistralité en fonction de I’age du conducteur.

Remark 2.5.1. En présence de coits fixves (bris de glace par exemple), la loi des coiits de
sinistres sera une loi continue, avec des masses de Dirac (la on l'on observe des cotts fizes). La
loi est alors

fly) =1 =p)fily) +pl(y = C)

ou p désigne la probabilité d’avoir un cott qui soit précisément C, et f, est la densité des autres
couts de sinistres. Dans notre approche économétrique, on peut envisager un modéle de la forme

fylX =) = (1 - p(@) (Y| X = z) + p(@)1(y = C)

ot p(x) peut étre modélisée par une régression logistique, et ot f.(y|X = x) est une loi positive
a densité. On peut alors chercher a modéliser cette loi continue sur la base ou les cotts fixes ont
été écartés.

2.5.1 Modele Gamma et modele lognormal

Les deux modeles les plus classiques permettant de modéliser les cotits individuels de sinistre
sont
— le modele Gamma sur les couts individuels Y;,
— le modele log-normal sur les cofits individuels Y;, ou plutét un modele Gaussien sur le
logarithme des cotits, log(Y;) : la loi lognormale n’appartient pas a la famille exponentielle.

Le(s) modele(s) Gamma
La loi Gamma, de parametres « et 3, de densité

fly) = Fﬁ(z)yal exp(—pBy), pour y >0,

« a2
vérifie E(Y) = — et V(X) = 3 Autrement dit, le coefficient de variation vaut ici

B



qui peut étre analysé comme un cofficient de dispersion. En fait, si ¢ = 1/a, on peut écrire
_»],a2
=0

ou on retrouve ici une fonction variance de forme quadratique.

V(Y) — ¢-E(Y)?,

Remarque 2.5.1. Le cas particulier ¢ = 1 corrrespond a la loi exponentielle.

Bien que le lien canonique de la loi Gamma soit la fonction inverse, il est plus fréquent d’uti-
liser un lien logarithmique. En effet, la forme multiplicative donne des interprétations simples
dans le cas des modeles multiples.
> reggamma <- glm(cout~ageconducteur,family=Gamma(link="log"),

+ data=baseCOUT)
> summary(reggamma)

Call:
glm(formula = cout ~ ageconducteur, family = Gamma(link = "log"),
data = baseCOUT)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.632 -0.977 -0.611 -0.392 52.599

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.180643 0.208009 39.328 <2e-16 *x*x*
ageconducteur -0.010440 0.004383 -2.382 0.0172 =*

Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1
(Dispersion parameter for Gamma family taken to be 109.7107)

Null deviance: 46482 on 26443 degrees of freedom
Residual deviance: 45637 on 26442 degrees of freedom
AIC: 458704

Number of Fisher Scoring iterations: 9

Si on s’intéresse a la valeur prédite pour une personne d’age ageconducteur=50, on obtient
> predict(reggamma,newdata=data.frame (ageconducteur=50),
+ type="response")
1
2118.879

Le modele lognormal

La régression lognormale peut étre obtenue en considérant une régression linéaire (Gaus-
sienne) sur le logarithme du coft,

log(Yi) = X8 + &,



avec g; ~ N(0,02). En effet, par définition de la loi lognormale, Y ~ LN (i1, 0?) si et seulement
si logY ~ N (p,0?). Le principal soucis dans cet écriture est que

0.2
E(Y) = exp <u ¥ 2) 4 exp(u) = exp[E(log Y)

V(Y) = exp (2 + 0?) [exp (0°) — 1] # exp(0?) = exp[V(log Y]

Autrement dit, pour passer des estimations faites & partir du modele sur logY a des prédictions
sur le cotit Y, il ne faudra pas oublier de multiplier par exp(c?/2). Une régression sur le loga-
rithme des cotlits donnerait par exemple,

> reglm <- lm(log(cout) “ageconducteur,data=baseCOUT)

> summary(reglm)

Call:
lm(formula = log(cout) ~ ageconducteur, data = baseCOUT)

Residuals:
Min 1Q Median 3Q Max
-6.8699 -0.3110 0.2063 0.2926 8.4297

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 6.7501521 0.0224328 300.905 < 2e-16 *xx
ageconducteur 0.0021392 0.0004727 4.525 6.06e-06 *xx

Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ ’ 1

Residual standard error: 1.13 on 26442 degrees of freedom
Multiple R-squared: 0.0007738, Adjusted R-squared: 0.0007361
F-statistic: 20.48 on 1 and 26442 DF, p-value: 6.059e-06

> (sigma <- summary(reglm)$sigma)
[1] 1.129607

Si on s’intéresse a la valeur prédite pour une personne d’age ageconducteur=50, on obtient
> mu <- predict(reglm,newdata=data.frame(ageconducteur=50))
> exp(mu+sigma~2/2)

1

1799.239

On notera que les deux modeles donnent des résultats trés sensiblement différents : ’age
semble avoir un impact sur le cout significatif pour les deux modele, mais en sens inverse! On
peut comparer les prédictions sur la Figure [2.28
reggamma.sp <- glm(cout~bs(ageconducteur,5),family=Gamma(link="1log"),
data=baseCOUT)
Pgamma <- predict(reggamma.sp,newdata=data.frame(ageconducteur=
age) ,type="response")
reglm.sp <- 1lm(log(cout) "bs(ageconducteur,5) ,data=baseCOUT)
sigma <- summary(reglm.sp)$sigma
mu <- predict(reglm.sp,newdata=data.frame(ageconducteur=age))
Pln <- exp(mut+sigma~2/2)

VvV V V V + V + V
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FIGURE 2.28 — Régressions lognormale versus Gamma, ou le cott individuel est expliqué par
I'age du conducteur sans lissage (en haut) et avec lissage (en bas).

plot(age,Pgamma,xlab="age du conducteur principal",ylab="",
type="1",ylim=c(1000,3500))

lines(age,Pln,col="grey",lwd=2)

legend(70,3300,c("Gamma", "Log-normale"),col=c("black",
"grey") ,lwd=c(1,2),lty=1,bty="n")

Pgamma <- predict(reggamma,newdata=data.frame(ageconducteur=age),
type="response")

mu <- predict(reglm,newdata=data.frame(ageconducteur=age))
Pln <- exp(mu+sigma~2/2)

plot(age,Pgamma,xlab="age du conducteur principal",ylab="",
type="1",ylim=c(1000,3500))

lines(age,Pln,col="grey",lwd=2)

legend (70,3300, c("Gamma", "Log-normale"),col=c("black",
"grey"),lwd=c(1,2),1lty=1,bty="n")

+ VV 4+ V VYV 4+ YV 4+ VYV 4+ V

La Figure montre les mémes types de modeles si 'on cherche a expliquer le cout par
I’ancienneté du véhicule.
> age <- 0:25
> reggamma.sp <- glm(cout~bs(agevehicule),family=Gamma(link="log"),
+ data=baseCOUT)
> Pgamma <- predict(reggamma.sp,newdata=data.frame(agevehicule =age) ,type="response")
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FIGURE 2.29 — Régressions lognormale versus Gamma, ou le cott individuel est expliqué par
I’dge du véhicule avec lissage.

reglm.sp <- Im(log(cout) “bs(agevehicule) ,data=baseCOUT)

sigma <- summary(reglm.sp)$sigma

mu <- predict(reglm.sp,newdata=data.frame(agevehicule =age))

Pln <- exp(mut+sigma~2/2)

plot(age,Pgamma,xlab="age du véhicule",ylab="",type="1",ylim=c(1000,3500))
lines(age,Pln,col="grey",lwd=2)

legend(3,3300,c("Gamma", "Log-normale"),col=c("black","grey"),lwd=c(1,2),1ty=1,bty="n")
En fait, la divergence entre les deux modeles vient du fait que le modele Gamma (quelle
que soit la variable explicative) est tres sensible aux valeurs extrémes. Un avantage du modele
lognormal est qu’en prenant le logarithme des coiits, on atténue 'importance des sinistres de
colt exceptionnel. En écartant les sinistres tels que sinistres$cout est supérieur a 100 000
on obtient des modeles comparables (et proches de ce que donnait la régression lognormale sur
I’ensemble de la base)

V V V V V VvV V

indice <- baseCOUT$cout<100000

reggamma.sp <- glm(cout~bs(ageconducteur,5),family=Gamma(link="1og"),
data=baseCOUT [indice,])

Pgamma <- predict(reggamma.sp,newdata=data.frame(ageconducteur=

age) ,type="response")

reglm.sp <- 1lm(log(cout) “bs(ageconducteur,5),data=baseCOUT [indice,])
sigma <- summary(reglm.sp)$sigma

mu <- predict(reglm.sp,newdata=data.frame(ageconducteur=age))

Pln <- exp(mu+sigma~2/2)

plot(age,Pgamma,xlab="age du conducteur principal",ylab="",
type="1",ylim=c(1000,3500))

lines(age,Pln,col="grey",lwd=2)

legend(70,3300,c("Gamma", "Log-normale"),col=c("black",
"grey"),lwd=c(1,2),lty=1,bty="n")

+ VV 4+ V VV VYV 4+ YV 4+ VYV

Nous reviendrons plus en détails sur la prise en compte de ces sinistres exceptionnels (qui ici
ont simplement été écartés) dans la section suivante. L’idée est de dire que les cotits sinistres de
taille modérée peuvent étre expliqués par des variables a priori (avec une relative robustesse).
Mais pas les sinistres exceptionnels.
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FIGURE 2.30 — Régressions lognormale versus Gamma, ou le colt individuel est expliqué par
I’age du véhicule avec lissage, en écartant les sinistres de plus de 100,000.

2.5.2 Modélisation des grands sinistres

Il existe un grand nombre de faAons de définir les lois & queues épaisses. La plus élégante
d’un point de vue actuarielle est probablement la famille des lois sous exponentielles (décrites
dans |[Embrechts et al.| (1997)). Une loi de fonction de survie F sera dite sous-exponentielle si
pour tout n > 2,

o
lim — (z) =n
ou bien, si Xi, -, Xy, - sont des variables i.i.d. de loi F,

P(X1 4+ X, >2) ~Pmax{ Xy, -, X,,} > ).

Autrement dit, la loi de la charge totale dans un portefeuille a des queues des distributions qui
se comportent comme le plus gros sinistres. Ce sont donc des lois qui sont tres influencées par
ces tres gros sinistres. Parmi les lois de la famille sous-exponentielle,

1
— la loi lognormale, f(y) o< — exp (—[logy — ,u]2/202)
yo

~ la loi de Weibull, f(y) o< 2" ! exp ([—1‘k]> sik<1
mais la loi la plus utilisée, en particulier en réassurance, n’est pas dans la famille exponentielle,
— la loi de Pareto, f(y) o< [+ y] @1
Dans ces familles de lois a queues épaisses, on va ainsi retrouver une autre classe relativement
connue, & savoir les lois dite a variation réguliére. Ces lois sont aussi dite de type Pareto, au sens
ou
PY >y) =y “L(y),

ou L est une fonction a variation lente, i.e.

lim Llte)
z—oo L(1)

= 1 pour tout ¢t > 0.

La library(gamlss) propose d’autres familles de lois, comme les lois Reverse Gumbel ou
Power Exponential



Il est possible de définir une famille dite beta généralisée de seconde espece, notée GB2. On
suppose que

r
logYéu+alog—1
Iy

ou I' ~ G(ay, 1) sont indépendantes. Si I's est une constante (ag — o0) on obtient la loi gamma
généralisée.
La densité de cette loi s’écrit :

_ a1 _ —(a1+a2)
g o [y (B[ 1o (222

Supposons que 4 soit une fonction linéaire des variables explicatives, u = X'3. Alors
E(Y]X) = Cexp[u(X)] = Cexp[X'8)

Ces modeles sont détaillés dans McDonald & Butler; (1990)).

2.5.3 Ecrétement des grands sinistres

Si ’on considere des modeles économétriques basés uniquement sur des variables catégorielles
(en particulier des classes pour les variables continues) la prime pure est alors généralement la
moyenne empirique dans la classe considérée (c’est en tous les cas ce que préconise par exemple la
méthode des marges). Mais cette méthode devient alors vite trés sensible aux sinistres extrémes
(d’autant plus que les classes sont d’effectif restreint).

Afin d’éviter ce probleéme, il n’est pas rare d’écréter les sinistres : on calcule la prime moyenne
par groupe tarifaire en écartant les gros sinistres, qui seront répartis sur I’ensemble de la popu-
lation. On peut bien entendu raffiner cette méthode en considérant des modeles hiérarchiques
et en répartissant simplement sur une surclasse.

Supposons que les sinistres extrémes soient ceux qui dépassent un seuil s (connu, ou au moins
fixé a priori). Rappelons que la formule des probabilités totales permet d’écrire que (dans le cas
discret pour faire simple)

P(A) =) P(ANB;)Y P(A|B;)-P(B)),

ou (B;) forme une partition de Q. En particulier
P(A) = P(A[B) - P(B) + P(A[B°) - P(B°),

ou B¢ désigne le complémentaire de B. En passant a I’espérance, et en travaillant sur des variables
aléatoires plutot que des ensembles, on peut écrire

E(Y)=E(Y|B) -P(B) +E(Y|B) - P(B°).
Si on prend comme cas particulier B = {Y < s} et B¢ = {Y > s}, alors
E(Y)=E(Y|Y <s)-P(Y <s)+EY[Y >s) - P(Y > s).

finallement, on note que la probabilité P n’a joué aucun role ici, et on peut parfaitement la
remplacer par une probabilité conditionnelle, Px, i.e.

E(Y|X) =E(Y|X,Y <s)-P(Y <s|X)+E(Y|X,Y > s) - P(Y > s|X),



Le premier terme correspond aux sinistres ‘normaux’ , que ’on pourra modéliser par une loi
évoquée précédemment (régression Gamma par exemple). Pour le second terme, on notera que
EE(Y|X,Y > s)] =E(Y|Y > s). Autrement dit, on peut étre tenté par ne plus distinguer par
classe le colit moyen des tres trés gros sinistres : on répartira proportionnellement a la fréquence
des gros sinistres sinistres.

La prédiction sera donc basée sur trois parties, la premiere pour les sinistres usuels (plus
petits que s), et la seconde pour les grands sinistres (pour les sinistres excédant s), avec comme
troisieme terme que sera la probabilité, par classe tarifaire, d’avoir un sinistre excédant le seuil
s.

seuil=50000

sinistres.inf = baseCOUT [baseCOUT$cout<=seuil, ]

sinistres.sup = baseCOUT [baseCOUT$cout>seuil,]

baseCOUT$indic = baseCOUT$cout>seuil
proba=gam(indic~s(ageconducteur) ,data= baseCOUT,
family=binomial)

probpred=predict (proba,newdata=data.frame(ageconducteur=age),
type="response")

reg=gam(cout”s(ageconducteur) ,data= sinistres.inf,
family=Gamma(link="1log"))
Y.inf=predict(reg,newdata=data.frame(ageconducteur=

age) ,type="response")

Y.sup=mean(sinistres.sup$cout)
Y=Y.inf*(1l-probpred)+Y.sup*probpred
plot(age,Y,type="1",1wd=2,xlab="age du conducteur principal",
ylab="",ylim=c(1000,3500))

lines(age,Pgamma,col="grey")
legend(70,1800,c("Ecrété","Brut"),col=c("black","grey"),
lwd=c(1,2),1ty=1,bty="n")

+ vVV+VVV 4+ YV 4+ YV 4+ YV 4V VVV.YV

La Figure permet de visualiser la différence entre les deux modeles, avec ou sans
écrétement (avec un seuil & 50,000).

La Figure permet de visualiser la différence entre les deux modeles, avec ou sans
écrétement avec un seuil beaucoup plus faible (a 5 000). Dans ce cas, la majorité est sinistres
sont répartis entre tous les assurés, qui payent la méme quantité (I’espérance au dela du seuil
d’écrétement).

2.6 Exercices

Exercise 2.6.1. Parmi les méthodes proches de celles évoquées dans la section sur la
méthode des marges, il est aussi possible d’utiliser une méthode par moindres carrés. On va
chercher a minimiser la somme des carrés des erreurs, i.e.

D =Y Ei;(Yij— Li-Cj)?
i

La condition du premier ordre donne ici

8? =-2) CjNij(Yij—Li-Cj) =0
’ j

oL
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FIGURE 2.31 — Estimation de E(Y|X) avec ou sans écrément (les sinistres dépassant le seuil
fixé sont ici répartis entre les assurés, proportionnellement & leur probabilité d’avoir un gros
sinistre), avec un seuil de gros sinistre 50 000. Le graphique du bas compare les prédictions des
espérances de cout individuel, avec ou sans écrément (en variation)
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FIGURE 2.32 — Estimation de E(Y|X) avec ou sans écrément , avec un seuil d’écrétement a 5
000. Le graphique du bas compare les prédictions des espérances de cotit individuel, avec ou sans
écrément
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L’autre condition du premier ordre donne

C,Zi LiN; ;Y
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On résoud alors ce petit systeme de maniere itérative (car il n’y a pas de solution analytique
simple). Programmer et comparer avec la méthode des marges.

Exercise 2.6.2. Parmi les méthodes proches de celles évoquées dans la section sur la
méthode des marges, il est aussi possible d’utiliser une méthode basée sur la distance du chi-
deux. On va chercher a minimiser

e N (Vi = Li - Gy)?

La encore on utilise les conditions du premier ordre, et on obtient

1
Niwjyi?j 2
=, (M%)
> NiiCj

L=

et une expression du méme genre pour Cj. Programmer et comparer avec la méthode des marges.

méthode des marges



Chapitre 3

Les provisions pour sinistres a payer

Dans ce chapitre, nous allons étudier les méthodes pour calculer le montant des provisions
pour sinistres a payer, et plus particulierement, des méthodes permettant de quantifier la marge
d’erreur associée. Comme les définit [Simonet| (1998), “les provisions techniques sont les pro-
visions destinées a permettre le réglement intégral des engagements pris envers les assurés et
bénéfi-ciaires de contrats. Elles sont liées a la technique méme de l’assurance, et imposées par
la reglementation”. D’un point de vue plus formel, a la date ¢, la compagnie d’assurance est
tenue de constituer une provision pour les sinistres survenus avant la date t qu’elle sera tenu
d’indemniser. Elle doit donc estimer le cotit des sinistres survenus, et retrancher les montants
déja versés. Il s’agit donc fondamentalement d’un probléme de prévision.

3.1 La problématique du provisionnment

Parmi les méthodes reconnues par les autorités de controdles, les plus classiques sont basées
sur les cadences de paiements. On raisonne pour cela par année de survenance de sinistre, et on
suppose une certaine régularité dans la cadence de paiement.

3.1.1 Quelques définitions et notations, aspects reglementaires et comptables

La plupart des méthodes présentées ici sont détaillées dans Denuit & Charpentier| (2005),

Partrat et al.| (2008)ou Withrich & Merz (2008)). Classiquement, on notera

i (en ligne) 'année de survenance des sinistres,

— j (en colonne) I'année de développement,

— i+ j (en diagonale) 'année calendaire de paiement (pour les incréments),

— Y les incréments de paiments, pour I'année de développement j, pour les sinistres sur-
venus 'année i, Table

— Cj j les paiments cumulés, au sens ou C; j = Y; o+Y; 1+ - -+Y; j, pour 'année de survenance
j, Table

— P; la prime acquise pour ’année i, Table

— N, j le nombre cumulé de sinistres pour ’année de survenance 7 vu au bout de j années,
Table

— I'; j la charge dossier par dossier cumulée (estimées par les gestionnaires de sinistres sur les
N j connus, ou partiellement connus), pour I’année de développement j, pour les sinistres
survenus ’année i, Table (cette matrice ne sera explotée que dans la méthode dite
Munich Chain Ladder).
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0

1

2 3 4 5

3367
3871
4239
4929
5217

QL W N~ O

3209 1163

39 17 7 21

TABLE 3.1 — Triangle des incréments de paiements, ¥ = (Y ;).

0 1

2

3 4 5

3209 4372
3367 4659
3871 5345
4239 5917
4929 6794
5217

T W N~ O

4411
4696
5398
6020

4428 4435 4456
4720 4730

TABLE 3.2 — Triangle des paiements cumulés, C' = (C; ;).

Formellement, toutes ces données sont stockées dans des matrices (ou un vecteur pour la
prime), avec des valeurs manquantes NA pour les valeurs futures. Ils seront dénommés respecti-
vement PAID, PREMIUM, NUMBER et INCURRED

> PAID

[1,]
[2,]
(3,]
(4,]
(5,]
(6,]

(,1]
3209
3367
3871
4239
4929
5217

(,21 [,3]1 [,4] [,5] [,6]
4372 4411 4428 4435 4456
4659 4696 4720 4730 NA
5345 5398 5420 NA NA
5917 6020 NA NA NA
6794 NA NA NA NA

NA NA NA NA NA

Le triangle des incréments se déduit facilement du triangle des cumulés

> nc <- ncol(PAID)
> nl <- nrow(PAID)
> INC <- PAID
> INC[,2:nc] <- PAID[,2:nc]-PAID[,1:(nc-1)]
> INC

[,11 [,2] [,3] [,4] [,5] [,6]
[1,1 3209 1163 39 17 7 21
[2,] 3367 1292 37 24 10 NA
[3,]1 3871 1474 53 22 NA NA
[4,] 4239 1678 103 NA NA NA
[6,]1 4929 1865 NA NA NA NA
[6,]1 5217 NA NA NA NA NA

Dans sa version la plus simple, le but des méthodes de provisionnement est de compléter
la partie inférieure des triangles de paiements. Dans la littérature anglo-saxonne, on parlera



Année i 0 1 2 3 4 5
P 4591 4672 4863 5175 5673 6431

TABLE 3.3 — Vecteur des primes acquises, P = (F;).

0 1 2 3 4 )
1043.4 1045.5 1047.5 1047.7 1047.7 1047.7
1043.0 1027.1 1028.7 1028.9 1028.7
965.1 9679 967.8 970.1
977.0  984.7 986.8
1099.0 1118.5
1076.3

Tk W N~ O

TABLE 3.4 — Triangle des nombres de sinistres, cumulés, en milliers, N = (Nj ;).

d’IBNR (incurred but not reported).

3.1.2 Formalisation du probléeme du provisionnement

Le provisionnement est un probleme de prédiction, conditionnelle a I'information dont on
dispose a la date n. On notera H,, 'information disponible a la date n, soit

Hy = {(Xij),i+Jj<n}={(Cij),i+j<n}

On cherche & étudier, par année de survenance, la loi conditionnelle de C; o, (la charge ultime
pour une année de survenance donnée) sachant H,,, ou encore, si I’'on suppose les sinistres clos
au bout de n années la loi de C;, sachant H,. Si I'on se focalise sur une année de survenance
particuliere, on pourra noter

‘Fi,n—i - {(X%J)?j = 07 7n_i)} = {(CZ,])a] = 0, , N — 2)}

Cette notation permet de prendre en compte que l'information disponible change d’une ligne a
l’autre. On cherchera par la suite a prédire le montant des sinistres a payer pour 'année i, i.e.

~

i = E[Cinl Fin-i
et la différence entre ce montant et le montant déja payé constituera la provision pour sinistres
a payer,

Ri=C"" — Cipos.
On essayera ensuite de quantifier I'incertitude associée a cette prédiction. Comme on le verra
les méthodes usuelles visaient a calculer

V[Ci | Fin—i] ou VOS]

ce que 'on appelera “incertitude a horizon ultime”. Mais ce n’est pas ce que propose Solvabilité
II, demandant plutét de mesurer une incertitude dite a un an. Pour cela, on va s’intéresser a la
prédiction qui sera faite dans un an,

~

C§’Z—i+1) = E[C; n| Fin—it1]



et plus particulierement le changement dans ’estimation de la charge ultime

Anitl)  Alnei
Af = ClTY - T = CDRi(w),
parfois noté CDR (claims development result). Si cette différence est positive, on parle de mali
(il faudra gonfler la provision afin de pouvoir payer les sinistres), et si elle est négative, on parle
de boni. On peut montrer que E[A?|F; ,—;] = 0, autrement dit, on ne peut espérer faire ni boni,
ni mali, en moyenne. Les contraintes réglementaires imposéeés par Solvabilité IT demandent de

calculer V[AT|F; ).

3.2 Les cadences de paiements et la méthode Chain Ladder

L’utilisation des cadences de paiements pour estimer la charge future date des années 1930.
On suppose qu’il existe une relation de récurrence de la forme

Ciji1 = Aj-Cij pour tout 4,5 = 1,--- ,m.

Un estimateur naturel pour \;, basé sur I'expérience passée est alors le ratio moyen basé sur les
n — j années observées :

. ﬂ*jC).
)\j:wpourtoutjzl,--- ,n—1.
Zi:l Cij

De telle sorte que ’on peut alors prédire la charge pour la partie non-observée dans le triangle,

~

Cij = [)\nJrlfi"‘)\jfl “Cing1-i-

>k <-1
> weighted.mean(x=PAID[,k+1]/PAID[,k],w=PAID[,k] ,na.rm=TRUE)
[1] 1.380933
> sum(PAID[1: (nl-k),k+1])/sum(PAID[1: (nl-k),k])
[1] 1.380933
On fait alors une boucle pour estimer tous les coefficients de transition
> LAMBDA <- rep(NA,nc-1)
> for(k in 1:(nc-1)){
+ LAMBDA [k]=(sum(PAID[1: (nl-k),k+1])/sum(PAID[1: (nl-k),k]))}
> LAMBDA
[1] 1.380933 1.011433 1.004343 1.001858 1.004735

Notons qu’au lieu de calculer les facteurs de développement, on peut aussi des taux de
développement, cumulés ou non. Autrement dit, au lieu d’écrire C; j41 = A; - C;; pour tout
i,7 =1,--+,n, on suppose que

Cij =7 CinouYij=gj- Cin.

On notera que

> (GAMMA <- rev(cumprod(rev(1/LAMBDA))))

[1] 0.7081910 0.9779643 0.9891449 0.9934411 0.9952873

> (PHI <- c(GAMMA[1],diff(GAMMA)))

[1] 0.708191033 0.269773306 0.011180591 0.004296183 0.001846141
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FIGURE 3.1 — Cadence de paiement des sinistres, en fonction de la charge ultime, de la premiere
année (année calendaire de survenance du sinistre) a la cinquiéme année.

0 1 2 3 1 n
X; | 1,38093 1,01143 1,00434 1,00186 1,00474  1,0000
~vi | 70,819%  97,796% 98,914% 99,344%  99,529%  100,000%
@i | 70,819% 26,977% 1,118%  0,430%  0,185%  0,000%

TABLE 3.5 — Facteurs de développement, A= (Xl), exprimés en cadence de paiements par rapport
a la charge utlime, en cumulé (i.e. 4), puis en incréments (i.e. @).

Ce dernier coefficient permet de visualiser la cadence de paiement (en pourcentage de la
charge ultime). On peut visualiser ce coefficient sur la Figure

> barplot (PHI,names=1:5)

On notera qu’il est possible de voir 'estimateur Chain-Ladder Xj comme une moyenne
pondérée des facteurs de transition individuels, i.e.

