

O S T R A V S K Á U N I V E R Z I T A
Př í r o d o vě d e c k á f a k u l t a

Cvičení z biostatistiky
Základy práce se softwarem R

Pavel Drozd

OSTRAVA 2007

ISBN 978-80-7368-433-4

Odborná recenze:
RNDr. PaedDr. Hashim Habiballa, PhD. (Katedra informatiky a počítačů PřF OU)
Prof. MVDr. Emil Tkadlec, CSc. (Katedra ekologie a životního prostředí PřF UP)

OBSAH

Úvod ..4

Orientace v textu..5

Základní informace o R...6
Co je R? ...6
Základní informace o instalaci a prostředí...7
Práce s konzolou ..9
Základní syntaxe..10
Práce s nápovědou ...11

Objekty ...14
Názvy a základní typy..14
Základní typy hodnot ...16
Tvorba vektorů a dalších jednoduchých objektů ...18
Převod objektů ...25
Vyhledávání objektů a čtení jejich struktury ...25
Práce s knihovnami v R ...28

Konstanty, operátory a matematické výpočty ..30
Logické a množinové operace ...30
Základní aritmetické operátory..31
Konstanty ...32
Matematické funkce...32
Zaokrouhlování..33
Generování pseudonáhodných čísel v R..34

Manipulace s objekty...36
Načítání objektů a jejich editace..36
Základní práce s jednotlivými prvky objektů ..40
Funkce pro práci s maticí a polem...48
Funkce pro práci s tabulkou dat, seznamem nebo faktorem..............................49
Funkce pro práci s řetězci a znaky...51
Práce s funkcemi a výrazy ...52
Hromadné provádění výpočtů na objektech ..53

Základy Grafiky v R..61
Přehled funkcí a vlastností používaných pro grafiku...62
Tvorba základních grafů ..63
Parametry pro nastavení grafu ...67
Další důležité grafy..71

Pokročilejší grafika..82
Grafické prvky ...82
Části grafu..88
Grafický zápis matematických symbolů a vzorců ...90
Manipulace s grafickými okny ..91
Práce s barvami..94
Speciální typy grafů ...98

Literatura ...109

 4

ÚVOD

 Biolog tráví více času u počítače než v terénu nebo v laboratoři. Ačkoliv se laikům
zdá tento výrok dost přitažený za vlasy, mí kolegové potvrdí, že mám pravdu. Zpracování
dat a ověřování hypotéz je zcela nezbytnou součástí práce biologa. Naučit se všechny
postupy a metody je záležitost dost náročná a vyžaduje:
• pochopení teorie testování a přípravy experimentu;
• znalost jednotlivých testů a pochopení principu výpočtů;
• dovednost práce se statistickým softwarem (kalkulačky už dávno statistici odepsali);
• schopnost správně interpretovat jednotlivé výsledky.

 Cílem cvičení z biostatistiky není vysvětlit teoretické principy testování a
zpracování dat, ale navázat na teorii a obecné znalosti testů a propojit je s praktickými
postupy při provádění analýzy dat. Tento díl skripta se nebude přímo zabývat postupy při
analýze biologických dat. Je zaměřen na základy práce se statistickým (vlastně více než
statistickým) softwarem R. Proč rovnou neanalyzovat? R je komplexní systém, který je pro
začátečníka poměrně náročný, ale umožňuje špičkové zpracování dat včetně grafických
výstupů. Zvládnutí základních pravidel a manipulace s daty v R proto zabere dost času
(předchozí dvě věty si v různých obměnách přečtete ještě několikrát dále v textu).
Doporučuji čtenářům, aby se pochopení postupů poctivě věnovali. Není účelem
zapamatovat si všechny příkazy a jejich posloupnosti při analýze. Důležité je porozumět
funkcím a zadávání jejích argumentů a také pochopit, proč jsme volili právě tento postup.
 Skriptum je určeno jako doplňující materiál pro studenty denního studia a jako
hlavní studijní materiál pro studenty kombinovaného studia (nebo pro studenty denního
studia, kteří se mylně domnívají, že cvičení jsou zbytečná). Vlastní texty a návody jsou
proloženy komentáři a soubory otázek a řešených úkolů. Zadané úkoly je nutno řešit až po
pochopení uvedených funkcí a postupů. Otázky jsou vždy odstupňovány od nejlehčích po
nejsložitější. Nevěřím klasickému lidovému výroku "na to musí mít člověk buňky". Řešení
úkolů vyžaduje dvě vlastnosti, které by se měl vysokoškolský student stejně neustále
posilovat – trpělivost a kreativitu. Pokud vás při řešení napadne jiný postup, než je uveden
v řešení na konci kapitoly, pak jdete tou nejlepší cestou.
 Vím, že dokonalé zvládnutí všech informací, které jsou obsaženy ve skriptu je pro
začátečníka naprosto nereálné. Nejde však o to, všechny funkce znát nazpaměť (některé
uvádím spíše pro úplnost). Důležité je porozumět principům a naučit se pracovat s
nápovědou (včetně tohoto skripta). Já sám si spoustu uvedených funkcí nepamatuji, ale
vím, že je najdu v nápovědě s podrobným popisem a příklady.
 Ještě poslední poznámka. Toho, kdo se bude divit, že se některé myšlenky z úvodu
objevuji ještě na dalších místech skripta, chci uklidnit, že se jedná o záměr. Předpokládám,
že většina čtenářů úvody nečte.

Příjemné studium.

 5

ORIENTACE V TEXTU
Tento studijní text je určen pro distanční studium a je tedy koncipován tak, aby byl

čtenář při studiu částečně veden a komunikoval jako při prezenční formě výuky. Najdete
v něm proto určité zvláštnosti a značky, které by měly samostudium usnadnit:

Cíle kapitoly – jsou uvedeny na začátku každé kapitoly a jejich smyslem je ujasnit čtenáři,

co by měl po nastudování kapitoly znát.

Klí čová slova – stejně jako ve vědeckých článcích obsahuje tento odstavec základní

pojmy, které charakterizují lekci.

Průvodce – může obsahovat rady, jak danou kapitolu studovat, vlastní zkušenosti apod. Je

oddělen od textu rámečkem a šedým stínováním textu.

Příklady řešení problémů, detailní informace – jejich cílem je konkretizovat a

demonstrovat uvedené postupy. Jsou odděleny rámečkem a menším písmem.
Vzhledem k velkému množství příkladů v textu nemusí být tento symbol striktně
uveden u všech odstavců.

Kontrolní úkoly – ověřují, zda jste text prostudovali dostatečně důkladně. Úkoly se

nemusí nutně týkat všech funkcí. Princip učení se postupům by měl být následující.
Prostudujete si kapitolu. Projdete všechny příklady a budete se snažit jim porozumět.
Poté se podíváte na kontrolní úkoly a pokusíte se je vyřešit. Až tehdy, když jste
vynaložili značné úsilí a stále si nevíte rady, podívejte se na Výsledky.

Shrnutí – podává stručně obsah kapitoly. Pozor! Nestačí pouze znalost souhrnu k tomu,

abyste porozuměli dané kapitole.

Metody k zapamatování – nejdůležitější metody, funkce a postupy z dané kapitoly, které

by si měl čtenář (spolu s jejich významem) zapamatovat.

Výsledky – řešení kontrolních otázek. – podává stručně obsah kapitoly. Na výsledky se

nedívejte po pěti minutách, kdy vám dojde trpělivost, ale až v okamžiku, kdy
opravdu nevíte, jak úkol řešit. Jinak jejich význam ztrácí smysl.

Korespondenční úkol – tento typ úkolů zašlete podle instrukcí elektronickou poštou

svému tutorovi.

 6

ZÁKLADNÍ INFORMACE O R

Cíle kapitoly:
Po prostudování kapitoly zvládnete toto:
- budete znát základní údaje o softwaru R;
- dozvíte se o tom, proč budeme využívat právě tento software;
- seznámíte se se základní prací s konzolou.

Klí čová slova: R-CRAN project, free software, R.

Průvodce
V úvodní kapitole se vám pokusím vysvětlit, proč pracovat v R, jak program vypadá a
jak.se v něm jednoduše orientovat. Nedoporučuji kapitolu vynechat, protože obsahuje
základní údaje a pojmy, metodu instalace programu atd. Na své si přijdou také fandové PC,
pro které bude určitě motivační. R je totiž výzva. Kdo se trochu vyzná v počítačích, jistě
slyšel pojmy jako Linux, TeX nebo OpenOffice. Jedná se o tzv. free software, tedy volně
stažitelné programy, které jsou většinou alternativou ke klasickým komerčním produktům.
Linux je operační systém, TeX program pro sazbu dokumentů, OpenOffice je volně
stažitelná obdoba Microsoft Office. R je moderní alternativou komerčních statistických
programů. Krátkozrací uživatelé většinou tyto programy kritizují pro jejich složitost, avšak
free software má řadu výhod, které počáteční dojem složitosti značně převyšují. Složité
ovládání je opravdu jen prvotní dojem uživatelů "zmlsaných" drahým softwarem (často
pirátsky staženým z Internetu). Aby člověk vyjel ze zaběhnutých kolejí stačí trocha
trpělivosti. Buďte prosím i vy trpěliví. Uvidíte, že se to vyplatí.

Co je R?

Extenzivní vývoj statistických metod v biologii vyvíjí tlak také na software, který
umožňuje tyto metody provádět. Biologové se díky tomu často dostávají před zcela zásadní
problém. Mohou začít využívat komerční statistický software, který bývá finančně
nákladný a je nutné průběžně provádět update (samozřejmě zpoplatněný) s rizikem, že
nově vyvinuté speciální analýzy nebudou do těchto programů implementovány, nebo
používat volně dostupný specializovaný software, který vyvíjí kolegové zdatnější v
programování. To ale znamená, že často používají velké množství nekompatibilních
formátů dat a velkou část úprav jsou nuceni provádět manuálně. Velmi dobrým řešením
pro základní i pokročilejší techniky analýzy biologických dat je software R.

Jedná se o programovací jazyk a prostředí pro statistické analýzy a grafiku, které
původně vyvinuli Robert Gentleman a Ross Ihaka z Aucklandské Univerzity. Jazyk R
podobný jazyku S známému zejména díky populárnímu komerčnímu programu S-plus,
který byl vyvinu právě na bázi jazyka S. V současné době má projekt R 17 členů „core
team members“ (základní tým vývojářů), 55 „contributors“ (stálí přispívatelé; zjistíme
přímo v R po zadání příkazu contributors()) a je podporován 21 významnými
institucemi jako například Katedra biostatistiky Kalifornské univerzity atd. Hlavními
výhodami programu je:

 7

• Dostupnost. R patří mezi tzv. „open source“ programy, tedy volně dostupné, šiřitelné a
modifikovatelné programy. Je zařazen v rámci projektu GNU nadace „Free Software
Foundation“. Tato nadace používá místo označení "copyright" slovní hříčku "copyleft".

• Kompatibilita . R je vyvinuto pro operační systém Windows, Unix/Linux i Macintosh.
Data je možno importovat z různých formátů včetně schránky (clipboard), csf formátů,
některých aplikací pro GIS atd.

• Množství analytických nástrojů. Kromě základních funkcí obsahuje R ohromné
množství doplňujících balíčků s knihovnami funkcí pro různé typy analýz (včetně
aplikací v biologických a příbuzných vědních oborech – např. bioinformatika,
taxonomie, genetika, geografie atd.). V současné době je k dispozici okolo 750 balíčků
(packages). Během instalace další knihovny se samozřejmě o nové funkce doplní také
nápověda.

• Aktuálnost. Přispívatelé velice rychle (často bezprostředně) reagují na vývoj nových
metod ve statistice, takže se v R objevují metody, které často ještě nejsou
implementovány do klasického komerčního software.

• Rozsáhlé možnosti grafických výstupů. Grafika v R obsahuje řadu standardních i
moderních grafických výstupů. Narozdíl od běžných programů je možno pracovat
s grafikou na několika uživatelských úrovních, od nejjednoduššího nastavení až po
uživatelem definované měřítko, osy, formáty bodů, kombinované grafy apod..

• Velké množství studijních materiálů. Na stránkách projektu R jsou volně dostupné
manuály pro práci s programem (většinou ve formě PDF). Kromě toho byla o
programu R publikována cela řada učebnic, manuálů a odborných prací.

• Programování. Pro pokročilejší PC fandy dodávám, že R je velice efektivní objektově
orientovaný programovací jazyk. Po seznámení se základní syntaxí může i naprostý
začátečník naprogramovat jednoduché funkce urychlující např. zpracování dat nebo
grafické výstupy. Pokročilejšímu uživateli umožní velice snadno propojit i sérii dosti
komplikovaných statistických analýz a funkcí, které již jsou vestavěnou součástí R
(např. mnohorozměrná analýza dat apod.). Zdrojový kód většiny vestavěných funkcí je
navíc možné zobrazit, krokovat a následně upravovat.

Základní informace o instalaci a prostředí

Program lze získat z webových stránek projektu R (http://www.R-project.org),
respektive z archivu CRAN (např. http://cran.at.r-project.org). K vlastnímu instalačnímu
programu se dostanete v levém menu v oddílu Software volbou R Binaries. Dále se
rozhodnete podle vašeho operačního systému (např. Windows) a následně zvolíte base,
kde je stažitelný základní instalační program, např. R-2.5.1-win32.exe (27 MB). Vlastní
instalace je poměrně jednoduchá a nevyžaduje žádné speciální znalosti.

Balíček base obsahuje pouze základní knihovny (pro začátečníka jsou naprosto
dostačující) – base (základní operace), datasets (knihovna příkladů dat), graphics,
grDevices, grid (knihovny pro grafiku), methods (formálně definované metody a třídy
objektů a programovací nástroje), stats, stats4, splines (statistické metody), tcltk, tools,
utils (nástroje pro programování, vývoj a administraci). Kromě těchto základních knihoven
však R obsahuje ohromné množství dalších nástrojů, které lze stáhnout z archivu CRAN
(Packages) nebo přímo v menu programu Packages – Install packages.

Po nainstalování a spuštění se objeví okno programu s konzolou (R console). V
tomto okně lze spouštět funkce, vkládat objekty a objevují se zde i základní výstupy. Za
specifických podmínek se mohou zobrazit ještě následující okna:

 8

• Okno nápovědy – v případě dotazu na určitou funkci (help, ?). Toto okno už v nových
verzích můžeme nastavit jako samostatné a není přímo součástí okna R.

• Grafické okno (R Graphics) – jestliže spustíme grafickou funkci (např. plot, hist,
boxplot)

• Editor programu (R Editor) – jestliže v menu File zadáme New Script, nebo otevřeme
New Script. V tomto okně si můžeme psát celé programy, poznámky k funkcím atd.

• Informační okno (R Information) – objevují se v něm různé informace volané funkcemi
(např. contributors)

Aktuální citaci R získáme také pomocí příkazu citation() , citaci jednotlivých knihoven
pak jako citation("název knihovny"):
R Development Core Team (2006). R: A language and environment for statistical
computing. (software) R Foundation for Statistical Computing, Vienna (Austria). ISBN 3-
900051-07-0, dostupné z: http://www.R-project.org.

Obr 1: Základní okno programu R se čtyřmi typy oken.

Kontrolní úkoly
1. Prohlédněte si stránky projektu (www.r-project.org). Poté přejděte do archívu a

stáhněte si instalační program.
2. Nainstalujte si program R a spusťte jej..

grafické okno

konzola programu R

okno editoru R
informační okno

 9

Práce s konzolou

 Okno konzoly slouží jako základní vstupní a výstupní rozhraní programu. Při práci
s konzolou je nutné znát následující pravidla.

• Vstupní řádky, do nichž vepisujeme příkazy, jsou odlišeny červeným písmem a
začínají znakem > (vypisuje se automaticky), pokud nezměníme základní nastavení.

• Výstupní řádek je psán modrým písmem a v případě hodnot začíná pořadovým číslem
dané hodnoty (viz Obr 2).

Obr 2: Příkaz pro vypsání čísel od 1 do 100. Jestliže se čísla nevejdou na řádek, pak pokračují na

následujícím s označením pořadí (číslo 19 je devatenácté v pořadí).

• Napíšeme-li určitý příkaz do konzoly a spustíme jej pomocí klávesy Enter nelze jej již
opravit přímo, ale v již napsaných příkazech můžeme listovat pomocí kláves ↑↓. Např.
k příkazu 1:100 na obrázku se vrátíme pomocí stisku klávesy ↑. Historii příkazů lze
uložit přes menu File – Save History (lze ji otevřít např. v Poznámkovém bloku).

• Obsah konzoly lze celý uložit pomocí File – Save to File.

• Konzolu vymažeme klávesovou zkratkou Ctrl L nebo v menu Edit – Clear console.

• Příkazy můžeme kopírovat a vkládat pomocí klasických zkratek Ctrl C, Ctrl V nebo
vkládáme přes menu Edit – Paste commands only, která z vybraného textu vynechá vše
kromě příkazů, tzn. zejména symbol >.

• konzola R je "case sensitive" – citlivá na velká a malá písmena, proto například funkce
print není totéž co Print.

Obr 3: Příklad citlivosti na velká a malá písmena. R zná příkaz print (tiskni), ale nezná příkaz Print.

• V případě, že by byl příkaz velmi dlouhý a chtěli bychom jej rozdělit do více řádků,
pak můžeme skočit na další řádek pomocí klávesy enter s tím, že se automaticky přidá
na začátek nového řádku symbol +. To znamená, že program čeká na ukončení příkazu
na tomto řádku (popř. dalších). Jestliže se symbol objeví omylem, pak můžeme psaní
příkazu zrušit klávesou ESC nebo tlačítkem Stop current computation.

Obr 4: Nedopíšeme-li příkaz na jednom řádku, pokračuje R na dalším a navazující řádek automaticky

označí symbolem +.

 10

• Pro ukončení programu R lze použít standardní metody programů ve Windows nebo
příkaz q() .

Základní syntaxe

Následující výpisy příkazů používaných v R budou uváděny tak, aby byly kopírovatelné do
programu. Proto chcete-li vyzkoušet určitý příkaz, stačí jej pouze překopírovat (vstupní
příkazy jsou modré, černé výstupy nekopírujte) z tohoto dokumentu do R.

 R je jako každý programovací jazyk velice striktní ve stylu zápisu. Při nedodržení
přesného zápisu program buď hlásí chybu (syntax error) nebo může dojít k provedení
odlišné operace. V tomto případě se jedná o sémantickou chybu, kterou počítač neodhalí,
protože neví, že se po něm požaduje něco jiného. Základní principy zápisu jsou uvedeny v
následujících bodech.

• Všechny operace, včetně práce s výpisem a zadáváním objektů (dat) je nutné provádět
pomocí vepsaných příkazů a funkcí.

• # – symbol slouží pro označení poznámky. Od místa označeného tímto symbolem do
konce řádku se nic nevypisuje.

25 #vypíše pouze číslo 25 a ne tuto poznámku
[1] 25

• () Při zadávání většiny funkcí a příkazů je nutné do kulatých závorek zadat tzv.
argumenty (parametry), které upřesňují použití funkce. Některé z nich mohou být
automaticky nastaveny, některé vyžadují nastavení přímo. Informace o argumentech a
jejich nastavení získáte buď v nápovědě nebo pomocí funkce args(název funkce) .
Základní tvar zápisu funkce je tedy: příkaz (soubor argumentů oddělených čárkou)

round(x, digits = 0)
Zaokrouhlování čísla (nebo více čísel) x na určitý počet desetinných míst (digits), digits je standardně
nastaveno na 0 desetinných míst, tzn. např. round(4.569) vrátí výsledek 4. Argumenty je často možné
zkracovat (jestliže zkratka nemůže znamenat jiný argument), např. digits=2 stačí psát v podobě d=2.

args(print.default) #vypíše argumenty funkce print. default
function (x, digits = NULL, quote = TRUE, na.print = NULL,
 print.gap = NULL,right = FALSE, max = NULL, ...)
Jestliže se při výpisu funkce objeví symbol tří teček (...) znamená to, že existují ještě další obecné argumenty
přiřazené k tomuto typu funkce, ale specifikované u některé jiné funkce.

• ; Více příkazů na jeden řádek lze zapsat tak, že je oddělíme středníkem, tzn.
funkce(argumenty); funkce(argumenty)

print(1);print(3:8) #vypíše číslo 1 a pak vypíše čísla 3–8
[1] 1
[1] 3 4 5 6 7 8

• {} Výraz ve složených závorkách může být použit pro soubor příkazů, které se mají
spustit bezprostředně po sobě (slouží např. pro psaní programů nebo delších funkcí).
Symbol + na začátku řádku opět znamená, že výraz pokračuje z předchozího řádku. Po
stisknutí ENTER tak můžeme psát na další řádek dokud neukončíme pravou složenou
závorkou.

 11

Obr 5: Ukázka spojení příkazů složenými závorkami.

Práce s nápovědou

Nápověda je pro používání programu R zcela zásadní. Nelze si totiž zapamatovat všechny
funkce a argumenty, proto ji doporučuji maximálně využívat. R obsahuje tři základní typy
nápovědy, přičemž všechny můžeme používat současně:

• PDF manuály. Obsahují základní manuály a základní reference o funkcích. Spouštíme
je přes menu Help – Manuals (in PDF).

• HTML nápov ěda. Vestavěná nápověda ve formě html stránky, která obsahuje
manuály, seznamy funkcí v jednotlivých knihovnách (packages) a další materiály.
Spouštíme ji přes menu Help – Html Help nebo příkazem
help.start(update=FALSE).

Obr 6: Html nápověda.

• Reference. Jedná se o nápovědu ke konkrétním objektům a funkcím v aktuálně
zavedených knihovnách. Spouštíme ji buď příkazem help(téma) nebo ?téma nebo v
menu Help – R-functions (text...).
Reference mají obvykle následující položky:
• Description – stručný popis daného tématu (funkce, objektu atd.)
• Usage – způsob použití (zápis).
• Arguments – seznam argumentů a jejich vysvětlení.
• Details – upřesnění týkající se popisu tématu nebo určitého argumentu.
• Value – výstupní hodnota dané funkce (metody) – typ a struktura.

 12

• Author – autor dané funkce (objektu).
• References – odkaz na literaturu vztahující se k tématu.
• See also – podobná nebo navazující témata.
• Examples – příklady.
help (ls) # alternativní k ? ls
help (glm) # alternativní k ? glm
help (summary) # alternativní k ? summary
?glm

Obr 7: Reference k funkci by.

• Vyhledávání témat v kontextu. Předchozí příkaz vyhledává pouze v názvech a
zkrácených popisech funkcí a objektů, zatímco tato možnost vyhledá dostupné položky
nápovědy, v jejichž názvu, popisu (description) nebo klíčových slovech se vyskytuje
daný text (téma). Kontextové vyhledávání spouštíme funkcí help.search ("téma")
nebo menu Help – Search Help.
help.search("Wilcoxon")

 13

Obr 8: Informační okno po příkazu help.search("AIC") . Vypíšou se dostupné položky, v závorkách

knihovny, ve kterých se položky nacházejí, a popis položek nápovědy.

Kontrolní úkoly
3. Zjistěte jaké argumenty má funkce help a funkce rep.
4. Vepište do R uváděné příklady pro práci s konzolou a nápovědou a spusťte je.
5. Z nápovědy se pokuste zjistit, k čemu slouží funkce rep.

Shrnutí:
R je prostředí a programovací jazyk vhodný pro statistickou analýzu dat a jejich grafickou
prezentaci. Jedná se obdobu jazyka S známého díky komerčnímu produktu S-plus.
Narozdíl od S-plus patří R mezi tzv. free software, tedy software volně šířitelný. U
každého programovacího jazyka je velice důležité znát základní syntaxi příkazů a systém
práce s konzolou (oknem, ve kterém zadáváme příkazy). R obsahuje poměrně rozsáhlou
nápovědu, která usnadňuje orientaci v příkazech.

Metody k zapamatování:
Adresa, ze které lze stáhnout R a doplňující materiály:
http://www.R-project.org, resp. archiv CRAN (např. http://cran.at.r-project.org).
poznámka v příkazovém řádku
() slouží ke vkládání argumentů do funkce
args (název funkce) – výpis argumentů funkce
; odděluje více příkazů na jednom řádku
+ označuje spojení více řádků do jednoho příkazu
{} umožňuje provést sled příkazů umístěný v závorkách na více řádcích
help (název funkce) nápověda pro danou funkci (jinak také ?název)
help.search ("kontext") hledání funkcí podle kontextu

Výsledky
ad 3)
> args(help)
function (topic,offline = FALSE, package = NULL,lib .loc = NULL,verbose = getOption
 ("verbose"), try.all.packages = getOption("help. try.all.packages"),
 chmhelp = getOption("chmhelp"), htmlhelp = getOp tion("htmlhelp"),
 pager = getOption("pager"))

ad 5)
> help(rep)

slouží ke zopakování objektu uvedeného v argumentu x (viz další kapitola)

 14

OBJEKTY
Cíle kapitoly:
Po prostudování kapitoly zvládnete toto:
- naučíte se přiřazovat jména k objektům;
- budete znát základní typy hodnot, které lze přiřadit objektům;
- zvládnete vytváření a manipulaci zejména s vektory, maticemi, tabulkami dat, poli a

seznamy;
- budete umět studovat strukturu objektů a převádět objekty na jiné typy.

Klí čová slova: objekty, typy objektů, struktura objektů.

Průvodce
Následující kapitola je zcela zásadní. Abychom mohli do R zadávat data, je nutné
pochopit, jaké typy dat lze vytvořit a použít, jak je možné zkoumat jejich strukturu a
manipulovat s ní. Vřele vám doporučuji postupovat pečlivě a pomalu. A nezapomeňte na
kontrolní úkoly.

Názvy a základní typy

 Vše s čím v programu R pracujeme jsou objekty. Objektem může být číslo,
množina čísel, text, matice, funkce atd.. Objekty většinou při vytváření pojmenujeme, tzn.
objektu „přiřadíme název a pak nahrazujeme vypisování objektu pouze jeho názvem“.
Přiřazení většinou provádíme funkcí assign nebo pomocí „šipky“ <–. Název nám potom
zastupuje daný objekt. Podle toho, zda objekty dále měníme rozlišujeme konstanty a
proměnné. Názvy objektu vytváříme podle těchto pravidel:

• Název by se neměl by se shodovat s názvem jiného objektu (např. existuje funkce log,
proto bychom neměli dávat jinému objektu název log, protože bychom přepsali
původní). Je také nevhodné používat písmena c, q, t, C, D, F, I, T. (Poznámka: Jestliže
chceme obecně zjistit, které názvy jsou již použity stačí je vyzkoušet napsat.)
a # momentáln ě není definován objekt s tímto názvem
Error: object "a" not found

c # název je použit pro funkci
.Primitive("c")

F # objekt s tímto názvem existuje
[1] FALSE

plus # momentáln ě není definován objekt s tímto názvem
Error: object "plus" not found

lm # název lm je použit pro funkci
function (formula, data, subset, weights, na.action , method = "qr",
 model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
 contrasts = NULL, offset, ...)

• Pojmenování by mělo mít logiku (pro objekt obsahující množinu naměřených
nadmořských výšek dáme např. název altitude, vyska nebo jejich zkratky, abychom
nemuseli dlouho přemýšlet, jak jsme objekt nazvali).

 15

• Názvy by neměly být zbytečně dlouhé (např. objekt s naměřenými hodnotami
intoxikace nazveme raději intox nebo altitude nazveme altit abychom nemuseli ve
funkcích objekt dlouze vypisovat).

• Rozdělení názvu na dvě části se provádí pomocí tečky (např. průměrnou nadmořskou
výšku můžeme nazvat altit.prumer, odchylku pak altit.odchyl). Názvy objektů nesmí
obsahovat mezery (např. nelze vytvořit název altit prumer)

• Musíme respektovat přesné psaní velkých a malých písmen (např. Altit, altid a ALTID
jsou tři různé názvy pro objekty).

• <–, assign (x, value) – přiřadí název objektu (také =, ale nedoporučuji); x
zastupuje název, value je hodnota, popř. jiný objekt, kterému přiřazujeme název (viz
příklad), alternativou je symbol "=" (autoři většiny učebic ale používají ->).

• Napsáním názvu objektu pak tento objekt vypisujeme na konzolu.

25 # p říklad objektu – číslo 25
[1] 25
"test" # p říklad objektu – text "test"
[1] "test"
xd2 <– 25 # objektu p ři řazuji název xd2, je shodné s assign(xd2,25)
xd2 # výpis objektu xd2
[1] 25
Xd2 <– 26 # objektu p ři řazuji název Xd2
Xd2
[1] 26
xd2<–Xd2 # hodnotu z objektu Xd2 p ři řazuji objektu xd2
xd2
[1] 26
assign(x="my.l",value=25) #jiný zp ůsob p ři řazení názvu objektu
my.l
[1] 25

Každý objekt přísluší do určité třídy (class) objektů. Podle toho, do které třídy patří

je možné s daným objektem manipulovat. R rozlišuje tzv. třídy (class), mody (mode) a
typy (typeof) objektů. Obecně ale můžeme prohlásit, že základní dělení je následující:
• čísla (numeric)

• celá (integer) – 2, 3, 4
• „reálná“ (double) – .5, 3.8, 4.3
• komplexní (complex) – 4+2i, 25-3i, i

• textové řetězce (character) – "test", "Ahoj";
• datum (date) – zadání je složitější, ale objekt vypadá následovně "2006-03-15";
• logické hodnoty (logical) – TRUE, FALSE ;
• vektory (vector) – řady čísel, řetězců nebo jiných dat;
• faktor (factor) – speciální typ vektoru s nominálními nebo ordinálními daty (viz dále);
• matice (matrix) – klasické matematické matice nebo matice řetězců a jiných dat;
• pole (array) – ve své podstatě vícerozměrné matice;
• seznamy (list) – specifické objekty sdružující různé jiné objekty různých typů;
• tabulky dat (data.frame) – klasické databázové tabulky (viz dále);
• funkce (function) – příkazy, kterými spouštíme určitou operaci s objekty;
• výrazy (expression), rovnice (formula), speciální objekty (výsledky testů, analýz).

Striktní klasifikace objektů má své důvody. Hlavní výhoda spočívá v tom, že řada
funkcí (tzv. generic funkce) funguje pro různé objekty různě. Například funkce summary
nám v případě vektoru (řady) čísel vypočítá základní charakteristiky polohy (minimum,

 16

maximum, medián, průměr a kvartily), zatímco pro vektor faktorů (viz dále) vypíše
seznam jednotlivých položek a jejich četnost. Pro začátečníka je tento přístup zpočátku
dost matoucí, nicméně použití různých příkazů pro různé typy objektů by bylo zbytečně
složité (viz methods).
summary(c(1,3,4,8)) #shrnutí pro vektor čísel
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.0 2.5 3.5 4.0 5.0 8.0

summary(factor(c("a","aa","a","b"))) #shrnutí pro v ektor tzv. faktor ů
 a aa b
 2 1 1

Naproti tomu, některé funkce striktně vyžadují objekty určité třídy. Jestliže si
nejsme jisti typem objektu a nerozpoznáme jej při výpisu na obrazovku (např. při
importování dat z jiných programů nebo při použití výsledku určité funkce), můžeme
využít funkce, které jsou schopny typ objektu určit:

• class (x) – výpis třídy objektu (vrátí např. „numeric“, „function“, „list“)

• mode(x) – podobné jako class, nerozlišuje však složitější objekty a pouze vypíše
jakého typu jsou hodnoty v těchto objektech, např. numeric, complex, logical,
character, raw, list

• typeof (x) – podobné jako mode, rozlišuje však některé podtypy (např. čísla rozlišuje
na celá a reálná)

my.x<-2.8 # objekt s názvem my.x obsahuje číslo 2,8 (desetinná te čka)
class(my.x) # t řída objektu my.x
[1] "numeric"
mode(my.x) # mode objektu my.x je shodný s t řídou
[1] "numeric"
typeof(my.x) # typ objektu my.x ukazuje, že se jedn á o reálné číslo
[1] "double"

class(array(1,2,3)) # testuje vytvo řené pole
[1] "array"
mode(array(1,2,3)) # ur čuje že pole je číselné
[1] "numeric"
typeof(array(1,2,3)) # ur čuje že je vyhrazeno místo pro reálná čísla
[1] "double"

class(class) # ur čuje t řídu funkce class, tedy že class je funkce
[1] "function"
mode(class) # v tomto p řípad ě shodný výsledek s t řídou
[1] "function"
typeof(class) # zjiš ťuje, že class je vestav ěná (builtin) funkce
[1] "builtin"

• methods (x) – vypíše všechny metody přiřazené k již zmiňované generic funkci.
Uživatel tak může přímo použít metodu pro určitý objekt nebo ji vyhledat v nápovědě.

methods(summary)
 [1] summary.aov summary.aovlist summary.connection
 [4] summary.data.frame summary.Date summary.default
 [7] summary.ecdf* summary.factor summary.glm
[10] summary.infl summary.lm summary.loess*
[13] summary.manova summary.matrix summary.mlm
[16] summary.nls* summary.packageStatus* summary.POSIXct
[19] summary.POSIXlt summary.ppr* summary.prcomp*
[22] summary.princomp* summary.stepfun summary.stl*
[25] summary.table summary.tukeysmooth*

 Non-visible functions are asterisked

 17

Základní typy hodnot

• Číslo (numeric). Vypisujeme klasickým způsobem s tím rozdílem, že k oddělení
desetinných míst používáme tečku, tzn. „1,25“ zapisujeme „1.25“ (velice důležité,
protože v případě chybného psaní vypisuje R syntaktickou chybu!!!!). Pro složitější
matematické výpočty je velkou výhodou to, že R počítá také s komplexními čísly.
Zápis je podobný jako u reálných čísel, k imaginárnímu členu přidáváme písmeno i
(např. 2+3i).

1.25 # číslo 1,25
[1] 1.25
120000000 #12 x 10 8

[1] 1.2e+08
0.000000001 #1 x 10 -9
[1] 1e-09
17+2i #komplexní číslo
[1] 17+2i
2e-2 # 2 x 10 -2
[1] 0.02
5.4e6 # 5,4 x 10 6
[1] 5400000
1,5 # chyba syntaxe protože jsme pro číslo použili desetinnou čárku
Error: syntax error in "1,"

• Znak, řetězec (character, string). Pro výpisy výsledků, označení názvů sloupců u
tabulek, popř. psaní atributů musíme používat znaky nebo textové řetězce. Stejně jako
v jiných programech a jazycích i zde musí být řetězec v uvozovkách (jednoduchých
nebo klasických). Znak a řetězec bývá také často použit pro zvláštní objekt, který se
nazývá factor. Jedná se o hodnoty dat na nominální škále (tzv. nominální proměnná).
Přesný popis tohoto typu objektu bude v následující kapitole.

