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AVANT-PROPOS

Il n’est pas besoin de grandes enquétes d’opinions pour se rendre compte que les biologistes sont
globalement frileux a se frotter aux statistiques. L'étape de I'analyse des résultats est souvent vécue
comme une contrainte, un passage obligé mais désagréable, voire méme parfois un calvaire. Pourtant,
le premier objectif des statistiques est bien de révéler ce que les données ont a nous dire. Passer a coté
d’une bonne analyse par manque de temps, de motivation ou de compétence, c’est surtout prendre le
risque de rater un phénoméne intéressant qui était pourtant la, sous nos yeux.

Lobjectif de cet aide-mémoire est de guider tout biologiste qui en sentirait le besoin dans sa dé-
marche statistique, depuis la construction du protocole expérimental jusqu’a I’analyse des résultats qui
en découlent. Il doit permettre de s’en sortir seul, tout en assurant une analyse appropriée et rigoureuse.
Bien entendu, il ne dispense pas de se poser des questions et il est toujours nécessaire d’adapter un
minimum le code proposé a ses propres données. Pour imager les choses, considérez que vous apprenez
a faire du vélo et que ce document est la paire de roulettes qui vous évite de chuter. C’est rassurant, mais
n’oubliez pas qu’avant tout c’est vous qui pédalez.

Depuis la rédaction de la premiére version de cet aide-mémoire il y a six ans déja, j'ai beaucoup
enseigné, formé et conseillé en statistique appliquée a la biologie. Ces nombreuses interactions avec des
collégues et étudiants m’ont conduit a la structure de cette sixiéme et derniére version, qui je crois est
celle qui est la plus adaptée a une bonne démarche d’analyse.

Un assez grand nombre de méthodes sont couvertes par ce document, et j'ai tout fait pour simplifier
l'orientation dans cette « jungle ». Malgré tout, une bonne part du cheminement est dépendante du
biologiste lui-méme. Une bonne analyse est une analyse qui répond pertinemment a une question
précise. La régle d’or est donc avant tout de bien identifier cette question ou série de questions, et de ne
jamais 'oublier car le choix de la méthode statistique la plus pertinente en dépend et il est facile de se
perdre en analysant ses données.

Cet aide-mémoire est directement associé au package RVAideMemoire. La présente version du docu-
ment correspond aux versions = 0.9-60 du package.

J’espére sincerement que ce document comblera vos attentes et qu’il vous permettra de vous sentir
moins seul dans le monde pas si cauchemardesque des statistiques.

Le 22 aotit 2016

Maxime HERVE
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PARTIE I - BASES DU FONCTIONNEMENT DE R

Ce document n’est pas a proprement parler une introduction a R. Cette partie rappelle seulement
quelques notions essentielles comme la manipulation des objets courants (vecteurs, tableaux, matrices
et listes), la construction et 'importation d’'un jeu de données, la gestion des packages et diverses autres
choses comme des « bonnes pratiques ».

PARTIE II - THEORIE STATISTIQUE ELEMENTAIRE

Ce document n’est pas non plus une introduction aux statistiques. Cependant certaines bases théo-
riques sont indispensables pour construire une étude proprement et en analyser correctement les
résultats : types de variable, plan d’échantillonnage ou d’expérience, fonctionnement d’'un test, taille de
I’échantillon a constituer. Accessoirement, les lois de distribution les plus courantes sont présentées.

PARTIE III - ANALYSER LES RESULTATS D’UNE ETUDE

Lessentiel du document est dans cette partie, qui détaille comment représenter, synthétiser et analy-
ser des données a une, deux ou plus de deux dimensions.
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1. Les vecteurs

Le vecteur est a la fois I'objet le plus simple et le plus fondamental du langage R. Il se crée grace ala
fonction c (), qui prend comme arguments les éléments du vecteur. Tous ces éléments doivent étre du
méme type : valeurs numériques, chaines de caracteres ou encore niveaux d'un facteur.

EXEMPLE(S)
Pour créer un vecteur numérique :
> vecteur <- ¢(7,9,4,12,18)
> vecteur

[1] 7 9 4 12 18

Pour créer un vecteur de chaines de caracteres :
> VeCteur <_ C(IIHII llCll llIll IIGII llFll)

> vecteur

[1] IlHlI IlCll IIIII llGll IIF"

Pour créer un facteur :

> vecteur <- factor(c("mnivi","niv2","niv2","niv3","nivi"))
> vecteur

[1] nivl niv2 niv2 niv3 nivil

Levels: nivl niv2 niv3

Il existe des fonctions ou des abréviations qui permettent de simplifier la création de certains vecteurs
usuels :

EXEMPLE(S)
> 1:10

[1] 12345678910

> seq(from=1,to0=3,by=0.25)

[1] 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
> LETTERS[1:5]

[1] "A" "B" "C" "D" "E"

Pour accéder au(x) i*me® élément(s) d'un vecteur, écrire vecteur [i], ol i peut étre une valeur unique
ou lui-méme un vecteur :

EXEMPLE(S)
> vecteur <- seq(from=2,to=16,by=2)
> vecteur

[1] 2 4 6 8 10 12 14 16

> vecteur[5]

[1] 10

> vecteur[c(2,5,8)]

[1] 4 10 16

> vecteur[-c(2,5,8)]

[1] 2 6 8 12 14

> vecteur[6:3]

[1] 12 10 8 6
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2. Les tableaux

Les tableaux sont simplement un moyen de regrouper (en colonnes) des vecteurs dans le méme objet,
chaque colonne étant indépendante. Lunique contrainte est que tous les vecteurs doivent avoir la méme
longueur.

Pour créer un tableau, utiliser la fonction data.frame (), qui prend en arguments les différentes
colonnes (de gauche a droite). On peut préciser le titre des colonnes. Dans le cas d'un vecteur de chaines
de caracteres, celui-ci est automatiquement transformé en facteur lorsqu’il est intégré au tableau.

EXEMPLE(S)
> variablel <- 1:5
> variable2 <- LETTERS[1:5]
> tableau <- data.frame(variablel,variable2)
> tableau

variablel variable2

1 1 A
2 2 B
3 3 C
4 4 D
5 5 E

Le tableau peut étre créé directement via:
> tableau <- data.frame(variablel=1:5,variable2=LETTERS[1:5])

Pour accéder a un (ou plusieurs) élément(s) d'un tableau, le principe est le méme que pour les
vecteurs (voir fiche 1) excepte qu’il n'y a pas une mais deux dimensions a I'objet (i.e. les lignes et les
colonnes). Le principe d’indexation est valable pour tous les objets a deux dimensions et est celui-ci :
tableau[ligne(s),colonne(s)], oliligne(s) et colonne (s) sontsoit des valeurs uniques, soit des
vecteurs. Si rien n’est mis avant la virgule toutes les lignes sont sélectionnées, sirien n’est mis apres toutes
les colonnes sont sélectionnées.

EXEMPLE(S)
> tableaulc(1,3),]
variablel variable2
1 1 A
3 3 C

> tableaulc(3,5),2]
[1] CE
Levels: ABCDE

Dans le cas particulier de la sélection d'une colonne entiéere, il y a trois autres possibilités :
— tableau$colonne oll colonne estle nom de la colonne

— tableau$"colonne" oul colonne estle nom de la colonne, entre guillemets

— tableaul,"colonne"] oll colonne estle nom de la colonne, entre guillemets.
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3. Les matrices

Ala différence des tableaux (voir fiche 2), les matrices sont un tout cohérent, i.e. les colonnes ne sont
pas indépendantes. Cela implique que fous les éléments d’'une matrice sont de méme type : numérique,
texte, niveaux de facteur...

Pour créer une matrice, utiliser la fonction matrix (), qui prend comme arguments obligatoires
les valeurs qui doivent la remplir, et le nombre de lignes et/ou de colonnes. Par défaut les matrices
sont remplies en colonnes, pour les remplir en lignes ajouter I'argument byrow=TRUE. Pour donner un
nom aux lignes et aux colonnes, utiliser 'argument dimnames=1ist (lignes,colonnes), ol lignes et
colonnes sont des vecteurs :

EXEMPLE(S)
> matrice <- matrix(1:8,nrow=2)
> matrice
[,11 [,2]1 [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
> matrice <- matrix(1:8,nrow=2,byrow=TRUE)
> matrice
[,11 [,2]1 [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
> matrice <- matrix(1:8,nrow=2,dimnames=1list(letters[1:2],LETTERS[1:4]))
> matrice
ABCD

al35b67
b2468

1l est également possible de créer des matrices a partir de plusieurs vecteurs qui doivent en constituer
les lignes ou les colonnes. Utiliser pour cela les fonctions rbind () ou cbind (), qui assemblent les
vecteurs respectivement en lignes et en colonnes :

EXEMPLE(S)
vecteurl <- 1:3
vecteur2 <- 4:6
matrice <- rbind(vecteurl,vecteur2)
matrice

[,11 [,2]1 [,3]
vecteurl 1 2 3
vecteur?2 4 5 6
> matrice <- cbind(vecteurl,vecteur?2)
> matrice

V V V V

vecteurl vecteur?2

[1,] 1 4
[2,] 2 5
[3,] 3 6

Les matrices étant des objets a deux dimensions (les lignes et les colonnes), leur indexation est
identique a celle des tableaux (voir fiche 2).
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4, Les listes

Les listes sont des objets a compartiments, ou chaque compartiment est totalement indépendant des
autres. Une liste peut donc a la fois contenir un vecteur dans un compartiment, un tableau dans un autre,
et méme une liste dans un troisieme.

Pour créer une liste, utiliser la fonction 1ist (), qui prend en arguments ce que ’on veut mettre dans
chaque compartiment (du premier au dernier). On peut préciser un nom a chaque compartiment, ce qui
aide grandement a s’y retrouver.

EXEMPLE(S)
> vecteur <- 1:5

> tableau <- data.frame(vi=1:3,v2=LETTERS[1:3])
> list(vecteur,tableau)

[[1]1]

[11 12345

[[2]11]
vl v2
11 A
22 B
33 C
La liste peut étre créée directement via:
> list(1:5,data.frame(v1=1:3,v2=LETTERS[1:3]))
Pour donner un nom aux compartiments :
> liste <- list(A=1:5,B=data.frame(v1i=1:3,v2=LETTERS[1:3]))
> liste
$A
[1] 12345

$B

A%

v2

w N =
w N ==
Q W =

Pour accéder a un compartiment d'une liste (toujours un seul a la fois), on peut utiliser le numéro
du compartiment entre doubles crochets : 1iste[[1]] ol i est une valeur numérique unique. Si les
compartiments de la liste ont un nom, on peut également utiliser la syntaxe 1iste$nom ol nom est le
nom du compartiment.

EXEMPLE(S)

> liste[[1]]

[11 12345
Ou, puisque les compartiments de cette liste ont un nom :
> liste$A

[11 1 2345

Pour accéder a un (ou des) élément(s) particulier(s) d'un compartiment d'une liste, il suffit de cumuler
I'indexation de la liste et 'indexation de I'objet contenu dans le compartiment en question.

EXEMPLE(S)
> liste[[1]1]1[c(2,4)]
[1] 2 4

> liste$B$v1[3]

[1] 3
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5. La construction d’'un tableau de données

La construction d'un tableau de données correctement structuré est une étape importante de I'étude,
car si elle est mal réalisée elle peut mener a des résultats faux, ou le plus souvent a des erreurs une fois
dans R.

Cette construction nécessite de se poser une question essentielle : quelles sont les variables prises en
compte dans I’étude ? Y répondre implique d’identifier les variables quantitatives et les facteurs, ainsi
que les classes des facteurs. Siles choses sont claires, 'analyse statistique le sera également.

D’une maniere générale, il est conseillé de toujours construire son tableau de données dans un tableur.
Cela permet d’enregistrer le jeu de données dans un fichier externe a R, et donc de toujours pouvoir y
revenir puisque R ne modifie pas les fichiers externes (sauf si on le lui demande explicitement).

Dans le tableur, la régle est simple : les individus doivent étre placés en lignes et les variables en
colonnes.

11 est conseillé de donner un titre a chaque colonne, qui deviendra le nom de la variable dans R. 11
est indispensable cependant de respecter certaines regles : les noms de variable ne doivent contenir ni
espace, ni caractere accentué, ni symbole (ceci est une régle pour tous les noms d’objet dans R). Si un
nom de variable doit contenir deux mots, ils peuvent étre séparés par un point (.) ou un tiret bas ().
Mieux vaut également privilégier les noms courts mais clairs, car une fois dans R taper sans cesse des
noms de variable longs est vite fastidieux.

Le tableau de données doit absolument obéir a une autre régle : aucune case ne doit étre vide. La seule
exception possible est celle en haut a gauche si les colonnes ont un titre, auquel cas la 1¢ colonne sera
comprise par R comme le nom des lignes. S’il manque une donnée pour un individu, il faut se demander
d’ou elle vient :

— si c’est une donnée inutilisable (mesure ratée, mal retranscrite...), pas de probleme. On dit
alors qu’on a une « donnée manquante », que 1’on doit noter NA (pour Not Available, i.e. donnée
manquante). Le tableur comme R reconnaissent le NA, qu'’ils interpretent correctement.

— sila situation est autre, c’est que le tableau est mal construit et qu’en particulier les variables n’'ont
pas été bien définies. La réflexion s'impose donc pour identifier les variables et reconstruire un
tableau de données.

11 est déconseillé de coder les niveaux d'un facteur avec uniquement des chiffres. R comprendrait
cette variable comme numérique (et non comme un facteur), ce qui pourrait sérieusement perturber
voire empécher I'analyse.

Si des analyses dans R doivent se faire uniquement sur un sous-ensemble du tableau de données, ou
si pour certaines analyses le tableau de données serait plus facile a utiliser s'il était construit autrement, il
est conseillé de construire plusieurs tableaux de données séparés. Il est toujours possible de manipuler le
tableau initial dans R pour en extraire une partie ou pour le transformer, mais il est clairement plus facile
(et surtout moins source d’erreur) lorsque 'on n’a pas I’habitude de le faire en amont, dans le tableur.
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6. Limportation d’'un tableau de données dans R

Il existe de nombreuses méthodes pour importer ses données dans R. Une seule est présentée ici,

qui est a la fois tres simple, fonctionne dans la plupart des situations et peut étre utilisée sur toutes les
plateformes.

La procédure se fait en trois étapes :
1. Dans le tableur, sélectionner toutes les cases constituant le tableau de données.
2. Copier ce tableau dans le bloc-notes et enregistrer le fichier en format . txt.

3. Dans R, charger le tableau de données grace a la fonction read.table () et le stocker dans un
objet: tableau<-read.table("fichier") ol fichier estle nom du fichier texte (avec I'exten-
sion . txt et éventuellement le chemin qui méne a ce fichier), entre guillemets.

R étant un logiciel anglo-saxon, le séparateur décimal qu'’il utilise est le point. Or dans les tableurs
francais (et donc dans le fichier texte) le séparateur décimal est la virgule. Si le tableau de données
contient des valeurs décimales, il est donc nécessaire de préciser a R qu'il interprete la virgule comme
séparateur décimal. Ajouter pour cela ’argument dec="," ala fonction read.table().

Si les colonnes du tableau de données ont un titre, qui doit donc étre interprété comme le nom de la
variable, ajouter 'argument header=TRUE.

Une fois le tableau importé, il est indispensable de vérifier qu’il n’y a pas eu d’erreur pendant son
chargement. Pour cela appeler le résumé du tableau via summary (tableau). R renvoie un résumé de
chaque variable :

— pour une variable numérique, R donne des indications sur sa distribution : minimum, 1¢" quartile,

médiane, moyenne, 3°™¢ quartile et maximum.

— pour un facteur, R donne le nombre d’individus par classe.

Si un facteur est codé numériquement (par exemple un facteur binaire ou un facteur ordinal), R I'inter-

préte comme une variable numérique. Pour transformer cette variable en facteur, taper tableau$varia-
ble<-factor(tableau$variable) ol variable estle nom de la variable.

10
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7. Bonnes pratiques

Il existe des dizaines d’astuces ou de facon de procéder pour utiliser R au mieux. Certaines, impor-
tantes, sont résumées ici.

Logiciel et packages

Les packages ne sont pas gravés dans le marbre mais évoluent avec le temps. Les auteurs corrigent
des erreurs, ajoutent de nouvelles fonctions. .. Pour bénéficier de ces améliorations/ajouts/corrections, il
est nécessaire de mettre a jour régulierement ses packages (une fois par mois est un bon rythme). Voir
fiche 8 pour la procédure, trés simple.

Le logiciel R lui-méme évolue. Le numéro de la version installée est toujours donné dans le message
d’accueil au lancement du logiciel, par exemple 3.3.1. Le premier chiffre de ce numéro est tres important.
En effet, toutes les versions des packages créées apres la sortie d'une version V.x.x. de R ne sont pas
disponibles pour les utilisateurs des versions [V-1].x.x. Ces mises a jour dites « majeures » du logiciel ont
donc une importance réelle. Il est fortement recommandé de suivre ces mises a jours majeures, qui sont
tout de méme relativement rares. Certains packages exigent cependant une version minimale de R pour
pouvoir étre mis a jour. Installer une nouvelle version du logiciel régulierement (une fois tous les 1 a
2 ans) permet d’avoir acces a toutes les mises a jour récentes (voir fiche 10).

Création des objets
Au-dela des regles obligatoires sur les noms d’objet (ne pas commencer par un chiffre, pas d’espace.. .),
quelques principes permettent d’éviter des erreurs qui peuvent parfois conduire a une analyse statistique
biaisée (ou en tout cas a se compliquer la vie) :
— toujours donner un nom informatif aux objets, pour s’y retrouver plus facilement (attention tout
de méme aux noms a rallonge qui au final font perdre du temps )
— toujours créer ses objects avec la syntaxe nom <- contenu, et pasnom = contenu
— ne jamais appeler deux objets par le méme nom
— ne jamais donner a un objet le nom d’une fonction
— toujours coder les facteurs avec au moins une lettre (et pas sous forme numérique), pour que R
reconnaisse bien ces variables comme des facteurs.

Utilisation des fonctions
Dés qu’'une fonction accepte comme argument une formule (voir fiche 40 bien que les formules
soient utilisées aussi dans d’autres fonctions que celles créant un modeéle), elle a un argument data.
Celui-ci permet de préciser le tableau de données dans lequel aller chercher les variables contennues
dans la formule, ce qui simplifie la rédaction la formule (donc sa clarté) mais évite aussi de provoquer des
erreurs.

EXEMPLE(S)
Au lieu de (peu importe le nom de la fonction) :
> Im(tableau$y~tableau$x+tableau$z)
Préférer la syntaxe :

> Im(y~x+z,data=tableau)

Quand une fonction accepte plusieurs arguments, mieux vaut les appeler explicitement par leur nom
pour éviter d’attribuer a un argument une valeur qui était destinée a un autre argument. En effet, sans
utiliser les noms d’arguments il faut strictement respecter 1'ordre des arguments tels que précisés dans la
page d’aide de la fonction, ce qui est souvent source d’erreurs. Le premier ou les deux premiers arguments
échappent a cette régle car ils sont souvent tellement logiques que I'on risque peu de se tromper.

11



Divers

Eviter d’utiliser les fonctions attach() et detach(), qui sont source de bien des erreurs. Grace a
I'argument data des fonctions acceptant une formule, ou de certaines fonctions telles que with (), on
peut se rendre la vie aussi simple sans risquer quoi que ce soit.

Enfin, il est trés fortement recommandé d’enregistrer les scripts de ses analyses afin de pouvoir
y revenir plus tard (ou au moins d’étre stir de ce que I'on a fait!). Il est une tres bonne chose d’aérer
ses scripts et de les commenter (tout ce qui est situé apres le symbole # est reconnu par R comme un
commentaire), pour gagner en clarté et en compréhensivité par d’autres personnes (ou soi-méme plus
tard). Ne pas oublier de préciser les packages nécessaires a ’analyse dans le script.

12
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8. Installer, charger et mettre a jour des packages

Installer un package
Il est nécessaire d’étre connecté a internet pour installer un package, car celui-ci doit étre téléchargé
depuis un serveur. Linstallation ne se fait qu’ une seule fois.

Si R est utilisé depuis la console R, taper install.packages ("package") oul package estle nom
du package désiré, entre guillemets. Il est demandé ensuite de choisir un serveur, Lyon 1 par exemple.

Si R est utilisé depuis la console systéme, la procédure se fait en deux étapes :

1. Télécharger les sources du package a partir de son site de dépot, le site principal étant le CRAN
(the Comprehensive R Archive Network) : http://cran.r-project.org rubrique Packages.

2. Installer le package en tapantR CMD INSTALL package ouipackage estle nom dufichier tar.gz
contenant les sources.

La procédure expliquée ici est la plus simple, mais il existe de nombreuses variantes. Voir la R FAQ
pour plus d’'informations : http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages.

Charger un package
Le chargement d'un package doit se faire a chaque session o1 il doit étre utilisé. La commande est
simple : 1ibrary (package) ol package estle nom du package, sans guillemets.

Mettre a jours les packages installés
Pour mettre a jour automatiquement tous les packages installés, taper update . packages (ask=FAL-
SE). R télécharge alors toutes les mises a jour et les installe. Attention, seuls les packages non chargés
sont mis a jour. Mieux vaut donc faire les mises a jour avant toute autre chose lorsque R est ouvert.
Il est recommandé de mettre régulierement a jour ses packages afin de profiter de leur évolution,
souvent rapide.

13
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9. Citer R et ses packages

Lors del'écriture d'un document scientifique, il est une évidence de citer ses sources bibliographiques.
11 doit également en étre une de citer les logiciels utilisés lors de la réalisation de I’étude. R est certes
gratuit, mais il n’en reste pas moins que des dizaines de personnes s'impliquent dans son développement,
et qu’il est normal de faire honneur a leur travail en les citant.

R doit étre cité dés lors qu'’il est utilisé. Pour savoir comment le citer, il suffit de taper citation() et
de recopier ce qui figure aprés To cite R in publications use:.

Concernant les packages, la régle implicite est de citer tous ceux qui ne sont pas chargés au démar-
rage de R. Cela comprend les packages installés avec R mais non chargés automatiquement, ainsi que
ceux installés par I'utilisateur. Pour savoir comment les citer, taper citation("package") ot package

est le nom du package, entre guillemets. Recopier ce qui figure aprés To cite the xxx package in
publications use:.

14
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10. Changer de version de R

Pour installer une version plus récente de R, qui donne acces a des mises a jour de packages pas
forcément disponibles avec une version plus ancienne (voir fiche 7), la procédure se fait en plusieurs
étapes :

1. Récupérer le chemin vers le dossier ou1 sont installés les packages, via .1ibPaths () (dans ce
dossier, il y a un sous-dossier par package).

2. Désinstaller R, comme n'importe quel autre logiciel. Tous les fichiers sont ainsi supprimés a
l'exception des packages installés.

3. Installer la nouvelle version de R, téléchargeable depuis le site officiel : https://cran.r-project.org.

4. Ouvrir R et récupérer le chemin vers le dossier ol sont installés les packages de cette nouvelle
version, via . 1ibPaths (). Ce chemin n'est pas le méme que celui récupéré al'étape 1, car il est
spécifique a chaque version de R.

5. Copier tous les sous-dossiers (i.e. un par package) présents dans le dossier identifié a 'étape 1, et
les coller dans le dossier identifié a I'étape 4. Ainsi tous les packages qui étaient installés sous la
précédente version de R le sont désormais sous la nouvelle version.

6. Supprimer le dossier identifié I'étape 1, qui n'a plus d’utilité.

7. Mettre a jour tous les packages avant de faire quoi que ce soit d’autre (voir fiche 8).
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11. Les différents types de variable

Il existe deux types de variable :

1. Quantitatives : leurs valeurs représentent une grandeur, quantifiable et le plus souvent associée a
une unité de mesure. On peut effectuer des opérations mathématiques avec ces variables. Elles
peuvent étre de deux types :

— continues, lorsqu’elles peuvent prendre une infinité de valeurs (dans un intervalle donné) :
masse, temps, distance, volume...

— discretes, lorsqu’elles ne peuvent prendre que certaines valeurs (dans un intervalle donné) :
nombre d’individus, d’événements. .. Ces variables sont liées le plus souvent a des processus
de comptage (ol les valeurs prises ne peuvent étre qu’entieres et positives ou nulles).

2. Qualitatives : leurs valeurs ne représentent pas une quantité mais une catégorie. On ne peut donc
pas effectuer d’opérations mathématiques avec ces variables. On les appelle des facteurs, et les
valeurs qu’elles peuvent prendre des classes, niveaux ou modalités. Les variables qualitatives
peuvent étre de deux types :

— ordinales, lorsque les classes peuvent étre ordonnées : rang dans un classement, degré de
satisfaction...
— nominales, lorsque les classes ne peuvent pas étre ordonnées : sexe, pays...

Les variables qualitatives peuvent étre codées numériquement, mais il est trés important de les
différencier des variables quantitatives (car elles sont traitées différemment lors de 'analyse statistique).
Un principe simple pour faire la différence : si 'on peut remplacer les valeurs d'une variable numérique
par des énoncés, alors elle est qualitative. Par exemple, si'on juge I'état d'une plante par une note allant
de 0 a 5, on peut remplacer la note chiffrée par une appréciation du type « mauvais », « satisfaisant »...
Cette variable est donc qualitative. Pour ne pas prendre de risque, il est conseillé de ne jamais coder les
variables qualitatives numériquement.

1l existe deux types de facteur :

— aeffet fixe (« facteur fixe ») : un facteur est fixe si ses classes ont été délibérément choisies, et si le
but de I'étude est de les comparer. Par exemple, si’'on veut comparer la taille des individus entre
trois espéces, le facteur « espece » est fixe (a trois classes).

— a effet aléatoire (« facteur aléatoire ») : un facteur est aléatoire si ses classes ont été choisies parmi
un grand nombre de classes possibles, et si le but de 'étude n’est pas de les comparer mais
simplement de prendre en compte la variabilité qu’il existe entre elles. Par exemple, si les mesures
de taille des trois especes sont réalisées par deux personnes différentes, on peut considérer un
facteur « expérimentateur », aléatoire. L'objectif ici n’est en effet pas de comparer les mesures
réalisées par les deux personnes, mais de prendre en compte le fait que la facon de réaliser les
mesures peut varier entre les deux.

Il'y a deux choses a bien garder a I'esprit : (i) la décision de déclarer un facteur comme fixe ou aléatoire
est fondamentale pour I'analyse des données, car ce ne sont pas les mémes analyses qui sont réalisées
dans les deux cas; (ii) cette décision doit étre prise selon l'objectif de I'étude, i.e. la question a laquelle
I'étude doit répondre, car aucun facteur n’est fixe ou aléatoire dans I'absolu. Il est donc indispensable de
bien réfléchir avant de déclarer un facteur comme fixe ou aléatoire.

Que ce soit pour des variables qualitatives ou quantitatives, si certaines mesures ne sont pas indé-
pendantes entre elles, elles constituent des séries appariées. Le cas le plus simple est celui ol1 plusieurs
mesures sont réalisées sur un méme individu (par exemple avant et apres un traitement). Mais d’autres
cas plus subtils peuvent se présenter : si des mesures sont réalisées sur des individus apparentés (ces
mesures ne sont pas indépendantes car il existe une corrélation d’origine génétique entre elles), si des
séries de mesures sont réalisées a des localisations différentes (ces mesures ne sont pas indépendantes car
chaque série est influencée par 'environnement local) ou encore si des séries de mesures sont réalisées a
des temps différents (ces mesures ne sont pas indépendantes car chaque série est influencée par ce qu’il
a pu se passer avant). Il est trés important d’identifier les séries appariées lorsqu’elles existent, car des
analyses statistiques adaptées doivent alors étre utilisées. Les séries appariées sont le plus souvent identi-
fiées par I'introduction d'un facteur aléatoire. Pour les exemples précédents, on a donc respectivement
un facteur « individu », un facteur « famille », un facteur «localisation » et un facteur « moment ».
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12. Le plan d’échantillonnage

On utilise un plan d’échantillonnage lorsque 'on réalise une étude par enquéte, i.e. lorsque I'on
collecte des informations sur un groupe d’'individus dans leur milieu habituel, mais que tous les individus
ne sont pas accessibles (par choix ou par contrainte).

Les principales méthodes d’échantillonnage peuvent étre regroupées en deux ensembles :

1. L'échantillonnage aléatoire : tous les individus (au sens statistique) ont la méme probabilité d’étre
choisis, et le choix de I'un n’influence pas celui des autres. Différentes méthodes d’échantillonnage
aléatoire existent (voir les illustrations) :

— I’échantillonnage aléatoire et simple : le choix se fait parmi tous les individus de la population
(au sens statistique), qui ne forme qu'un grand ensemble.

— Tl’échantillonnage stratifié : si la population est tres hétérogene, elle peut étre divisée en sous-
ensembles exclusifs (ou strates). Au sein de ces strates 'échantillonnage est ensuite aléatoire
et simple. Les strates sont identifiées dans I'analyse statistique comme les niveaux d'un facteur
fixe.

— Tl'échantillonnage en grappes : si les strates sont trés nombreuses, on en choisit certaines au
hasard (les grappes). Au sein de ces grappes I'échantillonnage est ensuite aléatoire et simple.
Les grappes sont identifiées dans I'analyse statistique comme les niveaux d'un facteur aléatoire.

— I’échantillonnage par degrés : il est une généralisation de I'échantillonnage en grappes (qui est
en fait un échantillonnage du premier degré). Au sein de la population on choisit des grappes
« primaires », puis a I'intérieur de celles-ci des grappes « secondaires » (toujours au hasard), et
ainsi du suite. .. Au dernier niveau I’échantillonnage est aléatoire et simple.

2. Léchantillonnage systématique : un premier individu est choisi aléatoirement, puis les autres sont
choisis de facon réguliere a partir du précédent (dans le temps ou I'espace). L'analyse de ce type
d’échantillonnage, qui fait appel a la statistique spatiale ou a I’analyse des séries chronologiques,
n’est pas abordée dans cet ouvrage.

Il est important d’identifier la méthode mise en ceuvre car les analyses statistiques doivent étre adap-
tées. Seule I'analyse de plans d’échantillonnage aléatoires est abordée dans cet ouvrage.
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Echantilonnage en grappes

Chaque point représente un individu. Les individus
échantillonnés sont représentés en rouge.
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13. Le plan d’expérience

On utilise un plan d’expérience lorsque I'on réaliste une étude par expérimentation, i.e. lorsque 'on
provoque volontairement les faits a étudier. Le plan d’expérience comprend notamment le(s) facteur(s) a
faire varier, le nombre de répétitions a réaliser et le dispositif expérimental a mettre en place. L'association
des classes de plusieurs facteurs constitue un traitement.

1l existe de nombreux types de dispositif expérimental, dont les principaux sont (voir les illustrations) :

— le plan d’expérience complétement aléatoire : chaque individu (au sens statistique) est affecté a
un traitement aléatoirement.

— le plan d’expérience en blocs aléatoires complets : s’'il y a (ou §'il peut y avoir) une grande hétéro-
généité entre les individus, ils sont réunis en groupes aussi homogenes que possibles (ou blocs).
Au sein de ces blocs chaque individu est ensuite affecté aléatoirement a un traitement, de maniere
a ce que tous les traitements soient présents dans chacun des blocs. Les blocs sont identifiés dans
I'analyse statistique comme les niveaux d'un facteur aléatoire.

— le plan d’expérience en blocs aléatoires incomplets : dans ce cas tous les traitements ne sont pas
présents dans chacun des blocs.

— le plan d’expérience en split-plot : le principe du split-plot est le plus souvent associé a celui des
blocs aléatoires complets. Dans ce cas, dans chacun des blocs sont créés autant de sous-blocs
qu'ily a de classes au premier facteur étudié. A chacun de ces sous-blocs est associée une classe.
Puis chaque sous-bloc est divisé en autant d’unités qu'il y a de classes au second facteur étudié. A
chacun de ces « sous-sous-blocs » est associée une classe. Pour plus de deux facteurs, la situation
est plus complexe.

Quelle que soit la méthode employée, elle doit étre clairement définie car elle doit étre prise en compte
dans les analyses statistiques.

Bloc 1

A B e A B c
L L . . .
e o e o

< Bloc 2
A B c
.
e o . . .

Plan en blocs aléatoires complets

Plan complétement aléatoire P
sans repétition

Bloc 1 Bloc 1

A B [} A B

0 | A | forflee]] [Felfee
L] L] L]

Bloc 2 Bloc 2

A B [} A B

0 | A | forflee]] [Felfee
L] L] L]

Plan en blocs aléatoires complets

avec répétitions Plan en split-plot

Chaque point représente un individu. Chaque carré représente
un traitement. Les niveaux du 1¢* facteur sont notés en
majuscule, les niveaux du 2" facteur sont notés en minuscule.
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14. Principe des tests statistiques et risques associés a la conclusion

Le principe de réalisation de tout test statistique est le suivant :

1. On pose une hypothése nulle Hy, de type «rien a signaler » (ex : les moyennes 114 et up sont égales)
ou «valeur ponctuelle » (ex : la moyenne p = 10, la proportion p =50 %).

2. On pose une hypothese Hj, de telle maniere que Hy et H; soient exclusives (ex : les moyennes 4
et up sont différentes, la moyenne p # 10).

3. On calcule la valeur de la Variable de Test (VT), d’apres une formule qui dépend du test utilisé.

4. On utilise la valeur de la VT calculée pour déterminer une p-value, i.e. une probabilité d’obtenir la
valeur mesurée (moyenne, pourcentage...) si Hy est vraie.

5. On conclut sur les deux hypothéses posées grace a cette p-value:
— sila p-value est supérieure au seuil a fixé avant le test (5 % en général, voir fiche 15), on ne
rejete pas Hy.
— sila p-value est inférieure au seuil a, on rejete Hy.

Conclure sur les deux hypothéses présente deux risques :

— le risque de 1% espeéce ou risque a, qui correspond au risque de rejeter de H si celle-ci est
réellement vraie. On fixe ce risque, le plus souvent a 5 % (voir fiche 15).

— lerisque de 2% espéce ou risque f, qui correspond au risque de ne pas rejeter de Hy si celle-ci est
réellement fausse. On ne peut pas fixer ce risque (voir fiche 17).

Réalité (inconnue le plus souvent)
Décision H, vraie H, fausse
Hj non rejetée Bonne décision Erreur
Hj rejetée Erreur a Bonne décision

La probabilité associée au fait de rejeter Hy si celle-ci est fausse (soit 1 — ) est appelée puissance du
test (voir fiche 17).

Il est important de distinguer les notions d’effet statistiquement significatif et biologiquement signifi-
catif. Statistiquement, on peut toujours rejeter Hy moyennant d’avoir un échantillon suffisamment grand
(voir fiche 17). D’'un point de vue statistique, Hy n’est donc ni «vraie » ni « fausse ». Cette notion de vrai ou
faux se pose uniquement en terme biologique. En pratique, on observe toujours un effet, aussi petit soit-il.
La question est de savoir si cet effet (ou plutot I'effet réel, qui n’est qu’estimé par I'expérimentation) est
suffisamment grand pour qu’il ait une signification biologique. Si oui alors Hj est réellement fausse, si
non Hj est réellement vraie.
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15. Le risque ou seuil de rejet a

Le risque a, ou seuil de rejet ou encore seuil de signification de I'hypothése Hy, est une valeur fixée
arbitrairement avant la réalisation de tout test statistique. Elle correspond a un risque assumé de se
tromper, celui de rejeter Hy si celle-ci est réellement vraie (ce que bien stir on ne sait jamais).

Lorsque I'on calcule une p-value suite a un test (voir fiche 14), on la compare au seuil a choisi :

— sila p-value est inférieure au seuil a, on rejette Hy. Il faut étre conscient que 'on prend un risque
a de se tromper.

— sila p-value est supérieure au seuil a, on ne rejette pas Hp.

Obtenir une p-value supérieure au seuil a peut avoir deux origines :

— une réelle véracité de Hy (au sens biologique, voir fiche 14)

— un manque de puissance du test (voir fiche 17), i.e. un risque (B, voir fiche 14) important de « passer
a coté » d'une réelle fausseté de Hy. L'effet observé peut donc étre biologiquement significatif,
mais la taille de I’échantillon insuffisante pour le montrer d'un point de vue statistique. D’ou1
I'importance de déterminer la taille de 'échantillon en fonction de ce seuil de significativité
biologique, dés que ce seuil est estimable (voir fiche 18).

— Qeun — — Qe —

p-value p-value

seuil cale calc seuil

Xseuil : Valeur de la Variable de Test (VT) X qui donne une fonction de répartition a droite égale au
seuil « (test unilatéral droit ici).
Xcalc : valeur de la VT X calculée a partir de I’échantillon testé.

A gauche I'hypothese Hy est rejetée, a droite elle ne I'est pas.