= C C
N . . i
Nj =D i Aij Ol wig = e et Ay = — 2
i=1 >oici Ci Cij
Aussi, on peut obtenir ces coefficients & ’aide de régressions linéaires pondérées sans constantes,
en régressant les C. j 11 sur les C. ;. Ainsi, pour la premiere valeur,
> 1Im(PAID[,k+1]"0+PAID[,k] ,weights=1/PAID[,k])$coefficients
PAID[, k]
1.380933
Le gros avantage numérique de cette méthode est que si des valeurs sont manquantes dans
le tables, la fonction reste valide

LAMBDA <- rep(NA,nc-1)

for(k in 1:(nc-1)){

LAMBDA [k]=1m(PAID[,k+1] ~0+PAID[,k],
weights=1/PAID[,k])$coefficients}

LAMBDA

[1] 1.380933 1.011433 1.004343 1.001858 1.004735

vV + + V V

Une fois estimé le facteur de développement, rien de plus simple que de compléter le triangle,
toujours en itérant, colonne apres colonne :



> TRIANGLE <- PAID
> for(i in 1:(nc-1)){
+ TRIANGLE[(nl-i+1): (nl),i+1]=LAMBDA [i]*TRIANGLE[(nl-i+1): (nl1),i]}
> TRIANGLE

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3209 4372.000 4411.000 4428.000 4435.000 4456.000
[2,] 3367 4659.000 4696.000 4720.000 4730.000 4752.397
[3,] 3871 5345.000 5398.000 5420.000 5430.072 5455.784
[4,] 4239 5917.000 6020.000 6046.147 6057.383 6086.065
[5,] 4929 6794.000 6871.672 6901.518 6914.344 6947.084
[6,]1 5217 7204.327 7286.691 7318.339 7331.939 7366.656

0 1 2 3 4 5
3209 4372 4411 4428 4435 4456
3367 4659 4696 4720 4752.4
3871 5345 5398 5420 | 5430.1 5455.8
4239 9917 6046.15 6057.4 6086.1
4929 6794 | 6871.7  6901.5 6914.3 6947.1
5217 | 7204.3 7286.7  7318.3 7331.9 7366.7

Tk W N~ O

TABLE 3.6 — Triangle des paiements cumulés, C' = (C; j)i4j<n avec leur projection future C =

(Ci,j)itj>n

Le montant de provisions est alors la différence entre ce que 'on pense payer pour chaque
année de survenance (la derniére colonne, si on suppose qu’au bout de n années tous les sinistres
auront été cloturés, sinon on rajoute un facteur supplémentaire comme nous le verrons dans la
section ?7) et que ce l'on a déja payé (la seconde diagonale)
> facteur=1
> chargeultime <- TRIANGLE[,nc]*facteur
> paiements <- diag(TRIANGLE[,nc:1])
> (RESERVES <- chargeultime-paiements)

[1] 0.00000 22.39684 35.78388 66.06466 153.08358 2149.65640

On note qu’ici sum (RESERVES) vaut 2426.985, ce qui correspond au montant total de réserves
qu’il convient d’allouer. Un algorithme plus rapide est d’utiliser directement la formule basée
sur le produit des coefficients de transition. On a alors
> DIAG <- diag(TRIANGLE[,nc:1])
> PRODUIT <- c(1,rev(LAMBDA))
> sum( (cumprod (PRODUIT)-1)*DIAG)

[1] 2426.985

Pour la suite, on pourra développer la function Chainladder () qui renverra la charge ultime
par ligne et les réserves
Chainladder<-function(TR,f=1){
nc <- ncol(TR); nl <- nrow(TR)

L <- rep(NA,nc-1)

for(k in 1:(nc-1)){
L[k]=1m(TR[,k+1]~0+ TR[,k],
weights=1/TR[,k])$coefficients}

+ + + + + V



TRc <- TR

for(i in 1:(nc-1)){

TRc[(nl-i+1):(nl),i+1]1=L[il* TRc[(nl-i+1):(nl),il}

C <- TRc[,nc]l*f

R <- (cumprod(c(1l,rev(L)))-1)*diag(TR[,nc:1])
return(list(charge=C,reserves=R,restot=sum(R)))

}

> Chainladder (PAID)

$charge

[1] 4456.000 4752.397 5455.784 6086.065 6947.084 7366.656

+ + + + + 4+ o+

$reserves
[1] 0.00000 22.39684  35.78388 66.06466 153.08358 2149.65640

$restot
[1] 2426.985

3.3 De Mack a Merz & Withrich

La méthode dite Chain Ladder, que nous venons de voir, est une méthode dite déterministe,
au sens ou l'on ne construit pas de modele probabiliste permettant de mesurer 'incertitude
associée a la prédiction du montant des réserves. Différents modeles ont été proposés a partir
des années 90, a partir du modeles de Mack, jusqu’a ’approche proposée par Merz & Wiithrich
qui introduira la notion d’incertitude a un an.

3.3.1 Quantifier ’incertitude dans une prédiction

Nous avons obtenu, par la méthode Chain Ladder, un estimateur du montant de provision,
R. Classiquement, pour quantifier 'erreur associée & un estimateur, on calcul la mean squared
error - mse - associée,

E ([fe- R]2>

Formellement, comme R est ici une variable aléatoire, on ne parle pas de mse, mais de mse de
prédiction, notée msep (on ne prédit pas sur les données passées, mais on utilisera les donnéees
pour calibrer un modeéle qui servira ensuite a faire de la prédiction pour les années futures).
Aussi

msep(R) = E ([ﬁ - R]2> .

Ce terme peut se décomposer en deux (en faisant une approximation au premier ordre), au sens
ou

E ([ﬁz - R]?) ~F ([ﬁ - E(R)]Q) +E (R —E(R)P)

mse(R) V(R)

ou le terme de gauche est I’erreur d’estimation, compte tenu du fait que nous avons du estimer
le montant de provisions a partir de la partie supérieure du triangle, et le terme de droite est
Perreur classique de modele (tout modele comportant une partie résiduelle orthogonale aux
observations, et donc imprévisible).



En fait, en toute rigueur (et nous en aurons besoin par la suite), on cherche plutot a calculer
un msep conditionnel a 'information dont on dispose au bout de n années,

msep,,(R) = E([R — R*[Hy).

3.3.2 Le formalisme de Mack

Mack! (1993a) a proposé un cadre probabiliste afin de justifier I'utilisation de la méthode
Chain-Ladder. Pour cela, on suppose que (Cj j)j>o est un processus Markovien, et qu’il existe

A=()\j)eto= (ajz-) tels que

Var(Ci7j+1|Hi+j) == Var(CZ-7j+1|Ci7j) = 0'32- . Ci,j

{ E(Cij+1|Hitj) = E(Cij11|Cij) = Nj - Cij

On note que sous ces hypotheses,
E(CijtklMits) = E(CijtklCig) = Aj - Aj1 -+ Ajar—1Cij

Mack| (1993d)) rajoute une hypotheése supplémentaire d’indépendance entre les années de surve-
nance, autrement dit (C’z~7]-)j.:1 et (Ci,uj)j:]_ ,, sont indépendant pour tout ¢ +14.

goooy

Une réécriture du modele est alors de supposer que

Cijr1 =ACij+ 0\ Cij-&ij,

ol les résidus (g;;) sont i.i.d., centrés et de variance unitaire. A partir de cette écriture, il peut
paraitre légitime d’utiliser les méthodes des moindres carrés pondérés pour estimer ces coeffi-
cients, en notant que les poids doivent étre inversement proportionnels a la variance, autrement
dit aux Cj j, i.e. a j donné, on cherche a résoudre

n—j
. 1
min {2 : C. . (Oi’jJrl — )\jCi,j)Q} .
i=1 "

Pour tester ces deux premieres hypotheses, on commence par représenter les C. ;11 en fonc-
tion des C.; a j donné. Si la premiere hypothese est vérifiée, les points doivent étre alignés
suivant une droite passant par ’origine.

par(mfrow = c(1, 2))

j=1

plot (PAID[, j],PAID[, j+1],pch=19,cex=1.5)
abline(1m(PAID[, j+1]~0+PAID[,j] ,weights=1/PAID[,j]1))
j=2

plot (PAID[,j],PAID[,j+1],pch=19,cex=1.5)

abline (1lm(PAID[, j+1] “0+PAID[,j] ,weights=1/PAID[,j]))
par(mfrow = c(1, 1))

V V V V V V V V

La Figure 3.2 permet de visualiser I’hypothese de cadence de paiements stale dans le temps.
La régression est pondérée avec les mémes poids que ceux utilisés pour estimer les coefficients
de transition par régression,

Pour la seconde, on peut étudier les résidus standardisés (Mack (1993d)) parle de weighted
Cijt1 — AiCij

\/C’L'J

residuals), €; j =
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FIGURE 3.2 — Nuage des C. ;41 en fonction des C.; pour j = 1 a gauche, et j = 2 a droite. La
droite de régression passe par ’origine et les poids sont inversement proportionnels au montant
de paiements.

> j=1
> RESIDUS <- (PAID[,j+1]-LAMBDA[j1*PAID[,3]1)/sqrt(PAID[,jl)

L’utilisation des résidus standardisés nous donnent d’ailleurs une idée simple pour estimer
le parametre de volatilité.

n—j—1 ~ 2
s2_ 1 3 Cij+1 — AiCiy
’ n—j—1 i=0 V Cij

ce qui peut aussi s’écrire

~92 1 " C2J+1 <\’
9j _n—j—l ; < Ci,j _>\J> ‘Cz,]
(ce qui est a rapprocher de I’écriture du facteur de transition A\; comme moyenne pondérée des
facteurs de transitions observés).

> lambda <- PAID[,2:nc]/PAID[,1:(nc-1)]

> SIGMA <- rep(NA,nc-1)

> for(i in 1:(nc-1)){

+ D <- PAID[,i]*(lambdal,i]-t(rep(LAMBDA[i],nc))) "2

SIGMA[i] <- 1/(nc-i-1)*sum(D[,1:(nc-i)1)}

> SIGMA[nc-1] <- min(SIGMA[(nc-3):(nc-2)]1)

> (SIGMA=sqrt (SIGMA))

[1] 0.72485777 0.32036422 0.04587297 0.02570564 0.02570564

Cette méthode permet d’estimer les différents parametres intervenants dans le modele de
Mack| (1993dj).

+



3.3.3 La notion de tail factor

Pour l'instant, nous supposions que la premiere ligne de notre triangle est close : il n’y a
plus de sinistres ouverts, et donc le montant de provision pour cette année de survenance est
nul. Cette ligne servira de base pour tous les développements ultérieurs. Cette hypothese peut
étre un peu trop forte pour les branches & déroulement long. Mack! (1993b) a posé les bases des
premiers modeles toujours utilisés permettant de s’affranchir de cette hypothese. On supposera
qu’il existe alors un A > 1 tel que

Ci,oo = Ci,n X >\oo

Une méthode (qui a souvent été utilisée) repose sur 'idée que 'on pouvait projeter les A; par
une extrapolation exponentielle (ou une extrapolation linéaire des log(A; — 1)), puis on pose

A = HXk.

k>n

Mais mieux vaut faire attention, en particulier s’il y a des valeurs aberrantes.

logL <- log(LAMBDA-1)

tps <- 1:(nc-1)

modele <- 1m(logL~tps)

plot (tps,logl,xlim=c(1,20),ylim=c(-30,0))
abline(modele)

tpsP <- seq(6,1000)

logP <- predict(modele,newdata=data.frame(tps=tpsP))
points(tpsP,logP ,pch=0)

(facteur <- prod(exp(logP)+1))

[1] 1.000707

Autrement dit, cette méthode prévoit de rajouter 0.07% de charge par rapport & la prédiction
faite par les méthodes classiques, en supposant la premiere année close. Numériquement, cela
donnerait pour le montant de provision
> chargeultime <- TRIANGLE[,nc]*facteur
> paiements <- diag(TRIANGLE[,nc:1])
> (RESERVES <- chargeultime-paiements)

[1] 3.148948 25.755248 39.639346 70.365538 157.992918 2154.862234
> sum(RESERVES)
[1] 2451.764

La Figure permet de visualiser le modele linéaire ajusté sur le logarithme des facteurs de

transition

V V V V V V V VvV

3.3.4 Des estimateurs des parametres a I’incertitude sur le montant des pro-
visions

A partir de tous ces estimateurs, on peut estimer le msep du montant de provision par année
de survenance, }A%i, mais aussi agrégé, toutes années de survenances confondues. Les formules sont
données dans Mack (19938) ou Denuit & Charpentier (2005) ou|Mack (1994). Numériquement,
on peut utiliser la fonction MackChainlLadder de 1library(ChainLadder).

> library(ChainLadder)
> MackChainlLadder (PAID)
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tps

FIGURE 3.3 — Evolution des log(A; — 1) et prédiction par un modele linéaire.

MackChainlLadder(Triangle = PAID)

Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)

1 4,456 1.000 4,456 0.0 0.000 NaN

2 4,730 0.995 4,752 22.4 0.639 0.0285

3 5,420 0.993 5,456 35.8 2.503 0.0699

4 6,020 0.989 6,086 66.1 5.046 0.0764

5 6,794 0.978 6,947 153.1 31.332 0.2047

6 5,217 0.708 7,367 2,149.7 68.449 0.0318
Totals

Latest: 32,637.00

Ultimate: 35,063.99

IBNR: 2,426.99

Mack S.E.: 79.30

CV(IBNR): 0.03

On retrouve l'estimation du montant total de provisions fi, IBNR, qui vaut 2,426.99, ainsi

que msep(R) correspondant au Mack S.E. qui vaut ici 79.30. Les informations par année de
survenance ¢ sont indiqués dans la premiere partie du tableau.

On obtient également plusieurs graphiques en utilisant la fonction plot(), correspondant

aux Figures [3.4] [3.5] et [3.6]

3.3.5 Un mot sur Munich-Chain Ladder

La méthode dite Munich-Chain-Ladder, developpée dans |Quarg & Mack (2004]), propose
d’utiliser non seulement les paiements cumulés, mais aussi une autre information disponible :
Iestimation des charges des différents sinistres faites par les gestionnaires de sinistres. Les tri-
angles de paiements étaient basés sur des mouvements financiers; ces triangles de charges sont
basées sur des estimations faites par des gestionnaires compte tenu de I'information a leur dis-
position. Les sinistres tardifs ne sont pas dedans, et certains sinistres seront classés sans suite.
Toutefois, il peut paraitre légimite d’utiliser cette information.

Dans la méthode Munich-Chain-Ladder, on dispose des triangles (Cj ;) correspond aux pai-
ments cumulés, et (I'; ;) les charges dites dossier/dossier. En reprenant les notations de |Quarg



Mack Chain Ladder Results Chain ladder developments by origin period

§ O Forecast
~ B Latest =
S
o N~
S |
o
©
o
o
S S |
© 3
o
S €
Q@ o
= 3
g E o
o << o _|
b3 o
o [Te]
(32}
o
S
s g
S -
<
o
S |
o
-
© - T T T T T T
1 2 3 4 5 6
Origin period Development period

FIGURE 3.4 — Comparaison entre la charge finale estimée et la somme déja payée, a gauche, et
les cadences de paiements prédites par la méthode Chain Ladder.

(2004) on définie les ratio paiement/charge, et charge/paiement,

= o
Ty Y Gy

)

Comme dans le modele Chain-Ladder de base, on suppose que

{ E(Ciji1|Ff ;) = A{ Cij et V(Cy il F ) = [0512Ci

E(Tsy|FL ) = ATy et V(Ty 1| Ly ) = o1 2T,

On rajoute également une information sur les A; ;. Si

L
A et X =1
E C,J T NP
on suppose que
-1 -1
- EQi | Fiyic)
C C C 1 1 i+)
E()‘i,j_1|f’i+j) = )‘j—l +A zg 1‘ Z+j - =

VY@l Fige)

Qij—1 — B(Qij1|Fiyyr)

\/ V(Qij—1|Fiqjr)

et

(A1 Fivs) = Ay + ATy VO, Fipy)T
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FIGURE 3.5 — Evolution des résidus standardisés en fonction des @] et des 1.

On notera qu’il s’agit d’une extension du modele Chain-Ladder, et en particulier
B\ 1) = EEO 1l Fig) | Fisg) T = AT

Les termes A¢ et Al sont alors simplement des coefficients de corrélation conditionnelle. Plus
précisément

C C
A7 = Cor(Ls j-1,Ci 5| Fip 1)
Sous ces hypotheses, il est possible de construire des estimateurs sans biais de E(C; ;|C; j—1),
r —1
de E(Tj|Ti 1), de B(Qij|Fiy;) et de B(Q; /| FS,)-
Pour estimer les deux dernieres quantités, posons

O = S Ciy 1
=

p—

=
Yizoliy Q1 j
On peut aussi estimer les variances conditionnelles. Par exemple
n—j
U r —1 A 12
V(QisllFL) = 07 Tij(Qi; — Q)
i=0

et une expression analogue pour V(Q;}U—"ﬁj).
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FIGURE 3.6 — Evolution des résidus standardisés en fonction de j et ¢ + j.

A partir de ces quantités, posons enfin
B Qij— @
Qij = ———1— i ;
V(Qi 51 Fiy ;)

T VV5ij—1
Ai,j — =<

6121 — Ajal

et 5 5
o S0,
> sz,jq
L’estimateur Munich-Chain-Ladder est construit de maniere intérative. Le détails des formules
est donné dans |Quarg & Mack| (2004) ou Wiithrich & Merz (2008)).

> (MNCL=MunichChainLadder (Paid=PAID,
+ Incurred=INCURRED))
MunichChainLadder (Paid = PAID, Incurred = INCURRED)

Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred Ult. P/I Ratio
1 4,456 4,456 1.000 4,456 4,456 1
2 4,730 4,750 0.996 4,753 4,750 1



0 1 2 3 4 5
4795 4629 4497 4470 4456 4456
5135 4760 4750
5681
6272
7326
7353
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TABLE 3.7 — Triangle des estimations de charges dossier/dossier cumulées, I' = (I'; ;)

3 5,420 5,470 0.991 5,455 5,454
4 6,020 6,131 0.982 6,086 6,085
5 6,794 7,087 0.959 6,983 6,980
6 5,217 7,353 0.710 7,538 7,533
Totals

Paid Incurred P/I Ratio
Latest: 32,637 35,247 0.93
Ultimate: 35,271 35,259 1.00

De méme que pour la fonction MackChainLadder, plusieurs graphiques peuvent étre obtenus
afin de mieux comprendre les évolutions des paiements, mais aussi de la charge dossier/dossier
estimée par les gestionnaires de sinistres, présentés sur les Figures [3.7] et

Si on compare les deux triangles, qui ont été complétés en tenant compte des interactions,
on obtient des choses relativement proches,

> MNCL$MCLPaid

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3209 4372.000 4411.000 4428.000 4435.000 4456.000
[2,] 3367 4659.000 4696.000 4720.000 4730.000 4752.569
[3,] 3871 5345.000 5398.000 5420.000 5429.716 5455.324
[4,] 4239 5917.000 6020.000 6046.090 6057.284 6085.875
[5,] 4929 6794.000 6890.045 6932.247 6949.447 6982.539
[6,] 5217 7251.382 7419.621 7478.759 7502.149 7538.194
> sum(MNCL$MCLPaid[,6]-diag(MNCL$MCLPaid[,6:1]))
[1] 2633.502
> MNCL$MCLIncurred

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 4975 4629.000 4497.00 4470.000 4456.000 4456.000
[2,] 5135 4949.000 4783.00 4760.000 4750.000 4750.415
[3,] 5681 5631.000 5492.00 5470.000 5454.691 5454.445
[4,] 6272 6198.000 6131.00 6100.978 6084.986 6084.770
[5,] 7326 7087.000 6988.37 6984.274 6979.284 6979.732
[6,] 7353 7349.795 7493.64 7522.809 7532.206 7533.461
> sum(MNCL$MCLIncurred[,6]-diag(MNCL$MCLPaid[,6:11))
[1] 2621.823

On peut également utiliser cette technique pour visualiser les cadences de paiement, mais
aussi d’estimation de charge dossier par dossier, comme sur la Figure On utilise la fonction

[ S S
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FIGURE 3.7 — Comparaison des méthodes Chain Ladder, et Munich Chain Ladder, en montant
a gauche, et en valeurs relatives a droite.

munich=function(k){

plot (0: (nc+1-k),c(0,MNCL$MCLPaid [k,1: (nc+1-k)1),pch=19,type="b",
ylim=c (0,max (c (MNCL$MCLPaid [k,] ,MNCL$MCLIncurred[k,]))) ,x1im=c(0,nc),
ylab="",xlab="")

lines(0: (nc+1-k),c(0,MNCL$MCLIncurred[k,1: (nc+1-k)]),pch=19,type="b")
lines((nc+1-k) :nc,MNCL$MCLPaid [k, (nc+1-k) :nc] ,pch=1,type="b")
lines((nc+1-k) :nc,MNCL$MCLIncurred [k, (nc+1-k) :nc] ,pch=1,type="b")
abline(v=nc+1-k,col="grey")

}

que 'on peut appeler pour deux années de développement différentes, une année close a
gauche, et vu apres 2 années de développement a droite

+ + 4+ + + + + 4+ V

3.3.6 L’incertitude a un an de Merz & Withrich

Merz & Wiithrich| (2008)) ont étudier la variation du boni/mali d’une année sur 'autre (appelé
CDR;(n), claims development result), c’est a dire du changement dans la prédiction de la charge
totale. Ils ont en particulier montré que

msepe, 1 (CDRi(n) = O (T + As)
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FIGURE 3.8 — Corrélations entre les triangles de développement des paiements, et des charges
dossier/dossier.
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Merz & Withrich! (2008]) ont alors approché ce terme par
P Omeint S (G
" X%*HICZ?”—%'“ j=n—i+2 S]T'L o XJQ' Ch—jt1,5

en faisant tout simplement un développement de la forme [[(1 4+ u;) & 1+ ) u;, mais qui n’est

valide que si u; est petit, soit ici
~2
(o

TJQ << Cn—j+1,j-
J
Ces estimation peuvent étre obtenues a ’aide de la fonction MackMerzWuthrich() (de|Lacoume
(2009))), avec le MSEP de Mack, puis les deux de Merz & Wiithrich (avec ou non le terme
approché), avec les 6 années de survenance en ligne, et en bas le cumul toutes années confondues,



5000

 —0—

4000
|
6000
|

2000 3000
| |
4000

2000

1000
|

FI1GURE 3.9 — Evolution des paiements, et de la charge dossier par dossier.

> MackMerzWuthrich(PAID)
MSEP Mack MSEP MW app. MSEP MW ex.

1 0.0000000 0.000000 0.000000
2 0.6393379 1.424131 1.315292
3 2.5025153 2.543508 2.543508
4 5.0459004 4.476698 4.476698
5 31.3319292 30.915407  30.915407
6  68.4489667 60.832875  60.832898

tot 79.2954414 72.574735  72.572700

3.4 Régression Poissonnienne et approches économétriques

Dans cette section, nous nous éloignerons des modeles récursifs inspirés de la méthode Chain
Ladder, et nous reviendrons sur des classes de modeles tres utilisés dans les années 70, appelés
modeles a facteurs, remis au gout du jour en proposant une relecture économétrique de ces
modeles, permettant ainsi d’obtenir des intervalles de confiance des différentes grandeurs (comme
initié par [Verrall (2000)).

3.4.1 Les modeles a facteurs, un introduction historique

Avant de présenter 'utilisation des modeles de régression, on peut commencer par évoquer
des modeles plus anciens. Par exemple |Taylor| (1977)) supposait que

Y;,j = T4 Hit+j, pour tout ¢, 7,



i.e. un effet colonne, de cadence de paiement, et un effet diagonal, que Taylor interpréte comme
un facteur d’inflation. Ce modele peut se réécrire, des lors qu’il n’y a pas d’incrément positif,

logY;;j = i + vigj
qui prend alors une forme linéaire. On montrera par la suite que le cas
logY;; = o + B
s’apparent a un modele de type Chain-Ladder. En effet, cela suppose que
Y;j=a; xbj

que l'on peut rapprocher du modele de développement Y; ; = C;,, X ;. Zehnwirth (1985) avait
également proposé d’utiliser une courbe d’Hoerl, c’est a dire

logY;; = i + B - log(j) + i - j.

3.4.2 Les modeles de de Vylder et de Christophides

De Vylder| (22-28)) a été un des premiers modeles économétriques de provisionnement. On
suppose que
Yij ~ N(a; - Bj,0?), pour tout i, j.

On peut estimer les coefficients par moindres carrés,

o~

(&, 3) = argmin Z[YH — o B2

2
Les équations normales s’écrivent ici
S Y B Y Qs
~ J J a ;L1 &7}
Q; = J ’A et /8] — Zz 5]

E:jﬁg §:ia? ,

ce qui ne résoud pas explicitement. Pour le résoudre, (Christofides| (1989) a suggéré de le réécrire
comme un modele log-linéaire, i.e.

log Y j ~ N (a; +bj,?), pour tout i, j.

> ligne <- rep(l:nl, each=nc); colonne <- rep(l:nc, nl)
> INC <- PAID

> INC[,2:6] <- PAID[,2:6]-PAID[,1:5]

> Y <- as.vector (INC)

> lig <- as.factor(ligne)

> col <- as.factor(colonne)

> reg <- 1m(log(Y) col+lig)

> summary(reg)

Call:

lm(formula = log(Y) ~ col + lig)



Residuals:
Min 1Q Median 3Q Max
-0.26374 -0.05681 0.00000 0.04419 0.33014

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 7.9471 0.1101 72.188 6.35e-15 *x*x*
col2 0.1604 0.1109 1.447 0.17849
col3 0.2718 0.1208 2.250 0.04819 =*
col4d 0.5904 0.1342 4.399 0.00134 *x*
colb 0.5535 0.1562 3.543 0.00533 *x*
col6 0.6126 0.2070 2.959 0.01431 *
lig2 -0.9674 0.1109 -8.726 5.46e-06 *x*x
lig3 -4.2329 0.1208 -35.038 8.50e-12 **x*
ligd -5.0571 0.1342 -37.684 4.13e-12 ***
ligh -5.9031 0.1562 -37.783 4.02e-12 *x*x*
lig6 -4.9026 0.2070 -23.685 4.08e-10 *x*x

Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.1753 on 10 degrees of freedom

(15 observations deleted due to missingness)
Multiple R-squared: 0.9975, Adjusted R-squared: 0.9949
F-statistic: 391.7 on 10 and 10 DF, p-value: 1.338e-11

On peut alors simplement utiliser cette régression pour construire le triangle de base du
modele. Comme nous 'avions noté dans la Section on ne peut pas utiliser , }A’” = expla; +
Zj] car cet estimateur est toutefois biaisé. Si I'on corrige du biais (car exp(E(log(Y))) # E(Y))
en posant }/;i’j = expla; +Zj + 2 /2], on obtient alors

> sigma <- summary(reg)$sigma
> (INCpred <- matrix(exp(logY+sigma~2/2),nl,nc))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2871.209 1091.278 41.66208 18.27237 7.84125 21.32511
[2,] 3370.826 1281.170 48.91167 21.45193 9.20570 25.03588
[3,] 3767.972 1432.116 54.67438 23.97937 10.29030 27.98557
[4,] 5181.482 1969.357 75.18483 32.97495 14.15059 38.48403
[5,] 4994.082 1898.131 72.46559 31.78233 13.63880 37.09216
[6,] 5297.767 2013.554 76.87216 33.71498 14.46816 39.34771
> sum(exp(logY[is.na(Y)==TRUE]+sigma~2/2))
[1] 2481.857

qui est tres proche de ce que nous avions eu dans la section précédante.