"Petr" # řet ězec Petr je v uvozovkách, jinak je považována za ná zev objektu
[1] "Petr"
Petr # není v uvozovkách, proto R považuje slovo Pe tr za název objektu
Error: object "Petr" not found
'Ahoj' # mohou být použity také jednoduché uvozovky
[1] "Ahoj"

• Logická hodnota (logical). Logické hodnoty se používají pro některé atributy funkcí,
jsou výsledkem testování výrazů (např. zda 5 > 1) nebo se používají pro indexování
vektorů (vše viz výše). Existují dvě základní logické hodnoty pravda (TRUE, T) a
nepravda (FALSE, F). Hodnoty jsou opět „case sensitive“ tedy citlivé na velká a malá
písmena, proto je nelze psát jinak než uvedeným způsobem.

F # zkrácený zp ůsob zápisu FALSE (nepravda)
[1] FALSE
T # zkrácený zp ůsob zápisu TRUE (nepravda)
[1] TRUE

FALSE # obecný zp ůsob zápisu FALSE (nepravda)
[1] FALSE
False # chybný zp ůsob zápisu FALSE (nepravda), jsou použita malá písm ena
Error: object "False" not found

• Datum (date). Zápis pro datum je trochu složitější a vyžaduje další znalosti syntaxe R.
Vzhledem k tomu, že se datum pro analýzy dat většinou nepoužívá (spíše např. den v
roce atd.), nebudeme zápis podrobněji rozebírat.

as.Date("2007-10-16") #základní styl zápisu data (v mezinárodním systému)
[1] "2007-10-16"
as.Date("16.10.2007",format="%d.%m.%Y")# styl zápis u data ve zvoleném systému
[1] "2007-10-16"

 18

• Vzorec (formula) – označuje různé druhy vzorců pro modely, grafy a některé výpočty.
Základní zápis je y~x, což znamená „y závislé na x“. Podrobnosti je nutné znát až při
tvorbě grafů a analýze závislosti (viz podkapitola další důležité grafy).

y~x
y ~ x
class(y~x)
[1] "formula"

• Chybějící a další speciální hodnoty. NA: chybějící hodnota (např. při načítání dat),
Inf : nekonečno (např. při 1/0), NaN: not a number, nečíselná hodnota (např. při dělení
0/0), NULL: reprezentuje nulový objekt.

1/0
[1] Inf
-5/0
[1] -Inf
x<-NA
x
[1] NA
0/0
[1] NaN

Průvodce
Jak jste si jistě všimli v textu, z uvedených typů hodnot budou pro nás prozatím podstatné
pouze čísla, řetězce a logické hodnoty. Jejich styl zápisu musíme znát nejen při zadávání
dat, ale také pro specifikaci argumentů jednotlivých funkcí.

Tvorba vektorů a dalších jednoduchých objektů

• Vektor (variační řada, vector). Vektory představují množinu hodnot (čísel, znaků,
řetězců, datum, logické hodnoty, faktor atd.), kde každý prvek má své pořadí. Jsou to
asi nejpoužívanější objekty v R, proto je velice důležité se s nimi naučit dobře
pracovat. Obecně pracujeme s vektory jako s variační řadou ve statistice. Při vytváření
vektorů si musíme být vědomi toho, že nelze vytvořit jeden vektor obsahující současně
různé typy hodnot (např. čísla a znaky nebo logické hodnoty, viz příklad). Základní
zadávání vektorů je následující:

• c (..., recursive=F) . Sloučí hodnoty v závorce do vektoru (řady). Typ
výsledného vektoru závisí na zadaných hodnotách.
- recursive používá se pro tzv. seznamy (viz help (c))
c() #nulový objekt
NULL
c(1,2,4,8) # číselný vektor
[1] 1 2 4 8
c("ab","ad","dd","lc") # vektor řet ězc ů
[1] "ab" "ad" "dd" "lc"
c(T,T,T,F,T,F) # vektor logických znak ů
[1] TRUE TRUE TRUE FALSE TRUE FALSE

x<-c(4,6,9,3) #vektoru p ři řadím název x
y<-c(5,9,7,5) #vektoru p ři řadím název y
c(x,y) # z vektoru x a y vytvo říme jeden vektor
[1] 4 6 9 3 5 9 7 5

c(c(1,2,3),c(4,5,6))#dva vektory slou čené v jeden
[1] 1 2 3 4 5 6

c(1,2,T,F) # všechny hodnoty jsou p řevedeny na čísla
[1] 1 2 1 0

 19

c(1,2,"a",F) # jedna z hodnot je znak takže vektor bude znakový
[1] "1" "2" "a" "FALSE"

• vector (mode="logical",length=0) . Vytvoří vektor daného typu (mode – viz
funkce mode), dané délky length (tzn. počet členů/prvků řady) s nulovými
hodnotami (FALSE pro logical, prázdný řetězec "" pro character, 0+0i pro
complex, atd.)
vector() #p řednastavené hodnoty – logický vektor, po čet prvk ů = 0)
logical(0)
vector(length=3) #vektor logických hodnot o 3 prvcí ch
[1] FALSE FALSE FALSE
vector(mode="integer",length=3) #vektor celých čísel o 3 prvcích
[1] 0 0 0
vector(mode="complex",length=5) #vektor komplexních čísel
[1] 0+0i 0+0i 0+0i 0+0i 0+0i
vector(mode="character",length=3) #vektor znak ů o 3 prvcích
[1] "" "" ""

• sequence (nvec) . Vytvoří řadu celých čísel od 1 do čísla (čísel) uvedeného v nvec
(pro každé uvedené číslo).
sequence(5) # vektor celých čísel od 1 do 5
[1] 1 2 3 4 5
sequence(-5) # vektor od 1 do -5
[1] 1 0 -1 -2 -3 -4 -5
sequence(c(10,4)) #vektor od 1 do 10 a od 1 do 4
 [1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4

• a:b . Vytvoří aritmetickou posloupnost celých čísel od čísla a do čísla b.
5:10 # vektor celých čísel od 5 do 10
[1] 5 6 7 8 9 10
5:1 # od 5 do 1
[1] 5 4 3 2 1
-20:-11 # od -20 do -11
 [1] -20 -19 -18 -17 -16 -15 -14 -13 -12 -11
 c(1:4) # shodne s 1:4
[1] 1 2 3 4

• seq (from=1,to=1,by=((to-from)/(length.out-1)),length.o ut=

NULL,along.with=NULL,…) . Vytvoří sekvenci od from do to , po dílcích (by), o
výsledné délce (length.out) nebo o délce shodné s délkou vektoru v along.with .
(podobné funkce viz seq.int, seq_along, seq_len).
seq(5) #klasická sekvence od 1 do 5 (jako sequence)
[1] 1 2 3 4 5
seq(5,9) # sekvence od 5 do 9 (jako 5:9)
[1] 5 6 7 8 9
seq(5,9,by=0.5) # sekvence od 5 do 9 po 0.5 dílcích
[1] 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
seq(from=5,by=0.2,length.out=18) # 18 čísel od 5 po 0.2 dílcích
[1] 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2
8.4
seq(from=5,by=2,length.out=10) # 10 čísel od 5 po 2 dílcích
 [1] 5 7 9 11 13 15 17 19 21 23
seq(from=5,by=0.2,along.with=5:10)# od 5 po 0.2 o d élce 6 hodnot
[1] 5.0 5.2 5.4 5.6 5.8 6.0

• rep (x,times=1,length.out=NA,each=1) . Vytvoří vektor opakování objektu x
(hodnota nebo vektor). Argument times udává počet opakování x ,
- length.out – délka výsledného vektoru,
- each – počet opakování každého prvku (v případě, že x je vektor, viz příklady)
rep(12,times=6) #6x opakování čísla 12
[1] 12 12 12 12 12 12

 20

rep("a",times=6) #6x opakování písmene "a"
[1] "a" "a" "a" "a" "a" "a"
rep(1:3,times=6) #6x opakování vektoru s prvky 1,2, 3
 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rep(1:3,each=2) #2x opakování každého prvku
[1] 1 1 2 2 3 3
rep(1:3,times=3, each=2) #2x opakování každého prvk u a 3x celého vektoru
 [1] 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
rep(1:3,times=3, each=2,length.out=15)#totéž, ale d élka pouze 15 prvk ů
 [1] 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2
rep(c(1,4,10),times=3) #3x opakování vektoru s uved enými prvky
[1] 1 4 10 1 4 10 1 4 10
rep(c(1,4,10),times=c(1,3,2)) #1x první prvek, 3x d ruhý prvek, 2x t řetí
prvek
[1] 1 4 4 4 10 10
rep(c(1,4,10),times=c(2,3)) #chybné zadání vektoru opakování (2 prvky)
Error in rep(c(1, 4, 10), times = c(2, 3)) :
 invalid 'times' argument

Kontrolní úkoly
1. Vytvořte vektor s názvem hodnoty, který bude obsahovat tato data: 1, 1.5, 3.4, 15, 12,

6.4
2. K vektoru hodnoty přidejte čísla 5 a 1 a uložte do vektoru hodnoty
3. Vytvořte objekt my.stat, ve kterém bude slovo: statistika
4. Vytvořte vektor s názvem zeme a s hodnotami: Asie, Evropa, Amerika, Evropa,

Amerika, Amerika, Evropa
5. Vytvořte vektor čísel od 15 do -15.
6. Vytvořte vektor čísel od 0 do 1 s přírůstkem 0.05.
7. Vytvořte vektor čísel od -5 do -2 s přírůstkem -0.5.
8. Vytvořte vektor čísel od 10 do 2 snižující se o 0.5.
9. Vytvořte vektor, ve kterém se budou opakovat hodnoty „a“ a „b“ 20×.
10. Vytvořte vektor, ve kterém se bude opakovat 20× znak „a“ a pak 20× znak „b“
11. Vytvořte vektor, ve kterém se bude opakovat 10× znak „a“ a pak 5× znak „b“
12. Vytvořte vektor, ve kterém se bude opakovat 3× číslo 5, 4× číslo 6 a 5× číslo 7.
13. Vytvořte objekt my.l, do kterého uložíte vektor lichých čísel od 27 do 59.
14. Zdvojte hodnoty uložené v objektu my.l tak aby šly 27, 27, ... 59,59. Následně zdvojte

znovu hodnoty tak aby šly 27...59, 27...59.

• matrix (data=NA,nrow=1,ncol=1,byrow=F,dimnames=NULL) – vytvoří matici
hodnot (data), o nrow počtu řádků, ncol počtu sloupců, názvy dimenzí (dimnames)
jsou vytvořeny jako seznam. Jestliže je hodnot v data méně než má být prvků v matici,
pak se budou po použití posledního prvku vektoru v data znovu opakovat od první
položky (viz příklad).
- byrow – je logický argument, zda hodnoty uvedené v data mají být nejprve

vypisovány do řádku (popř. do sloupce).
matrix(5,nrow=4,ncol=6)# matice o 4 řádcích a 6 sloupcích
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 5 5 5 5 5 5
[2,] 5 5 5 5 5 5
[3,] 5 5 5 5 5 5
[4,] 5 5 5 5 5 5
matrix(1:6,2,3) # vytvo ří matici 2×3, hodnoty jsou řazeny po sloupcích
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

v p řípad ě, že je hodnot málo, jsou op ětovn ě dopl ňovány z vektoru
matrix(1:4,2,3,byrow=TRUE)#hodnoty jsou po řádcích a opakují se znovu
 [,1] [,2] [,3]

 21

[1,] 1 2 3
[2,] 4 1 2
Warning message:
data length [4] is not a sub-multiple or multiple o f the number of
columns [3] in matrix

matrix(c("a","b","a","d","a","c"),2,3,T)#podobné, a le hodnoty jsou řet ězce
 [,1] [,2] [,3]
[1,] "a" "b" "a"
[2,] "d" "a" "c"

#tvorba názv ů dimenzí v matici pomocí seznamu (viz dále), hodnot y jsou logické
matrix(c(T,T,T,F,F,T),2,3,T,dimnames=list(sex=c("mu ž","žena"),otazka=1:3))
 otazka
sex 1 2 3
 muž TRUE TRUE TRUE
 žena FALSE FALSE TRUE

• array (data=NA, dim=length(data),dimnames=NULL) . Vytvoří pole, tedy jedno-
vícerozměrnou matici dat s hodnotami v data a rozsahem jednotlivých dimenzí podle
vektoru v dim a názvech dimenzí v dimnames (zapsáno jako seznam – list, viz dále)
(pro pochopení pojmu pole je nejvhodnější uvést konkrétní příklad, viz příklady).

tvorba dvojrozm ěrného pole (1. dimeze=4, 2. dimenze = 3
s hodnotami 1-12
array (1:12, c(4, 3))
 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

dvojrozm ěrné pole o 4 řádcích a 2 sloupcích, s názvy dimenzí vz (vzorek 1- 4)
a sex (pohlaví m=muž, z=žena)
array (c(1,5,3,7,8,9),c(4, 2),dimnames=list(vz=1:4, sex=c("m","z")))
 sex
vz m z
 1 1 8
 2 5 9
 3 3 1
 4 7 5

#Studujeme barevnost skvrn (light – sv ětlá, medium – st řední, dark – tmavá
#na krovkách u samc ů (male) a samic (female) ur čitých brouk ů na 4 r ůzných
#lokalitách (L1,L2,L3,L4). V tabulce chceme zp řehlednit po čty jedinc ů daného
#pohlaví s ur čitými k řídly na každé lokalit ě. Po čty jedinc ů pro každou #kombinaci
můžeme zobrazit pomocí trojrozm ěrného pole.

x1<-array(c(12,3,5,4,11,5,4,1,7,3,6,6,10,4,8,4,12,7 ,9,9,14,10,2,3), dim =
c(3,4,2), dimnames=list(color=c("light","medium","d ark"), locality =
c("L1","L2","L3","L4"), sex=c("male","female")))
x1
, , sex = male

 locality
color L1 L2 L3 L4
 light 12 4 4 3
 medium 3 11 1 6
 dark 5 5 7 6

, , sex = female

 locality
color L1 L2 L3 L4
 light 10 4 9 10
 medium 4 12 9 2
 dark 8 7 14 3

 22

array (3, c(1, 4)) #jednorozm ěrné pole o 1 řádku a 4 sloupcích
 [,1] [,2] [,3] [,4]
[1,] 3 3 3 3

array (3, c(4, 1)) #jednorozm ěrné pole o 1 sloupci a 4 řádcích
 [,1]
[1,] 3
[2,] 3
[3,] 3
[4,] 3

• list (tag=value, ...) . Objekt seznam je zvláštní typ objektu, se kterým se
setkáváme buď při zadávání některých argumentů funkcí (např. dimnames u array)
nebo spíše jako s výstupy některých funkcí. Do tohoto objektu můžeme uložit čísla,
vektory, pole, matice i řetězce najednou. Seznamy mohou mít názvy jednotlivých
položek (tag – nepovinné) a v rámci nich jsou uloženy hodnoty (v každé položce
pouze jeden typ). V případě, že chceme nechat položku prázdnou (pouze tag), pak
používáme funkci alist hodnota v dané položce je pak NULL

#tvorba seznamu t ří vektor ů r ůzné délky (bez názv ů položek)
list(c(3,2),c(4,5,7),c(5,4,2,7))
[[1]]
[1] 3 2

[[2]]
[1] 4 5 7

[[3]]
[1] 5 4 2 7

#tvorba seznamu matice a dvou vektor ů r ůzné délky a typu s názvy položek
list(matice=matrix(1:4,2,2),typ=c("sou čet","rozdíl","sou čin"),
 vysledek=c(4,-2,3,6,-2,8))
$matice
 [,1] [,2]
[1,] 1 3
[2,] 2 4

$typ
[1] "sou čet" "rozdíl" "sou čin"

$vysledek
[1] 4 -2 3 6 -2 8

list(t1=,t2=1:3)#vytvo ří pouze t2, protože je neprázdná
Warning: an element is empty and has been omitted
the part of the args list of 'list' being evaluated was:
 (t1 = , t2 = 1:3)
$t2
[1] 1 2 3

alist(t1=,t2=2)#vytvo ří také prázdnou položku t1
$t1

$t2
[1] 2

#vytvo ří "seznam v seznamu" (v položce hodnoty je seznam v ektor ů a,b)
list(hodnoty=list(a=1:4,b=5:15),lokality=c("Beskydy ","Jeseníky"))
$hodnoty
$hodnoty$a
[1] 1 2 3 4

$hodnoty$b
 [1] 5 6 7 8 9 10 11 12 13 14 15

 23

$lokality
[1] "Beskydy" "Jeseníky"

• data.frame (tag=values, ..., row.names, check.rows=F, check.na mes=T,

stringsAsFactors=T) . Data frame je klasická dvojrozměrná tabulka dat, kde narozdíl
od pole a matice mohou jednotlivé sloupce (pole) obsahovat různé typy dat (ale
v jednom sloupci nanejvýš jeden typ). Zápis tabulky dat je podobný jako u seznamu
s tím rozdílem, že počet hodnot ve sloupcích musí být shodný pro všechny sloupce.
Obecně většinou data nejsou zadávána tímto způsobem, ale do formátu data.frame jsou
importována např. z MS Excel nebo vytvářena ve speciálním vestavěném editoru.
- row.names může obsahovat vektor s názvy řádků.
- check.rows a check.names jsou logické argumenty pro kontrolu správnosti
řádků a názvů sloupců (např. se názvy sloupců nesmí dublovat).

- tag – název sloupce je nepovinný, stačí zadat pouze hodnoty (values).
- stringsAsFactors – argument standardně nastaven na TRUE, tzn. v případě, že

zadáme sloupec znaků, pak je převeden na typ faktor (viz následující objekt typu
factor), což většinou není na závadu, protože předpokládáme, že ve sloupci je
určitý statistický znak). Jestliže přesto chceme převodu zabránit, stačí nastavit
stringsAsFactors=F .

#tabulka se sloupci (poli) nr (číslo), typ (faktor) a polut (logická hodnota)
#vstupní data sloupce typ jsou řet ězce, ale jsou p řevedeny na faktory
data.frame(nr=5:9,typ=c("a","b","c","d","e"),polut= c(T,F,T,T,F))
 nr typ polut
1 5 a TRUE
2 6 b FALSE
3 7 c TRUE
4 8 d TRUE
5 9 e FALSE

#zadání v p řípad ě opakování n ěkterých údaj ů ve sloupcích, povšimn ěte si, že
#u funkce seq byl použit argument length.out jen zk rácen ě jako len
data.frame(exp=rep(1:3,2),latka=rep(c("a","b"),3),h odn=seq(3,by=0.5,len=6))
 exp latka hodn
1 1 a 3.0
2 2 b 3.5
3 3 a 4.0
4 1 b 4.5
5 2 a 5.0
6 3 b 5.5

#dva sloupce se stejným názvem
data.frame(exp=rep(1:4),exp=rep(1:2,2),hodn=seq(3,b y=0.5,len=4),check.names=F)
 exp exp hodn
1 1 1 3.0
2 2 2 3.5
3 3 1 4.0
4 4 2 4.5

#check.names detekovalo stejné názvy a vytvo řilo jiný název pro druhý sloupec
data.frame(exp=rep(1:4),exp=rep(1:2,2),hodn=seq(3,b y=0.5,len=4),check.names=T)
 exp exp.1 hodn
1 1 1 3.0
2 2 2 3.5
3 3 1 4.0
4 4 2 4.5

• factor
(x=character(),levels=sort(unique.default(x),na.las t=TRUE),labels=leve

 24

ls,exclude=NA,ordered=is.ordered(x)) . Ve své podstatě je to vektor znaků
(statistických), které jsou nominální (například pohlaví – samec, samice; typ použitého
hnojiva – fosfor, vápník, dusík) nebo ordinální (velikost – menší, střední, větší).
Pochopení objektu factor je důležité a bude se ještě dále upřesňovat.
- levels – nastavení možných hodnot faktoru (úrovní). Jedná se o hodnoty, kterých

vektor může nabývat, ostatní jsou změněny na NA hodnotu. V případě, že položku
nepoužijeme, nastaví se levels automaticky tak, že jsou vybrány všechny možné
hodnoty obsažené ve vektoru a ty jsou seřazeny.

- labels – mění názvy hodnot v pořadí, v jakém jsou uvedeny v levels.
- exclude – při tvorbě objektu je možno předem určité hodnoty ignorovat, ty jsou

pak , např. vektor hodnot v exclude vynechává automaticky NA. Tomu lze
zabránit nastavením exclude na NULL.

- ordered – slouží k označení, zda je faktor čistě nominální proměnná nebo
ordinální.

factor(c(1,1,2,1,3,4,4,2,1))#tvorba jednoduchého ob jektu typu faktor
[1] 1 1 2 1 3 4 4 2 1
Levels: 1 2 3 4
factor(c(1,1,2,1,3,4,4,2,1),levels=4:1) #jiné řazení hodnot
[1] 1 1 2 1 3 4 4 2 1
Levels: 4 3 2 1
factor(c(1,1,2,1,3,4,4,2,1),levels=4:1,labels=c(40, 30,20,10)) #jiné názvy
[1] 10 10 20 10 30 40 40 20 10
Levels: 40 30 20 10
factor(c(1,1,2,1,3,4,4,2,1),levels=4:1,labels=c("a" ,"b","c","d"))#jiné názvy
[1] d d c d b a a c d
Levels: a b c d
factor(c(1,1,2,1,3,4,4,2,1,NA,NA)) #NA v levels nez ařazeno (automat. v exclude)
 [1] 1 1 2 1 3 4 4 2 1 < NA> <NA>
Levels: 1 2 3 4
factor(c(1,1,2,1,3,4,4,2,1,NA,NA),exclude=NULL)#do levels je za řazeno také NA
 [1] 1 1 2 1 3 4 4 2 1 < NA> <NA>
Levels: 1 2 3 4 <NA>
factor(c(1,1,2,1,3,4,4,2,1),exclude=1)#nezahrnout 1 , p řevedena na NA
[1] <NA> <NA> 2 <NA> 3 4 4 2 <NA>
Levels: 2 3 4
factor(c(1,1,2,1,3,4,4,2,1),ordered=T)#tvorba ordin álního faktoru
[1] 1 1 2 1 3 4 4 2 1
Levels: 1 < 2 < 3 < 4

i když faktor vypadá jako soubor čísel, po vynásobení vrátí chybu, protože se
o čísla nejedná
factor(c(1,1,2,1,3,4,4,2,1))*3
[1] NA NA NA NA NA NA NA NA NA
Warning message:
* not meaningful for factors in: Ops.factor(factor(c(1, 1, 2, 1, 3, 4, 4, 2, 1)),
3)

Kontrolní úkoly
15. Vytvořte matici 3 řádky a 4 sloupce ve které budou pouze čísla 1.
16. Vytvořte stejnou matici, ve které se budou opakovat čísla 10, 20, 30 za sebou ve

sloupcích. Následně vytvořte matici, kde e bude opakovat v řádcích 10, 20, 30, 40.
17. Vytvořte matici, ve které budou názvy řádků země ČR a SR (proměnná země) a ve

sloupcích proměnná plocha s hodnotami pevnina a voda. Vlastní data potom budou
údaje o rozloze 77 276, 49 036, 1 590, NA.

18. Vytvořte pole 9x3 s hodnotami 1:27.
19. Vytvořte trojrozměrné pole 3x4x2 s hodnotami 12:36

 25

20. Vytvořte pole s dimenzemi 2x2x3, kde 1. dimenze je označení nemoc – nakažen,
nenakažen, 2. dimenze je pohlaví – muž, žena, 3. dimenze je kontinent – Afrika,
Amerika, Evropa, hodnoty jsou 55,12,38,12,16,14,28,31,26,5,42,36

21. Vytvořte seznam, kde v první položce nazvané popis bude textový řetězec "výsledek
testu", v druhé položce nazvané hodnota bude vektor čísel 21,34,25

22. Vytvořte seznam, ve kterém budou uloženy výsledky předchozích úkolů 15:20.
23. Vytvořte tabulku dat obyv ve které budou sloupce country, population a percent s

hodnotami pro 1. sloupec Čína, Indie, EU, USA, Indonésie, pro 2. sloupec
1320955000, 1169016000, 492964961, 303004000, 231627000, pro 3. sloupec 19.8,
17.52, 7.39, 4.54, 3.47.

24. Vytvořte vektor hodnot faktoru 1,2,1,1,2,1,2,1,1
25. Změňte zadání vektoru tak, aby byla hodnota 2 považována za první v pořadí
26. Upravte předchozí zadání tak, že místo hodnoty 1 se bude vypisovat "žena" a místo 2

"muž".

Převod objektů

 V případě, že je nutné určitý objekt převést na jiný typ, je k dispozici velké
množství transformačních funkcí a funkcí, které testují daný objekt podobně jako funkce
class, ale dotazují se na konkrétní typ objektu a vrací logickou hodnotu.

• is. typ objektu – testuje, zda je daný objekt dané třídy (typu) (viz methods(is))

• as. – typ objektu převede objekt na objekt dané třídy (viz methods(as))
x<-c(1:5)
is.vector(x) # je daný objekt typu vektor? ano
[1] TRUE
is.integer(x) # obsahuje pouze celá čísla? ano
[1] TRUE
is.list(x) # je daný objekt typu seznam? ne
[1] FALSE
as.list(x) # p řeve ď objekt x na seznam
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

[[4]]
[1] 4

[[5]]
[1] 5

x<-as.list(x) # p řeve ď objekt x na seznam
is.list(x)
[1] TRUE

Vyhledávání objektů a čtení jejich struktury

 Všechny objekty, které v průběhu práce vytváříme, se ukládají do paměti a můžeme
s nimi kdykoliv manipulovat. Vytvořené objekty jsou součástí tzv. workspace (pracovního
prostoru), který celý ukládáme na harddisk (menu File – Save Workspace). Vytvoříme tak
soubor s koncovkou .R. Tento soubor lze kdykoliv otevřít a objekty v něm uložené dále

 26

používat. Jestliže zavřeme R bez uložení, pak při dalším spuštění již námi vytvořené
objekty nejsou k dispozici.

Pro práci s programem R a objekty je důležité kromě typu objektu znát několik
dalších operací, které nám práci usnadní. Jsou to zejména:

• ls (name, pattern, all.names=F) – je shodné s objects – vypíše objekty v daném
prostředí (workspace, popř. speciální dle čísla nebo názvu – name). Pro naše potřeby
stačí ls() – výpis objektu, které jsou aktuálně v daném prostředí (workspace)
- pattern – vyhledávací výraz (co hledat, např. objekty začínající na „a“,
- all.names – vyhledává také objekty začínající tečkou

#nejprve uložíme do workspace n ěkolik objekt ů
x1<-25
x3<-26
cmy<-"ahoj"
x<-29
ls() #vypíše všechny aktuáln ě existující objekty
[1] "cmy" "x" "x1" "x3"
objects() # shodné s ls()
[1] "cmy" "x" "x1" "x3"
#příklad vyhledávání objekt ů
a<-1; b<-4; aa<-2; b.a<-4; .a<-"Petr"
ls()
[1] "a" "aa" "b" "b.a"
ls(pat="a",all.names=T) #vypisuje také objekty za čínající te čkou
[1] ".a" "a" "aa" "b.a"

• rm(..., list , pos = -1, envir, inherits = F) – maže vybrané objekty
zadané buď přímo nebo jako vektor názvů (list) v daném prostředí (envir), inherits –
prohledá také všechny vazby (viz ?rm)

x1<-15;x2<-15;x3<-15;x4<-15; ls()
[1] "x1" "x2" "x3" "x4"
rm(x1,x2);ls() #dva objekty jsou vymazány
ls() #seznam aktuálních objekt ů
[1] "x" "x3" "x4" "y" "z"

rm(list=ls());ls() #návod, jak vymazat všechny obje kty
character(0)

• str (x) : přehledně vypíše podrobnou vnitřní strukturu objektu x
tvorba tabulky dat (data.frame) se t řemi sloupci
x1<-data.frame(exp=rep(1:3,2),latka=rep(c("a","b"), 3),hodn=seq(3,by=0.5,len=6))
str(x1) # výpis struktury sloupc ů (6 řádk ů, 3 sloupce atd.)
'data.frame': 6 obs. of 3 variables:
 $ exp : int 1 2 3 1 2 3
 $ latka: Factor w/ 2 levels "a","b": 1 2 1 2 1 2
 $ hodn : num 3 3.5 4 4.5 5 5.5

• comment(x) – nastaví nebo vypíše komentář k danému objektu x
comment(x1)<-c("Experiment testování kalcia","2002"); comment(x1)
[1] "Experiment testování kalcia" "2002"

• attributes (x) – objekty mají různé vlastnosti, které lze dále zkoumat a nastavovat.
Příslušná funkce vypisuje všechny atributy objektu x

attributes(x1)
$names
[1] "exp" "latka" "hodn"

$row.names
[1] 1 2 3 4 5 6

$class
[1] "data.frame"

 27

$comment
[1] "Experiment testování kalcia" "2002"

• attr (x, which) – nastaví nebo přečte danou vlastnost (atribut which) objektu x
attr(x1,"class")
[1] "data.frame"

• demo(topic) – spustí nebo zobrazí ukázkový program (topic)
demo() #vypíše informa ční okno o dostupných demo programech
demo(image) #spušt ění ukázky
demo(graphics)
demo (persp)
demo (plotmath)

• data (..., list, package, lib.loc, verbose, envir) – vypíše ukázková data
v dané knihovně (package).

data()

• summary(objekt, maxsum, digits, ...) – celkový přehled o určitém objektu
(podle typu objektu), maxsum – kolik úrovní bude vypsaných, digits – počet
desetinných míst

summary(1:25) #souhrn pro vektor čísel
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1 7 13 13 19 25

#souhrn pro již použitou tabulku x1 je souhrnem pro každou položku
#vidíme, že exp je číslo a ne faktor (i když by m ěl správn ě být)
summary(x1)
 exp latka hodn
 Min. :1.00 a:3 Min. :3.000
 1st Qu.:1.25 b:3 1st Qu.:3.625
 Median :2.00 Median :4.250
 Mean :2.00 Mean :4.250
 3rd Qu.:2.75 3rd Qu.:4.875
 Max. :3.00 Max. :5.500

summary(c("a","b","a","a","b")) #souhrn pro vektor znak ů
 Length Class Mode
 5 character character

#tvorba seznamu a jeho souhrn
x<-list(hodnoty=list(a=1:4,b=5:15),lokality=c("Besk ydy","Jeseníky"))
x
$hodnoty
$hodnoty$a
[1] 1 2 3 4

$hodnoty$b
 [1] 5 6 7 8 9 10 11 12 13 14 15

$lokality
[1] "Beskydy" "Jeseníky"

summary(x) #souhrn pro seznam
 Length Class Mode
hodnoty 2 -none- list
lokality 2 -none- character

summary(matrix(1:10,5,2)) #souhrn pro matici (hodno ceny sloupce)
 V1 V2
 Min. :1 Min. : 6
 1st Qu.:2 1st Qu.: 7
 Median :3 Median : 8

 28

 Mean :3 Mean : 8
 3rd Qu.:4 3rd Qu.: 9
 Max. :5 Max. :10

Kontrolní úkoly
27. Zkontrolujte, které objekty máte aktuálně ve workspace. V případě, že žádné nejsou,

vytvořte několik vektorů a matic z předchozích příkladů a nazvěte je podle svého
uvážení.

28. Matici z příkladu 15 převeďte na pole. Změní zásadně svou strukturu?
29. Prostudujte strukturu jednotlivých objektů, které máte aktuálně vytvořeny ve

workspace.
30. Podívejte se na summary pro objekt obyv z příkladu 26.
31. Vymažte objekt obyv.

Práce s knihovnami v R

I když by se z nápovědy zdálo, že základní nabídka funkcí v R je nepřeberná, řada
složitějších nebo specializovaných analýz (např. funkce pro tvorbu taxonomických analýz,
mnohorozměrná analýza dat atd.) je umístěna v dodatečných balíčcích (knihovnách). K
zjišťování aktuálně načtených knihoven, popř. k jejich načtení slouží řada funkcí z nichž
jsou nejdůležitější následující dvě.

• library (package, help, pos=2, lib.loc=NULL, character.only =F,

logical.return=F, warn.conflicts=T, keep.source, ve rbose, version) –
vypíše do informačního okna, které knihovny jsou k dispozici, pomocí této funkce lze
také přiinstalovat nebo odinstalovat dané doplňkové balíky (package).

library(gam)#p řiinstaluje knihovnu gam (vyžaduje také knihovnu spl ines)
Loading required package: splines

• search () – vyhledá přiinstalované knihovny, popř. objekty typu environment atd.,
umístění jednotlivých prvků vyhledá searchpaths() . Podobná funkce (.packages()) .

search()
[1] ".GlobalEnv" "package:methods" "packag e:stats"
[4] "package:graphics" "package:grDevices" "packag e:utils"
[7] "package:datasets" "Autoloads" "packag e:base"
searchpaths()
[1] ".GlobalEnv"
[2] "C:/PROGRA~1/R/R-24~1.0/library/methods"
[3] "C:/PROGRA~1/R/R-24~1.0/library/stats"
[4] "C:/PROGRA~1/R/R-24~1.0/library/graphics"
[5] "C:/PROGRA~1/R/R-24~1.0/library/grDevices"
[6] "C:/PROGRA~1/R/R-24~1.0/library/utils"
[7] "C:/PROGRA~1/R/R-24~1.0/library/datasets"
[8] "Autoloads"
[9] "C:/PROGRA~1/R/R-24~1.0/library/base"

• attach (what,pos=2,name=deparse(substitute(what)),warn.con flicts=T)),

detach (name,pos=2,version,unload=F) – zjednodušuje práci zejména s objekty
data.frame a list tím, že "připojí" (detach odpojí) objekt. Jednotlivé položky objektu
pak můžeme používat bez specifikace objektu.

x<-list(pol1=2:5,pol2=3:8) #vytvo ří seznam se dv ěma položkami
pol1 #položku nelze vypsat bez použití x$pol1
Error: object "pol1" not found
attach(x) #p řipojení objektu
pol1 #položku lze vypsat bez specifikace objektu
[1] 2 3 4 5

 29

Shrnutí:
Objektem v prostředí R mohou být různé struktury – od jednotlivých proměnných
(číselných, textových atd.) až po funkce. Pro zjednodušení práce s objekty jim většinou
přiřazujeme podle určitých pravidel názvy (jako názvy proměnné). Typ objektu poznáme
buď přímo jeho výpisem, popř. identifikací pomocí funkcí. Při tvorbě objektů (v případě,
že je neimportujeme, což je většinou mnohem jednodušší) používáme speciální funkce pro
každý typ objektu. Následně je lze na některé jiné typy objektů převádět. Všechny
vytvořené objekty jsou součástí tzv. pracovního prostoru. V rámci pracovního prostoru
mohu získat seznam všech uložených objektů, objekty mazat atd. Při manipulaci s objekty
jsou velice důležité funkce umožňující číst jejich strukturu a komentáře k jednotlivým
objektům. V případě, že některé pokročilé funkce nejsou momentálně k dispozici (nejsou
načteny patřičné knihovny), lze knihovny (balíčky, package) je jednoduchým způsobem
stáhnout z WWW, přiinstalovat (viz předchozí kapitoly) a načíst do aktuálního prostředí.