D’un point de vue pratique, on utilise souvent un seuil @ de 5 %. Cela veut dire qu’on assume un
risque de 5 % de rejeter Hy si celle-ci est réellement vraie.
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16. La correction du seuil de rejet @ (ou des p-values)

Si une série de tests statistiques est réalisée avec a chaque fois a pour seuil de rejet de Hy (voir
fiche 15), le risque global de rejeter Hy si celle-ci est vraie augmente. En effet, plus on effectue de tests,
plus on a de chance de tomber sur un échantillon peu représentatif de la population dont il provient
(donnant une p-value inférieure au seuil «).

Il est donc nécessaire de corriger le seuil de rejet a de chaque test (ou leur p-value, ce qui revient au
méme) lorsque plusieurs sont réalisés, afin que le risque global soit égal au a souhaité.

Cette situation se présente :

— lorsque les tests vont permettre de prendre une décision unique, dés que I'un d’eux au moins

permet le rejet de Hy

— lorsqu’est réalisée une série de tests deux-a-deux, soit directement soit aprés une analyse globale

(ANOVA, test du y? d’homogénéité...).

Plusieurs méthodes de correction existent, dont les trois suivantes.

La technique de Bonferroni
Si k tests sont effectués, la technique consiste simplement a diviser le seuil de rejet global « par k,
donc considérer pour chaque test le seuil de rejet 7.
Cela revient a multiplier chaque p-value par k, sans changer le seuil a.

La technique séquentielle de Holm
La procédure se réalise en plusieurs étapes :

1. Classer les p-values de tous les tests réalisés par ordre croissant (p; <...< pg), k étant le nombre
de tests effectués.

2. Rejeter Hy pour les tests dont la p-value satisfait la condition :
Xseuil
. S —_—
Pi=iisi

ol i estle rang de la p-value apres classement.

La technique du False Discovery Rate (FDR) de Benjamini et Hochberg
La procédure se réalise en plusieurs étapes :

1. Classer les p-values de tous les tests réalisés par ordre croissant (p; <...< py), k étant le nombre
de tests effectués.

2. Rejeter Hy pour les tests dont la p-value satisfait la condition :

l
Pi = Qseuil X 7

k

ou i estle rang de la p-value aprés classement.

La technique la plus stricte est celle de Bonferroni, la moins stricte celle du FDR. Cette derniére peut
étre appliquée par défaut. Dans tous les cas la méthode de correction du seuil de rejet de Hy doit étre
décidée avant de réaliser les tests.

Dans R, si p est un vecteur contenant les p-values non corrigées, utiliser la fonction p.adjust () pour
récupérer un vecteur avec les p-values corrigées (dans le méme ordre) :
p.adjust (p,method="bonferroni") pour la correction de Bonferroni
p.adjust (p,method="holm") pour la correction de Holm
p.adjust (p,method="BH") oup.adjust(p,method="fdr") pour la correction de Benjamini et Hoch-
berg (FDR).
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17. Risque 3 et puissance d’'un test

Le risque B est le risque de ne pas rejeter 'hypotheése Hy si celle-ci est réellement fausse (voir fiche 14).
Contrairement au risque «, le risque  ne peut pas étre fixé. En effet, si @« dépend de la distribution de la
Variable de Test (VT) sous Hy (voir fiche 15), f dépend de sa distribution sous H;. Or cette distribution
est inconnue, puisque 'hypotheése H; regroupe une infinité de distributions (ex : si 'hypotheése H; est
1 # UB, les deux moyennes p4 et up peuvent différer d’'une infinité de fagons).

La puissance d’'un test représente la probabilité de rejeter Hy si celle-ci est réellement fausse (i.e. de

faire le bon choix). Elle équivaut a 1 — §, et est donc également une variable dépendant de la distribution
dela VT sous H;.

Le risque f et la puissance du test dépendent du seuil « fixé :

a_ .
seuil

seuil

Xseuil : Valeur de la VT X qui donne une fonction de répartition a droite égale au seuil a pour la
distribution sous Hj (test unilatéral droit ici).

La puissance d’'un test augmente :

— quand augmente le seuil

— quand augmente I'effectif de I'échantillon testé (ce qui diminue I'étalement de la distribution de
la VT ou éloigne les distributions de la VT sous Hj et Hj, selon le test)

— quand augmente I'écart réel entre les valeurs testées (moyennes, proportions...).
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18. Déterminer la taille de ’échantillon a constituer

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lpwr

Il existe un lien entre le seuil de rejet a du test statistique utilisé (voir fiches 14 et 15), la puissance
de ce test (voir fiche 17), la différence entre les échantillons pour la variable mesurée et la taille des
échantillons. Déterminer la taille de I'échantillon a constituer passe donc par fixer les autres parametres.
Ceci implique deux choses importantes :

— choisir avant de démarrer I'étude les types de test qui vont étre utilisés (ce qui oblige a bien
identifier les questions auxquelles I’étude doit répondre) et leur précision. On considére que
lorsque 'objectif de I'étude est de rejeter Hy (voir fiche 14), la puissance du test doit étre d’au
moins 80 % ; lorsque I'objectif est de ne pas rejeter Hy (voir fiche 14), la puissance doit étre d’au
moins 95 %.

— avoir une idée de la variabilité naturelle de la variable mesurée et/ou de la différence minimale a
détecter (le seuil de significativité biologique, voir fiche 14). Ceci passe soit par une étude de la bi-
bliographie, soit par la consultation de spécialistes, soit par la réalisation d'un pré-échantillonnage
ou d’'une pré-expérience.

Dans R, la fonctions power () permet, pour quelques tests paramétriques courants, de calculer I'ef-
fectif nécessaire lorsque 1'on connait tous les autres parametres. Lorsque |'on sait a I’avance que ’'on ne
sera pas dans les conditions d’utilisation de ces tests, on peut tout de méme estimer la puissance de leur
équivalent non paramétrique. Celle-ci est vaut en effet environ 95 % de la puissance du test paramétrique
équivalent.

Toutes les fonctions décrites sont basées sur le méme principe : le parametre n doit avoir comme va-
leur NULL tandis que tous les autres doivent étre fixés. Toutes les fonctions considerent que 'effectif est le
méme dans les différents groupes a comparer (on parle d’effectifs équilibrés). 1l est fortement conseillé de
toujours prévoir ses plans d’échantillonnage ou d’expérience de cette facon, ce qui (i) facilite 'analyse et
(ii) permet d'utiliser la plupart des tests non paramétriques, dont1’équilibre des effectifs est une condition.

Comparaison d’'une moyenne avec une valeur théorique (voir fiche 72) ou de deux moyennes (voir

fiche 73) — test t de Student
power.t.test(n,delta,sd,sig.level,power,type)

avec:
n : effectif (identique pour les deux échantillons dans le cas d'une comparaison de deux moyennes)
delta: différence minimale a détecter entre la moyenne de I’échantillon et la moyenne théorique, ou
entre les deux moyennes
sd : écart-type (identique pour les deux échantillons dans le cas d’'une comparaison de deux moyennes),
dans l'unité des moyennes
sig.level :seuil de rejet @ (généralement 0,05)
power : puissance minimale du test (0,8 ou 0,95 selon I'objectif du test)
type : type de test ("one.sample" pour la comparaison d'une moyenne avec une valeur théorique,
"two.sample" pourla comparaison de deux moyennes, "paired" pourla comparaison de deux moyen-
nes en séries appariées).

Comparaison de plus de deux moyennes - analyse de variance a un facteur (voir fiche 76)
power.anova.test(groups,n,between.var,within.var,sig.level,power)
avec:
groups : nombre de modalités a comparer
between.var : somme des carrés des écarts intergroupe minimale a détecter
within.var :somme des carrés des écarts intragroupe (identique pour toutes les modalités).
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Il est dans la pratique tres difficile d’estimer a priori les sommes des carrés des écarts inter et in-
tragroupe. On peut dans ce cas se rabattre sur la fonction power.t.test () qui donne des résultats
convenables si les conditions d'utilisation de ’analyse de variance sont remplies.

Comparaison de deux proportions - test du y> ’homogénéité (voir fiche 58)
power.prop.test(n,pl,p2,sig.level,power)
avec pl, p2 : proportions a détecter comme significativement différentes.

Significativité d’un coefficient de corrélation linéaire de Pearson (voir fiche 84)
pwr.r.test(n,r,sig.level,power)!
avec r : coefficient de corrélation minimum a détecter comme significativement différent de 0.
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19. Les lois de probabilité discontinues — généralités

Ces lois s’appliquent a des variables quantitatives discrétes (voir fiche 11).

Leurs parameétres sont :

— k: chaque valeur possible rencontrée dans la population par la variable discrete X. Egalement
appelée « quantile ».

— f(k) : fréquence, ou probabilité, associée a chaque valeur de la variable discrete X. Egalement
appelée « distribution de probabilité » de X ou « fonction de masse » de X. Comprise entre 0 et 1.

— F(k) : somme des probabilités f (k) situées a droite ou & gauche de k, suivant la situation. Egale-
ment appelée « fonction de répartition » de X. On note F (k) droite = P(X > k) et F(k)gauche = P(X <
k). Comprise entre 0 et 1.

DansR:

— dY() : donne la probabilité f(k) pour une distribution de type Y.

— pY(Q) : donne la fonction de répartition F(k) pour une distribution de type Y. R considére par
défaut la répartition a gauche, préciser lower . tail=FALSE pour la répartition a droite.

— qY(Q) : donne la valeur k de la variable X correspondant a une valeur de F(k) pour une distribution
de type Y. R considére par défaut la répartition a gauche de k, préciser lower.tail=FALSE pour
la répartition a droite.

— rY() : donne une série de valeurs aléatoires de la variable X pour une distribution de type Y.

F(k) (p)

f(k) (4)

k (a)
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20. Laloi binomiale

La loi binomiale est la loi suivie par les résultats de tirages aléatoires lorsqu'’il n'y a que deux possibili-
tés mutuellement exclusives de résultat et que la probabilité d’obtenir chaque possibilité est constante au
cours de I'expérience (i.e. population infinie ou tirages avec remise). La loi donne la probabilité d’obtenir
k fois le résultat A quand n tirages sont réalisés.

Ecriture : B(n, p)
avec:
n :nombre de tirages
p : probabilité associée au résultat A

Dans R (voir fiche 19 pour des explications) :
dbinom(k,n,p)
pbinom(k,n,p)
gbinom(F (k) ,n,p)
rbinom(x,n,p) avec x : nombre de valeurs a générer

B(10,0.2) B(10,0.5)

0.30
-

0.30
-

0.20
|
0.20
|

0.10
|
0.10
|

0.00
L
0.00
L

B(10,0.8)

0.30
1|

0.20
|

0.10
|

0.00
L
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21. Laloi de Poisson

La loi de Poisson est une limite de la loi binomiale (voir fiche 20) quand p tend vers 0 et n vers I'infini
(la loi de Poisson est souvent appelée «loi des événements rares »). Lapproximation de la loi binomiale
par la loi de Poisson est possible quand p < 0,1 et n > 30.

Sa moyenne est égale a sa variance et vaut np (ou A).

Ecriture : P(np) ou P(1)
avec:
n :nombre de tirages
p : probabilité associée au résultat rare

Dans R (voir fiche 19 pour des explications) :
dpois(k,n*p) oudpois(k,lambda)
ppois (k,n*p) ouppois(k,lambda)
gpois(F(k) ,n*p) ouqgpois(F(k),lambda)
rpois(x,n*p) ourpois(x,lambda) avec x : nombre de valeurs a générer

PE070.01) . PEooos,

i (. .

k k

P(30°0.1)

0.20 0.30
| |

0.10
|

.......................

o
=g
o

28



A

> Théorie statistique élémentaire

22, Laloi binomiale négative

La loi binomiale négative correspond a la méme situation que la loi binomiale (voir fiche 20), mais
elle donne la probabilité d’obtenir r résultats B avant d’obtenir k résultats A (approche par I’échec).

Ecriture : BN(k, p)
avec:
k : nombre de résultats A désirés
p : probabilité associée au résultat A

Dans R (voir fiche 19 pour des explications) :
dnbinom(r,k,p)
pnbinom(r,k,p)
gnbinom(F(r) ,k,p)
rnbinom(x,k,p) avec x : nombre de valeurs a générer

BN(4,0.3) BN(4,0.7)

0.20 0.30
|

0.20 0.30
|

0.10
|
0.10
|

P
. . .

BN(3,0.5) BN(7,0.5)

0.20
|
0.20
|

0.10
0.10

0.00
L
0.00
L
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23. Les lois de probabilité continues — généralités

Ces lois s’appliquent a des variables quantitatives continues (voir fiche 11).

Leurs parameétres sont :

— x; : chaque valeur possible de la variable continue x. Egalement appelée « quantile ».

— f(x;) : distribution de probabilité de la valeur x;. Egalement appelée « densité de probabilité »
de x;. Comprise entre 0 et 1.

— F(x;) : aire sous la courbe située a droite ou a gauche de x;, suivant la situation. Egalement ap-
pelée «fonction de répartition » de x;. On note F(x;)droite = P (X > X;) €t F(X;i)gauche = P(x < X;).
Comprise entre 0 et 1.

DansR:

— dY() : donne la densité de probabilité f(x;) pour une distribution de type Y.

— pY(O) : donne la fonction de répartition F(x;) pour une distribution de type Y. R considere par
défaut la répartition a gauche, préciser lower.tail=FALSE pour la répartition a droite.

— qY() :donnelavaleur x; de la variable x correspondant a une valeur de F(x;) pour une distribution
de type Y. R considére par défaut la répartition a gauche de k, préciser lower.tail=FALSE pour
la répartition a droite.

— rY() : donne une série de valeurs aléatoires de la variable x pour une distribution de type Y.

f(x,) (a)

F(x,) (p)

x, (q)
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24. Laloi normale

Laloi normale est la plus fondamentale de toutes les stastiques puisqu’elle sert a modéliser un bruit
aléatoire autour une moyenne. Elle est donc le support de nombreux modéles et tests, comme condition
préalable a leur utilisation et/ou comme distribution de référence pour calculer la p-value.

Ecriture : N(u,0)
avec:
U : moyenne de la variable x
o : écart-type de la variable x

Cas particulier, la loi normale centrée-réduite : N(0,1)

Dans R (voir fiche 23 pour des explications) :
dnorm(xi,mu,sigma)
pnorm(xi,mu,sigma)
gnorm(F (xi) ,mu,sigma)
rnorm(z,mu, sigma) avec z : nombre de valeurs a générer

N(0,15) N(0,10)
- _ - _
(=] (=]
o | pic B
(=] (=]
= o = o]
= o = o
S S
M T T T 1 M T T T 1
-20 -10 0 10 20 -20 -10 0 10 20
X X
N(0,5) N(0,1)
-+ _ -+ _
o o
o« _| o« _|
(=] (=]
= o = o]
= o = o
S S
o | A o
= T T T 1 = T T T 1
-20 -10 1] 10 20 -20 -10 1] 10 20
X X
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25. Laloi exponentielle

La loi exponentielle correspond souvent a des événements dont la probabilité de survenue diminue
avec le temps. Elle est donc souvent utilisée pour modéliser des durées de vie.

Ecriture : exp(A)
avec A : parametre de laloi (0 < A < +00)

Dans R (voir fiche 23 pour des explications) :
dexp (xi,lambda)
pexp(xi,lambda)
gexp (F(xi) ,lambda)
rexp(z,lambda) avec z : nombre de valeurs a générer

exp(0.5) exp(1)

| |
X
|

:

[

|

00 05 10 15 20 25 30
]

00 05 10 15 20 25 30
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26. Laloi de y*

La loi de y? est utilisée dans de nombreux tests statistiques (« tests du y? » mais pas seulement)
comme distribution de référence pour calculer la p-value.

Ecriture : y?(v)
avec v : nombre de degrés de liberté (ddl), i.e. de parametres indépendants impliqués dans la loi
0<v<+o0)

Dans R (voir fiche 23 pour des explications) :
dchisq(xi,ddl)
pchisq(xi,ddl)
qchisq(F(xi),ddl1)
rchisq(z,ddl) avec z: nombre de valeurs a générer

%2(1) 72(2)
Q_ Q_
@ _| @ _|
(=] (=]
w _| w _|
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27.Laloi de Fisher - Snedecor

Laloi de Fisher-Snedecor est utilisée dans de nombreux tests statistiques (ANOVA mais pas seulement)
comme distribution de référence pour calculer la p-value.

Ecriture : F(vy,Vv2)
avec:
v1 : 1" nombre de degrés de liberté (ddl) (0 <v; < +00)
vy : 28me nombre de ddl (0 < v, < +00)

Dans R (voir fiche 23 pour des explications) :
df (xi,dd11,dd12)
pf (xi,dd11,dd12)
qf (F(xi) ,dd11,dd12)
rf(z,dd11,dd12) avec z : nombre de valeurs a générer

F(1.1) F(5,1)

x x
F(1,5) F(50,500)

=+ T =+ T
™ - ™ -
E oo E oo
o - — o -

T T T T 1 T T T T 1

00 05 10 15 20 00 05 10 15 20

x x
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28. Laloi de Student

La loi de Student est utilisée dans de nombreux tests statistiques (test ¢ de Student mais pas seule-
ment) comme distribution de référence pour calculer la p-value.

Ecriture : t(v)
avec v : nombre de degrés de liberté (ddl) (0 < v < +00)

Dans R (voir fiche 23 pour des explications) :
dt (xi,ddl)
pt(xi,ddl)
qt (F(xi),ddl1)
rt(z,ddl) avec z : nombre de valeurs a générer
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Troisiéme partie

Analyser les résultats d’'une étude

La premiere question a se poser en terme d’analyse statistique est le cadre général dans lequel on

veut se placer : univarié, bivarié ou multivarié. Il est en pratique assez simple de s’orienter :

— sil’on a une variable a expliquer, dont on cherche a savoir si ses valeurs sont influencées par une
ou plusieurs variable(s) explicative(s) : statistique univariée.

— sil’on étudie la relation entre deux variables du méme type (Qquantitatives ou qualitatives), sans
qu’il y ait de variable a expliquer et de variable explicative : statistique bivariée. On parle dans ce
cas de variables interdépendantes.

— sil’on a plusieurs variables a expliquer conjointement : statistique multivariée.

Lorsque plusieurs variables sont a expliquer conjointement, les approches multivariées (i.e. globale)
et univariées (i.e. chaque variable séparément) peuvent étre complémentaires lorsque les deux sont
possibles. Lapproche multivariée devient surtout intéressante quand les variables sont corrélées entre
elles, car elle prend en compte cette corrélation et permet de mettre en évidence des phénomenes qui
ne sont visibles que d’'un point de vue global (et pas a I'échelle des variables individuelles). Il n’existe
pas de seuil de corrélation absolu pour estimer 'intérét de I'approche multivariée ; cela ne cofite de rien
d’essayer et de voir si un phénomere intéressant apparait!

Données a une dimension - Statistique univariée . . . . ... ... ... ... 00 0. 37
Données a deux dimensions — Statistique bivariée ........................ 40
Données a plus de deux dimensions - Statistique multivariée. . . . . . ... ......... 41

Note : souvent, plusieurs tests peuvent étre utilisés pour répondre a la méme question. Les conditions
de leur emploi sont cependant plus ou moins restrictives, et leur puissance plus ou moins grande
(un test plus restrictif étant généralement plus puissant; voir fiche 17). Lorsque plusieurs tests sont
disponibles, un arbre de décision est présenté pour aider a choisir le test approprié. Il s’appuie a la fois
sur la vérification des conditions a remplir pour utiliser tel ou tel test, ainsi que sur la « qualité » de ces
tests (notamment en terme de puissance).
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> Analyser les résultats d’'une étude

Données a une dimension - Statistique univariée

GRAPHES

30. Graphiques de dispersion

31. Histogrammes

32. Boites a moustaches

33. Graphiques en haricots

34. Diagrammes en barres avec barres d’erreur

REDUCTION DES DONNEES

35. Parametres de position (moyenne, médiane, mode)
36. Parametres de dispersion (variance, écart-type, coefficient de variation)
37. Intervalle de confiance et erreur standard (d'une moyenne, d'une médiane, d'une proportion)

TESTS

38. Identification et suppression des données aberrantes

Comment s’orienter dans la jungle des tests et des modeles ?

Pour s’y retrouver, il faut oublier le vocabulaire habituel (« moyennes », « proportions », « effectifs »....)
et se concentrer uniquement sur la nature de la variable a expliquer, peu importe comment elle est
codée. Les situations suivantes sont traitées dans cet aide-mémoire (voir fiche 11 si les termes ne
sont pas clairs) :

1. Laréponse est qualitative
(a) nominale:
i. a2 classes (i.e. binaire)
ii. aplusde 2 classes
(b) ordinale (i.e. un rang dans un classement)
2. Laréponse est quantitative
(a) discontinue (i.e. un décompte d’individus) :
i. sans catégorie
ii. par catégorie :
A. dans 2 catégories
B. dans plus de 2 catégories
(b) continue (théoriquement, pas forcément dans les faits) :

i. bornée (dans les faits), i.e. plusieurs valeurs sont aux limites des valeurs possibles (par
exemple 0 et/ou 1 pour une proportion)

ii. non bornée (dans les faits), i.e. méme si toutes les valeurs ne sont pas possibles les
données sont (quasiment) toutes entre les limites sans les atteindre

Remarque : silaréponse est un temps avant la survenue d’'un évenement, elle est traitée a
part grace a des méthodes dédiées.

De maniere générale, les variables explicatives doivent étre bien moins nombreuses que les individus
et elles ne doivent pas étre trop corrélées entre elles.
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Les tests proposés sont systématiquement divisés en deux groupes : les tests « simples » (essentielle-
ment non paramétriques), qui exigent peu de connaissances en statistiques pour étre utilisés; les tests
paramétriques basés sur un modele statistique, qui font appel a des notions un peu plus avancées (tout
en restant appréhendables, c’est le but de ce document que de rendre les choses simples!). Les modéles
sont objectivement plus puissants et permettent bien plus de choses que les tests non paramétriques, et a
ce titre ils sont 'approche a privilégier a priorilorsque plusieurs alternatives sont disponibles. On pourra
toutefois s’orienter vers les tests simples si les conditions d’utilisation du modéle ne sont pas respectées,
ou sil'on souhaite délibérément utiliser ce type de test.

La gestion des modeles

Les notions des fiches suivantes (surtout 39 a 42) sont indispensables a maitriser pour utiliser
proprement un modele.

39. Démarche d’'utilisation des modeles

40. Construction de la formule d'un modéle

41. Vérification de la validité d'un modele

42. Application d’'un test sur un modele

43. Comparaisons multiples basées sur un modeéle

44. Sélection de modele

Laréponse est binaire

@ Tests simples
Par commodité on va appeler la réponse « probabilité » dans les fiches suivantes. Mais en fait « proba-

bilité » ne se résume pas a ce type de réponse.
45. Conformité d'une probabilité a une valeur théorique
46. Conformité de plusieurs probabilités a des valeurs théoriques — 2 classes
47. Comparaison de plusieurs probabilités - 2 classes

@ Tests basés sur un modele
48. Analyser une réponse binaire

Laréponse est qualitative nominale a plus de 2 classes

@ Tests simples
Par commodité on va appeler la réponse « probabilité » dans les fiches suivantes. Mais en fait « proba-
bilité » ne se résume pas a ce type de réponse.
49. Conformité de plusieurs probabilités a des valeurs théoriques — plus de 2 classes
50. Comparaison de plusieurs probabilités — plus de 2 classes
@ Tests basés sur un modele
51. Analyser une réponse qualitative nominale a plus de 2 classes

Laréponse est un rang dans un classement

11 est préférable d’éviter d’utiliser les tests simples non paramétriques sur les rangs (Mann-Whitney-
Wilcoxon, Kruskal-Wallis, Friedman. ..) pour analyser de telles variables. En effet elles contiennent souvent
de nombreuses valeurs identiques (car seules quelques valeurs sont possibles quand on travaille sur un
classement), ce qui biaise complétement ces tests.

@ Tests basés sur un modele
52. Analyser un rang dans un classement

Laréponse est un décompte d’individus sans catégorie

@& Tests simples
Par commodité on va appeler la réponse « effectif » dans les fiches suivantes. Mais en fait « effectif » ne
se résume pas a ce type de réponse.
53. Conformité d'une série d’effectifs a une distribution théorique
54. Comparaison de plusieurs effectifs
@ Tests basés sur un modele
55. Analyser un décompte d’individus
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Laréponse est un décompte d’individus dans 2 catégories

@& Tests simples
Par commodité on va appeler la réponse « proportion » dans les fiches suivantes. Mais en fait « propor-

tion » ne se résume pas a ce type de réponse.
56. Conformité d'une proportion a une valeur théorique
57. Conformité de plusieurs proportions a des valeurs théoriques — 2 catégories
58. Comparaison de deux proportions — 2 catégories
59. Comparaison de plus de deux proportions — 2 catégories

@ Tests basés sur un modele
60. Analyser un décompte d’individus dans 2 catégories

Laréponse est un décompte d’individus dans plus de 2 catégories

@& Tests simples
Par commodité on va appeler la réponse « proportion » dans les fiches suivantes. Mais en fait « propor-
tion » ne se résume pas a ce type de réponse.
61. Conformité de plusieurs proportions a des valeurs théoriques — plus de 2 catégories
62. Comparaison de plusieurs proportions — plus de 2 catégories
@ Tests basés sur un modele
63. Analyser un décompte d’individus dans plus de 2 catégories

La réponse est continue bornée

64. Stratégie d’analyse d’'une réponse continue bornée

La réponse est continue non bornée

@ Tests simples portant sur la distribution
65. Conformité d'une variable continue a une distribution théorique
66. Comparaison de deux distributions
@ Tests simples portant sur la variance
67. Comparaison de deux variances
68. Comparaison de plus de deux variances
@ Tests simples portant sur la médiane
69. Conformité d'une médiane a une valeur théorique
70. Comparaison de deux médianes
71. Comparaison de plus de deux médianes
@ Tests simples portant sur la moyenne
72. Conformité d'une moyenne a une valeur théorique
73. Comparaison de deux moyennes
74. Comparaison de plus de deux moyennes — 1 facteur
75. Comparaison de plus de deux moyennes - 2 facteurs
Remarque :’ANOVA est en fait un test basé sur un modele. Elle est donc présentée dans la fiche 76.
@ Tests basés sur un modele
76. Analyser une variable continue non bornée - relation(s) linéaire(s)
77. Analyser une variable continue non bornée - relation non linéaire

La réponse est un temps avant la survenue d’'un événement

@ Tests basés sur un modele

Par commodité on va appeler un temps avant la survenue d'un événement « temps de survie » dans les
fiches suivantes (et I'évenement lui-méme « mort »), car les modeles développés pour ce type de réponse
I'ont originellement été pour analyser des temps de survie. Ce n’est qu'une question de vocabulaire, la
démarche est la méme quel que soit I'évéenement.
78. Choisir le modele d’analyse d'un temps de survie
79. Analyser un temps de survie - Modele Linéaire Généralisé
80. Analyser un temps de survie — Régression de survie
81. Analyser un temps de survie - Modele de Cox
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> Analyser les résultats d’'une étude

Données a deux dimensions - Statistique bivariée

GRAPHES

82. Nuages de points

REDUCTION DES DONNEES

83. Intensité de la liaison entre deux variables (covariance, corrélation, association)

TESTS

@& Tests simples
84. Corrélation entre deux variables quantitatives ou ordinales
85. Comparaison de plusieurs coefficients de corrélation
86. Association entre deux variables qualitatives

@& Tests basés sur un modele
87. Analyser deux variables quantitatives interdépendantes
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Données a plus de deux dimensions - Statistique multivariée

Comment s’orienter dans la jungle des analyses multivariées ?

Pour s’y retrouver, il faut se poser quelques questions trés simples. La premieére est : combien de
jeux de données (ou « tableaux ») y a-t-il a analyser ?

1. Un seul. Linformation utilisée dans 1’analyse est donc uniquement celle contenue dans ce

jeu de données.

Remarque : s'il y a la moindre autre variable a considérer que celles du jeu de données lui-
méme (des groupes connus a I’avance par exemple), il y a deux jeux de données. Et ce méme
si le second ne contient qu'une seule variable.

Question suivante : quel est 'objectif de I’analyse ?

(a) Classer les individus en groupes. On utilise alors une méthode de classification, qui va
constituer les groupes de fagon objective.

(b) Synthétiser I'information contenue dans le jeu de données pour la visualiser et I'interpré-
ter. On utilise alors une méthode d’ordination.
Remarque : on peut toujours tester si des variables « externes », i.e. connues a I’avance
mais non prises en compte dans I'analyse, sont significativement « corrélées » au résultat
d’une ordination (voir fiche 91).

. Deux. On parle d’analyse canonique.

Question suivante : quelle est la relation entre les deux jeux de données ?

(a) L'un est considéré comme expliquant 'autre, i.e. un jeu de données est « explicatif » et
l'autre « a expliquer ». On utilise alors une analyse asymétrigue. Comme pour tout modele
(univarié ou multivarié), les variables explicatives doivent étre bien moins nombreuses
que les individus et elles ne doivent pas étre trop corrélées entre elles.

(b) Les deux sont considérés de la méme fagon, sur un méme pied d’égalité. On utilise alors
une analyse symétrique.
Remarque : certains auteurs utilisent le terme « canonique » uniquement pour les analyses
symeétriques.

. Plus de deux. On est 1a encore dans le cadre des analyses canoniques. Les analyses présentées

dans ce document sont toutes symétriques.

Trois remarques :

— Pour certaines analyses, il peut étre intéressant voire nécessaire de pré-traiter les données en

amont (voir fiche 88). Ces cas sont identifiés dans les fiches concernées.

— Quelle que soit I'analyse, le « jeu de données » peut étre constitué soit des variables d’origine

(pré-traitées ou non), soit d'une matrice de distance (voir fiche 100), soit des variables de
synthese obtenues par une méthode d’ordination (i.e. les coordonnées des individus sur les
axes créés par une précédente analyse, voir fiche 90). Les cas ot cette derniere démarche
peut étre intéressante sont identifiées dans les fiches concernées.

— Lorsque plusieurs tableaux sont analysés en méme temps leurs lignes doivent étre identiques,

i.e. les différents tableaux sont des ensembles de variables mesurées sur les mémes individus.

DIVERS

88. Pré-traitement des données quantitatives

89. Interpréter un cercle des corrélations

90. Utiliser les axes d'une ordination comme variables d'une autre analyse
91. Relation entre une ordination et des variables externes
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ANALYSES PORTANT SUR 1 TABLEAU

Classification

Pour étre réalisée correctement, une classification se fait en quatre étapes, dans ’ordre suivant :
92. Classification — 1. Tester si un jeu de données peut étre classifié
93. Classification - 2. Identifier le nombre optimal de groupes
94. Classification — 3. Réaliser la classification
95. Classification — 4. Valider le résultat d'une classification

Ordination

Une ordination peut se faire directement sur un tableau de variables, ou sur une matrice de distance.
Une telle matrice contient toutes les distances deux-a-deux entre les individus, qui peuvent avoir été
calculées a partir de variables ou avoir été obtenues directement (distances génétiques par exemple). Il
n'y a donc plus aucune information sur les éventuelles variables d’origine dans une matrice de distance.
Choisir entre les deux types d’analyse est relativement simple : si la question porte (donc si I'interpréta-
tion biologique repose) sur les variables, utiliser une analyse sur les variables. Si la question porte sur la
(dis)similarité globale entre individus, utiliser une analyse sur une matrice de distance.

@ Analyses sur les variables

Ordination sur un tableau de variables

Le choix de I'analyse dépend de la nature du tableau et des variables qu’il contient :

1. Le tableau est un tableau de variables classique (i.e. individus en lignes, variables en co-
lonnes). Ces variables sont :

(a) toutes quantitatives — Analyse en composantes principales

(b) toutes qualitatives nominales (i.e. non ordonnées). Le choix dépend alors du nombre de
variables :

i. Deux — réorganiser le tableau en tableau de contingence (voir 2.) puis Analyse facto-
rielle des correspondances

ii. Plus de deux — Analyse des correspondances multiples

(c) de plusieurs types (quantitatives, qualitatives nominales, qualitatives ordinales) ou toutes
qualitatives ordinales — Analyse mixte

2. Le tableau est un croisement des modalités de deux facteurs, ot chaque case contient un
nombre d’'individus (le tableau est alors appelé tableau de contingence) ou une réponse
binaire (tableau de présence-absence) — Analyse factorielle des correspondances.

96. Lanalyse en composantes principales (ACP ou PCA)

97. Lanalyse factorielle des correspondances (AFC ou CA)
98. L'analyse des correspondances multiples (ACM ou MCA)
99. L'analyse mixte

@ Analyses sur une matrice de distance

Ordination sur une matrice de distance

L'analyse en coordonnées principales (PCoA) et le positionnement multidimensionnel non métrique
(nMDS) ont le méme objectif : créer une ordination a partir d'une matrice de distance. Mais dans le
détail, deux différences les distinguent :

1. La PCoA préserve les distances réelles, tandis que la nMDS n’utilise qu'une information
semi-quantitative (les rangs). Autrement dit, les distances observées sur une ordination
réalisée par PCoA peuvent étre directement interprétées comme les distances qui séparent
les individus dans la matrice de distance; sur une ordination réalisée par nMDS, la seule
information disponible est du type «telle distance est plus grande que telle autre », car les
distances réelles ne sont pas préservées.
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2. Comme les autres méthodes d’ordination, la PCoA produit de nombreux axes et ]'on retient
les premiers pour 'interprétation (donc seulement une partie de I'information, I'autre étant
sur les axes non retenus) ; la nMDS produit une ordination sur un nombre d’axes déterminé
a priori (2 ou 3 en pratique), donc toute I'information est facilement interprétable.

Sil’on souhaite garder I'information quantitative sur les distances réelles, en interprétant toutefois
sur une information partielle, choisir la PCoA. Sil'on souhaite synthétiser toute I'information pour
I'interprétation, en perdant I'information quantitative sur les distances réelles, choisir la nMDS.
Remarque : sil’on prévoit de « corréler » les résultats de 'ordination a des variables externes (voir
fiche 91), seule la PCoA a réellement du sens.

100. Les matrices de distance
101. L'analyse en coordonnées principales (PCoA)
102. Le positionnement multidimensionnel non métrique (nMDS)

ANALYSES PORTANT SUR 2 TABLEAUX

Analyses asymétriques
@ Analyses sur les variables

Analyses asymétriques sur un tableau de variables
Le choix de I'analyse dépend de I'objectif, de la nature des variables du tableau a expliquer, et de la
nature des variables du tableau explicatif :

1. Lobjectif est de réaliser une ordination. Le tableau explicatif est constitué :

(a) D’une seule variable qualitative (i.e. un facteur définissant des groupes). On parle alors
de discrimination. Le tableau a expliquer est :

i. Untableau de variables quantitatives. Ces variables sont :

A. bien moins nombreuses que les individus (minimum 5 fois moins) et pas (ou peu)
corrélées entre elles — Analyse discriminante linéaire

B. aussi nombreuses voire plus nombreuses que les individus et/ou corrélées entre
elles — Régression PLS discriminante

ii. Un tableau de contingence ou tableau de présence-absence — Analyse des correspon-
dances discriminante

(b) De plusieurs variables (quantitatives et/ou qualitatives), ou d'une seule variable quantita-
tive. Le tableau a expliquer est :

i. Un tableau de variables quantitatives — Analyse de redondance

ii. Un tableau de contingence ou tableau de présence-absence — Analyse canonique
des correspondances

Remarque : si le tableau de variables ne rentre pas dans les cases précédentes, le transformer
en matrice de distance (voir fiche 100) et utiliser I’analyse de redondance sur matrice de
distance.

2. Lobijectif est simplement de réaliser un test statistique — Analyser un ensemble de variables
quantitatives. Les variables du tableau a expliquer doivent toutes étre quantitatives. Si ce
n’est pas le cas, transformer ce tableau en matrice de distance (voir fiche 100) et réaliser le
test sur les distances.