3.4.3 La régression poissonnienne de Hachemeister & Stanard

Hachemeister & Stanard (1975), |Kremer| (1982) et enfin [Mack (1991) ont montré que dans
une régression log-Poisson sur les incréments, la somme des prédictions des paiments a venir
correspond a l'estimateur Chain Ladder. On retrouve ici un résultat pouvant étre relié a la
méthode des marges présentée dans la section [2.4.1]



> CL <- glm(Y"lig+col, family=poisson)
> summary (CL)

Call:
glm(formula = Y ~ 1lig + col, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.3426 -0.4996 0.0000 0.2770 3.9355

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.05697 0.01551 519.426 < 2e-16 *x*x
lig2 -0.96513 0.01359 -70.994 < 2e-16 ***
lig3 -4.14853 0.06613 -62.729 < 2e-16 ***
ligd -5.10499 0.12632 -40.413 < 2e-16 ***
ligh -5.94962 0.24279 -24.505 < 2e-16 ***
ligb6 -5.01244 0.21877 -22.912 < 2e-16 ***
col2 0.06440 0.02090 3.081 0.00206 *x*
col3 0.20242 0.02025 9.995 < 2e-16 ***
col4d 0.31175 0.01980 15.744 < 2e-16 **x
colb 0.44407 0.01933 22.971 < 2e-16 ***
col6é 0.50271 0.02079 24.179 < 2e-16 **x

Signif. codes: O ‘“x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.056 ‘.’ 0.1 ¢ ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 46695.269 on 20 degrees of freedom

Residual deviance: 30.214 on 10 degrees of freedom
(15 observations deleted due to missingness)
AIC: 209.52

Number of Fisher Scoring iterations: 4
Notons des a présent que le modele de Poisson n’est pas forcément le plus adapté. En effet,
il y a une (forte) surdispersion des paiements,
> CL <- glm(Y~lig+col, family=quasipoisson)
> summary (CL)

Call:
glm(formula = Y ~ 1lig + col, family = quasipoisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.3426 -0.4996 0.0000 0.2770 3.9355

Coefficients:
Estimate Std. Error t value Pr(>|t])



(Intercept) 8.05697 0.02769 290.995 < 2e-16 **x*
lig2 -0.96513 0.02427 -39.772 2.41e-12 ***
lig3 -4.14853 0.11805 -35.142 8.26e-12 *x*x*
ligd -5.10499 0.22548 -22.641 6.36e-10 *x*x
ligh -5.94962 0.43338 -13.728 8.17e-08 *x*x*
lig6 -5.01244 0.39050 -12.836 1.55e-07 x*x*x
col2 0.06440 0.03731 1.726 0.115054

col3 0.20242 0.03615 5.599 0.000228 x*x*x*
col4d 0.31175 0.03535 8.820 4.96e-06 *x*x*
colb 0.44407 0.03451 12.869 1.51e-07 *x*x
col6 0.50271 0.03711 13.546 9.28e-08 ***

Signif. codes: O ‘*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ ’ 1
(Dispersion parameter for quasipoisson family taken to be 3.18623)

Null deviance: 46695.269 on 20 degrees of freedom

Residual deviance: 30.214 on 10 degrees of freedom
(15 observations deleted due to missingness)
AIC: NA

Number of Fisher Scoring iterations: 4

Il y a ici un 2n — 1 parametres a estimer, v, ¢ = (¢1,- -+ ,¢p—1) €t ¥ = (r1,--+ ,rp—1) (sans
compter le parametre phi de surdispersion). Compte tenu du choix des facteurs (ici un facteur
ligne r et un facteur colonne c), une fois estimés ces parametres, il est possible de prédire la
partie inférieure du triangle tres simplement, i.e.

Yi; = Hij = exp[y + 7; + ¢;]

> Ypred <- predict(CL,newdata=data.frame(lig,col),type="response")
> (INCpred <- matrix(Ypred,nl,nc))
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3155.699 1202.110 49.82071 19.14379 8.226405 21.00000
[2,] 3365.605 1282.070 53.13460 20.41717 8.773595 22.39684
[3,] 3863.737 1471.825 60.99889 23.43904 10.072147 25.71173
[4,] 4310.096 1641.858 68.04580 26.14685 11.235734 28.68208
[5,] 4919.862 1874.138 77.67250 29.84594 12.825297 32.73985
[6,] 5217.000 1987.327 82.36357 31.64850 13.599887 34.71719

On retrouve ici 'estimateur obtenu par la méthode Chain-Ladder,

> sum(Ypred[is.na(Y)==TRUE])
[1] 2426.985

La valeur de référence est la valeur dans le coin supérieur gauche. Compte tenu de la forme
logarithmique du modele, on a une interprétation simple de toutes les valeurs, relativement a
cette premiere valeur

E(Y; j1Fn) = E(Yo,0[Fn) - expr; + c;].



3.4.4 Incréments négatifs

Dans certains triangles, il n’est pas rare d’avoir des incréments négatifs. Considérons par

exemple le triangle de paiements suivant,
> PAIDneg

(,11 [,2] [,3] [,4] [,5] [,6]
[1,]1 3209 4372 4411 4428 4435 4456
[2,] 3367 4659 4696 4720 4730 NA
[3,]1 3871 5345 5338 5420 NA NA
[4,] 4239 5917 6020 NA NA NA
[5,1 4929 6794 NA NA NA NA
[6,] 5217 NA NA NA NA NA
> INCneg=PAIDneg
> INCnegl[,2:6]=PAIDneg[,2:6]-PAIDnegl[,1:5]
> INCneg

(,11 [,21 [,3]1 [,4]1 [,5] [,6]
[1,] 3209 1163 39 17 7 21
[2,] 3367 1292 37 24 10 NA
[3,] 3871 1474 =7 82 NA NA
[4,] 4239 1678 103 NA NA NA
[5,] 4929 1865 NA NA NA NA
[6,]1 5217 NA NA NA NA NA
Cet incrément négatif de paiement ne perturbe aucunement la méthode Chain Ladder,
LAMBDAneg <- rep(NA,nc-1)
for(k in 1:(nc-1)){
LAMBDAneg [k]=1m(PAIDneg[,k+1] “0+PAIDnegl[,k],
weights=1/PAIDnegl[,k])$coefficients}
TRIANGLEneg <- PAIDneg
for(i in 1:(nc-1)){
TRIANGLEneg[(nl-i+1):(nl),i+1]=LAMBDAneg[i]*
TRIANGLEneg[(nl-i+1):(nl),il}
chargeultimeneg <- TRIANGLEneg[,nc]
paiementsneg <- diag(TRIANGLEneg[,nc:1])
RESERVESneg <- chargeultimeneg-paiementsneg
sum (RESERVESneg)
[1] 2469.703

En revanche, les deux méthodes de régression que ’on vient de présenter ne peuvent plus étre
appliquées. Si malgré tout on souhaite utiliser cette technique, une premiere solution consiste
a rebalancer des paiments d’une année sur ’autre. On peut alors prendre a gauche ou a droite
de manieére & ne plus avoir cet incrément de paiement négatif. Une autre stratégie peut étre
de faire des translations de certains incréments. Si on translate toutes les observations, le code
ressemblerait a
> predict(glm((Y+k) "X) ,type="response")-k
En effet, dans un modele linéaire Gaussien, translater les observations Y vers le haut puis
translater vers le bas les prédictions Y (d'un méme montant) donne exactement les mémes
prédictions. Mais ce n’est pas le cas dans les modeles GLM.

Supposons que 'on translate les incréments de la colonne ou figure 'incrément négatif, de
telle sorte que tous les incréments soient alors positifs. On peut alors faire tourner une régression

VvV VVV + 4+ VYV + 4+ V V



de Poisson. En translatant de maniere a annuler I'incrément négatif, on obtient le montant de
provision suivant

translation<-function(k){
Y=as.vector (INCneg)
Y[col==3]=Y[col==3]+k
base<-data.frame(Y,lig,col)
reg<-glm(Y~lig+col,
data=base,family=poisson(link="1log"))
Yp=predict(reg,type="response",
newdata=base)
Yp[col==3]=Yp[col==3]-k
sum(Yp[is.na(Y)==TRUE])}
translation(7)

[1] 2471.444

V + + + 4+ + + + + 4+ V

Une solution peut étre alors de translater pour un certain nombre de valeurs, puis d’extra-
poler la prédiction pour k nul,
> K<-7:20
> reserves<-Vectorize(translation) (K)
> (pRes<-predict(lm(reserves~K) ,newdata=(K=0)))
1
2469.752
On peut d’ailleurs visualiser cette extrapolation sur la Figure [3.10
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FIGURE 3.10 — Extrapolation du montant de provision sur pour une régression Poissonnienne
avec un incrément négatif (avec translations).

3.4.5 Incertitude dans un modele de régression

Nous avions noté auparavant qu’obtenir une estimation du montant de sinistres restant a
payer ne suffisait pas, et qu’il fallait avoir un intervalle de confiance, ou au moins une mesure
de la dispersion du vrai montant autour de cette valeur prédite, voire un quantile.

Les formules économétriques fermées

Les modeles de régressions pourraient paraitre tres intéressants car il existe des formules
fermés pour toutes sortes de prédiction. Par exemple, dans une régression GLM avec un lien



logarithmique, rappelons que
E(Y;,;[Fn) = pi; = explni ;]

ou encore

~

Yij = Hij = exp[ii .
La delta method nous permet d’écrire que

& Opi 2
V)~ |52 i),
17.7

ce qui se simplifie dans le cas ou le lien est logarithmique, i.e.

i,
M. j

:/"LZJ

Aussi, pour une loi de Poisson surdispersée (comme dans Renshaw & Verrall (1998)),

~

E ([Ym = Yz‘,j]2> b g+ Hp g V(i)

pour la partie inférieure du triangle. De plus, car il sera nécessaire de sommer tous les termes
de la partie inférieure du triangle pour déterminer le montant total de provisions,

Cov(Yij, Yia) = Hij - Hkg - Cov(iij, M)

Le montant de provision que ’on cherche a estimer étant la somme des prédictions de paiements

avenir, R =73, . Y alors

E([R-RP2)~ | Y 6 fug | + ik Viip) - i

i+j>n

ou les vecteurs i et Ny sont des restrictions des vecteurs g et 1) aux indices i + 5 > n (i.e. &
la partie inférieure du triangle a prédire).

Remark 3.4.1. Cette formule est malheureusement asymptotique, ce qui est rarement le cas en
provisionnement ot l’on dispose de trés peu de données (et de beaucoup de facteurs).

> p <- nl+nc-1;
> phi <- sum(residuals(CL,"pearson") 2)/(sum(is.na(Y)==FALSE)-p)
> Sig <- vcov(CL)
> X <- model.matrix(glm(Ypred~lig+col, family=quasipoisson))
> Cov.eta <- X)*%Siglh*t (X)
> Ypred <-predict(CL,newdata=data.frame(lig,col),type="response")*(is.na(Y)==TRUE)
> se2 <- phi * sum(Ypred) + t(Ypred) %x% Cov.eta %*) Ypred
> sqrt(se2)
[,1]
[1,] 131.7726



Les méthodes de simulations

Les méthodes de simulation sont une bonne alternative si on dispose de trop peu de données
pour invoquer des théoremes asymptotiques. Rappelons, comme le notait Mack| (1993d) qu’il
existe 2 sources d’incertitude,

— lerreur de modele (on parle de process error)

— Dlerreur d’estimation (on parle de variance error)

Il sera alors nécessaire d’utiliser deux algorithmes pour quantifier ces deux erreurs.

Afin de quantifier Uerreur d’estimation, il est naturel de simuler des faux triangles (supérieurs),
puis de regarder la distribution des estimateurs de montant de provisions obtenus pour chaque
triangles (par exemple par la méthode Chain Ladder, a l'aide de la fonction Chainladder
développée auparavant, ou en refaisant une régression de Poisson). A I’étape b, on géneére un
pseudo triangle a ’aide des résidus de Pearson. Rappelons que pour une régression de Poisson,

5= Yij —Yij

Yij

Toutefois, ces résidus ont besoin d’étre ajustés afin d’avoir une variance unitaire. On considere
alors classiquement
- n_ Y —Yi,

€ij = n—FkL — )
Yi;

ou k est le nombre de parametres estimés dans le modele.
> (residus=residuals(CL,type="pearson"))

1 2 3 4 5 6 7 8

9.49e-01 2.40e-02 1.17e-01 -1.08e+00 1.30e-01 -1.01e-13 -1.13e+00 2.77e-01

9 10 11 13 14 15 16 19

5.67e-02 8.92e-01 -2.11e-01 -1.53e+00 -2.21e+00 -1.02e+00 4.24e+00 -4.90e-01
20 21 25 26 31

7.93e-01 -2.97e-01 -4.28e-01 4.14e-01 -6.20e-15
> n=sum(is.na(Y)==FALSE)

> k=ncol (PAID)+nrow(PAID)-1

> (residus=sqrt(n/(n-k))*residus)

1 2 3 4 5 6 7 8

1.37e+00 3.49e-02 1.69e-01 -1.57e+00 1.89e-01 -1.46e-13 -1.63e+00 4.02e-01

9 10 11 13 14 15 16 19

8.22e-02 1.29e+00 -3.06e-01 -2.22e+00 -3.21e+00 -1.48e+00 6.14e+00 -7.10e-01
20 21 25 26 31

1.15e+00 -4.31e-01 -6.20e-01 6.00e-01 -8.99e-15
> epsilon <- rep(NA,nl*nc)
> epsilon[is.na(Y)==FALSE]=residus
> matrix(epsilon,nl,nc)

[,1] [,21 [,3] (.41 [,5] [,6]
[1,] 1.37e+00 -1.6346 -2.22 -0.710 -0.62 -8.99e-15
[2,] 3.49e-02 0.4019 -3.21 1.149 0.60 NA
[3,] 1.69e-01 0.0822 -1.48 -0.431 NA NA
[4,] -1.57e+00 1.2926 6.14 NA NA NA
[5,] 1.89e-01 -0.3059 NA NA NA NA

[6,] -1.46e-13 NA NA NA NA NA



En simulant des erreurs (qui sont supposées indépendantes et identiquement distribuée), gl =

(533‘)7 on pose alors
Yij=Yig +\/Yiy - &

Pour générer des erreurs, la méthode la plus usuelle est d’utiliser une simulation nonparamétrique,

c’est a dire que 'on va bootstrapper les résidus parmi les pseudo-résidus obtenus. Sinon il est

aussi possible d’utiliser un modele paramétrique (par exemple supposer une loi normale, méme

si rien théoriquement ne justifie I'utilisation de cette loi). La distribution des résidus peut étre

obtenue par le code suivant, et visualisé sur la Figure [3.11

par (mfrow = c(1, 2))

hist(residus,breaks=seq(-3.5,6.5,by=.5),col="grey",proba=TRUE)

u <- seq(-4,5,by=.01)

densite <- density(residus)

lines(densite,lwd=2)

lines(u,dnorm(u,mean(residus) ,sd(residus)),lty=2)

plot(ecdf (residus) ,xlab="residus",ylab="Fn(residus)")

lines(u,pnorm(u,mean(residus),sd(residus)),lty=2)

Femp <- cumsum(densite$y)/sum(densite$y)

lines(densite$x,Femp,lwd=2)

par (mfrow = c(1, 1))

V VV V V V V V V V.YV
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FIGURE 3.11 — Histogramme et densité des résidus (a gauche) et fonctions de répartition (a
droite), avec 'ajustement Gaussien en pointillés..

Une fois simulé un pseudo-triangle d’incréments de paiments, on prédit un montant de provi-
sion R? (par exemple via une méthode Chain Ladder). La variance des RY correspond a l’erreur
d’estimation.

Afin de prendre en compte 'erreur de modele, plusieurs méthodes peuvent étre utilisées. La
premiere, et la plus simple, consiste a noter qu’a partir du pseudo triangle Yil”j, peut obtenir des



prédictions pour la partie inférieure, Y;bj. Compte tenu du modele Poissonnien, on peut alors
simuler une trajectoire possible d’incréments de paiements en simulant les Y;;bj a l'aide de loi de

Poisson de parametre 2{’]-. Le code est alors le suivant
> CLsimull<-function(triangle){
+ rpoisson(length(triangle),lambda=triangle)}

Toutefois, simuler des lois de Poisson risque d’étre trop conservateur. En effet, comme nous
Pavions vu sur la régression quasiPoisson, le parameétre de surdispersion ¢ est significatif,
> (summary(CL)$dispersion)

[1] 3.19

Il peut alors étre pertinent de générer des lois avec davantage de variance (abusivement, on
parlera de simulation d’une loi quasiPoisson). La premiere idée pourra étre d’utiliser une loi
Gamma. En notant que E(Y) = X et V(Y) = ¢\, la loi de Gamma G(a, ) vérifiera af = X et
af? = ¢A. Aussi, on utilisera

> rgpoisG <- function(n, lambda, phi, roundvalue = TRUE) {

+ b <- phi

+ a <- lambda/phi

+ r <- rgamma(n, shape = a, scale = b)

+ if (roundvalue){r<-round(r)}

+ return(r)}

On utilise la fonction round afin de renvoyer un entier (ce qui est attendu pour un modele
de Poisson, mais n’a pas grande importance dans un contexte de modélisation de paiements).
Une autre idée peut étre d’utiliser le lien qui existe entre la loi de Poisson et la loi binomiale
négative (qui est un mélange de lois de Poisson, i.e. dont I'hétérogénéité résiduelle n’a pas pu
étre modélisée par nos facteurs lignes et colonnes). Pour une loi binomiale négative de moyenne
w et de variance pu + pu?/k, on pose = X et k= A(¢pX —1)71, i.e.

> rqpoisBN = function(n, lambda, phi) {

+ mu <- lambda

+ k <- mu/(phi * mu - 1)

+ r <- rnbinom(n, mu = mu, size = k)

+ return(r)?}

On utilise alors le code suivant pour générer des scenarios de paiements,

> CLsimul2<-function(triangle,surdispersion){

+ rqgpoissonG(length(triangle),lambda=triangle,phi=surdispersion)}

La seconde méthode est d’utiliser une relecture du modele de |[Mack (1993d), proposée
par |England & Verrall (1999). A partir du pseudo triangle, on va utiliser les facteurs de
développement Xj et les variances associés EJQ» obtenus sur le triangle initial. On prolonge alors
le triangle dans la partie inférience via le modele dynamique

Cr il CLy ~ N(X O, 55 CF ).

Le code est alors le suivant, ou triangle est un triangle de paiements cumulés (et non plus des
incréments sous forme vectorielle), 1 correspond & un vecteur de facteurs de développement, et
s a un vecteur de volatilités,

> CLsimul3<-function(triangle,l,s){

+ m<-nrow(triangle)

+ for(i in 2:m){

+ triangle[(m-i+2) :m,i]<-rnorm(i-1,

+ mean=triangle[(m-i+2) :m,i-1]*1[i-1],



+ sd=sqrt(triangle[(m-i+2) :m,i-1]1)*s[i-11)
+ }
+ return(triangle) }
L’algorithme global pour générer des estimations de charges finales, mais aussi des scenarios
de paiements futurs est alors le suivant
ns<-20000
set.seed (1)
Yp <- predict(CL,type="response",newdata=base)
Rs <- R <- rep(NA,ns)
for(s in 1:ms){
serreur <- sample(residus,size=nl#*nc,replace=TRUE)
E <- matrix(serreur,nl,nc)
sY <- matrix(Yp,6,6)+Exsqrt(matrix(Yp,6,6))
if (min(sY[is.na(Y)==FALSE])>=0){
sbase <- data.frame(sY=as.vector(sY),lig,col)
sbase$sY[is.na(Y)==TRUE]=NA
sreg <- glm(sY lig+col,
data=sbase,family=poisson(link="1log"))
sYp <- predict(sreg,type="response" ,newdata=sbase)
Rls] <- sum(sYplis.na(Y)==TRUE])
sYpscenario <- rqpoisG(36,sYp,phi=3.18623)
Rs[s] <- sum(sYpscenariol[is.na(Y)==TRUE])
i3

Lors de la génération de pseudo triangles, des incréments négatifs peuvent apparaitre. Fn

+ 4+ 4+ + + + + + + 4+ +++VVVVYV

effet, pour deux valeurs de i@d, il est possible que 5\/?%;7soﬂ,négatﬂ?(sile résidu est le plus
petit résidu obtenu)
> sort(residus) [1:2]
14 13

-3.21 -2.22
> sort(sqrt(Yplis.na(Y)==FALSE])) [1:4]

25 26 19 20
2.87 2.96 4.38 4.52

La solution retenue est de ne pas prendre en compte les triangles avec des incréments négatifs,
ce qui devrait nous faire surestimer les quantiles inférieurs. Toutefois, en provisionnement, les
quantiles inférieurs n’ont que peu d’intérét. Les quantiles d’ordre élévés sont estimés ici par
> Rna <- R
Rna[is.na(R)==TRUE]<-0
Rsna <- Rs
Rsna[is.na(Rs)==TRUE]<-0
quantile(Rna,c(.75,.95,.99,.995))
75% 95% 99% 99.5%
2470 2602 2700 2729
> quantile(Rsna,c(.75,.95,.99,.995))
75% 95% 99% 99.5%
2496 2645 2759 2800

A partir de ces 20 000 triangles simulés, on peut obtenir la distribution des montants de
provisions estimés (stockées dans le vecteur R) mais aussi des scenarios de paiements (et donc

vV V V V



de provisions nécessaires, dans le vecteur Rs). On va pour cela supprimer les 10% des scenarios
ayant donné lieu a des valeurs manquantes.
> Rnarm <- R[is.na(R)==FALSE]
> Rsnarm <- Rs[is.na(Rs)==FALSE]
On notera que les quantiles supérieurs sont biaisés (avec un biais positif), mais faiblement
> quantile(Rnarm,c(.75,.95,.99,.995))
75% 95% 99% 99.5%
2478 2609 2704 2733
> quantile(Rsnarm,c(.75,.95,.99,.995))
75% 95% 99% 99.5%
2507 2653 2764 2805
La Figure permet d’avoir une estimation de la distribution de R mais aussi de R.

> plot(density(Rnarm),col="grey" ,main="")
> lines(density(Rsnarm),lwd=2)

> boxplot(cbind(Rnarm,Rsnarm),

+ col=c("grey","black") ,horizontal=TRUE)

Rsnarm

Rnarm
|

Density
0.003 0.004
I

0.002

0.001
|

0.000

T T T T T
2200 2400 2600 2800 3000

N =18079 Bandwidth =11.07

FIGURE 3.12 — Boxplot et densité estimée de R (estimation error) et de R (estimation error et
process error) .

Notons que les quantitées obtenues sont tres proches de celles obtenues par la fonction
bootChainlLadder de library(ChainLadder),

> BootChainlLadder (PAID,20000,"od.pois")
BootChainLadder(Triangle = PAID, R = 20000, process.distr = "od.pois")



Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95%

1 4,456 4,456 0.0 0.0 0 0

2 4,730 4,752 22.1 12.0 28 44

3 5,420 5,455 35.3 15.3 44 63

4 6,020 6,085 65.5 19.8 77 101

5 6,794 6,946 152.4 28.6 170 203

6 5,217 7,363 2,146.2 111.6 2,216 2,337
Totals

Latest: 32,637

Mean Ultimate: 35,059

Mean IBNR: 2,422

SD IBNR: 132

Total IBNR 75%: 2,504
Total IBNR 95%: 2,651

3.4.6 Quel modele de régression ?

Comme nous 'avons mentionné dans le chapitre [2] deux parametres fondamentaux inter-
viennent dans une régression linéaire généralisée,

— la fonction lien, qui lie la prédiction aux facteurs, ici 17” =E(Y; ;| Fn) = exp[y + a; + Bj],

— la loioula fonction variance, qui donne la forme de I'intervalle de confiance, ici V(Y ;| F,) =

¢ E(Y; 5| Fn),

L’unique motivation du modele de Poisson (ou quasi-Poisson) est qu'il permet d’obtenir
exactement le méme montant que la méthode Chain Ladder. Mais aucun critere statistique n’a
été évoqué, pour l'instant, afin de légitimer ce modele.

Les modeles Tweedie sont une famille de sur-modele, incluant le modele Poissonnien. On
suppose que
— la fonction lien, est une fonction puissance, ou plutét une tranformée deﬁBox—Cox,i%J:Z
9 A+ ai + BJ] ott gx(z) = A7zt — 1] si A > 0 avec le cas limite go(x) = log(z).
— la fonction variance, qui donne la forme de l'intervalle de confiance, ici V(Y;;|F,) =
¢ - E(Yi 4] Fn)H
ou les parametres A et u sont inconnus.
La densité ! d’une loi Tweedie de parametre mu est ici
ftweedie <- function(y,p,mu,phi){
if (p==2){f <- dgamma(y, 1/phi, 1/(phi*mu))} else
if (p==1){f <- dpois(y/phi, mu/phi)} else
{lambda <- mu~(2-p)/phi /(2-p)
if(y==0){ f <- exp(-lambda)} else
{ alpha <- (2-p)/(p-1)
beta <- 1 / (phi * (p-1) * mu~(p-1))
k <- max(10, ceiling(lambda + 7*sqrt(lambda)))
f <- sum(dpois(l:k,lambda) * dgamma(y,alpha*(1l:k),beta))
}r
return(f)}

+ + + + + + + + + + V

1. ou le terme densité s’entend au sens large, a savoir une probabilité dans le cas discret.



Afin de juger de la pertinance de l'ajustement, on peut calculer la log-vraisemblance du

modele, en gardant un lien logarithmique par exemple (ce qui est parfois plus simple au niveau
numérique, mais aussi au niveau de U'interprétation),

+ + 4+ + + + + + + + + V

pltweedie <- function(puissance){

regt <- glm(Y"lig+col, tweedie(puissance,0))

reserve <- sum(predict(regt,type="response",newdata=
data.frame(lig,col)) [is.na(Y)==TRUE])

dev <- deviance(regt)

phi <- dev/n

mu <- predict(regt,type="response",newdata=data.frame(lig,col))
hat.loglL <- 0

for (k in which(is.na(Y)==FALSE)){

hat.logL <- hat.logL + log(ftweedie(Y[k], puissance, mul[k], phi)) }
return(list(puissance= puissance,phi=phi,reserve=reserve,logl=hat.logL))

}

Si on calcule la log-vraisemblance pour 5 valeurs, comprises entre 1 et 2 (correspondant

respectivement au cas d’une régression Poisson et une régression Gamma), on obtient

>

pltweedie(puissance=1.25)

$puissance
[1] 1.25

$phi
[1] 0.466

$reserve
[1] 2427

$logL
[1] -96

>

pltweedie(puissance=1.5)

$puissance
[1] 1.5

$phi
[1] 0.155

$reserve
[1] 2428

$logL
[1] -99.2

La Figure permet de visualiser 'influence du parametre de la puissance de la fonction

variance. Visiblement la vraisemblance est maximal pour une puissance proche de 1 (ce qui
correspond au modele de Poisson) avec un lien logarithmique,

>
>

puiss <- seq(1.02,1.98,by=.01)
plot(puiss,Vectorize(TW) (puiss),type="1",



+ xlab="Puissance de la loi Tweedie",ylab="log vraisemblance")
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FIGURE 3.13 — Evolution de la log-vraisemblance profilée en fonction de u .