Metody k zapamatování:
• identifikace objektu – class, mode, typeof
• tvorba vektoru – c, rep, seq, sequence, a:b
• tvorba dalších objektů – matrix, array, list, data.frame. factor
• převod a testování objektů – as.typ objektu, is.typ objektu
• výpis a mazání objektů – ls, rm
• struktura objektů, komentáře, vlastnosti – str, summary, comment, attributes, attr
• pomocné funkce – demo, data
• seznam aktuálních knihoven a načítání knihoven: library, search

Výsledky
1. hodnoty <- c(1, 1.5, 3.4, 15, 12, 6.4)
2. hodnoty <- c(hodnoty, 5, 1)
3. my.stat <- "statistika"
4. zeme <- c("Asie", "Evropa", "Amerika", "Evropa", "A merika", "Amerika", "Evropa")
5. 15:-15
6. seq(0,1,by=0.05)
7. seq(-5,-2,by=0.5)
8. seq(10,2,by=-0.5)
9. rep(c("a","b"),times=20)
10. rep(c("a","b"),each=20)
11. rep(c("a","b"),times=c(10,5))
12. rep(5:7,times=3:5)
13. my.l <- seq(27,59,2)
14. rep(my.l,each=2); rep(my.l,times=2)
15. matrix(1,3,4)
16. matrix(c(10,20,30),3,4); matrix(c(10,20,30,40),3,4, byrow=T)
17. matrix(c(77276, 49036, 1590, NA),2,2,dimnames= list (zeme=c(" ČR","SR"),

plocha=c("pevnina","voda")))
18. array(1:27,c(9,3))
19. array(12:36,c(3,4,2))
20. array(c(55,12,38,12,16,14,28,31,26,5,42,36),c(2,2,3),dimnames=list(nemoc=c("nakažen","n

enakažen"),pohlavi=c("muž","žena"),kontinent=c("Afr ika","Amerika","Evropa")))
21. list(popis="výsledek testu",hodnota=c(21,34,25))
22. list(u15= matrix(1,3,4), atd. až po u20)
23. obyv<-data.frame(country=c(" Čína","Indie","EU","USA","Indonésie"),population=

c(1320955000,1169016000,492964961,303004000,2316270 00),
percent=c(19.8,17.52,7.39,4.54,3.47))

24. factor(c(1,2,1,1,2,1,2,1,1))
25. factor(c(1,2,1,1,2,1,2,1,1), levels=c(2,1))
26. factor(c(1,2,1,1,2,1,2,1,1), levels=c(2,1), labels= c("muž","žena"))
27. ls()
28. as.array(matrix(1,3,4))
29. použijte str a attributes
30. summary(obyv)
31. rm(obyv)

 30

KONSTANTY, OPERÁTORY A MATEMATICKÉ VÝPO ČTY

Cíle kapitoly:
Po prostudování kapitoly zvládnete toto:
- naučíte se pracovat se základními logickými a množinovými operacemi;
- zvládnete práci s matematickými operátory;
- seznámíte se s nejčastěji používanými konstantami v R;
- pochopíte principy zaokrouhlování v R.

Klí čová slova: konstanta, operátory, zaokrouhlování.

Průvodce
Narozdíl od předchozího textu budou pro čtenáře následující probírané funkce a operátory
asi známější. S podobnými příkazy se setkáte také v programech typu MS Excel atd.

Při práci s jednoduchými objekty můžeme snadno používat různé logické,
množinové i matematické operátory a funkce. Ve většině případů (pokud není uvedeno
jinak) jsou operace aplikovatelné také na vektory, matice, pole a části tabulek dat. Výstupy
pak mohou být opět uloženy do proměnné daného typu (vektor, číslo, logická hodnota).

Logické a množinové operace

• ==, != rovno, není rovno

• <, >, <=, >= menší než, větší než, menší nebo rovno, větší nebo rovno

• &, |, ! a zároveň, nebo, negace
6==5 #testuje, zda 6 je rovno 5 (nepravda)
[1] FALSE
6!=5 #testuje, zda 6 není rovno 5 (pravda), jinak ! 6==5
[1] TRUE

5>4|5>8 #5>4 nebo 5>8
[1] TRUE
5>4&5>8 #5>4 a zárove ň 5>8
[1] FALSE
!5<3 #negace (není pravda, ze) 5<3
[1] TRUE

x<-c(1,5,4,7,9,12,4,15,7) # vektor x
x>8 #testuje každou hodnotu vektoru a vrací vektor logických hodnot
[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE
x==4 #testuje každou hodnotu vektoru a vrací vektor logických hodnot
[1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE

• all (relace) – testuje, zda jsou všechny relace pravdivé (r1 & r2 & r3 ...),

• any (relace) – testuje, zda je alespoň jedna relace pravdivá (r1 | r2 | r3 ...)

• which (relace, arr.ind = FALSE) – testuje, které ze množiny relací jsou pravdivé.
Vrací pořadí hodnot splňující podmínku. V případě testování polí (arrays) může vracet
pro arr.ind=T výpis hodnot v podobě čísel řádků a sloupců, popř. dalších dimenzí.

all(c(1,2,3,4,5)<6) #jsou všechny hodnoty <6?
[1] TRUE

 31

any(c(1,2,3,4,5)>4) # je alespo ň 1 hodnota >4?
[1] TRUE
which(c(1,2,3,7,8)>3) #která z hodnot je >3? 4. a 5 . hodnota (7,8)
[1] 4 5

my.ar<-array(5:12,c(2,4)) #tvorba pole (2 řádky, 4 sloupce)
my.ar #výpis pole (pro názornost)
 [,1] [,2] [,3] [,4]
[1,] 5 7 9 11
[2,] 6 8 10 12
which(my.ar>9)#výpis prvk ů >9 (6.,7. a 8. hodnota – po sloupcích)
[1] 6 7 8
which(my.ar>9,arr.ind=T) #t ři hodnoty (2. ř,3.sl; 1 ř.,4sl.;2 ř.;3.sl)
 row col
[1,] 2 3
[2,] 1 4
[3,] 2 4

• %in% – testuje, zda je první množina prvkem druhé množiny také is.element(x,y)

• intersect (množiny) – průnik množin (vektorů) uvedených v závorce

• union (množiny) – sjednocení množin (vektorů) uvedených v závorce

• setdiff (a,b) – vrátí vektor čísel neobsažených ve druhé množině,
2 %in% c(1,3,5,9) # je číslo 2 obsaženo v uvedeném vektoru?
[1] FALSE
5 %in% c(1,3,5,9) # je číslo 5 obsaženo v uvedeném vektoru?
[1] TRUE
1:3 %in% c(1,3,5,9) # jsou čísla 1,2,3 obsažena v uvedeném vektoru?
[1] TRUE FALSE TRUE
intersect(c(2,3,5,7),c(2,4,8,7,9)) #pr ůnik vektor ů (oba obsahují 2 a 7)
[1] 2 7
union(c(2,3,5,7),c(2,4,2,7,9)) #sjednocení vektor ů
[1] 2 3 5 7 4 9
setdiff(c(2,3,5,7),c(2,4,2,7,9)) #ve druhém vektoru nejsou obsažena čísla 3 a 5
[1] 3 5

Kontrolní úkoly
1. Do objektu x1 vložte čísla 5, 4, 3, 8, 11 a 15 do objektu x2 vložte 3, 4, 7, 12 a 10.
2. Testujte, které prvky x1 jsou a) větší nebo rovny 5, b) nejsou rovny 5.
3. Testujte, zda jsou si prvky vektorů x1, x2 rovny.
4. Testujte, které prvky vektoru x2 jsou větší než 5 a zároveň menší než 10.
5. Testujte, zda jsou všechny prvky vektoru x1 a) větší než 1, b) větší než 5.
6. Testujte, zda jsou pravdivé výroky x1>1, x1<30, x1 není rovno 6.
7. Testujte, zda je alespoň 1 prvek vektoru x1 roven číslu 11.
8. Který prvek (jeho pořadí) vektoru x1 a) je větší než 3, b) je větší než 8.
9. Zjistěte, zda prvky 3:6 leží ve vektoru x1.
10. Proveďte průnik a sjednocení vektorů x1 a x2.

Základní aritmetické operátory

• + (sčítání), - (odčítání), * (násobení), / (dělení), ̂ (umocňování)

• %/% – celočíselné dělení (výsledek je celé číslo)

• %% – zbytek po celočíselném dělení (dělení „modulo“)

• sum(..., na.rm = FALSE) – sčítání množiny (vektoru, matice, pole atd.) čísel.

 32

- na.rm – v případě nastavení TRUE jsou hodnoty NA odstraněny z množiny,
jestliže je na.rm nastaveno na FALSE a vektor obsahuje NA hodnoty, pak je
výsledkem NA.

• prod(..., na.rm = FALSE) - násobení množiny čísel (na.rm – shodné jako u sum)
3+1569 #klasická operace s čítání
1572
x<-c(1,5,4,7,9,12,4,15,7) # vektor x
3*x #každá položka vektoru je vynásobena 3
[1] 3 15 12 21 27 36 12 45 21
x+x #se čtení položek stejného po řadí (1+1,5+5, atd.)
[1] 2 10 8 14 18 24 8 30 14
c(3,1)*x #jako p řechozí, ale 3. hodnota znova *3, 4.hodnota *1, atd.
[1] 3 5 12 7 27 12 12 15 21
Warning message:
longer object length
 is not a multiple of shorter object length in: c(3, 1) * x
#Warning message: pouze varování, že vektory nejsou stejn ě dlouhé

c(2+6, 3*8, 9-4, 25*(5-3), 2^3, 64/8, 9 %% 4, 9 %/% 4)#r ůzné operace
[1] 8 24 5 50 8 8 1 2
sum(2,3,4,7,9) #sou čet hodnot v závorce
[1] 25
sum(c(2,3,4,7,9))#totéž
[1] 25
prod(2,3,4)# sou čin hodnot
[1] 24

Konstanty

• letters, LETTERS, month.abb, month.name, pi, exp(x) – ex (Eulerovo číslo)
letters #malá písmena abecedy
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l " "m" "n" "o" "p" "q"
[18] "r" "s" "t" "u" "v" "w" "x" "y" "z"letters #ma lá písmena abecedy
LETTERS #velká písmena abecedy
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L " "M" "N" "O" "P" "Q"
[18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
month.name #názvy m ěsíc ů
 [1] "January" "February" "March" "April" "May"
 [6] "June" "July" "August" "September " "October"
[11] "November" "December"
month.abb #zkratky názv ů měsíc ů
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug " "Sep" "Oct" "Nov" "Dec"
pi # π Ludolfovo číslo
[1] 3.141593
exp(1) # Eulerovo číslo základ p řirozeného logaritmu
[1] 2.718282

Matematické funkce

• abs (…) – absolutní hodnota

• exp (…) – mocnina základu přirozeného logaritmu (e) neboli Eulerova čísla, e = exp(1)

• logb (…, base) – logaritmus čísla (vektoru) při základu base .

• log (…) – přirozený logaritmus (ekvivalent s logb(…, base = exp(1)).

• log10 (…) – dekadický logaritmus,

 33

• sqrt (…) – druhá odmocnina (jiné odmocniny pomocí mocnin např. 3 x = x^(1/3)).

• sign (…) – hodnoty -1, 0, 1 podle toho, jestli je hodnota záporná, nulová nebo kladná),

• sin (…) , cos (…) , tan (…) , sinh (…) , cosh (…) , tanh (…) – trigonometrické a
hyperbolické funkce

• asin (…) , asinh (…) , acos (…) , acosh (…) , atan (…) , atanh (…) – inverzní
trigonometrické a hyperbolické funkce

• factorial (…) – faktoriál, 5! = 5.4.3.2.1, factorial (x) shodné s prod(1:x)

• choose (n, k) – počet kombinací bez opakování (n nad k), shodné s viz příklad
x<-10; y<-3; factorial(x)/(factorial(y)*factorial(x -y))
[1] 120
choose(10,3)
[1] 120

• sample(x, size, replace=FALSE, prob=NULL) – vytvoří náhodnou kombinaci
(permutaci) čísel z vektoru x o velikosti size s opakováním (replace =T) nebo bez
opakování (replace =F). Argument prob umožňuje nastavení pravděpodobnosti
výběru jednotlivých prvků.

sample(1:10,size=5,replace=T) #náhod. komb. 5 hodno t z čísel 1 – 10 s opak.
[1] 3 7 1 7 1
sample(1:10,size=10,replace=T) #náhod. komb. 10 hod not z čísel 1 – 10 s opak.
 [1] 9 6 9 4 1 1 5 4 10 8
sample(1:10,size=10,replace=F) #náhodná permutace 1 0 čísel (bez opak)
 [1] 1 9 10 5 2 8 3 4 6 7

#náhodná kombinace čísel 1-3 s pravd ěpodob. 0.5 pro 1, 0.3 pro 2 a 0.2 pro 3
sample(1:3,size=20,rep=T,prob=c(0.5,0.3,0.2))
 [1] 1 1 1 1 1 1 3 1 1 2 2 1 1 2 3 1 3 2 2 1

Kontrolní úkoly
11. Zkontrolujte, zda máte načteny vektory z úlohy č. 1 této kapitoly. K vektoru x1 přičtěte
číslo 5, vektor x2 umocněte na čtvrtou.

12. K vektoru x1 přičtěte vektor c(3,4). Vysvětlete, co je výsledkem
13. Vypočítejte přirozený logaritmus x2 a následně logaritmus se základem 5
14. Vypočítejte odmocninu z čísla 121 a následně třetí odmocninu z 27
15. Proveďte losování tahu sportky, tzn. vyberte 7 čísel od 1 do 49 tak, aby se neopakovala
16. Simulujte 100 hodů mincí, kdy vám může padnout hodnota "panna"nebo "orel".

Zaokrouhlování

• round (x, digits=0) – klasické zaokrouhlení objektu x na určitý počet desetinných
míst (digits) (2.5 na 2, 3.5 na 4), typ zaokrouhlení (jak zaokrouhlit 5) závisí na
operačním systému. U jednodušších čísel zachovává systém „k nejbližšímu sudému“,
pokud za číslicí 5 následuje nula (ne systém od 5 nahoru, který je obecně rozšířený a
učí se ve školách).

• trunc (x) – vrací celou část daného čísla

• floor (x) , ceiling(x) – zaokrouhlení na nižší (vyšší) celé číslo

• signif (x, digits) – zaokrouhlí číslo na určitý počet platných cifer (digits), zbytek
doplní jako 0.

round(c(0.5,1.5,2.5,5.5,6.5,7.5,8.5), digits=0)#zao krouhlí na 0 deset. míst

 34

[1] 0 2 2 6 6 8 8
round(c(12.5545, 2.5545), digits=3) #zaokrouhlí na 3 des. místa
[1] 12.555 2.554
trunc(c(0.5,1.5,2.5,5.5,6.5,7.5,8.5)) #u řízne celou část čísla
[1] 0 1 2 5 6 7 8
ceiling(c(2.7,-2.3, -1.8))#zaokrouhlí nahoru
[1] 3 -2 -1
floor(c(2.7,-2.3, -1.8)) #zaokrouhlí dol ů
[1] 2 -3 -2
signif(c(12.5545, 2.5545), digits=3) # t ři cifry od za čátku pro všechna čísla
[1] 12.60 2.55
signif(c(1255, 255,12.3), digits=3)
[1] 1260.0 255.0 12.3

Generování pseudonáhodných čísel v R

Procvičení mnohých funkcí je nutné provést na více příkladech. Abychom se
nemuseli omezovat pouze na příklady uvedené ve skriptu, vysvětlíme si alespoň ve zkratce
tvorbu pseudonáhodných čísel ještě před vlastním vysvětlením práce s rozděleními
náhodných veličin (viz další části skripta). Náhodná čísla generovaná v R (a obecně ve
všech softwarech) nejsou ve skutečnosti zcela náhodná, ale jsou generována na základě
specifických algoritmů tak, aby se náhodným číslům podobala (tzv. pseudonáhodná čísla)
a mohli jsme s nimi pracovat jako s náhodnými čísly. Pro naše účely je takový typ náhody
dostačující. Podle pravděpodobnosti výskytu jednotlivých hodnot můžeme generovat čísla
z různých typů rozdělení. Pro základní účely postačí následující tři:

• runif (n,min=0,max=1) – vypíše n reálných náhodných čísel v intervalu (min,max) .
Interval je otevřený, tzn. krajních hodnot intervalu není nikdy dosaženo. Jedná se o
uniformní distribuci, tzn. každé číslo má stejnou pravděpodobnost výskytu.

runif(10) #generování 10 náhodných čísel od 0 do 1
 [1] 0.81726314 0.55485435 0.88582695 0.32683955 0. 02863844 0.06011710
 [7] 0.44680456 0.32662559 0.94091232 0.72545513
runif(10,min=5,max=8) #generování 10 čísel od 5 do 8
 [1] 5.132661 7.830364 5.113809 6.908226 5.802121 5 .370527 6.709676 7.141092
 [9] 6.540720 5.114725
trunc(runif(10,min=5,max=8))#generování 10 celých čísel od 5 do 7
 [1] 5 7 7 6 6 5 6 5 7 5

• rpois (n,lambda) – vypíše n celých náhodných čísel v intervalu s průměrem lambda .
Jedná se o tzv. Poissonovu distribuci, tzn. čísla kolem průměru se budou objevovat
častěji než dál od průměru.

rpois(30,lambda=3) #generování 30 celých čísel s pr ůměrem kolem 3
 [1] 6 3 3 2 3 2 1 2 2 1 2 6 2 2 3 4 1 1 4 5 3 6 4 4 0 2 4 2 2 4searchpaths() #

• rnorm (n,mean=0,sd=1) – vypíše n reálných náhodných čísel v intervalu s průměrem
mean. a směrodatnou odchylkou sd . Jedná se o tzv. normální rozdělení, kdy nejčastější
výskyt budou vykazovat čísla kolem průměru.

rnorm(20) #generování 20 reálných čísel s pr ůměrem kolem 0 a sm ěr. odch. 1
 [1] 2.344463021 -0.138127698 -1.009893425 1.1878 91442 0.904608210
 [6] -0.173483318 -0.281908102 -0.958777797 -0.3728 63274 -0.723849980
[11] -1.175724988 1.227925261 -1.780056890 0.1234 18655 -0.197777911
[16] 0.040842241 0.167808499 0.075059917 1.0185 27431 0.004379758
rnorm(20,mean=10,sd=2) #totéž s pr ůměrem kolem 10 a sm ěr. odch. 2
 [1] 12.338503 13.893136 7.162175 12.410630 10.599 693 9.627598 10.269063
 [8] 14.114875 11.453652 9.774820 9.110875 10.712 443 11.750055 9.198243
[15] 10.215472 9.170082 8.465258 11.461669 11.039 822 13.569389

 35

Kontrolní úkoly
17. Vytvořte vektor m.norm sestavený z 20 čísel z normálního rozdělení s průměrem 5 a

směrodatnou odchylkou 2.
18. Vytvořte vektor m.zaok tak, že m.norm zaokrouhlíte na celá čísla.
19. Vytvořte vektor m.cel tak, že odstraníte z m.norm čísla za desetinnou čárkou.
20. Porovnejte pomocí logických operátorů, které hodnoty m.zaok a m.cel se sobě rovnají

(pořadí čísel). Výsledek zkontrolujte tak, že si vektory vypište pod sebe.
21. Zaokrouhlete m.norm na na 2 desetinná čísla.
22. Generujte 25 čísel z Poissonova rozdělení s průměrem 4.
23. Generujte čísla od 0 do 10 z rovnoměrného rozdělení do objektu vek1, pak je

zaokrouhlete na celá čísla. Jaký bude rozdíl v rozsahu čísel, když použijete funkci
trunc.

Shrnutí:
Základní aritmetické operace lze v R provádět nejen s čísly, ale také s jednoduchými
objekty typu vektor, matice atd. Kromě aritmetických operací je zde také řada vestavěných
logických a množinových operátorů a komplikovanějších matematických funkcí. Při
procvičování práce s některými funkcemi je užitečné vědět, jak vytvářet vektory
náhodných čísel. R nabízí mnoho různých typů náhodných veličin, z nichž nejčastěji
budeme využívat náhodná čísla z pravidelného, Poissonova a normálního rozdělení.

Metody k zapamatování:
• logické operátory: ==, != , <, >, <=, >= , &, |, !, all, any, which
• množinové operátory: %in%, intersect, union, setdiff
• aritmetické operátory: +, -, *, /, ^, %/%, %%, sum, prod
• konstanty: letters, LETTERS, month.abb, month.name, pi, exp(x)
• matematické funkce: abs, exp, logb, log, log10, sqrt, sign,, sin, cos, tan, sinh, cosh,

tanh, asin, asinh, acos, acosh, atan, atanh, factorial, choose, sample
• zaokrouhlování: round, trunc, floor, ceiling, signif
• generování pseudonáhodných čísel: runif, rpois, rnorm

Výsledky
1. x1<- c(5,4,3,8,11,15);x2<- c(3,4,7,12,10)
2. x1>=5; x1!=5
3. x1==x2 #vrátí TRUE jen u 4, protože je u obou vekto r ů na 2. míst ě
4. x2>5 & x2<10
5. all(x1>1); all(x1>1)
6. all(x1>1,x1<30,x1!=6)
7. any(x1==11)
8. which(x1>3); which(x1>8)
9. 3:6 %in% x1
10. intersect(x1,x2); union(x1,x2)
11. x1+5; x2^4
12. x1+c(3,4) #st řídav ě se bude p ři čítat 3 a 4
13. log(x2); logb(x2,5)
14. sqrt(121); 27^(1/3)
15. sample(1:49,7,rep=F)
16. sample(c("panna","orel"),100,rep=T)
17. m.norm<-rnorm(20,5,2)
18. m.zaok<-round(m.norm)
19. m.cel<-trunc(m.norm)
20. which(m.zaok==m.cel)
21. round(m.norm,2)
22. rpois(25,4)
23. vek1<-runif(30,0,10); round(vek1) #rozsah 0-10, p ři použití fce trunc bude rozsah 0-9

 36

MANIPULACE S OBJEKTY
Cíle kapitoly:
Po prostudování kapitoly zvládnete toto:
- naučíte se načíst data z jiných aplikací;
- jednoduše provádět úpravy v jednotlivých objektech;
- seznámíte se s funkcemi umožňujícími složitější manipulaci s objekty;
- pochopíte princip funkcí pro hromadné operace na složitých objektech.

Klí čová slova: import objektů, editace objektů, hromadné operace na objektech.

Průvodce
Všimněte si, že jsme až dosud nepoužili pro naši práci žádná složitější data. Je to tím, že
data pro účely statistického zpracování jsou často dost rozsáhlá a zadávání uvedeným
způsobem by bylo ohromně zdlouhavé. To, jak data "dostat do R" a jak s nimi pak dále
pracovat se dozvíte v následující kapitole. Ještě drobnou poznámku k manipulaci s daty. Z
vlastní zkušenosti doporučuji data vždy ukládat do databáze (např. v MS Excel), následně
odfiltrovat chyby a až finálně upravená data načíst do R. Pokud totiž neprovádíme
specifické automatické hromadné operace jsou pro úpravu dat mnohem vhodnější "user
friendly" programy.

Načítání objektů a jejich editace

 Pokud nechceme používat cvičná data zabudovaná v R, je nutné datové objekty
vytvořit nebo načíst. Základním problémem je velice často načtení objektu. Načítání
probíhá několika způsoby a to buď ze souboru nebo ze schránky. Při načítání ze souboru
musí být uvedena celá cesta k souboru. Stávající nastavení složky, ze které jsou načítány
soubory získáme pomocí funkce getwd() nebo pomocí položky ve File – Change dir. Při
načítání ze schránky musí být data zkopírována z jakéhokoliv programu (např. MS Word,
MS Excel, ...) pomocí CTRL C (nebo v menu Úpravy – Kopírovat) do schránky a následně
pomocí příkazu scan nebo read.table načtena.

• scan (file, what, nmax, n, sep, quote, dec, skip, nlines , na.strings,
flush = F, fill = F, strip.white = F, quiet = F, bl ank.lines.skip = T,

multi.line = T, comment.char) – načítá vektor ze souboru file (musí být
uvedena plná cesta s názvem souboru ve formě character nebo načítá ze stávajícího
adresáře viz úvod této kapitoly), popř. ze schránky file = "clipboard" . Do file je
možno také zadat typ objektu connection.
- what – typ načítané hodnoty (logical() , integer() , numeric() , complex() ,

character() , raw())
- nmax popř. n – maximální počet načtených položek.
- sep – specifikuje znak, kterým jsou odděleny jednotlivé položky, např. sep="," ,

sep=";" , sep="\t" je tabelátor, sep="\n" je konec řádku.
- quote – znak pro uvozovky
- dec – označuje znak pro desetinnou čárku
- skip – počet řádků, které se mají v souboru vynechat než se začnou načítat data
- nlines – maximální počet řádků, který má být načten

 37

- na.strings – vektor hodnot, které mají být chápány jako NA hodnoty
- quiet – logická hodnota, nebude se vypisovat řádek s počtem načtených položek
- allowEscape – při načítání budou brány v úvahu specifické znaky (\n, \t)
- další viz help(scan)

Princip na čtení ze schránky do objektu s názvem x
1. Zkopírujte následující řádek do konzoly (nespoušt ět Enter)
 x<-scan("clipboard")
2. Zkopírujte řádek s čísly pomocí CTRL C (provád ějte i v násl. p říkladech)
(data se uloží do tzv. schránky "clipboard")
 5 4 6 9 1 24 36 4 7 9 19 4
3. Spus ťte p řipravený řádek x<-scan ...
Read 12 items
x #vypíše na čtený vektor
[1] 5 4 6 9 1 24 36 4 7 9 19 4

Na čtení tohoto řet ězce ze schránky do R (neuloženo do objektu)
scan("clipboard",what=character())
Read 11 items
 [1] "#" "Na čtení" "tohoto" " řet ězce" "ze"
 [6] "schránky" "do" "R" "(neulo ženo" "do"
[11] "objektu)"

Na čtení dat odd ělených čárkou (sep) bez vypsání po čtu položek
5, 4, 6, 9, 1, 24, 36, 4, 7, 9, 19, 4
scan("clipboard",sep=",",quiet=T)
 [1] 5 4 6 9 1 24 36 4 7 9 19 4

Na čtení následujících řet ězc ů ze schránky do R (neuloženo do objektu)
"ahoj"; " čau";"ahoj";" čau";" čau";"zdravím";"zdravím";"zdravím";"ahoj"
scan("clipboard",what=character(),sep=";")
Read 9 items
[1] "ahoj" " čau" "ahoj" " čau" " čau" "zdravím" "zdravím"
[8] "zdravím" "ahoj"

Na čtení čísel s desetinnou te čkou
1.2 1.8 1.5 1.4 2.8 3.9
scan("clipboard")
Read 6 items
[1] 1.2 1.8 1.5 1.4 2.8 3.9

Na čtení čísel s desetinnou čárkou
1,2 1,8 1,5 1,4 2,8 3,9
scan("clipboard", dec=",")
Read 6 items
[1] 1.2 1.8 1.5 1.4 2.8 3.9

• read.table (file, header = FALSE, sep = "", quote = "\"'", dec = ".",
row.names, col.names, as.is = !stringsAsFactors, na .strings = "NA",
colClasses = NA, nrows = -1, skip = 0, check.names = TRUE, fill =
!blank.lines.skip, strip.white = FALSE, blank.lines .skip = TRUE,
comment.char = "#", allowEscapes = FALSE, flush = F ALSE,

stringsAsFactors = default.stringsAsFactors()) – podobné funkci scan, ale
načítá soubor do tabulky dat – data.frame(např. z MS Excel, ale také z MS Word).
Ideální pro import vlastních tabulek. Načítání ze schránky opět pomocí file =

"clipboard" .
- header – logická hodnota, zda je v datech obsažena hlavička sloupců.
- při načítání v MS Excel i jiných programech mohou zejména vzniknout chyby a)

jestliže používáme v hlavičce mezery nebo nestandardní znaky (včetně háčků a
čárek), b) jestliže importujeme v Excelu prázdné buňky a nezadáme jako sep=“\t“)

#tabulka dat, která bude na čtena
2 3 42 7
8 9 7 51

 38

1 21 5 4

read.table("clipboard") #na čtení jednoduchých dat bez hlavi čky
 V1 V2 V3 V4
1 2 3 42 7
2 8 9 7 51
3 1 21 5 4

#tabulka dat, která bude na čtena, data odd ělena čárkou
2,3,4,7
8,9,7,5
1,2,5,4

read.table("clipboard") #chybné na čtení (data na čtena jako character)
 V1
1 2,3,4,7
2 8,9,7,5
3 1,2,5,4

read.table("clipboard",sep=",")#správné na čtení
 V1 V2 V3 V4
1 2 3 4 7
2 8 9 7 5
3 1 2 5 4

#tabulka dat s hlavi čkou
m1,m2,m3,m4
8,9,7,5
1,2,5,4

read.table("clipboard",header=T,sep=",")
 m1 m2 m3 m4
1 8 9 7 5
2 1 2 5 4
#tabulka dat s hlavi čkou (ale ne v prvním sloupci, takže R automaticky o dliší)
 Strava pH
1 mas 7.5
2 mas 7.1
3 mas 8.2
4 mas 8.0
5 mas 7.9
6 mix 7.6
7 mix 7.5
8 mix 7.2
9 mix 7.9
10 mix 8.2
mytab<-read.table("clipboard")
mytab #vypíše na čtenou tabulku (totožné se vstupním formátem)

• edit (name = NULL, file = "", title = NULL,editor = getO ption

("editor"), …)) – otevře objekt name v editoru dat. V editoru lze s daty dále
pracovat a následně jsou uložena do file nebo vytištěna na obrazovku. Abychom
úpravy dat uložili do objektu, pak je nutné přiřadit editovaným datům název (např. x<-

edit(x)).

• fix (name = NULL, file = "", title = NULL,editor = getO ption("editor"),

…)) – otevře editor dat, ve kterém lze data upravovat
x<-1:10
x<-edit(x) #editace objektu a jeho uložení do vekto ru x, alternativa fix(x)

x1<-data.frame(x=1:10,z=21:30)

 39

fix(x1) #m ůžeme p řidat data atd., alternativa je x1<-edit(x1)

Kontrolní úkoly
1. Načtěte následující vektory jako číselné vektory.

2 8 4 25 36 78 1 4 89
15, 25, 14, 17, 2, -1, 7, 24, 36, 47, 55
2.5, 3, 4, 1.8, 2.7, -0.7
1,27; 2,36; 4,25; 8,26
1, , 2,5,,,7,10

2. Načtěte následující vektor jako logický (TRUE, FALSE): T,F,T,F,F,F,T,T,T,F
3. Načtěte znaky ve sloupci do vektoru m.vec:

c
c
d
e
f

4. Přidejte pomocí funkce fix další znaky do vektoru m.vec.
5. Načtěte tabulku dat do objektu m.tab:

 druh ks
1 Carabus 10
2 Carabus 8
3 Abax 22
4 Carabus 11
5 Carabus 12
6 Carabus 5
7 Carabus 17
8 Carabus 19
9 Abax 13
10 Abax 17

6. Pomocí funkce fix upravte objekt m.tab – přidejte jeden sloupec s libovolnými
hodnotami a další s logickými hodnotami. Zkontrolujte, zda jsou hodnoty ve sloupcích
správného typu.

7. Vytvořte tabulky v Excelu s hlavičkou i bez hlavičky s různými typy dat. Pokuste se
také načíst data, ve kterých chybí údaje.

 40

Základní práce s jednotlivými prvky objektů

• [x , drop=T] . Hranaté závorky za vektorem s číslem nebo logickou hodnotou (x) nám
dovoluje filtrovat z vektoru určité prvky, popř. získávat jen části polí, matic nebo
tabulek. získáme část z daného vektoru (tabulky). Argument drop – zjednodušuje
objekt (např. u jednořádkové matice vytvoří vektor, u pole může vytvořit pole s nižší
dimenzí).