103. L'analyse de redondance (RDA)

104. Lanalyse discriminante linéaire (LDA)

105. La régression PLS discriminante (PLS-DA)

106. L'analyse canonique des correspondances (CCA)
107. L'analyse des correspondances discriminante (DCA)
108. Analyser un ensemble de variables quantitatives
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@ Analyses sur une matrice de distance

Analyses asymétriques sur une matrice de distance

Le choix de 'analyse dépend de I'objectif :
1. Lobjectif est de réaliser une ordination — Analyse de redondance sur matrice de distance

2. Lobijectif est simplement de réaliser un test statistique — Analyser une matrice de distance.

109. Lanalyse de redondance sur matrice de distance (db-RDA)
110. Analyser une matrice de distance

Analyses symétriques

Analyses symétriques sur deux tableaux

Les analyses suivantes peuvent porter sur des tableaux de variables et/ou sur les axes d'une précé-
dente ordination. On peut ainsi coupler deux matrices de distance, un tableau de variables et une
matrice de distance, un tableau de variables quantitatives et un tableau de variables qualitatives...
Les possibilités sont nombreuses.
Le choix de I'analyse dépend surtout de I’habitude et de la tradition dans les différentes disciplines
scientifiques. De facon générale :
— Lanalyse PLS a deux blocs est employée surtout pour analyser la concordance entre deux
tableaux de variables (obligatoirement quantitatives), sans contrainte sur leur nombre
— Lanalyse procustéenne est employée surtout pour analyer la concordance entre deux ta-
bleaux de deux variables chacun (obligatoirement quantitatives) ou pour tester la concor-
dance entre deux ordinations a deux axes chacune
— Lanalyse de co-inertie est employée surtout pour analyser la concordance entre deux ta-
bleaux de variables (de tous types) ou pour tester la concordance entre deux ordinations,
sans contrainte sur le nombre de variables/axes
— Lanalyse de co-inertie procustéenne généralise I’analyse procustéenne au cas ot1 au moins
un tableau contient plus de deux variables. Dans le cas de deux tableaux de variables quantita-
tives, elle est plus facile a interpréter que 'analyse PLS a deux blocs et 'analyse de co-inertie.

111. Lanalyse PLS a deux blocs (2B-PLS)

112. L'analyse procustéenne

113. L'analyse de co-inertie (CIA)

114. L'analyse de de co-inertie procustéenne (PCIA)

ANALYSES PORTANT SUR 2 OU PLUS DE 2 TABLEAUX

Analyses symétriques sur deux ou plus de deux tableaux

Le choix de I'analyse dépend de I'objectif :

1. Lobjectif est d’identifier 'information commune a plusieurs tableaux — Analyse canonique
des corrélations régularisée généralisée

2. Lobjectif est de tester la concordance entre plusieurs tableaux et d’identifier une confi-
guration consensus, i.e. une ordination « moyenne » (unique) de ces tableaux — Analyse
procustéenne généralisée

115. L'analyse canonique des corrélations régularisée généralisée (RGCCA)
116. L'analyse procustéenne généralisée (GPA)
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30. Graphiques de dispersion

Ce type de graphique représente toutes les données individuelles d’'un vecteur, d’'une matrice ou
d’un tableau. Il permet d’avoir un apercu de la variabilité des données et d’identifier les observations
aberrantes. Son tracé est basé sur la fonction stripchart ().

Pour représenter un vecteur : stripchart (vecteur).

Pour représenter plusieurs vecteurs : stripchart (list(vecteurl,vecteur2,...)).
Pour donner un nom aux vecteurs sur le graphe, ajouter I'argument group . names=c ("Nom1" , "No-
m2",...).

Pour représenter des données en fonction d'un facteur : stripchart (reponse~facteur) ot les
deux objets sont des vecteurs contenant la valeur de chaque individu (dans le méme ordre). Le symbole ~
signifie « expliqué par » ou « en fonction de ».

Pour représenter les données verticalement, ajouter I'argument vertical=TRUE.

Pour que les valeurs identiques ne se superposent pas, ajouter 'argument method="jitter" (par
défaut method="overplot").

Pour ajouter un titre au graphe, utiliser 'argument main="Titre".

Pour modifier la 1égende de I'axe horizontal, utiliser I'argument x1ab="Légende".
Pour modifier la 1égende de I'axe vertical, utiliser 'argument ylab="Légende".
Pour (beaucoup) plus d’options graphiques, voir ?par.
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31. Histogrammes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Ce type de graphique divise les données contenues dans un vecteur en classes, et représente chaque
classe en effectif ou densité. Il permet d’avoir un apercu de la distribution des données. Son tracé est basé
sur la fonction hist ().

Pour représenter les classes en effectif: hist (vecteur).
Pour représenter les classes en densité : hist (vecteur,freq=FALSE) (freq=TRUE par défaut, ce qui
représente les effectifs).

Pour ajouter une courbe de densité : 1ines (density(vecteur)). Une telle courbe ne peut étre
ajoutée que sur un histogramme tracé en densité.

Pour ajouter une courbe de distribution théorique : 1ines (seq2(vecteur)!,dloi(seq2(vecte-
ur)!,par)) ol loi estlaloi de probabilité choisie et par ses parametres séparés par une virgule (voir
fiches 19 a 28).

Pour modifier le nombre de classes, ajouter I’argument breaks=n ol n est le nombre de coupures
souhaitées (il y adoncn + 1 classes).

Pour ajouter un titre au graphe, utiliser 'argument main="Titre".

Pour modifier la 1égende de I'axe horizontal, utiliser I'argument x1ab="Légende".
Pour modifier la 1égende de I'axe vertical, utiliser 'argument ylab="Légende".
Pour (beaucoup) plus d’options graphiques, voir ?par.

Pour tracer 'histogramme d’une variable par niveau d'un facteur : byf . hist (reponse~facteur)!
ol reponse et facteur sont des vecteurs contenant la valeur de chaque individu pour les deux variables
(dans le méme ordre). Le symbole ~ signifie « expliqué par » ou « en fonction de ».
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32. Boites a moustaches

Ce type de graphique représente de facon simplifiée la dispersion des données contenues dans un
vecteur. Il permet d’avoir un apercu de la distribution et de la variabilité des données, et d’identifier les
observations aberrantes. Son tracé est basé sur la fonction boxplot ().

Pour représenter un vecteur : boxplot (vecteur). Le trait épais représente la médiane, la boite est
formée par les valeurs des 1° et 3¢ quartiles, et les moustaches mesurent au maximum 1,5 fois la lon-
gueur de l'interquartile (i.e. la différence 3®™¢ quartile - 1¢" quartile). Les valeurs au-dela des moustaches
sont représentées individuellement.

Pour représenter plusieurs vecteurs : boxplot (list (vecteurl,vecteur2,...)).
Pour donner un nom aux boites, ajouter 'argument names=c ("Nom1" , "Nom2", .. .).

Pour représenter une boite par niveau d'un facteur : boxplot (reponse~facteur) oll reponse et
facteur sont des vecteurs contenant la valeur de chaque individu pour les deux variables (dans le méme
ordre). Le symbole ~ signifie « expliqué par » ou « en fonction de ».

Pour représenter les boites horizontalement, ajouter I'argument horizontal=TRUE.

Pour ajouter un titre au graphe, utiliser 'argument main="Titre".

Pour modifier la l1égende de 1'axe horizontal (si les boites sont tracées horizontalement), utiliser
l'argument x1lab="Légende".

Pour modifier la 1égende de I'axe vertical (si les boites sont tracées verticalement), utiliser 'argument
ylab="Légende".

Pour (beaucoup) plus d’options graphiques, voir ?par.
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33. Graphiques en haricots

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

beanplot

Ce type de graphique combine les avantages d'un graphique de dispersion (i.e. représenter les don-
nées individuellement, voir fiche 30), d'un histogramme (i.e. représenter la distribution des données,
voir fiche 31) et de boites a moustache (i.e. donner une vision globale de la distribution par niveau d'un
facteur, voir fiche 32).

Pour représenter un vecteur : beanplot (vecteur)!. Chaque donnée individuelle est représentée
par un petit segment horizontal (si deux données sont similaires le segment est deux fois plus long), la
distribution est représentée verticalement en miroir, la moyenne est indiquée par un long segment épais
etla moyenne générale par une droite en pointillés.

Pour représenter plusieurs vecteurs : beanplot (list (vecteurl,vecteur2,...))L
Pour donner un nom aux boites, ajouter 'argument names=c ("Nom1" , "Nom2", .. .).

Pour représenter une boite par niveau d'un facteur : beanplot (reponse~facteur)! ou reponse et
facteur sont des vecteurs contenant la valeur de chaque individu pour les deux variables (dans le méme
ordre). Le symbole ~ signifie « expliqué par » ou « en fonction de ».

Pour représenter les boites horizontalement, ajouter I’argument horizontal=TRUE.

Pour ajouter un titre au graphe, utiliser 'argument main="Titre".

Pour modifier la 1égende de 1'axe horizontal (si les boites sont tracées horizontalement), utiliser
l'argument x1lab="Légende".

Pour modifier la 1égende de I'axe vertical (si les boites sont tracées verticalement), utiliser I'argument
ylab="Légende".

Pour (beaucoup) plus d’options graphiques, voir 7beanplot (notamment les arguments what et col)
et 7par.
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34. Diagrammes en barres avec barres d’erreur

Lexemple présenté ici traite de moyennes et de barres d’erreur représentant des erreurs standards. Il
peut bien sir étre adapté a n'importe quelles valeurs.

Un facteur
L'étape préliminaire est de rassembler les moyennes (une par modalité du facteur) dans un vecteur

moyennes (contenant les valeurs dans I'ordre du graphe, de gauche a droite) et les erreurs standards (voir
fiche 37) dans un vecteur erreurs (avec les valeurs dans le méme ordre que les moyennes). La fonction
tapply () esttres utile dans cette situation (voir fiche 35).
La procédure est ensuite la suivante :
> abscisses <- barplot(moyennes)
> arrows(abscisses,moyennes-erreurs,abscisses,moyennes+erreurs,code=3,angle=90,le-
ngth=0.15)

Deux facteurs
Moyennes et erreurs standards doivent étre contenues dans des matrices. Ces matrices doivent avoir
en lignes les modalités du 2" facteur et en colonnes celles du 1¢ facteur (la fonction tapply () estla
encore tres utile, voir fiche 35). La procédure est ensuite identique, il faut seulement ajouter 'argument
beside=TRUE a la fonction barplot ().

L'argument names . arg=noms de la fonction barplot () ajoute ou modifie le nom des barres (noms
étant un vecteur contenant les noms de gauche a droite), tandis que 1egend=TRUE ajoute une légende
dans le cas de deux facteurs.

Pour ajouter un titre au graphe, utiliser 'argument main="Titre".

Pour modifier la 1égende de I'axe vertical, utiliser 'argument ylab="Légende".

Pour (beaucoup) plus d’options graphiques, voir ?barplot (options spécifiques aux diagrammes en
barre), ?1egend (options spécifiques de la légende) et ?par (options graphiques générales).
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35. Parametres de position

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Les parametres de position permettent de donner I'ordre de grandeur d’'une série de données. Les
trois plus fréquents sont :

— lamoyenne : mean (vecteur) oul vecteur est un vecteur contenant la valeur de chaque individu

— lamédiane : median(vecteur)

— le mode : mod (vecteur)?.

Si les vecteurs contiennent des données manquantes (NA), ajouter 'argument na . rm=TRUE aux fonc-
tions mean () etmedian().La fonction mod ()! gere par défaut les données manquantes.

Pour calculer la valeur d'un parametre par niveau d'un facteur, utiliser tapply (vecteur,facteur,
function(x) fonction) oll vecteur et facteur sont des vecteurs contenant la valeur de chaque indi-
vidu pour les deux variables (dans le méme ordre), et fonction la fonction a utiliser. Dans cette fonction,
vecteur doit étre remplacé par x : mean (x), median(x,na.rm=TRUE)...

EXEMPLE(S)
> variable <- c(1:60)
> facteur <- factor(rep(LETTERS[1:3],each=20))
> tapply(variable,facteur,function(x) mean(x))
A B C
10.5 30.5 50.5
Avec un deuxiéme facteur, la fonction renvoie une matrice :
> facteur2 <- factor(rep(letters[1:2],30))
> tapply(variable,list(facteur2,facteur),function(x) mean(x))
A B C
a 10 30 50
b 11 31 51
Le premier facteur défini les lignes de la matrice, le second en définit les colonnes.
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36. Parametres de dispersion

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Les parameétres de dispersion permettent d’estimer la variabilité d'une série de données. Les trois
plus fréquents sont :

— lavariance : var (vecteur) oll vecteur est un vecteur contenant la valeur de chaque individu

— l'écart-type (standard deviation) : sd (vecteur)

— le coefficient de variation : cv(vecteur)!. Le coefficient est par défaut exprimé en valeur absolue

et en pourcentage.

Si les vecteurs contiennent des données manquantes (NA), ajouter 'argument na . rm=TRUE aux fonc-
tions var () et sd (). La fonction cv ()! gere par défaut les données manquantes.

Les fonctions var () et sd () calculent la variance et I'écart-type non biaisés (i.e. sur labase de n—1 et
non n, n étant |'effectif de I’échantillon). La fonction cv () ! est basée sur I'écart-type non biaisé.

Pour calculer la valeur d'un parametre par niveau d'un facteur, utiliser tapply (vecteur,facteur,
function(x) fonction) oli vecteur et facteur sont des vecteurs contenant la valeur de chaque indi-
vidu pour les deux variables (dans le méme ordre), et fonction la fonction a utiliser. Dans cette fonction,
vecteur doit étre remplacé par x : var (x), sd(x,na.rm=TRUE)...

EXEMPLE(S)
> variable <- c(1:60)
> facteur <- factor(rep(LETTERS[1:3],each=20))
> tapply(variable,facteur,function(x) sd(x))

A B C
5.92 5.92 5.92
Avec un deuxieme facteur, la fonction renvoie une matrice :
> facteur2 <- factor(rep(letters[1:2],30))
> tapply(variable,list(facteur2,facteur),function(x) sd(x))

A B C

a 6.06 6.06 6.06
b 6.06 6.06 6.06
Le premier facteur défini les lignes de la matrice, le second en définit les colonnes.

Attention a ne pas confondre les parametres de dispersion avec I'intervalle de confiance ou I'erreur
standard (voir fiche 37). Les parametres de dispersion donnent une indication de la variabilité des
données, tandis que l'intervalle de confiance et |'erreur standard donnent une indication de la précision
d’'un parametre de position (voir fiche 35). En particulier, la taille d'une série de données n'a pas d’'impact
sur sa dispersion (la variabilité n'augmente ou ne diminue pas avec le nombre d’individus) mais en a un
sur la précision des parametres de position (cette précision augmente avec le nombre d’individus).

51



A

> Analyser les résultats d'une étude > Statistique univariée

37. Intervalle de confiance et erreur standard

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Lintervalle de confiance et 'erreur standard permettent d’estimer la précision d'une grande variété de
parameétres. Les trois cas les plus courants sont une moyenne, une médiane (pour laquelle seul I'intervalle
de confiance a du sens) et une proportion.

Attention a ne pas confondre I'intervalle de confiance ou I’erreur standard avec les parametres de
dispersion d’'une série de données (voir fiche 36). Les parameétres de dispersion donnent une indication
de la variabilité des données, tandis que I'intervalle de confiance et I’erreur standard donnent une indi-
cation de la précision d’'un parameétre de position (voir fiche 35). En particulier, la taille d'une série de
données n'a pas d’'impact sur sa dispersion (la variabilité n’augmente ou ne diminue pas avec le nombre
d’individus) mais en a un sur la précision des parameétres de position (cette précision augmente avec le
nombre d’individus).

Pour toutes les fonctions calculant un intervalle de confiance, la précision de cet intervalle peut étre
modifiée grace a 'argument conf . level (par défaut conf.level=0.95, ce qui calcule I'intervalle de
confiance a 95 %).

Moyenne
Intervalle de confiance
Si l'effectif de la série de données est grand (= 30 individus), I'intervalle de confiance est calculé de
facon paramétrique : t . test (serie)$conf.int oll serie est un vecteur contenant la série de données.
Si I'effectif est petit (< 30 individus), I'intervalle de confiance est calculé de facon non paramétrique
par bootstrap : bootstrap(serie,function(x,i) mean(x[i]))L

Erreur standard
Quel que soit I'effectif : se (serie)!. Voir fiche 36 pour calculer I'erreur standard par niveau d’'un
facteur.

Médiane
Intervalle de confiance
Si la série de données ne contient pas de 0 et quel que soit I'effectif : wilcox.signtest (serie) $co-
nf.intl
Sila série de données contient au moins un 0 et quel que soit'effectif: wilcox.signtest (serie ,mu=
valeur)$conf.int! oll valeur est une valeur quelconque absente de la série de données.

Proportion
Intervalle de confiance
Quel que soit l'effectif : binom. test (a,b) $conf . int ol a est le nombre d’individus de la catégorie
d’intérét et b I'effectif total.

EXEMPLE(S)
Lintervalle de confiance d’un sex-ratio de 9 femelles sur 25 individus (i.e. 0.36) est :
> binom.test(9,25)$conf.int

[1] 0.1797168 0.5747937

Erreur standard
Quel que soit I'effectif: se (a,b) .
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38. Identification et suppression des données aberrantes

Lidentification des données aberrantes est une étape obligatoire de toute analyse statistique. Elle se
fait essentiellement visuellement, grace a des graphes du type histogramme (voir fiche 31) ou boites a
moustaches (voir fiche 32).

La suppression d’éventuelles données aberrantes est un point hautement plus délicat que leur simple
identification. Supprimer une ou plusieurs donnée(s) aura nécessairement un effet sur les analyses qui
vont suivre, et cet effet sera d’autant plus important que I'effectif de I’échantillon est faible. Il est donc
tentant de supprimer les individus qui orientent les résultats vers des conclusions inverses a celles qui
sont attendues.

I n'y a globalement que deux raisons qui doivent pousser a éliminer une donnée :

— ¢’il y a manifestement eu une erreur technique dans la mesure ou dans la retranscription de la

donnée (par exemple si'appareil de mesure est défectueux)

— silavaleur de la mesure obtenue est biologiquement improbable pour la variable mesurée.

En dehors de ces deux cas, il y a de grandes chances pour que la valeur « aberrante » soit simplement une
singularité biologique de 'individu mesuré. Cette singularité est I'expression de la variabilité naturelle de
tout caracteére biologique, rien ne justifie donc que 'individu soit supprimé de I'étude.

Dans tous les cas, 'identification et la suppression éventuelle de données aberrantes doit se faire
avant tout autre analyse.
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39. Démarche d’utilisation des modeles

Lutilisation des modeles en statistique (en tout cas en statistique appliquée a la biologie) suit une
démarche qui est globalement toujours la méme :

1. Construction du modéle : (i) on choisit le type de modele que I'on utilise (linéaire, linéaire géné-
ralisé, non linéaire...) ; (ii) on choisit la loi de distribution sur laquelle le modele doit étre basé a
priori; (iii) on définit les relations entre les variables explicatives dans ce modéle. Dans le cadre
de cet aide-mémoire, les étapes (i) et (ii) sont toujours proposées, tandis que I'étape (iii) doit
nécessairement étre réalisée par l'utilisateur puisqu’elle dépend de la question de recherche. Cette
étape (iii) est basée sur la construction d’'une formule (voir fiche 40).

2. Vérification de 'ajustement du modeéle aux données : il est important de faire cette vérification,
car toute la suite de la démarche sera biaisée (voire compléetement faussée) sile modele n’est pas
bien représentatif des données réelles. En pratique cette vérification passe par un examen des
résidus du modele (voir fiche 41). Si le modeéle n’est pas bien ajusté, il y a plusieurs possibilités :
changer compléetement de modéle, changer la loi sur laquelle il est basé, modifier les relations
entre les variables explicatives, transformer les données. .. Dans tous les cas, tant que le modeéle
n’est pas bien ajusté aux données I'analyse ne doit pas aller plus loin.

La suite de la démarche peut prendre deux directions différentes, selon le type d’étude et le contexte :
— Approche par test de I'effet des variables explicatives :

3. Application d’un test sur le modele : 'effet de chaque terme de la formule est testé, ce qui
conduit a 'obtention d'une p-value (voir fiche 42).

4. Comparaisons multiples (si nécessaire) : siun facteur a plus de deux niveaux a un effet signifi-
catif, réaliser des comparaisons multiples permet de conclure sur ceux qui different réellement
(voir fiche 43).

— Approche par sélection de modele :

3.Sélection : des modeles dérivés du premier mais n'incluant que certains termes sont comparés
entre eux et avec le modeéle complet. Lobjectif est de sélectionner celui qui est le meilleur
compromis entre 'ajustement aux données et le nombre de variables explicatives (les deux
variant en ses inverse ; voir fiche 44).

On considere en général que lorsque I'objectif est d’expliquer des données observées, 'approche
par test est a privilégier ; lorsque I'objectif est de construire un modele qui servira ensuite a faire de la
prédiction, 'approche par sélection est a privilégier.
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40. Construction de la formule d’un modele

La construction de formules est un élément essentiel de I'analyse statistique. Elle peut étre relative-
ment simple si les notions suivantes sont bien comprises :

variable a expliquer et variable explicative

variable quantitative et facteur (voir fiche 11)

facteur fixe et facteur aléatoire (voir fiche 11)

plan d’échantillonnage (voir fiche 12) et plan d’expérience (voir fiche 13).

Le principe de toute formule est le suivant : variables.a.expliquer~variables.explicatives
(le symbole ~ signifie « expliqué par » ou « en fonction de»). En pratique il n'y a le plus souvent qu'une
seule variable a expliquer, ce qui simplifie la partie gauche de la formule. C’est dans la partie droite,
correspondant aux variables explicatives, qu’il est nécessaire de définir les relations entre ces variables. Il
est important de comprendre que ces relations dépendent de la question de recherche. Les définir ne se
fait donc pas au hasard, elles doivent au contraire représenter pertinemment la situation.

11 existe trois types de relation entre deux variables explicatives, représentées par trois symboles
différents :

I'effet de chaque variable est analysé séparément : A + B.

I'effet de chaque variable ainsi que leur interaction est analysé : A * B. Cette syntaxe est un rac-
courci strictement équivalenta A + B + A:B, quisignifie « variable A et variable B et 'interaction
entre A et B ». Avec plus de variables, les choses se compliquent: A * B * C est équivalenta A
+ B+ C+ A:B + A:C + B:C + A:B:C, ce qui signifie « (i) les variables seules (A, B, C) et (ii)
les interactions d’ordre 2 (entre A et B, entre A et C, entre B et C) et (iii) 'interaction d’ordre 3
(entre A, B et C). Il peut étre tentant de mettre toutes les interactions possibles dans la formule,
mais c’est une chose a éviter. En effet, a partir de 'ordre 3 les interactions sont trés difficilement
interprétables (ex : 'effet de A dépend de B, mais aussi de C...), sans compter que bien souvent les
effectifs ne sont pas assez élevés pour évaluer des effets aussi fins. Il est toujours plus pertinent de
se limiter aux effets que 'on peut expliquer.

un cas particulier, celui de deux facteurs emboités (ou hiérarchisés) : A/B, qui signifie « variable A et
variable B emboitée dans A » (ex : un facteur population emboité dans un facteur région). On peut
trés bien étendre la relation a4 A/B/C (ex : si on considére des facteurs pays, région et population).

Ces trois symboles (quatre en réalité avec le :) permettent de définir toutes les relations entre les
variables explicatives, qu’elles soient quantitatives ou qualitatives.

La gestion des facteurs aléatoires (voir fiche 11 a 13) est un peu spéciale. Elle fait appel a une syntaxe
particuliere, qui dépend de la fonction utilisée. On rencontre deux cas :

tests simples (non paramétriques généralement) : le facteur aléatoire est noté en fin de formule
apres le symbole |. Par exemple, dans la formule reponse~facteur|bloc le facteur facteur est
fixe et le facteur bloc est aléatoire.

modeles mixtes : on appelle mixte un modéle qui contient au moins un facteur aléatoire. Plu-
sieurs packages gerent ces modéles (chacun avec une syntaxe différente), dans cet aide-mémoire
c’est 1me4 qui est utilisé. Le facteur aléatoire est alors précisé, toujours en fin de formule, sous
la forme (1|facteur.alea). Par exemple, dans la formule reponse~facteur+(1|bloc) le fac-
teur facteur est fixe et le facteur bloc est aléatoire. Plusieurs facteurs aléatoires peuvent étre mis
dans la formule, sous la forme (1|facteurl) + (1|facteur2) s’ils sont a effet indépendant
ou (1|facteurl/facteur2) s’ils sont hiérarchisés. Il est possible de faire des choses bien plus
complexes avec les modeéles mixtes, voir Bates (2010) pour plus d’information.

Tous les fonctions créant un modele, et plus généralement toutes les fonctions basées sur une formule,
acceptent un argument data. Celui-ci permet de préciser le tableau de données dans lequel aller chercher
les variables contenues dans la formule, ce qui évite d’allonger la syntaxe de la formule (et parfois de
provoquer des erreurs).
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Ecrire un modele pour analyser des données est une chose, mais il est trés important de vérifier que

ce modele s’ajuste bien aux données. Si ce n’est pas le cas, toute analyse découlant de ce modele serait
a minima biaisée, voire totalement invalide.

Les vérifications a effectuer pour valider un modele se font essentiellement graphiquement et
tournent globalement autour de trois points : I"équivariance, 1'indépendance et la normalité des ré-
sidus du modele (les résidus étant les écarts entre les valeurs réellement observées et celles prédites par
le modele, ces derniéres étant nommées fitted values).

Ces trois vérifications essentielles sont réalisées grace a la fonction plotresid(modele)!. Deux

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

graphes sont renvoyés :

— le graphe de gauche sert a tester I'équivariance et I'indépendance des résidus. Sur ce graphe, la
ligne rouge représente la courbe de tendance du nuage de points. Lhypotheése d'indépendance
est acceptée lorsque I'orientation du nuage de points est horizontale (i.e. quand la ligne rouge ne
s’éloigne pas trop de I'horizontale). Lhypothese d’équivariance est acceptée lorsque la dispersion
verticale des points est a peu pres constante sur toute la longueur de ’axe des abscisses.

— le graphe de droite sert a tester la normalité des résidus. Lhypothése de normalité est acceptée

lorsque les points sont a peu pres alignés sur une droite (voir fiche 65).
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42. Application d’un test sur un modele

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lcar

Apres avoir vérifié que le modéle que I'on a construit est bien ajusté aux données (voir fiche 41), I'effet

des variables explicatives peut étre testé. Il existe trois facons de réaliser ce test, que I'on appelle types I,
I etIII. S’il 'y a qu'une variable explicative, les trois types de test donnent exactement le méme résultat.
S’il y a plusieurs facteurs parmi les variables explicatives mais que les effectifs sont équilibrés (i.e. s’ily a
autant d’individus dans toutes les classes d'un facteur et dans toutes les combinaisons des facteurs en
interaction), il en est de méme. Les trois types de test donnent des résultats différents s’il y a plusieurs
facteurs et que les effectifs ne sont pas équilibrés. Il est important de comprendre d’ol1 viennent ces
différences, car elles refletent des hypothese statistiques (et donc biologiques) différentes. On prendra
comme exemple un modele du type reponse~A+B+A: B, ol1 A et B sont des facteurs (voir fiche 40 pour
une explication de la formule).

Typel: l'analyse est séquentielle, i.e. les termes sont testés dans I'ordre ou ils apparaissent dans la

formule (NB : lorsqu'un modele est créé, R réorganise automatiquement la formule pour placer
les facteurs seuls d’abord, puis les interactions d’ordre 2, les interactions d’ordre 3...). Dans notre
exemple on a donc (i) un test de I'effet de A; (ii) un test de 'effet de B apres avoir retiré I'effet de
A;untest de l'effet de A: B apres retiré les effets de A et B. Cela implique que les résultats du test
pour les termes A et B sont dépendants de l'ordre dans lequel ils apparaissent dans la formule. Les
hypotheéses sous-jacentes sont rarement celles que 'on veut tester en biologie, aussi le type I est a
oublier (excepté bien stir si c’est exactement ce que ’on souhaite tester). Les tests de type I sont
réalisés par la fonction anova (modele). Attention, selon les modeéles ce n’est pas le méme test
qui est appliqué.

Type II: I'analyse est non séquentielle, i.e. indépendante de l'ordre des termes dans la formule. Elle

respecte par contre le principe de marginalité, qui stipule que «lorsqu'une interaction a un effet
significatif, 'effet des variables de l'interaction, lorsqu’elles sont impliquées dans des termes
d’ordre inférieur, est marginal devant celui de I'interaction ». Dit autrement, ce principe dit que si
une interaction entre deux facteurs a un effet significatif, I'information est dans cette interaction et
il est inutile de regarder I'effet des facteurs pris seuls (étendu a trois facteurs : si I'interaction entre
les trois a un effet significatif, il est inutile de s’intéresser aux facteurs pris seuls et aux interactions
d’ordre 2 impliquant ces facteurs). Concretement, on considere donc que lorsque I'on teste I'effet
d’un facteur, tous les termes d’ordre supérieur impliquant ce facteur n’ont pas d’effet. Dans notre
exemple, cela donne (i) un test de I'effet de A apres avoir retiré I'effet de B; (ii) un test de I'effet de
B apres avoir retiré 'effet de A; (iii) un test de 'effet de A : B aprés avoir retiré les effets de A et B.
Cette approche est celle qui est systématiquement utilisée dans cet aide-mémoire, car dans la trés
grande majorité des cas c’est celle qui est la plus pertinente vis-a-vis des hypotheses biologiques.
Les tests de type II sont réalisés par la fonction Anova (modele, type="II")! ou plus simplement
Anova(modele)?, le type II étant celui utilisé par défaut. Attention, selon les modeéles ce n’est pas
le méme test qui est appliqué.

Type IIl : I'analyse est non séquentielle et ne respecte pas le principe de marginalité. Le test de I'effet

d’'un facteur est donc réalisé en prenant en compte les interactions impliquant ce facteur. Dans
notre exemple, cela donne (i) un test de I'effet de A apres avoir retiré les effets de B et A:B; (ii)
un test de l'effet de B apres avoir retiré les effets de A et A:B; (iii) un test de I'effet de A: B apres
avoir retiré les effets de A et B. Cette approche, méme si elle peut paraitre intéressante au premier
abord, est tres délicate a utiliser car elle revient a considérer qu'un facteur puisse ne pas avoir
d’effet seul tout en modifiant I'effet d’'un autre facteur (i.e. tout en ayant un effet ailleurs). Excepté
si c’est réellement 'hypothése que I'on veut tester, le type III est donc a oublier car il est rarement
pertinent vis-a-vis des hypotheses biologiques. Les tests de type III sont réalisés par la fonction
Anova(modele,type="III")!. Attention, selon les modeles ce n'est pas le méme test qui est
appliqué.
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43. Comparaisons multiples basées sur un modele

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
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Lorsqu’un test sur un modeéle a révélé un effet significatif d'un facteur (ou d’'une interaction impliquant
au moins un facteur), il est nécessaire de réaliser des comparaisons multiples pour voir précisément
quelles sont les modalités qui different. La méthode présentée ici est I'une des plus intéressantes car elle
prend en compte l'effet des autres variables explicatives du modeéle dans les comparaisons. En d’autres
termes les comparaisons se font apres avoir retiré la variation due aux autres variables explicatives. Ce ne
sont donc plus les moyennes brutes (telles qu’on peut les calculer dans la fiche 35) qui sont comparées,
mais des moyennes ajustées en fonction des autres variables explicatives. La méthode en question est
celle des moyennes des moindres carrés, ou Least Squares Means (abrégé le plus souvent en LSMeans).

Remarque 1 : dans le cas d'une interaction entre un facteur et une covariable, ce ne sont pas des
moyennes qui sont comparées mais des pentes (les pentes de la relation entre la variable a expliquer et la
covariable, calculées pour chaque modalités du facteur).

Remarque 2 : cette fiche concerne tous les modéles présentés dans ce document exceptés ceux analy-
sant une réponse nominale a plus de deux catégories (voir fiche 51) ou un décompte d’individus dans
plus de deux catégories (voir fiche 63).

Calcul et enregistrement des moyennes/pentes ajustées
Facteur seul ou interaction entre deux facteurs : moyennes

La premiére étape consiste a calculer les moyennes ajustées, qui sont stockées dans un objet appelé
LSM. La syntaxe est du type : LSM<-1smeans (modele,~facteur)! ot facteur estle nom du facteur ou
del'interaction d’intérét (attention a ne pas oublier le symbole ~). Pour calculer les moyennes séparément
pour chaque niveau d'un autre facteur : LSM<-1smeans (modele,~facteurl|facteur2)!oufacteurl
est le facteur (oul'interaction) dont on veut comparer les modalités, et facteur?2 le facteur pour lequel
on veut réaliser les comparaisons a I'intérieur de chaque modalité.

Remarque 1 :pour les GLMMs basés sur une loi binomiale négative (créés avec la fonction glmer.nb () ;
voir fiche 55), il est nécessaire de préciser en plus vial’argument data le tableau de données sur lequel
est basé le modele. Dans tous les autres cas ce n’est pas nécessaire.

Remarque 2 : pour les MLMs (voir fiche 108), les moyennes ajustées peuvent étre calculées séparément
pour chaque variable a expliquer. Pour ce faire : LSM<-1smeans (modele,~facteur|rep.meas)!. Il est
impératif d’utiliser la syntaxe rep .meas.

EXEMPLE(S)
On utilise un modele appelé modele ayant pour formule reponse~A*B+C ol A, B et C sont des
facteurs (voir fiche 40 pour une explication de la formule).

Pour calculer la moyenne ajustée de chaque modalité de A :

> LSM <- lsmeans(modele,~A)!

Pour les modalités de 'interaction A:B:

> LSM <- lsmeans(modele,~A:B)!

Pour les modalités de A séparément pour chaque modalité de C :

> LSM <- lsmeans(modele,~A|C)!

Pour les modalités de I'interaction A : B séparément pour chaque modalité de C:
> LSM <- lsmeans(modele,~A:B|C)!

Sile modele est un GLMM basé sur une loi binomiale négative et que le tableau de données s’appelle

tableau:
> LSM <- lsmeans(modele,~A,data=tableau)!
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Si le modele est un MLM et que I'on souhaite calculer les moyennes ajustées séparément pour
chaque variable a expliquer :
> LSM <- lsmeans(modele,~A|rep.meas)!

Interaction entre un f(/lCT(),lll' et une covariable : ]7(311[("3'

Les pentes se calculent viala fonction 1strends (), dont I'utilisation est trés proche de 1smeans () !:
pentes<-lstrends(modele,~facteur,var="covariable")! ou facteur peut étre une interaction
entre plusieurs facteurs. Attention aux guillemets autour du nom de la covariable.

Remarque :1a fonction 1strends () ! n’est pas disponible pour les MLMs. Le cadre multivarié se préte
en effet assez peu a I’analyse de I'effet de covariables (voir fiche 108).

Les matrices de contrastes
Les fonctions présentées dans cette fiche permettent de réaliser de maniére simple toutes les compa-
raisons deux-a-deux possibles. Dans les cas ou I'on veut réaliser des comparaisons personnalisées, il est
nécessaire de commencer par créer une matrice des contrastes. Celle-ci est de la forme :

Modalitél Modalité2 Modalité3

Comparaisonl 1 -1 0
Comparaison?2 0 1 -1
Comparaison3 2 -1 -1

Dans cette matrice, les comparaisons (ou contrastes) sont représentées en lignes, tandis que les
modalités du facteur (ou de l'interaction) sont en colonnes. Les conventions d’écriture des contrastes
sont les suivantes :

— les modalités n’intervenant pas dans la comparaison doivent avoir une valeur nulle.

— les modalités a comparer doivent avoir une valeur non nulle et un signe opposé.

— il est possible d’effectuer des regroupements de classes (comme dans la troisieme ligne, ou la

modalité 1 est comparée au groupe formé par les modalités 2 et 3).

— la somme des valeurs positives et négatives d'un contraste doit étre nulle.

Attention, R considére les modalités du facteur dans I’ordre alphabétique, i.e. la 1¥ colonne corres-
pond a la 1¥¢ modalité dans I’ordre alphabétique, et ainsi de suite.

La matrice des contrastes est concretement un tableau, qui peut étre créé directement dans R (voir
fiche 5) ou importé depuis un tableur (voir fiche 6).

Réalisation des comparaisons

Pour réaliser toutes les comparaisons deux-a-deux: contrast (a.comparer, "pairwise")!olia.c-
omparer est soit LSM soit pentes.

Dans le cas de comparaisons personnalisées, la procédure se fait en deux étapes :
> cont.lsmc <- user.cont(contrastes)?
> contrast(a.comparer,"cont")!

oll contrastes est la matrice des contrastes qui spécifie les comparaisons a réaliser.

La fonction contrast ()! al’avantage de donner la p-value associée a chaque comparaison, mais
oblige a regrouper les modalités (dans des groupes du type a, ab, b...) a la main. Une méthode de
regroupement automatique existe cependant : c1d (&. comparer)!. Cette méthode ne renvoyant pas la
p-value de chaque comparaison, elle doit étre vue comme complémentaire de la premieére.

Remarque 1 : pour pouvoir utiliser la fonction c1d ()! il est nécessaire d’avoir installé le package
multcompView.