> TW <- function(p){pltweedie(p)$loglL}

> optimize(TW, c(1.01,1.99), tol=le-4,maximum = TRUE)
$maximum

[1] 1.01

$objective
[1] -92.2

3.5 Les triangles multivariés

Comme nous 'avions expliqué dans I'introduction, 'utilisation des triangles, et des méthodes
de cadences de paiements, n’est possible que si les triangles sont stables, et homogenes. Or il n’est
pas rare qu’un triangle comporte des risques relativement différents dans leur développement.
Par exemple en assurance auto, les accidents matériels et corporels sont sensiblement différents.

3.5.1 Hypohtese d’indépendance entre les triangles, et lois paramétriques

En s’insiprant de 1'idée de Mack| (1993d]), on peut supposer que R; suive une loi LN (i, 0?)
pour i = 1,2. Si 'on suppose les risques indépendant, la loi de la somme est simplement
la convolée des deux lois. On peut utiliser les familles de distribution au format S4 et la
library(distr). Rappelons que pour si X ~ LN (u,o?),

1= log[E(X)] — 11og <1 + V(X) ) et 0% = log <1 + MC.Y ) :

2 E(X)? E(X)?

A partir des moyennes et variances - données par la méthode de Mackl (1993a@) par exemple -
on en déduit les lois des deux montants de provision. Si on suppose que les deux triangles sont
indépendants, alors



library(distr)

n=nrow (P.mat)

V=MackChainLadder (P.mat)$Total.Mack.S.E"2
E=sum(MackChainLadder (P.mat)$FullTriangle[,n]-
diag(MackChainLadder(P.mat)$FullTriangle[n:1,]))
mu = log(E) - .5*log(1+V/E"2)

sigma2 = log(1+V/E"2)

LM = Lnorm(meanlog=mu,sdlog=sqrt(sigma2))
V=MackChainLadder (P.corp)$Total.Mack.S.E"2
E=sum(MackChainLadder (P.corp)$FullTriangle[,n]-
diag(MackChainLadder (P.corp)$FullTriangle[n:1,]))
mu = log(E) - .5%log(1+V/E"2)

sigma2 = log(1+V/E"2)

LC = Lnorm(meanlog=mu,sdlog=sqrt(sigma2))
LT=LM+LC

On peut alors comparer la loi convolée, et la loi lognormale ajustée sur le triangle cumulé,

vV VVV 4+ V VV VYV 4+ V VV.YV

P.tot = P.mat + P.corp

library(ChainLadder)

V=MackChainLadder (P.tot)$Total.Mack.S.E"2
E=sum(MackChainLadder(P.tot)$FullTriangle[,n]-
diag(MackChainLadder (P.tot)$FullTriangle[n:1,]))
mu = log(E) - .5%log(1+V/E"2)

sigma2 = log(1+V/E"2)

V V + V V Vv V

La Figure compare la distribution obtenue en convolant deux lois lognormales (suppo-
sant une indépendance entre les triangles, et que le montant de provision peut étre modélisé
par une loi lognormale) et la distribution du montant de provision obtenu en agrégeant les deux
triangles de paiements.

u=seq(E-4*sqrt (V) ,E+4xsqrt (V) ,length=101)
vtotal=dlnorm(u,mu,sqrt(sigma2))
vconvol=d(LT) (u)
plot(u,vconvol,col="grey",type="1",
xlab="montant de provision",ylab="")
lines(u,vtotal,lwd=2)
legend(470000,1.2e-05,
c("convolution","somme des triangles"),
col=c("grey","black"),lwd=c(1,2),bty="n")

+ + VvV V + V V V V

Les quantiles a 95% sont alors respectivement

> q(LT) (.95)

[1] 434616

> glnorm(.95,mu,sqrt(sigma2))
[1] 467687

pour la loi convolée et pour la somme des deux triangles. Deux interprétations sont alors pos-
sibles : supposer les triangles comme étant indépendants est probablement une hypothese trop
forte et travailler sur un triangle agrégé (et donc peu homogene) introduit une incertitude
supplémentaire.
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FIGURE 3.14 — Distribution du montant total de provision, en sommant les provisions par tri-
angles - supposés indépendants - et en travaillant sur le triangle agrégé.

3.5.2 Le modele de Mack bivarié

Prohl & Schmidt| (2005) a proposé une méthode de type Chain-Ladder dans un cadre mul-

tivarié. On note
(k)

C
_ By (k) i
Aij = ()‘i,j) ou )‘i,j = c®

2,7—1

et C;; = (Cl(l;)) € RE On suppose qu'il existe A; =€ RE
E[C;;|Ci 1] = diag(Aj-1) - Cijj
et
Cov[Ci;, Cij|Cij—1] = diag(y/Cj—1) - -1 - diag(y/Cj-1)

Alors sous ces hypotheses, comme dans le cas univarié, on peut écrire

n—1
E[Cin|Cin-i] = H diag(A;)Ciin—i-

j=n—1
L’estimateur du facteur de transition est
n—j—1 o1
Aj = Z diag(\/C’m) . Ej_l . diag(\/C’m) . Z diag(\/C@j) . Ej_l . diag(\/Cm))\i,jH
i=0 i=0

L’estimateur Chain-Ladder de la charge ultime est

n—1
Ci,n = H diag(Aj)Ci,n_,'.
j=n—1i
Cet estimateur vérifie les mémes propriétés que dans le cas univarié. En particulier, cet estima-

teur est un estimateur sans biais de E[C; ,,|C —;] mais aussi de E[C ).
Il est aussi possible de calculer les mse de prédiction.



3.5.3 Modeles économétriques pour des risques multiples

L’idée dans les modeles économétriques est de supposer que les résidus peuvent étre corrélés,

ligne = rep(l:n, each=n); colonne = rep(l:n, n)
PAID=P.corp; INC=PAID
INC[,2:n]=PAID[,2:n]-PAID[,1:(n-1)]

I.corp = INC

PAID=P.mat; INC=PAID
INC[,2:n]=PAID[,2:n]-PAID[,1:(n-1)]

I.mat = INC

Ym = as.vector(I.mat)

Yc = as.vector(I.corp)

lig = as.factor(ligne)

col = as.factor(colonne)

base = data.frame(Ym,Yc,col,lig)
regm=glm(Ym~col+lig,data=base,family="poisson")
regc=glm(Yc~col+lig,data=base,family="poisson")
res.corp=residuals(regc,type="pearson")
res.mat=residuals(regm,type="pearson")
cor(res.mat,res.corp)

[1] 0.296

On notera ainsi que la corrélation n’est pas nulle.

Une fois notée qu’il existe probablement une dépendance entre les deux triangles, il semble
légitime de la prendre en compte dans les algorithmes de simulations évoqués dans la partie
3.4.5]

— pour l'erreur d’estimation, quand on tire les résidus, on ne les tire pas indépendement dans

les deux triangles. On tire alors les paires de résidus (éznjtenel’b, Eff)jrporel, b)
— pour l'erreur, on peut tirer une loi de Poisson bivariée si on utilise une régression Poisson-
nienne bivariée (implémentée dans library(bivpois) ou un vecteur Gaussien bivarié

Dans le second cas,

matériel m matériel m2 matériel

Cz-’ﬂ_1 N )‘j C,L-’j o} Cl-,j *

Ccorporel ~ Acccorporel ) % O_CQ Ccorporel .
5,J+1 J g J g

3.6 Borhutter-Fergusson, Benktander et les méthodes bayésiennes

VvV VVVV VYV VYV YV VYV VYV YVYVYV

Les deux premieres méthodes que nous allons voir ont souvent été proposées comme une
alternative a la méthode Chain Ladder, car elles introduisent un a priori sur la charge ultime.
3.6.1 Le modele de Borhutter-Ferguson et I'introduction d’un avis d’expert

Classiquement, on continue ici a supposer que
— les années de survenance sont indépendantes les unes des autres
— il existe p; et des facteurs de développement Sy, B2, -+ , B, - avec B, = 1 - tels que

E(Ci1) = Bipi

E(Cij4xlCit, -+, Cij) = Cij + [Bjrk — Byl



Sous ces hypotheses, pour tout 4, j, E(C;;) = Bjui. Ce qui peut rappeler les modeles a fac-

teurs évoqués auparavant. Sauf qu’ici, seul 8 = (B4, B2, -+, Bn) sera a estimer statistiquement,
= [i; étant obtenu par avis d’expert, j1; étant un estimateur de E(C; ). Moyennant ces deux
estimations, on en déduit 'estimateur de E(C;,,|C;1,--- ,C; ;) de la forme

@,n =Ci;+[1- Bj—z’]ﬁz’-

L’estimateur proposé par Bornhutter-Ferguson est alors simplement obtenu a partir de la
méthode Chain-Ladder, en posant
n
~ 1
B = H =~
Nk

k=j+1

Enfin, pour estimer [i;, on suppose disposer d’un ratio sinistre/prime cible, par exemple de 105%,
par année de survenance. Dans ces conditions, on peut alors estimer simplement le montant de
provision,

> mu <- 1.05%PREMIUM

> beta <- rev(cumprod(rev(1/LAMBDA)))

> Cdiag <- diag(PAID[,nc:1])

> Cultime <- Cdiag+(1l-c(1,rev(beta)))x*mu

> Cultime-Cdiag

[1] 0.0 23.1 33.5 59.0 131.3 1970.5

> sum(Cultime-Cdiag)

[1] 2217

i 0 1 2 3 1 5
prime 4591 4692 4863 5175 5673 6431
7i; 4821 4927 5106 5434 5957 6753
\i 1,380 1,011 1,004 1,002 1,005

Bi 0,708 0,978 0,989 0,993 0,995
Cin 4456 4753 5453 6079 6925 T187

~

R; 0 23 33 59 131 1970

TABLE 3.8 — Estimation du montant de provision par Borhutter-Ferguson, avec un ratio si-
nistres/primes de 105%.

3.6.2 Benktander

L’estimateur de Benktander| (1976)), repris quelques années plus tard par |[Hovinen (1981)),
repose sur un estimateur a priori de la charge ultime Cj ,,, noté ;. On suppose également qu’il
existe une cadence de paiements 8 = (51, - , Bn), connue, telle que

E(Ci5) = pib;
Sous ces hypotheses, le montant de provision devrait étre

Ri=Cip— Cimi=[1—Bu il



Au lieu de se baser uniquement sur y;, Benktander (1976)) avait proposé un estimateur crédibilisé
de la charge ultime, de la forme

ﬁn—zégyg + [1 - /Bn—i]ui

Il s’agit d’utiliser I'estimateur Chain-Ladder, moyenné avec ’estimation a priori de la charge
ultime. Alors

R = = Cinmi = (1= i) (BusCSE 4+ 1= i)

On notera que
RPM = (1= B CPF

si la cadence B3 = (B1,- -+, Bn) est construite a partir des facteurs de développement induits par
la méthode Chain-Ladder. Une autre écriture de cette expression est d’écrire la charge ultime
(et non plus le montant de provision),

CP! = Cinmi + (1= Bui)OPF = Buci O + (1= Bui) OPF

(]

ce qui permet de voir la prédiction de Benktander comme une combinaison convexe des estima-
teurs Chain-Ladder et de Bornhuetter-Ferguson.

3.6.3 La méthode dite Cape-Code

Dans cette approche, on utilise 1a encore un avis d’expert. L’idée est de réécrire ’expression

C, .
Ci,n =Cin—i+ (1 - 5:nl> Ci,n

sous la forme

Cin_
Ci,n = Uin—i + <1 - 7177'1 l) LRi : Pia
i,n
ou LR; correspond au loss ratio pour l'année 4, i.e. LR; = C;,/P;. L’idée de la méthode dite
Cape-Code est d’écrire une forme plus générale,

Cim =Cin—i+ (1 —mp_i) LR;P;

ou 7,—; correspond a une cadence de paiement, et peut étre estimé par la méthode Chain Ladder.
Quant aux LR; il s’agit des loss ratio cibles, correspondant & un avis d’expert. On peut aussi
proposer un méme ratio cible pour plusieurs années de survenance. On posera alors

R; = Ci,n - Cz',n—i = (1 - Wn—i)LRAiDi-

pour i € A, ou

B > ke Tn—kDi

Dans un premier temps, on peut calculer les 7; a partir de la méthode Chain Ladder, i.e.

LRy

Cin—i
Ci,n

Tn—i =

ou la charge ultime est celle prédite pas la méthode Chain-Ladder.



> Cultime=MackChainLadder (PAID)$FullTriangle[,nc]
(PI <- (1-Cdiag/Cultime))

1 2 3 4 5 6
.00000 0.00471 0.00656 0.01086 0.02204 0.29181
LR <- TRIANGLE[,nc]/PREMIUM
Cdiag <- diag(PAID[,nc:1])

(Cultime-Cdiag)/ (LR*PREMIUM)

1 2 3 4 5 6

0.00000 0.00471 0.00656 0.01086 0.02204 0.29181

\4

vV V Vv O

Si on suppose ensuite que A = {1,2,--- ,n}, alors
> LR=sum(TRIANGLE[,6]) /sum(PREMIUM)
> PI*LR*PREMIUM

1 2 3 4 5 6

0.0 24.6 35.6 62.7 139.6 2095.3
> sum(PI*LR*PREMIUM)
[1] 2358
On obtient ici un montant de provision total inférieur a celui obtenu par la méthode Chain
Ladder puisque le montant de provisions vaut ici 2357 .756.

3.6.4 Les approches Bayésiennes

Les approches Bayésiennes ont été popularisées en sciences actuarielles par la théorie de la
crédibilité, correspondant a une approche Bayésienne dans un cadre linéaire. Mais il est possible
d’aller plus loin (plus générallement, sur I’alternative bayésienne en statistique, nous renverrons
a [Parent & Bernier| (2007) ou Robert| (2006))). Classiquement, supposons que l'on s’intéresse a
Y dont la loi serait f(-|@), ou tres généralement, ¥ = (Y;;) et @ = (0; ;). Y peut étre ici le
triangle des paiements cumulés C, le triangle des incréments Y, ou le triangle des coefficients
de transition des cadences de paiements A = C; j+1/C ;.

Example 3.6.1.

Dans 'approche de Mack| (1993a), on cherche a modéliser Y peut étre ici le triangle des

paiements cumulés C, et 8; = (), O'JZ).

Application aux cadences de paiements

Ici, on s’intéresse a la loi de A, qui dépendra de 8 = (0;) ou 8; = (v;, 0]2-), o1, pour des sim-
plicités de notations (et éviter de confondre avec les A; ;) on note ; le facteur de développement
sous-jacent.

2
2 9;
ALijﬁvaj)”“jV.<qﬁ’(j">
/Lh]

Ici, 0° ne sont pas les parametres d’intérét, et sont supposés estimés séparément (comme nous
le faisions déja dans les modeles linéaires généralisés). Quant aux Cj j, ils sont interprétés ici
comme des poids, et sont supposés connus. La log-vraisemblance est ici

1 Cii_
log LA[Y) =) 3 (log - ;2 iy — 7j]2> :

i,j J

2

Cij—1
)
75




En utilisant la formule de Bayes, la log-densité de ~ conditionnelle aux A est simplement
log[g(|A)] = log[m(¥)] + log[£(A[v)] + constante,

ou () est une loi a priori de vy (par exemple un vecteur Gaussien).

L’algorithme de Gibbs et généralisations

On cherche ici & générer un ensemble de vecteurs aléatoires v = (71, -+ ,¥m) € R™. Contrai-
rement aux méthodes de Monte Carlo o1 ’'on cherche a générer des vecteurs indépendants les uns
des autres, on va essayer de construire une suite de maniere récurente, vérifiant des propriétés
d’ergodicité.

On part d’un vecteur initial v(9) = (750), e ,7,(79)), par exemple les valeurs obtenues par la
méthode Chain Ladder puis on génere, de maniere itérée

k
Ek+1 (| % 77( r(n),)\) N
+
72k+1 fClm 3k+71" kam ;A)
SV P A A0 DN
(& k k
7{7;13 ~ f % ; 7% ; frle)(,k %)),A)
+ +
L Tm “’f(|71 » Yo s Ym—1 ;A)

Ces lois conditionnelles n’ayant pas forcément de forme simple, 'algorithme de metropolis
(d’acceptation-rejet) peut alors étre utiliser pour simuler ces différentes lois conditionnelle.

3.6.5 Approche bayésienne sur les facteurs de développement

En s’inspirant de la relecture du modele de Mack| (1993dj),

Ab ;b 5200
C]Jrl‘ 'NN()‘C'Lja C )
nous pouvons supposer que les facteurs de développements \; ; suivent une loi lognormale, comme
le suggérait Balson| (2008)). La fonction bayes-triangle() donne ici

> set.seed(1)
> RESERVES <- bayes-triangle(PAID)$reserves
> res.tot <- RESERVES[,7]

On peut visualiser sur la Figure montre les 1,000 valeurs générées pour R

> plot(res.tot,ylab="Montant de provision")
> abline(h=mean(res.tot))
> abline(h=quantile(res.tot,c(.05,.95)),col="grey")

La Figure montre ainsi la distribution du montant de provision estimé R obtenu par cet
algorithme (avec en trait grisé la distribution obtenue par bootstrap des résidus dans le modele
quasiPoisson)

> plot(density(res.tot),lwd=2,main="")

> lines(density(Rnarm),col="grey")

> boxplot(cbind(res.tot,Rnarm),

+ col=c("black","grey") ,horizontal=TRUE)
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FIGURE 3.16 — Boxplot et densité de la distribution du montant de provisions ﬁ, en noir, avec
en grisé les la distribution obtenue par bootstrap des résidus dans le modele quasi-Poisson.

Pour conclure, notons que la méthode bayésienne (qui est fondamentalement basée sur un
modele autorégressif) donne une dispersion du montant de provision proche du modele de Mack.
> MackChainLadder (PAID)$Total.Mack.S.E
[1] 79.3
> sd(rest.tot)

[1] 80.7
> sd(Rnarm)
[1] 97.4



En revanche, la méthode de bootstrap génere des paiements possibles futurs beaucoup plus
grand (compte tenu du résidu trés important), et donc la volatilité est plus grande.

3.7 Exercices

Exercise 3.7.1. Programmer les alogrithmes permettant de modéliser deux triangles supposés
non-indépendants.

Exercise 3.7.2. Déterminer le quantile a 95% du montant de provision pour le triangle de
patements cumulés trianglel.

Exercise 3.7.3. Déterminer le quantile a 95% du montant de provision pour le triangle de
patements cumulés triangle?2.

Exercise 3.7.4. Déterminer le quantile o 95% du montant de provision pour le triangle de
paiements cumulés triangle3.

Exercise 3.7.5. Déterminer le quantile a 95% du montant de provision pour le triangle de
patements cumulés triangle4.



Chapitre 4

Calculs de base en assurance vie et
déces

L’assurance-vie repose essentiellement sur des calculs de valeurs actuelles probables, c’est
a dire des calculs d’expressions de la forme ¢'p = Zj ¢jpj, ou ¢ est un vecteur de flux futurs
actualisés, de la forme (1 + i) ™/c; ol i est le taux d’actualisation (en retenant les notations
usuelles) et ¢; un flux de paiements qui peut survenir a la date j, et p; est la probabilité que le
jeéme paiement soit effectué (généralement une probabilité qu'une personne soit en vie pour le
calcul des rentes, ou la probabilité qu'une personne décede a cette date pour I'assurance déces).

R est un langage idéal pour les calculs de ces valeurs actuelles probables compte tenu de la
forme vectorielle de la plupart des expressions. Nous allons voir dans ce chapitre les bases des
calculs actuariels, en présentant quelques calculs d’annuités classiques, ainsi que les valorisa-
tions de provisions mathématiques. Enfin, nous présenterons un algorithme utilisant des formes
récursives de plusieurs grandeurs utilisées en assurance-vie.

Si nous allons définir toutes les grandeurs qui seront calculées, nous renvoyons a [Petauton
(2004)), Denuit & Robert| (2007)), Hess (2000)), Dickson et al.| (2009) ou |Vylder| (2010) pour une
présentation plus poussée des notions et des différents concepts.

4.1 Quelques notations

Si I’assurance non-vie repose essentiellement sur des modélisation stochastique des sinistres a
venir, I’assurance-vie consiste fondamentalement a actualiser des flux futurs, incluant généralement
un part d’incertitude (associée au déces ou a la survie d’un assuré). De la méme maniére que
nous nous étions attachés a calculer des primes a ’aide d’espérance de flux en assurance non-vie
(conditionnelles & des variables tarifaires dans le chapitre 2 par exemple), nous allons ici calculer
des grandeurs de la forme :

E (kzl (1?2)% - 1(paiement a la date Tk)> ,

ou lassureur s’est engagé a verser un capital C; a des dates T (connues), & condition qu’une
hypothese soit vérifiée a la date Tj. Compte-tenu de la linéarité de ’espérance, si I’on suppose
le taux d’actualisation non aléatoire, on peut réécrire cette derniere expression sous la forme :

[e.e]

Ck

oo
m]?(paiement a la date Tj,) = Z Cy - vTF - P(paiement & la date Ty),
i
k=1

k=1
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ot le facteur d’actualisation v = (1 +1i)~! permettra d’éviter - autant que possible - la notation
i, réservée aux taux d’actualisation en assurance-vie, mais désignant un indice de ligne dans les
algorithmes.

4.1.1 Les probabilités de déces, ou de survie

Comme le montre la formule précédante, un des points essentiels lors de la valorisation est de
disposer de ces probabilités p, liées souvent a la survie - ou au déces - d’un assuré (en particulier
les taux d’actualisation sont supposés ici connus, et constants).

Considérons un individu d’age x a la souscription d’un contrat d’assurance (correspondant
a la variable x sous R), et notons classiquement T}, sa durée de vie résiduelle (qui est aléatoire).
On pose ;g = P(T, < k) la probabilité de ne plus étre en vie a I'age =+ k (c’est & dire k années
apres la souscription), et pp, = P(T, > k) la probabilité d’étre encore en vie a 'age x + k. A x
donné, k — xp, = P(T, > k) est alors la fonction de survie de la variable T,gx.. On peut alors
considérer des vecteurs px et gx. Parmi les autres notations, la probabilité de décéder pendant
une période particuliere, disons entre les ages x + k et x + k + h, sera notée

knde =Pk <Tp <k +h) = Pz — kthPa-

Par abus de notation, on notera parfois p, la quantité 1p, et ¢, la quantité 1q,. Et on notera
kdz = |19 1a probabilité qu'une personne d’age = décede a 'age z + k (ce qui n’a toutefois rien
d’officiel, mais permettra des simplifications sous R par la suite).

Ces grandeurs sont obtenues numériquement a ’aide des tables de mortalité, c’est a dire un
vecteur L de L, pour tous les ages x, correspondant au nombre de survivants ayant atteint ’age
2 au sein d’une cohorte de taille Ly intialement (& la naissance, avec souvent Ly = 100000, par
convention). La premiere valeur du vecteur L, i.e. L[1] correspondra alors a Lg. Il conviendra
d’étre particulierement prudent dans la manipulation des indices. Afin d’illustrer ces calculs, nous
utiliseront les anciennes tables francaises (qui présentent ’avantage d’étre simples d’utilisation)
dites TV88-90 (TV, en cas de vie) et TD88-90 (TD, en cas de déces) .

Les tables étant un comptage de survivants, on en déduit aisément un estimateur des proba-
bilité de survie (et donc aussi de déces, méme si nous reviendrons plus longuement sur ce point
dans le prochain chapitre). La probabilité pour un individu d’age = = 40 ans d’étre encore en
vie k = 10 ans plus tard (et donc d’atteindre les 50 ans) s’écrit

L

kPx = x+k, avec ici z = 40 et k£ = 10.
L,

> TD[39:52,]

Age Lx
39 38 95237
40 39 94997
41 40 94746
42 41 94476
43 42 94182
44 43 93868
45 44 93515
46 45 93133
47 46 92727
48 47 92295

49 48 91833



50 49 91332
51 50 90778
52 51 90171
> TD$Lx [TD$Age==50]
[1] 90778
> x <- 40
>h <- 10
> TD$Lx [TD$Age==x+h]/TD$Lx [TD$Age==x]
[1] 0.9581196
> TD$Lx [x+h+1]/TDSLx [x+1]
[1] 0.9581196
Sous cette forme, on retrouve des formules classiques de probabilités conditionnelles (car on
conditionne toujours par le fait que l'individu est en vie a I’age x) par exemple
Lovirn _ Loykrn  Latk

k+hPx = Lz = Lerk Lz = hPz+k * kPx

soit
P(Ty >k+h)=PT >z+k+hT>z)=P(T>x+k+hT >c+k)-P(T>zx+k|T > z).

Cette relation sera discutée plus en détails dans le Chapitre

Nous verrons par la suite l'intérét de toutes ces formules itératives, mais on peut déja noter
que comme il semble intéressant de parfois changer I'dge de l'individu (ici en regardant par
exemple un individu d’age = + k), on peut voir xp, comme le terme générique d’une matrice p,
dépendant des parametres = et k (avec toujours z = 0,1,2,3,--- ce qui posera des probléemes
d’indexation, et k = 1,2,3,---). Avec cette écriture, nous aurons des soucis pour travailler avec
les ages x = 0. Toutefois, les produits d’assurance-vie étant souvent destiné & des personnes
d’age plus avancé, nous garderons cette simplification dans la premiére partie de ce chapitre.
> Lx <- TD$Lx
m <- length(Lx)
p <- matrix(0O,m,m); d <- p
for(i in 1:(m-1)){
pll: (m-1i),i] <- Lx[1+(i+1):m]/Lx[i+1]
dl1: (m-i),i] <- (@Cx[(+i):(m)]-Lx[(1+i): (m)+1])/Lx[i+1]}
diag(d[(m-1):1,]1) <= 0
diag(pl(m-1):1,1) <= 0
q<- 1-p
La matrice p contient les ;p;, la matrice q contient les ;g;, alors que la matrice d contient
les jd;. On vérifiera sans trop de difficultés que la somme des éléments de d par colonne (donc
a age fixé) vaut 1,
> apply(d,2,sum) [1:10]

(1] 1111111111

Aussi, p[10,40] correspondra a 19p4p :
> pl10,40]
[1] 0.9581196

On peut ainsi représenter les fonctions de survie résiduelle, et calculer une espérance de vie
résiduelle, en notant que

V VV + 4+ V VvV V

oo 0o
ex = E(T;) = Zk “ k)19 = kax
k=1 k=1



> x <- 45

> S8 <- pl[,451/pl1,45]
> sum(8)

[1] 30.46237

On peut aussi écrire une petite fonction permettant de calculer I'espérance de vie résiduelle
a l’age z, pour x > 0 (pour des raisons d’indexation de matrice expliquées auparavant),

> esp.vie=function(x){sum(p[1:nrow(p),x])}
> esp.vie(45)
(1] 30.32957

On peut aussi utiliser TGH-05 (pour les hommes, base de donnée TGH sous R) et TGF-05
(pour les femmes, notée TGF) qui ont été construites & partir d’'une population de rentiers (et
non plus sur ensemble de la population frangaise comme les tables TV88-90 et TD88-90).