##################### indexování vektor ů ##############################

kc<-c(5,2,2,2,1,6,1,7,4,5,0,1,6,2,4,4,2,7,4,2,2,3,3 ,3,1,5,3)
kc[3] # výpis 3. prvku vektoru
[1] 2
kc[3:7] # výpis 3.-7. prvku vektoru
[1] 2 2 1 6 1
kc[c(1,5,7,2,1,1)] # výpis prvk ů vektoru(1. prvek se opakuje 3×)
[1] 5 1 1 2 5 5
kc[-(1:10)] # vynechán 1.-10. prvek
[1] 0 1 6 2 4 4 2 7 4 2 2 3 3 3 1 5 3
kc[kc==2] #vypíše prvky rovnající se 2
[1] 2 2 2 2 2 2 2
kc[kc>5] #vypíše prvky v ětší než 5
[1] 6 7 6 7

#výpis t ěch prvk ů, které jsou nastaveny na TRUE
kc[c(T,F,T,F,T,F,T,F,T,F,T,F,T,T,T,T,T,T,T,T,T,F,F, F,T,F,F)]
 [1] 5 2 1 1 4 0 6 2 4 4 2 7 4 2 2 1
po čet logických prvk ů neodpovídá po čtu prvk ů vektoru, schéma se opakuje
tzn. vynechána každá 3. hodnota
kc[c(T,T,F)]
 [1] 5 2 2 1 1 7 5 0 6 2 4 2 4 2 3 3 1 5

obdobi<-c("jaro","leto","podzim","zima") #vytvo řen vektor prvk ů období
obdobi[1] # první položka vektoru období
[1] "jaro"
obdobi[2:4] #2.-4. položka
[1] "leto" "podzim" "zima"
obdobi[-3]
[1] "jaro" "leto" "zima"

##################### indexování matic ############ ##################
mymat<-matrix(1:6,2,3,TRUE); mymat #vytvo ří matici a vypíše ji
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
mymat[2,1] #prvek matice mymat ve 2. řádku a 1. sloupci
[1] 4
mymat[2,3] #prvek ve 4. řádku a 3. sloupci
[1] 6
mymat[2,] # prvky druhého řádku
[1] 4 5 6
mymat[1,,drop=F] # totéž, ale výstup je matice
 [,1] [,2] [,3]
[1,] 1 2 3
mymat[c(1,2),c(2,3)] #vypíše hodnoty [1,2],[1,3],[2 ,2],[2,3]
 [,1] [,2]
[1,] 2 3
[2,] 5 6
mymat[,c(T,F,T)]#výpis sloupce 1 a 3 (ozna čný jako TRUE)
 [,1] [,2]
[1,] 1 3
[2,] 4 6

##################### indexování seznam ů ##############################
x<-list(let=letters[1:10],num=1:5) #seznam
x #výpis seznamu

 41

$let
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

$num
[1] 1 2 3 4 5

x[2] #výpis druhého objektu seznamu (v četn ě názvu položky)
$num
[1] 1 2 3 4 5
x[c(2,1)] #výpis druhého objektu a následn ě prvního objektu seznamu
$num
[1] 1 2 3 4 5

$let
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
x[[1]] #výpis prvního objektu seznamu (bez názvu po ložky)
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
x[[1]][3] #výpis prvního objektu t řetího prvku
[1] "c"
x[[2]][3:6] #výpis 2. objektu 3.-6. prvku (6. neexi stuje, takže NA)
[1] 3 4 5 NA
x[[c(1,3)]] #výpis 1. objektu 3. prvku
[1] "c"

x["let"]#výpis prvního objektu seznamu pomocí jména (s názvem tag, tzn. list)
$let
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
x[["let"]]#výpis prvního objektu seznamu pomocí jmé na (vektor)
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

#indexování tabulek dat

mytab<-
data.frame(Strava=rep(c("mas","mix"),each=5),pH=c(7 .5,7.1,8.2,8.0,7.9,7.6,7.5,7.2
,7.9,8.2))
 Strava pH
1 mas 7.5
2 mas 7.1
3 mas 8.2
4 mas 8.0
5 mas 7.9
6 mix 7.6
7 mix 7.5
8 mix 7.2
9 mix 7.9
10 mix 8.2

mytab[,"pH"]#výpis sloupce Strava také mytab[,2]
 [1] 7.5 7.1 8.2 8.0 7.9 7.6 7.5 7.2 7.9 8.2

mytab[,"Strava"]#výpis sloupce Strava také mytab[,1]
 [1] mas mas mas mas mas mix mix mix mix mix
Levels: mas mix

mytab[c(2,5,7),"Strava"]#výpis řádk ů 2,5,7 ve sloupci Strava
[1] mas mas mix
Levels: mas mix

mytab[2:4,"Strava"]# řádk ů 2,3,4, ve sloupci Strava
[1] mas mas mas
Levels: mas mix

mytab[2:4,] # řádk ů 2,3,4
 Strava pH
2 mas 7.1
3 mas 8.2
4 mas 8.0

 42

mytab[2,1] #výpis 2. položky sloupce 1
[1] mas
Levels: mas mix

mytab[c(T,F),2]#výpis lichých položek sloupce 2
[1] 7.5 8.2 7.9 7.5 7.9

mytab[mytab$Strava=="mix",]#výpis tabulky pro hodno ty mix
 Strava pH
6 mix 7.6
7 mix 7.5
8 mix 7.2
9 mix 7.9
10 mix 8.2
mytab[mytab$pH<8,1]#výpis polože sloupce Strava pro hodnoty pH<8
[1] mas mas mas mix mix mix mix
Levels: mas mix

• $ – název$tag – výpis sloupců tabulky nebo položek seznamu
mytab$Strava #výpis sloupce Strava p ředchozí tabulky
[1] mas mas mas mas mas mix mix mix mix mix
mytab$pH[3:4] #výpis řádk ů 3 a 4 ve sloupci Strava p ředchozí tabulky
[1] 8.2 8.0
x$let #výpis vektoru let z p ředchozího seznamu
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

• append (x, values, after=length(x)) – přidá hodnoty values k vektoru (tabulce)
x za after hodnotu

x<-c(1,1,2,4,5,7);x
[1] 1 1 2 4 5 7
append(x,c(2,3,5,5)) #p řipojí k x další vektor
[1] 1 1 2 4 5 7 2 3 5 5

• cbind (x1, x2, ...) , rbind (x1, x2, ...) – sloučí vektory x1, x2 ... (popř.
tabulky, matice) po řádcích nebo po sloupcích

cbind(c(1,1,2,4),c(5,6,7,8))#slou čí dva vektory (jako sloupce) do matice
 [,1] [,2]
[1,] 1 5
[2,] 1 6
[3,] 2 7
[4,] 4 8
cbind(x1=c(1,1,2,4),x2=c(5,6,7,8)) #totéž, pouze na víc názvy sloupc ů
 x1 x2
[1,] 1 5
[2,] 1 6
[3,] 2 7
[4,] 4 8

cbind(1:3) #z vektoru vytvo ří matici
 [,1]
[1,] 1
[2,] 2
[3,] 3

rbind(c(1,1,2,4),c(5,6,7,8))#slou čí dva vektory do dvou řádk ů
 [,1] [,2] [,3] [,4]
[1,] 1 1 2 4
[2,] 5 6 7 8

rbind(m=1:4, c=2, "a.1" = 10, c(1,2)) #slou čí dva vektory, p řidá názvy řádk ů
 [,1] [,2] [,3] [,4]
m 1 2 3 4
c 2 2 2 2
a.1 10 10 10 10
 1 2 1 2

 43

• length (x) – velikost objektu x (délka vektoru, počet položek seznamu, sloupců
tabulky dat, prvků v matici)

length(1:121)
[1] 121
length(5:121)
[1] 117
length(letters)
[1] 26
length(c(1,2,8))
[1] 3
length(list(a=4:7,b=1:10,d=1:13))
[1] 3
x.1<-c(2,2,4,5,6,8,1,2,3,4)
length(x.1[x.1==2])
[1] 3

• rank (x, na.last=TRUE, ties.method= c("average", "first" , "random",

"max", "min")) – vypíše pořadí jednotlivých hodnot v dané řadě (vektoru) x .
- na.last – logical, hodnoty NA umístěny na konec
- ties. method – jaké přiřadit pořadové číslo shodných hodnot

5 zp ůsob ů řazení vektoru (rozdíl u stejných hodnot)
rank(c(5,5,5,4,3,7,9,9,1),ties.method="average")#pr ůměrná hodnota
[1] 5.0 5.0 5.0 3.0 2.0 7.0 8.5 8.5 1.0
rank(c(5,5,5,4,3,7,9,9,1),ties.method="min") #minim um z po řadí
[1] 4 4 4 3 2 7 8 8 1
rank(c(5,5,5,4,3,7,9,9,1),ties.method="max") #maxim um z po řadí
[1] 6 6 6 3 2 7 9 9 1
rank(c(5,5,5,4,3,7,9,9,1),ties.method="first") #pod le pozice v řadě
[1] 4 5 6 3 2 7 8 9 1
rank(c(5,5,5,4,3,7,9,9,1),ties.method="random") #ná hodně
[1] 5 4 6 3 2 7 9 8 1

• rev (x) – převrátí pořadí hodnot vektoru
rev(1:10)#vektor se vypíše opa čně
 [1] 10 9 8 7 6 5 4 3 2 1
rev(c(2,4,3)) #vektor se vypíše opa čně
[1] 3 4 2

• sort (x, partial=NULL, na.last=NA,decreasing = F, method =c("shell",

"quick"), index.return=F) – seřadí hodnoty vzestupně (v případě decreasing=T
sestupně),
- index.return – logical, vypsat také původní pořadí hodnot?
- partial – vektor hodnot, které mají být umístěna přesně, nižší a vyšší hodnoty

jsou umístěny libovolně
- na.last – logical, jak řadit hodnoty NA, pro NA jsou vynechány, T poslední místo
- decreasig – logická hodnota, řadit sestupně?

sort(c(100,102,95,21,300))#se řadí vektor
[1] 21 95 100 102 300
sort(c(5,5,5,4,3,7,9,9,1),index.return=T) #se řadí + ix p ůvodní po řadí čísel
$x
[1] 1 3 4 5 5 5 7 9 9

$ix
[1] 9 5 4 1 2 3 6 7 8

sort(c(5,5,5,4,3,7,9,9,1,8),partial=c(4))#p řesn ě umístí jen 4, zbytek libovoln ě
 [1] 1 3 4 5 5 7 9 9 5 8
sort(c(5,5,5,4,3,7,9,9,1,8),partial=c(7,9)) #p řesn ě umístí jen 7 a 9
 [1] 1 5 3 4 5 5 7 8 9 9

 44

• order (x, na.last=T, decreasing=F) – vypíše indexy seřazených hodnot, v případě
více vektorů spojených seřadí nejprve podle prvního a v případě opakovaných hodnot
použije druhý vektor atd.
- na.last – logical, NA řadit na poslední místo?
- decreasig – logical, řadit sestupně?

order(c(9:2)) # vypíše po řadí hodnot
[1] 8 7 6 5 4 3 2 1

mytab<-
data.frame(Strava=rep(c("mas","mix"),each=5),pH=c(7 .5,7.1,8.2,8.0,7.9,7.6,7.5,7.2
,7.9,8.2))
mytab #tabulka dat, která má být se řazena
 Strava pH
1 mas 7.5
2 mas 7.1
3 mas 8.2
4 mas 8.0
5 mas 7.9
6 mix 7.6
7 mix 7.5
8 mix 7.2
9 mix 7.9
10 mix 8.2
my.sort<-order(mytab[,2],mytab[,1])# řazení podle sloupce 2 a pak podle 1
my.sort #vypíše p ůvodní indexy hodnot v po řadí, v jakém jsou se řazeny
 [1] 2 8 1 7 6 5 9 4 3 10
mytab[my.sort,]#výpis nov ě se řazené tabulky
 Strava pH
2 mas 7.1
8 mix 7.2
1 mas 7.5
7 mix 7.5
6 mix 7.6
5 mas 7.9
9 mix 7.9
4 mas 8.0
3 mas 8.2
10 mix 8.2

• replace (x, list, values) : nahradí hodnoty na určitém místě (list) ve vektoru x
hodnotami values

replace(c(1,3,4,2,1,7),list=2,values=12)#nahradí 2. položku číslem 12
[1] 1 12 4 2 1 7
replace(c(1,3,4,2,1,7), list=c(2,4), values=10) # 2 . a 4. položka bude 10
[1] 1 10 4 10 1 7
replace(c(1,3,4,2,1,7),c(2,4),c(10,11))#2. položka 10 a 4. položka 11
[1] 1 10 4 11 1 7

• duplicated (x, incomparables=F,…) – vyhodnotí, zda se hodnota příslušné položky
opakuje nebo je poprvé, incomparables – hodnoty které nebudou porovnány, pro pole
je dále možné přidat argument MARGIN.

duplicated(c(1,1,2,2))#jestliže je číslo poprvé, pak F, p ři opakování je T
[1] FALSE TRUE FALSE TRUE
duplicated(c(10,2,1,1,2,2,6,7))
[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

x<-data.frame(sl1=c(1,1,1,1,2),sl2=c(3,3,2,1,4))#ta bulka dat
x
 sl1 sl2
1 1 3
2 1 3
3 1 2
4 1 1
5 2 4

 45

duplicated(x) #ozna čuje duplikáty řádk ů
[1] FALSE TRUE FALSE FALSE FALSE

• unique (x, incomparables=F,…) – vypíše objekt x (vektor, tabulka dat)
s vynechanými duplikáty

unique(c(1,1,3,3,4))#zobrazí všechny hodnoty bez du plikát ů
[1] 1 3 4
kc<-c(5,2,2,2,1,6,1,7,4,5,0,1,6,2,4,4,2,7,4,2,2,3,3 ,3,1,5,3)
unique(kc)
[1] 5 2 1 6 7 4 0 3
x<-data.frame(sl1=c(1,1,1,1,2),sl2=c(3,3,2,1,4))# t abulka jako u duplicated
unique(x) #zobrazí všechny řádky bez duplikát ů
 sl1 sl2
1 1 3
3 1 2
4 1 1
5 2 4

• ncol (x), nrow (x) – počet sloupců, řádků tabulky dat, matice nebo pole.
x<-data.frame(sl1=c(1,1,1,1,2),sl2=c(3,3,2,1,4))# t abulka jako u duplicated
ncol(x) #po čet sloupc ů tabulky dat
[1] 2
nrow(x) #po čet řádk ů tabulky dat
[1] 5
nrow(2:12) #nevyhodnotí pro vektor
NULL
NROW(2:12) #po čítá také pro pro vektor
[1] 11
NCOL(2:12)
[1] 1

• dim (x) – vypíše počet dimenzí jednotlivých objektů (polí, matic, tabulek, vektorů).
x<-matrix(1:10,2,5); x #matice 2 řádky, 5 sloupc ů
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
dim(x) #výpis dimenzi objektu
[1] 2 5

mv<-1:10
dim(mv) #objekt mv je vektor a nemá dimenzionální s trukturu
NULL

x<-data.frame(sl1=c(1,1,1,1,2),sl2=c(3,3,2,1,4))# t abulka jako u duplicated
dim(x)
[1] 5 2

• dimnames (x) – vypisuje nebo nastavuje názvy jednotlivých dimenzí objektu x .
x<-data.frame(sl1=c(1,1,1,1,2),sl2=c(3,3,2,1,4))# t abulka jako u duplicated
dimnames(x)
[[1]]
[1] "1" "2" "3" "4" "5"

[[2]]
[1] "sl1" "sl2"

• subset (x, subset, select, drop=F, …) – vybere z vektoru, matice, pole nebo
tabulky dat x pouze určité položky (řádky nebo prvky)
- subset – podmínka, kterou musí splňovat vybrané řádky (u vektoru prvky)
- select – čísla sloupců nebo podmínka, kterou musí splňovat sloupce
- drop – v případě, že lze objekt zjednodušit, pak provést zjednodušení?

x<-1:20;x #vektor čísel
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 6 17 18 19 20

 46

subset(x,x<12) # vybere čísla v ětší než 12, alternativa x[x<12]
 [1] 1 2 3 4 5 6 7 8 9 10 11

x<-matrix(1:15,5,5);x # tvorba a výpis matice
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 1 6
[2,] 2 7 12 2 7
[3,] 3 8 13 3 8
[4,] 4 9 14 4 9
[5,] 5 10 15 5 10

subset(x,subset=x[,1]==3) # vybere řádky, kde je v prvním sloupci číslo 3
alternativa x[x[,1]==3,,drop=F]
 [,1] [,2] [,3] [,4] [,5]
[1,] 3 8 13 3 8

subset(x,subset=x[,1]==3,drop=T) #totéž, ale výsled ek zjednoduší na vektor
alternativa x[x[,1]==3,]
 [1] 3 8 13 3 8

subset(x,select=x[1,]==1) # vybere sloupce, kde je v 1. řádku číslo 1
alternativa x[,x[1,]==1]
 [,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 4
[5,] 5 5

mytab<-
data.frame(Strava=rep(c("mas","mix"),each=5),pH=c(7 .5,7.1,8.2,8.0,7.9,7.6,7.5,7.2
,7.9,8.2)) # tabulka dat
subset(mytab,Strava=="mix")# vybere řádky, kde Strava = mix
alternativa x[x$Strava==“mix“,]
 Strava pH
6 mix 7.6
7 mix 7.5
8 mix 7.2
9 mix 7.9
10 mix 8.2

subset(mytab,Strava=="mix",select=2) # vybere řádky, kde Strava=mix, 2. sloupec
alternativa x[x$Strava==“mix“,2]
 pH
6 7.6
7 7.5
8 7.2
9 7.9
10 8.2

Kontrolní úkoly
8. Vytvořte vektor s názvem vec1 s 40 prvky tvořenými náhodnými čísly z Poissonova

rozdělení s průměrem kolem 3.
9. Vypište 10. až 20. prvek vektoru vec1
10. Vypište vektor tvořený 1.,3., 5. a 17. prvkem.
11. Vypište prvky na sudé pozici, na liché pozici a každý pátý prvek. Pokuste se použít

také způsob pomocí logických hodnot (viz výsledky) a vysvětlete jej.
12. Vypište všechny prvky, které jsou menší než 2, větší než 2 a zároveň menší než 6
13. Vypište všechny prvky, které nejsou rovny 3, pak všechny kromě 10. prvku
14. Vypište všechny prvky kromě 10. až 20., pak všechny kromě 5., 8. a 25. prvku
15. Vektor vec1 použijte pro tvorbu matice o 10 řádcích a 4 sloupcích nazvanou mat1.
16. Přečtěte prvek na 6. řádku ve 3. sloupci matice mat1. Přečtěte první tři řádky matice.

Přečtěte sloupec 2 a 4 matice.

 47

17. Přečtěte oblast tvořící řádky 1, 2, 3 a sloupce 2, 3, 4. Přečtěte buňky tvořící průnik
těchto řádků a sloupců tzn. body matice se souřadnicemi [1,2], [2,3], [3,4].

18. Vypište ty řádky matice, které mají v prvním sloupci číslo 3.
19. Z vektoru vec1 vytvořte pole ar1 s rozměry 4, 5, 2. Přečtěte prvek se souřadnicemi

[2,4,2]. Vypište část pole tvořenou pouze prvními řádky, pak ještě jednou tak, aby byla
zachována struktura trojrozměrného pole.

20. Načtěte následující tabulku dat a nazvěte ji myt. Tabulka obsahuje výsledky
experimentů na třech polích (field) s různými prvky dodanými experimentálně (fertil).
Pro každou kombinaci byla vždy provedena dvě měření výšky dospělé rostliny.
 field fertil height
1 a Ca 12.1
2 b P 9.8
3 c P 8.9
4 a Ca 11.3
5 b Ca 11.0
6 c Ca 11.9
7 a P 10.6
8 b P 9.7
9 c P 9.2
10 a P 10.3
11 b Ca 11.2
12 c Ca 10.4

21. Vypište řádky 2-6 tabulky myt. Vypište vektor výšek rostlin. Vypište první dva sloupce

tabulky myt (pole field a fertil).
22. Zkontrolujte strukturu tabulky. Jakého typu jsou první dva sloupce? Převeďte 1.

sloupec na vektor typu character a následně zpět na faktor.
23. Vypište pouze ty řádky, kde přidaná látka je Ca. Vypište pouze hodnoty výšky rostliny

(height) z pole b.
24. Převeďte tabulku myt na seznam (list) nazvaný myls. Vypište první položku seznamu

(field) celou a následně první prvek této položky.
25. K vektoru vec1 (příklad 8) přidejte vektor s hodnotami 1-10 od 10. pozice. Proveďte

stejnou operaci, ale přidejte vektor na konec.
26. Zjistěte délku vektoru vec1. Zjistěte pomocí stejné funkce kolikrát je ve vektoru číslo 3

a kolik je čísel větších nebo rovno 4.
27. Zjistěte délku matice mat1 (úkol 15), pole ar1 (úkol19), tabulky myt (úkol 20),

seznamu myls (úkol 24). Pokuste se vysvětlit co znamenají hodnoty.
28. Slučte vektory čísel 5-10 a 10-15 do sloupců a pak do řádků.
29. Vytvořte dva sloupce tahů sportky (tah1, tah2) s náhodně generovanými čísly (viz

předchozí kapitoly) a uložte do objektu sportka.
30. Slučte vektor prvních 5 písmen abecedy a vektor 1:5 do sloupců. Jakého typu je

výsledný objekt?
31. Vypište pořadí čísel, která padla v prvním tahu sportky (viz úkol 29).
32. Vypište pořadí čísel vektoru c(5,1,2,2,3,4,5,1,1,1). Zkuste různé ties metody a předem

odhadujte, jaký bude výsledek. Vysvětlete rozdílnost výsledků.
33. Seřaďte předchozí vektor vzestupně. Seřaďte vektor vec1 (příklad 8) sestupně.
34. Setřiďte řádky tabulky myt (úkol 20) podle pole a následně podle typu přidaného

prvku.
35. Zjistěte obor všech hodnot vektoru vec1 (kterých hodnot nabývá).
36. Zjistěte počet řádků a sloupců tabulky myt. Zjistěte dimenze pole ar1 (úkol19).

 48

Funkce pro práci s maticí a polem

• t (x) – transponuje matici x (zamění řádky za sloupce)
x<-matrix(c(1,2,5,1,4,3,3,7,1,4,2,3),3,4)
 [,1] [,2] [,3] [,4]
[1,] 1 1 3 4
[2,] 2 4 7 2
[3,] 5 3 1 3

t(x)
 [,1] [,2] [,3]
[1,] 1 2 5
[2,] 1 4 3
[3,] 3 7 1
[4,] 4 2 3

• det (x) – vypočítá determinant čtvercové matice x
my.mat<-matrix(1:6,3,3)
my.mat
 [,1] [,2] [,3]
[1,] 1 4 1
[2,] 2 5 2
[3,] 3 6 3
det(my.mat)
[1] 4.996004e-16

• diag (x) – vypíše nebo vytvoří diagonálu matice x
diag(x)
[1] 1 4 1
diag(my.mat)
[1] 1 5 3

diag(c(1,2,1,4))
 [,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 2 0 0
[3,] 0 0 1 0
[4,] 0 0 0 4

• %*% – násobení matic (sčítání matic je stejné, jako normální sčítání)
x %*% t(x)
 [,1] [,2] [,3]
[1,] 27 35 23
[2,] 35 73 35
[3,] 23 35 44

my.mat %*% (x)
 [,1] [,2] [,3] [,4]
[1,] 14 20 32 15
[2,] 22 28 43 24
[3,] 30 36 54 33

• rownames (x, do.NULL=T, prefix="row") , colnames (x, do.NULL=T,

prefix="col") – vypíše nebo nastaví jména řádků (sloupců)
- do.NULL – logical, F vrací názvy na základě prefix a čísla řádku (sloupce), i když

nejsou vytvořeny
- prefix – character, jaká má být použita předpona pro vytvořené názvy

x<-matrix(1:15,3,5) #vytvo ří matici
colnames(x) #názvy sloupc ů neexistují
NULL
colnames(x,do.NULL=F) #vektor potenciálních názv ů sloupc ů
[1] "col1" "col2" "col3" "col4" "col5"
colnames(x,do.NULL=F,prefix="sloupec")#názvy řádk ů malými písmeny abecedy
[1] "sloupec1" "sloupec2" "sloupec3" "sloupec4" "sl oupec5"

 49

rownames(x)<-letters[1:3] #názvy řádk ů malými písmeny abecedy
x
 [,1] [,2] [,3] [,4] [,5]
a 1 4 7 10 13
b 2 5 8 11 14
c 3 6 9 12 15
rownames(x) # p řečte názvy řádk ů
[1] "a" "b" "c"

Kontrolní úkoly
37. Načtěte matici mymat (5 řádků, 5 sloupců) s náhodnými celými čísly od 0 do 25 (čísla

se mohou opakovat). Následně vypište čísla na diagonále.
38. Vypočítejte determinant matice, pak matici transponujte a opět vypočítejte

determinant.
39. Vynásobte matici mymat transponovanou maticí mymat.
40. Nazvěte sloupce matice malými písmeny.

Funkce pro práci s tabulkou dat, seznamem nebo faktorem

• names(x) – v případě, že objekt má položky typu tags (seznam – list nebo tabulka dat
– data.frame), pak vypíše názvy položek. Pomocí names lze tyto názvy také měnit.

tvorba tabulky dat (data.frame) se t řemi sloupci a p řejmenování sloupc ů
x1<-data.frame(exp=rep(1:3,2),latka=rep(c("a","b"), 3),hodn=seq(3,by=0.5,len=6))
x1
 exp latka hodn
1 1 a 3.0
2 2 b 3.5
3 3 a 4.0
4 1 b 4.5
5 2 a 5.0
6 3 b 5.5
names(x1) #výpis názv ů jednotlivých polí (položek tags)
[1] "exp" "latka" "hodn"
names(x1)<-c("a1","b1","c1") #zm ěna názv ů všech polí
x1
 a1 b1 c1
1 1 a 3.0
2 2 b 3.5
3 3 a 4.0
4 1 b 4.5
5 2 a 5.0
6 3 b 5.5

tvorba seznamu (list) a p řejmenování položek tags
x<-list(x1=1:3,y1=1:10)
x
$x1
[1] 1 2 3

$y1
 [1] 1 2 3 4 5 6 7 8 9 10
names(x) #výpis názv ů položek (tags)
[1] "x1" "y1"
names(x)<-c("x2","y2") #zm ěna názv ů položek (tags) na x2 a y2
names(x) #znovu výpis názv ů položek (tags) – jsou zm ěněny
[1] "x2" "y2"
x #výpis seznamu
$x2
[1] 1 2 3

$y2

 53

$hodnoty
 [1] 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0

(function(x) x^2)(5) #anonymní funkce mocniny čísla x, dosazeno číslo 5
[1] 25

• args (f) , formals (f) – vypíše argumenty funkce, s možností je přednastavit (u
formals)

args(strsplit) #výpis argument ů funkce strsplit
function (x, split, extended = TRUE, fixed = FALSE, perl = FALSE)
NULL

formals(strsplit) #výpis argument ů funkce strsplit s možností nastavit je
$x

$split

$extended
[1] TRUE

$fixed
[1] FALSE

$perl
[1] FALSE

args(primka) #výpis argument ů funkce primka z p ředchozí ukázky
function (a = 1, b = 0, x = 1:10)
formals(primka)$b<-2 #zm ěna p řednastavené hodnoty u b z 0 na 2
args(primka) #op ětovný výpis argument ů
function (a = 1, b = 2, x = 1:10)
NULL

Kontrolní úkoly
46. Vytvořte vektor obsahující název lokalita 1, lokalita 2 ... lokalita 100. Poté vytvořte

vektor vektor L1 – L100 (bez mezery). Zopakujte úkol tak, aby se hodnoty vypisovaly
bez uvozovek.

47. Spojte předchozí vektor tak, že bude napsáno L1, L2, L3, ..., L100. Vypočítejte, kolik
má řetězec znaků.

48. Tuto větu použijte jako řetězec nazvaný ret1. Transformujte ret1 tak aby byl psán
velkými písmeny.

49. Zaměňte v řetězci znak "t" za "r". Vyberte z řetězce podřetězec od 14 do 18 znaku.
50. Rozdělte řetězec do vektoru na jednotlivá slova.
51. Zjistěte argumenty funkce chartr.
52. Vytvořte funkci msum, která vám sečte čísla od x do y. Proměnné x a y nastavte tak,

aby se při nezadání argumentů sečetla čísla od 1 do 1, tzn.1. Otestujte na číslech 2 a 10.

Hromadné provádění výpočtů na objektech

• rowsum (x, group, reorder=T, na.rm=F …) – sečte u objektů x typu matice řádky
- group – vektor, podle kterého jsou řádky seskupeny
- reorder – výsledky seřazeny podle pořadí hodnot v group
- na.rm – vynechány hodnoty NA

x<-matrix(1:6,3,4)
x
 [,1] [,2] [,3] [,4]
[1,] 1 4 1 4

 54

[2,] 2 5 2 5
[3,] 3 6 3 6
rowsum(x,group=c(1,1,1))#všechny řádky pat ří do jedné skupiny, sou čet všech
 [,1] [,2] [,3] [,4]
1 6 15 6 15
rowsum(x,group=c(1,2,2))#první samostatn ě, další dva se čteny
 [,1] [,2] [,3] [,4]
1 1 4 1 4
2 5 11 5 11
rowsum(x,group=c(3,1,2)) #první samostatn ě, další dva se čteny
 [,1] [,2] [,3] [,4]
1 2 5 2 5
2 3 6 3 6
3 1 4 1 4
rowsum(x,group=c(3,1,2),reorder=F)
 [,1] [,2] [,3] [,4]
3 1 4 1 4
1 2 5 2 5
2 3 6 3 6

• rowSums colSums rowMeans colMeans (x, na.rm=F, dims=1) – vypočítá sumu
(průměr) v řádcích (sloupcích). Nastavení dims mění rozsah součtu u vícerozměrných
polí.

x<-matrix(1:6,3,4)
x
 [,1] [,2] [,3] [,4]
[1,] 1 4 1 4
[2,] 2 5 2 5
[3,] 3 6 3 6
rowSums(x) # suma v každém řádku
[1] 10 14 18
colSums(x) # suma v každém řádku
[1] 6 15 6 15

x<-array(1:24,dim=c(3,4,2)) #trojrozm ěrné pole
x
, , 1

 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2

 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
rowSums(x,dim=1)#suma pro každý řádek
[1] 44 52 60
> rowSums(x,dim=2) #suma pro každý řádek a sloupec
 [,1] [,2] [,3] [,4]
[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24

• tabulate (bin, nbins=max(1, bin)) – spočítá četnosti jednotlivých celých
kladných hodnot vektoru x (od 1 až do nbins), jiná čísla ignoruje

tabulate(c(5,5,4,4,4,2))#po čet čísel 1,2,3,4,5
[1] 0 1 0 3 2
tabulate(c(1,1,4,1,2,3,1,4,4,7)) #obdobné jako p ředchozí
[1] 4 1 1 3 0 0 1

 55

• table (…, exclude=c(NA, NaN), dnn=list.names(…), deparse. level=1) –
spočítá četnosti faktoru nebo kombinace faktorů … (popř. hladin faktoru, viz factor).
Využívá se při tvorbě kontingenčních tabulek. Podobné funkce také xtabs a ftable .
- exclude – hodnoty, které mají být vynechány
- dnn – jména výsledných dimenzí
- deparse.level – určí typ tvorby názvu jmen dimenzí

table(c(0,0,1,1,4,1,2,3,1,4,4,7)) # četnosti jednotlivých hodnot
0 1 2 3 4 7
2 4 1 1 3 1
table(factor(c(0,0,1,1,4,1,2,3,1,4,4,7),levels=0:7))#faktor s 8 úrovn ěmi
0 1 2 3 4 5 6 7
2 4 1 1 3 0 0 1

x1<-c(0,0,1,1,4,1,2,3,1,4,4,7)
x2<-rep(1:2,6)#vektor rozd ělí x1 do dvou skupin
x1
 [1] 0 0 1 1 4 1 2 3 1 4 4 7
x2
 [1] 1 2 1 2 1 2 1 2 1 2 1 2
table(x2,x1) #po čty hodnot x1 v jednotlivých skupinách x2
 x1
x2 0 1 2 3 4 7
 1 1 2 1 0 2 0
 2 1 2 0 1 1 1
table(x2,x1,dnn=c("a","b"))#totéž, ale s názvy dime nzí
 b
a 0 1 2 3 4 7
 1 1 2 1 0 2 0
 2 1 2 0 1 1 1

• apply (X, MARGIN, FUN, …) – vypočítá funkci pro každý řádek (nebo další dimenze)
objektu X
- MARGIN – vektor dimenzí, pro které má být výpočet proveden (sloupce=2,
řádky=1)

- FUN – funkce, která má být provedena (může být i vlastní)
- … – argumenty příslušné funkce

x1<-matrix(1:6,2,3) #matice 2 řádky, 3 sloupce
x1
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
apply(x1,1,sum) #se čti p řes řádky
[1] 9 12
apply(x1,2,prod) #sou čin p řes sloupce
[1] 2 12 30
apply(x1,2,function(x) sum(x*2-3)) #vlastní funkce sou čet všech položek*2-3
[1] 0 8 16

x<-array(1:24,dim=c(3,4,2)) #trojrozm ěrné pole
x
, , 1

 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2

 [,1] [,2] [,3] [,4]

 56

[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

apply(x,3,sum) #suma p řes t řetí dimenzi
[1] 78 222
apply(x,1,sum) #suma p řes první dimenzi
[1] 92 100 108
apply(x,c(1,3),sum) #suma p řes první a t řetí dimenzi
 [,1] [,2]
[1,] 22 70
[2,] 26 74
[3,] 30 78

• lapply (X, FUN, …) , sapply (X, FUN, ..., simplify=T, USE.NAMES=T) – provádí
výpočet určité funkce v jednotlivých položkách seznamu X
- FUN – funkce, která má být provedena (může být i vlastní)
- simplify – má být výsledek zjednodušen?
- USE.NAMES – použít názvy položek seznamu pro výsledek?

x<-list(x=1:5,y=5:14,z=2:6) #vytvo řen seznam
x
$x
[1] 1 2 3 4 5

$y
 [1] 5 6 7 8 9 10 11 12 13 14

$z
[1] 2 3 4 5 6

lapply(x,sum) #suma p řes jednotlivé položky
$x
[1] 15

$y
[1] 95

$z
[1] 20

sapply(x,sum) #totéž, jen v jiném formátu
 x y z
15 95 20

• mapply (FUN, …, MoreArgs=NULL, SIMPLIFY=T, USE.NAMES=T) – umožňuje
provést funkce s různým nastavením pro každou položku (MoreArgs)

mapply(seq, from=c(1,3,7),to=c(4,12,20))#vytvo ří postupn ě sekvence
[[1]]
[1] 1 2 3 4

[[2]]
 [1] 3 4 5 6 7 8 9 10 11 12

[[3]]
 [1] 7 8 9 10 11 12 13 14 15 16 17 18 19 20

mapply(rep, 2:4, times=c(3,5,2)) #replikuje 3x,5x,2 x čísla 2,3,4
[[1]]
[1] 2 2 2

[[2]]
[1] 3 3 3 3 3

[[3]]
[1] 4 4

 57

• tapply (X, INDEX, FUN = NULL, ..., simplify = TRUE) – používá se pro
aplikaci funkce na roztříděná data v tabulce dat
- FUN – funkce, která má být provedena (může být i vlastní)
- simplify – má být výsledek zjednodušen?
- index – seznam položek pro roztřídění

tvorba tabulky dat (data.frame) se t řemi sloupci
x1<-data.frame(exp=rep(1:3,2),latka=rep(c("a","b"), 3),hodn=seq(3,by=0.5,len=6))

x1
 exp latka hodn
1 1 a 3.0
2 2 b 3.5
3 3 a 4.0
4 1 b 4.5
5 2 a 5.0
6 3 b 5.5

tapply(x1$hodn,INDEX=x1$latka, mean) # pr ůměr pro jednotlivé typy látky
 a b
4.0 4.5

#počty m ěření pro kombinaci faktor ů látka a expozice
tapply(x1$hodn,INDEX=list(lat=x1$latka,exp=x1$exp), length)
 exp
lat 1 2 3
 a 1 1 1
 b 1 1 1

x<-cbind(data=c(1,1,2,4,2,8,4,6,1),skup=rep(1:3,eac h=3));x
 data skup
 [1,] 1 1
 [2,] 1 1
 [3,] 2 1
 [4,] 4 2
 [5,] 2 2
 [6,] 8 2
 [7,] 4 3
 [8,] 6 3
 [9,] 1 3

tapply(x[,1],x[,2],FUN=max) # maximum pro jednotliv é skupiny
1 2 3
2 8 6
tapply(x[,1],x[,2],FUN=mean) # pr ůměr pro jednotlivé skupiny
 1 2 3
1.333333 4.666667 3.666667
tapply(x[,1],x[,2],FUN=length) # po čet hodnot pro jednotlivé skupiny
1 2 3
3 3 3

• by (data, indices, FUN) – podobné jako tapply, rozdělí data podle vektoru (nebo
seznamu), indices (podle faktorů nebo speciálních vlastností) a pro každou skupinu
vypočítá funkci FUN

mytab<-
data.frame(Strava=rep(c("mas","mix"),each=5),pH=c(7 .5,7.1,8.2,8.0,7.9,7.6,7.5,7.2
,7.9,8.2))#tvorba tabulky
mytab
 Strava pH
1 mas 7.5
2 mas 7.1
3 mas 8.2
4 mas 8.0
5 mas 7.9
6 mix 7.6
7 mix 7.5

 58

8 mix 7.2
9 mix 7.9
10 mix 8.2

by(mytab$pH,mytab$Strava,FUN=mean)# pr ůměr pH pro jednotlivé typy stravy
INDICES: mas
[1] 7.74
--- ---------
INDICES: mix
[1] 7.68

by(mytab$pH,INDICES=mytab$pH<8,FUN=length) # po čty hodnot pro skupinu<8 a >=8
INDICES: FALSE
[1] 3
--- ---------
INDICES: TRUE
[1] 7

• aggregate (x, by, FUN, ...) – sloučí položky v tabulce dat x, položky jsou
slučovány podle seznamu v argumentu by a sloučení se provádí pomocí funkce FUN.