Remarque 2 : dans le cas d'un MLM (voir fiche 108), les comparaisons multiples réalisées prennent en
compte 'ensemble des variables a expliquer simultanément ; sauf si ’objet LSM a été créé en utilisant
rep.meas, auquel cas les comparaisons sont réalisées séparément pour chaque variable a expliquer.

Tests de significativité des moyennes/pentes
1l est parfois intéressant de tester si les moyennes/pentes sont individuellement différentes de 0. La
série de tests est réalisée automatiquement via summary (&. comparer, infer=TRUE).
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Récupération des moyennes/pentes ajustées
Facteur seul ou interaction entre deux facteurs : moyennes
Représenter sur un diagramme en barres les moyennes ajustées par niveau d'un facteur (ou combi-
naison de deux facteurs) est souvent plus pertinent que de représenter les moyennes brutes. Cela permet
d’illustrer la variation réellement due a ce facteur, apres avoir retiré la variation due aux autres variables
explicatives du modéle.
Pour tous les modeles sauf ceux analysant un rang dans un classement (voir fiche 52 pour la démarche
a utiliser dans ce cas), récupérer les moyennes ajustées se fait de la méme facon :

— Silavariable a expliquer n’a pas été transformée avant de créer le modele : valeurs<-as.data.fr-
ame (summary (LSM, type="response") ).Lobjet valeurs est un tableau dontla (les) premiere(s)
colonne(s) correspond(ent) aux modalités du (des) facteur(s) précisé(s) dans 1smeans (). La co-
lonne appelée 1smean, response, prob, rate ou hazard contient les moyennes ajustées. La
colonne SE contient I'erreur standard associée a chaque moyenne.

— Silavariable a expliquer a été transformée avant de créer le modele (ce qui en pratique ne concerne
que certains LM(M)s) : valeurs<-back.lsmeans (LSM, transform="transfo" ,add=valeur)?
ol transfo est le nom de la transformation entre guillemets ("log", "sqrt", "inverse" ou
"logit") et valeur une éventuelle constante ajoutée a la variable a expliquer avant transfor-
mation. L'objet valeurs est un tableau dont la premiéere colonne correspond aux modalités du
(des) facteur(s) précisé(s) dans 1smeans () !. La colonne Mean donne les moyennes ajustées et les
colonnes SE. inf et SE. sup donnent les bornes formées par I'erreur standard, qui est nécessaire-
ment asymétrique avec une transformation de la variable a expliquer.

EXEMPLE(S)
On utilise un modele appelé modele dans lequel la variable a expliquer est transformée en /x, avec
une formule reponse~facteur (voir fiche 40 pour une explication de la formule). Les moyennes
ajustées sont récupérées de cette facon :

> LSM <- lsmeans(modele,~facteur)!

> back.lsmeans(LSM,transform="sqrt")?

Si la transformation est du type In(x+1) :
> back.lsmeans (LSM,transform="1og",add=1)?2

Si la transformation est du type logio(x +1) :
> back.lsmeans (LSM,transform="1log",add=1,base=10)?

Une fois les moyennes et erreurs standards récupérées, elles peuvent étre représentées sur un dia-
gramme en barres (voir fiche 34).

Remarque : dans le cas d'un MLM (voir fiche 108), les moyennes ajustées n’ont de sens que si elles sont
calculées pour chaque variable a expliquer. Il est donc impératif d'utiliser rep . meas pour les récupérer.

Interaction entre un facteur et une covariable : pentes
Les pentes sont récupérées via: valeurs<-as.data.frame (summary(pentes)).Lobjet valeurs
est un tableau dont la (les) premiére(s) colonne(s) correspond(ent) aux modalités du (des) facteur(s)
précisé(s) dans 1strends (). La colonne dont le nom se termine par . trend contient les pentes ajustées.
La colonne SE contient |'erreur standard associée a chaque pente.
Remarque : en pratique les pentes ne sont directement interprétables que pour les LM(M)s.
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44, Sélection de modele

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
IMuMIn

On utilise le plus souvent la démarche de sélection de modéle lorsque le modele servira ensuite a faire
de la prédiction. L'objectif est d’aboutir au meilleur compromis entre un bon ajustement aux données
(qui croit avec le nombre de variables explicatives) et un petit nombre de variables explicatives (car plus
on prend en compte de variables explicatives, plus on perd en capacité a généraliser les résultats ce qui
est problématique pour de la prédiction).

La sélection est basée sur une valeur (appelée critére) représentant ce compromis. Plus elle est faible,
meilleur est le compromis. Il existe plusieurs criteres, le plus utilisé est le Criteére d'Information d’Akaike
(AIC).

En pratique, la sélection est réalisée automatiquement a partir du modele initial (complet). Pour la
réaliser : dredge (modele)!, oimodele estle modele contenant toutes les variables explicatives. Cette
fonction calcule I’AIC de tous les modeles possibles a partir du modele initial et renvoie un tableau
classant tous ces modeles. Parmi les arguments facultatifs de la fonction, deux sont particulierement
intéressants :

— m.max=valeur, ou valeur est le nombre maximal de variables explicatives a intégrer dans les

modeles a tester

— fixed=variables, ol variables est un vecteur contenant le nom des variables explicatives a

intégrer dans tous les modeles a tester (entre guillemets).

Attention, si d—”f < 40, ou n est le nombre d’individus et d f le nombre de parametres estimés par
modele (renvoyé par le fonction dredge ()1), il faut utiliser I’AICc (AIC corrigé) et non pas 'AIC. En
fait, comme cette situation est courante, la fonction dredge () utilise par défaut I’AICc pour classer les
modeles.

Dans le cas de modeles avec une loi quasipoisson ou quasibinomial, le critére utilisé est le QAIC,
dérivé de I'AIC pour les distributions « quasi». Il est nécessaire pour ces modeles de renseigner la valeur
du parametre de dispersion (obtenu via summary (modele)) grace a 'argument chat.

Pour utiliser un autre criteére que ’AICc pour réaliser la sélection, utiliser 'argument rank (en donnant
comme valeur "AIC" ou "QAIC" selon les cas).

EXEMPLE(S)
Avec un modele du type :

> modele <- glm(formule,family="quasipoisson")

La valeur du parametre de dispersion est récupérée via :

> summary (modele)

[...]

(Dispersion parameter for quasipoisson family taken to be 1.126135)
[...]

Etla sélection automatique peut ensuite étre réalisée :

> dredge (modele,rank="QAIC",chat=1.126135)!

La démarche est identique pour les modeles a loi quasibinomial.

Note sur les Modeéles Linéaires Mixtes (LMM) : le modele complet doit avoir été créé avec 'option
REML=FALSE (par défaut REML=TRUE). Une fois le meilleur modéle déterminé, il doit étre récrit avec
I'option REML=TRUE (ou en ne précisant pas I'option REML) pour étre analysé.

Lorsque I'on utilise une procédure de sélection automatique, il faut étre conscient que le modéle avec
I'AIC (ou dérivé) le plus faible n’est pas forcément celui qui biologiquement a le plus de sens. Il ne faut
donc pas utiliser cette procédure aveuglément mais toujours réfléchir aux variables et interactions qui
sont retenues. Il est ainsi possible d’enlever des termes manuellement si ceux-ci ne sont pas pertinents
ou trop complexes a interpréter (comme une interaction d’ordre 3 ou 4).
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45. Conformité d'une probabilité a une valeur théorique

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
IRVAideMemoire

Pour choisir le test approprié :

Séries appariées

Qo0 Ou;

Test binomial Test de Wald
exact

Séries non appariées
Test binomial exact (non paramétrique)
Pour réaliser le test : binom.test (nl,n,p=proba.theo) olt nl est le nombre d’individus de la
catégorie d’intérét, n I'effectif total et proba. theo la probabilité théorique de la catégorie d’intérét (0.5

par défaut).

EXEMPLE(S)
On veut comparer le sex-ratio (ici la proportion de femelles) d'un échantillon de 20 individus

contenant 7 femelles et 13 males a un sex-ratio équilibré (donc une probabilité de 0.5) :
> binom.test(7,20,p=0.5)

ou plus simplement puisque p=0.5 par défaut :

> binom.test(7,20)

Séries appariées
Test de Wald (paramétrique)

Pour réaliser le test : wald.ptheo.test (reponse,blocs,p=proba.theo)! oll reponse est la ré-
ponse de chaque individu (sous forme numérique ou d'un facteur, en tout cas binaire) et blocs un facteur
(aléatoire) contenant le groupe de chaque individu (dans le méme ordre que reponse). Si reponse est
codée sous forme 0/1, la probabilité du groupe 1 est testée ; si reponse est un facteur, la probabilité de la

2nde modalité est testée.
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46. Conformité de plusieurs probabilités a des valeurs théoriques -
2 classes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Test du y° de conformité (non paramétrique)

Conditions : les effectifs théoriques doivent tous étre non nuls et 80 % d’entre eux doivent étre = 5
(«régle de Cochran », voir ci-dessous).

Les effectifs théoriques sont obtenus via chisq.bin.exp(reponse~facteur,p=proba.theo)! ol
reponse et facteur sont des vecteurs contenant la valeur de chaque individu pour les deux variables
(dans le méme ordre), et oi1 proba. theo est un vecteur contenant la probabilité théorique dans chaque
modalité (dans I'ordre des modalités de facteur). Si reponse est codée sous forme 0/1, la probabilité du
groupe 1 est testée; si reponse est un facteur, la probabilité de la 2"d¢ modalité est testée. Le symbole ~
signifie « expliqué par » ou « en fonction de ». Les effectifs théoriques permettent de vérifier sila regle de
Cochran est respectée.

Remarque :les probabilités théoriques sont indépendantes entre les modalités de facteur. Elles n’ont
pas a donner une somme de 1, puisque les modalités ne sont pas comparées entre elles, mais chacune
est testée pour sa propre probabilité théorique.

Pour réaliser le test : chisq.theo.bintest (reponse~facteur,p=proba.theo)l

Une p-value significative indique qu’au moins une probabilité differe de sa valeur théorique, sans pré-
ciserla(les)quelle(s). Il est dans ce cas nécessaire de réaliser des comparaisons deux-a-deux pour identifier
la (les) probabilité(s) en question, via prop.bin.multcomp(reponse~facteur,p=proba.theo)l.

Il peut arriver que les comparaisons deux-a-deux n'indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu'on ne peut pas savoir
quelle modalité est responsable du rejet de I'hypothese nulle dans le test global.
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47. Comparaison de plusieurs probabilités — 2 classes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Séries appariées

oo Ou;
Au moins 200 Test de Cochran
individus (conditions suppl.)
S 2
3 %
Test du chi? Test exact
d’homogénéité de Fisher

ou

TestG
d’homogénéité

Le test exact de Fisher est toujours le plus fiable mais son temps de calcul augmente grandement avec
le nombre d’individus. Lorsque 'effectif est suffisamment grand, I’approximation faite par les tests du
¥? et G est assez satisfaisante pour qu’ils puissent étre utilisés. Les résultats de ces deux tests sont trés
semblables ; choisir entre I'un et I'autre reléve plus d'une habitude que d’une raison statistique.

Dans les tests suivants, si reponse est codée sous forme 0/1, la probabilité du groupe 1 est testée; si
reponse est un facteur, la probabilité de la 2" modalité est testée.

Séries non appariées
Test exact de Fisher (non paramétrique)

Pour réaliser le test : fisher.bintest (reponse~facteur)! oll reponse et facteur sont des vec-
teurs contenant la valeur de chaque individu pour les deux variables (dans le méme ordre). Le symbole ~
signifie « expliqué par » ou « en fonction de ».

Sila p-value du test est significative, cela indique qu’au moins deux classes du facteur ont un effet
différent sur la variable a expliquer (sans préciser lesquelles). La fonction réalise alors automatiquement
toutes les comparaisons deux-a-deux possibles par une série de tests exacts de Fisher.

Il peut arriver que les comparaisons deux-a-deux n’indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu’on ne peut pas savoir
quelles probabilités sont responsables du rejet de '’hypothese nulle dans le test global.

Test du x> d’homogénéité (non paramétrique)
Pour réaliser le test : chisq.bintest (reponse~facteur)!.
Sila p-value est significative, les comparaisons deux-a-deux sont réalisées automatiquement par une
série de tests du y> d’homogénéité.

Test G d’homogénéité (non paramétrique)
Pour réaliser le test : G.bintest (reponse~facteur)l.
Sila p-value est significative, les comparaisons deux-a-deux sont réalisées automatiquement par une
série de tests G d’homogénéité.
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Séries appariées
Test Q de Cochran (non paramétrique)

Conditions : le plan d’expérience doit étre en blocs aléatoires complets sans répétition (voir fiche 13).

Pour réaliser le test : cochran.qtest (reponse~fact.fixe|fact.alea)! oli variable, fact.f-
ixe et fact.alea sont des vecteurs contenant la valeur de chaque individu (dans le méme ordre) pour la
variable a expliquer, le facteur (fixe) dont on veut comparer les modalités et le facteur (aléatoire) servant
a définir les séries appariées, respectivement.

Sila p-value du test est significative, cela indique qu'au moins deux classes du facteur fixe ont un effet
différent sur la variable a expliquer (sans préciser lesquelles). La fonction réalise alors automatiquement
toutes les comparaisons deux-a-deux possibles par une série de tests des signes de Wilcoxon.
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48. Analyser une réponse binaire

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

11me4, 2MuMIn, 3car, *RVAideMemoire

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse
Avec une réponse binaire (i.e. définissant deux catégories), 'une des deux catégories est définie
comme « catégorie d’intérét ». Ce qui est analysé est la probabilité qu'un individu soit de cette catégorie
d’intérét, appelée « probabilité de réponse » dans cette fiche.
La variable a expliquer peut étre codée numériquement (sous forme 0/1) ou étre un facteur a deux
niveaux. Si elle est codée sous forme 0/1, la catégorie 1 est celle d’intérét; si elle est un facteur, la 2nde
modalité est la catégorie d’intérét.

Modeéle utilisé

Si le principe de I'analyse est le méme qu’il y ait des séries appariées ou non, quelques modalités
different. La premiere est que sans séries appariées le modele utilisé est un Modele Linéaire Généra-
lisé (Generalized Linear Model ou GLM), tandis qu’avec des séries appariées c’est un Modele Linéaire
Généralisé Mixte (Generalized Linear Mixed Model ou GLMM ; « mixte » sous-entendant « contenant au
moins un facteur aléatoire », facteurs que I'on utilise précisément pour identifier les séries appariées (voir
fiche 11)).

Contrairement au Modele Linéaire (et sa variante Mixte, voire fiche 76), les GLM(M)s ne sont pas
basés sur une loi normale. Dans le cas d’'une réponse binaire, la loi a utiliser est une loi binomiale.

Remarque : il existe en fait plusieurs types de GLM(M)s basés sur une loi binomiale. Le cas décrit ici
—le plus fréquent — est celui d'un modele logistique. Lorsque toutes les variables explicatives sont des
covariables, on est dans le cas particulier d'une régression logistique.

Construction du modele

Pour créer le modeéle :

— sans séries appariées : modele<-glm(formule,family="binomial")

— avec des séries appariées : modele<-glmer (formule,family="binomial")1.

Voir fiche 40 pour une explication détaillée de la construction d'une formule. De maniére générale, on
peut dire que :

— inclure un facteur permet de tester si les probabilités de réponse different entre les niveaux de ce
facteur.

— inclure une covariable permet de tester s'il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si I'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Vérification de I'ajustement aux données
Avant d’aller plus loin, il est indispensable de vérifier que le modele s’ajuste bien aux données.
Cette étape est fondamentale, et ce pour tout modele, car un test basé sur un modele mal ajusté n’est
simplement pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.
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Capacité explicative globale

On peut estimer la capacité explicative globale d’'un modeéle grace au coefficient de détermination (R?),
qui représente la proportion de la variance de la variable a expliquer qui est expliquée par les variables
explicatives. Ce coefficient est obtenu via r . squaredGLMM (modele)?. La fonction renvoie en fait deux
valeurs : le R? marginal (R2m) qui correspond a la part de la variance expliquée uniquement par les
facteurs fixes et covariables, et le R? conditionnel (R2c) qui correspond a la part de la variance expliquée
par 'ensemble des variables explicatives (fixes et aléatoires). Dans le cas d’'un GLM les deux valeurs sont
identiques puisqu’il n'y a pas de facteur aléatoire.

Test(s)

Quel que soit le modele, I'effet des variables explicatives est testé par la méme fonction : Anova (mode-
le)3 (voir fiche 42 pour une explication détaillée des hypotheéses testées). Cependant, ce ne sont pas les
mémes tests qui sont réalisés selon le modele :

— GLM : la fonction réalise un test du rapport des vraisemblances (Likelihood Ratio Test ou LR Test) —

en fait un test par terme du modele (i.e. un par ligne du tableau renvoyé).

— GLMM : la fonction réalise un test de Wald - en fait un test par terme du modele (i.e. un par ligne

du tableau renvoyé).

Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
different. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé. Les valeurs de tous les parametres du modéle sont obtenues via summary (modele). Elles sont
appelées Estimate et se trouvent dans le tableau Coefficients pour un GLM, Fixed effects pour
un GLMM. Si le coefficient portant le nom de la covariable est négatif, la probabilité de réponse diminue
quand la valeur de la covariable augmente; s’il est positif, la probabilité augmente quand la valeur de la
covariable augmente.

Prédiction a partir du modele
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire une probabilité de réponse nécessite donc de
fixer la valeur de foutes les variables explicatives.
Deux méthodes peuvent étre utilisées pour la prédiction (seule la seconde est disponible pour les
GLMMs), les deux étant basées sur la fonction predict () :

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d’une liste : predict (modele ,newdata=1i-
st (variables) ,type="response"), oll variables est un enchainement de variablel=va-
leur,variable2=valeur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent

étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau, type="response").
Remarque : pour les GLMMs, les valeurs du (ou des) facteur(s) aléatoire(s) peuvent étre données
ou non. Si ce n'est pas le cas, il est nécessaire d’ajouter I'argument re.form=NA a la fonction
predict (). Les prédictions prennent alors en compte I'effet moyen de toutes les modalités du
(ou des) facteur(s) aléatoire(s) du modele.

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- glm(reponse~facteur*covariable,family="binomial")

On peut prédire une probabilité de réponse de cette facon :

> predict(modele,newdata=list(facteur="A",covariable=10),type="response")

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)) ,type="re-
sponse")
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Ou encore :

> predict(modele,newdata=list (facteur=c("A","B"),covariable=rep(10,2)),type="r-
esponse")

Ou encore créer un tableau de ce type:

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau,type="response")

Graphes
Effet d’'un facteur
Pour illustrer I'effet d'un facteur, on réalise généralement un diagramme en barres ol1 sont repré-
sentées les probabilités de réponse moyennes par modalité. Deux types de moyennes peuvent étre
représentées :

— les moyennes brutes (i.e. calculées a partir des données brutes), avec leurs erreurs standards : voir
fiches 35 et 37, et l'utilisation de la fonction tapply (). Attention, dans le cas des GLMMs, ces
moyennes et erreurs standards ne tiennent pas compte du (des) facteur(s) aléatoire(s).

— les moyennes ajustées en fonction des autres variables du modeéle, également avec leurs erreurs
standards : voir fiche 43.

Une fois les moyennes et erreurs standards récupérées, le diagramme peut étre tracé (voir fiche 34).

Relation avec une covariable
Le modele logistique suppose une relation sigmoide (i.e. en « S ») entre la variable a expliquer et
chacune des covariables. Illustrer cette relation nécessite trois étapes :

1. Tracer les points observés : plot (reponse~covariable).

2. Créer un vecteur ayant les mémes minimum et maximum que la covariable mais découpé en trés
petits intervalles : x <- seq2(covariable)*.

3. Ajouter la courbe de la relation sur le graphe, ajustée par le modele. La détermination de tous
les points de la courbe est en fait basée sur une prédiction : la valeur que prend la variable a
expliquer pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le
trés petit intervalle qui les sépare, qui donne 'aspect lissé de la courbe (qui est en fait constituée
de centaines de points reliés entre eux). Si le modele contient d’autres variables explicatives
que la covariable du graphe, il faut en fixer toutes les valeurs a 'identique (de sorte que seule
la covariable du graphe change de valeur pour toutes les prédictions). La courbe s’ajoute via
lines(x,predict(modele,newdata=variables.a.expliquer,type="response")).
Remarque :1a fonction 1ines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
courbes sur le méme graphe, par exemple pour plusieurs niveaux d'un méme facteur contenu
dans le modeéle. Pour modifier le type de tracé et la couleur des courbes, utiliser les arguments
1ty et col respectivement (pour plus d’'informations et (beaucoup) plus d’options graphiques,
voir 7par). Enfin, pour ajouter une légende, utiliser la fonction legend () (voir ?1egend pour plus
d’informations).

EXEMPLE(S)
On se base toujours sur le modele suivant :

> modele <- glm(reponse~facteur*covariable,family="binomial")

Etape 1 : tracer les points correspondant aux données observées :

> plot(reponse~covariable)

Etape 2 : créer le vecteur x :

> x <- seq2(covariable)*

Etape 3 : ajouter la courbe. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("A",length(x))),
type="response"))
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La fonction rep () est trés utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la courbe de la relation dans la modalité B :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("B",length(x))),
type="response"))

Relation dans 2 modalités d’'un méme facteur

Variable & expliquer

Covariable
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49. Conformité de plusieurs probabilités a des valeurs théoriques — plus
de 2 classes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Au moins 200 individus

o Ouy

Test binomial exact Test de Wald

Le test binomial exact est toujours le plus fiable mais son temps de calcul augmente avec le nombre
d’individus. Lorsque I'effectif est suffisamment grand, I'approximation faite par le test de Wald est assez
satisfaisante pour qu'’il puissent étre utilisé.

Test binomial exact (non paramétrique)

Pour réaliser le test:multinomial.theo.multcomp (reponse,p=proba.theo,prop=TRUE)!olire-
ponse est un facteur a au moins trois niveaux donnant la réponse de chaque individu, et proba.theo un
vecteur donnant la probabilité théorique de chaque niveau (dans I’ordre des niveaux de reponse). La
somme de ces probabilités doit valoir 1. Il y a en fait un test binomial exact par proportion testée.

Test de Wald (paramétrique)

Pour réaliser le test : wald.ptheo.multinom.test (reponse,p=proba.theo)!. Il ya en fait un test
de Wald par proportion testée.
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50. Comparaison de plusieurs probabilités — plus de 2 classes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Test de Wald (paramétrique)
Pour réaliser le test : prop.multinom. test (reponse)! oll reponse est un facteur a au moins trois
niveaux donnant la réponse de chaque individu.
Il n’y a pas de test global dans cette situation. La fonction prop.multinom. test ()! réalise en fait
directement toutes les comparaisons multiples entre les différentes classes (i.e. les probabilités respectives
de ces classes sont comparées). Il y a donc un test de Wald par comparaison.

EXEMPLE(S)

On a réalisé une expérimentation ot chaque individu avait le choix entre trois options : Opt1, Opt2,

Opt3. Les résultats sont les suivants :

> resultat <- factor(c("Optl","Opt2","Opti","0pt2","0Opt2","Opti","Opt3","0pt2",
"Opt1","Opt2","Opt2","0Opt3","Opt2","Opt2","0pt2","Opt1", "Opt3", "Opt2","Opt1",
"Opt2","Opt1","Opt2","Optl","0pt2", "0pt2"))

La probabilité de chaque classe (et son erreur standard) est donnée par :

> prop.multinom(resultat)!

$probs

Opt1l Opt2 0Opt3

0.32 0.56 0.12

$se
Optl1  Opt2 Opt3
0.0952 0.1013 0.0663
On compare ces probabilités :
> prop.multinom.test(resultat)!
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51. Analyser une réponse qualitative nominale a plus de 2 classes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

Imultinom, 2RVAideMemoire, 3car

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse

Avec une réponse nominale a plus de 2 classes (i.e. définissant plus de deux catégories non ordonnées),
ce qui est analysé est la probabilité qu'un individu soit de chacune des classes. 11 sagit donc d'une réponse
multiple, et non unique comme dans la plupart des situations classiques (comme I’analyse d’'une réponse
binaire, voir fiche 48). Cela complique sérieusement I'interprétation des résultats.

Pour pouvoir analyser une telle réponse, il est nécessaire de définir une « classe de référence ». Car ce
sur ce quoi va travailler le modele est en fait la probabilité qu'un individu soit d'une classe donnée plutét
que de celle de référence. Pour K classes, on doit donc interpréter K — 1 rapports par variable explicative,
qui s'étendent a £ .(I; =1 rapports (par variable explicative!) pour toutes les combinaisons deux-a-deux des
K classes. On voit bien la complexité de travailler sur de telles réponses. D’ou1 I'idée de se restreindre a un
design expérimental tres simple (i.e. peu de variables explicatives et encore moins d’interactions) et a un
nombre de classes (i.e. K) limité. Pour des raisons analogues, mieux vaut éviter les variables explicatives
qualitatives a plus de deux niveaux (ou alors il faut étre prét a s’accrocher pour l'interprétation, qui peut
étre fastidieuse délicate).

Dans R, la variable a expliquer doit étre un facteur a plus de deux niveaux. Par défaut la 1 modalité
est définie comme classe de référence. Le choix de cette classe n’a aucune incidence sur I’analyse.

Modeéele utilisé
Le modele utilisé est un modeéle multinomial (ou « polytomique non ordonné »), une extension du
Modele Linéaire Généralisé (Generalized Linear Model ou GLM) pour réponse binaire (voir fiche 48).
Remarque : 1l existe en fait plusieurs types de modeles multinomiaux. Le cas décrit ici - le plus fré-
quent — est celui d'un modele logistique. Lorsque toutes les variables explicatives sont des covariables, on
est dans le cas particulier d'une régression multinomiale logistique.

Construction du modele
Pour créer le modele : modele<-multinom(formule,abstol=1e-15,reltol=1e-15,maxit=10-
00) . Voir fiche 40 pour une explication détaillée de la construction d'une formule. Les arguments
abstol, reltol etmaxit sont des options assurant une plus grande précision des résultats.
Remarque :1a construction d'un modele multinomial par la fonction multinom()! est un processus
itératif (comme trés souvent) qui a la particularité d’étre en partie visible. Pour supprimer les messages
affichés a la construction du modéle, ajouter I'argument trace=FALSE.

Vérification de la dépendance des parametres du modéle aux données

La variable a expliquer n’étant pas quantitative, la vérification de la validité du modele ne se fait pas de
maniere habituelle ici. On cherche en fait a savoir a quel point les parametres du modele dépendent des
données qu’on lui fournit. Si les parametres sont tres sensibles a la moindre variation dans les données,
c’est que le modele est mal défini. Cela peut indiquer (entre autres) que le modele peut étre simplifié ou
que certains parametres ne sont pas calculables.

La valeur qui représente cette dépendance est le conditionnement de la matrice hessienne. Elle est
obtenue via cond.multinom(modele)? Il n'y a pas vraiment de seuil absolu, mais on considere généra-
lement que si elle est supérieure a 10° c’est que le modele est mal défini.
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Test(s)

Leffet des variables explicatives est testé via Anova (modele)? (voir fiche 42 pour une explication
détaillée des hypotheses testées). Le test réalisé est un test du rapport des vraisemblances (Likelihood
Ratio Test ou LR Test) — en fait un test par terme du modele (i.e. un par ligne du tableau renvoyé).

Si une variable explicative a un effet significatif, cela indique qu’elle influence le rapport entre au
moins deux classes de la variable réponse. Autrement dit, la probabilité qu'un individu soit d'une classe
donnée par rapport a une autre classe donnée. Pour identifier quel(s) rapport(s) est (sont) significati-
vement influencé(s) par la variable explicative en question : test.multinom(modele,variable)? ol
variable estla variable explicative dont on souhaite étudier I'influence en détail. Ce qui est renvoyé par
test.multinom()? dépend de la nature de la variable explicative :

— Pour une variable explicative quantitative : la fonction renvoie un tableau ou chaque ligne corres-
pond a un rapport entre deux classes de la variable réponse (la syntaxe A | B signifie « probabilité
de A par rapport a la probabilité de B »). Le signe du coefficient indique le sens de la relation entre
un rapport et la variable explicative. L odds ratio est une facon simple de comprendre ce rapport,
qui indique de combien il varie pour une augmentation d’'une unité de la variable explicative.
Remarque : il n’est pas surprenant que les p-values des tests par rapport soient moins nettes que
la p-value globale obtenue via Anova(modele)3. D’abord parce qu'un test global ne se réduit pas
aune somme de tests individuels, mais aussi car ce ne sont pas les mémes tests qui sont réalisés :
test du rapport des vraisemblances au niveau global, tests de Wald pour chaque rapport. Le second
est moins puissant que le premier (voir fiche 17).

EXEMPLE(S)

Sur un modele dont la réponse a trois classes (A/B/C), une covariable a un effet significatif. Le détail
de son influence est le suivant :

Coeff SE 0dds.ratio z Pr(>|zl)
A|lC -0.93509 0.57383 0.3926 -1.6296 0.10319
BIC 1.56595 1.05528 4.7872 1.4839 0.13783

BIA 2.50104 1.20247 12.1952 2.0799 0.03753 *

Signif. codes: 0 ‘**x’> 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

La conclusion est que la covariable n’'influence que le rapport entre les modalités A et B (seule
p-value significative). D’apres 1'odds ratio, la probabilité qu'un individu soit B plutdt que A est
12.2 fois plus importante quand la covariable augmente d'une unité.

Remarque : un coefficient significativement différent de 0 revient a un odds ratio significativement
différent de 1.

— Pour une variable explicative qualitative a deux niveaux : la fonction renvoie un tableau structuré
comme pour une covariable. L'odds ratio d'un rapport entre deux classes de la variable réponse
indique le rapport entre (i) ce rapport dans une classe de la variable explicative et (ii) ce méme
rapport dans I'autre classe (c’est donc un rapport de rapports). La direction du rapport entre les
classes de la variable explicative est indiquée en titre du tableau.

EXEMPLE(S)
Sur un modele dont la réponse a trois classes (A/B/C), un facteur a deux niveaux (Femelle/Male) a
un effet significatif. Le détail de son influence est le suivant :
$‘Male|Femelle’
Coeff SE 0dds.ratio z Pr(>lzl)
A|C 0.1702 1.8533 1.18550 0.09182 0.92684
BIC -1.9660 0.8645 0.14002 -2.27415 0.02296 *
BlA -5.1361 4.0226 0.00588 -1.27682 0.20166

Signif. codes: 0 ‘“x*%%’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢’ 1

La conclusion est que le facteur n’'influence que le rapport entre les modalités B et C. D’apres I'odds
ratio, la probabilité que les méles soient B plutdt que C est seulement 0.14 fois celle des femelles
(autrement dit les femelles ont ﬁ = 7.14 fois plus de chances d’étre B plutdt que C par rapport aux
males).
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— Pour une variable explicative qualitative a plus de deux niveaux : la fonction renvoie un tableau
par rapport possible entre les classes de la variable explicative. C’'est donc une extension du cas
précédent, forcément bien plus difficile a interpréter.

Prédiction a partir du modele

Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire une série de probabilités nécessite donc de
fixer la valeur de foutes les variables explicatives.

Deux méthodes peuvent étre utilisées pour la prédiction, les deux étant basées sur la fonction
predict():

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d’'une liste : predict (modele ,newdata=1i-
st (variables)), ou variables est un enchainement de variablel=valeur,variable2=va-
leur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau).

La fonction predict () renvoie, pour chaque prédiction, la classe la plus probable de la variable
réponse sachant la valeur des variables explicatives qui ont servi a la prédiction. Il est possible d’obtenir
le détail des probabilités pour chacune des classes de la variable réponse en ajoutant I'arguments
type="probs". Le résultat est alors une matrice ot chaque ligne est une prédiction et chaque colonne
une classe de la variable réponse.

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B) et une covariable variantde 0 a 30 :

> modele <- multinom(reponse~facteur+covariable,abstol=1e-15,reltol=1e-15,max-
it=1000)1

On peut prédire la classe la plus probable de cette facon :

> predict(modele,newdata=list(facteur="A", covariable=10))

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)))

Ou encore :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=rep(10,2)))

Ou encore créer un tableau de ce type :

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau)
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52. Analyser un rang dans un classement

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lordinal, 2car, 3RVAideMemoire, *1smeans

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse
Un rang dans un classement (appelé « note »dans cette fiche) est une variable piégeuse, surtout s’il est
codé numériquement (i.e. 1/2/3/...). On pourrait en effet penser qu'il s’agit d'une variable quantitative, or
il n’en est rien puisque c’est une variable qualitative ordinale (voir fiche 11). La preuve : les notes (1/2/3)
peuvent parfaitement étre remplacées par des lettres (A/B/C) ou des expressions (bon/moyen/mauvais)
sans changer le sens de la variable. On parle parfois de variables « semi-quantitatives » car elles supposent
un processus sous-jacent quantitatif, mais elles ne le sont pas elles-mémes. C’est pour cette raison que
le parametre de position (voir fiche 35) le plus pertinent qui leur correspond est la médiane, et non la
moyenne.
Les notes doivent étre placés dans un type d’objet particulier, un facteur ordonné. Pour créer cet
objet:notes<-factor(serie,levels=classement,ordered=TRUE) ol serie estla série de données
et classement un vecteur donnant le classement des notes dans I’ ordre croissant (entre guillemets).

EXEMPLE(S)
Si les notes sont codées numériquement 1/2/3/4 (1 étant le rang le plus haut) :

> notes <- factor(serie,levels=c("4","3","2","1"), ordered=TRUE)
Lorsque I'on affiche le vecteur notes, les niveaux sont donnés sous cette forme :
Levels: 4 <3< 2<1

Si les notes sont codées en expression bon/moyen/mauvais (bon étant le rang le plus haut) :
> notes <- factor(serie,levels=c("mauvais","moyen","bon") ,ordered=TRUE)
Lorsque I'on affiche le vecteur notes, les niveaux sont donnés sous cette forme :

Levels: mauvais < moyen < bon

Modeéele utilisé

Si le principe de I'analyse est le méme qu'’il y ait des séries appariées ou non, quelques modalités
different. La premiere est que sans séries appariées le modele utilisé est un Modéle a Odds Proportion-
nels (Proportional Odds Model ou POM), tandis qu’avec des séries appariées c’est un Modele a Odds
Proportionnels Mixte (Proportional Odds Mixed Model ou POMM ; « mixte » sous-entendant « contenant
au moins un facteur aléatoire », facteurs que I'on utilise précisément pour identifier les séries appariées
(voir fiche 11)).

Ces modeles sont une sorte d’extension de ceux permettant d’analyser une réponse binaire (voir
fiche 48), mais ne rentrent pas dans la famille des Modeles Linéaires Généralisés (Generalized Linear
Models ou GLMs). Dans le cas de notes, I'analyse consiste en fait a étudier la probabilité de passer d'une
note a la note supérieure, et ce pour chaque transition du classement.

Remarque :1les POM(M)s sont en fait un cas particulier des Modéles a Lien Cumulatif (Cumulative
Link (Mixed) Models ou CLM(M)s). Le cas décrit ici - le plus fréquent — est celui d'un modele logistiqgue.

Construction du modele
Pour créer le modele :
— sans séries appariées : modele<-clm(formule)!
— avec des séries appariées : modele<-clmm(formule)l.
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Voir fiche 40 pour une explication détaillée de la construction d'une formule. De maniére générale, on
peut dire que :

— inclure un facteur permet de tester si les notes different entre les niveaux de ce facteur.

— inclure une covariable permet de tester s'il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si l'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Vérification de la dépendance des parametres du modéle aux données

La variable a expliquer n’étant pas quantitative, la vérification de la validité du modele ne se fait pas de
manieére habituelle ici. On cherche en fait & savoir a quel point les parametres du modele dépendent des
données qu’on lui fournit. Si les parametres sont tres sensibles a la moindre variation dans les données,
c’est que le modele est mal défini. Cela peut indiquer (entre autres) que le modele peut étre simplifié ou
que certains parametres ne sont pas calculables.

La valeur qui représente cette dépendance est le conditionnement de la matrice hessienne. Elle est
obtenue simplement en appelant modele, sous I'intitulé cond . H. Il n'y a pas vraiment de seuil absolu,
mais on considére généralement que si elle est supérieure a 10° c’est que le modeéle est mal défini.

Test(s)

Quel que soit le modele, I'effet des variables explicatives est testé par la méme fonction : Anova (mode-
le)? (voir fiche 42 pour une explication détaillée des hypotheses testées). Le test réalisé est un test du
rapport des vraisemblances (Likelihood Ratio Test ou LR Test) — en fait un test par terme du modele (i.e.
un par ligne du tableau renvoyé).

Remarque : pour pouvoir utiliser la fonction Anova ()2 sur un modele créé par clm()! ou clmm ()il
est nécessaire d’avoir chargé le package RVAideMemoire.

Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
different. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé. Les valeurs de tous les parametres du modéle sont obtenues via summary (modele). Elles sont
appelées Estimate et se trouvent dans le tableau Coefficients. Sile coefficient portant le nom de la
covariable est négatif, la note diminue quand la valeur de la covariable augmente ; s’il est positif, la note
augmente quand la valeur de la covariable augmente.

Prédiction a partir du modéle (non disponible pour les POMM:s)

Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire une note nécessite donc de fixer la valeur de
toutes les variables explicatives.

Deux méthodes peuvent étre utilisées pour la prédiction, les deux étant basées sur la fonction
predict():

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d’une liste : predict (modele,newdata=1i-
st (variables)), ou variables est un enchainement de variablel=valeur,variable2=va-
leur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau).

La spécificité des POM(M)s (et plus globalement des CLM(M)s) est qu'’ils travaillent sur plusieurs va-
leurs simultanément, i.e. les probabilités associées a chaque note du classement. La fonction predict ()
renvoie donc, pour chaque prédiction, autant de valeurs qu’il y a de notes possibles. Ces valeurs corres-
pondent a la probabilité respective de chaque note, sachant la valeur des variables explicatives qui ont
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servi a la prédiction. Les prédictions sont organisées en une matrice (qui est en fait dans le compartiment
fit delaliste renvoyée par predict ()) out chaque ligne est une prédiction et chaque colonne une note
du classement (du bas vers le haut du classement).

Deux autres types de prédiction sont disponibles :

— les probabilités cumulées, en ajoutant I'argument type="cum.prob" ala fonction predict ().

La fonction renvoie également une matrice (dans le compartiment cprob1 d'une liste) avec une
ligne par prédiction et une colonne par note. Chaque colonne contient non pas la probabilité de
la note correspondante, mais la probabilité que la note obtenue soit inférieure ou égale a cette
note. La derniére colonne (i.e. la note la plus élevée du classement) contient donc nécessairement
la valeur 1.

la note la plus probable, en ajoutant 'argument type="class" a la fonction predict (). La
fonction renvoie cette fois un vecteur (dans le compartiment £it d’une liste) contenant une valeur
par prédiction. Cette valeur est la note la plus probable sachant la valeur des variables explicatives
qui ont servi a la prédiction.

EXEMPLE(S)

Avec un modele contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- clm(reponse~facteur*covariable)!

On peut prédire une note de cette facon :

> predict(modele,newdata=list(facteur="A",covariable=10))

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)))

Ou encore:

> predict(modele,newdata=list(facteur=c("A","B"),covariable=rep(10,2)))

Ou encore créer un tableau de ce type :

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau)

Graphes

Effet d'un facteur

Pour illustrer I'effet d'un facteur, on réalise généralement un diagramme en barres (voir fiche 34).
Mais du fait de la complexité d'une variable a expliquer telle que des notes, plusieurs représentations
sont possibles. On a également le choix de I'information que I'on veut représenter : la fréquence observée
des différentes notes (dans le jeu de données) ou la probabilité ajustée de ces notes (calculée a partir
du modele). Il est souvent plus pertinent de représenter les probabilités ajustées, car elles illustrent la
variation réellement due au facteur, apres avoir retiré la variation dues aux autres variables explicatives
du modeles. De plus, seules les probabilités ajustées prennent en compte I'effet des facteurs aléatoires
(s’il y en a dans I'analyse).

Les représentations possibles sont :

— la fréquence / probabilité de chaque note.

Les fréquences observées sont obtenues viarating.prob(notes,facteur)? (facteur peut étre
une interaction entre deux facteurs, spécifiée par facteurl:facteur?).

Deux étapes sont nécessaires pour récupérer les probabilités ajustées. D’abord calculer ces proba-
bilités et les stocker dans un objet (appelé LSMici) : LSM <- lsmeans(modele,~facteur|cut,
mode="linear.predictor")* (voir fiche 43 pour une explication de la syntaxe de la fonction
1smeans ()*;il est indispensable que la formule se termine par | cut). Ensuite récupérer les proba-
bilités, qui ne sont pas données directement par la fonction 1smeans ()*:rating.lsmeans (LSM)3.
la fréquence cumulée / probabilité cumulée de chaque note (i.e. la probabilité que la note soit
inférieure ou égale a chaque note possible, du bas vers le haut du classement).

Les fréquences cumulées observées sont obtenues viarating.prob(notes,facteur, type="cu-
mprob")3.
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Les probabilités ajustées sont récupérées (a partir du méme objet LSM) viarating.lsmeans (LSM,
type="cumprob")3.

— lanote la plus fréquente / probable. Le diagramme en barres ne peut pas étre utilisé dans ce cas
car la valeur est qualitative et non quantitative.
La note la plus fréquente est obtenue viarating.prob(notes,facteur,type="class")3.
Lanote la plus probable est obtenue (a partir du méme objet LSM) viarating.lsmeans (notes,fa-
cteur,type="class1")3.
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53. Conformité d’'une série d’effectifs a une distribution théorique

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

Icar, 2dgof, *RVAideMemoire

L'ajustement a une distribution théorique se teste avant tout graphiquement, car il est rare que des
données réelles suivent parfaitement une loi théorique. Il y a donc toujours une part de subjectivité dans
I'estimation d’'un ajustement, que les tests statistiques ne peuvent pas refléter.

Test graphique
Le test visuel est réalisé grace au graphe quantile-quantile, tracé de la maniére suivante : qqPlot (se-
rie,dist="loi",par)! ol serie est un vecteur contenant la série de données, 1o1i est laloi théorique
choisie (entre guillemets) et par ses parametres séparés par une virgule (voir fiches 19 a 22).

EXEMPLE(S)
Ajustement a une loi binomiale (voir fiche 20) :
> qqPlot(serie,dist="binom",n,p)!
Ajustement a une loi de Poisson (voir fiche 21) :
> qqPlot(serie,dist="pois",lambda)!

La distribution de la série suit la loi théorique choisie si les points du graphe sont a peu pres alignés
sur une droite. Toute autre structuration des points (courbure(s), nombreux points éloignés...) indique le
contraire. La droite tracée est celle qui passe par les 1¢' et 3¢™¢ quartiles de la distribution représentée, et
son intervalle de confiance est affiché en pointillés. Les points peuvent ne pas étre parfaitement alignés
sur la droite, mais s'ils restent dans I'intervalle de confiance I'ajustement est considéré comme correct.

Test statistique
Test de Cramér - von Mises (non paramétrique)
Pour réaliser le test : cvm.test (serie,cdf.discrete(serie,"loi",par)3)2.

EXEMPLE(S)
Ajustement a une loi binomiale (voir fiche 20) :

> cvm.test(serie,cdf.discrete(serie,"binom",n,p)3)?
Ajustement a une loi de Poisson (voir fiche 21) :

> cvm.test(serie,cdf.discrete(serie,"pois",lambda)?)?
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54. Comparaison de plusieurs effectifs

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Au moins 200 individus

Test du chi? Test multinomial
d’homogénéité exact

ou

TestG
d’homogénéité

Le test exact est toujours le plus fiable mais son temps de calcul augmente grandement avec le
nombre d’individus. Lorsque I'effectif total est suffisamment grand, 'approximation faite par les tests du
¥? et G est assez satisfaisante pour qu’ils puissent étre utilisés. Les résultats de ces deux tests sont trés
semblables ; choisir entre I'un et I’autre releve plus d'une habitude que d’une raison statistique.

Test multinomial exact (non paramétrique)

Pour réaliser le test : multinomial.test (effectifs)! ou effectifs est un vecteur contenant les
effectifs.

Une p-value significative indique qu’au moins deux effectifs different 'un de I'autre, sans préciser
lesquels. Il est dans ce cas nécessaire de réaliser des comparaisons deux-a-deux pour identifier les effectifs
en question, viamultinomial .multcomp(effectifs)l.

Il peut arriver que les comparaisons deux-a-deux n'indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu’on ne peut pas savoir
quels effectifs sont responsables du rejet de I’hypothése nulle dans le test global.

Test du x> d’homogénéité (non paramétrique)
Pour réaliser le test : chisq.test (effectifs).

Sila p-value est significative, les comparaisons deux-a-deux sont réalisées via chisq.multcomp (ef-
fectifs)l

Test G d’homogénéité (non paramétrique)
Pour réaliser le test: G. test (effectifs)l.

Si la p-value est significative, les comparaisons deux-a-deux sont réalisées via G.multcomp (ef-
fectifs,p=prop.theo)l.
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55. Analyser un décompte d’individus

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
11me4, 2RVAideMemoire, 3MASS, *MuMIn, °car

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse
La réponse (appelée «effectif » dans cette fiche) ne peut étre que nulle ou entiére positive.

Modeéle utilisé

Si le principe de I'analyse est le méme qu'il y ait des séries appariées ou non, quelques modalités
different. La premiere est que sans séries appariées le modele utilisé est un Modele Linéaire Généra-
lisé (Generalized Linear Model ou GLM), tandis qu’avec des séries appariées c’est un Modele Linéaire
Généralisé Mixte (Generalized Linear Mixed Model ou GLMM ; « mixte » sous-entendant « contenant au
moins un facteur aléatoire », facteurs que I'on utilise précisément pour identifier les séries appariées (voir
fiche 11)).

Contrairement au Modele Linéaire (et sa variante Mixte, voire fiche 76), les GLM(M)s ne sont pas
basés sur une loi normale. Dans le cas d’effectifs, la loi a utiliser a priori est une loi de Poisson.

Remarque : 1l existe en fait plusieurs types de GLM(M)s basés sur une loi de Poisson. Le cas décrit ici
—le plus fréquent — est celui d'un modele log-linéaire. Lorsque toutes les variables explicatives sont des
covariables, on est dans le cas particulier d'une régression log-linéaire ou régression de Poisson.

Construction du modele

Pour créer le modeéle :

— sans séries appariées : modele<-glm(formule,family="poisson")

— avec des séries appariées : modele<-glmer (formule,family="poisson")L

Voir fiche 40 pour une explication détaillée de la construction d'une formule. De maniére générale, on
peut dire que :

— inclure un facteur permet de tester si les effectifs different entre les niveaux de ce facteur.

— inclure une covariable permet de tester s’il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si I'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Vérification de la validité du modele
Surdispersion des résidus

La premiére étape de validation du modeéle est de vérifier que les résidus ne sont pas surdispersés, i.e.
que leur variance n’est pas plus grande que celle admise par le modeéle. Pour cela, il suffit de comparer la
déviance résiduelle (residual deviance) du modele avec ses degrés de liberté résiduels (residual degrees of
freedom). Sila déviance résiduelle est plus grande, il y a surdispersion. Pour obtenir ces valeurs :

— GLM: appeler summary (modele) etrepérerlaligne Residual deviance: xx.xx on xx degr-

ees of freedom
— GLMM : utiliser overdisp.glmer (modele)?.
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S’il y a surdispersion, il est nécessaire de modifier le modeéle en changeant la loi sur laquelle il est
basé :
— GLM : deux solutions sont envisageables :
— remplacer la loi de Poisson par une loi quasi-Poisson. Il faut recréer le modele : modele<-glm(
formule,family="quasipoisson").
— remplacer la loi de Poisson par une loi binomiale négative. Il faut recréer le modele, cette fois
avec une autre fonction : modele<-glm.nb(formule)3.
La loi binomiale négative donne souvent de trés bons résultats. Si elle ne suffit pas, la loi quasi-
Poisson peut étre utilisée. Cette derniére réglera toujours le probléme de la surdispersion des
résidus.
— GLMM : seule la loi binomiale négative est disponible. Il faut recréer le modele, avec une autre
fonction : modele<-glmer.nb(formule)l.

Ajustement aux données

La seconde vérification, indispensable, est de contrdler que le modele s’ajuste bien aux données.
Cette étape est fondamentale, et ce pour tout modele, car un test basé sur un modele mal ajusté n’est
simplement pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.

Sil'ajustement n’est pas bon du tout, la facon la plus simple de s’en sortir est de transformer la variable
a expliquer. Sur des effectifs, trois options sont classiques : v/x, log(x) si la premiére transformation
n’est pas suffisante, v/x en alternative a la deuxiéme s'il y a des 0 dans les données. Une fois la variable a
expliquer transformeée, elle ne représente plus des effectifs mais une variable continue. On change donc
de modéle, et I’analyse devient celle présentée dans la fiche 76.

Capacité explicative globale

On peut estimer la capacité explicative globale d’'un modeéle grace au coefficient de détermination (R?),
qui représente la proportion de la variance de la variable a expliquer qui est expliquée par les variables
explicatives. Ce coefficient est obtenu via r . squaredGLMM (modele)“. La fonction renvoie en fait deux
valeurs : le R? marginal (R2m) qui correspond a la part de la variance expliquée uniquement par les
facteurs fixes et covariables, et le R? conditionnel (R2c) qui correspond a la part de la variance expliquée
par 'ensemble des variables explicatives (fixes et aléatoires). Dans le cas d'un GLM les deux valeurs sont
identiques puisqu’il n'y a pas de facteur aléatoire.

Test(s)

Pour tous les modeles évoqués a I'exception de ceux avec une loi quasi-Poisson, I'effet des variables
explicatives est testé par la méme fonction : Anova (modele)® (voir fiche 42 pour une explication détaillée
des hypotheses testées). Cependant, ce ne sont pas les mémes tests qui sont réalisés selon le modele :

— GLM : la fonction réalise un test du rapport des vraisemblances (Likelihood Ratio Test ou LR Test) —

en fait un test par terme du modeéle (i.e. un par ligne du tableau renvoyé).

— GLMM : la fonction réalise un test de Wald - en fait un test par terme du modele (i.e. un par ligne

du tableau renvoyé).

Dans le cas d'un GLM avec une loi quasi-Poisson, le test a utiliser est un test E Il est réalisé via
Anova(modele,test="F")5,

Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
difféerent. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé. Les valeurs de tous les parametres du modeéle sont obtenues via summary (modele). Elles sont
appelées Estimate et se trouvent dans le tableau Coefficients pour un GLM, Fixed effects pour
un GLMM. Si le coefficient portant le nom de la covariable est négatif, 1'effectif diminue quand la valeur
de la covariable augmente ; s'il est positif, I'effectif augmente quand la valeur de la covariable augmente.
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Prédiction a partir du modele
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire un effectif nécessite donc de fixer la valeur de

toutes les variables explicatives.

Deux méthodes peuvent étre utilisées pour la prédiction (seule la seconde est disponible pour les

GLMMs), les deux étant basées sur la fonction predict () :

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d'une liste : predict (modele,newdata=1i-
st(variables) ,type="response"), oll variables est un enchainement de variablel=va-
leur,variable2=valeur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent

étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau, type="response").
Remarque : pour les GLMMs, les valeurs du (ou des) facteur(s) aléatoire(s) peuvent étre données
ou non. Si ce n'est pas le cas, il est nécessaire d’ajouter 'argument re . form=NA a la fonction
predict (). Les prédictions prennent alors en compte I'effet moyen de toutes les modalités du
(ou des) facteur(s) aléatoire(s) du modele.

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- glm(reponse~facteur*covariable,family="poisson")

On peut prédire un effectif de cette facon :

> predict(modele,newdata=list(facteur="A",covariable=10) ,type="response")

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)),type="re-
sponse")

Ou encore :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=rep(10,2)),type="r-
esponse")

Ou encore créer un tableau de ce type :

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau,type="response")

Graphes
Effet d'un facteur

Pour illustrer |'effet d'un facteur, on réalise généralement un diagramme en barres ol sont représentés

les effectifs moyens par modalité. Deux types de moyennes peuvent étre représentées :

— les moyennes brutes (i.e. calculées a partir des données brutes), avec leurs erreurs standards : voir
fiches 35 et 37, et I'utilisation de la fonction tapply (). Attention, dans le cas des GLMMs, ces
moyennes et erreurs standards ne tiennent pas compte du (des) facteur(s) aléatoire(s).

— les moyennes ajustées en fonction des autres variables du modeéle, également avec leurs erreurs
standards : voir fiche 43.

Une fois les moyennes et erreurs standards récupérées, le diagramme peut étre tracé (voir fiche 34).

Relation avec une covariable
Illustrer la relation entre la variable a expliquer et une covariable nécessite trois étapes :

1. Tracer les points observés : plot (reponse~covariable).
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2. Créer un vecteur ayant les mémes minimum et maximum que la covariable mais découpé en tres
petits intervalles : x <- seq2(covariable)?.

3. Ajouter la courbe de la relation sur le graphe, ajustée par le modele. La détermination de tous
les points de la courbe est en fait basée sur une prédiction : la valeur que prend la variable a
expliquer pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le
tres petit intervalle qui les sépare, qui donne I'aspect lissé de la courbe (qui est en fait constituée
de centaines de points reliés entre eux). Si le modele contient d’autres variables explicatives
que la covariable du graphe, il faut en fixer toutes les valeurs a I'identique (de sorte que seule
la covariable du graphe change de valeur pour toutes les prédictions). La courbe s’ajoute via
lines(x,predict(modele,newdata=variables.a.expliquer,type="response")).
Remarque :1a fonction 1ines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
courbes sur le méme graphe, par exemple pour plusieurs niveaux d'un méme facteur contenu
dans le modele. Pour modifier le type de tracé et la couleur des courbes, utiliser les arguments
1ty et col respectivement (pour plus d’'informations et (beaucoup) plus d’options graphiques,
voir ?par). Enfin, pour ajouter une légende, utiliser la fonction legend () (voir ?1egend pour plus
d’informations).

EXEMPLE(S)
On se base toujours sur le modele suivant :

> modele <- glm(reponse~facteur*covariable,family="poisson")

Etape 1: tracer les points correspondant aux données observées :

> plot(reponse~covariable)

Etape 2 : créer le vecteur x :

> x <- seq2(covariable)?

Etape 3 : ajouter la courbe. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("A",length(x))),
type="response"))

La fonction rep () est trés utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la courbe de la relation dans la modalité B :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("B",length(x))),
type="response"))

Relation dans 2 modalités d’'un méme facteur

Variable a expliquer
2
!

Covariable
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> Analyser les résultats d'une étude > Statistique univariée

56. Conformité d’'une proportion a une valeur théorique

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire
Pour choisir le test approprié :
Répétitions
o Oy
Séries appariées Séries appariées
& %, & %,
Test binomial Test de Wald Test de Wald Test de Wald
exact
Pas de répétitions

Test binomial exact (non paramétrique)
Pour réaliser le test : binom. test (nl,n,p=prop.theo) olinl estle nombre d'individus de la caté-
gorie d’intérét, n I'effectif total et prop . theo la proportion théorique de la catégorie d’'intérét (0.5 par
défaut).

EXEMPLE(S)
On veut comparer le sex-ratio (ici la proportion de femelles) d'un échantillon de 20 individus
contenant 7 femelles et 13 males a un sex-ratio équilibré (donc une proportion de 0.5) :

> binom.test(7,20,p=0.5)

ou plus simplement puisque p=0.5 par défaut :

> binom.test (7,20)

Test de Wald (paramétrique)

Pour réaliser le test : wald.ptheo.test (reponse,blocs,p=prop.theo)! oll reponse est la ré-
ponse de chaque individu (i.e. a quelle catégorie il appartient, sous forme numérique ou d'un facteur) et
blocs un facteur (aléatoire) contenant le groupe de chaque individu (dans le méme ordre que reponse).
Si reponse est codée sous forme 0/1, la proportion du groupe 1 est testée; si reponse est un facteur, la
proportion de la 2"de modalité est testée.

Répétitions
La réponse doit étre une matrice a deux colonnes ot chaque ligne est une répétition. Pour chacune
de ces répétitions on a un décompte d’individus dans les deux catégories (une colonne par catégorie). La
proportion testée est celle définie par la colonne de gauche.

Test de Wald sans séries appariées (paramétrique)
Pour réaliser le test : wald.ptheo.test (reponse, p=prop.theo)! oli reponse est la matrice a deux
colonnes.

Test de Wald avec séries appariées (paramétrique)
Pour réaliser le test: wald.ptheo.test (reponse,blocs,p=prop.theo)!oublocs unfacteur (aléa-
toire) contenant le groupe de chaque répétition (i.e. il y a autant de valeurs dans le vecteur blocs que de
lignes dans la matrice reponse).
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> Analyser les résultats d'une étude > Statistique univariée

57. Conformité de plusieurs proportions a des valeurs théoriques — 2 ca-
tégories

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
IRVAideMemoire

Les données doivent étre présentées sous forme d'une matrice a deux colonnes (appelée « tableau
de contingence »), ou1 les lignes correspondent aux échantillons/populations et les colonnes aux deux
catégories :

Catégorie 1 Catégorie 2

Ech/pop 1

Ech/pop k

ou sur chaque ligne on a une décompte d’individus dans les deux catégories.
Les proportions testées sont celles de la colonne de gauche (i.e. la catégorie 1).

Test du y° de conformité (non paramétrique)

Conditions : les effectifs théoriques doivent tous étre non nuls et 80 % d’entre eux doivent étre = 5
(«régle de Cochran », voir ci-dessous).

Les effectifs théoriques sont obtenus via chisq.exp(tab.cont,p=prop.theo)! ol1 tab.cont est
le tableau de contingence et prop.theo un vecteur donnant une proportion théorique par échan-
tillon/population (de 1 a k). Les effectifs théoriques permettent de vérifier si la réegle de Cochran est
respectée.

Remarque : les proportions théoriques sont indépendantes entre les échantillons/populations. Elles
n’ont pas a donner une somme de 1, puisque les échantillons/populations ne sont pas comparé(e)s entre
eux (elles), mais chaque échantillon/population est testé(e) pour sa propre proportion théorique.

Pour réaliser le test : prop.test (tab.cont,p=prop.theo).

Remarque :1a fonction prop. test () n'utilise pas la regle de Cochran et renvoie un avertissement
des qu’au moins un effectif théorique est < 5. Si la regle est bien respectée, ne pas tenir compte de
I'avertissement.

Une p-value significative indique qu’au moins une proportion differe de sa valeur théorique, sans
préciser la(les)quelle(s). Il est dans ce cas nécessaire de tester chaque échantillon/population séparément
pour identifier la (les) proportion(s) en question, via prop.multcomp (tab.cont,p=prop.theo)!.

Il peut arriver que les comparaisons multiples n'indiquent aucune différence significative, contraire-
ment au test global. Dans ce cas, la solution la plus prudente est de considérer qu’on ne peut pas savoir
quel(le) échantillon/population est responsable du rejet de I'hypotheése nulle dans le test global.
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> Analyser les résultats d'une étude > Statistique univariée

58. Comparaison de deux proportions - 2 catégories

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Séries appariées

ot

Au moins 200
individus

>
>

00

Test du chi®
d’homogénéité

Test exact
de Fisher

ou

Test G
d’homogénéité

Le test exact de Fisher est toujours le plus fiable mais son temps de calcul augmente avec le nombre
d’individus. Lorsque Ieffectif est suffisamment grand, I'approximation faite par les tests du y? et G est
assez satisfaisante pour qu’ils puissent étre utilisés. Les résultats de ces deux tests sont trés semblables ;
choisir entre I'un et I'autre releve plus d'une habitude que d’'une raison statistique.

Séries non appariées

Les données doivent étre présentées sous forme d'une matrice a deux lignes et deux colonnes (appelée
«tableau de contingence »), ol les lignes correspondent aux deux échantillons/populations et les colonnes

aux deux catégories :

O, v

| Test binomial exact

Catégorie 1

Catégorie 2

Ech/pop 1

Ech/pop 2

ol sur chaque ligne on a une décompte d’individus dans les deux catégories.

Les proportions testées sont celles de la colonne de gauche (i.e. la catégorie 1).

Test exact de Fisher (non paramétrique)

Pour réaliser le test : fisher.test (tab.cont) oli tab. cont est le tableau de contingence.

Test du x> d’homogénéité (non paramétrique)
Pour réaliser le test : prop.test (tab.cont).

Test G d’homogénéité (non paramétrique)
Pour réaliser le test : G. test (tab.cont)L
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Séries appariées
Dans le cas de séries appariées, les individus (au sens statistique) sont reliés par paire. Ce peuvent
étre des entités réellement différentes, un méme individu mesuré deux fois. ..
Les données doivent toujours étre présentées dans un tableau de contingence, mais structuré diffé-
remment :

2nds jndividus

Catégorie 1 Catégorie 2

1¢s individus Catégorie 1

Catégorie 2

ou les lignes correspondent aux premiers individus de chaque paire, les colonnes aux seconds.

Test binomial exact (non paramétrique)
Pour réaliser le test : binom.test(nl1.2,nd) olinl.2 estle nombre d’individus dans la case en haut
a droite (i.e. paires dont le premier individu est de catégorie 1 et le second de catégorie 2), et nd est le
nombre de paires d’individus dont les valeurs different (i.e. case en bas a gauche + case en haut a droite).

88



A

> Analyser les résultats d'une étude > Statistique univariée

59. Comparaison de plus de deux proportions — 2 catégories

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Au moins 200 individus

o o;,

Test du chi® Test exact
d’homogénéité de Fisher

ou

Test G
d’homogénéité

Le test exact de Fisher est toujours le plus fiable mais son temps de calcul augmente avec le nombre
d’individus. Lorsque I'effectif est suffisamment grand, I'approximation faite par les tests du y? et G est
assez satisfaisante pour qu’ils puissent étre utilisés. Les résultats de ces deux tests sont trés semblables ;
choisir entre I'un et I'autre releve plus d'une habitude que d’une raison statistique.

Les données doivent étre présentées sous forme d'une matrice a deux colonnes (appelée « tableau de

contingence »), ol les lignes correspondent aux échantillons/populations a comparer et les colonnes aux
deux catégories :

Catégorie 1 Catégorie 2

Ech/pop 1

Ech/pop k

ol sur chaque ligne on a une décompte d’individus dans les deux catégories.
Les proportions testées sont celles de la colonne de gauche (i.e. la catégorie 1).

Test exact de Fisher (non paramétrique)

Pour réaliser le test : fisher.test (tab.cont) oli tab. cont est le tableau de contingence.

Une p-value significative indique qu’au moins deux proportions difféerent 'une de 'autre, sans
préciser lesquelles. Il est dans ce cas nécessaire de réaliser des comparaisons deux-a-deux pour identifier
les proportions en question, via fisher.multcomp(tab.cont)!.

Il peut arriver que les comparaisons deux-a-deux n'indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu'on ne peut pas savoir
quelles proportions sont responsables du rejet de 'hypotheése nulle dans le test global.

Test du x> d’homogénéité (non paramétrique)
Pour réaliser le test : prop.test(tab.cont).
Si nécessaire, les comparaisons deux-a-deux sont réalisées via pairwise.prop.test(tab.cont).

Test G d’homogénéité (non paramétrique)

Pour réaliser le test : G. test (tab.cont)
Si nécessaire, les comparaisons deux-a-deux sont réalisées viapairwise.G.test (tab.cont)
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> Analyser les résultats d'une étude > Statistique univariée

60. Analyser un décompte d’individus dans 2 catégories

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

11me4, 2RVAideMemoire, 3MuMIn, ‘car

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse
Avec une réponse sous forme d'un décompte d’'individus dans deux catégories, 'une des deux caté-
gorie est définie comme « catégorie d’'intérét ». Ce qui est analysé est la proportion représentée par cette
catégorie d’intérét, appelée « proportion » dans cette fiche.
La réponse doit étre une matrice a deux colonnes du type :

Categoriel Categorie2

1,] 10 16
2,] 8 24
3,] 14 19

Dans cette matrice, chaque ligne correspond a une répétition et chaque colonne a une catégorie. Pour
chaque répétition on a donc un décompte d’individus dans les deux catégories. La colonne de gauche
(i.e.la catégorie 1) définit la catégorie d'intérét.

Remarque : au sens statistique, un individu est représenté par une ligne du tableau. Pour chaque
individu statistique on a donc une proportion, mais aussi I’ effectif total sur lequel cette proportion est
calculée, qui donne plus ou moins de poids aux différents individus (car plus une proportion est calculée
sur un effectif élevé, plus elle est précise). Leffectif total peut trés bien varier d'une ligne a I'autre.

La matrice réponse peut étre obtenue via reponse<-cbind(Categoriel,Categorie2) oli Catego-
riel et Categorie?2 sont des vecteurs correspondant aux deux colonnes (la 1¢ valeur correspondant a
la 1% ligne de la matrice et les deux vecteurs étant dans le méme ordre). Dans la formule du modéle, la
variable a expliquer est cette matrice reponse.

Modele utilisé

Si le principe de I'analyse est le méme qu'il y ait des séries appariées ou non, quelques modalités
different. La premiere est que sans séries appariées le modele utilisé est un Modele Linéaire Généra-
lisé (Generalized Linear Model ou GLM), tandis qu’avec des séries appariées c’est un Modele Linéaire
Généralisé Mixte (Generalized Linear Mixed Model ou GLMM ; « mixte » sous-entendant « contenant au
moins un facteur aléatoire », facteurs que I'on utilise précisément pour identifier les séries appariées (voir
fiche 11)).

Contrairement au Modele Linéaire (et sa variante Mixte, voire fiche 76), les GLM(M)s ne sont pas
basés sur une loi normale. Dans le cas de proportions, la loi a utiliser a priori est une loi binomiale.

Remarque :il existe en fait plusieurs types de GLM(M)s basés sur une loi binomiale. Le cas décrit ici
—le plus fréquent — est celui d'un modeéle logistique. Lorsque toutes les variables explicatives sont des
covariables, on est dans le cas particulier d'une régression logistique.

Construction du modéle
Pour créer le modeéle :
— sans séries appariées : modele<-glm(formule,family="binomial")
— avec des séries appariées : modele<-glmer (formule,family="binomial")™.
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Voir fiche 40 pour une explication détaillée de la construction d’'une formule. De maniére générale,

on peut dire que :

— inclure un facteur permet de tester si les proportions different entre les niveaux de ce facteur.

— inclure une covariable permet de tester s'il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si l'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Remarque : Les individus statistiques étant les lignes de la matrice réponse, il y a autant de valeurs par

variable explicative que de lignes dans cette matrice.

Vérification de la validité du modele
Surdispersion des résidus
La premiére étape de validation du modeéle est de vérifier que les résidus ne sont pas surdispersés, i.e.
que leur variance n’est pas plus grande que celle admise par le modeéle. Pour cela, il suffit de comparer la
déviance résiduelle (residual deviance) du modele avec ses degrés de liberté résiduels (residual degrees of
freedom). Sila déviance résiduelle est plus grande, il y a surdispersion. Pour obtenir ces valeurs :

— GLM: appeler summary (modele) etrepérerlaligne Residual deviance: xx.xx on xx degr-
ees of freedom

— GLMM : utiliser overdisp.glmer (modele)?.

S’il y a surdispersion, il est nécessaire de modifier le modele :

— GLM :1a méthode consiste a modifier la loi sur laquelle est basé le modele, en remplacant la loi bi-
nomiale par une loi quasi-binomiale. Il faut pour cela recréer le modeéle : modele<-glm(formule,
family="quasibinomial").

— GLMM : la méthode consiste a ajouter un facteur aléatoire au modele, dont chaque niveau
correspond a un individu (statistique). Cela se fait en deux étapes :

1. Créer le facteur aléatoire : obs<-factor (1:nrow(reponse)).

2. Recréer le modele en ajoutant a la fin de la formule + (1| obs).

Ajustement aux données
La seconde vérification, indispensable, est de contrdéler que le modele s’ajuste bien aux données.
Cette étape est fondamentale, et ce pour tout modele, car un test basé sur un modele mal ajusté n’est
simplement pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.

Capacité explicative globale

On peut estimer la capacité explicative globale d'un modeéle grace au coefficient de détermination (R?),
qui représente la proportion de la variance de la variable a expliquer qui est expliquée par les variables
explicatives. Ce coefficient est obtenu via r . squaredGLMM (modele)3. La fonction renvoie en fait deux
valeurs : le R? marginal (R2m) qui correspond a la part de la variance expliquée uniquement par les
facteurs fixes et covariables, et le R? conditionnel (R2c) qui correspond a la part de la variance expliquée
par I'ensemble des variables explicatives (fixes et aléatoires). Dans le cas d'un GLM les deux valeurs sont
identiques puisqu’il n'y a pas de facteur aléatoire.

Test(s)

Pour tous les modeles évoqués a ’exception de ceux avec une loi quasi-binomiale, I'effet des variables
explicatives est testé par la méme fonction : Anova (modele)* (voir fiche 42 pour une explication détaillée
des hypotheéses testées). Cependant, ce ne sont pas les mémes tests qui sont réalisés selon le modeéle :

— GLM : la fonction réalise un test du rapport des vraisemblances (Likelihood Ratio Test ou LR Test) —

en fait un test par terme du modeéle (i.e. un par ligne du tableau renvoyé).

— GLMM : la fonction réalise un test de Wald — en fait un test par terme du modéle (i.e. un par ligne

du tableau renvoyé).

Dans le cas d'un modeéle avec une loi quasi-binomiale, le test a utiliser est un test E 1l est réalisé via
Anova(modele,test="F")4
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Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
different. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé. Les valeurs de tous les parameétres du modéle sont obtenues via summary (modele). Elles sont
appelées Estimate et se trouvent dans le tableau Coefficients pour un GLM, Fixed effects pour
un GLMM. Si le coefficient portant le nom de la covariable est négatif, la proportion diminue quand la
valeur de la covariable augmente ; s'il est positif, la proportion augmente quand la valeur de la covariable
augmente.

Prédiction a partir du modele
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire une proportion nécessite donc de fixer la
valeur de foutes les variables explicatives.
Deux méthodes peuvent étre utilisées pour la prédiction (seule la seconde est disponible pour les
GLMMs), les deux étant basées sur la fonction predict () :

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d’'une liste : predict (modele ,newdata=1i-
st (variables) ,type="response"), ol variables est un enchainement de variablel=va-
leur,variable2=valeur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent

étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau, type="response").
Remarque : pour les GLMMs, les valeurs du (ou des) facteur(s) aléatoire(s) peuvent étre données
ou non. Si ce n'est pas le cas, il est nécessaire d’ajouter I’argument re.form=NA a la fonction
predict (). Les prédictions prennent alors en compte 'effet moyen de toutes les modalités du
(ou des) facteur(s) aléatoire(s) du modele.

EXEMPLE(S)
Avec un modeéle contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- glm(reponse~facteur*covariable,family="binomial")

On peut prédire une proportion de cette facon :

> predict(modele,newdata=list(facteur="A",covariable=10) ,type="response")

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)),type="re-
sponse")

Ou encore :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=rep(10,2)),type="r-
esponse")

Ou encore créer un tableau de ce type :

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau,type="response")
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Graphes
Effet d’'un facteur

Pour illustrer I'effet d'un facteur, on réalise généralement un diagramme en barres ol sont représen-

tées les proportions moyennes par modalité. Deux types de moyennes peuvent étre représentées :

— les moyennes brutes (i.e. calculées a partir des données brutes), avec leurs erreurs standards :

voir fiches 35 et 37, et l'utilisation de la fonction tapply (). Attention, ces erreurs standards ne
prennent pas en compte le fait que |'effectif total peut varier d’'un individu statistique a 'autre. De
plus, dans le cas des GLMMs, les moyennes et erreurs standards ne tiennent pas compte du (des)
facteur(s) aléatoire(s).
Remarque :1a fonction tapply () fonctionne a partir d'un vecteur de valeurs numériques. Ici la
variable a expliquer est une matrice a deux colonnes, ce qui n’est pas adapté. Il faut donc préalable-
ment calculer manuellement les proportions : proportions<-Categoriel/(Categoriel+Cat-
egorie2). C’est sur ce vecteur proportions que doit étre utilisée la fonction tapply ().

— les moyennes ajustées en fonction des autres variables du modéle, également avec leurs erreurs
standards : voir fiche 43.

Une fois les moyennes et erreurs standards récupérées, le diagramme peut étre tracé (voir fiche 34).

Relation avec une covariable
Illustrer la relation entre la variable a expliquer et une covariable nécessite trois étapes :

1. Tracer les points observés : plot (proportions~covariable).

2. Créer un vecteur ayant les mémes minimum et maximum que la covariable mais découpé en tres
petits intervalles : x <- seq2(covariable)?2.

3. Ajouter la courbe de la relation sur le graphe, ajustée par le modele. La détermination de tous
les points de la courbe est en fait basée sur une prédiction : la valeur que prend la variable a
expliquer pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le
tres petit intervalle qui les sépare, qui donne 'aspect lissé de la courbe (qui est en fait constituée
de centaines de points reliés entre eux). Si le modele contient d’autres variables explicatives
que la covariable du graphe, il faut en fixer toutes les valeurs a 'identique (de sorte que seule
la covariable du graphe change de valeur pour toutes les prédictions). La courbe s’ajoute via
lines(x,predict(modele,newdata=variables.a.expliquer,type="response")).
Remarque :1a fonction 1ines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
courbes sur le méme graphe, par exemple pour plusieurs niveaux d'un méme facteur contenu
dans le modele. Pour modifier le type de tracé et la couleur des courbes, utiliser les arguments
1ty et col respectivement (pour plus d’'informations et (beaucoup) plus d’options graphiques,
voir ?par). Enfin, pour ajouter une légende, utiliser la fonction legend () (voir ?1egend pour plus
d’informations).