Ces tables sont différentes au sens ou elles integrent un aspect temporel que nous n’avons
pas mentionné jusqu’a présent. Compte-tenu des améliorations des conditions de vie, on imagine
que quelqu’un ayant 70 ans en 2010 n’a probablement pas la méme fonction de survie résiduelle
qu’une personne qui atteindra 70 ans en 2050. Et compte-tenu de la durée des engagements en
assurance-vie, il semble légitime d’intégrer cet aspect temporel dans les calculs (ce point fera
Pobjet du prochain chapitre).

Si on consideére une personne d’age x 'année ¢, son année de naissance est alors ¢t —z, colonne
qui va permettre de récupérer les L, utiles pour les calculs.

annee <- 2010

age <- 45

an <- annee-age; if(an>2005){an=2005}
nom <- paste("X",an,sep="")

LH <- TGH[,nom]

LF <- TGF[,nom]

V V V V Vv V

4.1.2 Calculs de valeurs actuelles probables

La valeur actuelle probable s’écrit, de maniere tres générale,

k Ciop k
Jj Py j ) )
N LR
j=1

j=1
ou C = (C,---,Cy) est I'ensemble des montants & verser (correspondant & un vecteur C), ¢ est
le taux d’actualisation, et p = (p1,--- ,pk) est le vecteur des probabilités de verser le capital

aux différentes dates {1,2,...,k} (correspondant & un vecteur P).
> k <= 20; x <- 40; i <- 0.03
> C <- rep(100,k)
> P <- pll:k,x]
> sum((1/(1+1) " (1:k))*P*C)
[1] 1417.045
> sum(cumprod(rep(1/(1+i),k))*P*C)
[1] 1417.045
Rappelons que ce calcul peut se faire au sein d’une fonction générique,
> LxTD<-TD$Lx
> VAP <- function(capital=1,m=1,n,Lx=TD$Lx,age,taux=.03)



{
proba <- Lx[age+1+m:n]/Lx[age+1]
vap <- sum((1/(1+taux)” (m:n))*proba*capital)
return(vap)
}
VAP (capital=100,n=20,age=40)
[1] 1417.045
On peut ainsi rapidement changer la table,
> VAP(capital=100,n=20,age=40,L=TV$Lx)
[1] 1457.646
> VAP(capital=100,n=20,age=40,L=LH)
[1] 1472.078
> VAP(capital=100,n=20,age=40,L=LF)
(1] 1472.598
ou les taux d’actualisation
> VAP (capital=100,n=20,age=40,taux=.04)
[1] 1297.245
Il est aussi possible de visualiser la sensibilité de ces valeurs actuelles probables en fonction
des taux, d’actualisation, ou de I’age de ’assuré, comme sur la Figure 4.1

VAPtaux <- function(T){VAP(capital=100,n=20,age=40,taux=T)}
vVAPtaux <- Vectorize(VAPtaux)

TAUX <- seq(.01,.07,by=.002)

VAPage <- function(A){VAP(capital=100,n=20,age=A,taux=.035)}
vVAPage <- Vectorize(VAPage)

AGE <- seq(20,60)

par(mfrow = c(1, 2))

plot (100*TAUX,vVAPtaux (TAUX) ,xlab="Taux d’actualisation (%)",
ylab="Valeur Actuelle Probable")

plot (AGE,vVAPage (AGE) ,xlab="Age de 1’assuré",ylab="Valeur Actuelle Probable")
par (mfrow = c(1, 1))

V o+ o+ o+ 4+ o+
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4.2 Calculs d’annuités

A partir du moment ot nous disposons de toutes les probabilités pp,, il est possible de faire
tous les calculs imaginables d’actualisation de flux futurs probables. Nous allons reprendre ici les
produits les plus classiques, et notant que tous les produits complexes d’assurance-vie peuvent
étre vus comme des combinaisons linéaires de ces produits simples. Par linéarité de I’espérance,
la valorisation pourra étre faite en faisant la méme combinaison linéaire de ces valeurs actuelles
probables.

4.2.1 Valeurs actuelles probables de capital différé

Le plus simple est probablement la valeur actuelle probable d’un capital différé (pure en-
dowment)  E,, correspondant a la valeur actuelle probable d’un capital de 1 dans le cas ou une
personne actuellement d’age = soit encore en vie a au bout de k années, i.e.

1 1

Ex: "
k (1+4)
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FIGURE 4.1 — Evolution de la valeur actuelle probable de 20 versements de 100 conditionnels a la
survie de I'assuré d’age = au premier versement, en fonction du taux d’actualisation (& gauche),
et de 'age de lassuré (a droite).

La encore, . E, peut étre vu comme le terme générique d’une matrice que 1’on notera E.
> E <- matrix(0,m,m)

> i <= .035

for(j in 1:m){

E[,j] <= (1/(1+i)~(1:m))*p[,j]

+

E[10,45]

[1] 0.663491

> p[10,45]1/(1+i)"~10

[1] 0.663491

vV + + V

4.2.2 Exemples d’assurance en cas de vie

Considérons le cas du versement d’une unité monétaire, commencant des aujourd’hui, et
continuant tant que l'assuré sera vivant. On parlera d’annuité “vie entiere”. On supposera ’an-
nuité payable d’avance. On peut noter que

dwzz(l—izk’ kDz = ZkE

k=0

Plus généralement, on veut considérer non pas des assurance “vie entiere”, mais dites “tem-
oraires”, d’une durée de n années (avec n versements), i.e.
) b

n—1

ndxzz(1+zkkpx ZkE

k=0



Le code est alors le suivant :
adot<-matrix(0,m,m)
for(j in 1:(m-1)){
adot[,jl<-cumsum(1/(1+i)~(0: (m~-1))*c(1,p[1: (m-1),31))
}
adot [nrow(adot),1:5]
[1] 26.63507 26.55159 26.45845 26.35828 26.25351
Notons que 'on peut également différer de h années,

vV + + VvV V

h+n—1 h+n—1

. 1
hnle = § ataF kDx = g kB
k=h

k=h

A h fixé, on peut construire la matrice adot, contenant les [y, d,] (indicé ici en n et ),
h<-1

adoth <- matrix(0O,m,m-h)

for(j in 1:(m-1-h)){

adoth[,jl<-cumsum(1/(1+i) "~ (h+0: (m-1))*p[L+0: (m-1),3j]1)

}

adoth[nrow(adoth),1:5]

[1] 25.63507 25.55159 25.45845 25.35828 25.25351

Dans cet exemple numérique, on décale d’un an, autrement dit, au lieu de considérer des
versements payables d’avance, on considere des versements a terme échu. Classiquement, ces
1|oola SONt NOLES ay,

vV + + V Vv V
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ang(l—i—i)k ’kpx:l;kEm

a<-matrix(0,m,m)
for(j in 1:(m-1)){
al,jl<-cumsum(1/(1+i)~(1: (m))*p[1:m,jl)
}
a[nrow(a),1:5]
[1] 25.63507 25.55159 25.45845 25.35828 25.25351
La derniere ligne de la matrice (présentée ci-dessus) donne les valeurs des annuités “vie entiere”
en fonction de I’age de I'assuré. On retrouve ce qu’aurait donné un calcul direct a I’aide des 1 F,
> apply(E,2,sum) [1:5]
[1] 25.63507 25.55159 25.45845 25.35828 25.25351

Pour les nouvelles tables, TGH et TGF, il est possible d’utiliser le code suivant, pour calculer
la valeur d’une rente de 1 euro, versée pendant une durée (avec une distinction suivant que le
versement survient en début ou en fin d’année)

PRIX <- function(annee=2011,age,sex="HOM",taux=0.04,duree,C=1){
an <- annee-age; if (an>2005){an=2005}

nom <- paste("X",an,sep="")

if (sex=="HOM"){L <- TGH[,nom]}

if (sex=="FEM"){L <- TGF[,nom]}

Q <- L[(age+1):length(L)]/L[(age+1)]

actualisation <- (1+taux)”(0:min(duree,120-age))

prixsup <- sum(Q[2: (min(duree,120-age)+1)]/

actualisation[2: (min(duree,120-age)+1)] )

+ + V V
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+ prixinf <- sum(Q[1:(min(duree,120-age))]/
+ actualisation[l: (min(duree,120-age))] )

+ return(C*c(prixinf,prixsup))}

> PRIX(age=45,duree=20)

[1] 13.95699 13.39479

Cette fonction permet d’avoir le prix de la rente versée en début d’année en cas de vie, ou
en fin d’année.
4.2.3 Exemples d’assurance en cas de déces

Comme précédemment, le cas le plus simple est probablement 'assuranc déces vie entiere,
dont la valeur actuelle probable s’écrit, pour un assuré d’age x qui souhaite le versement d’une
unité & la fin de 'année de son déces,

1 Tx+1 o0 1 Te+1 o 1
Ax:E = E Pa— T, = = 71 g  k—1Pzx " 149z+k—1-
<<1+z’> ) kzzo ((1+z‘> | k) Z(l—l—z)k k=1Pe " 1okl

k=1

Plus générallement, on peut définir une assurance “temporaire déces”, ou le versement du capital
n’a lieu que si le déces survient dans les n années qui suivent la signature du contrat,

n

1
e = ; m “k—1Pz * 19z+k—1-

En utilisant la matrice d définie auparavant, et v = (1 +14)~! le facteur d’actualisation, on a
alors
> A<- matrix(NA,m,m-1)
> for(j in 1:(m-1)){
+ A[,jl<-cumsum(1/(1+i) " (1:m)*d[,j]1)
+ }
> Ax <- A[nrow(A),1:(m-2)]
On peut alors visualiser ces fonctions, et aussi comparer E (VHT“”) avec (VHE(TI)) si on

considere des versements a terme échu (qui pourraient étre vu comme des approximations de
ce montant). Afin de faciliter les calculs, on peut utiliser une version vectorisée de la fonction
esp.vie,
> EV <- Vectorize(esp.vie)
On peut alors visualiser la différence sur la figure 4.2
> plot(0:105,Ax,type="1",xlab="Age",1lwd=1.5)
> lines(1:105,v"~ (1+EV(1:105)) ,col="grey")
> legend(1,.9,c(expression(E((1+r) " -(Tx+1))) ,expression((1+r) " -(E(Tx)+1))),
+ 1ty=1,col=c("black","grey") ,lwd=c(1.5,1) ,bty="n"
A partir de ces contrats de base, il est possible de calculer toutes les valeurs actuelles pro-
bables de flux futurs aléatoires.

4.3 Calculs de provisions mathématiques

En assurance-vie, les engagements de ’assuré et de l'assureur sont, le plus souvent, répartis
dans le temps sur de longues périodes. Pour les rentes par exemple, I’assuré paye ses primes (du-
rant plusieurs années de cotisation), et ensuite seulement 1’assureur verse une rente. Il y a alors
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FIGURE 4.2 — Comparison de x — A, = E (1/1+T”) et (uHE(Tx)).

un décalage entre les prime payée par 'assurée et la couverture du risque par l'assureur, décalage
qui doit étre présenté dans les comptes annuels, intégrant les prévisions de dépenses constituées
sous forme de “provisions” (dites mathématiques). Pour reprendre la définition de [Petauton
(2004) et du Code des Assurances, les provisions mathématiques sont “a I’époque de I’évaluation
la différence entre d’une part la valeur actuelle probable des engagements pris par lassureur |...]
et d’autre part la valeur actuelle probable des engagements pris par les souscripteurs’.

Notons VAP[ttol’tﬂ(assuré) la valeur actuelle probable, en ty, des engagements de 'assuré
pour la période [tq,ts]. Aussi, VAP[%M (assuré) sera la valeur actuelle probable, en 0, des k

premieres primes annuelles. Et on notera VAP[(/,)C 1] (assuré) la valeur actuelle probable, en 0,
des engagements de I’assuré pour la période [k + 1,n], i.e. la valeur actuelle probable des n — k
dernieres primes annuelles.

De maniere analogue, notons VAPE&2
engagements de l'assureur pour la période [ti,t3]. Compte tenu du principe fondamental de

valorisation !, pour un contrat arrivant & échéance au bout de n années, on doit avoir

VAP [%,n](assuré) = VAP[((])m](assureur)

}(assureur) la valeur actuelle probable, en %y, des

pour un contrat soucrit a la date 0 et tel qu’il n’y a plus d’engagement de part et d’autre part
n années. Aussi, pour k compris entre 0 et n,

VAP[%,H (assuré) + VAP[(,)€ 1) (assuré) = VAP[%,H (assureur) + VAP[(,)€ +1,,) (assureur)
avec, de maniere générale

VAP[% K] (assuré) > VAP[%’ K] (assureur)

1. Tous les calculs sont nets, au sens ou aucune marge de sécurité n’est considérée, et qu’aucun frais n’est prélevé
afin de permettre & la compagnie de fonctionner. A la souscription, la valeur actuelle probable des engagements
de ’assuré doit étre égale a la valeur actuelle probable des engagements de I’assureur.



et
VAP[% +1,n) (assuré) < VAP[(,)C +1,) (assureur)

(d’ott le principe d’inversion du cycle de production de 'assurance). La provision mathématique
(pure) de 'année k sera notée V() si elle est actualisée a la date t. La référence étant V, =
1 Vz(k) (i.e. on actualise en k). On définie V,.(0) par

:Vz(0) = VAP[%M(assuré) - VAP[%7k}(assureur).

Cette définition sera dite rétrospective (car on se place sur la période antérieure a k). On peut
aussi écrire, de maniére équivalente (compte tenu du principe de valorisation)

V2 (0) = VAP[%HM(assureur) — VAP[%H’n](assuré).

Cette définition sera dite prospective (car on se place sur la période postérieure a k). Enfin, il
existe une derniere méthode, correspondant a une simple mise a jour, i.e.

k-1 Va(k—1) + VAP[],Z 11 k](assure) VAP[I;C 11 # (assureur) =V, (k — 1).

Cette méthode sera dite itérative, voire en 'occurence itérative ascendante, car on initialise
avec oV, (0) = 0. Mais il sera aussi possible de construire une méthode itérative descendante,
commencant a la fin du contrat (ici la récursion est ascendante).

4.3.1 Exemple d’une assurance temporaire déces

Le principe fondamental de valorisation nous garantit que
V AP®(assuré) = VAP (assureur)

en faisant une valorisation & la date 0, c’est a dire a la date de souscription du contrat.
Plagons nous du point de vue de 'assuré (d’age = a la souscription) : il souhaite payer une
prime annuelle constante 7, 5, noté plus simplement , tant qu’il est en vie i.e.

n—1

VAPO (assuré) P(T, > k) =m - nay,

OM

1+z

ou
n—1

. 1
Ay = T i kPzs

(on utilise ici a@ car le paiement se faisant ici en début de période). De méme,

n

1
VAPO(assureur) = Z m Pk—1<Ty <k)=,4,,
k=1

ou
n

1
A, = E —_—
n{y £ (1+Z)k *k—1Px * 19z+k—1,
I'indemnité étant versée par 'assureur a terme échu). On en déduit que la prime annuelle est
1% q p
alors

’I’LA])

na:v

m =

A partir des grandeurs (ou de ces matrices de grandeurs) calculées auparavant, on peut
calculer la prime annuelle des contrats déces



> x <-50; n <-30

> prime <-A[n,x]/adot[n,x]

> sum(prime/(1+i)~(0: (n-1))*c(1,p[1:(n-1),x]))
[1] 0.3047564

> sum(1/(1+i)"(1:n)*d[1:n,x])

[1] 0.3047564

La méthode prospective

Pour le calcul de la provision mathématique du contrat d’assurance “temporaire déces”, la
méthode prospective permet d’écrire

£V (0) = VAP[%HM (assureur) — VAP[%H’n] (assuré)

Notons que V,(0) = gVo(k) - xE; ou E, est la valeur actuelle probable d’un capital différé,
relatif au versement d’un euro dans k années, conditionnée par la survie de 'assuré d’age x a la

souscription, i.e.
1

Ey=——— - P(T, > k) ="
kL (1 T Z) 2 ( x ) kPx
Si l'on se place a la date k (car c’est le plus simple, mais 'assuré a alors I’age x + k), notons
que la différence entre les valeurs actuelles probables des engagements des deux parties donne,
simplement
kvx(k) = n—kAm+k - T n—kd:r—l—k

car d’un co6té, on a une assurance “temporaire déces” sur les n — k années restantes pour un
assuré d’age = + k, et de l'autre, l'assuré a pris I'engagement de verser sa prime (qui reste
inchangée) pendant n — k années s’il vit. Aussi,

KVe(0) = kVa(k) - kEe = pn—rAe — T kn—ila
ou 'on considere des assurances déces différées. On peut aussi écrire

 kin—kAe — T ks
kEJ:

kv&<k)

> VR <- (primex*adot[l:n,x]-A[1l:n,x])/E[1l:n,x]
> plot(0:n,c(0,VR) ,xlab="",ylab="Provisions mathématiques",type="b")
La méthode retrospective

Pour la méthode rétrospective, on écrit simplement
V2 (0) = VAP[%JC] (assuré) — VAP[%M (assureur)
Le.  Vi(k) = mpay — pAgz. Or V(0) = Vi(k) - pEy, et donc

_ by — p Az
> VP <- diag(A[n-(0:(n-1)),x+(0:(n-1))1)-

+ primediag(adot[n-(0: (n-1)),x+(0: (n-1))1)

> points(0:n,c(VP,0),pch=4)



La méthode itérative

Enfin, pour la derniere méthode, 'idée est ici de décrire la variation de la provision mathématique
entre deux dates en fonction des variations des engagements de part et d’autre. D’un coté il y
a le paiement de la prime (en début de période, donc pas de probleme d’actualisation et de
non-paiement), et de 'autre, une assurance déces sur un an. Aussi yVy(k —1) = 41 Va(k—1) +
m—1Az1k—1. Or xViu(k — 1) = xVa(k) - 1Eyyk—1 ce qui donne, finalement

_kVa(k =)+ 7 — 1Ak
1Bk

kv@(k)

avec la convention que la premiére provision est nulle (de part notre principe fondamental de
valorisation).

> VI<-0

for(k in 1:n){

VI <- c(VI,(VI[k]+prime-A[1,x+k-1])/E[1,x+k-1])
}

points(0:n,VI,pch=5)

v + + V

Comme le montre la Figure ces trois méthodes coincident (on ne distingue plus les trois
points),
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FIGURE 4.3 — Evolution de la provision mathématique pour un contrat d’assurance “temporaire
déces”, v = 50, n = 30 et ¢ = 3.5%.

4.3.2 Exemple d’une assurance en cas de vie

On considere ici un assuré d’age x, cotisant pendant m années pour sa retraite, et touchant
au bout de nm années de cotisation une rente annuelle d’un montant C', payé tous les ans a



terme échu s’il est en vie, jusqu’a son déces (i.e. une annuité viagere). La prime pure unique
(correspondant a la valeur actuelle probable des engagements de 1’assureur) serait

j=n

soit, avec les notations actuarielles, VAFy = C - ,ja,; (i.e. la valeur actuelle probable d'une
annuité viagere différée de n années). Si ’assuré paye une prime annuelle constante pendant ces
n années, en début d’année, alors la prime est

_VAPO_C n|%

T =
nQx nlg

On peut alors passer au calcul de la provision mathématique, en notant qu’il faudra distinguer
les n premiéres années (période ou 'assuré paye sa prime) et les dernieres (période ou l’assureur
verse la rente). Pour le calcul des ,ja,, on va utiliser la matrice adiff
> adiff=matrix(0,m,m)
> for(i in 1:(m-1)){
+ adiff[(1+0: (m-i-1)),i] <- E[(1+0: (m-i-1)),il*a[m,1+i+(0: (m-i-1))]
+ }

La prime annuelle peut étre calculée de plusieurs maniéres pour une personne souscrivant
un contrat a x = 35 ans.

> x <- 35
> n <- 30
> aln,x]

[1] 17.31146
> sum(1/(1+i)"(1:n)*c(pll:n,x]) )
[1] 17.31146
> (prime <- adiff[n,x] / (adot[n,x]))
[1] 0.1661761
> sum(1/(1+1) " ((n+1) :m)*p[(n+1) :m,x] )/sum(1/(1+i)~(1:n)*c(pll:n,x]) )
[1] 0.17311
Une fois obtenue la cotisation a payer (annuellement) pendant n année (notée prime), on peut
calculer les provisions mathématiques, en distinguant la période de cotisation (ou la provision
devrait augmenter avec le temps) de la période de retraite (ou la provision devrait baisser).

Méthode prospective

On se place ici au bout de k années. Si k < n (I’assuré paye encore sa prime), en faisant la
différence entre les engagements restants de ’assureur et ceux de ’assuré, on obtient

kvﬂ?(o) =C- n—k|Qz+k — n—kQz+k-
Si en revanche on suppose que k > n (seul I'assureur a encore des engagements) alors
sz(O) =C- Ap+k-

Tout simplement. En effet, dans le premier cas, I'assuré a vieilli, et il a moins de versements a
venir (c’est la partie de droite). Pour l'assureur, il s’agit toujours d’une annuité différée. Dans
le second cas, I'assureur doit verser une rente viagere tant que ’assuré est en vie.



VP <- rep(NA,m-x)

VP[1:(n-1)] <- diag(adiff[n-(1:(n-1)),x+(1:(n-1))] -
adot[n-(1:(n-1)) ,x+(1:(n-1))]*prime)

VP[n: (m-x)] <- a[m,x+n: (m-x)]

plot(x:m,c(0,VP) ,xlab="Age de 1l’assuré",
ylab="Provisions mathématiques")

+ V V + Vv V

Méthode rétrospective

La aussi, il faut distinguer suivant la valeur de k. Si k£ < n, on obtient simplement que

T - kg

Vz(0) =
i(0) = T

puisque sur cette période, seul 'assuré a pris des engagements. Pour rappel, i F, est la valeur
actuelle probable du capital diffféré, i.e.

kDx
E,=———.
REE T (L i)k
Pour la seconde période, si k > n,
T nly —C - 10
WVi(0) = —— nlk =

kEw

avec & gauche un terme constant (les engagements de l'assuré étant passés), et a droite les
engagements qu’avait pris I’assureur, i.e. les k — n années qui ont suivi ’année n.
Pour les calculs, on utilise le fait que

n+k

n|kQz = E Bz = n|Qz — n+tk|Gz
j=n+1

On peut alors utiliser (comme l'indice x ne change pas) une matrice fonction des deux

premiers indices,
> adiff[n,x]

[1] 2.996788
> adiff[min(which(is.na(adiffx[,n])))-1,n]

[1] 2.996788
> adiff[10,n]

[1] 2.000453
> adiff[n,x]- adiff[n+10,x]

[1] 2.000453

A T’aide de ces fonctions, on peut calculer les provisions de maniére retrospective,
VR <- rep(NA,m-x)
VR[1:(n)] <- adot[l:n,x]*prime/E[1:n,x]
VR[(n+1): (m-x)] <- (adot[n,x]*prime - (adiff[(n),x]-
adiff [(n+1): (m-x),x]) )/E[(n+1): (m-x),x]

points(x:m,c(0,VR),pch=4)

VvV + V VvV V



Méthode itérative

Pour la méthode itérative, on notera que si k < n,

_1Vz(0
ka(O) =k 1E ( )+ﬂ—
10x4+k—1
alors que si k > n
_1Vz(0
a(0) = =0 o
1Er k-1

Avant la retraite, la provision augmente du montant de la prime, et lorsque ’assuré prend sa
retraite, la provision diminue du montant de la rente annuelle versée.

vV + + V + + Vv V

VI<-0

for(k in 1:n){

VI<-c(VI, ((VI[k]+prime)/E[1,x+k-11))
}

for(k in (n+1):(m-x)){

VI<-c(VI, ((VI[k])/E[1,x+k-1]1-1))

}

points(x:m,VI,pch=>5)

Comme auparavant, les trois méthodes donnent des résultats identiques, et on peut visualiser

I’évolution de la provision mathématique sur la Figure 4.4
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rovision<-data.frame (k=0: (m-x),
etrospective=c(0,VR) ,prospective=c(0,VP),

terative=VI)

ead(provision)

retrospective prospective iterative
0.0000000  0.0000000 0.0000000
0.1723554  0.1723554 0.1723554
0.3511619  0.3511619 0.3511619
0.5367154 0.5367154 0.5367154
0.7293306  0.7293306 0.7293306
0.9293048  0.9293048 0.9293048

ail(provision)

k retrospective prospective iterative
68 0.6692860 0.6692860 6.692860e-01
69 0.5076651  0.5076651 5.076651e-01
70 0.2760524  0.2760524 2.760525e-01
71 0.0000000  0.0000000 1.501743e-10
72 NaN  0.0000000 Inf
73 NaN  0.0000000 Inf

4.4 Algorithme récursif en assurance-vie

Giles (1993) a noté que, comme la plupart des quantitées utilisés en assurance vie pouvaient

étre obtenues de maniere récursive, il était possible d’utiliser des algorithmes sur les suites
définies par récurrence, pour calculer la plupart des grandeurs usuelles.
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FIGURE 4.4 — Evolution de la provision mathématique pour un contrat d’assurance retraite,
avec cotisation annuelle pendant n années puis versement d’une rente viagere, x = 35, n = 30

et i = 3.5%.

4.4.1 Quelques exemples de relations de récurrence

En notant g, = P(k < T, < k+1), la probabilité de déceder a I’age x + k, la valeur actuelle
probable d’un euro payé au déces d’une personne d’age x aujourd’hui (a terme échu), s’écrit :

o
Ay = E(VTm-H) = ka+1k\Qx-
k=0

On notera qu’il existe une relation liant A, et A;41,
Aw =vq; + Vp:vA:v—l-l

Considérons maintenant une rente vie entiére :
o0
. k
Az = E V' kPx>
k=0

qui peut se limiter également & n années :

—1
.. < k 1— Ax:n—' N n
Qg:n = ZV kPx = ﬁ ol Appr=v nPx
k=0

Si 'on considere des paiements immédiats, et non plus a terme échu, on obtient

n
k .
Qg = § Vippe = Qgipn — 1+ Vnnpz-
k=1

Dans le cas ou on ne limite plus a n années, on a aussi :

Gy =1+ vpglpy1.