#vypo čítá četnosti pro jednotlivé hodnoty, výsledek je op ět tabulka dat
aggregate(c(1,1,1,2,2,3,3,3,3),by=list(samp=c(1,1,1 ,2,2,3,3,3,3)),length)
 samp x
1 1 3
2 2 2
3 3 4

 Strava pH
1 mas 7.5
2 mas 7.1
3 mas 8.2
4 mas 8.0
5 mas 7.9
6 mix 7.6
7 mix 7.5
8 mix 7.2
9 mix 7.9
10 mix 8.2

#vrací v řádcích pr ůměry pro typy stravy, výsledek je op ět tabulka dat
aggregate(mytab$pH,by=list(diet=mytab$Strava),mean)
 diet x
1 mas 7.74
2 mix 7.68

Kontrolní úkoly
53. Vytvořte matici mat2 (10 řádků × 5 sloupců) s náhodnými čísly z normálního

rozdělení. Proveďte součty po řádcích a po sloupcích.
54. Vytvořte matici, která bude obsahovat součty prvních pěti a posledních pěti řádků.
55. Vygenerujte do objektu vec2 100 náhodných čísel z Poissonova rozdělení (s průměrem

6). Spočítejte četnosti jednotlivých hodnot.
56. Proveďte operaci ještě jednou tak, aby se v přehledu četností vyskytovaly všechny

hodnoty od 0 do maxima.
57. Vytvořte vektor vec3 obsahující 40 písmen od "a" do "e" v náhodném pořadí.

Spočítejte četnosti jednotlivých písmen.
58. Načtěte následující tabulku a spočítejte součet naměřených hodnot výšky na

jednotlivých polích a, b, c.

 field fertil height
1 a Ca 12.1
2 b P 9.8

 59

3 c P 8.9
4 a Ca 11.3
5 b Ca 11.0
6 c Ca 11.9
7 a P 10.6
8 b P 9.7
9 c P 9.2
10 a P 10.3
11 b Ca 11.2
12 c Ca 10.4

59. Proveďte výpočet průměru (funkce mean) pro jednotlivá pole (field) i typy obohacení

půdy (fertil) .
60. Pro matici mat2 proveďte výpočet průměru přes řádky i sloupce zaokrouhlený na 2

desetinná místa.

Shrnutí:
V R můžeme provádět načítání dat ze schránky nebo ze souboru. Vektory a tabulky dat se
načítají dvěma rozdílnými funkcemi, nicméně argumenty funkcí jsou dost podobné.
Nejjednodušší editace objektů je pomocí R editoru (funkce edit a fix). Opravy lze také
provádět přímo přepisem jednotlivých (filtrovaných) prvků objektů. Následně lze objekty
spojovat řadit, určovat pořadí jednotlivých prvků, vypisovat názvy podobjektů atd.
Mimořádně užitečná je editace vytvořených funkcí. Můžeme si vytvářet vlastní funkce s
argumenty, které provádí operace specifikované na naše data. Podobně jako např. MS
Excel existují tzv. "kontingeční tabulky" pomocí nichž jsou prováděny hromadné operace
na složitějších tabulkách, má také R zabudované funkce pro výpočty v rámci tabulek dat,
seznamů, polí a matic.

Metody k zapamatování:
• načítání objektů: scan, read.table
• úprava objektů: edit, fix
• práce s prvky jednoduchých objektů (obecně): [], $, append, cbind, rbind, length, rank,

sort, order, replace, duplicated, unique, ncol, nrow, dim, dimnames, subset
• práce s maticí a poli: t, det, diag, %*%, rownames, colnames
• práce s tabulkou dat, seznamem nebo faktorem: names, factor
• práce s řetězci a znaky: paste, tolower, toupper, casefold, chartr, substr, nchar, strsplit
• práce s funkcemi: function, args, formals
• hromadné provádění výpočtů: rowsum, rowSums, colSums, rowMeans, colMeans,

tabulate, table, apply, sapply, lapply, mapply, tapply, by

Výsledky
1. scan("clipboard")

scan("clipboard",sep=",")
scan("clipboard")
scan("clipboard",sep=";",dec=",")
scan("clipboard",sep=",")

2. scan("clipboard",what=logical(),sep=",")¨
3. m.vec<-scan("clipboard",what=character(),sep="\n")
4. fix(m.vec) #do závorek p řidáme znaky v p řislušném tvau a edita ční okno, ve kterém jsme

měnili hodnoty zav řeme (na dotaz, zda uloženit zm ěny do objektu odpovíme ano)
5. m.tab<-read.table("clipboard")

 60

6. fix(m.tab) #p řidáme sloupce, uložíme a zkontrolujeme pomocí str(m .tab)
7. je uvedeno v p říkladech k funkci read.table
8. vec1<-rpois(40,3)
9. vec1[10:20]
10. vec1[c(1,3,5,17)]
11. vec1[seq(2,40,by=2)]; vec1[seq(1,39,by=2)]; vec1[se q(5,40,by=5)]

jiné řešení vec1[c(F,T)]; vec1[c(T,F)]; vec1[c(F,F,F,F,T)]
12. vec1[vec1<2]; vec1[vec1>3 & vec1<6]
13. vec1[vec1!=3]; vec1[-10]
14. vec1[-(10:20)]; vec1[-c(5,8,25)]
15. mat1<-matrix(vec1,10,4)
16. mat1[6,3]; mat1[1:3,]; mat1[,c(2,4)] #není pouze je dno řešení lze použít nap ř. T a F
17. mat1[c(1,2,3),c(2,3,4)]; mat1[cbind(c(1,2,3),c(2,3, 4))] # body je nutno zadat jako

dvourozm ěrné pole, kde každý řádek je sou řadnice bodu.
18. mat1[mat1[,1]==3,]
19. ar1<-array(vec1,c(4,5,2)); ar1[2,4,2]; ar1[2,,], ar1[2,,,drop=F]
20. myt<-read.table("clipboard")
21. myt[2:6,]; myt[,3] nebo myt$height; myt[,1:2] nebo myt[,c("field","fertil")]
22. str(myt); myt[,1]<-as.character(myt[,1]); myt[,1]<- as.factor(myt[,1])
23. myt[myt[,2]=="Ca",]; myt[myt[,1]=="b",3]
24. myls<-as.list(myt); myls[[1]] nebo myls$field aj.; myls[[1]][1] nebo my ls$field[1]
25. append(vec1,1:10,after=9); c(vec1,1:10)#lze ale sho dně s p ředchozím append(vec1,1:10)
26. length(vec1[vec1==3]); length(vec1[vec1>=4])
27. použijte funkci length, u matice a pole se jedná o celkový po čet prvk ů, u tabulky a

seznamu o po čet položek (resp. polí neboli sloupc ů)
28. cbind(5:10,10:15); rbind(5:10,10:15)
29. sportka<-cbind(tah1=sample(1:49,7),tah2=sample(1:49 ,7))
30. cbind(pism=letters[1:3],por=1:3); class(cbind(pism=letters[1:3],por=1:3))
31. rank(sportka[,1])
32. rank(c(5,1,2,2,3,4,5,1,1,1), ties.method = m ůžete zadat "average", "first", "random",

"max", "min") vysv ětlení v textu k funkci
33. sort(c(5,1,2,2,3,4,5,1,1,1);sort(vec1,decreasing=T)
34. myt[order(myt[,1],myt[,2]),]
35. unique(vec1)
36. ncol(myt); nrow(myt);dim(ar1)
37. mymat<-matrix(sample(0:25,25,rep=T),5,5); diag(myma t)
38. det(mymat); det(t(mymat))
39. mymat %*% t(mymat)
40. colnames(mymat)<-letters[1:5]
41. tab2<-read.table("clipboard"); names(tab2)
42. names(tab2)[2]<-"hnoj"
43. class(tab2$hnoj); levels(tab2$hnoj)
44. levels(tab2$hnoj)<-c("vápník","fosfor")
45. test1<-sample(0:1,20,rep=T); test1<-factor(test1,le vels=c(1:0); levels(test1)<-

c("ano","ne")
46. paste("lokalita",1:100); paste("L",1:100,sep=""); n oquote(paste("lokalita",1:100));

noquote(paste("L",1:100,sep=""))
47. paste("L",1:100,sep="",collapse=", "); nchar(paste("L",1:100,sep="",collapse=", "))
48. ret1<-"Tuto v ětu použijte jako řet ězec nazvaný ret1" (v ětu p římo vkopírujte do R);

toupper(ret1)
49. chartr("t","r", ret1);substr(ret1,14,18)
50. strsplit(ret1,split=" ")
51. args(chartr) nebo formals(chartr)
52. msum<-function(x=1,y=1) sum(x:y); msum(2,10)
53. mat2<-matrix(rnorm(100),10,5); rowSums(mat2);colSum s(mat2)
54. rowsum(mat2,c(1,1,1,1,1,2,2,2,2,2))
55. vec2<-rpois(100,6); table(vec2)
56. table(factor(vec2,levels=0:max(vec2)))
57. vec3<-sample(letters[1:5],40,rep=T); table(vec3)
58. mtab2<-read.table("clipboard"); tapply(mtab2$height,mtab2$field,sum)
59. tapply(mtab2$height,list(pole=mtab2$field,hnoj=mtab 2$fertil),mean)#
60. round(apply(mat2,1,mean),2); round(apply(mat2,2,mea n),2) nebo rowMeans a colMeans

 61

ZÁKLADY GRAFIKY V R
Cíle kapitoly:
Po prostudování kapitoly zvládnete toto:
- budete znát základní prvky grafu v programu R;
- zvládnete jednoduchou tvorbu grafu v R;
- pochopíte argumenty funkce plot;
- naučíte se nastavovat jednotlivé parametry grafického okna;
- budete umět vytvářet hlavní typy grafů.

Klí čová slova: grafy, high-level, low-level grafika, parametry grafu.

Průvodce
Jestliže vám připadá, že to, co jsme se dosud učili se dá tak či onak vytvořit i v jiných
počítačových programech, které již znáte, grafika vás určitě překvapí. Ten, kdo je zvyklý
na běžnou práci s grafy v Excelu, bude asi v první fázi zoufalý. Měřítko grafu, jednotlivé
body atd. lze také nastavovat, ale ne pokliknutím na objekt v grafu. Vše je nutno zadávat v
argumentech grafických funkcí. Pokročilejší uživatelé zajásají, protože velice brzy zjistí,
že tento na první pohled neobvyklý přístup přináší velkou řadu výhod. Projděte si celou
kapitolu dost podrobně. V případě, že budete mít pocit, že je práce s grafy stále složitá,
doporučuji trpělivě opakovat jednotlivé postupy a úkoly.

Ačkoliv je na první pohled grafika v R „méně dokonalá“ než u ostatních systémů,

skutečnost je zcela jiná. Grafické výstupy jsou plně srovnatelné např. se softwarem S-plus
a daleko převyšuje možnosti grafů v MS Excel a běžných statistických programech. R totiž
umožňuje pracovat v několika různých úrovních grafiky:
• High-level. Tato úroveň je vhodná pro tvorbu jednoduchých grafů a je snadno

použitelná i začátečníky v tvorbě grafů. Patří sem funkce jako plot, hist, dotplot atd.
• Low-level. Umožňuje mnohem více nastavení os a jednotlivých prvků grafu, nastavení

přesných rozměrů grafu, vepisování a vkreslování různých objektů do grafu (kruhy,
text, body, matematické křivky atd.)

• Interaktivní grafika . Dovoluje interaktivně přidávat data do grafu a zpětně informace
extrahovat. Jedná se o specifické funkce které pracují s polohou kurzoru v grafu.

V případě, že jsou tyto grafy nedostačující, můžeme nalézt další knihovny

obsahující množství jiných typů grafiky. Mezi nejpropracovanější patří balíčky grid ,
lattice , iplots , misc3D , rgl , scatterplot3d . Jedním z doplňujících balíčků je také
knihovna maps obsahující nejrůznější mapy.

 62

0.0

0.2

0.4

0.6

0.8

1.0

půda

vý
šk

a
ro

st
lin

y
[c

m
]

jíl písek hlína

0.0

0.2

0.4

0.6

0.8

1.0

-2 -1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

x

p(
x)

Obr 9: Ukázky grafiky v R. Mapa Itálie (library maps), sloupcový graf, vykreslení funkce Studentova

rozdělení.

Přehled funkcí a vlastností používaných pro grafiku

Vzhledem k ohromnému množství různých grafických prvků, je dobré pro
přehlednost uvést zjednodušený přehled základních grafických funkcí (high-level, tak také
další typy.
• Základní typy grafů. plot (normální graf), barplot (sloupcový graf), boxplot (krabice

s vousy), pie (koláčový graf), histogram (sloupcový graf četnosti), matplot (graf s více
řadami dat), persp (prostorový graf – povrchy).

• Speciální typy grafů. pairs (skupiny XY grafů v jednom grafickém okně), stem
(stonek s lístky), stars (hvězdový graf), dotchart (Clevelandův bodový graf), stripchart
(pásový graf – 1D), sunflowerplot (slunečninový graf – body se shodnými
souřadnicemi se vykreslí jako lístky vycházející z bodu), spineplot (speciální
sloupcový graf s rozestupy a densitami), mosaicplot (mozaikový graf), fourfoldplot
(čtyřlístkový graf), filled.contour (barevné kontury), contour (kontury), coplot
(speciální matice XY grafů), cdplot (graf s výplní pod osou), bxp (jiný typ zadání
boxplotu), assocplot (Cohen-Friendly graf), image (speciální typ grafu podobný
filled.contour).

• Prvky grafu vykreslitelné samostatně. axis (osy), grid (mřížka), legend (legenda),
rug (kartáč – vykresluje hustotu bodů), title (titulky a popisky), text (textová pole),
points (body), lines (spojené čáry), segments (úsečky), abline (přímky), mtext (text na
okraji grafu), matpoints (body ve více samostatných řadách), matlines (spojnice ve více
samostatných řadách), curve (křivky, matematické funkce), box (obrys kolem grafu).

• Grafické prvky. symbols (kružnice, obdélníky, hvězdy atd.), rect (obdélník), polygon
(mnohoúhelník), arrows (šipky).

 63

• Nastavení grafiky. windows (otevření a nastavení grafického okna), dev.set (výběr
okna pro výstup), plot.window (nastavení koordinát, druhá, popř. třetí osa), par
(nastavení parametrů grafického výstupu), split.screen (rozdělí okno, další
close.screen, erase.screen), screen (obdélník), strwidth (počítá velikost textu
v grafickém okně), locator (čte pozici kurzoru v grafickém okně), identify (identifikuje
nejbližší vykreslený bod od pozice kurzoru), layout (nastaví rozdělení okna, víc
nastavení než split.screen), frame (podobné plot.new, vytvoří grafické okno), xy.coords
(souřadnice x a y), rgb (namíchá barvu), colors (přednastavené barvy), palette,
rainbow, hcl, terrain.colors (palety barev), recordPlot (uložení grafu jako proměnné),
plotmath (vykreslení matem. značek), windowsFons, Hershey (typy fontů), další
funkce (knihovna grDevices).

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

title

subtitle
popis x

po
pi

s
y

Obr 10: Jednotlivé části grafu (české názvy částí v závorce) a funkce popř. argumenty související s nimi.

#vykreslení p ředchozího grafu
plot(x=c(1,2,2.5,4),y=c(0.5,1,0.7,0.3),type="o",lty =2,lwd=2,col=2,pch=22,bg=4,mai
n="title",sub="subtitle",xlab="popis x",ylab="popis y",cex=2,las=1)

Tvorba základních grafů

Při tvorbě high-level grafů je nutné dbát na několik důležitých věcí. High-level
grafy většinou mohou jako data používat několik různých objektů a podle toho se potom
chovají. Například funkce plot nejprve rozliší typ vstupujícího objektu a následně volá
jinou funkci dle příslušného objektu (např. plot.default – základní graf, plot.lm – graf
pro lineární model atd.). Velkou část parametrů, které nelze nastavit přímo jako argumenty
dané funkce lze pak nastavit jako tzv. parametry grafického výstupu pomocí funkce par
(viz podkapitola Parametry grafických výstupů). Při přepnutí do okna pro grafiku se mění
menu a kontextové menu tak, že umožňuje zkopírovat nebo uložit výslednou grafiku do
schránky nebo do souboru v různých výstupních formátech. Údaje v palcích lze do cm
převést funkcí cm(x) .

• plot (x,y=NULL,type="p",xlim=NULL,ylim=NULL,log= "",main =NULL,sub=NULL,
xlab=NULL,ylab=NULL,ann=par("ann"),axes=T,frame.plo t=axes,panel.first=

NULL, panel.last=NULL,asp=NA, …) – vytvoří graf různého typu podle vstupních

main (titulek grafu)

submain (vedlejší titulek)

lines (spojnice první
datové řady, angl. series)

ylab (název nebo popisek osy y)

points (body první datové řady)

grid (mřížka)

xlab (název nebo popisek osy x)

box (ohraničení grafu)

 první a druhá datová řada

tickmark (značka na ose x)

label (popisek značky na ose x)

axis (osa, v tomto případě x)

 64

dat (plot.default, plot.design, plot.data.frame může být funkce, tabulka, vektor atd.) –
podrobnější výčet je uveden při výpisu methods (plot) . Výčet argumentů je pouze
částečný. Lze použít také jiné argumenty, např. některé argumenty funkce par (viz
dále). K vykreslení jednoduchého grafu stačí zadat vektor čísel, popř. faktor nebo
křivku. V případě vektoru čísel je základní vykreslení nastaveno na body, u faktoru
jsou to sloupce četností jednotlivých hodnot, u křivky se jedná o hladkou čáru. Názvy
os jsou tvořeny automaticky, nebo je lze nastavit. Velkou část parametrů lze nastavovat
jako vektory (např. barvy, symboly) tak, že může být část vykreslena jednou barvou a
další část jinou).
type – "p" bodový, "l" liniový, "h" vertikální linie, "o" linie s body, "n" nevynášet, "b"

přerušované linie s body, "c" přerušované linie bez bodů, "s" schodovité s první linií
horizontální, "S" schodovité s první linií vertikální

xlim , ylim – vektor (2 prvky) rozmezí souřadnic na ose x (popř. y).
log – řetězec ("x" , "y" nebo "xy") označující, která osa má být logaritmována.
main , sub – textový řetězec názvu grafu a podnázvu
xlab , ylab – textový řetězec názvů osy x a y
plot – logická hodnota, zda se má graf vykreslit nebo vypsat jeho vlastnosti
ann – logická hodnota, zda se mají uvádět v grafu názvy os a název a podnázev grafu a názvy os.
axes – logická hodnota, zda se mají vykreslovat osy.
frame.plot – logická hodnota, zda má být graf ohraničen.
panel.first , panel.last – funkce, které se mají provést po nastavení souřadnic a před a po

vykreslení grafu.
col – integer, string, vektor barev bodů, obrysů bodů nebo barvy spojnice

 0 1 2 3 4 5 6 7 80.
0

 základní barvy (další colors, gray, rgb atd.)
pch – integer, typ vykreslovaných bodů, od 21 lze body vybarvovat

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bg – barva pozadí dvoubarevných bodů (pch je od 20 vyšší)
cex – relativní velikost znaků a bodů oproti standardním
lty – typ čáry (lze nastavit i uživatelsky jako řetězec délek úseček např. "44")

 0 1 2 3 4 5 6
lwd – tloušťka čáry (základní = 1).
asp – poměr osy y/x. asp = 1 poměr osy x a y bude zachován.

plot(c(1,3,1,4,4,2,5,1,5))# vložen pouze vektor, ná zvy os automatické
pocet<-c(1,3,1,4,4,2,5,1,5)# vektor pojmenován
plot(pocet,col=4) # osa y má název podle názvu vekt oru, barva bod ů modrá

2 4 6 8

1
2

3
4

5

Index

c(
1,

 3
, 1

, 4
, 4

, 2
, 5

, 1
, 5

)

2 4 6 8

1
2

3
4

5

Index

po
ce

t

#vykreslení grafu plot(pocet) s argumentem type

 65

2 4 6 8

1
2

3
4

5
type='p'

Index

po
ce

t

2 4 6 8

1
2

3
4

5

type='l'

Index
po

ce
t

2 4 6 8

1
2

3
4

5

type='o'

Index

po
ce

t

2 4 6 8

1
2

3
4

5

type='b'

Index

po
ce

t

2 4 6 8

1
2

3
4

5

type='c'

Index

po
ce

t

2 4 6 8

1
2

3
4

5
type='h'

Index

po
ce

t

2 4 6 8

1
2

3
4

5

type='s'

Index
po

ce
t

2 4 6 8

1
2

3
4

5

type='S'

Index

po
ce

t

plot(pocet,pch=6,cex=2) #jiný symbol, v ětší velikost symbolu
plot(pocet,pch="a",frame.plot=F,xlab="velikost",yla b="frekvence",
 main="Výsledek") #popisky os, vypnut okraj, pí smeno místo symbolu,nadpis

2 4 6 8

1
2

3
4

5

Index

po
ce

t

a

a

a

a a

a

a

a

a

2 4 6 8

1
2

3
4

5

Výsledek

velikost

fre
kv

en
ce

plot(pocet,xlim=c(0,10),ylim=c(0,6),asp=1)#nastaven o měřítko os a pom ěr osy y/x
plot(pocet,xlim=c(0,10),ylim=c(0,6),asp=2)#osa y 2× v ětší než x
plot(pocet,type="l",lty=2,lwd=2)#typ čáry 2 (p řeruš.), tlouš ťka 2

0 2 4 6 8 10

0
2

4
6

Index

po
ce

t

0 5 10

0
2

4
6

Index

po
ce

t

2 4 6 8

1
2

3
4

5

Index

po
ce

t

x<-factor(rpois(40,5))
plot(x)# vykreslení faktoru (plot.factor)
plot(x,ylim=c(0,10),col=1:3) #zm ěněna barva

2 3 4 5 6 7 8 9 11

0
2

4
6

8
10

2 3 4 5 6 7 8 9 11

0
2

4
6

8
10

v p řípad ě zadání objektu ve tvaru funkce (viz bude dále), je nutno zadat

 66

interval x (obor hodnot), ve kterém funkci zobraz ujeme

plot(function(x) x^2,-2,2,ylab="f(x)",lwd=2) #kvadr atická funkce, silná čára
plot(function(x) 0.5*x+2,-2,2,ylab="f(x)",asp=1)# p římka m ěřítko os 1:1
plot((function(x) sin(x)),0,2*pi, ylab="y",xlab="x" ,col=3)# sinusoida

-2 -1 0 1 2

0
1

2
3

4

x

f(x
)

-2 -1 0 1 2

1.
0

2.
0

3.
0

x

f(x
)

0 1 2 3 4 5 6

-1
.0

0.
0

1.
0

x

y

plot(rep(0.5,26),pch=0:25,axes=F,ann=F,frame.plot=T)#r ůzné typy bod ů

cvi čná data pro xy graf
 pH altitude age
1 3.8 780 1000
2 3.7 750 1000
3 3.2 770 300
4 3.9 1300 1000
5 3.9 1300 1000
6 5.3 840 300
7 4.5 1315 1000
8 4.5 1300 1000
9 5.2 710 50
10 6.1 670 15
11 7.1 515 15
12 6.3 725 15
13 6.5 200 200
14 4.6 255 300
15 4.9 265 100
16 6.8 300 300
17 3.7 265 300
18 4.5 1320 1000
19 6.4 720 15
20 7.8 230 20

plot(x$altitude,x$pH,xlab="altitude",ylab="pH")#xy graf
plot(xage,xpH,xlab="log(age)",ylab="pH",log="x")# xy graf s logaritmovanou osou
x
plot(x)#vykreslí xy závislosti všech prom ěnných v data.frame

0 200 400 600 800 1000

4
5

6
7

age

pH

20 50 100 200 500 1000

4
5

6
7

log(age)

pH

 67

pH

200 600 1000

4
5

6
7

20
0

60
0

12
00

altitude

4 5 6 7 0 200 400 600 800

0
40

0
80

0

age

Kontrolní úkoly
1. Do vektoru x načtěte následující hodnoty: 1,1,2,3,4,5,4,4,1,1,2,2,5,4,6,5,3. Vytvořte

jednoduchý graf hodnot.
2. Převeďte na další typy grafů – spojnicový, horizontální linie. Změňte typ na

spojnicový s body, měřítko osy x na 0-20, osy y na 0-10 a barvu linií na zelenou.
3. Změňte čáru na silnější, tečkovanou a modrou.
4. Změňte typ grafu na bodový, body nastavte na typ kruh s výplní a barvu pozadí bodu

změňte na červenou.
5. Převeďte data na faktor a vyneste do grafu. Vytvořte graf tak, aby byly první tři

sloupce červené a další modré.
6. Použijte tutéž funkci ale zadejte argumenty tak, aby se nevykreslil graf, ale vypsaly

jeho vlastnosti. Pokuste se odhadnout, co se vypsalo?
7. Vykreslete funkci log(x) v intervalu 0-10 na ose x a funkci abs(-2x+1) v intervalu -2

až 2 na ose x.

Parametry pro nastavení grafu

Funkce par slouží k nastavení základních parametrů grafu při otevření grafického
okna, tedy ještě před vykreslením grafu. Umožňuje jednotnou podobu vykreslování grafů,
specifická nastavení, která nelze zadat ve funkci plot, dělení obrazovky na více částí atp.
Nastavení funguje do okamžiku zavření grafického okna, pak se opět načítají standardní
hodnoty. Je velice důležité vědět, že většinu parametrů můžeme použít také jako
argumenty ostatních grafických funkcí (např. srt pro rotaci textu můžeme použít ve funkci
text , las ve funkci plot atd.).

• par (parameter=value,…) – nastaví parametry grafiky na hodnoty value
textové
adj – číslo, určuje, jak je zarovnaný textový řetězec (0 zleva, 0.5 uprostřed, 1 vpravo). Povoleno vše

z intervalu [0, 1], pro funkci text povoleno také adj = c(x, y) pro různé zarovnání ve směru
horizontálním a vertikálním.

ann – logická, výpis anotací (název, popisky os) viz plot.
cin – pouze čtení; velikost aktuálních znaků (šířka, výška) v palcích.

 68

cex – relativní velikost znaků (1 – normální velikost, 2 – dvojnásobná).
cex.main, cex.sub – relativní velkost znaků pro název grafu, pro podtitulek.
col.main, col.sub – barva pro název grafu, pro podtitulek.
cra – pouze čtení; velikost aktuálních znaků (šířka, výška) v rastru (pixelech).
crt – ve stupních vyjádřená rotace jednotlivých znaků (doporučené jsou násobky 90).
csi – pouze čtení; velikost aktuálních znaků (šířka, výška) v palcích.
cxy – pouze čtení; velikost aktuálních znaků (šířka, výška) v uživatelských jednotkách

par("cin")/par("pin") . Obvykle je mnohem přesnější c(strwidth(ch),
strwidth(ch)) pro řetězec ch .

family – typ písma "serif" , "sans" , "mono" , "symbol" a Hershey fonty.

typ písma family serif

typ písma family sans

typ písma family mono

τψπ πσµα φαµιλψ σψµβολ

font – typ písma pro text: 1 (normální), 2 (tučné), 3 (kurzíva), 4 (tučná kurzíva).
font.main, font.sub – typ písma pro název grafu, pro podtitulek.
lheight – výška řádku textu, standardně 1, nastavené hodnoty jsou násobky.
ps – velkost textu a symbolů (jednotky jsou pixely – body).
srt – rotace řetězců v úhlech.
tmag – poměrné zvětšení velikosti hlavního názvu grafu k ostatnímu textu.

graf
ask – uživatel je dotázán na vstup (nutnost kliknout před vykreslením).
bg – barva pozadí grafu, pro points a plot také barva výplně bodů pch >20.
gamma – specifikace barev na výstupním zařízení, tzv. gamma correction (viz ?par).
bty – typ ohraničení kolem grafu "o" (okolo), "l" (levý a dolní), "7" (pravý a horní), "c" (horní,

dolní, levý), "u" (levý, pravý, dolní), "]" (dolní, horní, pravý), "n" (potlačí ohraničení).
din – pouze čtení; rozměry výstupního zařízení (jednotky, okna) v palcích.
fig – numerický vektor c(x1, x2, y1, y2) , který nastavuje souřadnice grafické oblasti v daném

zobrazení (lze měnit i po vykreslení grafu, ale je nepraktické).
fin – numerický vektor, udává rozměry grafické oblasti v palcích c(x, y) .
mai – numerický vektor nastavující okraje vykreslovací plochy v palcích.

c(dolní,levý,horní,pravý) , standardně mar=c(0.96,0.77,0.77,0.39) .
mar – numerický vektor nastavující počet řádků na okrajích vykreslované plochy, jako mai standardně

mar=c(5.1, 4.1, 4.1, 2.1) .
mex – faktor rozšíření nebo zúžení okrajů grafu, velikost textu ponechá stejný.
mfcol , mfrow – vektor rozdělující na určitý počet podobrázků c(řádk ů, sloupc ů) . Rozdíl je

v postupném vypisování (po sloupcích nebo po řádcích (alternativy layout, split.screen).
mfg – numerický vektor, který vypisuje který z obrázků se bude vykreslovat (popř. momentálně

vykresluje) .
usr – vektor, kterým můžeme číst nebo nastavit extrémy koordinát vykreslované oblasti

c(x1,x2,y1,y2) .
oma – vektor c(dolní,levý,horní,pravý) udávající velikost vnějších "textových" okrajů (také

okrajů v oknech s více grafy).
omd – vektor udávající vnější "textový" okraj c(dolní,levý,horní,pravý) v jednotkách NDC

(frakce celkového grafického okna).
omi – vektor c(dolní,levý,horní,pravý) udávající velikost vnějších okrajů v palcích
pin – šířka a výška aktuálního grafu v palcích.
plt – vektor c(x1, x2, y1, y2) souřadnic grafické oblasti (plotting region) jako proporce

k celkové oblasti vykreslování (figure region) .
pty – specifikuje typ grafické oblasti "s" čtvercová, "m" maximální (může být i obdélník)
xpd – logická hodnota nebo NA. F – vykreslování vztaženo na grafickou oblast, T – oblast vykreslování

na oblast grafického zařízení, tzn. dovoluje kreslit i mimo plochu grafu.

 69

osy
cex.axis , cex.lab – velikost písma pro popisky os, pro názvy osy.
col.axis , col.lab – barva pro popisky os, pro názvy osy.
fg – barva pro osy a orámování (ohraničení) .
font.axis , font.lab – font pro popisky os, pro názvy os.
las – numerická hodnota otočení popisků os: 0 – y svisle a x vodorovně, 1 – xy vodorovně, 2 – x svisle

a y vodorovně, 3 – xy svisle.
lab – numerický vektor c(x, y, len) určující přibližné počty značek osy x a y a velikost popisků

(len není implementováno), nastavuje se před vykreslením os.
mgp – vektor c(název, popisky, osa) , okraj (v měřítku mex) pro odsazení názvu osy, popisků

osy a vlastní osy od ohraničení grafu.
tck – velikost značek na osách jako proporce šířky nebo výšky grafické oblasti (tck=1 vykreslí

mřížku) .
tcl – velikost (výška) značek na osách jako proporce velikosti řádku textu.
xaxp , yaxp – vektor c(x1, x2, n) – min a max pro značku na ose a počet intervalů mezi

značkami. Pro logaritmickou osu má jiný význam, viz ?axTicks .
xaxs , yaxs – styl osy ("r" = odsadí o 4 % data, "i" = přesné nasazení k ohraničení
xaxt , yaxt – typ osy: "n" = nastavena, ale nezobrazena, "s" , "l" , "e" = zobrazena.
xlog , ylog – logická hodnota, (T = logaritmické měřítko na ose, F = normální měřítko) .