EXEMPLE(S)
On se base toujours sur le modele suivant :

> modele <- glm(reponse~facteur*covariable,family="binomial")

Etape 1 : tracer les points correspondant aux données observées :

> plot(proportions~covariable)

Etape 2 : créer le vecteur x :

> x <- seq2(covariable)?

Etape 3 : ajouter la courbe. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("A",length(x))),
type="response"))

La fonction rep () est tres utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la courbe de la relation dans la modalité B :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("B",length(x))),
type="response"))
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> Analyser les résultats d'une étude > Statistique univariée

61. Conformité de plusieurs proportions a des valeurs théoriques — plus
de 2 catégories

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

La réponse doit étre une matrice oli chaque ligne correspond a une répétition (il peut n'y en avoir
qu’une, dans ce cas la réponse est un vecteur) et chaque colonne a une catégorie. Pour chaque répétition
on a donc un décompte d’individus dans chacune des catégories. Les proportions testées sont celles
définies par chaque catégorie.

Pour choisir le test approprié :

Répétitions

\ Oy

Test binomial exact Test de Wald

Test binomial exact (non paramétrique)

Pour réaliser le test: multinomial. theo.multcomp(reponse,p=prop.theo,prop=TRUE)! ourep-
onse est un vecteur a K valeurs (pour K catégories) et prop.theo un vecteur donnant la proportion
théorique de chaque catégorie (de 1 a K). La somme de ces proportions doit valoir 1. Il y a en fait un test
binomial exact par proportion testée.

Test de Wald (paramétrique)

Pour réaliser le test : wald.ptheo.multinom. test (reponse,p=prop.theo)! oll reponse est une
matrice a K colonnes (pour K catégories) et autant de lignes qu’il y a de répétitions. Il y a en fait un test
de Wald par proportion testée.

Remarque :les proportions calculées tiennent compte du fait que I'effectif total de chaque échantillon
peut varier.

EXEMPLE(S)
Les résultats sont les suivants :
> reponse
Categoriel Categorie2 Categorie3
[1,] 10 16 16
[2,] 8 24 17
[3,] 14 19 20

On compare les proportions observées aux proportions théoriques 0.25/ 0.5/ 0.25:
> wald.ptheo.multinom.test (reponse,p=c(0.25,0.5,0.25))!

95



A

> Analyser les résultats d'une étude > Statistique univariée

62. Comparaison de plusieurs proportions — plus de 2 catégories

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

La réponse doit étre une matrice oli chaque ligne correspond a une répétition (il peut n'y en avoir
qu’une, dans ce cas la réponse est un vecteur) et chaque colonne a une catégorie. Pour chaque répétition
on a donc un décompte d’individus dans chacune des catégories. Les proportions comparées sont celles
définies par chaque catégorie.

Pour choisir le test approprié :

Répétitions

oo Ou;

Test binomial exact Test de Wald

Test binomial exact (non paramétrique)
Pour réaliser le test : multinomial .multcomp (reponse)! ou1 reponse est un vecteur a K valeurs
(pour K catégories). La fonction réalise en fait directement toutes les comparaisons multiples entre les
différentes catégories.

Test de Wald (paramétrique)
Pour réaliser le test : prop.multinom. test (reponse)! oli reponse est une matrice a K colonnes
(pour K catégories) et autant de lignes qu'’il y a de répétitions. La fonction réalise en fait directement
toutes les comparaisons multiples entre les différentes catégories.

EXEMPLE(S)
Les résultats sont les suivants :

> reponse

Categoriel Categorie2 Categoried

[1,] 10 16 16
[2,1] 8 24 17
[3,] 14 19 13

La proportion de chaque catégorie (et son erreur standard) est donnée par :
> prop.multinom(reponse)!
$probs
Categoriel Categorie2 Categorie3
0.2336 0.4307 0.3358

$se

Categoriel Categorie2 Categorie3
0.0416 0.0325 0.0285

On compare ces proportions :

> prop.multinom.test (reponse)!
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> Analyser les résultats d'une étude > Statistique univariée

63. Analyser un décompte d’individus dans plus de 2 catégories

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

Imultinom, 2RVAideMemoire, 3car

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse

Avec une réponse sous forme d'un décompte d’individus dans plus de deux catégories, ce qui est
analysé est la proportion représentée par chaque catégorie. 11 sagit donc d’'une réponse multiple, et non
unique comme dans la plupart des situations classiques (comme I'analyse d'un décompte d’individus
dans deux catégories, voir fiche 60). Cela complique sérieusement I'interprétation des résultats.

Pour pouvoir analyser une telle réponse, il est nécessaire de définir une « catégorie de référence ».
Car ce sur ce quoi va travailler le modele est en fait le rapport entre la proportion d'une catégorie
par rapport a la proportion de la catégorie de référence. Pour K catégories, on doit donc interpréter
K -1 rapports par variable explicative, qui s’étendent a w rapports (par variable explicative!) pour
toutes les combinaisons deux-a-deux des K catégories. On voit bien la complexité de travailler sur de
telles réponses. D’ot1 'idée de se restreindre a un design expérimental trés simple (i.e. peu de variables
explicatives et encore moins d’interactions) et a un nombre de catégories (i.e. K) limité. Pour des raisons
analogues, mieux vaut éviter les variables explicatives qualitatives a plus de deux niveaux (ou alors il faut
étre prét a s’accrocher pour 'interprétation, qui peut étre fastidieuse délicate).

Dans R, la réponse doit étre une matrice a K colonnes du type :

Categoriel Categorie2 Categoried

[1,] 10 16 16
2,] 8 24 17
3,] 14 19 13

Dans cette matrice, chaque ligne correspond a une répétition et chaque colonne a une catégorie. Pour
chaque répétition on a donc un décompte d’individus dans les K catégories. La colonne de gauche (i.e. la
catégorie 1) définit la catégorie d’'intérét. Le choix de cette catagorie n’a aucune incidence sur I'analyse.

Remarque : au sens statistique, un individu est représenté par une ligne du tableau. Pour chaque
individu statistique on a donc une série de proportions, mais aussi |’ effectif total sur lequel ces proportions
sont calculées, qui donne plus ou moins de poids aux différents individus (car plus une proportion est
calculée sur un effectif élevé, plus elle est précise). Leffectif total peut tres bien varier d'une ligne a I'autre.

La matrice réponse peut étre obtenue via reponse<-cbind(Categoriel,Categorie2,Categori-
e3) ol Categoriel, Categorie2 et Categorie3 sont des vecteurs correspondant aux trois colonnes (la
1% valeur correspondant a la 1% ligne de la matrice et les trois vecteurs étant dans le méme ordre). Dans
la formule du modele, la variable a expliquer est cette matrice reponse.

Modele utilisé
Le modele utilisé est un modele multinomial (ou « polytomique non ordonné »), une extension du
Modele Linéaire Généralisé (Generalized Linear Model ou GLM) pour décompte d’individus dans deux
catégories (voir fiche 60).
Remarque : il existe en fait plusieurs types de modéles multinomiaux. Le cas décrit ici — le plus
fréquent - est celui d’'un modeéle logistique. Lorsque toutes les variables explicatives sont des covariables,
on est dans le cas particulier d'une régression multinomiale logistique.
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Construction du modele
Pour créer le modele : modele<-multinom(formule,abstol=1e-15,reltol=1e-15,maxit=10-
00) . Voir fiche 40 pour une explication détaillée de la construction d'une formule. Les arguments
abstol, reltol etmaxit sont des options assurant une plus grande précision des résultats.
Remarque :1a construction d'un modeéle multinomial par la fonction multinom()! est un processus
itératif (comme tres souvent) qui a la particularité d’étre en partie visible. Pour supprimer les messages
affichés a la construction du modéle, ajouter I'argument trace=FALSE.

Vérification de la dépendance des parametres du modéle aux données

La variable a expliquer n’étant pas quantitative, la vérification de la validité du modele ne se fait pas de
maniére habituelle ici. On cherche en fait a savoir a quel point les parametres du modele dépendent des
données qu’on lui fournit. Si les parametres sont tres sensibles a la moindre variation dans les données,
c’est que le modele est mal défini. Cela peut indiquer (entre autres) que le modele peut étre simplifié ou
que certains parametres ne sont pas calculables.

La valeur qui représente cette dépendance est le conditionnement de la matrice hessienne. Elle est
obtenue via cond.multinom(modele)? Iln'y a pas vraiment de seuil absolu, mais on considére généra-
lement que si elle est supérieure a 10° c’est que le modéle est mal défini.

Test(s)

Leffet des variables explicatives est testé via Anova (modele)? (voir fiche 42 pour une explication
détaillée des hypotheses testées). Le test réalisé est un test du rapport des vraisemblances (Likelihood
Ratio Test ou LR Test) — en fait un test par terme du modele (i.e. un par ligne du tableau renvoyé).

Si une variable explicative a un effet significatif, cela indique qu’elle influence le rapport entre au
moins deux catégories de la variable réponse. Autrement dit, la proportion d'une catégorie donnée par
rapport a celle d’'une autre catégorie donnée. Pour identifier quel(s) rapport(s) est (sont) significative-
ment influencé(s) par la variable explicative en question : test.multinom(modele,variable)? ol
variable estla variable explicative dont on souhaite étudier I'influence en détail. Ce qui est renvoyé par
test.multinom ()2 dépend de la nature de la variable explicative :

— Pour une variable explicative quantitative : 1a fonction renvoie un tableau ou chaque ligne corres-
pond a un rapport entre deux catégories de la variable réponse (la syntaxe A | B signifie « proportion
de A par rapport a la proportion de B »). Le signe du coefficient indique le sens de la relation entre
un rapport et la variable explicative. L odds ratio est une facon simple de comprendre ce rapport,
qui indique de combien il varie pour une augmentation d’'une unité de la variable explicative.
Remarque : il n’est pas surprenant que les p-values des tests par rapport soient moins nettes que
la p-value globale obtenue via Anova(modele)3. D’abord parce qu'un test global ne se réduit pas
a une somme de tests individuels, mais aussi car ce ne sont pas les mémes tests qui sont réalisés :
test du rapport des vraisemblances au niveau global, tests de Wald pour chaque rapport. Le second
est moins puissant que le premier (voir fiche 17).

EXEMPLE(S)
Sur un modele dont la réponse a trois catégories (A/B/C), une covariable a un effet significatif. Le
détail de son influence est le suivant :

Coeff SE 0Odds.ratio z Pr(>lzl|)
AlC -0.93509 0.57383 0.3926 -1.6296 0.10319
BIC 1.56595 1.05528 4.7872 1.4839 0.13783

BIA 2.50104 1.20247 12.1952 2.0799 0.03753 *

Signif. codes: 0 ‘**x’> 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

La conclusion est que la covariable n'influence que le rapport entre les catégories A et B (seule p-
value significative). D’apres 'odds ratio, la proportion de la catégorie B est 12.2 fois plus importante
que celle de la catégorie A quand la covariable augmente d’'une unité.

Remarque : un coefficient significativement différent de 0 revient a un odds ratio significativement
différent de 1.
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— Pour une variable explicative qualitative a deux niveaux : la fonction renvoie un tableau structuré
comme pour une covariable. Lodds ratio d'un rapport entre deux catégories de la variable réponse
indique le rapport entre (i) ce rapport dans une classe de la variable explicative et (ii) ce méme
rapport dans 'autre classe (c’est donc un rapport de rapports). La direction du rapport entre les
classes de la variable explicative est indiquée en titre du tableau.

EXEMPLE(S)
Sur un modele dont la réponse a trois catégories (A/B/C), un facteur a deux niveaux (Femelle/Male)
a un effet significatif. Le détail de son influence est le suivant :
$‘Male|Femelle’

Coeff SE 0dds.ratio z Pr(>|zl)
A|C 0.1702 1.8533 1.18550 0.09182 0.92684
BIC -1.9660 0.8645 0.14002 -2.27415 0.02296 =*
BlA -5.1361 4.0226 0.00588 -1.27682 0.20166
Signif. codes: 0 ‘**x’> 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 ¢ > 1
La conclusion est que le facteur n'influence que le rapport entre les catégories B et C. D’apres I'odds
ratio, la proportion de B par rapport a C chez les males est seulement 0.14 fois celle des femelles
(autrement dit chez les femelles la proportion de B par rapport a C est ﬁ = 7.14 fois plus grande
que chez les males).

— Pour une variable explicative qualitative a plus de deux niveaux : la fonction renvoie un tableau
par rapport possible entre les classes de la variable explicative. C’'est donc une extension du cas
précédent, forcément bien plus difficile a interpréter.

Prédiction a partir du modeéle
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire une série de proportions nécessite donc de
fixer la valeur de foutes les variables explicatives.

Deux méthodes peuvent étre utilisées pour la prédiction, les deux étant basées sur la fonction

predict() :

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d’'une liste : predict (modele ,newdata=1i-
st (variables,type="probs")), ol variables est un enchainement de variablel=valeur,
variable2=valeur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau,type="probs").

La fonction predict () renvoie, pour chaque prédiction, la proportion de chacune des catégories de

la variable réponse. Le résultat est une matrice ou chaque ligne est une prédiction et chaque colonne une
catégorie.

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B) et une covariable variant de 0 a 30 :

> modele <- multinom(reponse~facteur+covariable,abstol=1e-15,reltol=1e-15,max-
it=1000)1!

On peut prédire la classe la plus probable de cette facon :

> predict(modele,newdata=list(facteur="A",covariable=10),type="probs")

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)),type="p-
robs")
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Ou encore :

> predict(modele,newdata=list (facteur=c("A","B"),covariable=rep(10,2)),type="p-
robs")

Ou encore créer un tableau de ce type:

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau,type="probs")
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64. Stratégie d’analyse d'une réponse continue bornée

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lcar

S’il y a relativement peu de données aux bornes, un modéle pour réponse non bornée peut étre tenté
(voir fiche 76). L'analyse des résidus de ce modele (voir fiche 41) dira s’il est acceptable ounon. S’ily a
trop de données aux bornes ou que le modéle pour réponse non bornée ne s’ajuste pas bien, une autre
stratégie d’analyse doit étre mise en place. Cette fiche en présente une, générique mais dont on ne peut
garantir qu’elle fonctionne toujours.

Le principe est de transformer la variable réponse pour ensuite pouvoir '’analyser comme une réponse
continue non bornée. La transformation se fait en deux étapes :

1. ramener la réponse dans I'intervalle [0; 1], en divisant par la valeur maximale possible (méme si
elle n’est pas représentée dans le jeu de données)

2. utiliser la transformation logit, adaptée aux proportions (i.e. aux réponses continues bornées a 0
et1) : reponse2<-logit (reponse)l.

Utiliser ensuite cette nouvelle variable reponse2 comme variable a expliquer dans un modele pour
réponse continue non bornée (voir fiche 76).
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65. Conformité d’'une variable continue a une distribution théorique

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lcar, 2RVAideMemoire, 3goftest

L'ajustement a une distribution théorique se teste avant tout graphiquement, car il est rare que des
données réelles suivent parfaitement une loi théorique. Il y a donc toujours une part de subjectivité dans
I'estimation d'un ajustement, que les tests statistiques ne peuvent pas refléter.

Test graphique
Le test visuel est réalisé grace au graphe quantile-quantile, tracé de la maniére suivante : qqPlot (se-
rie,dist="loi",par)! ol serie estun vecteur contenant la série de données, 1oi est laloi théorique
choisie (entre guillemets) et par ses parametres séparés par une virgule (voir fiches 23 a 28).

EXEMPLE(S)
Ajustement a une loi exponentielle (voir fiche 25) :
> ggqPlot(serie,dist="exp",lambda)!
Ajustement a une loi de y? (voir fiche 26) :

> gqqPlot(serie,dist="chisq",dd1)!

Dans le cas d'une loi normale, le méme résultat est obtenu directement via qqPlot (serie)!, laloi
normale étant celle utilisée par défaut. Pour tracer un graphe par niveau d'un facteur : byf . qqnorm (rep-
onse~facteur)?oll reponse et facteur sont des vecteurs contenant la valeur de chaque individu pour
les deux variables (dans le méme ordre). Le symbole ~ signifie « expliqué par » ou «en fonction de ». Dans le
cas d’'un ajustement a une loi normale multivariée, utiliser les fonctions mqgnorm ()2 et byf . mqgnorm()?
(voir ?mggnorm et ?byf .mggnorm pour leur utilisation).

La distribution de la série suit la loi théorique choisie si les points du graphe sont a peu pres alignés
sur une droite. Toute autre structuration des points (courbure(s), nombreux points éloignés...) indique le
contraire. La droite tracée est celle qui passe par les 1¢' et 3¢m¢ quartiles de la distribution représentée, et
son intervalle de confiance est affiché en pointillés. Les points peuvent ne pas étre parfaitement alignés
sur la droite, mais s'ils restent dans I'intervalle de confiance I'ajustement est considéré comme correct.

Test statistique
Pour choisir le test approprié :

Distribution théorique

e 9
‘\oﬁ“a\ Yre

Test de Cramér -
von Mises

Au moins 30 individus

& %
Test de Normalité
Shapiro - Wilk non testable

Ajustement a une loi normale — Test de Shapiro - Wilk (non paramétrique)
Pour réaliser le test : shapiro.test (serie).Pour tester la normalité de la distribution d’'une variable
par niveau d'un facteur : byf . shapiro (reponse~facteur)?2 Dans le cas d'un ajustement a une loi nor-
male multivariée, utiliser les fonctions mshapiro.test ()2 et byf .mshapiro()? (voir Tmshapiro.test
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et 7byf .mshapiro pour leur utilisation).

Ajustement a une loi autre que normale — Test de Cramér - von Mises (non paramétrique)
Pour réaliser le test : cvm.test (serie,ploi,par)? ol loi estlaloi choisie et par ses parameétres
séparés par une virgule (voir fiches 23 a 28).

EXEMPLE(S)
Ajustement a une loi exponentielle (voir fiche 25) :
> cvm.test(serie,pexp,lambda)?

Ajustement a une loi de xz (voir fiche 26) :

> cvm.test(serie,pchisq,ddl)?
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66. Comparaison de deux distributions

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Lorsque 'on compare deux distributions, on peut s’intéresser a trois différences :

— une différence de forme.

— une différence de position. Cette position peut parfois étre résumée en un parametre, comme la
médiane (voir fiche 35).

— une différence de dispersion. Cette dispersion peut parfois étre résumée en un parametre, comme
la variance (voir fiche 36).

Remarque : les tests sensibles a des différences de forme sont également sensibles a des différences

de position et/ou de dispersion. Ils sont appelés omnibus, car ils testent les trois aspects simultanément.

el Méme forme, méme dispersion, Méme forme, méme position,
Formes différentes L o . - o
positions différentes dispersions différentes

<« < =
S S S
o o | o |
s s s
~ ~ ~
s S S
S S S
o | o | S
5 5 5

T T T T T T T T T T T T T T T T T T

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Pour choisir le test approprié :

Caractéristique a comparer

o0
e 909‘:2\0‘\ 3 Yisp,
iO‘I(::\) 8¢ & iop,
= o
=]
Test de Cramér - Test de Fligner - Test de Fligner -
von Mises Policello (cond. suppl.) Killeen

Test de Cramér - von Mises (non paramétrique)
Pour réaliser le test: CvM.test (seriel,serie2)!, ol seriel et serie2 sont des vecteurs contenant
les deux séries de données (qui n’ont pas a étre de méme longueur).

Test de Fligner - Policello (non paramétrique)
Condition supplémentaire : la distribution des données doit étre symétrique dans les deux groupes
(mais peu importe si la forme est différente).
Pour réaliser le test: fp.test (seriel,serie2)!. Les deux séries de données ne doivent pas forcé-
ment étre de méme longueur.
Ce test n'est sensible ni a la forme, ni a la dispersion.

Test de Fligner - Killeen (non paramétrique)
Pour réaliser le test: fligner.test (seriel,serie2). Les deux séries de données ne doivent pas
forcément étre de méme longueur.
Ce test n'est pas sensible a la position. Il fonctionne d’autant mieux que les données sont distribuées
normalement, mais est trés robuste si ce n’est pas le cas.
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67. Comparaison de deux variances

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Distribution normale
dans chaque groupe

o,
. (e
oW NG 1o,
teg,
/e, )

Test de Fisher

Test de Fisher -
par permutation

Remarque : le fait que plusieurs variances ne soient pas différentes est appelé « homogénéité des
variances » ou « hétéroscédasticité ».

Test de Fisher (paramétrique)
Pour réaliser le test : var . test (reponse~facteur) oll reponse est un vecteur contenant les valeurs
de la variable réponse et facteur un vecteur contenant la modalité de chaque individu (dans le méme
ordre que reponse). Le symbole ~ signifie « expliqué par » ou « en fonction de ».

Test de Fisher par permutation (non paramétrique)
Pour réaliser le test : perm.var.test (reponse~facteur)
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68. Comparaison de plus de deux variances

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Distribution normale
et au moins 4 individus
dans chaque groupe

oo

Test de Bartlett

Test de Bartlett -
par permutation

Remarque : le fait que plusieurs variances ne soient pas différentes est appelé « homogénéité des
variances » ou « hétéroscédasticité ».

Test de Bartlett (paramétrique)
Pour réaliser le test : bartlett.test (reponse~facteur) oll reponse est un vecteur contenant les
valeurs de la variable réponse et facteur un vecteur contenant la modalité de chaque individu (dans le
méme ordre que reponse). Le symbole ~ signifie « expliqué par » ou « en fonction de ».

Test de Bartlett par permutation (non paramétrique)
Pour réaliser le test : perm.bartlett.test (reponse~facteur)!.
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69. Conformité d'une médiane a une valeur théorique

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Distribution symétrique
et au moins 8 individus

o Doy,

Test des rangs signés Test des signes
de Wilcoxon de Wilcoxon

Remarque :le caractere symétrique de la distribution se vérifie sur un histogramme (voir fiche 31).
Peu importe que la distribution soi uni- ou polymodale.

Test des rangs signés de Wilcoxon (non paramétrique)
Pour réaliser le test : wilcox.test (serie,mu=m.theo) ol serie est un vecteur contenant la série

de données et m. theo la médiane théorique.

Test des signes de Wilcoxon (non paramétrique)
Pour réaliser le test: wilcox.signtest (serie,mu=m.theo)?.
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70. Comparaison de deux médianes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
IRVAideMemoire

Pour choisir le test approprié :

Séries appariées

ao® Ouj
Distribution de méme forme Distribution des différences
dans les 2 groupes symétrique et au moins
8 individus
N 5 .
& % & /70/)
Test de Mann - Distribution Test des rangs Test des signes
Whitney - Wilcoxon| [ symétrique dans signés de de Wilcoxon
les 2 groupes Wilcoxon
N &

o 7

Test de Fligner -

. Test de Mood
Policello

Remarques : la forme globale et le caractére symétrique d'une distribution se vérifient sur un his-
togramme (voir fiche 31). Pour le test de Mann - Whitney - Wilcoxon les deux distributions doivent
vraiment avoir quasiment la méme forme (y compris la méme dispersion, voir fiche 66 pour une illus-
tration). Pour le test de Fligner - Policello peu importe la forme des deux distributions, pourvu qu’elles
soient symétriques dans chacun des deux groupes. Pour les tests avec séries appariées, seule compte
la forme de la distribution des différences entre les valeurs appariées. Ces différences sont obtenues via
differences<-reponse[as.numeric(facteur)==1]-reponse[as.numeric(facteur)==2],olre-
ponse est un vecteur contenant les valeurs de la variable réponse et facteur un vecteur contenant la
modalité de chaque individu (dans le méme ordre que reponse et les valeurs appriées étant dans le
méme ordre dans les deux modalités).

Séries non appariées
Test de Mann - Whitney - Wilcoxon (non paramétrique)
Pour réaliser le test : wilcox.test (reponse~facteur). Le symbole ~ signifie « expliqué par » ou
«en fonction de ».

Test de Fligner - Policello (non paramétrique)
Pour réaliser le test : fp.test (reponse~facteur)l.

Test de Mood (non paramétrique)
Pour réaliser le test : mood .medtest (reponse~facteur)

Séries appariées
Test des rangs signés Wilcoxon (non paramétrique)
Pour réaliser le test : wilcox.test (reponse~facteur,paired=TRUE).

Test des signes Wilcoxon (non paramétrique)
Pour réaliser le test : wilcox.signtest (reponse~facteur)l
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71. Comparaison de plus de deux médianes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Séries appariées

oo ouj
Distribution de méme forme Plan en blocs aléatoires
dans tous les groupes complets sans répétition
& 000 & 400
Test de Kruskal - Test de Mood Test de Friedman Non testable

Wallis

Remarques :la forme globale et le caractére symétrique d'une distribution se vérifient sur un histo-
gramme (voir fiche 31). Pour le test de Kruskal - Wallis toutes les distributions doivent vraiment avoir
quasiment la méme forme (y compris la méme dispersion, voir fiche 66 pour une illustration). Voir
fiche 13 pour une explication de ce qu’est un plan d’expérience en blocs aléatoires complets sans répéti-
tion.

Séries non appariées
Test de Kruskal - Wallis (non paramétrique)

Pour réaliser le test : kruskal . test (reponse~facteur) ol reponse est un vecteur contenant les
valeurs de la variable réponse et facteur un vecteur contenant la modalité de chaque individu (dans le
méme ordre que reponse). Le symbole ~ signifie « expliqué par » ou « en fonction de ».

Une p-value significative indique qu’au moins deux classes du facteur ont un effet différent sur la
variable a expliquer (sans préciser lesquelles). Il est dans ce cas nécessaire de réaliser des comparaisons
deux-a-deux pour identifier les classes en question, via dunn. test (reponse,facteur)!.

Il peut arriver que les comparaisons deux-a-deux n'indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu’on ne peut pas savoir
quelles médianes sont responsables du rejet de 'hypothése nulle dans le test global.

Test de Mood (non paramétrique)
Pour réaliser le test : mood .medtest (reponse~facteur) .
Sila p-value est significative, les comparaisons deux-a-deux sont réalisées via pairwise.mood.me-
dtest (reponse,facteur)!.

Séries appariées
Test de Friedman (non paramétrique)

Pour réaliser le test : friedman.test (reponse~fact.fixe|fact.alea) oufact.fixeetfact.a-
lea sont des vecteurs contenant la valeur de chaque individu (dans le méme ordre) pour le facteur
(fixe) dont on veut comparer les modalités et le facteur (aléatoire) servant a définir les séries appariées,
respectivement.

Sila p-value est significative, les comparaisons deux-a-deux sont réalisées viawilcox.paired.mu-
ltcomp(variable~fact.fixe|fact.alea)l.
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72. Conformité d'une moyenne a une valeur théorique

Pour choisir le test approprié :

Distribution normale

. 7
N r@%g:%o
%) %
Test de Distribution symétrique
Student et au moins 8 individus
S %

[ 2

Test des rangs
signés de
Wilcoxon

Non testable

Remarques :1a normalité d'une distribution se vérifie grace a des méthodes dédiées (voir fiche 65)
tandis que le caractére symétrique se vérifie sur un simple histogramme (voir fiche 31). Pour le test des
rangs signés de Wilcoxon, peu importe que la distribution soi uni- ou polymodale.

Test de Student (paramétrique)
Pour réaliser le test : t.test(serie,mu=m.theo) oll serie est un vecteur contenant la série de
données et m. theo la moyenne théorique.

Test des rangs signés de Wilcoxon (non paramétrique)
Pour réaliser le test : wilcox.test (serie,mu=m.theo).
Remarque : ce test ne travaille en fait pas directement sur la moyenne. Mais si la distribution des
données est symétrique, la conclusion du test peut s’appliquer a la moyenne.
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73. Comparaison de deux moyennes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

| Séries appariées |

RO oy,
Distribution normale dans les 2 groupes ‘ | Distribution des différences normale
2
0,
. K 3 2
& ’&%6% &> o,
6@ 9,
Variances Variances Test de Student Test de Student
homogénes homogeénes pour séries pour séries
appariées appariées par

N %, von permutation
Test de Student Test de Student Distribution
Test de Student X s
avec correc- par permutation| | symétrique dans
tion de Welch les 2 groupes

>
o® o

Test de Fligner -

i Non testable
Policello

Remarques :1a normalité d'une distribution se vérifie grace a des méthodes dédiées (voir fiche 65) tan-
dis que le caractere symétrique se vérifie sur un simple histogramme (voir fiche 31). Pour le test de Fligner -
Policello peu importe la forme des deux distributions, pourvu qu’elles soient symétriques dans chacun des
deux groupes. Pour les tests avec séries appariées, seule compte la forme de la distribution des différences
entre les valeurs appariées. Ces différences sont obtenues viadifferences<-reponse [as.numeric(fa-
cteur)==1] -reponse [as.numeric(facteur)==2], ol reponse est un vecteur contenant les valeurs
de la variable réponse et facteur un vecteur contenant la modalité de chaque individu (dans le méme
ordre que reponse et les valeurs appriées étant dans le méme ordre dans les deux modalités).

Séries non appariées
Test de Student (paramétrique)
Pour réaliser le test : t . test (reponse~facteur,var.equal=TRUE). Le symbole ~ signifie « expli-
qué par » ou « en fonction de ».

Test de Student avec correction de Welch (paramétrique)
Pour réaliser le test : t . test (reponse~facteur,var.equal=FALSE) ou plus simplement t.test (

variable~facteur) (la correction est en fait appliquée par défaut).

Test de Student par permutation (non paramétrique)
Pour réaliser le test : perm. t.test (reponse~facteur)!.
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Test de Fligner - Policello (non paramétrique)
Pour réaliser le test : fp.test (reponse~facteur)!.
Remarque : ce test compare en fait la médiane des deux échantillons. Mais si la distribution des
données est symétrique dans chacun des deux groupes, médiane et moyenne sont treés proches et la
conclusion du test peut donc s’appliquer a la moyenne.

Séries appariées
Test de Student pour séries appariées (paramétrique)
Pour réaliser le test : t . test (reponse~facteur,paired=TRUE).

Test de Student pour séries appariées par permutation (non paramétrique)
Pour réaliser le test : perm.t.test (reponse~facteur,paired=TRUE) L.
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74. Comparaison de plus de deux moyennes - 1 facteur

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
IRVAideMemoire

Pour choisir le test approprié :

Variances homogenes |

. o,
o te (00,7
5’36/6)0’7
Séries appariées | Séries appariées
& % S %
ANOVA par Plan équilibré Distribution symétrique | | Distribution symétrique
permutation et de méme forme dans | [dans tous les groupes et
tous les groupes plan en blocs aléatoires
complets sans répétition
& ©
2 o8 oui N 0,
ANOVA pour Non testable | | Test de Kruskal - Test de Non testable
mesures répétées Wallis Friedman
par permutation

Remarques :la forme globale et le caractére symétrique d'une distribution se vérifient sur un histo-
gramme (voir fiche 31). Pour le test de Kruskal - Wallis toutes les distributions doivent vraiment avoir
quasiment la méme forme (y compris la méme dispersion, voir fiche 66 pour une illustration). Pour
I’ANOVA pour mesures répétées par permutation, « plan équilibré » signifie autant d’individus dans
chaque combinaison du facteur fixe et du facteur alétoire. Voir fiche 13 pour une explication de ce qu’est
un plan d’expérience en blocs aléatoires complets sans répétition.

Séries non appariées
ANOVA par permutation (non paramétrique)

Pour réaliser le test : perm.anova(reponse~facteur)!, olt reponse et facteur sont des vecteurs
contenant la valeur de chaque individu pour chaque variable (dans le méme ordre). Le symbole ~ signifie
«expliqué par » ou « en fonction de ».

Une p-value significative indique qu’au moins deux classes du facteur ont un effet différent sur la
variable a expliquer (sans préciser lesquelles). Il est dans ce cas nécessaire de réaliser des comparaisons
deux-a-deux pour identifier les classes en question, viapairwise.perm.t.test (reponse,facteur)!.

Il peut arriver que les comparaisons deux-a-deux n'indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu'on ne peut pas savoir
quelles moyennes sont responsables du rejet de I’hypothése nulle dans le test global.

Test de Kruskal - Wallis (non paramétrique)
Pour réaliser le test : kruskal.test (reponse~facteur).
Sila p-value est significative, les comparaisons deux-a-deux sont réalisées via dunn.test (reponse,
facteur)!l.
Remarque :le test de Kruskal-Wallis et le test de Dunn pour les comparaisons multiples travaillent
en fait sur la médiane des échantillons. Mais si la distribution des données est symétrique dans tous les
groupes, médiane et moyenne sont treés proches et la conclusion des tests peut donc s’appliquer a la
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moyenne.

Séries appariées
ANOVA pour mesures répétées par permutation (non paramétrique)

Pour réaliser le test : perm. anova(reponse~fact.fixe|fact.alea)!oufact.fixeetfact.alea
sont des vecteurs contenant la valeur de chaque individu (dans le méme ordre) pour le facteur (fixe) dont
on veut comparer les modalités et le facteur (aléatoire) servant a définir les séries appariées, respective-
ment.

Sila p-value est significative, les comparaisons deux-a-deux sont réalisées viapairwise.perm.t.te-
st (reponse,fact.fixe,paired=TRUE)!. Attention les valeurs appariées doivent étre dans le méme
ordre dans toutes les modalités de fact . fixe.

Test de Friedman (non paramétrique)

Pour réaliser le test : friedman.test (reponse~fact.fixe|fact.alea).

Sila p-value est significative, les comparaisons deux-a-deux sont réalisées viawilcox.paired.mu-
ltcomp(reponse~fact.fixe|fact.alea)l.

Remarque :le test de Friedman et le test des rangs signés de Wilcoxon pour les comparaisons multiples
travaillent en fait sur la médiane des échantillons. Mais si la distribution des données est symétrique dans
tous les groupes, médiane et moyenne sont trés proches et la conclusion des tests peut donc s’appliquer
alamoyenne.
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75. Comparaison de plus de deux moyennes - 2 facteurs

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Séries appariées

aof ouj
Plan équilibré Plan équilibré
o 20, o 0,
ANOVA par Non testable ANOVA lpolur’ Non testable
permutation mesures répétées
par permutation

Remarque : « plan équilibré » signifie autant d’individus dans chaque combinaison de tous les fac-
teurs (deux pour ’ANOVA par permutation, trois (avec le facteur aléatoire) pour '’ANOVA pour mesures
répétées par permutation).

Séries non appariées
ANOVA par permutation (non paramétrique)

Pour réaliser le test : perm. anova(formule)! out formule peut étre (voir fiche 40 pour une explica-
tion détaillée de la construction d'une formule) :

— reponse~factl+fact2

— reponse~factl*fact2

— reponse~factl/fact2 pour un modele ol les deux facteurs sont fixes

— reponse~factl/fact2 en ajoutant 'argument nest . f2="random" pour un modele ou fact2

est un facteur aléatoire.

Si une p-value est significative, cela indique qu’au moins deux classes du facteur en question (ou
au moins deux combinaisons de classes des deux facteurs si c’est 'effet de I'interaction qui est signi-
ficatif) ont un effet différent sur la variable a expliquer (sans préciser lesquelles). Il est dans ce cas
nécessaire de réaliser des comparaisons deux-a-deux pour identifier les classes (ou combinaisons de
classes) en question, viapairwise.perm.t.test (reponse,facteur)!, ot facteur est factl, fact2
ou factl:fact2 selon la p-value qui est significative.

Il peut arriver que les comparaisons deux-a-deux n'indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu’on ne peut pas savoir
quelles moyennes sont responsables du rejet de I'hypothése nulle dans le test global.

Séries appariées
ANOVA pour mesures répétées par permutation (non paramétrique)

Pour réaliser le test : perm.anova(formule)! ou formule peut étre (voir fiche 40 pour une explica-
tion détaillée de la construction d’'une formule) :

— reponse~fact.fixel+fact.fixe2|fact.alea

— reponse~fact.fixelxfact.fixe2|fact.alea.

Siune p-valueest significative, les comparaisons deux-a-deux sont réalisées viapairwise.perm.t.t-
est(reponse~facteur,paired=TRUE), ou facteur est fact.fixel, fact.fixe2 oufact.fixel:
fact.fixe2 selon la p-value qui est significative. Attention les valeurs appariées doivent étre dans le
méme ordre dans toutes les modalités de fact . fixe.
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76. Analyser une variable continue non bornée - relation(s) linéaire(s)

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

11me4, 2MuMIn, 3car, *RVAideMemoire

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Modeéle utilisé

Si le principe de I'analyse est le méme qu’il y ait des séries appariées ou non, quelques modalités
different. La premiere est que sans séries appariées le modele utilisé est un Modele Linéaire (Linear Model
ou LM), tandis qu’avec des séries appariées c’est un Modeéle Linéaire Mixte (Linear Mixed Model ou LMM ;
«mixte » sous-entendant « contenant au moins un facteur aléatoire », facteurs que I’on utilise précisément
pour identifier les séries appariées (voir fiche 11)).