4.4.2 Algorithme de calculs itératifs

Les formules obtenues par récurrence sont particulierement intéressants, car il est facile de
les mettre en oeuvre. Supposons que u = (u,,) satisfasse une équation de la forme

Up = Ap + bnun+1a

pour n =1,2,---  m de telle sorte que u,,+1 est connu, ot @ = (a,) et b = (b,) sont connus. La
solution générale est alors donnée par

i—1

Cum [0 b+ 300, a5 T b
- —1

H?:o bi
avec la convention by = 1. On peut utiliser le code générique suivant pour résoudre numériquement
de telles relations de récurrence,
> recurrence <- function(a,b,ufinal){
+ s <= rev(cumprod(c(1l, b)));
+ return(rev(cumsum(s[-1] * rev(a))) + s[1] * ufinal)/rev(s[-1])
+ }

Par exemple pour les calculs d’espérance de vie,

€r = Py + Pz - €241

Le code est alors tout simplement,
> Lx <- TD$Lx
> x <- 45
> kpx <- Lx[(x+2):length(Lx)]/Lx[x+1]
> sum(kpx)
[1] 30.32957
> esp.vie(x)
[1] 30.32957
> px <- Lx[(x+2):1length(Lx)]/Lx[(x+1): (length(Lx)-1)]
> e<- recurrence(px,px,0)
> el[1]
[1] 30.32957
On retrouve la méme espérance de vie restante pour une personne de 45 ans que le calcul
direct, sauf qu’ici on a le vecteur des espérances de vie résiduelles a différents ages.
Pour les calculs de valeur actuelle probable, on peut regarder une assurance déces, avec un
payement a terme échu, 'année du décés de I'assuré,

Ay = Vqy + Vpa:Aerl

La encore, on peut utiliser I’écriture par récurrence,
> x <= 20
> gx <- 1-px
> v <- 1/(1+1)
> Ar <- recurrence(a=v*qgx,b=v*px,xfinal=v)
Si on regarde la valeur de A, pour z = 20,
> Ar[1]
[1] 0.1812636
> Ax[20]
[1] 0.1812636



Pour les calculs de provisions mathématiques

nVz = VQz+n — Pr T UPztnn+l Ve

x <- 50

px <- L[(x+2):1length(L)]/L[(x+1):(length(L)-1)]
px <- px[-length(px)]

gx <- 1-px

V=recurrence (a=vxqx+px[1] ,b=v*px,xfinal=0)

V V V V V

4.5 Le package lifecontingencies

Toutes ces fonctions - ou presque - ont été programmeées dans le package lifecontingencies.

4.5.1 Les quantités démographiques

> library(lifecontingencies)

A partir de TD$Lx correspondant au vecteur (L), il est possible de calculer a I'aide de la
classe lifetable une table de mortalité, comportant pour tous les ages x les probabiliés de
survie p,, mais aussi les espérances de vie résiduelles e,.

> TD8890 <- new("lifetable",x=TD$Age,1x=TD$Lx,name="TD8890")
removing NA and Os

> TV8890 <- new("lifetable",x=TV$Age,1x=TV$Lx,name="TV8890")
removing NA and Os

> TV8890

Life table TV8890

X 1x px ex
1 0 100000 0.9935200 80.2153857
2 1 99352 0.9994162 79.2619494
3 2 99294 0.9996677 78.2881343
4 3 99261 0.9997481 77.3077311
5 4 99236 0.9997783 76.3247626
6 5 99214 0.9997984 75.3400508
7 6 99194 0.9998286 74.3528792
8 7 99177 0.9998387 73.3647956
9 8 99161 0.9998386 72.3765545
10 9 99145 0.9998386 71.3881558

Cet objet (de la classe S4) peut alors étre appelé en utilisant différentes fonctions, comme la
probabilité de survie 19p4o,

> pxt(TD8890,x=40,t=10)
[1] 0.9581196

> pl[10,40]

[1] 0.9581196



qui correspondent aux calculs effectués auparavant.
Plusieurs autres fonctions peuvent étre utilisées pour calculer d’autres quantités, comme
o
10440, OU €NCOre €40:107,

> qxt(TD8890,40,10)
[1] 0.0418804

> exn(TD8890,40,10)
[1] 9.796076

Il est aussi possible de calculer des ,p, pour des durées h non entieres. Plusieurs interpolations
sont proposées, linéaire, avec une force de mortalité constante, ou encore hyperbolique,

> pxt(TD8890,90, .5,"linear")

[1] 0.8961018

> pxt(TD8890,90, .5, "constant force")
[1] 0.8900582

> pxt(TD8890,90, .5, "hyperbolic")

[1] 0.8840554

On peut visualiser ces trois méthodes d’interpolation sur la Figure [4.5
pxtL <- function(u){pxt(TD8890,90,u,"linear")}
pxtC <- function(u){pxt(TD8890,90,u,"constant force")}
pxtH <- function(u){pxt(TD8890,90,u, "hyperbolic")}

PXTL <- Vectorize(pxtL)

PXTC <- Vectorize(pxtC)

PXTH <- Vectorize (pxtH)
u=seq(0,1,by=.025)
plot(u,PXTL(u),type="1",xlab="Année",ylab="Probabilité de survie")
lines(u,PXTC(u),col="grey")

lines(u,PXTH(u) ,pch=3,1ty=2)

legend(.45,.99,c("Linéaire","Force de mortalité constante",
"Hyperbolique"),lty=c(1,1,2),
col=c("black","grey","black") ,bty="n")

Pour le premier, on utilise tout simplement une interpolation linéaire entre [;pz €t [5)41P2
(en notant [h] la partie entiere de h > 0),

nbr = (L —h+[h]) ppe + (h = [h]) (p)4+10x

Pour le second, on utilise le fait que

h
hDz = €Xp <_/ Nx—i—st) .
0

Supposons que h € [0,1), et que s — g5 est constante sur l'intervalle [0, 1), alors la formule
précédante devient

+ + VV V V V V V V V V.YV

h
hDz = €XD (_/0 “x+sd8> = exp|—fiz - h] = (px)h-

Enfin, la derniére (toujours dans le cas ou h € [0,1)), proposée par Baldacci, repose sur 'utili-
sation d’une relation de la forme

L _1—h+[h]  h-[H]
hPx [h) Pz [h]+1Pz
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FIGURE 4.5 — Interpolation de pp, pour x = 90 et h € [0, 1].

Cette relation peut également s’écrire

[h]+1Px
1= (1 =h+[h]) hrynde

hPx =

> .5*pxt (TD8890,90,1)+.5%1

[1] 0.8961018

> pxt (TD8890,90,1)".5

[1] 0.8900582

> pxt (TD8890,90,1)/(1-.5%qxt (TD8890,90,1))
[1] 0.8840554

> (.5/1+.5/pxt (TD8890,90,1)) "~ (-1)

[1] 0.8840554

On peut aussi travailler sur plusieurs tétes, par exemple un homme (dont la table est TD88-
90) et une femme (dont la table est TV88-90). On peut alors calculer des probabilités de survie
jointe, ppzy, ou ‘au contraire’ la probabilité qu’au moins une personne soit encore en vie j,pzy,

> pxyt(TD8890,TV8890,x=40,y=42,t=10,status="joint")
[1] 0.9376339
> pxyt(TD8890,TV8890,x=40,y=42,t=10, status="1last")
[1] 0.9991045

On peut aisément retrouver des propriétés classiques, comme

hPzy = hPz * hPy,

(en supposant les survies indépendantes) mais aussi

hPzy = hPz + hPy — hPzy-



> pxt(TD8890,40,10) *pxt (TV8890,42,10)

[1] 0.9376339

> pxt(TD8890,40,10)+pxt (TV8890,42,10) -

+ pxyt (TD8890,TV8890,x=40,y=42,t=10,status="joint")
[1] 0.9991045

Pour I'analyse de la survie sur deux tétes, on peut ainsi visualiser les fonctions de survie des
durées restantes avant le premier et le dernier déces, sur la Figure 4.6
JOINT=rep(NA,65)
LAST=rep(NA,65)
for(t in 1:65){
JOINT [t]=pxyt (TD8890,TV8890,x=40,y=42,t-1,status="joint")
LAST [t]=pxyt (TD8890,TV8890,x=40,y=42,t-1,status="1last") }
plot(1:65,J0INT,type="1",col="grey" ,xlab="",ylab="Probabilité de survie")
lines(1:65,LAST)
legend(5,.15,c("Dernier survivant","Vie jointe"),lty=1,
col=c("black","grey"),bty="n")
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FIGURE 4.6 — Evolution de h — j,pzy et h = ppzy pour z = 40 et y = 42.

On peut également obtenir les espérances de ces deux lois,

> exyt (TD8890,TV8890,x=40,y=42,status="joint")
[1] 30.39645

> exyt (TD8890,TV8890,x=40,y=42,status="1last")
[1] 44.21737

4.5.2 Les quantités actuarielles classiques

La valeur probable d’un capital différé est ,F,, qui peut étre calculé par



> Exn(TV8890,x=40,n=10,i=.04)
[1] 0.6632212

> pxt (TV8890,x=40,10)/(1+.04) ~10
[1] 0.6632212

Les calculs d’annuités sont eux aussi relativement simples a obtenir, et a recalculer, par
exemple les ,d,

> Ex <- Vectorize(function(N){Exn(TV8890,x=40,n=N,i=.04)})
> sum(Ex(0:9))

[1] 8.380209

> axn(TV8890,x=40,n=10,1i=.04)

[1] 8.380209

ou encore les , A,

> Axn(TV8890,40,10,i=.04)
[1] 0.01446302

I1 est aussi possible d’avoir des flux croissants (Increasing) ou décroissants (Decreasing) de
maniere arithmétique, i.e.

n—1
k+1
nlAy = kzo m *k—1Pz " 192+k—1,

ou
n—1

n—k
nDA; = Z m *k—1Pz " 19x+k—1;
=0

> DAxn(TV8890,40,10,i=.04)
[1] 0.07519631
> IAxn(TV8890,40,10,i=.04)
[1] 0.08389692

Dans le cas ou le capital n’est pas versé en début d’années, mais fractionné (par exemple
tous les mois), les calculs sont un peu différents. Par exemple, si on ne verse plus 1 (euro) en
début d’année, mais 1/12 tous les mois, la valeur actuelle probable des flux futurs est

> sum(Ex(seq(0,5-1/12,by=1/12))*1/12)
[1] 4.532825

Ce montant est obtenu directement & l’aide du parametre k dans la fonction axn,

> axn(TV8890,40,5,i=.04,k=12)
[1] 4.532825



4.5.3 Exemple de calculs de primes et de provisions mathématiques

Considérons un contrat d’assurance déces ou un capital K est versé aux ayant-droits si le
déces d’une personne x survient entre ’age x et  + m. On suppose qu’une prime constante est
versée annuellement entre I'age = et © +n (avec n < m). La prime 7 est alors solution de
A:t:m—'

K- Apyr =7 lgip, 16 m= K- —

Qg

Ainsi, si un personne de x = 35 ans souhaite un contrat assurant le versement d’un capital
de K = 100000 a son déces s’il survient avant qu’il n’ait 75 ans, et qu’il verse une prime constant
jusqu’a ses 75 ans (au plus, il ne verse plus de prime s’il décede), alors la prime est donnée par

> (p <- 100000%Axn(TV8890,35,40,i=.04)/axn(TV8890,35,40,i=.04))
[1] 366.3827

On parle ici classiquement de benefit premium. On peut également calculer la provision
mathématique associée a ce contrat, i.e. benefit reserve. On se placera dans le cas o m = n. La
provision est donnée, a la date k, comprise entre 0 et n par

KV = K- Az+k:n7k\ T Oy k|
(en écriture prospective).

> V <- Vectorize(function(k){100000*Axn(TV8890,35+k,40-k,i=.04)-
+ p*axn(TV8890,35+k,40-k,i=.04)})

> V(0:5)

[1] 0.0000 290.5141 590.8095 896.2252 1206.9951 1521.3432

La Figure 4.7 permet de visualiser I’évolution de la provision
> plot(0:40,c(V(0:39),0) ,type="b",ylab="provisions mathématiques",xlab="k")

4.6 Exercices

Exercise 4.6.1. Le modéle de Gompertz suppose que la fonction de survie associée & une vie
humaine pouvait s’écrire

Ly = ky°.
A partir des tables TVE8-90 et TD8ES-90, et de 10p50, 10Ps0 €t 1070, proposer des estimateurs
des parameétres K, c et 7.

Exercise 4.6.2. On suppose que i, = a+bc®d®” . Construire une fonction permettant de calculer
kPzx-

Exercise 4.6.3. Montrer qu’il existe une relation de récurence sur les IA;.,7. En utilisant
Ualgorithme présenté dans la Section[{.4), les calculer.

Exercise 4.6.4. On supposera que les durées de vie résiduelles ne sont plus indépendentes, mais
que

tPxy = P(Tr > taTy > t) = C(tvatpy)
ou C est une copule. Pour les tables TV8ES-90 et TDES-90, et pour des assurés d’age x = 40 et
y = 45, tracer
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FIGURE 4.7 — Evolution de h = ppzy et h = ppzy pour v = 40 et y = 42.

la prime d’une rente de veuvage (versée entre le premier et le dernier déces, a terme échu)
en fonction de 8 ou Cy est une copule Gaussienne

la prime d’une rente de veuvage en fonction de 6 ou Cy est une copule de Clayton

la prime d’une rente de veuvage en fonction de 0 ou Cy est une copule de Gumbel

Exercise 4.6.5. Considérons une assurance de prét : un individu d’age x a emprunté un capital
d’un montant C' et s’est engagé a le rembourser en n annuitiés de montant p, payables a terme
échu. On suppose qu’a la date de prise d’effet du contrat de prét, il souscrit une assurance
garantissant un remboursement des sommes restant dues si l’assuré décede avant d’avoir atteint
l’age +n. On notera t le taux d’intérét du prét (qui est a priori différent du tauz d’actualisation

i).

1.

Ezxprimer t en fonction de C, de r et de n. Ecrire la fonction permettant de calculer ce
tauz.

On note Cy le capital restant du a la fin de la kéme année, montrer que

1+t)k -1
Ck:C’—(r—tC)(th)
Ecrire la fonction renvoyant le vecteur de ces capitauz (C,Cq,--- ,Cy).

Montrer que la prime pure unique du contrat d’assurance s’écrit

n
1
= Z k—1DPz * 1Qx+k—1ck—1m
k=1

Ecrire une fonction permettant de calculer cette prime en fonction de l’age de l’assuré x,
du tauz d’actualisation i, de la table de mortalité retenue L, du capital C, de la durée du
prét n et du taux du prét t.



4. En supposant que la prime d’assurance soit payée annuellement (et est constante dans le
temps), pendant m années (1 < m < n), et en notant que la prime annuelle s’écrit 7/ iy,
calculer la provision mathématique par une des trois méthodes (prospective, rétrospective
oUu Tecursive).

5. En supposant que la prime d’assurance n’est pas plus constante dans le temps, mais pro-
portionnelle au capital restant du (payée auz dates 0,1,...,n — 1) montrer que la prime
est

wClh
S0 kPaCr(1+ )7k

Ecrire une fonction renvoyant le vecteur des primes, et représenter graphique l’évolution
de la provision mathématique.

T —

Exercise 4.6.6. Representer l’évolution des provisions mathématiques pour un contrat avec
capital différé (den années pour un assuré d’dge x) avec contre-assurance, au sens ou l’assureur
rembourse les primes en cas de déces avant l’échéance.






Chapitre 5

Les tables prospectives

De méme que le provisionnement (évoqué dans le chapitre [3|) posait le probleme de la dy-
namique de la vie des sinistres (dont le montant n’est pas connu le jour de la survenance du
sinistre), les contrats d’assurance-vie sont liés a des probabilités de déces (ou de survie) dans un
futur plus ou moins lointain. Ces calculs doivet donc faire intervenir un aspect temporel. Par
exemple, lorsque nous écrivions la formule

k+hPx = hPz+k * kPx

nous omettons le fait que les probabilités ne devraient pas étre calculées a la méme date. Si la
personne est d’age x a la date ¢, elle aura un age = + k a la date t + k. Par exemple, en notant
en puissance ’année ou la probabilité est calculée, on aurait

2010) _ (2035) 2010
( ) = 25Dz 425 " 25 Fr )7

254+25Py
ou ( )
2010) __ 2045 2010
35+15p§; ) = 15P4 435 '35p§5 ).

Si k est elevé, on imagine que les probabilités de survie doivent tenir compte des améliorations
de santé, notamment les conditions de vie, les avancées en médecine. Pour des compléments
théoriques sur les outils présentés ici, nous renvoyons a |[Pitacco et al.| (2009), Denuit & Robert
(2007) ou encore Cairns et al.| (2008)

5.1 Les bases de données prospectives

Dans le cadre statique de l'assurance-vie, détaillé dans le Chapitre 4] toutes les grandeurs
pouvaient étre construites a partir des L,, ou des 1p,, ou x était I’dge des individus. Ici, nous
allons intégrer la dimension temporelle, en notant qu'une table de mortalité est construite a une
date ¢. Aussi, formellement, on notera L, ; le nombre de personnes d’age = en vie a la date ¢.

Les données que nous allons utilisées sont tirées du site internet http://www.mortality.org, et
il s’agit de données francaises, avec respectivement la mortalité des femmes, des hommes, et de
I’ensemble de la population, entre 1899 et 2005. Ici on dispose de D, ; le nombre de personnes
décédées a I'age x 'année t (la base Deces), et E,; I'exposition (la base Expo). Un léger travail
sur les données du site est nécessaire (car un age 110+ existe dans la base est rend les dges non
numériques),

> Deces$Age <- as.numeric(as.character(Deces$Age))
> Deces$Age[is.na(Deces$Age)] <- 110

159


http://www.mortality.org

> Expo$Age <- as.numeric(as.character (Expo$Age))
> Expo$Age[is.na(Expo$Age)] <- 110

Pour commencer, on peut visualiser 1’évolution de la surface du taux de mortalité, afin de
mieux comprendre la nécessité d’une analyse dynamique de la démographie, ou

[ - Dz,t
Tt — .
E:v,t

L’évolution de cette surface est repésentée sur la Figure avec (z,t) — log pig
> MU <- Deces[,3:5]/Expo[,3:5]

> Ages <- unique(Deces$Age)

> Annees <- unique(Deces$Year)

> matriceMU <- matrix(MU[,3],length(Ages),length(Annees))
> persp(Ages[1:100],Annees,log(matriceMU[1:100,]), theta=-30,
+ xlab="Age",zlab="Taux de décés (log)")

W
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FIGURE 5.1 — Surface de mortalité (z,t) — log p1;+ pour les Hommes, en France, entre 1899 et
2005, et entre 0 et 110 ans.



5.1.1 La lecture longitudinale des tables

Ces données ne sont pas sous le format que nous avions vu dans le chapitre 4. Toutefois, on
va pouvoir construire des fonctions proches de celles construites alors. On peut par exemple en
placer I’'année an=1900 ou an=2000 pour décrire la mortalité cette année la.

mu.an <- function(a, pointille=1, cex=1.5){

Da <- Deces[Deces$Year==a,]

Ea <- Expo[Expo$Year==a,]

MUa <- Dal[,3:5]/Eal[,3:5]

titre <- paste("Taux de mortalit\’e",a,sep=" ")

plot(Ages,log(MUa[,1]), type="1", xlab="Age", ylab="Taux de d\’ecés (log)",
main=titre, lwd=1.7, ylim=c(-9.8,.5), lty=pointille, cex=cex, cex.axis=cex,
cex.lab=cex, cex.main=cex)
lines(Ages,log(MUa[,2]),col="grey",lwd=1.7,1lty=pointille)
legend(75,-6,c("Femmes", "Hommes") ,1ty=pointille,lwd=1.7,
col=c("grey","black") ,bty="n")

}

Cette petite fonction permet de tracer x +— log iz ¢ a t fixé, ot pg 4 = Dyy/Ey . La Figure
permet de comparer ces deux fonctions, en 1900 et en 2000.

+ + + + + + + + + + + V

Remark 5.1.1. Il ne s’agit pas ict du suivi d’une cohorte, mais de l’étude de la mortalité pour
des personnes d’dge différents (et nées a des périodes différentes) a une date t bien précise.

> par(mfrow = c(1, 2))
> mu.an(1900)
> mu.an(2000)
> par(mfrow = c(1, 1))

Taux de mortalité 1900 Taux de mortalité 2000

Taux de déces (log)

-8

-10

Femmes
— Hommes

Taux de déceés (log)
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-10

Femmes
— Hommes
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T
80 100

:
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FIGURE 5.2 — Logarithmes des taux de mortalité x +— log ;¢ pour les Hommes et les Fennes,
en France, entre 0 et 110 ans, en 1900 & gauche, et en 2000 a droite.

Compte tenu du lien entre le taux de hasard et les fonctions de survie, on peut en déduire
les fonctions de survie a la naissance (c’est a dire x=0). On utilise (comme dans le chapitre



précédant)
x+h
hPz,t = exp(— / fs,ids).
x

La encore, une fonction générique permettra de comparer des courbes & plusieurs dates.

> proba.survie <- function(x, a, cex=1.5){

+ Da <- Deces[Deces$Year==a,]

+ Ea <- Expo[Expo$Year==a,]

+ MUa <- Dal[,3:5]/Eal[,3:5]

+ titrey <- paste("Probabilit\’e de survie & 1’&ge",x,"en",a,sep=" ")

+ titre <- paste("Probabilit\’e de survie en",a,sep=" ")

+ plot(l:length(Ages) ,exp(-cumsum(MUa[(x+1) :length(Ages),2])), type="1", xlab="Age",
+ ylab=titrey, main=titre, lwd=1.7, ylim=c(0,1), cex=cex, cex.axis=cex, cex.lab=cex,
+ cex.main=cex)

+ lines(1:length(Ages),exp(-cumsum(MUa[(x+1) :length(Ages),1])),col="grey",lwd=1.7)

+ legend(0,.2,c("Femmes", "Hommes") ,1ty=1,1lwd=1.7,col=c("grey","black") ,bty="n")

+ }

La Figure permet de comparer ces deux fonctions, en 1900 et en 2000.
par (mfrow = c(1, 2))
proba.survie(0,1900)
proba.survie(0,2000)
par (mfrow = c(1, 1))

vV V V V

Probabilité de survie en 1900 Probabilité de survie en 2000

1.0
1.0

0.8
0.8

0.6
|
0.6
L

0.4
0.4

0.2

Probabilité de survie a I'age 0 en 2000
0.2

Probabilité de survie a I'age 0 en 1900

0.0
0.0

T T
0 20 40 60 80 100 0 20 40 60 80 100

FIGURE 5.3 — Fonctions de survie a la naissance h — ppo; pour les Hommes - a gauche - et les
Femmes - & droite - en France, entre 0 et 110 ans, entre 1900 (foncé) et 2000 (clair).

Enfin, la figure permet de visualiser la rectangularisation des fonctions de survie.
cex <- 1.5

par(mfrow = c(1, 2))

plot(Ages, prob.par.annee(1900, 2), type="1", xlab="Age",

ylab="Probabilit\’e de survie & la naissance", main="Mortalit\’e des hommes",
ylim=c(0,1), col=gray(1), xlim=c(0,120), cex=cex, cex.axis=cex, cex.lab=cex,
cex.main=cex)

+ + + VvV V Vv V
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FIGURE 5.4 — Fonctions de survie a la naissance h +— ppg pour les Hommes et les Fennes, en

for(a in 1901:2000){

lines(Ages, prob.par.annee(a, 2), col=gray((a-1900)/100))
polygon(c(112,112,123,123),(c(a,a-1,a-1,a)-1900) /100, border=NA,
col=gray((a-1900)/100))

}

for(a in seq(1900,2000,by=10)){

text (104, (a-1900)/100,a)

}

plot(Ages, prob.par.annee(1900, 1), type="1", xlab="Age",

ylab="Probabilit\’e de survie & la naissance", main="Mortalit\’e des femmes",
ylim=c(0,1), col=gray(1), xlim=c(0,120), cex=cex, cex.axis=cex, cex.lab=cex,
cex.main=cex)

for(a in 1901:2000){

lines(Ages, prob.par.annee(a, 1),col=gray((a-1900)/100))
polygon(c(112,112,123,123),(c(a,a-1,a-1,a)-1900)/100,border=NA, col=gray((a-1900)/100))
}

for(a in seq(1900,2000,by=10)){

text (104, (a-1900)/100,a)

}
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France, entre 0 et 110 ans, en 1900 a gauche, et en 2000 a droite.

Pour alléger le calcul, on a une petite fonction auxiliaire qui extrait et calcul la probabilité

de survie pour un sexe donné.

>
+
+
+
+

prob.par.annee <- function(annee, sexe=1)

{

MUa <- subset(Deces, Year==annee) [, 3:5]/subset(Expo, Year==annee)[, 3:5]

exp(-cumsum(MUa[1:length(Ages), sexel))

}

T
100




5.1.2 La lecture transversale des tables

En fait, cette lecture longitudinale des tables (bien que correspondant & ce que nous avions
fait jusqu’a présent, et en particulier dans le chapitre précédant) ne parait pas forcément tres
intéressante en assurance-vie, comme nous I’évoquions dans 'introduction. Aussi, afin de lire la
fonction de survie pour un individu (ou une cohorte), on ne lit plus la base par année (ou par
colonne dans une reprénsation matricielle L ), mais suivant une diagonale (& t —x constant). Il
s’agit en effet de suivre un individu (ou ici une cohorte, par année de naissance) afin de valoriser
un produit d’assurance-vie pour un individu (ou des individus de la méme génération. Ces trois
dimensions = (age), t (date) et ¢ — x (année de naissance) n’est pas sans rappeler la lecture des
triangles de provisionnement j (développement, ou dge d’un sinistre), i + j (année calendaire,
ou date de paiement) et ¢ (année de survenance, ou année de naissance du sinistre). Aussi, afin
de lire la fonction de survie pour un individu (ou une cohorte), on ne lit plus la base par année,
mais suivant une diagonale (comme le suggerait le diagramme de Lexis).