řady
col – barva bodů, popř. ohraničení.
lend – ukončení čáry: 0 nebo "round" ; 1 nebo "butt" ; 2 nebo "square" .
ljoin – hrana spoje dvou čar 0 – "round" ; 1 – "mitre" ; 2 – "bevel" .
lmitre – limit zkosení při spojování čar od 1 standardně 10 .
lty – typ čáry, viz plot.
lwd – šířka čáry, standardně 1, viz plot.
pch – znak pro vykreslování bodů grafu, viz plot.

par("mai") #zjišt ění hodnoty mai (okraje)
[1] 0.95625 0.76875 0.76875 0.39375

#před vykreslením dotaz, pozadí, zv ětšení os, zarovnání os doprava
par(ask=T,bg="wheat",cex.axis=1.3,adj=1)
plot(1:5)
Waiting to confirm page change...

par(mai=c(1,1,0.1,0.1), bg="wheat")#zm ěna okraj ů
plot(1:5)

1 2 3 4 5

1
2

3
4

5

Index

1
:5

1 2 3 4 5

1
2

3
4

5

Index

1:
5

par(mai=c(1,1,0.1,0.1), cex=0.7,col=2)# okraje,veli kost znak ů, barva
plot(1:5,cex=4) #graf vlevo
par(mai=c(1,1,0.1,0.1),mgp=c(2,1,0))#okraje, vzdále nosti osy, popisk ů a názvu
plot(1:3,3:1) #graf uprost řed
par(mai=c(1,1,0.1,0.1),mgp=c(3,2,1)) #jako p řechozí, jen posunuto
plot(1:3,3:1) #graf vpravdo

 70

1 2 3 4 5

1
2

3
4

5

Index

1:
5

1.0 1.5 2.0 2.5 3.0

1.
0

1
.5

2
.0

2.
5

3.
0

1:3

3
:1

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

1:3

3:
1

#vykreslí 4 grafy v jednom grafickém okn ě s nastavením mezer mezi nimi
par(mfrow=c(2,2), omi=c(0,0,0,0), mai=c(0.35,0.35,0 .1,0.1))
plot(c(3,2,1),type="l");plot(c(3,2,1),type="p");plo t(c(3,2,1),type="s");
plot(c(3,2,1),type="S")
#graf vpravo s r ůzným nastavením barev (parametry jsou použity jako argumenty)
plot(1:4,type="l",main="Graf 1",col.main=3,col.axis =2,col.lab=4)

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

2.
0

3.
0

4.
0

Graf 1

Index

1:
4

Kontrolní úkoly
8. Vygenerujte 30 náhodných čísel z Poissonova rozdělení (průměr je 5) do objektu x1.

Vytvořte bodový graf.
9. Nastavte parametry nejprve přímo jako argumenty funkce plot a následně jako

argumenty funkce par tak, aby osa y měla hodnoty otočené horizontálně, osa x i y je
bez odsazení a popisky jsou jen 90% velikosti.

10. Aniž zavřete grafické okno z předchozího úkolu vytvořte nový graf s hodnotami
1,2,4,2,1,5,7 bez nastavení dalších argumentů. Pak grafické okno zavřete a znovu
opakujte vykreslení grafu. Jaké jsou rozdíly a proč.

11. Nastavte okraje a vykreslete graf z předchozího úkolu tak, aby u dolního okraje byl
odsazen 4 řádky, u levého okraje 4 řádky, u horního okraje 1 řádek a u pravého 1
řádek.

12. Vykreslete v jednom grafickém okně 4 grafy se stejnými libovolnými hodnotami.
Jeden graf musí být bodový, jeden liniový, jeden svislé linie a jeden linie s body.

13. Vykreslete xy bodový graf, kde souřadnice bodů jsou následující:
 x y
1 12 5
2 2 3
3 4 8
4 10 11
5 5 7
6 7 8

 71

Další důležité grafy

Než se budeme naplno věnovat grafům, je ještě nutné vysvětlit práci se vzorci
(formula, viz základní typy objektů). U velké části grafů máme dvě možnosti jak zadávat
data. Buď jsou jednotlivé hodnoty pro různé typy měření rozděleny do sloupců nebo jeden
sloupec charakterizuje typ položky a druhý obsahuje vlastní hodnoty. Jako příklad můžeme
uvést měření hladiny určité látky u dvou typů pacientů. Dejme tomu, že máme stejný počet
měření (5), pak můžeme mít hodnoty ve dvou sloupcích (pac1 a pac2). Druhá možnost je
vytvořit sloupec např. "typ", do kterého uvádíme typ každého pacienta (pac1, pac2) a do
dalšího sloupce naměřenou hladinu látky. V prvním případě máme 5 řádků, ve druhém
případě 10 řádků. Mnohem lepší je druhý zápis, protože nemusíme mít stejný počet měření
pro obě skupiny a chceme-li každého pacienta specifikovat ještě dále, pak stačí přidat
sloupec (což v prvním případě je mnohem obtížnější).

styl 1

styl 2

 pac1 pac2
1 10.7 8.6
2 11.2 9.9
3 9.7 7.6
4 10.8 9.1
5 9.6 8.1

 typ hodnota
1 pac1 10.7
2 pac1 11.2
3 pac1 9.7
4 pac1 10.8
5 pac1 9.6
6 pac2 8.6
7 pac2 9.9
8 pac2 7.6
9 pac2 9.1
10 pac2 8.1

U velké částí grafů, kde chceme jednotlivé skupiny odlišit (např. boxploty atd.) lze

použít obě varianty. První typ zápisu vkládáme jako objekt (tabulku dat nebo matici),
druhý typ je nutné zapsat vzorcem (formula) hodnota~typ (popř. další charakteristiky s
připojují většinou pomocí +) , data = název tabulky dat.

• barplot (height,width,space,names.arg,legend.text,beside=F, horiz=F,
density,angle,col,border,main,sub,xlab,ylab,xlim,yl im,xpd=T,axes=T,

axisnames=T,cex.axis,cex.names,inside=T,plot=T,axis .lty,offset,…) –
vytvoří klasický sloupcový graf.
height – vektor nebo matice dat
beside – vykreslení více řad vedle sebe (T), nad sebou (F) – data v height jsou zapsány formou

matice
width – hodnota (vektor) šířky sloupců (pro jednu hodnotu je nutné nastavit xlim)
space – vektor nebo číslo: velikost mezery mezi sloupci nebo jednotlivých mezer, u maticových dat a

beside =T specifikujeme dvě čísla – mezi skupinami a mezi jednotlivými sloupci
names.arg – vektor názvů sloupců osy x
legend.text – v případě více datových řad uvádí názvy v legendě.
horiz – nastavuje horizontální nebo vertikální vykreslování sloupců.
density – nastavuje šířku šrafování sloupců (vektor nebo hodnota).
angle – sklon šrafování.
col – barva šrafování nebo dalších komponent nebo barva sloupců.
border – barva okraje sloupců.
main, sub, xlab, ylab, xlim, ylim, cex.axis, cex.na mes – viz par a plot.
xpd – je dovoleno sloupcům přesahovat oblast grafu?
axes , axisnames – mají být vykreslovány osy a názvy os?

 72

inside – čáry mezi sloupci
plot – vykreslovat nebo nevykreslovat graf
offset – posunutí grafu na ose y o určitý počet
axis.lty – typ osy x, v případě vykreslení

barplot(c(1,2,4,3)) #klasický sloupcový graf
barplot(matrix(c(1,2,4,3),2,2),beside=T,col=c(2,3)) #dv ě řady a barvy
barplot(matrix(c(1,2,4,3),2,2),beside=F)#dv ě řady nad sebou

0
1

2
3

4

 0
1

2
3

4

 0
1

2
3

4
5

6
7

barplot(1:4,width=c(2,1),space=0,names.arg=letters[1:4],las=1)#r ůzné tlouš ťky
barplot(c(1,2,4,3),space=3) #mezery mezi grafy
barplot(matrix(c(1,2,4,3),2,2),beside=T, legend.tex t=c("2004","2005"))#legenda

a b c d

0

1

2

3

4

 0
1

2
3

4

2004
2005

0
1

2
3

4

barplot(c(1,2,4,3),horiz=T,col=1:2) # horizontální sloupce
barplot(matrix(c(1,2,4,3),2,2),beside=F,density=c(2 ,10),angle=c(45,90),col=2:3)
barplot(c(1,2,4,3),names.arg=letters[1:4], axis.lty =1) #vykreslí osu x

0 1 2 3 4 0
1

2
3

4
5

6
7

 a b c d

0
1

2
3

4

• boxplot(formula,data,subset,…,range=1.5,width,varwidth=F,n otch=F,outli

ne=T,names,plot=T,border,col,log,pars,horizontal=F, add=F,at) – vytvoří
klasický krabicový graf podle vzorce formula z tabulky data a podmnožiny subset .
Boxplot tvoří medián, horní a dolní kvartil (krabice), minimální a maximální proměnná
ležící v dolní a horní "hradbě" (1.5 × mezikvartilové rozpětí), za hradbou jsou data
zobrazovány jako odlehlé hodnoty (kolečka).
formula – vzorec závislosti, tzn. závislá proměnná ~ nezávislá proměnná, místo zadání lze ale uvádět

sloupce tabulky dat.
range – násobeno IQR (mezikvartilovým) rozpětím udává rozmezí „vousů“, norm. 1.5 (0 udává rozpětí

až po extrémy).
width – relativní velikost „krabic“ ve vzájemném poměru.
varwidth – proporční velikost krabic vzhledem k odmocnině počtu dat v každé ze skupin.
notch – logical, zobrazuje výřezy počítané jako ±1.58*IQR/sqrt(n) , kde n je počet pozorování,

jestliže se výřezy dvou krabic nepřekrývají, lze dost průkazně odhadovat, že se mediány liší.
outline – logical, mají se zobrazovat odlehlé hodnoty?

 73

names – názvy jednotlivých „krabic“ na ose x.
border , col , log , plot – viz předchozí typy grafů.
horizontal – logical, vykreslovat krabice horizontálně?
add – logical, přidat graf do již nakresleného grafu.
at – numerický vektor popisující, kde vykreslit boxploty (zejména) v případě add = T)
na.action – jak nakládat s hodnotami NA
pars

boxwex : změna velikosti "krabic".
staplewex , outwex : změna velikosti čar "hradby" a "extrémů".
boxlty , boxlwd , boxcol , boxfill : typ čáry, šířka, barva a výplň krabic.
medlty , medlwd , medpch, medcex , medcol , medbg: typ čáry, šířka, typ bodu, velikost bodu,

barva a výplň znaku pro medián nebo čáry mediánu (lty="blank", outpch=NA vypínají
jednotlivé typy).

whisklty , whisklwd , whiskcol : typ čáry, šířka a barva "vousů".
staplelty , staplelwd , staplecol : typ čáry, šířka a barva čar hradby.
outlty , outlwd , outpch , outcex , outcol , outbg : typ čáry, šířka, typ bodu, velikost bodu,

barva a výplň znaku pro outliers (lty="blank", outpch=NA vypínají jednotlivé typy).

výstupy
$stats – pro každou skupinu je uveden výpočet následujících statistik: dolní vous, dolní část krabice,

medián, horní fous, horní část krabice.
$n – počet pozorování v každé skupině.
$conf – horní a dolní extrémy výřezů (notch, konfidenční intervaly)
$out – odlehlé hodnoty
$group – do které skupiny odlehlá hodnota patří
$names – názvy skupin

par(mar=c(2.1,2,0.1,0.1),las=1)#nastavení parametr ů
boxplot(data.frame(x1=rnorm(40),x2=rnorm(40))) #gra f vlevo, zobrazení náh. čísel
x<-cbind(rok=factor(rep(1:3,4)),vyska=rnorm(12))#tv orba tabulky pro 2 grafy
boxplot(vyska~rok,data=x) #graf uprost řed
boxplot(vyska~rok,data=x,col=c(5,6,7), border=c(1,2 ,3)) #graf vpravo

x1 x2

-2

-1

0

1

2

3

 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

#boxplot vepsaný do normálního xy grafu (obr. vlevo)
x1<-data.frame(x=rep(c(1,2),each=50),y=rnorm(100))# vygenerována data
plot(x1$y~x1$x,xlim=c(1,3),xaxp=c(1,2,1),pch=21,col =rep(2:3,each=50))# x,y graf
boxplot(y~x,data=x1,at=c(1.5,2.5),axes=F,add=T,col= 2:3)

#horizontální graf s proporcemi varwidth (na lok 3 60 dat, na ostatních 10)
par(mar=c(2.1,3.3,0.1,0.1),las=1,cex=0.8)
x1<-data.frame(x=rep(paste("lok",1:5),times=c(10,10 ,60,10,10)),y=rnorm(100))
boxplot(y~x,data=x1,varwidth=T,horizontal=T)

 74

 1 2

-3

-2

-1

0

1

2

lok 1

lok 2

lok 3

lok 4

lok 5

-2 -1 0 1 2

x1<-data.frame(x=rep(LETTERS[1:4],times=25),y=rnorm (100)+5)
boxplot(y~x,data=x1,width=c(1,2,0.5,0.3),border=1:5 ,staplewex=2)

x1<-data.frame(x=rep(LETTERS[1:4],times=25),y=rnorm (100))
boxplot(y~x,data=x1,notch=T,boxcol=3,outlty=2,outpc h=NA)

 A B C D

3

4

5

6

7

8

 A B C D

-2

-1

0

1

2

boxplot(y~x,data=x1,plot=F)# výpis výstup ů (viz výstupy)
$stats
 [,1] [,2] [,3] [,4]
[1,] -1.2602766 -1.7488486 -1.46574430 -1.2298423
[2,] -0.6830814 -0.3536459 -0.58231448 -0.1139109
[3,] -0.1079411 0.2109140 0.05878168 0.2090689
[4,] 0.6929362 0.6650194 0.63176855 0.6464986
[5,] 2.1347571 1.6851194 1.62731758 1.6190020

$n
[1] 25 25 25 25

$conf
 [,1] [,2] [,3] [,4]
[1,] -0.5427626 -0.1109842 -0.3248686 -0.03122051
[2,] 0.3268805 0.5328122 0.4424319 0.44935829

$out
[1] 2.257766 -2.102357 -1.360767

$group
[1] 2 2 4

$names
[1] "A" "B" "C" "D"

• stem (x,scale=1,width=80,atom=1e-08) – vytvoří diagram leaf-and-stem (stonek
s listy) graficky znázorňující četnosti jednotlivých hodnot (podobně jako histogram).
scale – stupeň škálování
atom – tolerance rozlišování hodnot
width – určuje šířku grafu

x<-c(1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5, 5,6)
stem(x) #škála leaf and stem od 0-1,2-3,4-5,6-7, nu la nebo jedni čka 4krát ...
 The decimal point is at the |

 75

 0 | 0000
 2 | 0000000000000
 4 | 0000000
 6 | 0

stem(x,scale=2) # rozší ří diagram o další t řídy

 The decimal point is at the |

 1 | 0000
 2 | 0000000
 3 | 000000
 4 | 0000
 5 | 000
 6 | 0

stem(x,scale=3) # rozší ří diagram o intervaly po 0.5

 The decimal point is at the |

 1 | 0000
 1 |
 2 | 0000000
 2 |
 3 | 000000
 3 |
 4 | 0000
 4 |
 5 | 000
 5 |
 6 | 0

x<-rnorm(40)
stem(x) #diagram pro čísla s desetinnými místy (-2.4,-1.5,…,1.2,2.7)

 The decimal point is at the |

 -2 | 4
 -1 | 5211000
 -0 | 99987666442211
 0 | 1122223344457799
 1 | 2
 2 | 7

stem(x,scale=2) #rozlišení po 0.5

 The decimal point is at the |

 -2 | 4
 -1 | 5
 -1 | 211000
 -0 | 99987666
 -0 | 442211
 0 | 11222233444
 0 | 57799
 1 | 2
 1 |
 2 |
 2 | 7

• stripchart (x,method,jitter,offset,vertical=F,group.names,add= F,at,xlim

, ylim,main,ylab,xlab,log,pch,col,cex) – vykresluje diagram rozptýlení,
rozmítnutý diagram rozptýlení a uspořádaný rozmítnutý diagram rozptýlení (viz
obrázky). Používá se pro základní jednoduché zobrazení dat.
method – "overplot" na ose, "jitter" náhodně kolem osy, "stack" naskládáno na sobě

 76

jitter – rozsah rozložení kolem osy
offset – rozestup při metodě stack
vertical – vykresluje vertikálně
group.names – názvy skupin, které se mají vykreslovat po bocích grafů (v případě více grafů)
add – přidat graf do již vykresleného
at – ve které pozici (y) se má začít vykreslovat

x<-rnorm(100)
par(las=1,mfrow=c(3,1),omi=c(0,0,0,0),mar=c(2,0.1,1 .5,0.1))
stripchart(x,method="overplot",pch=1,col=2,cex=1,ma in="overplot")
stripchart(x,method="jitter",pch=5,col=3,cex=1,main ="jitter")
stripchart(round(x,1),method="stack",pch=0,col=4,ce x=0.5,main="stack")

-2 -1 0 1 2 3

overplot

-2 -1 0 1 2 3

jitter

-2 -1 0 1 2 3

stack

x1<-data.frame(x=rep(LETTERS[1:4],times=25),y=rnorm (100))
par(las=1,mar=c(2,2,0.1,0.1))
stripchart(x1$y~x1$x,pch=1,col=1:4)

-3 -2 -1 0 1 2 3 4

A

B

C

D

• pie (x,labels=names(x),edges=200,radius=0.8,clockwise=F ,init.angle,
density=NULL, angle=45, col=NULL, border=NULL, lty= NULL, main=NULL,…)
– vytvoří klasický koláčový graf s různými možnostmi dalšího nastavení
labels – označuje popisky u grafu
edges – místo kružnice se vytvoří mnohoúhelník s udaným počtem stran
radius – velikost grafu od -1 do 1 (záporná čísla – graf je převrácený)
density – hustota šrafování jednotlivých dílů "koláče"
angle – úhel šrafování jednotlivých dílů
clockwise – vykreslování ve směru nebo proti směru hodinových ručiček
init.angle – počáteční úhel (natočení grafu)
col – barvy šrafování nebo výplně jednotlivých dílů
border – vektor barev okraje jednotlivých dílů
lty – vektor typu čáry tvořící okraje jednotlivých dílů

pie(c(5,10,20,6))
pie(c(5,10,20,6),edges=16)#mnohoúhelník
pie(c(5,10,20,6),radius=0.5)#graf v okn ě zmenšen na polovinu

 77

1

2

3

4

1

2

3

4

1

2

3
4

pie(c(5,10,20,6),col=1:4,lty=1:4)#zm ěna barev a typ ů čar ohrani čení
pie(c(5,10,20,6),density=c(10,3,30,1000),angle=c(0, 45,90,0),col=1:4,border=2)
pie(c(5,10,20,6),init.angle=45,labels=paste("lokali ta",1:4))#pooto čeno, popisky

1

2

3

4

1

2

3

4

lokalita 1

lokalita 2

lokalita 3

lokalita 4

• hist (x,breaks,freq=T,probability=!freq,include.lowest=T ,right=T,
density,angle,col,border,main,xlim,ylim,xlab,ylab,a xes=T,plot=T,

labels=F,nclass,…) – vytváří histogram četnosti dané variační řady (číselné)
breaks – nastavuje třídy četnosti několika způsoby:

typ vytváření – zadán algoritmus vytváření intervalů "Sturges", "Scott", "FD"
počet tříd četnosti – počet tříd, číslo, udávající přibližný počet tříd
interval tříd četnosti – vektor, udávající hranice intervalů
funkce – funkce pro výpočet počtu tříd

freq (= opak probability) – T – absolutní, F – relativní četnost
include.lowest – logická, zda do nejnižšího intervalu je zahrnuta také hodnota minima, pozor,

automaticky nastaveno na T, tzn. 1. třída u celých čísel bude zahrnovat první dvě hodnoty
right – pro right=T jsou intervaly uzavřené zprava a zleva, jinak naopak
angle, col, border, main, … – shodné s předchozími grafy

výstupy
breaks – hranice tříd.
counts – n hodnot s absolutními četnostmi pro intervaly.
density – hustota pravděpodobnosti pro jednotlivé třídy, jestliže jsou intervaly = 1 pak relativní

četnosti.
intensities – shodné s densitou.
mids – středy tříd.
xname – objekt v argumentu x.
equidist – logická hodnota indikující, zda je shodná velikost tříd.

x<-rnorm(100,175,10) #vygenerováno 100 hodnot výšky , pr ůměr 175, sm. odch. 10
par(mar=c(4.2,4,3,0.1),las=1)
hist(x,col=6:7,main="Výška v populaci",xlab="výška [cm]",ylab=" četnost")
hist(x,col=6:7,breaks=5,main="Výška v populaci",xla b="výška [cm]",ylab=" četnost")
hist(x,co=1:2,m="Výška v populaci",xla="výška
[cm]",yla=" četnost",density=c(5,10))

 78

Výška v populaci

výška [cm]

č
et

no
st

150 160 170 180 190 200

0

5

10

15

20

Výška v populaci

výška [cm]

č
et

no
st

150 170 190 210

0

10

20

30

40

Výška v populaci

výška [cm]

č
et

no
st

150 160 170 180 190 200

0

5

10

15

20

#v p řípad ě nastavení interval ů, se p řepíná na freq=F, nejedná se o relativní
#frekvenci, ale densitu, tzn. plocha sloupce je rel ativní četnost
par(mar=c(4.2,4,0.3,0.2),yaxs="i",las=1,mgp=c(3,0.6 ,0))
hist(x,breaks=c(150,170,180,190,210),m=NULL,xlab="v ýška",ylab="density")
hist(x,breaks=c(150,180,190,210),m=NULL,xlab="výška ",ylab="density")

výška

de
ns

ity

150 170 190 210
0.00

0.01

0.02

0.03

0.04

výška

d
en

si
ty

150 170 190 210
0.000

0.005

0.010

0.015

0.020

#práce s right a zahrnutím minim (maxim)
hist(c(1,1,2,2,2,3,3,3,3,3,4,4,5),m=NULL,xlab="hodn oty")#frekvence 1 a 2
dohromady
hist(c(1,1,2,2,2,3,3,3,3,3,4,4,5),br=0:5,m=NULL,xla b="hodnoty")
hist(c(1,1,2,2,2,3,3,3,3,3,4,4,5),breaks=1:6,m=NULL ,xlab="hodnoty",right=F)

hodnoty

F
re

qu
en

cy

1 2 3 4 5
0

1

2

3

4

5

hodnoty

F
re

qu
en

cy

0 1 2 3 4 5
0

1

2

3

4

5

hodnoty

F
re

qu
en

cy

1 2 3 4 5 6
0

1

2

3

4

5

x<-rnorm(100,175,10)
hist(x,plot=F)
$breaks
 [1] 150 155 160 165 170 175 180 185 190 195

$counts
[1] 1 2 11 15 20 21 21 7 2

$intensities
[1] 0.002000000 0.004000000 0.022000000 0.030000000 0.040000000 0.042000000
[7] 0.042000000 0.014000000 0.004000000

$density
[1] 0.002000000 0.004000000 0.022000000 0.030000000 0.040000000 0.042000000
[7] 0.042000000 0.014000000 0.004000000

$mids
[1] 152.5 157.5 162.5 167.5 172.5 177.5 182.5 187.5 192.5

$xname

 79

[1] "x"

$equidist
[1] TRUE

attr(,"class")
[1] "histogram"

• matplot (x,y,type,lty,lwd,pch,col,cex,xlab,lab,xlim,ylim,…, add=F,verbos

e) – vynáší více řad (viz obr Obr 10) do jednoho grafu, aniž bychom museli použít pro
přidání funkce points nebo lines . Souřadnice pro body jsou zadány ve sloupcích
matic, zvlášť pro x a pro y. matpoints a matline jsou podobné jako matplot, ale
body nebo přímky se přidávají do stávajícího grafu.

x1<-matrix(c(1,4,7,9,2,5,8,10),4,2);x1 # x-ové sou řadnice pro 1. a 2. řadu
 [,1] [,2]
[1,] 1 2
[2,] 4 5
[3,] 7 8
[4,] 9 10
y1<-matrix(c(2,3,4,1,1,4,3,2),4,2);y1 # y-ové sou řadnice pro 1. a 2. řadu

 [,1] [,2]
[1,] 2 1
[2,] 3 4
[3,] 4 3
[4,] 1 2
par(mar=c(4.2,4.2,0.1,0.1)) #nastavení okraj ů grafu
matplot(x1,y1) #vykreslení grafu

1

1

1

1

2 4 6 8 10

1.
0

2.
0

3.
0

4.
0

x1

y1

2

2

2

2

se řazené hodnoty náhodn ě vygenerovaných velikostí samic a samc ů ur čitého druhu
x<-data.frame(samci=sort(rnorm(20,15,2)),samice<-so rt(rnorm(20,14,3)))
matplot(x,pch=0:1,xlab="jedinec",ylab="velikost t ěla")
matlines(x,lty=1:2,col=1:2)

5 10 15 20

8
12

16
20

jedinec

ve
lik

os
t

tě
la

5 10 15 20

8
12

16
20

jedinec

ve
lik

os
t

tě
la

Shrnutí:
Metody vytváření grafů v R jsou trojího typu – tvorba high-level (vysokoúrovňové),
low-level (nízkoúrovňové) a interaktivní grafiky. Základní tvorba klasických high-level
grafů probíhá pomocí funkce plot, která pro různé typy objektů vytváří různé typy grafů.

 80

Specifické vlastnosti grafu nastavujeme pomocí argumentů této funkce nebo pomocí
nastavení parametrů grafického okna (funkce par). Grafy typu histogram, boxplot,
sloupcový nebo koláčový graf vytvoříme pomocí dalších uvedených funkcí. U některých
grafů mohou data vstupovat ve dvou typech formátu. Naměřené hodnoty pro každou
hodnotu znaku v samostatných sloupcích nebo jeden sloupec obsahuje znak pro třídění a
další naměřené hodnoty. Ve druhém případě musíme data do grafu zadávat v podobě
vzorce (formula).

Metody k zapamatování:
• Základní graf: plot, argumenty – xlim, ylim, main, xlab, ylab, col, pch, bg, lty, lwd.
• Parametry graf. okna: par, argumenty – cex, mar, mfrow, las, xaxs, xaxt, tck.
• Další typy grafů: barplot, boxplot, hist, stripchart, stem, pie, matplot.

Kontrolní úkoly
14. U tří lokalit (Opava, Ostrava, Karviná) porovnáváme průměrný počet hnízd na hektar

(12, 8.5, 13.6) Vytvořte sloupcový graf s názvy osy x a y a popisy jednotlivých sloupců
(názvy lokalit), s měřítkem na ose y od 0 do 14.

15. Zjistěte, jaké jsou souřadnice středů sloupců v předchozím grafu.
16. Místo sloupcového grafu vytvořte pro uvedené lokality koláčový graf i s popisky

jednotlivých dílků.
17. Vytvořte stejný graf jako u úkolu 14, ale pro dva druhy (modrý a červený), v rozmezí

0-25 na ose y a přidejte legendu. Vytvořte nejprve graf s jedním sloupcem pro každou
lokalitu, kde druhy budou nad sebou, pak graf, kde bude mít každý druh samostatný
sloupec.
 Opava Ostrava Karviná
1 12 8 13
2 5 4 3

18. Vygenerujte 50 náhodných čísel z Poissonova rozdělení o průměru 3. Vektor nazvěte

vec1. Použijte leaf-and-stem diagram.
19. Načtěte data z tabulek ukazujících různé styly zápisu dat (jsou uvedeny na začátku této

podkapitoly) do objektů s názvem styl1, styl2. Vytvořte boxploty pro oba styly.
20. Vytvořte tabulku dat mtab2 se sloupci "samec", "samice"kde bude vždy 25

naměřených velkostí těla samců a samic určitého druhu. Vytvoříme je jako 25
náhodných čísel z normálního rozdělení pro každý sloupec (průměr=15, sm. odch.=3
pro samce, průměr=10, sm. odch=1 pro samice). Vytvořte boxplot pro tabulku, kde
náhodné hodnoty budou velikosti jedinců. Graf by měl obsahovat také názvy os.

21. Vytvořte matplot hodnot tabulky mtab2. Následně upravte body (pro samce kroužky a
pro samice čtverce).

22. Vypište leaf-and-stem diagram pro samce i samice z tabulky mtab2. Co diagram
obsahuje?

23. Vytvořte do jednoho grafického okna histogram pro výšku samců a druhý histogram
pro výšku samic. Uveďte nadpis histogramů (samci, samice), název osy x je "velikost
těla [cm]".

Výsledky
1. x<-c(1,1,2,3,4,5,4,4,1,1,2,2,5,4,6,5,3); plot(x)
2. plot(x,type="l"); plot(x,type="h"); plot(x,type="o" ,xlim=c(0,20),ylim=c(0,10),col=3)
3. plot(x,type="o",xlim=c(0,20),ylim=c(0,10),col=3,lty =3,lwd=3)
4. plot(x,type="p",pch=21,bg=2,main="M ůj graf",sub="1. část")
5. plot(factor(x)); plot(factor(x),col=c(2,2,2,4,4,4))

 83

1 2 3 4 5

1

2

3

4

5

osa x

os
a

y

1 2 3 4 5

1

2

3

4

5

osa x

os
a

y

• segments (x0, y0, x1, y1, col, lty, lwd, ...) – vykreslí samostatné úsečky
mezi počátečními (A) a koncovými body (B) se souřadnicemi A[x0,y0], B[x1,y1]; v
tomto případě (narozdíl od lines) lze měnit barvy úseček.

#graf vlevo
par(mar=c(4.2,4,0.3,0.2),las=1)
plot(1:5,type="n", xlab="osa x",ylab="osa y")#vykre slí graf bez bodù
segments(c(1,3,1,3),c(1,3,2,4),c(2,4,2,4),c(2,4,1,3),lwd=1:2,col=2:3)
#graf uprost řed
par(mar=c(0,0,0,0))#nulové okraje
x<-seq(0,pi,along=1:20)[-20]#interval 0,1 rozd ělený na 20 dílk ů
plot(c(-1,1), c(-1,1),type="n", asp = 1,axes=F,ann= F)# čistý graf
segments(x0=sin(x),x1=-sin(x),y0=cos(x),y1=-cos(x), col=1:8,lwd=2)#hv ězda
#graf vpravo
plot(0,0,xlim=c(1,8),ylim=c(0,1),ty="n", xlab="osa x",ylab="osa y")
segments(1:8,rep(0,8),1:8,rep(1,8),lwd=2,col=1:8)

1 2 3 4 5

1

2

3

4

5

osa x

os
a

y

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

osa x

os
a

y

• curve (expr, from, to, n, add=F, type, ylab, log, xlim, . ..) – vykreslí
funkci podle výrazu expr .
from , to – interval pro který se funkce vykreslí hodnot od do
n – počet bodů spojených liniemi nebo body (podle type , viz např. plot),
add – vykreslit nový graf nebo přidat do již vytvořeného grafu, ostatní výrazy jako u plot

#graf vlevo
par(mar=c(4.2,4,0.3,0.2),las=1)
plot(0,0,type="n",xlab="x",ylab="f(x)",xlim=c(-2,2) ,ylim=c(0,4),asp=1)
curve(x^2,-2,2,lwd=2,add=T)#první parabola (černá), vynecháním add p řekreslíme
curve(x^2+1,-2,2,lwd=2,col=4,add=T) # druhá parabol a (modrá)
#graf uprost řed
plot(0,0,type="n",xlab="x",ylab="f(x)",xlim=c(0,2*p i),ylim=c(-1,1),asp=1)
curve(sin(x),0,2*pi,lwd=2,col=4,add=T)#modrá k řivka
curve(sin(x+1),0,2*pi,lwd=2,col=3,add=T) #zelená k řivka
curve(2*sin(x),0,2*pi,lwd=1,col=1,add=T) #normální černá k řivka
curve(-2*sin(x),0,2*pi,lty=2,col=1,add=T) #p řerušovaná černá k řivka
#graf vpravo
curve(x^2,-2,2,lwd=1,xlab="x",ylab="f(x)")#vykreslí nový graf
curve(x^2,-2,2,lwd=2,n=4,add=T)#shodná k řivka, ale jen 4 body

 84

-2 -1 0 1 2

0

1

2

3

4

x

f(x
)

0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

x
f(x

)

-2 -1 0 1 2

0

1

2

3

4

x

f(x
)

• rect (x1, y1, x2, y2, density, angle, col, border, lty, lwd, xpd, …) –
vykreslí obdélníkovou oblast podle souřadnic (xvlevo, ydole, xvpravo,

ynaho ře). Další nastavení parametrů stejné jako u ost. graf. prvků.
#graf vlevo #vykreslení pozadí plochy grafu
par(mar=c(4.2,4,0.3,0.2),las=1)
plot(0,0,type="n",xlab="x",ylab="f(x)",xlim=c(0,4), ylim=c(0,4),asp=1)
rect(par("usr")[1], par("usr")[3], par("usr")[2], p ar("usr")[4],col=8)
#graf uprost řed
plot(0,0,type="n",xlab="x",ylab="f(x)",xlim=c(0,4), ylim=c(0,4),asp=1)
x<-seq(0,1.5,0.5);y<-seq(4,2.5,-0.5)
rect(x,x,y,y,col=1:8)
#graf vpravo
plot(0,0,type="n",xlab="x",ylab="f(x)",xlim=c(0,4), ylim=c(0,4),asp=1)
rect(rep(0,4),0:3,rep(4,4),1:4,col=5:8)

0 1 2 3 4

0

1

2

3

4

x

f(x
)

0 1 2 3 4

0

1

2

3

4

x

f(x
)

0 1 2 3 4

0

1

2

3

4

x

f(x
)

• polygon (x,y,density,angle,border,col,lty,xpd,…) – vytvoří mnohoúhelník(y)
s vrcholy v bodech zadaných pomocí x a y (spojení mnohoúhelníku) je podle pořadí
bodů).