Remarque :lorsque toutes les variables explicatives sont des covariables, on est dans le cas particulier
d’'une régression linéaire (au sens des moindres carrés).

Construction du modele

Pour créer le modeéle :

— sans séries appariées : modele<-1m(formule)

— avec des séries appariées : modele<-lmer (formule)l.

Voir fiche 40 pour une explication détaillée de la construction d'une formule. De maniére générale, on
peut dire que :

— inclure un facteur permet de tester si les moyennes différent entre les niveaux de ce facteur.

— inclure une covariable permet de tester s’il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si I'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Vérification de la validité du modele
Avant d’aller plus loin, il est indispensable de vérifier que le modele s’ajuste bien aux données.
Cette étape est fondamentale, et ce pour tout modeéle, car un test basé sur un modele mal ajusté n’est
simplement pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.
Sil’ajustement n’est pas bon du tout, la facon la plus simple de s’en sortir est de transformer la variable
a expliquer. Trois options sont classiques : v/x, log(x) sila premiére transformation n’est pas suffisante,
v/x en alternative a la deuxiéme s'il y a des 0 dans les données.

Capacité explicative globale
On peut estimer la capacité explicative globale d’'un modeéle grace au coefficient de détermination (R?),
qui représente la proportion de la variance de la variable a expliquer qui est expliquée par les variables
explicatives. Ce coefficient est obtenu :
— LM : via summary (modele) $r.squared
— LMM : viar.squaredGLMM (modele)?. La fonction renvoie en fait deux valeurs : le R?> marginal
(R2m) qui correspond a la part de la variance expliquée uniquement par les facteurs fixes et
covariables, et le R? conditionnel (R2c) qui correspond a la part de la variance expliquée par
I’ensemble des variables explicatives (fixes et aléatoires).
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Test(s)

Quel que soit le modele, I'effet des variables explicatives est testé par la méme fonction : Anova (mode-
le)3 (voir fiche 42 pour une explication détaillée des hypotheses testées). Cependant, ce ne sont pas les
mémes tests qui sont réalisés selon le modele :

— LM : la fonction réalise un test E qui dans le cas o toutes les variables explicatives sont des

facteurs est appelé ANOVA (ANalysis Of VAriance).

Remarque : bien que le terme « ANOVA » soit utilisé abondamment, une ANOVA correspond en
fait a une seule situation bien particuliére : un test F sur un modele linéaire au sens des moindres
carrés ordinaires dont toutes les variables explicatives sont des facteurs.

— LMM : la fonction réalise un test de Wald — en fait un test par terme du modéle (i.e. un par ligne du

tableau renvoyé).

Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
difféerent. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé (qui correspond a la pente de la droite reliant la covariable et la variable réponse). Les valeurs de
tous les parameétres du modele sont obtenues via summary (modele). Elles sont appelées Estimate et
se trouvent dans le tableau Coefficients pour un LM, Fixed effects pour un LMM. Si le coefficient
portant le nom de la covariable est négatif, la réponse diminue quand la valeur de la covariable augmente;;
s'il est positif, la réponse augmente quand la valeur de la covariable augmente. Lerreur standard de tous
les coefficients est donnée dans la colonne Std.Error.

Remarque : dans le cas d'un régression linéaire simple (i.e. avec seulement une covariable comme
variable explicative), la valeur de 'ordonnée a I'origine du modele peut étre intéressante. Elle est donnée
sur la ligne (Intercept).

Prédiction a partir du modele
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire une réponse nécessite donc de fixer la valeur
de toutes les variables explicatives.
Deux méthodes peuvent étre utilisées pour la prédiction (seule la seconde est disponible pour les
LMMs), les deux étant basées sur la fonction predict () :

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d’'une liste : predict (modele ,newdata=1i-
st (variables)), ou variables est un enchainement de variablel=valeur,variable2=va-
leur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent

étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau).
Remarque : pour les LMMs, les valeurs du (ou des) facteur(s) aléatoire(s) peuvent étre données
ou non. Si ce n'est pas le cas, il est nécessaire d’ajouter 'argument re. form=NA a la fonction
predict (). Les prédictions prennent alors en compte I'effet moyen de toutes les modalités du
(ou des) facteur(s) aléatoire(s) du modele.

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- 1lm(reponse~facteur*covariable)

On peut prédire une moyenne de cette fagon :

> predict(modele,newdata=list(facteur="A",covariable=10))

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)))

Ou encore :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=rep(10,2)))
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Ou encore créer un tableau de ce type:

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau)

Graphes
Effet d’'un facteur

Pour illustrer I'effet d'un facteur, on réalise généralement un diagramme en barres ol sont représen-

tées les moyennes par modalité. Deux types de moyennes peuvent étre représentées :

— les moyennes brutes (i.e. calculées a partir des données brutes), avec leurs erreurs standards :
voir fiches 35 et 37, et I'utilisation de la fonction tapply (). Attention, dans le cas des LMMs, ces
moyennes et erreurs standards ne tiennent pas compte du (des) facteur(s) aléatoire(s).

— les moyennes ajustées en fonction des autres variables du modeéle, également avec leurs erreurs
standards : voir fiche 43.

Une fois les moyennes et erreurs standards récupérées, le diagramme peut étre tracé (voir fiche 34).

Relation avec une covariable
Illustrer la relation entre la variable a expliquer et une covariable nécessite trois étapes :

1. Tracer les points observés : plot (reponse~covariable).

2. Créer un vecteur ayant les mémes minimum et maximum que la covariable mais découpé en tres
petits intervalles : x <- seq2(covariable)*.

3. Ajouter la droite de la relation sur le graphe, ajustée par le modeéle. La détermination de tous

les points de la droite est en fait basée sur une prédiction : la valeur que prend la variable a
expliquer pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le
trés petit intervalle qui les sépare, qui donne I'aspect lissé de la droite (qui est en fait constituée
de centaines de points reliés entre eux). Si le modele contient d’autres variables explicatives
que la covariable du graphe, il faut en fixer toutes les valeurs a I'identique (de sorte que seule
la covariable du graphe change de valeur pour toutes les prédictions). La droite s’ajoute via
lines(x,predict(modele,newdata=variables.a.expliquer)).
Remarque :1a fonction lines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
droites sur le méme graphe, par exemple pour plusieurs niveaux d'un méme facteur contenu
dans le modele. Pour modifier le type de tracé et la couleur des droites, utiliser les arguments 1ty
et col respectivement (pour plus d'informations et (beaucoup) plus d’options graphiques, voir
7par). Enfin, pour ajouter une légende, utiliser la fonction 1egend () (voir ?1legend pour plus
d’informations).

EXEMPLE(S)
On se base toujours sur le modele suivant :

> modele <- lm(reponse~facteur*covariable)

Etape 1 : tracer les points correspondant aux données observées :

> plot(reponse~covariable)

Etape 2 :créer le vecteur x :

> x <- seq2(covariable)*

Etape 3 : ajouter la droite. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("A",length(x)))))
La fonction rep () est trés utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la droite de la relation dans la modalité B :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("B",length(x)))))
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77. Analyser une variable continue non bornée - relation non linéaire

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

Inlme, 2RVAideMemoire

Modeéle utilisé
Le modele utilisé est un Modele Non Linéaire (Non Linear Model ou NLM). 1l s’utilise le plus souvent
avec des variables explicatives qui sont toutes des covariables; ce cas particulier est appelé régression non
linéaire. Un facteur peut étre ajouté pour définir des parametres différents par modalité.

Construction du modéle

Lutilisation des NLM exige deux choses :

— connaitre 'équation qui lie la variable a expliquer et les covariables

— avoir une idée a priori de la valeur des parametres de cette équation (la majeure partie du temps,

on peut se faire cette idée a partir d'un graphe).

Le modele peut ensuite étre créé : modele<-nls(reponse~equation,start=1ist (parametres)),
oll equation est’équation explicite de la relation et parametres la liste des parametres de I'équation
avec pour chacun une valeur approximative. Le symbole ~ signifie « expliqué par » ou « en fonction de ».

EXEMPLE(S)
Léquation de Michaelis - Menten sur la vitesse d'une réaction enzymatique est de la forme :

Vinax - concentration
Ky + concentration

vitesse=

On a obtenu les points expérimentaux suivants :

Q
S . o -
«

Vmax approximative .

150
1

100
1

Vitesse de la réaction (umol/min)

. Km approximatif
T T T T T T
00 01 02 0.4 0.6 0.8 1.0

Concentration en substrat (mol/L)

D’apres le graphe, on estime V;;4x a2 200 umol/min et Kjs a 0,1 mol/L. Le modele s’écrit donc :
> modele <- nls(vitesse~Vmax*concentration/(Km+concentration),start=1list(Vmax=
200,Km=0.1))
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Certaines équations communes ont été implémentées dans R, dans des fonctions qui permettent a la
fois de ne pas préciser 'équation mais aussi (et surtout) d’estimer automatiquement la valeur a priori
des parametres :

Type de régression Equation equation
Asymptotique
Michaelis - Menten y= ‘;{f; SSmicmen (x,Vm,K)
1
Exponentielle a 2 parametres y=Asym(l—-e"¢ "y SSasympOrig(x,Asym,lrc)
7
Exponentielle 2 3 paramétres | y= Asym+ (Ry— Asym)e™ ¢ < SSasymp(x,Asym,R0,1lrc)
Sigmoide
s N N _ Asym . .
Logistique a 3 parametres Y= —Fmia—x SSlogis(x,Asym,xmid,scal)
l+e scal
Logistique a 4 parametres y=A+ % SSfpl(x,A,B,xmid,scal)
l+e scal
]
Weibull y=:Asyn1—1)rop~e_eytxpwr SSweibull (x,Asym,Drop,lrc,pwr)
Gompertz y::Asyn1~e_h2b3x SSgompertz(x,Asym,b2,b3)
En cloche
. j _lrel _lre2
Biexponentielle y=Al-e® Y+A2.e7¢ X SSbiexp(x,Al,1rcl,A2,1rc2)

Utiliser ces fonctions simplifie considérablement la construction du modéle.

EXEMPLE(S)
Sur le méme modéle de Michaelis - Menten, notre premier modele :

> modele <- nls(vitesse~Vmax*concentration/(Km+concentration),start=1list(Vmax=
200,Km=0.1))

est équivalent a:

> modele <- nls(vitesse~SSmicmen(concentration,Vmax,Km))

Pour estimer des parametres différents selon les modalités d'un facteur, utiliser la fonctionnlsList (!
ala place de n1s () (les deux fonctions sont basées sur la méme syntaxe) et ajouter | facteur apres
equation, ol facteur est un vecteur contenant la modalité de chaque individu (dans le méme ordre
que la variable a expliquer et les covariables).

EXEMPLE(S)
Toujours sur le méme modele de Michaelis - Menten, si 'on a réalisé I'expérience avec deux
enzymes et que 1'on veut estimer des parametres différents pour chacune d’entre elles :

> modele <- nlsList(vitesse~Vmax*concentration/(Km+concentration) |enzyme,start=
list (Vmax=200,Km=0.1))!

ou:

> modele <- nlsList(vitesse~SSmicmen(concentration,Vmax,Km) |enzyme)!

Vérification de la validité du modele
Avant d’aller plus loin, il est indispensable de vérifier que le modele s’ajuste bien aux données. Cette
étape est fondamentale, et ce pour tout modele, car un test basé sur un modele mal ajusté n’est simple-
ment pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.

Récupération des parametres et tests
Les valeurs de tous les parameétres du modéle sont obtenues via summary (modele). Elles se trouvent
dans le tableau Parameters pour un modele sans facteur (créé avec nls()), Coefficients pour un
modele avec un facteur (créé avecnlsList ()1). Dans les deux cas, le tableau renvoie la valeur (Estimate)
et 'erreur standard (Std. Error) de chaque paramétre, et teste leur conformité a la valeur nulle (une
p-value non significative indique donc que le parametre peut étre supprimé de I'équation du modele).
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Prédiction a partir du modele

Lintérét des modeles est d’estimer les parametres de la relation qui lie la variable a expliquer et les
covariables, mais également de prédire la valeur que prendrait cette variable a expliquer pour des valeurs
connues des variables explicatives. Prédire une réponse nécessite donc de fixer la valeur de foutes les

variables explicatives.

Deux méthodes peuvent étre utilisées pour la prédiction, les deux étant basées sur la fonction

predict():

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-

catives directement dans la fonction, sous la forme d'une liste : predict (modele,newdata=1i-
st (variables)), ou variables est un enchainement de variablel=valeur,variable2=va-
leur...

créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce

tableau). Puis : predict (modele,newdata=tableau).

EXEMPLE(S)

Avec notre méme modele de Michaelis - Menten et nos deux enzymes (A et B) :

> modele <- nlsList(vitesse~SSmicmen(concentration,Vmax,Km) |enzyme)!

On peut prédire une valeur de vitesse de cette facon :

> predict(modele,newdata=list (enzyme="A", concentration=0.5))

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list (enzyme=c("A","B"),concentration=c(0.5,0.5)))
Ou encore :

> predict(modele,newdata=list (enzyme=c("A","B"),concentration=rep(0.5,2)))
Ou encore créer un tableau de ce type :

> tableau

enzyme concentration
1 A 0.5
2 B 0.5
Puis :

> predict(modele,newdata=tableau)

Graphes
Ilustrer la relation entre la variable a expliquer et une covariable nécessite trois étapes :

1. Tracer les points observés : plot (reponse~covariable).

2. Créer un vecteur ayant les mémes minimum et maximum que la covariable mais découpé en tres

petits intervalles : x <- seq2(covariable)?.

. Ajouter la courbe de la relation sur le graphe, ajustée par le modele. La détermination de tous
les points de la courbe est en fait basée sur une prédiction : la valeur que prend la variable a
expliquer pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le
tres petit intervalle qui les sépare, qui donne I'aspect lissé de la courbe (qui est en fait constituée
de centaines de points reliés entre eux). Si le modele contient d’autres variables explicatives
que la covariable du graphe, il faut en fixer toutes les valeurs a I'identique (de sorte que seule
la covariable du graphe change de valeur pour toutes les prédictions). La courbe s’ajoute via
lines(x,predict(modele,newdata=variables.a.expliquer)).

Remarque : 1a fonction lines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
courbes sur le méme graphe, par exemple pour plusieurs niveaux d'un méme facteur contenu
dans le modeéle. Pour modifier le type de tracé et la couleur des courbes, utiliser les arguments
1ty et col respectivement (pour plus d’informations et (beaucoup) plus d’options graphiques,
voir 7par). Enfin, pour ajouter une légende, utiliser la fonction legend () (voir ?1legend pour plus
d’informations).
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EXEMPLE(S)
On se base toujours sur le modele suivant :

> modele <- nlsList(vitesse~SSmicmen(concentration,Vmax,Km) |enzyme)!

Etape 1 : tracer les points correspondant aux données observées :

> plot(vitesse~concentration)

Etape 2 : créer le vecteur x :

> x <- seq2(concentration)?

Etape 3 : ajouter la courbe. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(modele,newdata=list(concentration=x,enzyme=rep("A",length(x))
)))

La fonction rep () est trés utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la courbe de la relation dans la modalité B :

> lines(x,predict(modele,newdata=list(concentration=x,enzyme=rep("B",length(x))

)))

Relation dans 2 modalités d’'un méme facteur

Variable & expliquer

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Covariable
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78. Choisir le modele d’analyse d’un temps de survie

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Avant toute analyse de temps de survie, il est indispensable d’avoir bien compris les notions suivantes :

— Censure: un individu est dit censuré lorsque la date de référence pour calculer le temps avant la
mort (i.e. le « point de départ ») n’est pas connue (censure a gauche), ou que la mort n’a pas été
observée avant la fin de I'étude (parce que I'étude s’est arrétée ou parce que 'individu en est sorti;
censure a droite). Seules les censures a droite sont traitées dans cet aide-mémoire. Une condition
essentielle pour la prise en compte des données censurées dans I'analyse est qu’elles doivent étre
indépendantes des conditions d’expérience.

— Risque instantané : ce risque est celui de mourir a I'instant ¢, sachant que la mort n’est pas surve-
nue avant. Il peut étre constant, ou au contraire augmenter ou diminuer avec le temps.

Plusieurs modeles assez différents peuvent étre utilisés pour analyser des temps de survie. Pour
choisir le plus approprié :

Risque instantané constant

oul Non
Présence de données Modeéle a but
censurées prédictif
oS Qu Ry Oy
Modeéle Linéaire Régression Modele de Régression
Généralisé de survie Cox de survie

Remarque :la régression de survie peut parfaitement étre utilisée pour interpréter des données sans
qu’il y ait pour objectif de faire de la prédiction. Le modéle de Cox, lui par contre, est restreint a 'interpré-
tation d'un jeu de données particulier.

Pour savoir sile risque instantané est constant, tracer la courbe de survie des individus viaplotsurvi-
vors (mort,censure)! ol mort est un vecteur contenant le délai avant la mort de chaque individu et
censure un vecteur indiquant si I'individu est censuré ou non (0 si censuré ou 1 si non censuré, i.e. 0 si
la mort n’a pas été observée ou 1 si elle I'a été), dans le méme ordre que mort. Le risque instantané est
considéré comme constant si les points de la courbe de survie sont a peu pres alignés sur une droite.
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79. Analyser un temps de survie —- Modele Linéaire Généralisé

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

11me4, 2MuMIn, 3car, *survival, SRVAideMemoire

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse
La réponse (appelée « temps de survie dans cette fiche ») ne peut étre que nulle ou positive.

Modéele utilisé

Si le principe de I'analyse est le méme qu'il y ait des séries appariées ou non, quelques modalités
different. La premiere est que sans séries appariées le modele utilisé est un Modele Linéaire Généra-
lisé (Generalized Linear Model ou GLM), tandis qu’avec des séries appariées c’est un Modele Linéaire
Généralisé Mixte (Generalized Linear Mixed Model ou GLMM ; « mixte » sous-entendant « contenant au
moins un facteur aléatoire », facteurs que I'on utilise précisément pour identifier les séries appariées (voir
fiche 11)).

Contrairement au Modele Linéaire (et sa variante Mixte, voire fiche 76), les GLM(M)s ne sont pas
basés sur une loi normale. Dans le cas de temps de survie, la loi a utiliser est une loi Gamma.

Construction du modele

Pour créer le modeéle :

— sans séries appariées : modele<-glm(formule,family="Gamma")

— avec des séries appariées : modele<-glmer (formule,family="Gamma" )L

Voir fiche 40 pour une explication détaillée de la construction d'une formule. De manieére générale, on
peutdire que :

— inclure un facteur permet de tester si les temps de survie different entre les niveaux de ce facteur.

— inclure une covariable permet de tester s’il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si l'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Vérification de 'ajustement aux données
Avant d’aller plus loin, il est indispensable de vérifier que le modéle s’ajuste bien aux données. Cette
étape est fondamentale, et ce pour tout modele, car un test basé sur un modéle mal ajusté n’est simple-
ment pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.

Capacité explicative globale

On peut estimer la capacité explicative globale d’'un modeéle grace au coefficient de détermination (R?),
qui représente la proportion de la variance de la variable a expliquer qui est expliquée par les variables
explicatives. Ce coefficient est obtenu via r . squaredGLMM (modele)?. La fonction renvoie en fait deux
valeurs : le R? marginal (R2m) qui correspond a la part de la variance expliquée uniquement par les
facteurs fixes et covariables, et le R? conditionnel (R2c) qui correspond a la part de la variance expliquée
par 'ensemble des variables explicatives (fixes et aléatoires). Dans le cas d'un GLM les deux valeurs sont
identiques puisqu’il n'y a pas de facteur aléatoire.
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Test(s)

Quel que soit le modele, I'effet des variables explicatives est testé par la méme fonction : Anova (mode-
le)3 (voir fiche 42 pour une explication détaillée des hypotheses testées). Cependant, ce ne sont pas les
mémes tests qui sont réalisés selon le modele :

— GLM : la fonction réalise un test du rapport des vraisemblances (Likelihood Ratio Test ou LR Test) —

en fait un test par terme du modele (i.e. un par ligne du tableau renvoyé).

— GLMM : la fonction réalise un test de Wald — en fait un test par terme du modele (i.e. un par ligne

du tableau renvoyé).

Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
different. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé. Les valeurs de tous les parametres du modeéle sont obtenues via summary (modele). Elles sont
appelées Estimate et se trouvent dans le tableau Coefficients pour un GLM, Fixed effects pour
un GLMM. Si le coefficient portant le nom de la covariable est négatif, le temps de survie diminue quand
la valeur de la covariable augmente; s'il est positif, le temps de survie augmente quand la valeur de la
covariable augmente.

Prédiction a partir du modele
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire un temps de survie nécessite donc de fixer la
valeur de foutesles variables explicatives.
Deux méthodes peuvent étre utilisées pour la prédiction (seule la seconde est disponible pour les
GLMMs), les deux étant basées sur la fonction predict () :

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d'une liste : predict (modele ,newdata=1i-
st (variables) ,type="response"), oll variables est un enchainement de variablel=va-
leur,variable2=valeur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent

étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau, type="response").
Remarque : pour les GLMMs, les valeurs du (ou des) facteur(s) aléatoire(s) peuvent étre données
ou non. Si ce n'est pas le cas, il est nécessaire d’ajouter 'argument re . form=NA a la fonction
predict (). Les prédictions prennent alors en compte I’effet moyen de toutes les modalités du
(ou des) facteur(s) aléatoire(s) du modele.

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- glm(reponse~facteur*covariable,family="Gamma")

On peut prédire un temps de survie de cette facon :

> predict(modele,newdata=list(facteur="A",covariable=10) ,type="response")

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)) ,type="re-

sponse")
Ou encore :
> predict(modele,newdata=list(facteur=c("A","B"),covariable=rep(10,2)) ,type="r-
esponse")
Ou encore créer un tableau de ce type :
> tableau
facteur covariable
1 A 10
2 B 10
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Puis :
> predict(modele,newdata=tableau,type="response")

Graphes
Effet d’'un facteur
Pour illustrer I'effet d'un facteur, on réalise généralement des courbes de survie (dites de Kaplan -
Meier). Leur tracé nécessite trois étapes :

1. Créer un objet de survie, une forme particuliére des temps de survie : survie<-Surv(reponse)*
ol reponse est la variable a expliquer du modeéle, i.e. les temps de survie.

2. Créer les données du graphe : courbes<-survfit (survie~facteur)*

3. Tracer le graphe : plot (courbes). Il est possible d’ajouter I'intervalle de confiance (a 95 %) de
chaque courbe en ajoutant 'argument conf . int=TRUE (attention cependant a ne pas multiplier
les courbes, qui rendent le graphe difficilement lisible). Pour modifier le type de tracé et la couleur
des courbes, utiliser les arguments 1ty et col respectivement (pour plus d'informations et (beau-
coup) plus d’options graphiques, voir ?par). Enfin, pour ajouter une légende, utiliser la fonction
legend () (voir 71legend pour plus d’informations).

Relation avec une covariable
Ilustrer la relation entre la variable a expliquer et une covariable nécessite trois étapes :

1. Tracer les points observés : plot (reponse~covariable).

2. Créer un vecteur ayant les mémes minimum et maximum que la covariable mais découpé en tres
petits intervalles : x <- seq2(covariable)?.

3. Ajouter la courbe de la relation sur le graphe, ajustée par le modéle. La détermination de tous
les points de la courbe est en fait basée sur une prédiction : la valeur que prend la variable a
expliquer pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le
trés petit intervalle qui les sépare, qui donne I'aspect lissé de la courbe (qui est en fait constituée
de centaines de points reliés entre eux). Si le modéle contient d’autres variables explicatives
que la covariable du graphe, il faut en fixer toutes les valeurs a I'identique (de sorte que seule
la covariable du graphe change de valeur pour toutes les prédictions). La courbe s’ajoute via
lines(x,predict(modele,newdata=variables.a.expliquer,type="response")).
Remarque :1a fonction 1ines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
courbes sur le méme graphe, par exemple pour plusieurs niveaux d'un méme facteur contenu
dans le modele. Pour modifier le type de tracé et la couleur des courbes, utiliser les arguments
1ty et col respectivement (pour plus d’informations et (beaucoup) plus d’options graphiques,
voir 7par). Enfin, pour ajouter une légende, utiliser la fonction legend () (voir ?1legend pour plus
d’informations).

EXEMPLE(S)
On se base toujours sur le modele suivant :

> modele <- glm(reponse~facteur*covariable,family="Gamma")

Etape 1: tracer les points correspondant aux données observées :

> plot(reponse~covariable)

Etape 2 : créer le vecteur x :

> x <- seq2(covariable)®

Etape 3 : ajouter la courbe. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("A",length(x))),
type="response"))

La fonction rep () est trés utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la courbe de la relation dans la modalité B :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("B",length(x))),
type="response"))
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> Analyser les résultats d'une étude > Statistique univariée

80. Analyser un temps de survie — Régression de survie

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lsurvival, 2car, SRVAideMemoire

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse
Dans une régression de survie, la variable a expliquer n’est pas directement le temps avant la mort des
individus, mais un objet particulier appelé objet de survie. Cet objet prend en compte a la fois le temps
de survie, mais aussi des possibles censures (i.e. le fait que la mort ne soit pas observée avant la fin de
I'étude; voir fiche 78). Pour le créer :
— survie<-Surv(mort)!s’il n'y a aucun individu censuré, ou1 mort est le vecteur contenant les
temps de survie.
— survie<-Surv(mort,censure)!s’il y a des individus censurés, o mort est le vecteur contenant
les temps de survie et censure le vecteur contenant I'indication de censure de chaque individu
(0: censure, 1 : pas de censure i.e. mort observée).
Dans la formule du modeéle, la variable a expliquer est survie, I'objet de survie.

Construction du modele

Pour créer le modeéle :

— si le risque instantané est constant (voir fiche 78 pour tester cette hypotheése) : modele<-su-
rvreg(formule,dist="exponential")!. Laloi exponentielle sert a modéliser la constance du
risque instantané.

— silerisque instantané n’est pas constant : modele<-survreg(formule,dist="weibull")! La
loi de Weibull sert a modéliser I'évolution du risque instantané au cours du temps (qu’il diminue
ou qu’il augmente).

Voir fiche 40 pour une explication détaillée de la construction d'une formule. De maniére générale, on
peut dire que :

— inclure un facteur permet de tester si les temps de survie different entre les niveaux de ce facteur.

— inclure une covariable permet de tester s'il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si I'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester sila relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Dans le cas d'un modele avec risque instantané non constant, I’évolution de ce risque est donnée par

summary (modele). Sile parametre Scale est < 1 le risque diminue avec le temps, il est > 1 il augmente.

Vérification de 'ajustement aux données
Avant d’aller plus loin, il est indispensable de vérifier que le modele s’ajuste bien aux données. Cette
étape est fondamentale, et ce pour tout modele, car un test basé sur un modele mal ajusté n’est simple-
ment pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.

Test(s)

Quel que soit le modele, I'effet des variables explicatives est testé par la méme fonction : Anova (mode-
le)? (voir fiche 42 pour une explication détaillée des hypotheses testées). Le test réalisé est un test du
rapport des vraisemblances (Likelihood Ratio Test ou LR Test) — en fait un test par terme du modele (i.e.
un par ligne du tableau renvoyé).
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Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
different. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé. Les valeurs de tous les parameétres du modéle sont obtenues via summary (modele). Elles sont
appelées Value. Sile coefficient portant le nom de la covariable est négatif, le temps de survie diminue
quand la valeur de la covariable augmente; s’il est positif, le temps de survie augmente quand la valeur
de la covariable augmente.

Prédiction a partir du modele
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives
sur la variable a expliquer, mais également de prédire la valeur que prendrait cette variable a expliquer
pour des valeurs connues des variables explicatives. Prédire un temps de survie nécessite donc de fixer la
valeur de foutes les variables explicatives.

Deux méthodes peuvent étre utilisées pour la prédiction, les deux étant basées sur la fonction

predict():

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d’'une liste : predict (modele ,newdata=1i-
st (variables)), ou variables est un enchainement de variablel=valeur,variable2=va-
leur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tableau).

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- survreg(survie~facteur*covariable,dist="exponential")!

On peut prédire un temps de survie de cette facon :

> predict(modele,newdata=list(facteur="A", covariable=10))

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)))

Ou encore :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=rep(10,2)))

Ou encore créer un tableau de ce type :

> tableau

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tableau)

Graphes
Effet d'un facteur
Pour illustrer I'effet d'un facteur, on réalise généralement des courbes de survie (dites de Kaplan -
Meier). Leur tracé nécessite deux étapes :

1. Créer les données du graphe : courbes<-survfit (survie~facteur)l

2. Tracer le graphe : plot (courbes). Si des individus sont censurés, ils sont représentés par des
croix (+). Il est possible d’ajouter I'intervalle de confiance (a 95 %) de chaque courbe en ajoutant
Pargument conf . int=TRUE (attention cependant a ne pas multiplier les courbes, qui rendent le
graphe difficilement lisible). Pour modifier le type de tracé et la couleur des courbes, utiliser les
arguments 1ty et col respectivement (pour plus d’'informations et (beaucoup) plus d’options gra-
phiques, voir 7par). Enfin, pour ajouter une légende, utiliser la fonction 1egend () (voir ?71egend
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pour plus d’informations).

Relation avec une covariable
Illustrer la relation entre la variable a expliquer et une covariable nécessite trois étapes :
1. Tracer les points observés : plot (mort~covariable).

2. Créer un vecteur ayant les mémes minimum et maximum que la covariable mais découpé en tres
petits intervalles : x <- seq2(covariable)3.

3. Ajouter la courbe de la relation sur le graphe, ajustée par le modeéle. La détermination de tous
les points de la courbe est en fait basée sur une prédiction : la valeur que prend la variable a
expliquer pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le
trés petit intervalle qui les sépare, qui donne I'aspect lissé de la courbe (qui est en fait constituée
de centaines de points reliés entre eux). Si le modéle contient d’autres variables explicatives
que la covariable du graphe, il faut en fixer toutes les valeurs a I'identique (de sorte que seule
la covariable du graphe change de valeur pour toutes les prédictions). La courbe s’ajoute via
lines(x,predict(modele,newdata=variables.a.expliquer)).

Remarque :1a fonction 1ines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
courbes sur le méme graphe, par exemple pour plusieurs niveaux d'un méme facteur contenu
dans le modele. Pour modifier le type de tracé et la couleur des courbes, utiliser les arguments
1ty et col respectivement (pour plus d’'informations et (beaucoup) plus d’options graphiques,
voir ?par). Enfin, pour ajouter une légende, utiliser la fonction legend () (voir ?1egend pour plus

d’informations).

EXEMPLE(S)

On se base toujours sur le modele suivant :

> modele <- survreg(survie~facteur*covariable,dist="exponential")!

Etape 1 : tracer les points correspondant aux données observées :

> plot(mort~covariable)

Etape 2 : créer le vecteur x :

> x <- seq2(covariable)?

Etape 3 : ajouter la courbe. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("A",length(x)))
)

La fonction rep () est trés utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la courbe de la relation dans la modalité B :

> lines(x,predict(modele,newdata=list(covariable=x,facteur=rep("B",length(x)))
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A

> Analyser les résultats d'une étude > Statistique univariée

81. Analyser un temps de survie - Modele de Cox

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lsurvival, 2RVAideMemoire, 3car

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse
Dans un modele de Cox, la variable a expliquer n’est pas directement le temps avant la mort des
individus, mais un objet particulier appelé objet de survie. Cet objet prend en compte a la fois le temps
de survie, mais aussi des possibles censures (i.e. le fait que la mort ne soit pas observée avant la fin de
I'étude; voir fiche 78). Pour le créer :
— survie<-Surv(mort)!s’il n'y a aucun individu censuré, ou1 mort est le vecteur contenant les
temps de survie.
— survie<-Surv(mort,censure)!s’il y a des individus censurés, o mort est le vecteur contenant
les temps de survie et censure le vecteur contenant I'indication de censure de chaque individu
(0: censure, 1 : pas de censure i.e. mort observée).
Dans la formule du modeéle, la variable a expliquer est survie, I'objet de survie.

Construction du modele

Pour créer le modeéle : modele<-coxph (formule)!. Voir fiche 40 pour une explication détaillée de la

construction d’'une formule. De maniere générale, on peut dire que :

— inclure un facteur permet de tester si les temps de survie different entre les niveaux de ce facteur.

— inclure une covariable permet de tester s’il existe une relation entre cette covariable et la variable
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si I'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et la variable a expliquer est différente selon la modalité du facteur.

Le modele de Cox est un peu particulier puisque, contrairement aux autres modeéles d’analyse de

temps de survie, il n’est pas paramétrique mais « semi» paramétrique, voire non paramétrique selon les
points de vue (c’est la raison pour laquelle on ne peut pas I'utiliser dans un but prédictif).

Vérification de la validité du modéle
Avant d’aller plus loin, il est indispensable de vérifier que le modele s’ajuste bien aux données.
Cette étape est fondamentale, et ce pour tout modele, car un test basé sur un modele mal ajusté n’est
simplement pas fiable (ni valide). Le modeéle de Cox a des conditions de validité particulieres :

— larelation entre chaque variable explicative quantitative (ou covariable) et le risque instantané
doit étre log-linéaire. Pour tester cette hypothése : cox.resid(modele)?2. La fonction trace un
graphe par covariable, sur lequel la ligne rouge représente la tendance du nuage de point. On
accepte I'hypothese de log-linéarité pour une covariable si la ligne rouge correspondante est a
peu pres horizontale. Dans le cas contraire la solution la plus simple est de la découper en classes,
puis la réintégrer dans le modele comme facteur.

EXEMPLE(S)
Avec un modeéle contenant un facteur et une covariable :

> modele <- coxph(survie~facteur+covariable)!

Lhypothese de log-linéarité entre la variable a expliquer et la covariable est testée par :
> cox.resid(modele)?
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Sil'hypothése n’est pas respectée, on découpe la covariable en classes. Un exemple avec un décou-
page en deux classes :

> covar.class <- cut(covariable,breaks=2)

Remarque : pour ajouter un nom aux classes, utiliser 'argument 1abel. Les classes ont par défaut la
méme longueur. Pour plus d’'informations (beaucoup d’options sont disponibles), voir 7cut.

Un nouveau modele est créé avec la covariable transformée en facteur :

> modele <- coxph(survie~facteur+covar.class)!

— le rapport des risques instantanés de deux individus doit étre constant au cours du temps (hypo-
these des «risques proportionnels »). Pour tester cette hypothése : cox . zph (modele) . La fonction
teste 'hypothese pour chaque variable explicative, ainsi que pour le modeéle global. Si une p-value
est significative, cela indique que '’hypothése n’est pas respectée pour la variable explicative en
question, qui est dite dépendante du temps. 1l vaut mieux alors I'intégrer dans le modele en temps
que strate et non variable explicative (pour les variables explicatives quantitatives, cela passe
par un découpage en classes et une transformation en facteur). Leffet de la variable ne sera plus
calculé, mais pris en compte a travers la définition de risques instantanés de base différents selon
les strates. Pour intégrer une strate dans la formule du modele, ajouter +strata(variable) apres
les variables explicatives (et retirer la variable désormais stratifiée des variables explicatives).

EXEMPLE(S)
Toujours avec le modele suivant :

> modele <- coxph(survie~facteur+covariable)!

Lhypothese des risques proportionnels est testée par :

> cox.zph(modele)!

Sil’hypothése n’est pas respectée pour le facteur, le modele est recréé en traitant celui-ci comme
une strate :

> modele <- coxph(survie~covariable+strata(facteur))!

SiT’hypotheése n’est pas respectée pour la covariable, celle-ci doit étre factorisée puis intégrée comme
strate dans le modele :

> modele <- coxph(survie~facteur+strata(covar.class))!

Test(s)

Selon que le modele contienne une strate ou non, un test différent est a réaliser :

— modele sans strate : Anova (modele)3. La fonction réalise un test du rapport des vraisemblances
partielles (Partial Likelihood Ratio Test ou PLR Test) — en fait un test par terme du modele (i.e. un
par ligne du tableau renvoyé).

— modéele avec strate : Anova(modele,test="Wald")3. La fonction réalise un test de Wald — en fait
un test par terme du modéle (i.e. un par ligne du tableau renvoyé).