Nannee <- max(Deces$Year)

deces.trans <- function(naissance){

taille <- Nannee - naissance

Vage <- seq(0,length=taille+1)

Vnaissance <- seq(naissance,length=taille+1)

Cagreg <- Deces$Year*1000+ Deces$Age

Vagreg <- Vnaissance*1000+Vage

indice <- Cagreg %in% Vagreg

return(list(DecesT=Deces[indice,] ,ExpoT=Expo[indice,]))

}

head(deces.trans(1950) $DecesT)

Year Age Female Male Total

5662 1950 0 18943.05 25912.38 44855.43

5774 1951 1 2078.41 2500.70 4579.11

5886 1952 2 693.20 810.32 1503.52

5998 1953 3  375.08 467.12 842.20
4
5
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6110 1954 287 .04 329.09 616.13
6222 1955 205.03 246.07 451.10
> tail(deces.trans(1950)$DecesT)
Year Age Female Male Total
11262 2000 50 1051 2532 3583
11374 2001 51 1047 2702 3749
11486 2002 52 1246 2801 4047
11598 2003 53 1361 2985 4346
11710 2004 54 1371 3042 4413
11822 2005 55 1396 3217 4613

C’est a partir de cette extraction que 'on peut construire les mémes types de graphiques
qu’auparavant. Sur la Figure [5.5, on peut ainsi comparer I'impact sur le taux de mortalité d’une
lecture tranversale. La fonction générique est ici

> mu.an.transv <- function(a,add=TRUE){

+ Da <- deces.trans(a)$DecesT

+ Ea <- deces.trans(a)$ExpoT

+ MUa <- Dal,3:5]/Ea[,3:5]

+ titre <- paste("Taux de mortalit\’e",a,sep=" ")



+ + + + + + + +

if (add==FALSE){plot (0: (nrow(MUa)-1) ,log(MUal[,1]) ,type="1",
xlab="Age",ylab="Taux de d\’ecés (log)",main=titre,lwd=1.7,
ylim=c(-9.8,.5))}

lines(0: (nrow(MUa)-1) ,log(MUa[,1]),type="1",1lwd=1.7,ylim=c(-9.8,.5) ,1ty=1)
lines(0: (nrow(MUa)-1) ,log(MUal[,2]),col="grey",lwd=1.7,1ty=1)
legend(75,-7.5,c("Femmes", "Hommes") ,1ty=1,1lwd=1.7,

col=c("grey","black") ,bty="n"

if (add==TRUE){text (90,-7.45,"Transversale") ;text (90,-6,"Longitudinale")}}

On peut alors comparer les taux de mortalité pour les personnes née en 1900 et celles née

en 1950 (comme on travaille ici par cohorte, celle n’est en 1950 n’aura été observée que partiel-

lement),
> par(mfrow = c(1, 2))
> mu.an(1900,pointille=2)
> mu.an.transv(1900,add=TRUE)
> mu.an(1950,pointille=2)
> mu.an.transv(1950,add=TRUE)
> par(mfrow = c(1, 1))
Taux de mortalité 1900 Taux de mortalité 1950

Taux de déces (log)

Longitudinale
Femmes
==+ Hommes

Transversale
Femmes
—— Hommes

Taux de déces (log)

Longitudinale
Femmes
= =- Hommes

Transversale
Femmes
—— Hommes
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0 20 40 60 80 100 0 20 40 60 80 100
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FIGURE 5.5 — Logarithmes des taux de déces : lecture transversale versus lecture longitudinale,
pour une personne née en 1900 (& gauche) ou en 1950 (& droite).

Si la lecture transversale semble plus pertinante pour suivre une individu ou une cohorte, on

est limité par le fait qu’il faudra prévoir les taux de mortalité pour les personnes les plus jeunes
pour les années a venir. Les sections suivantes vont présenter la mise en oeuvre de plusieurs
modeles permettant de prédire le taux de mortalité.



5.2 Le modele de Lee & Carter

La modélisation retenue par Lee & Carter| (1992)) pour le taux instantané de mortalité est la
suivante :
log Mot = Qz + Bkt + €at,

avec les variables aléatoires e, 1.i.d. L’idée du modele est donc d’ajuster a la série (doublement
indicée par x et t) des logarithmes des taux instantanés de déceés une structure paramétrique
(déterministe) a laquelle s’ajoute un phénomene aléatoire; le critére d’optimisation retenu va
consister a maximiser la variance expliquée par le modele, ce qui revient a minimiser la variance
des erreurs. On retient en général les deux contraintes d’identifiabilité suivantes :

T tyv
> Be=1et Y k=0
T=Tm t=tm

L’estimation des parametres s’effectue en résolvant un probléme de type “moindres carrés” :

(ém, @, kt) = arg minz (log pizt — atzy — ,Bmk:t)z .

z,t

5.2.1 La library(demography)

Le package demography propose une implémentation de Lee-Carter, avec en plus des fonc-
tions permettant de projeter les taux de mortalité dans le futur. Dans un premier temps on
prépare les données en vue de leur utilisation avec la fonction lca.

library(forecast)

library(demography)

YEAR <- unique(Deces$Year) ;nC=length(Annees)
AGE <- unique(Deces$Age) ;nL=length(Ages)

MUF <- matrix(Deces$Female/Expo$Female,nl,nC)
MUH <- matrix(Deces$Male/Expo$Male,nl,nC)
POPF <- matrix(Expo$Female,nL,nC)

POPH <- matrix(Expo$Male,nL,nC)

On a alors les données prétes a étre transformées dans des données de demography,

BASEH <- demogdata(data=MUH, pop=POPH, ages=AGE,
years=YEAR, type="mortality",

V V V V V V V V

label="France", name="Hommes", lambda=1)

BASEF <- demogdata(data=MUF, pop=POPF,ages=AGE,
years=YEAR, type="mortality",

label="France", name="Femmes", lambda=1)

+ 4+ V + + vV

Estimation des coefficients o, 8, et x;

On peut alors utiliser les fonctions de démographie, dont la fonction permettant d’estimer
les parametres du modele de Lee-Carter. La Figure permet ainsi de visualiser 1’évolution de
T oy et x— By
> par(mfrow = c(1, 2))
> LCH <- lca(BASEH)
> plot(LCH$age,LCH$ax)



> plot(LCH$age,LCH$bx)
> par(mfrow = c(1, 1))
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FIGURE 5.6 — Evolution de z — a5 (& gauche) et z — f, (& droite) .

Projection des x;

Une fois ’ajustement réalisé sur les données disponibles, on peut réaliser des projections de la
mortalité future. En particulier, library(forecast) propose de nombreuses fonctions possibles
pour prédire les valeurs k; futures.

Par exemple, les méthodes de lissage exponentiel,

> Y <- LCH$kt
> (ETS <- ets(Y))

ETS(A,N,N)
Call:
ets(y = Y)

Smoothing parameters:
alpha = 0.8923

Initial states:
1 = 71.5007

sigma: 12.3592

AIC AICc BIC
1042.074 1042.190 1047.420



> (ARIMA <- auto.arima(Y,allowdrift=TRUE))
Series: Y
ARIMA(0,1,0) with drift

Coefficients:
drift

-1.9346

s.e. 1.1972

sigma”2 estimated as 151.9: 1log likelihood=-416.64
AIC=837.29 AICc=837.41 BIC=842.62
Graphiquement, il est alors possible de visualiser les prédictions obtenues pour ces deux
modeles, avec respectivement un lissage exponentiel, et une marche aléatoire (ARIMA(0,1,0))
avec une tendance linéaire, comme le montre la Figure
> par(mfrow = c(1, 2))
> plot(forecast (ETS,h=100),type="p",ylim=c(-560,120))
> plot(forecast (ARIMA,h=100),type="p",ylim=c(-560,120))
> par(mfrow = c(1, 1))

Forecasts from ETS(A,N,N) Forecasts from ARIMA(0,1,0) with drift
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FIGURE 5.7 — Projection des k; du modeéle de Lee-Carter par un modele de lissage exponentiel
(a gauche) et une marche aléatoire avec une tendance linéaire (& droite) .

Le modele initial de Lee-Carter proposait de considérer un processus ARMA(1,1) sur la série
différenciée (une fois),
Akt = ¢AKi—1 + 8 + up — OQug_q
ou Ak = Kt — K¢—1, i.e. un processus ARIMA(1,1,1). Mais il est aussi possible (et c’est ce qui
avait été retenu ici) d’utiliser un processus ARIMA autour d’une tendance linéaire

Kt = a+ Bt + ¢ry1 + up — Oug 1.



Restriction des données a la période apreés guerre

La volatilité de la prédiction semble venir de la prise en compte des deux séries de sauts des
coefficients k; correspondant a la surmortalité pendant les deux guerres mondiales, 1914-1918
et 1939-1945 (avec également ’épisode de grippe espagnole en 1918).

LCHO=1ca(BASEH, years=1948:2005)

YO <- LCHO$kt

Ys <- Y[((length(Y)-length(Y0)):length(Y))]
Y0s <- (YO-mean(Y0))/sd(Y0)*sd(Ys)+mean(Ys)
(ARIMAO <- auto.arima(YOs,allowdrift=TRUE))
Series: YOs

ARIMA(1,1,0) with drift

V V V V V

Coefficients:
arl drift
-0.5417 -2.4717
s.e. 0.1180 0.3834

sigma”2 estimated as 19.64: 1log likelihood=-165.92
AIC=337.84  AICc=338.29 BIC=343.96

En se restraignant a la période apres guerre, le meilleur modele ARIMA - autour de la
tendance linéaire - continu a étre intégré (d = 1), mais la volatilité du bruit blanc est ici
beaucoup plus faible que sur le jeu de données incluant les deux guerres. Graphiquement, les

prédictions peuvent se comparer sur la Figure [5.8

> par(mfrow = c(1, 2))

> plot(forecast (ARIMA,h=100),type="p",ylim=c(-560,120) ,x1im=c(1900,2100))
> plot(forecast (ARIMAO,h=100) ,type="p",ylim=c(-560,120) ,x1im=c(1900,2100))
> abline(v=1948,1ty=2)

> par(mfrow = c(1, 1))

On peut également comparer les estimateurs des coefficients a et § sur les deux jeux de
données, comme sur la Figure |5.9) avec en trait plein les estimations sur les données apres
guerre et en grisé les coefficients précédants,

par (mfrow = c(1, 2))

plot (LCH$age,LCH$ax,col="grey",ylim=range (LCHO$ax) )
lines(LCHO$age,LCHO$ax,1lwd=2)

plot (LCH$age,LCH$bx,col="grey")
lines(LCHO$age,LCHO$bx , lwd=2)

par(mfrow = c(1, 1))

V V V V V V

Projection de différentes quantités actuarielles

Pour commencer, le plus simple est de regarder I’évolution de ’espérance de vie en 2005 pour
une personne d’age x, que I'on peut visualiser sur la Figure [5.10

> LCHf<-forecast (LCH,h=100)

> LCHT<-lifetable(LCHf)

> LCHTu<-lifetable(LCHf, "upper")
> LCHT1<-lifetable(LCHf,"lower")



Forecasts from ARIMA(0,1,0) with drift Forecasts from ARIMA(1,1,0) with drift
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FIGURE 5.8 — Projection des k; du modele de Lee-Carter par un modele de marche aléatoire
avec une tendance linéaire avec les données completes (& gauche) et les données apres guerre (a
droite).
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FIGURE 5.9 — Evolution de z — «a, (& gauche) et x — [, (a droite), avec l'estimation sur les
données apres guerre en noir, et sur le XXeme siecle en grisé.

> plot(0:100,LCHT$ex[,5] ,type="1",1wd=2,main="Esp\’erance de vie en 2005",
+ ylab="Esp\’erance de vie r\’esiduelle",xlab="Age")



> polygon(c(0:100,100:0),c(LCHTu$ex[,5] ,rev(LCHT1$ex[,5])),
+ border=NA,col="grey")
> 1lines(0:100,LCHT$ex[,5],type="1",1wd=2)
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FI1GURE 5.10 — Espérance de vie résiduelle a ’age x, en 2005.

Les résidus du modéle

Dans le modele de Lee-Carter, nous avions

log ot = Qz + Bz - Kt + Exyty

ou les résidus e, ¢ sont supposés i.i.d. Notons &, ; les pseudo-résidus obtenus lors de I'estimation,
i.e.
Ext = log Mzt — (ax + Bz - K't> .

Il est important de vérifier que les résidus peuvent étre considérés comme i.i.d. On peut visualiser
les erreurs €, en fonction de x sur la Figure et de ¢ sur la Figure [5.12

RES<-residuals(LCH)
couleur<-gray(seq(0,1,by=1/length(RES$x)))

plot (rep(RES$y,length (RES$x) ) ,RES$z,col=

couleur [rep (RES$x-RES$x[1]+1,each=1length(RES$y) )],
x1im=c(0,120),ylim=c(-1.62,1.62),
xlab="Age",ylab="")

for(a in 1901:2000)1

polygon(c(112,112,123,123), (c(a,a-1,a-1,a)-1900)/
100*3-1.5,border=NA, col=gray((a-1900)/100) )}
for(a in seq(1900,2000,by=10)){

text (106, (a-1900) /100*3-1.5,a) }

+ V + + V + + +V VYV
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FIGURE 5.11 — Visualisation des pseudo-résidus, = — &, ;.

Pour I’évolution des résidus en fonction de ¢, le code est :
couleur=gray(seq(0,1,by=1/1length(RES$y)))

plot (rep(RES$x,each=length (RES$y)) ,RES$z,col=
couleur [rep (RES$y-RES$y[1]+1,length(RES$x))],
x1im=c(1899,2020) ,ylim=c(-1.62,1.62),
xlab="Ann\’ee",ylab="")

for(a in 1:110){

polygon(c(2012,2012,2023,2023), (c(a,a-1,a-1,a))/
110*3-1.5,border=NA, col=gray(a/110))}

for(a in seq(0,110,by=10)){

text (2009,a/100%3-1.5,a)}

+ V + + V + + + VvV V

5.2.2 Les fonctions de LifeMetrics

Le package LifeMetrics ! proposé par JP Morgan propose une implémentation simple & mettre
en oeuvre du modele de Lee-Carter et de certaines variantes (notamment avec la prise en compte
de cohortes).

Une fois le script chargé (via l'instruction source ("fitModels.r")), il suffit de passer en pa-
rametres deux tableau etx et dtx de dimensions (nombre d’années) x (nombre d’ages) contenant
respectivement les expositions au risque l'année t a I’age x et le nombre de déces. L’ajustement
s’effectue par 'appel :

> res=fit701(x, y, etx, dtx, wa)

ol x est une vecteur contenant les ages, y les années et wa est une matrice de poids (non utilisée
dans le modele standard, il suffit de la passer avec wa=1. On reprend ici I'exemple utilisé a la

1. Les codes sont en ligne sur http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/
software.


http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/software
http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics/software
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FIGURE 5.12 — Visualisation des pseudo-résidus, ¢ — &, ;.

section précédente, pour lesquels on calcule les logarithmes des taux de déces instantanés (pour
lannée an=1986) :

source("fitModels.r")

Deces <- Deces[Deces$Age<90,]

Expo <- Expo[EXPOSURE$Age<90,]

XV <- unique(Deces$Age)

YV <- unique(Deces$Year)

ETF <- t(matrix(Expo[,3],length(XV),length(YV)))
DTF <- t(matrix(Deces[,3],length(XV),length(YV)))
ETH <- t(matrix(Expol[,4],length(XV),length(YV)))
DTH <- t(matrix(Deces[,4],length(XV),length(YV)))
WA <- matrix(1l,length(YV),length(XV))

LCF <- £it701(xv=XV,yv=YV,etx=ETF,dtx=DTF,wa=WA)
LCH <- f£it701(xv=KV,yv=YV,etx=ETH,dtx=DTH,wa=WA)

vV VV V V V V V V V V.YV

On peut ainsi comparer les coefficients o, et 5, entre les hommes et les femmes, comme sur
la Figure [5.13

par (mfrow = c(1, 2))

plot (LCF$x,LCF$betal,type="1",xlab="Age")
lines(LCH$x,LCH$betal,col="grey")
legend(40,-6,c("Femmes", "Hommes") ,1ty=1,
lwd=1,col=c("grey","black"),bty="n")

plot (LCF$x,LCF$beta2, type="1",x1lab="Age")
lines (LCH$x,LCH$beta2,col="grey")

legend (40, .022,c("Femmes", "Hommes") ,1ty=1,
lwd=1,col=c("grey","black"),bty="n")

+ V V V + V V V V



> par(mfrow = c(1, 1))
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FIGURE 5.13 — Evolution de z — a, (& gauche) et = — [, (& droite), pour les Hommes - en
trait sombre - et pour les Femmes - en trait grisé.

Il est aussi possible d’estimer les coefficients k; sur la période passée, que I'on peut visualiser
sur la Figure [5.14

> plot(LCF$y,LCF$kappa2,type="1",x1lab="Ann\’ee")
> lines(LCH$y,LCH$kappa2,col="grey")

Notons que plusieurs fonctions sont proposées ici, correspondant soit & des

logp(e,t) = 8 + 5k,

~ log p(x,t) = B + APk + B,

— log u(z,t) = B + /ﬁ?) + ’yg)x,

— logitq(z, t) = logit(1 — e~ #(@1)) = w4 (x—« m§2),

— logitq(z, t) = logit(1 — e=#(=1)) = Hgl) + (x— a)1€§2) + 7(3) .

5.2.3 La library(gnm)

Les deux exemples ci-dessus s’appuyaient sur des implémentations (directes) du modele de
Lee-Carter. Avec des algorithmes optimisés pour estimer les coefficients a,, 5, et k¢. Mais on
peut effectuer 'estimation des parameétres du modele en s’appuyant sur sa variante log-Poisson,
qui conduit formellement a mettre en oeuvre un modele linéaire généralisé. Ou plutot nonlinéaire
car les facteurs interviennent sous la forme ay, + 3, - k¢, que ne peut pas se mettre sous une forme
linéaire. On peut donc utiliser la 1ibrary(gnm), et lancer une régression a ’aide d’un outil plus
général.
> 1library(gnm)
> Y <- Deces$Male
> E <- Expo$Male
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FIGURE 5.14 — Evolution de ¢t — k; pour les Hommes - en trait sombre - et pour les Femmes -
en trait grisé.

>
>
>
>
>
+

Age <- Deces$Age

Year <- Deces$Year

I <- (Deces$Age<100)

base <- data.frame(Y=Y[I],E=E[I],Age=Age[I],Year=Year[I])
REG <- gnm(Y~factor(Age)+Mult((factor(Age)),factor(Year)),
data=base,offset=1log(E) ,family=quasipoisson)

Initialising

Running start-up iterations..

Running main iterations.........................
Done

Comme il y a plus de 300 coefficients estimés, il convient d’aller chercher les ay, les 5, et les

K au bon endroit.

>
>
>
>
>
>
>
>
>
>

names (REG$coefficients[c(1:5,93:103)])

nomvar <- names(REG$coefficients)

nb3 <- substr(nomvar,nchar (nomvar)-3,nchar (nomvar))
nb2 <- substr(nomvar,nchar (nomvar)-1,nchar (nomvar))
nbl <- substr(nomvar,nchar (nomvar) ,nchar(nomvar))
nb <- nb3

nb[substr(nb,1,1)=="g"]<- nbl[substr(nb,1,1)=="g"]
nb[substr(nb,1,1)=="e"]<- nb2[substr(nb,1,1)=="e"]
nb <- as.numeric(nb)

I <- which(abs(diff(nb))>1)

Par exemple pour les coefficients ., et 3, le code R est le suivant, et les coefficients peut étre

visualisés sur la Figure [5.15



> par(mfrow = c(1, 2))

> plot(nb[2:I[1]],REG$coefficients[2:I[1]],x1lab="Age")

> plot(nb[(I[1]+1):(I[2])],REG$coefficients[(I[1]+1):(I[2])],xlab="Age")
> par(mfrow = c(1, 1))
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FIGURE 5.15 — Evolution de x — «a, (& gauche) et x — [, (& droite) pour les Hommes, en
France.

On peut aussi visualiser les coefficients k¢, comme sur la Figure [5.16

> plot(nb[(I[2]+1) :1length(nb)] ,REG$coefficients[(I[2]+1) :1length(nb)],
+ xlab="Ann\’ee",type="1")

Le code peut étre un peu long a faire tourner, mais ce code permet d’implémenter n’importe
quel modele de démographie (nous présenterons une application dans la derniére section en
introduisant un effet cohorte). De plus, cette fonction ne permet pas de prendre en compte les
contraintes d’identifiabilité imposées avec les deux autres fonctions. D’ou une estimation des k
opposée a celle obtenue avec les deux autres fonctions

5.2.4 Comparaison des trois algorithmes

Afin de faire une comparaison rapide, plagons nous en un point particulier de la surface de
mortalité, e.g. x = 40 et t = 1980. Les trois jeux d’estimateurs des coefficients sont les suivants

> x <= 40

> t <= 1980

> param <- matrix(NA,3,3)

> param[1,] <- c(LCH.lca$ax[LCH.lca$age==x],

+ LCH.lca$bx [LCH.1lca$age==x],

+ LCH.lca$kt [LCH.1lca$year==t])

> param[2,] <- c(LCH.fit701$betal [LCH.£it701$x==x],
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FIGURE 5.16 — Evolution de t — k; pour les Hommes, en France.

LCH.fit701$beta2 [LCH.fit701$x==x],
LCH.fit701$kappa2 [LCH.fit701$y==t])
param[3,] <- c(REG$coefficients[41]+
REG$coefficients[1] ,REG$coefficients[141],
REG$coefficients[282])

param

V o+ + VvV o+ o+

[,1] [,2] [,3]
[1,] -5.175210 0.01128062 -44.2225390
[2,] -5.168065 0.01114861 -45.5798063
[3,] -5.604863 0.55793271 -0.1244905

avec en ligne respectivement la fonction lca, la fonction £it701 et la fonction gnm, et en colonne
g, By et k. Les deux premieres fonctions utilisent la méme containte sur les S, il est donc
rassurant d’avoir les mémes ordres de grandeurs :

> sum(LCH.1lca$bx)

[1] 1

> sum(LCH.fit701$beta2)
(11 1

Toutefois, si on compare les prédictions faites sur les taux de mortalité, les ordres de gran-
deurs sont comparables,

> exp(param[,1]+param[,2] *param[,3])
[1] 0.003433870 0.003426497 0.003433001

pour les trois modeles.



5.3 Utilisation du modele de Lee-Carter projeté

A T'aide des techniques présentées auparavant, c’est a dire I'estimation des oy, Bi, K¢, et
des k¢ projetéur le futur, il est possible de calculer d’autres quantités, dans un contexte de
valorisation de produits d’assurance-vie.

5.3.1 Calcul des espérances de vie

Utilisons par exemple les sorties de la fonction 1ca de library(demography) pour calculer
des estimations des taux de mortalité, ainsi que des projections pour le futur,

LCH <- 1lca(BASEH)

LCHf<-forecast (LCH,h=100)

A <- LCH$ax

B <- LCH$bx

K1 <- LCH$kt

K2 <- K1[length(K1)]+LCHf$kt.f$mean
K <- c(K1,K2)

MU <- matrix(NA,length(A),length(K))
for(i in 1:length(A)){

for(j in 1:length(K)){

MU[i,j] <- exp(A[i]J+B[il*K[j])

}r

Au début du chapitre, nous avions visualisé la surface du taux de mortalité log p, ; entre
1900 et 2005. Il est alors possible de visualiser en plus log fi,; entre 2005 et 2105, comme sur la
Figure [5.17]
> persp(LCH$age, c(LCH$year,LCHf $year) ,log(MU),

+ xlab="Age",ylab="Ann\’ee",
+ zlab="Taux de d\’ecés (log)",theta=30)

+ + + V V V V V V V Vv V

On peut alors en déduire ’analogue dynamique des ;p;, en t = 2000, en fonction de k (i.e.
la fonction de survie de la durée de vie résiduelle)

> t <- 2000

> x <= 40

> s <- seq(0,99-x-1)

> MUQ <- MU[x+1+s,t+s-1898]

> (Pxt <- cumprod(exp(-diag(MUd))))

[1] 0.99838440 0.99663098 0.99469369 0.99248602 0.99030804 0.98782725 0.98504242
[8] 0.98193715 0.97845243 0.97467199 0.97047250 0.96582764 0.96088832 0.95550220
[15] 0.94965857 0.94336539 0.93658314 0.92930373 0.92154725 0.91319233 0.90438349
[22] 0.89480210 0.88472880 0.87396961 0.86265381 0.85073003 0.83801863 0.82466285
[29] 0.81038237 0.79546804 0.77988277 0.76302933 0.74551160 0.72697144 0.70739380
[36] 0.68689788 0.66487519 0.64171557 0.61723877 0.59149492 0.56434547 0.53479039
[43] 0.50445361 0.47249581 0.43977367 0.40591799 0.37078337 0.33562397 0.29958914
[50] 0.26442814 0.22994614 0.19533606 0.16340038 0.13465331 0.10752312 0.08461961
[67] 0.06521622 0.04858994 0.03578809

On peut ainsi calculer les espérances de vie résiduelles pour des individus agés de = = 40
ans, a différentes dates,
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FIGURE 5.17 — Evolution de (z,t) — log fiz+ pour les Hommes, en France.

> x <- 40

> E <- rep(NA,150)

> for(t in 1900:2040){

+ 8 <- seq(0,90-x-1)

+ MUd <- MU[x+1+s,t+s-1898]

+ Pxt <- cumprod(exp(-diag(MUd)))
+ ext <- sum(Pxt)

+ E[t-1899] <- ext}

La Figure (& gauche) permet de visualiser I'espérance de vie résiduelle a 40 ans, et son
évolution au cours du temps (entre 1900 et 2050)
> plot(1900:2049,E,x1ab="Ann\’ee",ylab="Esp\’erance de vie r\’esiduelle
+ (&4 40 ans)",main="Esp\’erance de vie r\’esiduelle (& 40 ans)",type="1")

5.3.2 Valorisation de contrats d’assurance

On peut aussi valoriser des contrats d’assurance-vie. Considérons ainsi un individu qui sou-
haite une rente vie entiere différée. On cherche alors la valeur actuelle probable du contrat achet’e

par un assuré d’age x = 40, qui souhaite toucher 1 (a terme échu) jusqu’’a sa mort, A partir de
x +n =70 ans (i.e. différées de n = 30 ans).

> x <- 40
> r <- .035
>m <- 70

> VV <- rep(NA,141)

> for(t in 1900:2040){

+ s <- seq(0,90-x-1)

+ MUd <- MU[x+1+s,t+s-1898]



+ Pxt <- cumprod(exp(-diag(MUd)))

+ h <- seq(0,30)

+ V <= 1/(1+r) " (m—x+h) *Pxt [m-x+h]

VV[t-1899] <- sum(V,na.rm=TRUE)}

> plot(1900:2040,VV,xlab="Ann\’ee",ylab="",

+ main="VAP d’une rente vie entiére",type="1")
> par(mfrow = c(1, 1))

<+

L’évolution du prix d’'un tel contrat peut étre visualisé sur la Figure [5.18
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FIGURE 5.18 — Evolution de ’espérance de vie résiduelle pour les Hommes de 40 ans, en France,
a gauche, et évolution de la valeur actuelle probable d’une rente vie entiere différée achetée
I’année ¢ par un assuré de 40 ans.

Approche fonctionnelle des taux de mortalité

Les taux de mortalitéau peuvent étre vues comme des fonctions.

library(fts)

rownames (MUH) =AGE

colnames (MUH)=YEAR

rownames (MUF) =AGE

colnames (MUF)=YEAR

MUH=MUH[1:90,]

MUF=MUF [1:90,]

MUHF=fts(x = AGE[1:90], y = log(MUH), xname = "Age",
yname = "Log Mortality Rate")

MUFF=fts(x = AGE[1:90], y = log(MUF), xname
yname = "Log Mortality Rate")

IIAge n s

+ V + V V V V V V V V



On peut aussi projeter les fonctions sur les deux deux premiers axes d’une analyse en com-
posantes principales,
> par(mfrow = c(1, 2))
> fboxplot(data = MUHF, plot.type = "functional", type = "bag")
> fboxplot(data = MUHF, plot.type = "bivariate", type = "bag")
> par(mfrow = c(1, 1))
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FIGURE 5.19 — Détection d’années ‘aberrantes’ dans le modele de Lee-Carter.

5.4 Aller plus loin que le modele de Lee-Carter

5.4.1 Prise en compte d’un effet cohorte

L’idée est ici de rajouter un nouveau terme dans le modele de Lee-Carter, intégrant un effet
cohorte, c’est a dire un terme dépendant de ’année de naissance ¢t — . On a ainsi

log ptat = 0tp + By - Kt + Vo * Ot—z + Nats

en reprenant la modélisation proposée dans Renshaw & Haberman| (2006).