#graf vlevo #vykreslení mnohoúhelníku
par(mar=c(4.2,4,0.3,0.2),las=1)
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
polygon(c(0:4,3:1),c(1,1,0,1,1,4,3,4),col=7,border= 4,lwd=2)
#graf uprost řed
curve(sin(x),0,2*pi,lwd=2,col=4,xlab="x",ylab="f(x) ")
polygon(seq(0,pi,0.01),sin(seq(0,pi,0.01)),col=8)
#graf vpravo
plot(0,0,type="n",xlab="x",ylab="f(x)",xlim=c(0,2*p i),ylim=c(-1,1))
polygon(c(x,rev(x)),c(sin(x),rev(sin(x+1))),col=6)

 85

0 1 2 3 4

0

1

2

3

4

x

y

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

x
f(x

)

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

x

f(x
)

• arrows (x0, y0, x1, y1, length, angle, code, col, lty, lwd , xpd) –
vykreslí šipku podle zadaných souřadnic (popř. šipky, jestliže jsou souřadnice zadány
jako vektory). Pomocí šipek se dají také vykreslit chybové úsečky v grafech (např.
konfidenční intervaly nebo střední chyby průměru). Stačí pouze vytvořit šipku na obě
strany s úhlem 90°.
length – délka hlavy šipky
angle – úhel hlavy šipky
code – typ šipky (0 – bez šipky, 1 – šipka na začátku, 2 – šipka na konci, 3 – obě strany)

• abline (a,b,untf=F,…) nebo(h,…) nebo(v,…) nebo(reg regresní objekt) – vykreslí
přímku (nebo přímky) typu bx+a (untf – v případě logaritmovaných os vykreslí
netransformovanou přímku), popř. je možno zadat h a v jako vektory horizontálních a
vertikálních přímek.

#graf vlevo #šipky
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
arrows(0.5,0.5,0.5,3.5)
arrows(1.5,0.5,1.5,3.5,angle=90,length=0.1)
arrows(2.5,0.5,2.5,3.5,angle=90,length=0.05,code=3)
arrows(3.5,0.5,3.5,3.5,angle=15,length=0.3,code=1,l wd=2,lty=2,col=3)
#graf uprost řed
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
abline(1,2,lwd=2) #vykreslení p římky 2x+1
abline(v=0:4,lty=2,col=8) #vykreslení jemné m řížky vertikáln ě
abline(h=2:3,lty=2,col=8) #vykreslení jemné m řížky horizontáln ě
abline(3,-0.5,lwd=2,col=2) #vykreslení p římky -0.5x+3
#graf vpravo
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
abline(v=seq(0,4,0.2),col=1:8)

0 1 2 3 4

0

1

2

3

4

x

y

0 1 2 3 4

0

1

2

3

4

x

y

0 1 2 3 4

0

1

2

3

4

x

y

• text (x, y, labels, adj, pos, offset, vfont, cex, col, f ont, xpd, ...)
– vypíše text(y) do grafu na souřadnicích [x,y]. Může se využít k popisování
jednotlivých bodů grafu atd.
labels – text, který chceme vypsat. Může být i vektor, ale pak musí být také xy souřadnice vektory.
adj – zarovnání (0 – vlevo, 0.5 – doprostřed, 1 – vpravo)
pos – umístění od pozice (1 dolů, 2 vlevo, 3 nahoru, 4 vpravo)
offset – o kolik se má text zvýšit nebo snížit (relativně k velikosti znaku) vztaženo k hodnotě pos

 86

vfont – specifikace vektorového fontu (lze použít Hershey vektorové fonty viz demo(Hershey)
font – typ normálního fontu

• mtext (text,side,line,outer=F,at,adj,padj,cex,col,font,vf ont,las,…) –
výpis textu na okraje grafu.
side – umístění na okraj (1 dolů, 2 vlevo, 3 nahoru, 4 vpravo)
line – který řádek v okraji
outer – u více grafů v jednom okně vzniká ještě vnější okno, psát do tohoto okna?
at – specifikace pozice
padj – zarovnání svislých řetězců
las – sklon na jednotlivých osách, viz plot

#graf vlevo
par(mar=c(4.2,4,0.3,0.2),las=1)
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
text(1,1,"ahoj",col=2)
text(1,2,"ahoj",col=2,srt=45)
text(1,3,"ahoj",col=3,srt=180)
text(2,2,"A",pos=1,col=1) # pod bod
text(2,2,"A",pos=2,col=2) # vlevo od bodu
text(2,2,"A",pos=3,col=3) # nad bod
text(2,2,"A",pos=4,col=4) # vpravo od bodu
text(2,2,"A",pos=4,col=4,offset=2)
text(1,3.8,"B\nVVV",adj=1,col=4)#zalomení řádku a zarovnání vpravo
text(3,3.8,"B\nVVV",adj=0,col=2) #zalomení řádku a zarovnání doprost řed
text(2,3.8,"B\nVVV",adj=0.5,col=3) #zalomení řádku a zarovnání vlevo
#graf vpravo
par(mar=c(5,5,2,2),las=1)
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
mtext(side=1,at=3,text="text1",col=2,line=2)
mtext(side=3,at=3,text="text1",col=3,line=1)
mtext(side=4,at=2,text="AA",col=4,line=0)
mtext(side=2,at=0,text="textB",col=1,line=3)
mtext(side=2,at=3,text="textC",col=5,line=3,las=3)

0 1 2 3 4

0

1

2

3

4

x

y

ahoj

ah
oj

ahoj

A
A

A
A A

B
VVV

B
VVV

B
VVV

B
VVV

0 1 2 3 4

0

1

2

3

4

x

y

text1

text1

AA

textB

te
xt

C

• symbols (x,y,circles,squares,rectangles,stars,thermometers, boxplots,

inches=T,add=F,fg,bg,xlab,ylab,main,xlim,ylim,…) – vykresluje symboly dle
zadaných hodnot.
x,y – zadání souřadnic středu daného symbolu
circles – vektor poloměrů kružnic
squares – vektor stran jednotlivých čtverců
rectangles – 2 sloupcová matice (1. sloupec šířka, 2. sloupec výška)
stars – matice s 3 a více sloupci označujícími vzdálenost jednotl. bodů hvězdy od středu
thermometres – 3-4 sloupce označující šířku, výšku, proporci vybarvení (3. a 4. sloupec) symbolu

teploměru (barvy pro vybarvení jednotlivých části jsou argumenty fg a bg)
boxplots – matice s 5 sloupci (šířka a výška krabice, délky vousů a proporce mediánu)
inches – měřítko pro symboly je v palcích (T) nebo v jednotkách grafu (F)
add – přidat do stávajícího grafu?

 87

#graf vlevo
par(mar=c(4.2,4,0.3,0.2),las=1)
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
symbols(1:3,1:3,circles=c(0.3,0.4,0.5),inches=F,add =T,fg=1:3)
symbols(1:3,1:3,squares=c(0.3,0.4,0.5),inches=F,add =T,bg=1:3)
#graf uprost řed
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
symbols(1:3,1:3,rectangles=matrix(c(0.3,0.4,0.5,1,1 ,1),3,2),inc=F,add=T,bg=1:3)
symbols(c(1,3),c(3,1),stars=matrix(rep(c(0.7,0.4),8),2,8,T),inc=F,ad=T,bg=1:3)
#graf vpravo
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
x<-matrix(c(0.4,0.5,0.6,0.2,0.3,0.4,rep(0.3,6),0.2, 0.6,0.9),3,5)
x
 [,1] [,2] [,3] [,4] [,5]
[1,] 0.4 0.2 0.3 0.3 0.2
[2,] 0.5 0.3 0.3 0.3 0.6
[3,] 0.6 0.4 0.3 0.3 0.9
symbols(1:3,1:3,boxplot=x,inc=F,add=T,bg=2:4)
symbols(c(1,3),c(3,1),thermometers=matrix(rep(0.7,6),2,3),inc=F,ad=T,fg=2:3)

0 1 2 3 4

0

1

2

3

4

x

y

0 1 2 3 4

0

1

2

3

4

x

y

0 1 2 3 4

0

1

2

3

4

x

y

• rug (x,ticksize=0.03,side=1,lwd=0.5,col,quiet,…) vytvoří „rohož“ s rozestupy
podle vektoru x).
ticksize – velikost "třásní rohože" v proporci grafu (1 – přes celý graf, záporné hodnoty jsou

vykreslovány ven z grafu
side – strana na které se má "rohož" vykreslovat (1 dole, 2 vlevo, 3 vpravo, 4 nahoře)
quiet – vypisovat hlášení o překrývajících se hodnotách?

#graf vlevo
par(mar=c(4.2,4,1,1),las=1)
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
x<-rnorm(50,2,0.5);y<-rnorm(50,2,0.5)
points(x,y,pch=20,col=4)
rug(x,ticksize=-0.05,side=3)
rug(y,ticksize=0.05,side=4,col=2)
#graf uprost řed
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
rug(0:4,ticksize=0.25,side=1,col=2,lty=2,pos=0)
rug(0:4,ticksize=0.25,side=3,col=8,lty=2,pos=4)
#graf vpravo
plot(0,0,type="n",xlab="x",ylab="y",xlim=c(0,4),yli m=c(0,4))
rug(seq(0.5,3.5,1),ticksize=0.03,side=1,col=2)#vykr eslení červených ticks
rug(seq(0.5,3.5,1),ticksize=-0.03,side=1,col=4) #vy kreslení modrých ticks

 88

0 1 2 3 4

0

1

2

3

4

x

y

0 1 2 3 4

0

1

2

3

4

x

y

0 1 2 3 4

0

1

2

3

4

x

y

Kontrolní úkoly
1. Vytvořte prázdný graf s měřítkem 0-10 na ose x a 0-10 na ose y, názvy osy x i y chybí,

nastavení okrajů (v měřítku řádků) je 4,4,1,1), popisky osy x a y jsou vypsány v
horizontální pozici. Toto nastavení používejte pro všechny úkoly (nemusíte graf
překreslovat, jen dodávejte další objekty).

2. Vytvořte body (tvar obdélníku) na souřadnicích [1,3], [2,8], [3,1]. První bod bude
červený, druhý zelený a třetí modrý, velikost bodu bude postupně 1, 2, 3.

3. Vykreslete přerušovanou spojnici bodů, tloušťka čáry je 2 a barva modrá.
4. Zakreslete do předchozího grafu funkci sin(x)+5 červeně, a funkci sin(x+1)+5 modře.
5. Vykreslete šipku směřující z bodu 0,0 do bodu 1,1.
6. Vytvořte vektor čísel 5,4,7,8,3,1,2 nazvaný vec3. Vykreslete body se souřadnicemi x

postupně 4-10, souřadnice y jsou uloženy ve vektoru vec3. Vytvořte chybové úsečky
bodů pohybující se v rozmezí ±1 okolo bodů (vertikálně).

7. Vykreslete přímku -3x+10, dále svislé žluté přímky protínající osu x v bodech 3 a 4 a 3
horizontální přímku (přerušovaná čára, šedá barva) protínající osu y v bodě 10.

8. Vedle bodů z úkolu 6 vepište postupně popisky a-g.
9. Vepište pod osu x text (osa x) tak, aby ležel na pozici pod souřadnicí 9 na 3. "řádku".

Proč je 3. řádek line=2?

Části grafu

• axis (side, at, labels=T, tick=T, line, pos, outer=F, fo nt, vfont, lty,

lwd, col, padj, ...) – vykreslí osu, přičemž umožňuje nastavit značky osy a
popisky značek naprosto libovolně (i s různými rozestupy).
side – strana na které se má osa vykreslovat (1 dole, 2 vlevo, 3 vpravo, 4 nahoře)
at – hodnoty, ve kterých se mají vykreslit značky
labels – názvy pro jednotlivé značky
tick – logical, mají se značky vykreslovat?
lines – na kterém řádku v okraji se bude osa vykreslovat
pos – na které pozici se osa vykreslí
outer – pro více grafů v jednom, má se vykreslovat osa na vnějším okraji?

#graf vlevo
par(mar=c(0.1,0.1,0.1,0.1),las=1)
plot(0,0,type="n",axes=F,ann=F,xlim=c(-2,2),ylim=c(-2,2))
axis(1,at=-2:2,labels=c(-2,-1,"",1,2),pos=0)
axis(2,at=-2:2,labels=c(-2,-1,"",1,2),pos=0)
text(0,0,adj=c(-0.5,1.3),labels=0)
#graf uprost řed
par(mar=c(4,4,0.1,0.1),las=1)
plot(0,0,type="n",axes=F,ann=F,xlim=c(0,100),ylim=c (0,1))
axis(1,at=c(0,25,40,50,60,75,100),col=2,cex.axis=0. 8)
axis(2,at=0:1,labels=c("ne","ano"),las=1,col=4)

 89

#graf vpravo
par(mar=c(4,4,3,3),las=1)
plot(0,0,type="n",axes=F,ann=F,xlim=c(0,100),ylim=c (0,1))
axis(1,at=c(0,25,40,50,60,75,100),col=2,cex.axis=0. 8)
axis(3,at=seq(0,100,20),col=1,cex.axis=0.8)
axis(4,at=0:1,labels=c("ne","ano"),las=1,col=4)

-2 -1 1 2

-2

-1

1

2

0

0 25 40 60 75 100

ne

ano

0 25 50 75 100

0 20 40 60 80 100

ne

ano

• title (main,sub,xlab,ylab,line,outer=F,…) – dodatečné dokreslení názvu,
podnázvu nebo popisků os do grafu.

• grid (nx,ny,col,lty,lwd,equilogs=T) – vykreslí mřížku v grafu.
nx,ny – udává počet vertikálních, popř. horizontálních čar, nenastaveno vykresluje
čáry podle stávajících značek na ose

equilogs – pro logaritmované osy (viz ?grid)

• legend (x,y,legend,fill, col, lty, lwd, pch, angle, densit y, bty, bg,
pt.bg, cex, pt.cex, pt.lwd, xjust, yjust, x.intersp , y.intersp, adj,

text.width, text.col, merge, trace=F, plot=T, ncol, horiz=F) – vykreslí
legendu grafu na souřadnicích x a y (vysvětlení všech argumentů viz ?legend)
legend – popisky v legendě
fill – značky popisu legendy (barevné obdélníky)
lty – typ čar v legendě

par(mar=c(4,4,2,0.1),las=1)
plot(0,0,type="n",ann=F,xlim=c(-2,2),ylim=c(-2,2))
title(main="název",xlab="osa x",col.main=2)
grid(ny=0,col=8,lty=2)
legend(0,0,legend=c("jedna","dv ě"),fill=2:3,bg="white")
legend(0,0,legend=c("jedna","dv ě"),lty=2:3,col=2:3,bg="white")

-2 -1 0 1 2

-2

-1

0

1

2

název

osa x

jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě

název

osa x

-2 -1 0 1 2

-2

-1

0

1

2

název

osa x

jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě
jedna
dvě

název

osa x

jedna
dvě

 90

Grafický zápis matematických symbolů a vzorců

Speciální matematický zápis – R umožňuje pomocí speciálních symbolů zápis
matematických výrazů v kvalitní grafické interpretaci. Zápis lze využít při psaní popisků
os, nadpisů, popisků značek, textu, textu na okraji atd. Místo řetězce se vepisuje výraz
expression(…) .
x+y x+ y

hat(x) x̂

paste(x,y,z) xyz

x-y x− y

tilde(x) x~
list(x,y,z) x, y, z

x*y xy

ring(x) x°

plain(Ahoj) Ahoj

x/y x y
bar(x) x

italic(Ahoj) A ho j

-x − x

widehat(xy) xy
bold(Ahoj) Ahoj

+x + x

widetilde(xy) xy

bolditalic(Ahoj) A hoj

x[i] xi
x%<->%y x ↔ y

underline(Ahoj) Ahoj

x^i x

i

x%<-%y x ← y

list(x[1],...,x[n]) x1, …, xn
x<y x < y

x%subset%y x ⊂ y

x[1]+...+x[n] x1 + … + xn

x>y x> y

x%subseteq%y x⊆ y

list(x[1],cdots,x[n]) x1, …, xn
x<=y x≤ y

x%supset%y x ⊃ y

x[1]+ldots+x[n] x1 + …+ xn

x>=y x≥ y

x%supseteq%y x⊇ y

displaystyle(x) x

x==y x = y

x%notsubset%y x⊄ y

textstyle(x) x

x!=y x ≠ y

Alpha-Omega Α − Ω
scriptstyle(x) x

x%+-%y x ± y

alpha-omega α − ω

scriptscriptstyle(x) x

x%/%y x ÷ y

phi1+sigma1 ϕ + ς

x+phantom(0)+y x+ + y

x%*%y x × y

Upsilon1 ϒ
over(1,phantom(0))

1

x%*%y x ⋅y

infinity ∞

frac(x,y)
x

y

sqrt(x) x
32*degree 32°

over(x,y)
x

y

x%~~%y x≈ y

60*minute 60′
atop(x,y)

x

y

x %=~%y x≅ y

30*second 30″
sum(x[i],i=1,n) ∑

1

n

xi

x%==%y x≡ y

x~~y x y

prod(plain(P)(X==x),x) ∏

x
P(X = x)

x%prop%y x∝ y

inf(S) inf S
integral(f(x)*dx,a,b) ⌠

⌡a

b

f(x)dx

x%in%y x ∈ y

sup(S) supS

union(A[i],i==1,n) ∪
i=1

n
Ai

x%notin%y x ∉ y

(x+y)*z (x+ y)z
intersect(A[i],i==1,n) ∩

i=1

n
Ai

x%->%y x → y

x^y+z x
y + z

lim(f(x),x%->%0) lim
x→0

f(x)

x%up%y x↑ y
x^(y+z) x

(y+z)

min(g(x),x>=0) min
x≥0

g(x)

x%down%y x↓ y
x^{y+z} xy+z

group("(",list(a,b),"]") (a , b]

x%<=>%y x ⇔ y

x%dblup%y x⇑ y
bgroup("(",atop(a,b),")")





a

b






x%=>%y x⇒ y

x%dbldown%y x⇓ y

group(lceil,x,rceil) x
x%<=%y x ⇐ y

 group(lfloor,x,rfloor) x

 group("|",x,"|") |x|

 91

Kontrolní úkoly
10. Vytvořte prázdný graf s měřítkem -5, +5 na ose x a 0-8 na ose y, názvy se x i y chybí,

nastavení okrajů (v měřítku řádků) je 4,4,1,1), osy se nevykreslí. Toto nastavení
používejte pro všechny úkoly (nemusíte graf překreslovat, jen dodávejte další objekty).

11. Vykreslete svislou i vodorovnou mřížku (šedá barva)
12. Vykreslete osu y uprostřed (procházející bodem 0 na ose x).
13. V bodě [3,7] vykreslete legendu, kde bude modré označení a popisek "druh 1" a
červené označení a popisek "druh 2".

14. Vykreslete osu x na které budou značky v bodech -5,-3, 3, 5, kde u 5 a -5 nebude
žádný popisek a u -3 a 3 bude napsáno x0-∆t a x0+∆t.

15. Vypište název grafu "Graf pro druhy" na řádek 0 horního okraje grafu

Manipulace s grafickými okny

• recordPlot () – umožňuje nahrát aktuální vykreslený graf jako objekt (např.
myplot<-recordPlot()), zpětně lze vykreslit pomocí replayPlot() nebo názvem
objektu. Tuto funkci nelze vždy využít mezi jednotlivými verzemi programu.

• windows (width=7,height=7,pointsize=12,record=getOption("gr aphics.recor
d"),rescale=c("R", "fit", "fixed"), xpinch, ypinch, bg= "transparent",
canvas="white",gamma=getOption("gamma"),xpos=NA,ypo s=NA,buffered=getOp

tion("windowsBuffered"),restoreConsole=F) – vykreslí grafické okno o určité
velikosti, využívá se pro přesné nastavení velikosti okna, písma atd., díky otevření více
oken lze kreslit najednou do více oken
width ,height – šířka a výška okna v palcích (závisí na nastavení xpinch a ypinch)
pointsize – velikost písma
rescale – při změně velikosti okna se mění i graf ("R"), graf se mění, ale je zachována proporce

("fit"), graf zůstává stejně velký jako původní ("fixed")
xpinch ,ypinch – počet bodů na palec (horizontálně a vertikálně)
bg ,canvas – barva pozadí a popředí grafického okna
xpos ,ypos – horizontální a vertikální pozice okna na obrazovce

windows(width=5,height=10,xpos=500,ypos=50)
plot.new()
windows(width=10,height=5,xpos=50,ypos=200)
plot.new()

• dev.cur () – číslo aktivního grafického okna

• dev.list () – seznam otevřených grafických oken

• dev.set (which = dev.next()) , dev.next (which = dev.cur()) , dev.prev (which

= dev.cur()) – přepnutí na určité grafické okno (which), následující okno nebo
přechozí okno

• dev.off (which = dev.cur()) , graphics.off () – vypíná určité grafické okno
(which , standardně dev.cur()), popř. všechna grafická okna

• plot.new () ,frame () – používá se ke konstrukci nového (prázdného) grafu, nebo
k přeskakování grafů v případě více grafů v jednom grafickém okně.

• plot.window (xlim,ylim,log="",asp=NA,…) – nastavuje extrémy na ose x a y
(limity – xlim , ylim , logaritmickou osu – log , asp – poměr stran), umožňuje vkreslit
do stávající grafické oblasti graf se sekundární osou y (popř. také x) s jiným měřítkem.

teplota<-c(25,20,14,18,21,27,30)#hodnoty teploty

 92

vlhkost<-c(1200,1500,1800,2000,1500,1300,1000)#hodn oty vlhkosti (jiný rozsah)
par(mar=c(4.1,4.1,0.1,4.1),las=1)#základní parametr y
plot(teplota,xaxt="n",xlab="m ěsíc",type="o",lty=2,col=2,lwd=2,col.axis=2)#graf
axis(1,at=1:7,labels=c("I","II","III","IV","V","VI" ,"VII"))#osa x
plot.window(xlim=c(1,7),ylim=c(900,2100))#zm ěna měřítka grafu
points(vlhkost,type="o",pch=4,col=4,lty=2,lwd=2)#vy kreslení hodnot vlhkosti
axis(4,at=seq(900,2100,100),col.axis=4) #druhá osa y
mtext("vlhkost",4,3,las=0)#popisek druhé osy y

15

20

25

30

měsíc

te
pl

ot
a

I II III IV V VI VII

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

vl
hk

os
t

#jestliže nastavujeme jednu osu shodn ě s p ředchozí, pak limit na této ose
#zjistíme pomocí parametru "usr" (viz par) nesmíme přitom zapomenout nastavit
#danou osu bez odsazení okraj ů, jinak se nám m ěřítko posune, viz násl. p říklad
#kde se osa x nem ění a m ění se jen osa y
plot(rnorm(40),rnorm(40))
plot.window(xlim=c(par("usr")[1],par("usr")[2]), yl im=c(5,9),xaxs="i")
abline(v=0) # čára by m ěla procházet p řesn ě nulou (bez nastavení xaxs je posunuta)

• split.screen (figs,screen,erase=T) – rozdělí okno na řádky a sloupce, do kterých
se pak vkreslují grafy (podobně mfrow, mf col u funkce par)
figs – dvouprvkový vektor (počet řádků, počet sloupců),
screen – které okno rozdělit
erase – logical, vymazat před rozdělením?

• screen (n, new=T) – vybrat okno n, new – vymazat okno před vykreslováním?

• erase.screen (n) – vymaže okno n

• close.screen (n,all.screens=F) – zavřít okno n, all.screens – všechna okna
plot.new()
split.screen(c(2,2))
[1] 1 2 3 4
screen(2); hist(rnorm(30),main=NULL)
screen(3); hist(rnorm(30),main=NULL)

 93

-2 -1 0 1 2 3

0
2

4
6

8

-2.0 -1.0 0.0 1.0

0
2

4
6

8
10

• identify (x,y,labels,pos=F,n,plot=T,offset,…) – interaktivní funkce, po
kliknutí do grafického okna určuje, kterým ze zadaných souřadnic (x , y) byl kurzor
nejblíže a vytiskne u nich popisky.
n – nastavuje počet kliknutí, která se budou zaznamenávat
labels – je-li zadáno vypisuje do grafu přímo názvy bodů (jinak jejich souřadnice)
plot – zda mají být vykresleny popisky
pos – kde mají být popisky bodů vykresleny

• locator (n =512,type="n",…) – určuje polohu grafického kurzoru při kliknutí do
grafického okna
n – nastavuje počet kliknutí, která se budou zaznamenávat
type – po kliknutí je možné vykreslovat body, linie a další typy grafů (viz plot)

plot(c(1:10))
identify(c(1:10),n=3) #postupn ě klikn ěte na 3 vykreslené body

par(mar=c(4,4,2,0.1),las=1)
plot(0,0,type="n",ann=F,xlim=c(-2,2),ylim=c(-2,2))
locator(n=10,type="p",pch=21,bg=4) #klikn ěte 10-krát do okna

• xinch (x = 1, warn.log=T) , yinch (y = 1, warn.log=T) , xyinch (xy = 1,

warn.log=T) – převádí číslo (nebo dvojici čísel) v palcích na skutečné rozměry
v grafu

• cm(x) – převádí palce na centimetry.

• layout (mat, widths, heights, respect=F) – vytvoří plán pro grafické okno, tzn.
rozdělí aktuální grafické okno na podokna, do kterých je možné zakreslovat grafy
postupně podle zadaného pořadí v matici mat , o šířkách sloupců a výškách řádků.
Funkce je nekompatibilní s screen a mfrow , mfcol
mat – matice udávající postupný
labels – je-li zadáno vypisuje do grafu přímo názvy bodů (jinak jejich souřadnice)
plot – zda mají být vykresleny popisky
widths , heights – vztaženo relativně (poměrově šířka1/šířka2 nebo poměr délka–šířka) nebo

absolutně (ve skutečných hodnotách pomocí lcm()).

• layout.show (n) – vykreslí n plánů
layout(matrix(c(4,2,1,3),2,2, byrow=T), width=c(5,2),height=c(1,1))
layout.show(4) #nastaví grafické okno v pom ěru 1:1 (výška), 5:3 (ší řka)
#layout(matrix(c(4,2,1,3),2,2, byrow=T), width=5/2, height=1) totéž
layout(matrix(c(4,2,1,3),2,2, byrow=T), width=c(5,2),height=c(1,1),respect=T)
layout.show(4) #shodný pom ěr x a y (obr vpravo)
layout(matrix(c(4,2,1,3),2,2, byrow=T), width=lcm(c (5,2)),height=lcm(c(1,1)))
layout.show(4) #nastaví p řesné rozm ěry v cm

 94

1

2

3

4

1

2

3

4

layout(matrix(c(1,1,0,2),2,2, byrow=T))#vynechá t řetí okno a 1. spojí
layout.show(2)

1

2

Práce s barvami

Při práci s barvami jsme dosud využívali pouze zadávání argumentu barvy číslem
1–8. R však využívá mnohem rozsáhlejší paletu barev. Argumenty typu col a bg lze
zadávat také jako název barvy (v angličtině), v tzv. RGB kódu (popř. HSV) nebo pomocí
čísel barev vybraných ze zvolené palety.
#příklady vysv ětlené dále u funkcí
par(mar=c(2.2,3,0,0),las=1)
plot(0.3,0.3,xlim=c(0,1),ylim=c(0,1),pch=16,cex=4,c ol="brown")
points(0.5,0.5,pch=16,cex=4,col="lightblue")
points(0.1,0.5,pch=16,cex=4,col=colors()[9])
points(0.6,0.6,pch=16,cex=4,col=rgb(0.1,0.3,0.2))
points(0.5,0.1,pch=16,cex=4,col=gray(0.3))
points(0.5,0.1,pch=16,cex=4,col="#FFD39B")#rrggbb v 16-kové soustav ě

• colors () – vypisuje vektor názvů dostupných barev. Tyto názvy lze použít přímo pro
nastavování barev.

colors()[1:15] #vypíše seznam nastavených názv ů barev (0-657)
 [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
 [5] "antiquewhite2" "antiquewhite3" "antiquewhite4 " "aquamarine"
 [9] "aquamarine1" "aquamarine2" "aquamarine3" "aquamarine4"
[13] "azure" "azure1" "azure2"

• palette (value) – vypisuje nebo nastavuje aktuální využívanou paletu barev
(nastavení pomocí vektoru value

• gray (value) – vytváří paletu odstínu šedé v intervalu 0 – 1, podle zadaného vektoru

• rainbow (n,s=1,v=1,start=0,end=max(1,n - 1)/n,gamma=1,alpha =1) – vytváří
paletu n barev (podle duhového spektra) v rozlišení n, nasycení (s), odstínu (v), s
gamma korekcí (gamma) a průhledností alpha (viz níže u hsv). Podobné funkce:

 95

heat.colors(n, alpha = 1)
terrain.colors(n, alpha = 1)
topo.colors(n, alpha = 1)
cm.colors(n, alpha = 1)

palette() #aktuální barevná paleta pro argument typ u col a bg
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"
[8] "gray"

par(mar=c(0.1,0.1,0.1,0.1))
#graf vlevo
palette(c("black","blue"))#nastavení palety na černou a modrou
pie(rep(1,10),col=1:10,lab=1:10)#graf opakuje pouze 2 nastavené barvy
#graf druhý zleva
palette(rainbow(10))
pie(rep(1,10),col=1:10,lab=1:10)
#graf t řetí zleva
palette(gray(seq(0.1,1,0.1)))
pie(rep(1,10),col=1:10,lab=seq(0.1,1,0.1))
#graf vpravo
palette("default")#nastavení palety zp ět na standardní
pie(rep(1,10),col=1:10,lab=1:10)#graf opakuje pouze 2 nastavené barvy
#alternativn ě lze první t ři grafy vykreslit beze zm ěny celé palety následovn ě
palette("default")
pie(rep(1,10),col=c(1,4),lab=1:10)#nebo col=c("blac k,"blue")
pie(rep(1,10),col=rainbow(10),lab=1:10)
pie(rep(1,10),col=gray(seq(0.1,1,0.1)),lab=seq(0.1, 1,0.1))

1

2

3

4

5

6

7
8

9

10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.8

0.9

1

1

2
3

4

5

6

7
8

9

10

pie(rep(1,10),col=heat.colors(10),lab=1:10)
pie(rep(1,10),col=topo.colors(10),lab=1:10)
pie(rep(1,10),col=terrain.colors(10),lab=1:10)
pie(rep(1,10),col=cm.colors(10),lab=1:10)

 96

1

2

3

4

5

6

7

8

9

10

1

2
3

4

5

6

7
8

9

10

1

2

3

4

5

6

7

8

9

10

1

2
3

4

5

6

7
8

9

10

• rgb (red,green,blue,alpha,names=NULL,maxColorValue=1) – namíchá barvu jako
kombinaci odstínů červené, zelené a modré (udávají se v rozsahu maxColorValue,
standardně 0-1) – vrací řetězec – číslo v 16-kové soustavě
alpha – průhlednost (0 = průhledná, 1 = neprůhledná)
names – názvy barev
maxColorValue – maximum, kterého nabývá základní barva (r-g-b)

rgb(0,1,1) #vrátí řet ězec – číslo barvy v 16-kové soustav ě
[1] "#00FFFF"
#míchání dvojic barev (r-g,r-b,g-b)
par(mar=c(2.2,3,0,0),las=1)
plot(0,0,xlim=c(0,0.6),ylim=c(0,1),type="n",xaxt="n ")
mseq<-seq(0,1,0.002)
segments(0,mseq,0.2,mseq,col=rgb(mseq,0,0))
segments(0.2,mseq,0.4,mseq,col=rgb(0,mseq,0))
segments(0.4,mseq,0.6,mseq,col=rgb(0,0,mseq))
axis(1,at=c(0.1,0.3,0.5),labels=c("red","green","bl ue"))
plot(0,0,xlim=c(0,1),ylim=c(0,1),type="n",xaxt="n")
segments(0,mseq,1,mseq,col=rgb(mseq,mseq,mseq))

0.0

0.2

0.4

0.6

0.8

1.0

0

red green blue

0.0

0.2

0.4

0.6

0.8

1.0

0

#míchání dvojic barev (r-g,r-b,g-b)
plot(0,0,xlim=c(0,1),ylim=c(0,1),type="n")
xcol<-rep(mseq,each=51)
ycol<-rep(mseq,51)
points(xcol,ycol,col=rgb(xcol,ycol,0),pch=15)
points(xcol,ycol,col=rgb(xcol,0,ycol),pch=15)
points(xcol,ycol,col=rgb(0,xcol,ycol),pch=15)

 97

 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
0

 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

• col2rgb () – vrací rozbor barvy do jednotlivých základních barev RGB
mycol<-col2rgb(colors()[1:4])
colnames(mycol)<-colors()[1:4]
mycol
 white aliceblue antiquewhite antiquewhite1
red 255 240 250 255
green 255 248 235 239
blue 255 255 215 219

• hsv (h=1,s=1,v=1,gamma=1,alpha) – namíchá barvu podle barvy (hue, h), sytosti
(saturation, s) a odstínu (value, v), dále lze barvy měnit pomocí gamma korekce
(gamma) a průhlednosti (alpha), hodnoty se zadávají v rozsahu 0 – 1. Vrací řetězec –
číslo v 16-kové soustavě
alpha – průhlednost (0 = průhledná, 1 = neprůhledná)
names – názvy barev
maxColorValue – maximum, kterého nabývá základní barva (r-g-b)

#vykreslí graf znázor ňující možnost nastavení barvy pomocí hsv
par(mar=c(3.1,3.7,0.1,0.1))
mtb<-data.frame(h=rep(0:10,each=121),s=rep(rep(0:10 ,each=11),11),v=rep(0:10,121))
plot(0,0,xlim=c(0,110),ylim=c(0,10),type="n",axes=F ,ann=F)
points(x=mtb$s*10+mtb$v,y=mtb$h,pch=15,col=hsv(h=mt b$h/10,s=mtb$s/10,v=mtb$v/10),
cex=2)
axis(2,at=0:10,labels=paste("h =",0:10/10),las=1,ce x.axis=0.8)
axis(1,at=seq(0,100,10),labels=paste("s= ",0:10/10, "\n","v = 0-1"),cex.axis=0.8)

h = 0

h = 0.1

h = 0.2

h = 0.3

h = 0.4

h = 0.5

h = 0.6

h = 0.7

h = 0.8

h = 0.9

h = 1

s= 0
 v = 0-1

s= 0.1
 v = 0-1

s= 0.2
 v = 0-1

s= 0.3
 v = 0-1

s= 0.4
 v = 0-1

s= 0.5
 v = 0-1

s= 0.6
 v = 0-1

s= 0.7
 v = 0-1

s= 0.8
 v = 0-1

s= 0.9
 v = 0-1

s= 1
 v = 0-1

• rgb2hsv (r,g=NULL,b=NULL,gamma=1,maxColorValue=255) – převede RGB barvu
(zadanou jako řetězec nebo jako r,g,b) do systému HSV.