A T'aide de la fonction gnm il est facile de rajouter autant de terme que l'on veut dans le
modele (& condition que le modele soit identifiable, moyennant souvent quelques contraintes
supplémentaires). Ici, on va donc créer un troisieme facteur, en plus de 'age x et de la date ¢,
> library(gnm)
> Y <- Deces$Male
> E <- Expo$Male
> Age <- Deces$Age
> Year <- Deces$Year
> Cohorte <- Year-Age



> I <- (Deces$Age<100)

> base <- data.frame(Y=Y[I],E=E[I],Age=Agel[I],Year=Year[I], Cohorte = Cohortel[I])
> REG <- gnm(Y"factor(Age)+Mult((factor(Age)) ,factor(Year))+

+ Mult((factor(Age)),factor(Cohorte)),

+ data=base,offset=log(E),family=quasipoisson)

Initialising

Running start-up iterations..

Running main iterations......... ... i e e
Done

L’avantage est qu’il n’est pas nécessaire de projeter le coefficient de cohorte puisque 1'on
considere uniquement des projections pour des personnes qui pourraient acheter des contrats
aujourd’hui, et dont la cohorte a pu étre observée. Comme auparavant, il faut aller chercher les
coefficients dans la sortie de la régression,

> nomvar <- names(REG$coefficients)

> nb3 <- substr(nomvar,nchar (nomvar)-3,nchar (nomvar))
> nb2 <- substr(nomvar,nchar(nomvar)-1,nchar (nomvar))
> nbl <- substr(nomvar,nchar (nomvar) ,nchar (nomvar))

> nb <- nb3

> nb[substr(nb,1,1)=="g"]<- nbl[substr(nb,1,1)=="g"]
> nb[substr(nb,1,1)=="e"]<- nb2[substr(nb,1,1)=="e"]
> nb <- as.numeric(nb)

> I <- which(abs(diff(nb))>1)

On peut alors représenter ’ensemble des coefficients. Le coefficient o a la méme allure qu’au-
paravant (ce qui est normal car il représente la mortalité moyenne par age). En revanche, pour
les coefficients liés au temps ou & la cohorte, on a les résultats suivants. La Figure[5.20] représente
I’évolution des (3, et K (respectivement & gauche et a droite),
par (mfrow = c(1, 2))

#plot (nb[2:I[1]],REG$coefficients[2:I[1]],x1ab="Age")
plot(nb[(I[11+1):(I[2])],REG$coefficients[(I[1]+1):(I[2])],xlab="Age")
plot (nb[(I[2]1+1):(I[3]1)],REG$coefficients[(I[2]+1):(I[3])],xlab="Ann\’ee")
par (mfrow = c(1, 1))

V V V V V

La Figure représente I’évolution des coefficients 7, et d;—, (respectivement a gauche et
a droite),

\4

par (mfrow = c(1, 2))
plot(nb[(I[3]+1):(I[4]1)],REG$coefficients[(I[3]+1):(I[4])],xlab="Age")
plot(nb[(I[4]+1) :1length(nb)] ,REG$coefficients[(I[4]+1) :1length(nb)],
xlab="Ann\’ee (cohorte)",ylim=c(-5,3))

par (mfrow = c(1, 1))

vV + VvV V

5.5 Exercices

Exercise 5.5.1. A l'aide des modéles ajustés sur les données francaises, commentez I'affirma-
tion "tous les ans, on gagne un trimestre d’espérance de vie”.

Exercise 5.5.2. A l'aide des tables de mortalités Canadiennes CAN.Deces et CAN.Expo, calibrer
un modéle de Lee-Carter, et comparer les espérances de vie a la naissance entre les Canadiens
et les Francais.
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FIGURE 5.20 — Evolution des coefficients (3, et k¢

avec un effet cohorte.
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avec un effet cohorte.

Exercise 5.5.3. A l'aide des tables de mortalités Japonaises JAP .Deces et JAP.Expo, calibrer
un modéle de Lee-Carter, et comparer les espérances de vie a la naissance entre les Japonais et
les Francais. Comparer les probabilités d’atteindre 100 ans dans les deuzx pays.



Exercise 5.5.4. A [’aide des tables de mortalités Suisses CH.Deces et CH.Expo, calibrer un
modeéle de Lee-Carter, et comparer les espérances de vie a la naissance entre les Suisses et les
Francais.

Exercise 5.5.5. A ['aide des tables de mortalités Belges BEL.Deces et BEL.Expo, calibrer un
modeéle de Lee-Carter, et comparer les espérances de vie & la naissance entre les Belges et les
Francais.

Exercise 5.5.6. A [’aide des tables de mortalités Néo-Zélandaises NZM.Deces, NZM.Expo, NZNM.Deces
et NZNM.Expo, calibrer deuz modéles de Lee-Carter, sur la population Maori (NZM) et non-Maori
(NZNM), et comparer les espérances de vie & la naissance.



Annexe A

Annexes

A.1 Les lois de probabilités

A.1.1 Les lois continues

Traitons le cas ou il existe une dérivée a la fonction de répartition appelée fonction de densité
ou plus simplement densité. Il y a une infinité de fonctions qui peuvent et pourraient servir de
densités a une variable aléatoire.

Le systéeme de Pearson

Pearson| (1895) a étudié ce sujet et a proposé une approche globale et unifiée a partir d’une
équation différentielle. Une densité f serait solution de I’équation différentielle :
1 df(x) a+x

= — . Al
f(z) dz co + c1x + cax? (A1)

Comme f doit représenter une densité, il faut que f soit positive sur D et normalisée [ p flx)de =
1. Ceci impose des contraintes sur les coefficients a, ¢, c1, co.

L’équation possede les cas particuliers suivants :

- type 0 : les coefficients c1, co sont nuls, alors on la solution de est

_ (2atz)x

fla)=Ke o

On reconnait la loi normale.
- type I : le polynome cy + c12 + cox? posséde des racines réelles a1, as de signes opposées a; <
0 < ao. Donc f a pour expression

f(z) = K(x —a1)™ (ag — )™,

3 — _ata — __Gatas _ _ i i Bé
oW My = s, my = — s pour & €] —ay,a1[N] — ag, az[. On reconnait la loi Béta de

premiere espece. Si mq et mo sont du méme signes alors f a une forme en U, sinon une forme
en cloche.
- type II : Le type II correspond au cas ou my = mg = m.
-type IIT : si ca = 0 et cg,c; # 0 alors le polynome ¢y + c1z + co2? devient de premier degré.
Par conséquent, f devient
f(x) = K(co + crm)me™/e1,

pour x > —g—(l’ ouzx < —g—(l’. On reconnaitra les lois gamma (incluant donc la loi exponentielle).

185
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- type IV : le polynome cy + c1z + co2? n’a pas de solutions réelles!. On peut néanmoins en

déduire une expression pour f :

B e e O k5 B
f(@) = K (Co + calw + C1)2) " ¢ v (m)

Barndoff-Nielsen utilise une approximation de I'expression supra pour obtenir la loi inverse
Gaussienne généralisée.

- type V : si le polynome ¢y + c12 + cox? est un carré parfait, alors 'expression de la densité est
la suivante

a—C
f(2) = Kz + Cy) " Heremmen,

pour x > —C4 ou x < —(C. Si le terme exponentiel s’annule alors on a le particulier f(x) =
K(z 4 C1)~Ye ot ¢y >0 (¢z < 0) corresponds au type VIII (type IX respectivement).
- type VI : si le polynome cq + c12 + cox? possede des racines réelles a1, as de méme signe alors
on obtient
f(x) = K(z — a1)™ (z — a2)™?,

pour z > max(a,az). Ceci corresponds a la loi Béta généralisée.
- type VII : enfin le type VII corresponds au cas “dégénéré” lorsque ¢; = a = 0. Ainsi la solution
est
F(@) = K(co+ can®)~ (2",

Le type VII corresponds a la loi Student et la loi de Cauchy.

Du systeme de Pearson, on peut construire toutes les autres lois continunes a ’aide de transfor-
mations “simples” : transformation linéaire, transformation puissance, transformation exponen-
tielle ou logarithme (e.g. la loi log-normale).

Le package PearsonDS implémente les lois de probabilité selon le systeme de Pearson. Le code
ci-dessous est un exemple tres succint de graphiques. Sur la figure on observe des lois a
supports bornés (Pearson I, IT et VI), d’autres a supports positifs (Pearson III, V) ou sur R tout
entier (Pearson 0, IV).

library(PearsonDS)

x <- seq(-1, 6, 0.001)

yO <- dpearsonO(x, 2, 1/2)

y1l <- dpearsonI(x, 1.5, 2, 0, 2)

y2 <- dpearsonII(x, 2, 0, 1)

y3 <- dpearsonIII(x, 3, 0, 1/2)

y4 <- dpearsonlIV(x, 2.5, 1/3, 1, 2/3)

y5 <- dpearsonV(x, 2.5, -1, 1)

y6 <- dpearsonVI(x, 1/2, 2/3, 2, 1)

y7 <- dpearsonVII(x, 3, 4, 1/2)

plot(x, yO, type="1", ylim=range(yO, yl, y2, y3, y4, y5, y7), ylab="f(x)",
main="Systéme de Pearson",lty=1)

lines(x[y1l != 0], yilyl !'= 0], lty=2)

lines(x[y2 !'= 0], y2[y2 != 0], 1ty=3)

lines(x[y3 != 0], y3[y3 != 0], lty=4)

lines(x, y4, col="grey",lty=1)

lines(x, y5, col="grey",lty=2)

lines(x[y6 !'= 0], y6[y6 !'= 0], col="grey",lty=3)

VvV VV V V V VYV VYV VYV VYV VYVVYV

1. il est toujours strictement positif et peut se réécrire Co + ca(z + C1)%.



> lines(x[y7 != 0], y7Lly7 !'= 0], col="grey",lty=4)
> legend("topright", leg=paste("Pearson", 0:7), lty=c(1:4,1:4),
+ col=c(rep("black",4),rep("grey",4)))

Systeme de Pearson

—— Pearson 0
---- Pearson 1
Pearson 2

- . ---- Pearson 3
: Pearson 4

Pearson 5
Pearson 6
Pearson 7

15
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FIGURE A.1 — Systéme de Pearson et formes de principales densités.

A.2 Générateurs aléatoires

Les générateurs aléatoires ont montré un intérét croissant de la part des scientifiques avec le
développement des méthodes de Monte-Carlo, méthodes consistant a simuler n fois un modele,
un probléme et d’en prendre la quantité empirique désirée (moyenne, quantile, etc...). Dans un
premier temps, nous présentons la génération de nombres aléatoires de loi uniforme sur [0, 1] et
dans un second temps leur utilisation pour générer n’importe quelles lois.

A.2.1 Loi uniforme

A ses débuts, la génération de nombre aléatoire se faisait par une mesure de phénomenes phy-
siques aléatoires, telles que le taux de radioactivité de sources nucléaires ou le bruit thermique
de semi-conducteurs. Ces méthodes avaient un gros avantage a savoir générer des nombres par-
faitement aléatoires mais souffraient d’un défaut majeur : leur cout en temps et en prix.

Avec le développement de 'ordinateur, les chercheurs mirent au point des algorithmes complétement
déterministes pour générer une suite de nombres a partir d’'un nombre initial (appelée graine,
seed en anglais). Les nombres générés sur un ordinateur nous paraissent aléatoires seulement
par ce que la graine est calculée a partir du temps machine (secondes et micro-secondes).

Dans la littérature, trois notions d’aléatoire sont a distinguer : les générateurs vraiment aléatoire
(true randomness en anglais) liés a des mesures de phénomenes physiques, les générateurs pseudo-
aléatoires (pseudo randomness) et les générateurs quasi-aléaoires (quasi randomness) qui sont
des algorithmes déterministes.



Générateurs pseudo-aléatoires

Comme précisé dans |L’Ecuyer| (1990), un générateur aléatoire se caractérise par un ensemble
d’états S, une loi de probabilité initiale p sur S, une fonction de transition f : S — S, d’un
ensemble de sortie U C R et d’une fonction de sortie g : S — U. D’un état initial sy donné par
i, on génére la suite d’états s, = f(sp—1) et de nombres réels u,, = g(sy).

Jusqu’au début des années 90, f était la fonction congruentielle f(z) = (az+c¢) mod met S =N
et g la fonction proportion g(z) = z/m. Ainsi pour certains a,c,m bien choisis?, on pouvait
générer des entiers aléatoires sur entre 0 et 232 et des réels sur 32 bits avec une période dépendant
des parametres a, ¢, m. Tout I’enjeu résidait dans le choix de ses parametres de maniere a maxi-
miser la période 3.

Cette approche comporte des défauts & savoir un temps de calcul élevé?* et une période courte
(nombres d’états entre deux états identiques). Heureusement pour la science, Matsumoto &
Nishimural (1998) publierent le tres célebre générateur Mersenne-Twister, révolutionnaire sur
deux points : son temps de calcul et sa période.

Les deux auteurs exploitérent la structure binaire des ordinateurs a savoir que n’importe quel
entier est representé par w bits (e.g. w = 32) et que les opérations élémentaires sont extrément
peu couteuses.

La récurrence du n + iéme terme de MT est la suivante :

Titn = Titm D (x?ppué?l-u{)Aa
ott n > m sont des entiers constants, z;?¥ (respectivement z!°") désigne la partie supérieure
(inférieure) w — r (1) bits du terme z; et A5, une w x w matrice de {0,1}. | est 'opérateur de
concaténation, donc z;*”|z!%4 concaténe les w — r bits supérieurs de z; avec les r bits inférieurs
de x;41.
Matsumoto & Nishimura) (1998)) ajoute une étape d’ajustement apres chaque récurrence pour
augementer 1'équidistribution dans I’hypercube unité (voir article). Les auteurs fournissent
un jeu de parametres sélectionné de maniere a maximiser la période et assurer une bonne
équidistribution :
- (w,n,m,r) = (32,624,397, 31),
— a = 0x9908B0ODF, b = 0x9D2C5680, ¢ = 0xEFC60000,
—u=11,1=18,s=Tet t = 15.
La période est de 2"~" — 1 = 219937 _ 1 d’ol le nom du générateur MT19937.
L’implémentation de MT19937 en C, disponible sur la page des auteurs®, est tres rapide du fait
de l'utilisation d’opérations systématique bit a bit. D’autres générateurs ont depuis été inventé
utilisant ce formalisme, notamment les générateurs WELL de L’Ecuyer et SFMT de Matsumoto.
MT19937 et ses extensions rentrent dans la catégorie des générateurs pseudo-aléatoires et sont
utilisés dans les méthodes de Monte-Carlo. Par la loi des grands nombres, la moyenne empirique
de Iéchantillon (Xi,...,X,) converge presque surement vers la moyenne théorique E(X). Le

théoreme centrale limite nous donne la vitesse de convergence : ﬁ

2. Pour m = 23! — 1, a = 16807 et ¢ = 0, on obtient le générateur de Park-Miller d’une période de 23'.
3. Voir le théoreme de Knuth
4. L’opération modulo nécessite un grand nombre de opérations arithmétiques élementaires.

. . N I, N e e . . , o s
5. La matrice A est égale a ( 0 a ! ) ou la multiplication a droite est faite par un décalage de bit a bit

et une addition avec un entier a.
6. Téléchargeable & I’adresse http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT /emt.html


http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Par conséquent, on construit 'intervalle de confiance suivant :

- \}ﬁsntn—l,a; X+
ou S, la variance empirique débiaisée et ¢,_1  le quantile de la loi de Student & n — 1 degré de
liberté .

Dans R, le générateur aléatoire utilisé est MT19937 via la fonction runif. D’autres générateurs
sont disponibles notamment Wichman-Hill, Knuth-TAOCP,. . .via la fonction RNGkind. De plus,
le package randtoolbox implémentent des générateurs pseudo-aléatoires plus récents et ran-
dom propose des variables vraiment aléatoires via le site http://www.random.org.

1

Yn \/ﬁSntn—l,oz ’

Générateurs quasi-aléatoires

Les méthodes de Monte-Carlo présentent un défaut : une convergence lente. Pour combler ce
probleme, deux approches sont envisagées soit par réduction de la variance soit par des méthodes
quasi-aléatoires. Nous détaillerons dans cette section, les méthodes dites quasi-aléatoires.
Soient 1% I’hypercube unité de dimension d et f une fonction multivariée bornée et intégrable
sur I?. Les méthodes de Monte-Carlo consiste & approximer l'intégrale de f par

1 n
dr ~ — Xiv
RECEFINES

ou (X;)1<i<n sont des variables aléatoires independantes sur [ d La loi des grands nombres nous
assurent la convergence presque sire de 'estimateur de Monte-Carlo. Et le théoreme centrale
limite nous précise que la vitesse de convergence est en O(ﬁ)

La gross différence entre les méthodes pseudo Monte-Carlo et quasi Monte-Carlo (QMC) est de
ne plus considérer les points (z;)1<i<, comme réalisations de variables aléatoires mais comme
points déterministes. Contrairement au tests statistiques, l'intégration numérique ne dépends
pas sur le caractere aléatoire. Les méthodes QMC datent des années 50 pour des probléemes
d’interpolation et de résolution d’intégrales.

Dans la suite, nous considérons les points (u;)1<i<n de I 4 comme déterministes. La condition
de convergence de % oy fug) vers [ f(z)dx repose sur la bonne répartition des points dans
I'hypercube I¢.

On dit que les points sont uniformément distribués si

1 n

¢, lim — ) =

vJ cIf lim Zl 1Ly (ui) = Xa(J),
i

ou Ay désigne le volume en dimension d. Le probléme est que ce critére est trop restrictif puisqu’il

y aura toujours un sous ensemble de 'hypercube avec aucun points a l'intérieur.

Par conséquent, on définit une définition plus flexible de 'uniformité a l’aide des cardinaux

Cardp(ui,...,un) = > i 1g(u;). La discrépance d'une suite (u;)1<i<n de I% est
Card
Dn(u) — Sup ar J(u17 7U‘Tb) _ )\d(c])
Jeg n

olt J corresponds & la famille de tous les sous-intervalles du type [T, [as, bi).

7. i.e. P(|Y| > tn-1,a) = @ o Y est une variable aléatoire Student.


http://www.random.org

La discrépance Dy, (u) d’une suite nous permet de borner lerreur de la maniére suivante

1 n
22 f) = [ fe)is

ou Vy(f) est la variation d-dimensionelle au sens de Hardy et Krause (cf. Niederreiter| (1992)).
D’ou l'intérét pour les suites a discrépance faible. Les plus connues sont les suites de Van Der
Corput, de Halton et de Sobol.

Dans R, le package randtoolbox implémentent plusieurs suites a discrépance faible, tandis que
le package lhs propose la méthode “Latin Hypercube Sampling”, une méthode hybride quasi et
pseudo aléatoire.

A.2.2 Loi quelconque

En pratique, on ne simule pas des lois uniformes par une loi discréte ou continue particuliere.
D’une suite de nombres aléatoires uniformes Uy, . .., U,, on va donc générer une suite X1,..., X,
de fonction de répartition F.

On notera que sous R, la plupart des lois usuelles peuvent étre simulées directement via des
algorithmes optimisés. La fonction rpois permettra de générer des suites indépendantes suivant
une loi de Poisson, alors que rnorm permettra de générer des suites indépendantes suivant une
loi normale.

Pour simuler suivant une loi composée (e.g. Poisson-exponentielles), on peut utiliser tout sim-
plement

> sum(rexp(rpois(1,lambda) ,mu)

On peut utiliser ce code pour comparer les résultats de la Figure 7?7 par la méthode de Panjer,
pour calculer la probabilité que la loi composée dépasse 25,

> mnsim <- 100000

> set.seed(1)

> N <- rpois(unsim,lambda)

> X <- rexp(sum(N))

> I <- rep(l:nsim,N)

> S8 <- as.vector(tapply(X,I,sum))

> sum(S>25)/nsim

[1] 0.00361

Méthode de la transformée inverse
Notons F~! I'inverse de la fonction de répartition

F~Y(u) =inf F(z) > u,

pour u € [0,1]. Tl est facile de voir que la variable F~1(U;) a la méme fonction de répartition
que Xi. La méthode de la transformée inverse utilise cette propriété pour donner l'algorithme
suivant -

— générer U,...,U, “1(0,1),

— calculer X; = F~Y(U;).

Notons que si X est une variable discrete, F' est une fonction en escalier et I'inverse se calcule
par une suite de if-else. Au contraire si X est une variable continue, l'inverse de F' peut étre une
formule exacte comme pour la loi exponentielle /=1 (u) = —M. Dans ce cas, la génération
est tres rapide.



Méthode Alias

La méthode Alias permet de générer des variables aléatoires discretes décrites par les probabilités
élémentaires P(X = x) pour k = 1,...,n. Toutes variables discrétes avec au plus n valeurs
peut étre représenté par un mélange équiprobable de n — 1 variables discretes bimodales (i.e. a
2 valeurs). On a

1 n—1
P(X =12)= Z qi(x),
i=1

n—14

ou ¢;(x) sont des fonctions de masse de probabilité non nulles pour deux valeurs z; et y;.
L’algorithme devient

— générer U,V de loi uniforme ¢(0,1),

~ k=[(n-1U],

— si V < g alors retourner zj sinon retourner y.

Voir |Walker| (1977).

Inversion numérique

Dans le cas d’une variable continue X, il n’existe pas forcément d’expression explicite pour
F~1. Une inversion numérique est néanmoins possible. Leydold et Hormann propose une in-
terpolation polynomiale nécessitant a partir du calcul de p points (u; = F(z;), 2, fi = f(x4)).
Ensuite F~!(u) est interpolé par un polynome d’Hermite d’ordre 3 ou 58 en utilisant les points
(wi, i, fi)i-

L’erreur de ces méthodes d’inversion numérique est evidemment controlable. En pratique (Ley-
dold et Hormann), le temps de calcul de ces méthodes est tout a fait acceptable car p (envirion 300
pour une précision de 107%) est relativement faible comparitivement au nombre de réalisations
voulues n. Il existe méme des versions pour n’utilisant que la densité f(x;) et pas la fonction de
répartition. Ceci est particulierement apprécié pour la loi normale et ses extensions par exemple
Ces méthodes sont disponibles dans le package Runuran écrit par Leydold & Hormann| (2011]).

Algorithme du rejet

Si X possede une densité f, 'algorithme du rejet-acceptation consiste a tirer dans des variables
aléatoires d’un loi proche de f (mais plus facile & simuler) et de ne garder que celle qui répondent
a une certaine contrainte.
Notons Y une variable aléatoire de densité et fonction de répartition g et U une variable aléatoire
uniforme. S’il existe une constante C' > 1 telle que on a la majoration Vz, f(x) < cg(z), alors la
loi conditionnelle de Y sachant que cUg(Y) < f(Y) égale celle de X.
Pour générer X;, I'algorithme est le suivant

Répéter :

— générer U ~ U(0,1),

— générer Y selon g,

tant que cUg(Y) < f(Y).

affecter X; =Y.
Le nombre de rejet suit une loi géométrique de parametre 1/C. Par conséquent plus ’approxi-
mation est bonne (C proche de 1), plus le nombre de rejets est faible.

8. Dinterpolation linéaire (d’ordre 1) n’est pas efficace car le nombre p de points est trop élevé.



A.2.3 Processus aléatoires et Variables multivariées

Des applications d’actuariat nécessiteront la simulation de processus aléatoires et pas seulement
de variables indépendantes. Dans ce cas, I’équation différentielle stochastique doit étre discrétisée
de maniere & simuler la iéme trajectoire “complete” (Xy, i, ... X¢pi) sur [to, tr]. Par conséquent
le nombre de points n(7'+1) grandit rapidement. Il faut donc bien réfléchir si toute la trajectoire
du processus est nécessaire ou si seule la valeur terminale ou le supremum nous intéresse.
Par exemple, considérons la simulation d’un processus de Poisson. Si on s’intéresse a un processus
de Poisson homogene, d’intensité A\, on va générer les durées entre sauts, qui sont exponentielles.
Pour générer un vecteur de dates de sauts sur un intervalle de temps [0, 7] on considere le code
suivant
> nmax <- 10000
> ST <- cumsum(rexp(nmax,lambda))
> ST <- ST[ST<=T]
On peut alors construire la fonction ¢ — Ny sous la forme
> Nt <- function(t) sum(ST<=t)
Si le processus de Poisson est non-homogene, d’intensité A(t) (que 1’on supposera bornée par
A), il est possible d’utiliser I’algorithme suivant pour générer un processus : on va générer un
processus de Poisson d’intensité ), et on utilise une méthode de type acceptation-rejet pour
savoir si on garde un saut.
— poser Ty =0 et T, =0,
— générer E exponentielle de moyenne 1A et poser T, =T, + F,
— générer U uniforme sur [0,1] : si U > A\(T%)/\ on retourne & la seconde étape, et on tire un

nouveau F, sinon on pose T; = T,.
Une autre possibilité est de noter que pour un processus de Poisson homogene, on partait de
To = 0, et on utilisait

Ti =T+ FH(U),

ou F est la fonction de répartition de la loi exponentielle de moyenne 1/\. Ici, on va utiliser
T‘i = Tifl + Fiil (U)7

ou Fjy est la fonction de répartition du temps d’attente entre le Ngieme saut, et le suivant, i.e.

Fy(t) = 1 — B(Nyrs — Ny = 0) = 1 — exp (/:H A(u)du) .

Ces fonctions sont programmeée dans le package PtProcess.

La simulation multivariée nécessite aussi du doigté, car en dehors d’une loi a composante
indépendante, la ieme réalisation du vecteur (Ui, ...,Uq;) n’est pas triviale a calculer. Par
exemple, l'algorithme de rejet/acceptation sur la suite (Vi; =1 —2U14,...,Vy; =1 —2Uq,);
avec la condition ) j sz < 1 simule une loi uniforme dans la sphere unité d-dimensionnelle.

La génération d’une loi normale multivariée N (u, ) est un peu plus complexe :

— générer d variables indépendantes X; ~ N (0, 1),

— calculer la décomposition de Cholesky ¥ = C'C,

— calculer Y = p+ C'X.

Notons que si I’on veut simuler une variable multivariée sur I’hyperellypse définie par {z, 27 ¥z <
r}, il suffit de remplacer la premiere étape par la génération de d variables uniformément dis-
tribuées dans la sphere unité.



set.seed (1)
rmultinormal <- function(n,S){
Z <- matrix(NA,n,ncol(S))
C <- chol(S)
for(i in 1:n){Z[i,] <- t(C) %*% rnorm(3)}
return(Z)}
Sigma <- matrix(c(1,.7,.3,.7,1,-.3,.3,-.3,1),3,3)
rmultinormal (1,Sigma)
[,1] [,2] [,3]
[1,1 -0.6264538 -0.3073701 -0.8475816
> cor(rmultinormal (10000,Sigma))
[,1] [,2] [,3]
[1,1 1.0000000 0.7034906 0.2989346
[2,] 0.7034906 1.0000000 -0.2918081
[3,] 0.2989346 -0.2918081 1.0000000

vV VvV + + + + Vv V
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