• colorRamp (colors,bias=1,space=c("rgb","Lab"),interpolate=c(" linear",

"spline")) – interpoluje barevnou paletu z vektoru zadaných barev, vhodné pro
výpočet barevných přechodů, vrací RGB kód barvy
colors – vektor barev mezi kterými se mají vytvořit přechody
bias – nahloučení barev směrem k "horní barvě" (0–1)
space – v jakém systému se vytvářejí barvy
interpolate – možnost lineární nebo spline interpolace

#funkce vytvo ří 501 barev mezi bílou žlutou a červenou
par(mar=c(2.2,3,0,0),las=1)

 98

mseq<-seq(0,1,0.02)
plot(0,0,xlim=c(0,1),ylim=c(0,1),type="n",xaxt="n")
abline(h=seq(0,1,0.002),col=colorRampPalette(c("whi te","yellow","red"))(501))

0.0

0.2

0.4

0.6

0.8

1.0

0

colorRampPalette(c("white","red"))(10)
[1] "#FFFFFF" "#FFE2E2" "#FFC6C6" "#FFAAAA" "#FF8D8 D" "#FF7171" "#FF5555"
[8] "#FF3838" "#FF1C1C" "#FF0000"

Speciální typy grafů

• pairs (formula,data,…,subset,na.action) nebo pairs (x,labels,panel,…,
lower.panel,upper.panel,diag.panel,text.panel,label .pos,cex.labels,

font.labels,row1attop=T,gap) – vytvoří matici xy grafů kde hodnoty x a y
postupně tvoří všechny sloupce dané tabulky (table, array, matice,vektory). Data jsou
zadávána buď pomocí vzorce (formula) nebo přímo jako tabulka dat (data frame). Graf
je velice dobře využitelný při základní analýze závislosti několika proměnných (např.
při mnohorozměrných metodách). Graf vykresluje také proměnnou typu factor, kde
jednotlivé hodnoty jsou postupně zobrazovány jako přirozená čísla (1, 2, 3). Funkce má
několik užitečných argumentů (panel, lower.panel, ...), které umožňují dokreslovat
speciální křivky nebo další grafy přímo do jednotlivých panelů (včetně diagonálních).
subset – z tabulky data je možné vybrat podmnožnu podle zadaného kritéria
na.action – jak pracovat s NA hodnotami na.omit , na.fail , na.exclude , na.pass
row1attop – mají grafy x~x začít první řádkem diagonály, nebo diagonála začíná dole.
gap – velikost mezery mezi panely.
panel, lower .panel,upper.panel,diag.panel,text.panel – funkce, které se provedou

při vykreslování jednotlivých panelů
label.pos – pozice textu v diagonálním panelu.
cex.labels – velikost textu v diagonálním panelu.
font.labels – font textu v diagonálním panelu (viz font pro par).

#studujeme závislost množství taninu v jednotlivých částech list ů
použitá data jsou vytvo řena jako náhodná čísla z normálního rozd ělení
apex<-10+rnorm(100,1,1);center<-apex*1.2+rnorm(100, 1,1);edge<-0.8*apex+rnorm(y)
x<-data.frame(apex,center,edge)#tabulka z vygenerov aných dat
pairs(x,data=x,oma=c(1.2,1.2,1,1.7),row1attop=F)
pairs(x,oma=c(1.2,1.2,1,1.7),panel=panel.smooth,lab el.pos=0.8)#k řivka smooth

 99

9 10 11 12 13 6 8 10 12

7
8
9
10
11
12
13

edge

11
12
13
14
15
16
17
18

center

apex

12 14 16 18
9

10

11

12

13

apex

12 14 16 18

9

10

11

12

13

11
12
13
14
15
16
17
18

center

9 10 11 12 13 6 8 10 12

7
8
9
10
11
12
13

edge

pairs(x,oma=c(1.2,1.2,1,1.7),panel=function(x,y){po ints(x,y);abline(lm(y~x),col=2
)}) #použití funkce pro vykreslení regresních p římek závislosti xy

apex

12 14 16 18

9

10

11

12

13

11
12
13
14
15
16
17
18

center

9 10 11 12 13 6 8 10 12

7
8
9
10
11
12
13

edge

• persp (x,y,z,xlim,ylim,zlim,xlab,ylab,zlab,main,sub,theta ,phi,r,d,scale
=T,expand,col,border,ltheta,lphi,shade,box=T,axes=T ,nticks,ticktype,…)
– 3D povrchový graf, hodnoty x a y jsou řazeny vzestupně a jejich počet je shodný s
počtem řádků a sloupců matice pro koordináty z. Další trojrozměrné grafy lze nalézt v
doplňkových knihovnách (např. misc3d, lattice, scatterplot3d)
xlim,ylim,zlim – interval vykreslování hodnot na ose x, y a z.
main,sub,col,border,box,axes – podobné jako u ostatních grafů.
theta, phi – horizontální a vertikální úhel pootočení grafu.
r – vzdálenost oka od středu grafu, ovlivňuje úhly horní a dolní plochy)
d – účinnost efektu perspektivy.
scale – v případě rozdílného rozsahu os přepočítá nebo ponechá osy v původní proporci.
expand – zvětší nebo zmenší poměr osy z k ostatním osám.
shade, ltheta,lshade – stínování (0-1) a nastavení úhlu stínování grafu.
box, axes – vypnutí celého ohraničení grafu a os.
ticktype,nticks – typ os ("simple" a "detailed") a přibližní počet značek na osách.

x1<-1:31;x2<-1:31;x3<-matrix(0,31,31)#nastavení sou řadnic x,y,z
x3[15:17,]<-rep(c(1:16,15:1),each=3)
x3[,15:17]<-c(1:16,15:1) #vytvo ření prostorového objektu
par(mar=c(1,2,0.2,0.2))
persp(x1,x2,x3,col=8) #vykreslení objektu bez rotac e verikální a horizontální
persp(x1,x2,x3,zlim=c(0,20),theta=30,col=8,ticktype ="detailed")#podél vertikály
persp(x1,x2,x3,zlim=c(0,20),phi=90,col=8)#rotace po dél horizontály

 100

x1

x2

x3

x1

5 10
15

20
25

30

x2

5
10

15
20
25
30

x3

0

5

10

15

20

x1

x2

x3

persp(x1,x2,x3,th=30,col=8,shade=0.5,expand=0.5)#st ínování a expanze z
persp(x1,x2,x3,th=30,col=8,shade=0.5,border=NA) #vy pnutí m řížky
persp(x1,x2,x3,th=30,col=1:3,shade=0.5,box=F,border =NA) #vypnutí os

x1

x2

x3

x1
x2

x3

• dotchart (x,labels=NULL,groups=NULL,gdata=NULL,cex,pch=21,gp ch=21,bg,

color,gcolor,lcolor,xlim,main=NULL,xlab=NULL,ylab=N ULL,…) – Clevelandův
bodový graf, vynáší každou hodnoty na osu x a pořadí hodnoty na osu y. Využíván je
zejména pro základní exploratorní analýzu dat.
labels – označuje popisky na ose y
groups – faktor označující skupiny podle kterých se vykreslí více grafů
gdata – hodnota zobrazující se na speciální lince nad grafem (obvykle medián nebo průměr)
lcolor – barva horiz. linek
gcolor, gpch – barvy a typy bodů pro skupiny dat

x<-rnorm(30)
round(x,2)
 [1] 1.29 0.72 -0.85 1.13 -1.63 -0.57 -0.17 0.3 0 -1.01 0.13 -0.81 0.29
[13] -1.69 2.05 0.26 -0.75 -0.72 1.87 0.10 1.8 4 -1.13 0.78 1.07 -0.16
[25] -0.08 0.42 -1.05 1.51 1.58 1.28
dotchart(x)#vlevo vynáší náhodná čísla z norm. rozd ělení
dotchart(x,labels=1:30)#uprost řed p řidána osa y (po řadí hodnoty x)
dotchart(sort(x),labels=1:30)#vpravo data se řazena

-1 0 1 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

-1 0 1 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

-1 0 1 2
x<-rpois(30,3)
dotchart(x,pch=15,col=3)#vlevo
dotchart(sort(x),pch=21,bg=8)#vpravo

 101

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

#data lze rozd ělit do samostatných skupin (nejlépe podle faktoru) (graf vlevo)
x<-data.frame(gr=rep(1:3,each=20),hod=c(rpois(20,2) ,rpois(20,3),rpois(20,4)))
dotchart(x$hod,groups=factor(x$gr),col=x$gr,pch=14+ x$gr)
#u skupin lze po čítat ur čité charakteristiky a umístit je na spec. osu (vpra vo)
dotchart(x$hod,groups=factor(x$gr),gdata=tapply(x$h od,x$gr,mean),gcol=1:3,gpch=17
)

1

2

3

0 1 2 3 4 5 6 7

1

2

3

0 1 2 3 4 5 6 7

• qqnorm (y,ylim,main="Normal Q-Q Plot",xlab="Theoretical Q uantiles",
ylab="Sample Quantiles",plot.it=T,datax=F,...), qqline (y,...), qqplot

(x,y,plot.it=T,xlab,ylab, ...) – graficky porovná kvantily variační řady y s
teoretickými kvantily normálního rozdělelní (qqnorm), popř. přidá přímku
očekávaného tvaru grafu v případě normality dat (qqline) nebo porovná kvantily dvou
variačních řad. Grafy jsou využívány právě při ověřování normality dat.
plot.it – logická, mají být výsledky vykresleny nebo vypsány v tabulce?
plotx – prohození osy x a y (teoretické kvantily na ose x datax=TRUE)

x<-rnorm(100)#100 náhodných čísel z normovaného normálního rozd ělení
qqnorm(x)#základní graf
qqline(x) #p římka ozna čuje teoretické rozmíst ění dat v p řípad ě normality

-2 -1 0 1 2

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

-2 -1 0 1 2

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

 102

• sunflowerplot (x,y,number,log,digits,add=F,rotate=F,pch,cex,cex.f act,

size,seg.col,seg.lwd,…) – jedná se o xy-bodový graf (slunečnicový), ve kterém se
překrývající body zobrazují s „okvětními“ lístky podle počtu hodnot v daném bodě
number – počet opakování v daném bodě lze zadat také pomocí tohoto argumentu
digits – jestliže jsou body blízko sebe, na kolik desetinných míst je možné považovat shodu
rotate – logical, náhodné rotování okvětních lístků (aby se zabránilo překryvům)
size, seg.col, seg.lwd – délka, barva a tloušťka "okvětních lístků"

x<-rpois(100,4)
y<-rpois(100,4)
par(mar=c(4.1,4.1,0.1,0.1),las=1)
sunflowerplot(x,y)#graf, kde sou řadnice jsou náhodná čísla z Poiss. rozd ělení
sunflowerplot(x,y,size=0.07,seg.lwd=2,seg.col=4)#gr af uprost řed
nastavení opakování p římo pomocí number
sunflowerplot(x=2:6,number=2:6,xlim=c(0,7),ylim=c(0 ,7),ylab="osa y")

0 2 4 6 8 10

0

2

4

6

8

10

x

y

0 2 4 6 8 10

0

2

4

6

8

10

x

y

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Index

os
a

y

print(sunflowerplot(x,y))#numerický výstup z grafu ($number – četnosti v bod ě)
$x
 [1] 0 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 7
[39] 7 7 7 7 7 8 8 8 8 9

$y
 [1] 3 2 4 5 6 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 0 2 3 4 5 6 8 0 1 2 3 4 5 6 3 5 6 1
[39] 2 3 4 5 6 2 3 5 6 5

$number
 [1] 1 3 1 1 1 1 2 2 2 1 3 2 2 1 4 4 6 2 3 2 2 3 3 2 6 1 2 1 1 1 2 5 2 5 3 3 1 1
[39] 1 2 1 1 2 1 1 1 1 1

• fourfoldplot (x,color,conf.level=0.95,std,margin=c(1,2),space=0. 2,main=

NULL,mfrow=NULL,mfcol=NULL) – vytvoří „čtyřlístkový graf“. Používá se ke
znázornění vztahů v čtyřpolní tabulce, přičemž konfidenční intervaly určují, zda jsou
rozdíly významné.
x – data ve formě matice nebo pole (popisky grafu vychází z popisu dimenzí pole nebo matice).
color – barevné rozlišení vektorem c(b1,b2), standardně c("#99CCFF", "#6699CC")
conf.level – vykreslí konfidenční interval pro danou kombinaci faktorů
std – standardizace dat ("margins", "ind.max", "all.max", popř. první písmeno) – zda

bude tabulka vyvářená po úhlopříčkách nebo zda každý z kvadrantů bude vyjadřovat četnosti
margins – určuje, zda bude graf standardizován podle sloupců (2), řádků (1) nebo obojí (c(1,2)), má

význam jen když je std = "m"
space – velikost písma
mfrow ,mfcol – vektor rozdělení grafické plochy na rows x columns a vykreslení více grafů najednou

na 56 lokalitách byla sledována p řítomnost dvou druh ů, podle toho byla
vytvo řena tabulka závislosti druh ů na sob ě
x<-array(c(27,15,4,10),dim=c(2,2),dimnames=list(dr1 =c("+","-"),dr2=c("+","-")))
fourfoldplot(x)
fourfoldplot(x,std="i",color=c("green","blue"))

 103

dr1: +
dr

2:
 +

dr1: -
dr

2:
 -

27

15

4

10

dr1: +

dr
2:

 +

dr1: -

dr
2:

 -

27

15

4

10

• mosaicplot (x,main,sub,xlab,ylab,sort,off,dir,color=F,shade=F, margin,

cex.axis,las,type,…) nebo mosaicplot (formula,data,subset, na.action) –
vytvoří graf s obdélníky o stranách podle velikosti vzorku v jednotlivých skupinách.
Využívá se pro názorné zobrazení vztahů v kontingenčních tabulkách.
off – vektor relativních velikostí mezer mezi obdélníky (dle počtu dimenzí)
dir – vektor směru vynášení ("v" – vertikální, "h" – horizontální)
color – vektor barev nebo logická hodnota, zda mají být použity barvy pro jednotlivé obdélníky
shade – vektor barev intervalů pro odlišení barvami nebo logická hodnota, zda má být stínováno
type – typ residuálů, které se mají zobrazit při barevném rozlišení
margin – seznam vektorů s okrajovými součty pro loglineární model (viz loglin)
sort – vektor permutací řazení jednotlivých proměnných (permutace 1:počet dimenzí)

myt<-
array(c(75,3,10,25,10,30,15,10,28),dim=c(3,3),dimna mes=list("pùda"=c("písek",
 "jíl","hlína"),druh=c("Ur","Ta","Fr")))#pol e – kontingen ční tabulka
myt #tabulka závislosti typu p ůdy na výskytu rostliny
 druh
půda Ur Ta Fr
 písek 75 25 15
 jíl 3 10 10
 hlína 10 30 28

mosaicplot(myt,main=NULL,shade=F,las=1)
mosaicplot(myt,main=NULL,shade=T,las=1,off=c(10,0)) #mezery a barvy
mosaicplot(myt,main=NULL,shade=T,las=1,off=c(10,0), dir=c("h","v"))

půda

dr
u

h

písek jíl hlína

Ur

Ta

Fr

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<-

4
-4

:-
2

-2
:0

0:
2

2:
4

>4

půda

dr
u

h

písek jíl hlína

Ur

Ta

Fr

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<-

4
-4

:-
2

-2
:0

0:
2

2:
4

>4

druh

pů
da

písek

jíl

hlína

Ur Ta Fr

#jiný typ dat pro na čtení
 color sex
1 zel male
2 cer male
3 mod female
4 mod female
5 mod male
6 cer female
7 cer male
8 cer male
9 cer male
10 cer male
11 cer male
12 cer female
13 cer female color

se
x

cer mod zel

fe
m

al
e

m
al

e

 104

14 zel male
15 zel male
16 zel male
17 zel male
18 zel female
19 zel female
20 zel female
21 zel female
22 zel male
23 cer male
24 cer male
25 cer female

mosaicplot(~color+sex,data=x,main=NULL)#výpis stylu formula

• assocplot (x, col, space, main, xlab, ylab) – graficky zobrazuje vztahy mezi
očekávanou hodnotou a skutečnou hodnotou v kontingenčních tabulkách. V případě, že
je hodnota vyšší než očekávaná, pak zakreslí obdélník černě, v opačném případě
červeně, barvy lze nastavit jako dvouprvkový vektor v col ,
space – prostor mezi jednotlivými složkami

ke t řem kmenům bakterie E. coli (Bt1, Bt2, Bt3) byly p řidávány t ři druhy
antibiotika (pro každou kombinaci 30 opakování) a ur čeno na kolika plotnách
kmeny zanikly.
myt<-as.table(array(c(25,16,12,16,29,6,20,20,10),c(3,3),
 list(kmen=c("Bt1","Bt2","Bt3"),typ=c("A1","A2" ,"A3"))))
myt #trida objektu tabulka, vytvo řena z 2-dimenzionálniho pole (array)
 typ
kmen A1 A2 A3
 Bt1 25 16 20
 Bt2 16 29 20
 Bt3 12 6 10
par(mar=c(4.1,4.1,0.1,0.1),las=1)
assocplot(myt)
assocplot(myt,space=0.1,col=gray(c(0.4,0.7)))

Bt1 Bt2 Bt3

A3

A2

A1

kmen

ty
p

Bt1 Bt2 Bt3

A3

A2

A1

kmen

ty
p

• stars (x,full=T,scale=T,radius=T,labels,locations,nrow,nc ol,len,key.loc
,
key.labels,key.xpd=T,xlim,ylim,flip.labels,draw.seg ments=F,col.segment
s, col.stars,axes=F,frame.plot,main,sub,xlab,ylab,c ex,lwd,lty,xpd,mar,

add=F,plot=T,…) – vytvoří kruhový (hvězdicový diagram), kde každý řádek je jeden
graf a každý sloupec jeden úsek kruhu
full – jestliže je T, pak se jedná o kruhový graf, F – půlkruhový
scale – T – všechny hodnoty jsou vztaženy relativně ve sloupci podle minimální=0 a maximální=1

hodnoty (u příkladu je proto vypnuto, protože jsou jen dva řádky, tedy jen 0 nebo 1), v případě
nastavení F je relativní výpočet vztažen k řádku

radius – jsou vykreslovány výseče grafu, jestliže ne, pak jen obrysy
labels – popisy jednotlivých grafů (v příkladu je to d1 a d2)

 105

locations – umístění grafů v prostoru (matice, kde v řádcích jsou souřadnice x a y)
nrow , ncol – počet řádků a počet sloupců grafů
len – škálovací faktor, poměrná (délka výseků) např. 2 – 2x zvětšeno
key.loc – lokace klíče s vysvětlením hodnot jednotlivých úseků
key.labels – označení názvů jednotlivých úseků (cípů)
key.xpd – stejné jako xpd v par (přichycení klíče)
xlim ,ylim – extrémy oxy x a y
flip.labels – uchycení názvů grafu (není podrobně vysvětleno)
draw.segmets – vykreslení segmentů a ne hvězdic
col.segments – barvy jednotlivých segmentů
col.stars – barvy jednotlivých hvězdic

Výskyt dvou druhů během 24 hodin umístíme do objektu myt
 2 4 6 8 10 12 14 16 18 20 22 24
d1 1 1 2 3 4 5 14 24 15 7 8 2
d2 12 2 3 5 12 10 1 2 3 5 10 24
stars(myt,full=T,locations=matrix(c(1,1,1,20),2,2), scale=F,axes=T,xlim=c(-
20,30),ylim=c(-10,30),key.loc=c(15,0),labels=NULL)
text(c(-15,10),c(30,-10),c("d2","d1"))

stars(myt,full=T,locations=matrix(c(1,1,1,20),2,2), scale=F,draw.segments=T,axes=T
,xlim=c(-20,30),ylim=c(-10,30),key.loc=c(15,0),labe ls=NULL)
text(c(-15,10),c(30,-10),c("d2","d1"))
NULL

-20 -10 0 10 20 30

-1
0

0
10

20
30

24
681012141618202224

d2

d1

 -20 -10 0 10 20 30

-1
0

0
10

20
30

24
681012141618 202224

d2

d1

• coplot (formula, data, given.values, panel, rows, columns,
show.given=T, col, pch, bar.bg, xlab, ylab, subscri pts=F, axlabels,

number, overlap, xlim, ylim, ...) – vytváří xy graf závislosti dvou
proměnných rozdělených podle určité úrovně (vyjádřeno rovnicí)
formula – vzorec závislosti (např. „y ~ x | a“ závislost y na x rozděleno podle a, lze přidat a*b takže

závislost na dvou proměnných), podle množství úrovní jednotlivých faktorů se pak vytvoří daný
počet grafů závislostí

data – která tabulka dat byla použita
given.values – seznam nebo hodnota faktoru, podle kterého se budou data dělit
panel – funkce (x,y,pch,col),která má být použita v každém grafu např. points, lines, panel.smooth

apod.
rows ,columns – počet jednotlivých řádků a sloupců pro výsledné grafy
show.given – logická hodnota nebo vektor, zda se mají zobrazovat okrajové grafy
bar.bg – numerický vektor barev pro jednotlivé sloupce v okrajových grafech
xlab, ylab – názvy jednotlivých os grafů (hodnota nebo dvousložkový vektor)
subscripts – logická hodnota, T – do funkce panel se přidá argument subscripts zadávající

podmínky pro data odpovídající panelu grafu
axlabels – funkce vytvářející značky na ose x nebo y, když se jedná o faktory

 106

number – počet kategorií v případě, že jedna z proměnných podle kterých se data člení není faktor (v
případě, že obě nejsou, pak dvouprvkový vektor)

overlap – překryv jednotlivých kategorií proměnných (0 ≤ overlap < 1)
xlim ,ylim – rozsah hodnot na ose x a y

Příklad: je dána tabulka s hodnotami měření množství taninů v listu a stupněm predace na listech (v tomto
případě byly hodnoty generovány náhodně), výzkumy probíhaly vždy na třech lokacích na listu (center, edge,
apex), zkoumáme, zda existují na jednotlivých lokacích závislosti.
myt<-data.frame(lokace=rep(c("center","edge","apex"),10),tanin=abs(rnorm(30)),
pred=rpois(30,10))
coplot(tanin ~ pred | lokace, data = myt,rows=1,xla b=c("predace","lokace"))

4 6 8 10 12 14 16

0.
5

1.
0

1.
5

2.
0

2.
5

4 6 8 10 12 14 16

4 6 8 10 12 14 16

predace

ta
ni

n

apex

center

edge

lokace

myt<-cbind(myt,druh=rep(c("acc","acp","cab","san"," qur"),6)) #pridame druhy
coplot(tanin ~ pred|lokace*druh, xlab=c("predace"," "),ylab=c("tanin",""),
data=myt)

0.
5

1.
5

2.
5

4 6 8 10 12 14 16

0.
5

1.
5

2.
50.

5
1.

5
2.

5 0.
5

1.
5

2.
5

4 6 8 10 12 14 16

0.
5

1.
5

2.
5

4 6 8 10 12 14 16

predace

ta
ni

n

apex
center

edge

ac
c

ac
p

ca
b

qu
r

sa
n

 107

• image (x,y,z) – graf vytvářející speciální obdélníkové oblasti různé barvy podle
matice z, x a y jsou vektory nastavující středy obdélníků na ose x a y. Podobně fungují
grafy contour a filled.contour , které mají podobné zadání dat.

par(mar=c(4.1,4,0.1,0.1))
#zobrazí matici 100 náhodných čísel z normálního rozd ělení, rozd ělených do
#10 řádk ů a 10 sloupc ů
image(1:10,1:10,matrix(rnorm(100),10,10))
stejné, ale 100 náhodných čísel z rovnom ěrného rozd ělení od -1 do +1
#kladná čísla zelená, záporná červená (viz col a breaks)
x<-matrix(runif(100,-1,1),10,10)
image(1:10,1:10,x, col=2:3,breaks=c(-1,0,1),xlab="x ",ylab="y")
x<-matrix(runif(100,-1,1),10,10)
image(1:10,1:10,x, col=2:3,breaks=c(-1,0,1),xlab="x ",ylab="y")

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

x

y

na čteme následující data do prom ěnné x1
0 0 0 0 0 0 0 0 0 0 0 1 1 4 4 4 3 2 1 0 0 2 1 4 4 4 2 1 0 1 0 3 3 4 3 2 1 1 1 2 0
1 2 3 3 2 1 2 4 3 0 0 1 0 2 3 3 4 4 5 0 0 1 1 3 3 4 4 5 5 0 0 1 1 2 2 3 3 4 4 0 0
1 1 1 1 2 2 3 2 0 0 0 0 0 0 0 0 0 0
x<-matrix(x1,10,10) # tvorba matice z na čtených dat
x #matice jejíž řádky budou na ose x, sloupce na ose y
 col1 col2 col3 col4 col5 col6 col7 col8 col9 col10
 [1,] 0 0 0 0 0 0 0 0 0 0
 [2,] 0 1 2 3 1 0 0 0 0 0
 [3,] 0 1 1 3 2 1 1 1 1 0
 [4,] 0 4 4 4 3 0 1 1 1 0
 [5,] 0 4 4 3 3 2 3 2 1 0
 [6,] 0 4 4 2 2 3 3 2 1 0
 [7,] 0 3 2 1 1 3 4 3 2 0
 [8,] 0 2 1 1 2 4 4 3 2 0
 [9,] 0 1 0 1 4 4 5 4 3 0
[10,] 0 0 1 2 3 5 5 4 2 0
filled.contour(1:10,1:10,x, xlab="x",ylab="y")
contour(1:10,1:10,x,nlevels=3, xlab="x",ylab="y")

0

1

2

3

4

5

2 4 6 8 10

2

4

6

8

10

x

y

x

y

2 4 6 8 10

2
4

6
8

10

 108

Kontrolní úkoly
16. Vzhledem k tomu, že se další části týkaly specializovaných problémů, je spíše na

každém čtenáři, jak tyto záležitosti využije. Doporučuji vám projít si všechny funkce a
sami si vyzkoušet jestli je dokážete nastavit a použít. Použijte příklady uváděné ke
každé funkci a měňte argumenty tak, abyste pochopili jejich význam. To, že zde nejsou
uvedeny konkrétní úkoly neznamená, že funkce nebudeme využívat v běžných
statistických postupech. Z grafů se zaměřte zejména na pairs, persp, dotchart,
sunflowerplot, fourfoldplot, mosaicplot a image.

Shrnutí:
Metody low-lewel grafiky spočívají v tom, že graf skládáme z jednotlivých prvků. Mezi
nastavitelné části grafu patří vlastní grafické okno, jednotlivé řady zobrazených dat, obrys
grafického okna (box), názvy grafu (text), osy grafu, značky na osách atd. Do grafu
můžeme ještě dále doplňovat různé symboly (včetně matematických vzorců), text, křivky,
čáry a grafické objekty (obdélníky, mnohoúhelníky atd.) Pro podrobnější exploratorní
analýzu dat a konkrétní statistické testy (např. χ2-test) jsou v R implementovány další
speciální grafy jako párový, čtyřlístkový, slunečnicový, hvězdicový aj.

Metody k zapamatování:
• Grafické prvky: points, lines, segments, curve, rect, polygon, arrows, abline, text,

mtext, symbols, rug.
• Části grafu. axis, title, grid, legend.
• Grafický zápis matematických vzorců: expression(...).
• Manipulace s grafickými okny: recordPlot, windows, dev.cur, dev.set, dev.off,

plot.new, frame, plot.window, split.screen, screen, erase.screen, close screen, identify,
locator, xinch, cm, layout, layout.show.

• Práce s barvami: colors, palette, gray, rainbow, hsv, rgb, col2rgb, rgb2hsv, colorRamp.
• Speciální typy grafů: pairs, persp, dotchart, qqnorm, qqplot, qqline, sunflowerplot,

fourfoldplot, mosaicplot, assocplot, stairs, coplot, image, contour, filled.contour.

Výsledky
1. par(mar=c(4,4,1,1),las=1); plot(0,0,type="n",xlab=" ",ylab="",xlim=c(0,10),ylim=c(0,10))
2. points(x=1:3,y=c(3,8,1),cex=1:3,pch=0,col=2:4)
3. lines(x=1:3,y=c(3,8,1),lty=2,col=2,lwd=2)
4. curve(sin(x)+5,0,10,col=2,add=T); curve(sin(x+11)+5 ,0,10,col=4,add=T)
5. arrows(0,0,1,1)
6. vec3<-c(5,4,7,8,3,1,2); points(4:10,vec3); arrows(4 :10,vec3+1,4:10,vec3-

1,code=3,length=0.1,angle=90)
7. abline(10,-3); abline(v=3:4,col=7); abline(h=10,col=8,lty=2)
8. text(4:10,vec3,labels=letters[1:7],pos=2,offset=0.5)
9. mtext(text="osa x", side=1,at=7,line=2,col=2); m ěňte argument line od 0 do 3 a

zjistíte, že první řádek je ozna čen jako 0.
10. par(mar=c(4,4,1,1),las=1); plot(0,0,axes=F,type="n" ,xlab="",ylab="",xlim=c(-

5,5),ylim=c(0,8))
11. grid(col=8)
12. axis(side=2,pos=0)
13. axis(side=1,at=c(-5,-3,3,5),labels=c("",expression(x[0]-Delta*t),

expression(x[0]+Delta*t), ""), pos=0)
14. title(main="Graf pro druhy", line=0)

 109

REJSTŘÍK
- .. 31
! .. 30
!=.. 30
... 10
$... 42
%%..................................... 31
%*%................................... 48
%/%.................................... 31
%in%.................................. 31
& .. 30
()... 10
* ... 31
/ .. 31
: .. 19
; .. 10
?.. 11
[.. 40
^.. 31
{}.. 10
|... 30
+ ... 31
< ... 30
<-.................................. 14, 15
<=....................................... 30
==....................................... 30
> ... 30
>=....................................... 30
abline.................................. 85
abs 32
acos 33
acosh 33
aggregate 58
all 30
any...................................... 30
append................................ 42
apply................................... 55
args............................... 10, 53
array 21
arrows................................. 85
as .. 25
asin 33
asinh 33
assign 15
assocplot........................... 104
atan..................................... 33
atanh................................... 33
attach.................................. 28
attr 27
attributes............................. 26
axis 88
barplot 71
base 7
boxplot 72
by 57, 58
c.. 18
casefold 51

cbind................................... 42
ceiling................................. 33
citation.................................. 8
class.................................... 16
close.screen 92
cm....................................... 93
col2rgb 97
colMeans 54
colnames............................. 48
colorRamp.......................... 97
colSums.............................. 54
comment............................. 26
contour 107
contributors 6
coplot................................ 105
cos 33
cosh 33
curve................................... 83
data..................................... 27
data.frame........................... 23
datasets 7
demo................................... 27
det....................................... 48
detach 28
dev.cur................................ 91
dev.list 91
dev.next 91
dev.off 91
dev.prev.............................. 91
dev.set 91
diag..................................... 48
dim 45
dimnames 45
dotchart............................. 100
duplicated 44
edit...................................... 38
erase.screen 92
exp...................................... 32
expression........................... 90
factor 23, 50
factorial 33
filled.contour 107
fix 38
floor.................................... 33
formals 53
fourfoldplot 102
frame 91
function 52
graphics 7
graphics.off......................... 91
gray..................................... 94
grDevices 7
grid 7, 89
help..................................... 11
help.search.......................... 12
help.start 11

hist77
historie příkazů9
hsv97
chartr...................................51
choose.................................33
identify93
image107
Inf18
intersect31
is ...25
lapply..................................56
layout93
layout.show.........................93
legend89
length..................................43
letters32
LETTERS...........................32
levels...................................50
library28
lines82
list22
locator.................................93
log.......................................32
log10...................................32
logb.....................................32
ls ...26
mapply................................56
matplot................................79
matrix20
mode16
month.abb...........................32
month.name32
mosaicplot103
mtext...................................86
NA18
names..................................49
NaN18
ncol45
nchar51
noquote51
nrow....................................45
NULL18
objects.................................26
objekt

array.........................15, 21
complex15
data.frame15, 23
date15, 17
double15
expression15
factor........................15, 23
formula15, 18
function..........................15
character.........................17
integer15
list15

 110

listopad22
logical15, 17
matrix.......................15, 20
numeric15, 17
vector15, 18

order44
Packages7
pairs98
palette94
par.......................................67
paste....................................51
persp99
pi...32
pie.......................................76
plot......................................63
plot.new..............................91
plot.window........................91
points82
polygon...............................84
prod32
q()10
qqline................................101
qqnorm101
qqplot................................101
R console7
R Editor8
R Graphics............................8
R Information8
rainbow...............................94
rank.....................................43
rbind42
read.table37
recordPlot91
rect......................................84
rep.......................................19

replace44
rev.......................................43
rgb.......................................96
rgb2hsv97
rm..26
rnorm34
round...................................10
rowMeans54
rownames............................48
rowsum53
rowSums.............................54
rpois34
rug.......................................87
runif34
sample.................................33
sapply..................................56
scan.....................................36
screen..................................92
search..................................28
segments83
seq.......................................19
sequence19
setdiff..................................31
sign33
signif33
sin33
sinh33
sort43
splines...................................7
split.screen92
sqrt33
stars...................................104
stats.......................................7
stats4.....................................7
stem74

str 26
stripchart 75
strsplit 51
subset 45
substr.................................. 51
sum..................................... 31
summary 16, 27
sunflowerplot 102
symbols 86
syntax error 10
t .. 48
table 55
tabulate............................... 54
tan 33
tanh 33
tapply 57
tcltk 7
text 85
title 89
tolower 51
tools 7
toupper 51
trunc 33
typeof 16
union 31
unique 45
utils 7
vector 19
vstupní řádky 9
výstupní řádky 9
which 30
windows............................. 91
xinch 93

 111

LITERATURA
Crawley M.J., 2005: Statistics: An Introduction using R. John Wiley & Sons.
Dalgaard P., 2004: Introductory Statistics with R. Springer.
Everitt B.S.& Nothorn T., 2006: A Handbook of Statistical Analyses Using R. Chapman &

Hall.
Maindonald J., 2003: Data Analysis and Graphics Using R. Cambridge University Press.
Murrell P., 2005: R Graphics (Computer Science and Data Analysis). Chapman & Hall.
R Development Core Team, 2007: R: A language and environment for statistical

computing. (online) R Foundation for Statistical Computing, Vienna, Austria.
Dostupné z http://www.R-project.org

Venables W.N. & Smith D.M., 2002: An Introduction to R. Network Theory Ltd.
Verzani J., 2004: Using R for Introductory Statistics.Chapman & Hall.
Venables W.N. & Ripley B.D., 2003: Modern Applied Statistics with S. Springer.