Si un facteur (ou une interaction impliquant un facteur) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
different. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a un effet significatif, la direction de son effet est donnée par le signe du parametre
associé. Les valeurs de tous les parametres du modéle sont obtenues via summary (modele). Elles sont
appelées coef. Si le coefficient portant le nom de la covariable est négatif, le temps de survie diminue
quand la valeur de la covariable augmente; s'il est positif, le temps de survie augmente quand la valeur
de la covariable augmente.

Graphes
Le modele de Cox n’étant pas prédictif, on illustre en pratique uniquement I’effet de facteurs sur le
temps de survie. Pour ce faire, on réalise généralement des courbes de survie (dites de Kaplan - Meier).
Leur tracé nécessite deux étapes :

1. Créer les données du graphe : courbes<-survfit (survie~facteur)! Il est possible d’ajouter
une strate dans la formule (sous la forme +strata(facteur2)) pour tracer une courbe par
modalité du facteur et par strate. Attention cependant a ne pas multiplier les courbes, qui rendent
le graphe difficilement lisible.
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2. Tracer le graphe : plot (courbes). Si des individus sont censurés, ils sont représentés par des
croix (+). Il est possible d’ajouter I'intervalle de confiance (a 95 %) de chaque courbe en ajoutant
largument conf . int=TRUE (méme avertissement sur le nombre de courbes). Pour modifier le
type de tracé et la couleur des courbes, utiliser les arguments 1ty et col respectivement (pour
plus d’informations et (beaucoup) plus d’options graphiques, voir 7par). Enfin, pour ajouter une
légende, utiliser la fonction legend () (voir ?71egend pour plus d'informations).

Courbes de survie dans 2 modalités
d’un méme facteur
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82. Nuages de points

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
IRVAideMemoire

Ce type de graphique permet de représenter les valeurs de deux variables numériques pour chaque
individu, dans un graphe du type y = f(x). Il permet d’avoir un apercu de la relation qui peut exister
entre ces variables. Il peut étre utilisé avec deux vecteurs, une matrice a deux colonnes ou un tableau a
deux colonnes. Son tracé est basé sur la fonction plot ().

Pour représenter deux vecteurs x et y contenant la valeur de chaque individu pour les deux variables
(dans le méme ordre) : plot (y~x). Le symbole ~ signifie « expliqué par » ou « en fonction de ».

Pour ajouter un titre au graphe, utiliser 'argument main="Titre".

Pour modifier la 1égende de I'axe horizontal, utiliser I'argument x1ab="Légende".
Pour modifier la 1égende de I'axe vertical, utiliser 'argument ylab="Légende".
Pour (beaucoup) plus d’options graphiques, voir 7par.

Pour ajouter une droite dutype y=ax+b:abline(b,a).

Pour ajouter une droite de régression linéaire au sens des moindres carrés (voir fiche 76) : abline (1m(
y~x)).

Pour ajouter une droite de régression linéaire au sens des moindres rectangles (voir fiche 87) :
abline(least.rect(y~x)1).

Pour ajouter une courbe de tendance du nuage de points : panel . smooth(x,y).
Pour ajouter une droite horizontale : abline (h=ordonnee).

Pour ajouter une droite verticale : abline (v=abscisse).

20
1

Taille
14 16
1 1

12
1
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83. Intensité de la liaison entre deux variables

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Les parameétres suivants permettent de réduire deux séries de données a une valeur globale sur la
liaison qui (éventuellement) les unit. Le choix du parametre dépend de la nature des deux variables et
parfois de la forme de leur relation. Celle-ci se vérifie grace a un graphe de type nuage de points (voir
fiche 82) et peut étre linéaire, monotone (i.e. uniquement croissante ou décroissante, quelle qu’en soit la
maniere) ou autre.

Deux variables quantitatives
Relation linéaire

Les deux parametres les plus courants sont :

— la covariance de Pearson (paramétrique) : cov(seriel,serie2) oliseriel et serie2 sont des
vecteurs contenant la valeur de chaque individu pour chaque variable (dans le méme ordre)

— le coefficient de corrélation de Pearson (paramétrique) : cor (seriel,serie?2). Un cas particulier
de la corrélation est la corrélation partielle (i.e. la corrélation entre deux variables tout en contro-
lant pour une ou plusieurs autres variables). Son coefficient se calcule viapcor (seriel,serie2,
autres)! ol autres est un vecteur, un tableau ou une liste donnant les variables dont on veut re-
tirer 'effet avant d’estimer la corrélation entre seriel et serie2. Dans tous les cas, un coefficient
de corrélation varie entre -1 (corrélation parfaite et négative) et 1 (corrélation parfaite et positive),
en passant par 0 (pas de corrélation).

Relation monotone
On retrouve les équivalents non paramétriques des parametres précédents :
— covariance de Spearman (non paramétrique) : cov(seriel,serie2,method="spearman")
— coefficient de corrélation de Spearman (non paramétrique) : cor (seriel,serie2,method="spe-
arman") ; la version partielle : pcor (seriel,serie2,autres,method="spearman")l.

Relation autre

Aucun parametre simple n’est disponible. Il est nécessaire de découper les variables en classes puis
de les traiter comme qualitatives. Voir pour cela ?cut.

Deux variables qualitatives ordinales
Relation monotone
On peut utiliser les versions non paramétriques (i.e. de Spearman) de la covariance et du coefficient
de corrélation.

Relation autre
Aucun parametre simple n’est disponible. Il est nécessaire de découper les variables en classes puis
de les traiter comme qualitatives. Voir pour cela ?cut.

Deux variables qualitatives
Si chaque classe des deux variables contient au moins 5 % du nombre total d’individus, on peut
calculer la valeur du coefficient d’association de Cramér (non paramétrique) : cramer (seriel,serie2)1.
Le coefficient varie :
— entre 0 (pas d’association ou indépendance) et 1 (association parfaite) des que 'une des deux
variables au moins a plus de deux classes.
— entre -1 et 1 quand les deux variables ont chacune deux classes. Peu importe dans quelle direction
varie le coefficient, plus il s’éloigne de 0 et plus I’association est élevée.
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84. Corrélation entre deux variables quantitatives ou ordinales

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Lobjectif est ici de déterminer I'intervalle de confiance d'un coefficient de corrélation et de tester sa
conformité a une valeur théorique. Voir fiche 83 pour une explication de quand utiliser le coefficient de
Pearson (paramétrique) ou celui de Spearman (non paramétrique).

Pour toutes les fonctions calculant un intervalle de confiance, la précision de cet intervalle peut étre
modifiée grace al’argument conf . level (par défaut conf.level=0.95, ce qui calcule I'intervalle de
confiance a 95 %).

Coefficient de corrélation de Pearson (paramétrique)
Intervalle de confiance et test de conformité a la valeur nulle

Pour réaliser le test : cor.test (seriel,serie2) ol seriel et serie?2 sont des vecteurs contenant
la valeur de chaque individu pour chaque variable (dans le méme ordre). La fonction renvoie, dans
l'ordre : le test de conformité a la valeur nulle (il y a « vraiment » corrélation si le résultat est significatif),
I'intervalle de confiance et la valeur du coefficient.

Pour une corrélation partielle (i.e. ot 'effet d'une ou plusieurs variables confondantes est retiré avant
d’estimer et tester la corrélation) : pcor.test (seriel,serie2,autres)! oll autres est un vecteur, un
tableau ou une liste donnant les variables confondantes (dans le méme ordre que seriel et serie2).

Test de conformité a une valeur autre que 0
Pour réaliser le test : cor.conf (seriel,serie2,theo=valeur)! ol valeur est le coefficient de
corrélation théorique.

Coefficient de corrélation de Spearman (non paramétrique)
Intervalle de confiance
Lintervalle de confiance est calculé par bootstrap : spearman.ci(seriel,serie2)l.

Test de conformité a la valeur nulle
Pour réaliser le test: cor.test (seriel,serie2,method="spearman"). La fonction renvoie, dans
I'ordre : le test de conformité a la valeur nulle et la valeur du coefficient.
Pour une corrélation partielle : pcor.test (seriel,serie2,autres,method="spearman")!.

Test de conformité a une valeur autre que 0
Il n’existe pas de test dédié au coefficient de corrélation de Spearman. Cependant il suffit de calculer
I'intervalle de confiance du coefficient et de voir si le coefficient théorique en fait partie. Par définition, si
I'intervalle de confiance a 95 % ne comprend pas le coefficient théorique, alors le coefficient de corrélation
observé est significativement différent du coefficient théorique au seul a =5 % (voir fiche 15).

137



A

> Analyser les résultats d’'une étude > Statistique bivariée

85. Comparaison de plusieurs coefficients de corrélation

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Voir fiche 83 pour une explication de quand utiliser le coefficient de Pearson (paramétrique) ou celui
de Spearman (non paramétrique).

Coefficient de corrélation de Pearson (paramétrique)
Comparaison de deux coefficients

Pour réaliser le test, utiliser selon la situation 'une des deux fonctions suivantes :

— cor.2comp(seriel,serie2,serie3,seried)! ol seriel et serie2 sont des vecteurs conte-
nant la valeur de chaque individu pour les deux variables définissant la premiere corrélation (dans
le méme ordre), tandis que serie3 et serie4 sont des vecteurs contenant la valeur de chaque
individu pour les deux variables définissant la seconde corrélation (dans le méme ordre).

— cor.multcomp(seriel,serie2,facteur)! ol seriel et serie2 sont des vecteurs contenant
la valeur de chaque individu pour les deux variables a tester (dans le méme ordre), et facteur un
facteur contenant la modalité de chaque individu.

Si les deux coefficients de corrélation ne sont pas significativement différents, les deux fonctions
renvoient la valeur du coefficient de corrélation commun, son intervalle de confiance a 95 % et le résultat
du test de conformité de ce coefficient a la valeur nulle (cette valeur théorique peut étre modifiée grace a
I'argument theo=valeur ou valeur est le coefficient de corrélation théorique).

Comparaison de plus de deux coefficients
Pour réaliser le test : cor .multcomp(seriel,serie2,facteur)?.
Sila p-value du test est significative, cela indique qu’au moins deux coefficients different 'un de
l'autre, sans préciser lesquels. La fonction effectue alors toutes les comparaisons deux-a-deux possibles.
Il peut arriver que les comparaisons deux-a-deux n’indiquent aucune différence significative, contrai-
rement au test global. Dans ce cas, la solution la plus prudente est de considérer qu’on ne peut pas savoir
quels coefficients sont responsables du rejet de '’hypothése nulle dans le test global.

Coefficient de corrélation de Spearman (non paramétrique)

Il n’'existe pas de test dédié au coefficient de corrélation de Spearman. Cependant il suffit de comparer
les intervalles de confiance des différents coefficients. En effet, si deux intervalles de confiance 95 % ne se
chevauchent pas alors les deux coefficients de corrélation sont significativement différents au seul « =5 %
(voir fiche 15). Comme on réalise des comparaisons multiples, les intervalles de confiance doivent étre
corrigés, comme on le ferait pour des p-values (voir fiche 16).

Pour calculer les intervalles de confiance (corrigés) : spearman. cor.multcomp(seriel,serie2,fa-
cteur)!. La fonction renvoie un tableau a trois colonnes : les coefficients de corrélation (r) et les bornes
inférieures (inf) et supérieures (sup) des intervalles de confiance.

EXEMPLE(S)
On obtient les trois intervalles de confiance suivants :
inf r sup

A -0.978 -0.846 -0.419
B 0.241 0.789 0.957
C 0.593 0.904 0.985
Lintervalle du groupe A ne chevauche pas ceux des groupes B et C, donc A est significativement
différent de B et C. Les intervalles des groupes B et C, eux, se chevauchent. Donc B et C ne sont pas
significativement différents.
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86. Association entre deux variables qualitatives

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Pour choisir le test approprié :

Au moins 200 individus

o o;,

Test du chi® Test exact
d'indépendance de Fisher

ou

TestG
d’'indépendance

Le test exact est toujours le plus fiable mais son temps de calcul augmente avec le nombre d’individus.
Lorsque |'effectif est suffisamment grand, I’approximation faite par les tests du y? et G est assez satisfai-
sante pour qu’ils puissent étre utilisés. Les résultats de ces deux tests sont trés semblables; choisir entre
I'un et 'autre reléve plus d'une habitude que d'une raison statistique.

Les données doivent étre organisées en un tableau de contingence du type :

Variable B

Classe 1 Classe ¢

Classe 1

Variable A

Classe k

ol chaque case contient le nombre d’individus possédant a la fois le caractere de la variable A et celui
de la variable B.

Ce tableau est obtenu de la manieére suivante : tab.cont<-table(variableA,variableB) ou
variableA et variableB sont des vecteurs contenant la valeur de chaque individu pour chaque variable
(dans le méme ordre).

Test exact de Fisher (non paramétrique)

Pour réaliser le test : fisher.test (tab.cont).

Si le message d’avertissement out of workspace apparait, augmenter la valeur de I'argument
workspace (par défaut workspace=200000). Si un autre message d’avertissement apparait, cela peut
étre a cause d'un tableau trop complexe 2 analyser. Il faut alors se rabattre sur le test du ¥ ou le test G.

Une p-value significative indique que les deux variables ne sont pas indépendantes, sans préciser
les classes qui sont a I'origine de cette liaison. Il est dans ce cas nécessaire de réaliser des comparaisons
deux-a-deux pour identifier les classes en question, via fisher.multcomp(tab.cont)!. La fonction
réalise un test exact de Fisher sur chaque tableau de contingence 2 x 2 possible a partir de tab. cont.
Il est nécessaire d’interpréter ces résultats pour repérer les classes qui apparaissent systématiquement
dans les tests qui donnent une p-value significative. Ce sont ces classes qui sont liées.

139



Il peut arriver que les comparaisons deux-a-deux n’'indiquent aucune liaison significative, contraire-
ment au test global. Dans ce cas, la solution la plus prudente est de considérer qu’on ne peut pas savoir
quelles classes sont responsables du rejet de '’hypothese nulle dans le test global.

EXEMPLE(S)
Les caracteres étudiés sont la couleur des cheveux et des yeux de 116 individus :
> tab.cont

bleu marron vert

blond 25 6 9
brun 10 15 16
roux 12 14 9

> fisher.multcomp(tab.cont)!
Pairwise comparisons by Fisher’s exact test for count data

data: tab.cont

bleu:marron bleu:vert marron:vert

blond:brun 0.02211 0.03435 0.7793
blond:roux 0.03435 0.44655 0.4801
brun:roux 0.77935 0.44655 0.5362

P value adjustment method: fdr

Les classes qui sont liées sont ici blond et bleu.

Test du y? d’indépendance (non paramétrique)

Pour réaliser le test : chisq.test (tab.cont).

Sila p-value du test est significative, les comparaisons deux-a-deux sont réalisées via fisher .mult-
comp (tab.cont)L

Remarque :le test du y? d’'indépendance est également le test de conformité 2 la valeur nulle du coeffi-
cient d’association de Cramér (voir fiche 83). Ce test peut également étre réalisé via cramer . test (varia-
bleA,variableB)! ou cramer.test(tab.cont)!. Lafonction renvoie, dans!’ordre : le test de confor-
mité a la valeur nulle (il y a « vraiment » association si le résultat est significatif), I'intervalle de confiance
calculé par bootstrap et la valeur du coefficient.

Test G d'indépendance (non paramétrique)
Pour réaliser le test : G. test (tab.cont) L
Sila p-value du test est significative, les comparaisons deux-a-deux sont réalisées via fisher .mult-
comp (tab.cont)L
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87. Analyser deux variables quantitatives interdépendantes
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IRVAideMemoire

Modele utilisé

Le modele utilisé est une régression linéaire au sens des moindres rectangles, qui differe de la régression
linéaire classique, dite au sens des moindres carrés (voie fiche 76). En effet, dans la régression linéaire
au sens des moindres carrés, une variable est considérée comme a expliquer, tandis que I'autre est
considérée comme explicative. Dans la régression linéaire au sens des moindres rectangles, les deux
variables sont considérées sur un méme pied d’égalité, aucune n’expliquant I’autre. On dit de ces variables
qu’elles sont interdépendantes.

Un facteur peut étre ajouté a la régression pour définir des parameétres (i.e. pente et ordonnée a
I'origine) différents par modalité.

Construction du modéle

Pour créer le modéle : regression<-least.rect(variable.y~variable.x)!, oli variable.y et
variable.x sont des vecteurs contenant la valeur de chaque individu pour chaque variable (dans le
méme ordre). Les noms variable.y et variable.x n'ont qu'une valeur graphique : variable.x est
destiné a étre tracé en abscisses et variable.y en ordonnées. Les deux variables peuvent étre inversées
sans conséquence dans le modele.

Pour estimer des parameétres différents selon les modalités d'un facteur : regression<-least.re-
ct(variable.y~variable.x|facteur)!, ol facteur est un vecteur contenant la modalité de chaque
individu (dans le méme ordre que les deux autres variables).

Vérification de la validité du modele
Avant d’aller plus loin, il est indispensable de vérifier que le modéle s’ajuste bien aux données. Cette
étape est fondamentale, et ce pour tout modeéle, car un test basé sur un modéle mal ajusté n’est simple-
ment pas fiable (ni valide). Voir fiche 41 pour une explication détaillée de cette vérification.

Récupération des parameétres et tests

Les valeurs des parametres de la (ou des) régression(s) sont obtenues via summary (regression),
dans le tableau Coefficients. La fonction renvoie la valeur et I'intervalle de confiance de 'ordonnée
al'origine ((Intercept)) et de la pente (qui porte le nom de la variable x). Si un facteur a été ajouté
ala régression, un tableau est renvoyé pour chacun de ces deux parametres, contenant une ligne par
modalité.

Dans le cadre de la régression linéaire au sens des moindres rectangles, on compare le plus sou-
vent la pente a la valeur théorique 1 (qui correspond par exemple en allométrie a une relation d’iso-
métrie entre les deux organes/structures comparés). Le résultat de ce test est également obtenu via
summary (regression). Pour changer la valeur théorique, ajouter I'argument theo=valeur ala fonc-
tion least.rect ()L Siun facteur a été défini dans le modele, un test est réalisé pour chaque pente.

Il n’existe pas de test pour comparer plusieurs pentes ou ordonnées a I'origine. Cependant, lorsqu'un
facteur a été défini dans le modele, si les intervalles de confiance a 95 % des pentes (ou des ordonnées a
I'origine) ne se chevauchent pas entre deux modalités, alors par définition ces pentes sont significative-
ment différentes au seuil @ =5 % (voir fiche 15).

Prédiction a partir du modele
Lintérét d'un modele est d’estimer les parametres de la relation qui lie les variables x et y, mais
également de prédire la valeur que prendrait la variable y pour des valeurs connues de la variable x (ou
inversement, les deux variables étant interdépendantes). Prédire une valeur de y nécessite donc de fixer
la valeur de x — et du facteur s’il y en a un dans le modele.
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Deux méthodes peuvent étre utilisées pour la prédiction, les deux étant basées sur la fonction

predict():

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de la variable x — et éventuelle-
ment du facteur — directement dans la fonction, sous la forme d’'une liste : predict (modele,ne-
wdata=1list(variables)), oll variables est un enchainement de variable.x=valeur,fac-
teur=valeur.

— créer un tableau contenant une colonne par chacune des deux variables connues (x et éventuelle-
ment un facteur; les noms de colonnes doivent étre strictement identiques aux noms des variables
du modele), et remplir chaque ligne en fonction des valeurs pour lesquelles la prédiction doit étre
faite (il y a donc une prédiction par ligne de ce tableau). Puis : predict (modele,newdata=table-
au).

EXEMPLE(S)
Avec un modeéle contenant une variable x variant de 0 a 30 et un facteur a deux niveaux (A et B) :
> regression <- least.rect(variable.y~variable.x|facteur)!

On peut prédire une valeur de y de cette facon :

> predict(regression,newdata=list(variable.x=10,facteur="A"))

Ou, pour plusieurs prédictions :

> predict(regression,newdata=list(variable.x=c(10,10),facteur=c("A","B")))
Ou encore :

> predict(regression,newdata=list(variable.x=rep(10,2),facteur=c("A","B")))
Ou encore créer un tableau de ce type :

> tableau

variable.x facteur
1 10 A
2 10 B
Puis :

> predict(regression,newdata=tableau)

Graphes
Ilustrer la relation entre les variables x et y nécessite trois étapes :

1. Tracer les points observés : plot (variable.y~variable.x).

2. Créer un vecteur ayant les mémes minimum et maximum que la variable x mais découpé en tres
petits intervalles : x <- seq2(variable.x)!

3. Ajouter la droite de la relation sur le graphe, ajustée par le modéle. La détermination de tous
les points de la droite est en fait basée sur une prédiction : la valeur que prend la variable y
pour chaque valeur du vecteur x. C’est le grand nombre de valeurs de ce vecteur, et le trés petit
intervalle qui les sépare, qui donne I'aspect lissé de la droite (qui est en fait constituée de centaines
de points reliés entre eux). Si le modele contient un facteur, il faut en fixer toutes les valeurs
a l'identique (de sorte que seule la variable x change de valeur pour toutes les prédictions).
La droite s’ajoute via lines (x,predict(regression,newdata=variables)) ou variables
correspond aux valeurs de la variable x et du facteur.

Remarque :1a fonction lines () peut étre utilisée plusieurs fois de suite pour tracer plusieurs
droites sur le méme graphe, par exemple pour plusieurs niveaux d'un facteur.

EXEMPLE(S)
On se base toujours sur le modele suivant :

> regression <- least.rect(variable.y~variable.x|facteur)!

Etape 1 : tracer les points correspondant aux données observées :

> plot(variable.y~variable.x)

Etape 2 : créer le vecteur x :

> x <- seq2(variable.x)!

Etape 3 : ajouter la droite. On choisit de se placer dans la modalité A du facteur :

> lines(x,predict(regression,newdata=list(variable.x=x,facteur=rep("A",length(

x)))))
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La fonction rep () est trés utile dans cette situation, puisqu’elle permet de créer trés simplement un
vecteur de la méme longueur que x, contenant une seule valeur répétée.

Pour ajouter la droite de la relation dans la modalité B :

> lines(x,predict(regression,newdata=list(variable.x=x,facteur=rep("B",length(x)

))))

Relation dans 2 modalités d’'un méme facteur

Variable y

0 5 10 15 20 25 30

Variable x
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88. Pré-traitement des données quantitatives

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
'Hotelling

Avant de réaliser une analyse multivariée, il est parfois (voire souvent) bénéfique de « pré-traiter » les

données. Les situations ot cela peut étre intéressant sont identifiées dans les fiches concernées.

De facon globale, il y a trois étapes possibles de pré-traitement (la premiére devant impérativement

étre réalisées avant les autres, tandis que les deux suivantes ne sont pas sensibles a leur ordre) :

Transformation : un grand nombre d’analyses multivariées sont construites sur la base d'un modele

linéaire, i.e. font 'hypotheses de relations linéaires entre les variables du jeu de données (voire
aussi avec les variables explicatives dans les analyses a deux tableaux asymétriques). Or il arrive
fréquemment que ce ne soit pas completement le cas. De la méme maniere, beaucoup d’analyses
font I'hypothese que les variables ont une distribution au moins symétrique, ce qui n’est pas
toujours vérifié. Enfin, beaucoup d’analyses supposent également des relations additives entre
les variables, alors qu’elles peuvent étre plutét multiplicatives dans le jeu de données réel. Pour
pallier a ces trois problémes, transformer les données peut s’avérer tres efficace. La transformation
la plus courante et utile est le logarithme (peu importe la base de celui-ci), réalisé simplement
via tableau<-log(tableau) oul tableau est le nom du jeu de données. Une alternative au
logarithme si le jeu de données contient des 0 est la racine quadratique (i.e. ¥/X), qui est préférable
au classique log(x + 1) (car 'ajout d’'une constante n'a pas le méme effet sur les petites et les
grandes valeurs). Pour la mettre en ceuvre : tableau<-tableau” (1/4).

Remarque :sile jeu de données est de type compositionnel (i.e. 1a somme des valeurs d'un individu
vaut toujours 1 ou 100 %), il est absolument indispensable de transformer les données avant toute
analyse multivariée. La transformation la plus courante dans ce cas est celle du Centered LogRatio
(CLR), réalisée via : tableau<-clr(tableau)!. Sile jeu de données contient des 0 il n'y a pas
d’alternative a ajouter une constante a toutes les valeurs; la choisir pour qu’elle soit de plusieurs
ordres de grandeur plus faible que la plus petite valeur du tableau.

Centrage: le centrage consiste a soustraire a chaque valeur du tableau la moyenne de la colonne

dans laquelle cette valeur se trouve (la conséquence est que toutes les colonnes ont ensuite une
moyenne nulle). Cela permet de s’affranchir de I'ordre de grandeur des différentes variables, ce
qui est d’autant plus intéressant que ces ordres de grandeur sont différents. Pour les analyses
basées sur une matrice de distance (i.e. toute classification ou les ordinations sur une matrice de
distance), I'effet est potentiellement trés important (mais bénéfique - sauf a vouloir tenir compte
des différences d’ordre de grandeur dans I'analyse). Pour les méthodes d’ordination basées sur un
tableau de variables, le centrage n’a aucun effet a part simplifier les calculs internes.

Remarque : plus généralement, centrer les données consiste a soustraire toute valeur, du moment
qu’elle est constante par colonne. Les cas ol ce n’est pas la moyenne qui est utilisée sont tres rares,
et reposent sur des hypothéses bien particulieres.

Réduction : la réduction consiste a diviser chaque valeur du tableau par une constante propre a

chaque colonne. 1l existe beaucoup de méthodes de réduction, dont les objectifs ne sont pas
toujours identiques. Globalement, les méthodes les plus courantes visent a réduire la différence
de variabilité entre les variables. Lintérét est d’équilibrer le poids donné a chaque variable dans
I'analyse, car dans de nombreuses méthodes ce poids est fonction de la variabilité. La méthode la
plus fréquente est de diviser par I'écart-type de la colonne, ce qui ramene toutes les variables a une
variance de 1. Autrement dit, on supprime tout a priori dans I'analyse pour donner exactement le
méme poids a toutes les variables. Sauf hypothése particuliere, ce type de réduction est le plus
souvent tres bénéfique.

Pour centrer (sur la base de la moyenne) et réduire (sur la base de I'écart-type) un tableau : tableau<-

scale(tableau). Voir ?scale pour d’autres manieres de centrer et réduire.

Lexpression « tableau centré-réduit » sous-ented un centrage par la moyenne et une réduction par

I'écart-type. C’est aussi ce qui est sous-entendu dans « tableau standardisé » ou « normalisé ».
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89. Interpréter un cercle des corrélations

Le cercle des corrélation est une figure classique pour interpréter les résultats d'un grand nombre
d’analyses multivariées. Il permet de montrer a la fois la corrélation entre les variables (i.e. les fleches) et
les axes de 'analyse, et la corrélation entre les variables elles-mémes.

Son interprétation repose sur trois principes simples :

— Plus une fleche est longue, mieux I'information portée par la variable est bien synthétisée par les
deux axes représentés. Pour I'interprétation, on se concentre donc sur les fleches les plus longues
(i.e. les variables les mieux représentées).

— L’angle entre deux fleches (ou entre une fleche et un axe) indique la corrélation entre les deux
variables (ou entre une variable et un axe) :

— angle aigu = positive (0 ° = corrélation 1)
— angle droit = nulle (90 ° = corrélation 0)
— angle obtus = corrélation négative (180 ° = corrélation -1)

— Plus un individu est situé vers I’avant d’'une fleche (quand on le projette perpendiculairement a
cette fleche) et plus sa valeur pour cette variable est élevée (et vice-versa).

Lorsque ’'on met en parallele un graphe des individus et un cercle des corrélations, on peut ainsi

identifier les variables qui structurent ces individus, voire interpréter biologiquement les axes.

Remarque : parfois les variables ne sont pas représentées par des fleches mais par des points sur le
cercle des corrélations. Cela ne change strictement rien a 'interprétation, car ces points correspondent
al'extrémité des fleches. Utiliser des points peut rendre le graphe plus lisible si les variables sont nom-
breuses, mais les angles entre variables (ou entre variables et axes) n’apparaissent plus aussi clairement.

Comp. 2
Comp. 2

Comp. 1 Comp. 1

145



A

> Analyser les résultats d'une étude > Statistique multivariée

90. Utiliser les axes d’une ordination comme variables d’'une autre ana-
lyse

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Il est toujours possible d'utiliser les axes d'une ordination (ACP, PCoA, analyse mixte...) comme
variables a expliquer dans une autre analyse. Cela peut permettre :

— de diminuer drastiquement le nombre de variables (puisque les premiers axes d'une analyse

multivariée capturent I'essentiel de I'information, quand une syntheése efficace est possible)

— de supprimer la corrélation entre les variables originales (puisqu’un des principes des analyses
multivariées est que leurs axes ne sont pas — ou tres peu — corrélés, i.e. ils apportent tous une
information non captée par les autres axes)

— de passer de variables qualitatives a des variables quantitatives

— de passer d’'une matrice de distance a un tableau de variables

En pratique on peut ainsi chercher a tester la séparation de plusieurs groupes sur un ou deux axes
(voir fiche 91), a synthétiser un ensemble de variables par une seule variable de synthese a laquelle
toutes les autres sont corrélées, a comparer le résultat de plusieurs ordinations. .. Les possibilités sont
nombreuses.

Remarque 1 : siles coordonnées des individus sur un axe d'une nMDS sont utilisés dans une analyse
univariée, celle-ci doit étre non paramétrique car la nMDS n’utilise qu'une information semi-quantitative
(i.e. relative, voir fiche 102). Pour la méme raison, la plupart des analyses a plusieurs tableaux ne sont pas
pertinentes avec la nMDS (excepté I'analyse procustéenne, voir fiche 112).

Remarque 2 :les coordonnées des individus sur les axes d'une PLS-DA ne doivent pas étre utilisés
pour tester la séparation de plusieurs groupes. Un test dédié doit étre utilisé (voir fiche 105).

Récupération des coordonnées des individus
Pour toutes les analyses multivariées présentées dans ce document (et bien d’autres), on peut récupé-
rer les coordonnées des individus sur un ou plusieurs axes viaMVA.scores (analyse)! ol analyse est
le nom de I'analyse multivariée (les coordonées sont dans le compartiment $coord de la liste renvoyée
par la fonction). Les arguments xax et yax permettent de préciser sur quels axes les coordonnées doivent
étre récupérées; ils valent 1 et 2 par défaut, respectivement. Si plus de deux axes sont souhaités, récupérer
les coordonnées petit a petit, les stocker et les combiner grace a la fonction cbind ().

EXEMPLE(S)
On souhaite récupérer les coordonnées des individus sur les trois premiers axes d'une ACP (nommée
ACP). On commence par les deux premiers :

> coordl2 <- MVA.scores(ACP)$coord!

Puis le troisiéme axe :

> coord3 <- MVA.scores(ACP,xax=3,yax=NULL)$coord!

Préciser yax=NULL indique que I’on souhaite récupérer les coordonnées sur un seul axe (celui de
l'argument xax).

On combine finalement les trois axes :

> coord <- cbind(coordl2,coord3)

Attention, certaines analyses renvoient des coordonnées a la fois pour les lignes et les colonnes du
tableau de départ (I’AFC (voir fiche 97) et la CCA (voir fiche 106)), tandis que d’autres renvoient les
coordonnées des individus dans plusieurs espaces multivariés (la plupart des analyses a deux ou plus
de deux tableaux). Les arguments set et space de la fonction MVA. scores () ! permettent de préciser
quelles coordonnées récupérer, voir 7MVA . scores pour des informations détaillées.
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Remarque : attention également a 'argument scaling pour 'AFC et la CCA (voir fiches 97 et 106).

Il peut arriver que I'on veuille récupérer les coordonnées des individus dans une autre direction
qu’'un axe (i.e. une diagonale entre deux axes), car c’est celle-ci qui est la plus pertinente pour I’analyse
ultérieure. La procédure se fait alors en plusieurs étapes :

1. Tracer le graphe sur le plan factoriel d’'intérét grace a la fonction MVA . plot ()! (voir les fiches des
différentes analyses multivariées pour plus de détail).

2. Créer I'objet droite<-loc.slp()!. La fonction loc.slp()! (qui n'accepte aucun argument)
demande alors de cliquer deux fois sur le graphe, pour définir la direction d’intérét. On peut ensuite
afficher cette direction viaabline (0,droite), et éventuellement recommencer I'opération pour
modifier la droite (en relancant 1oc.s1lp (1.

3. Récupérer les coordonnées des individus sur les deux axes du plan factoriel grace a la fonction
MVA.scores(OL

4. Calculer les coordonnées des individus une fois projetés sur la droite définie al’étape 2: coord. pr—
0j(coord,droite)! oll coord est le tableau des coordonnées récupérées a I'étape 3.

@ Groupe 1
O Groupe 2
O Groupe 3

Axe 2
Density

7‘I\H [ ‘IIIII

-1.0 -0.5 0.0 0.5

Coordonnées sur la droite bleue

Cas particulier de 'analyse de co-inertie

L'analyse de co-inertie (voir fiche 113) est réalisée par la fonction coinertia() du package ade4.
Cette fonction a la particularité de n’accepter en arguments que des ordinations (pas des tableaux de
variables), qui plus réalisées grace a des fonctions de ce méme package. En pratique les arguments sont
des ordinations a un seul tableau : ACP, AFC, ACM ou analyse mixte. Si ’ACM (voir fiche 98) et 'analyse
mixte (voir fiche 99) sont bien réalisées grace au package ade4, ’ACP (voir fiche 96) et 'AFC (voir fiche
97) sont réalisées grace au package vegan. Pour convertir le résultat d'une de ces ordinations en objet
utilisable par la fonction coinertia() : analyse2<-to.dudi(analysel)! ol analysel estle nom de
I’ACP, AFC ou PCoA.
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91. Relation entre une ordination et des variables externes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lyegan

Il est toujours possible de tester sile résultat d'une ordination est « corrélé » a des variables externes, i.e.
non prises en compte dans I'analyse. Plus précisément, le test a toujours lieu dans un plan factoriel donné
(i.e. un plan formé de deux axes) ou sur une seule dimension (un axe ou n'importe quelle diagonale). La
ou les variable(s) considérée(s) dans le test est (sont) donc les coordonnées des individus dans le plan
factoriel, ou sur une unique droite. Les variables externes peuvent étre quantitatives et/ou qualitatives.

En général ce genre d’approche concerne des analyses a un tableau (ACP, AFC, PCoA...), maisilya
peu de restriction a priori. La PLS-DA est une exception, puisque la séparation entre les groupes ne doit
pas étre testée de cette maniére mais grace a un test dédié (voir fiche 105).

Remarque :1a nMDS est une analyse multivariée qui n’utilise qu'une information semi-quantitative
(i.e. relative, voir fiche 102). La seule approche réellement pertinente pour tester la relation avec des
variables externes est donc non paramétrique, ce qui oblige a ne travailler que dans une seule dimension
(et pas un plan factoriel, car les tests applicables en deux dimensions sont paramétriques).

Test sur une dimension
Commencer par récupérer les coordonnées des points sur la dimension choisie (un axe ou n'importe
quelle diagonale, voir fiche 90). La nouvelle variable ainsi créée, qui est quantitative continue non bornée,
peut ensuite étre utilisée dans n'importe quelle analyse univariée ou bivariée.

Test sur deux dimensions

Pour réaliser le test (non paramétrique) : envfit (formule)!. Voir fiche 40 pour une explication
détaillée de la construction d’'une formule. Dans cette formule, la réponse est soit un tableau contenant
les coordonnées des individus sur les deux axes a tester (voir fiche 90 pour les récupérer), soit plus
simplement une ordination si elle a été créée avec le package vegan.

Remarque : ce test ne prend pas en compte les interactions entre variables externes.

Dans le cas d’'une variable qualitative, les fiches des différentes analyses multivariées expliquent
comment ajouter des groupes sur un plan factoriel. Dans le cas d'une variable quantitative, on peut voir
de quelle maniere elle correle a I'ordination via une procédure en trois étapes :

1. Tracer le graphe sur le plan factoriel d’intérét grace a la fonction MVA . plot (! (voir les fiches des
différentes analyses multivariées pour plus de détail).

2. Stocker le résultat de la fonction envfit ()! dans un objet: test<-envfit (formule)!.

3. Ajouter I'information des variables externes sur le graphe : plot (test). La longueur des fleches
est arbitraire mais I'interprétation en termes de corrélation est la méme que pour un cercle des
corrélations (voir fiche 89).

Remarque :la procédure est identique pour ajouter des variables externes quantitatives sur un cercle
des corrélations; seule la premiére étape est différente. La longueur des fleches des variables externes est
1a aussi arbitraire, mais I'interprétation en termes de corrélation est valide.

148



A

> Analyser les résultats d'une étude > Statistique multivariée

92. Classification - 1. Tester si un jeu de données peut étre classifié

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lseriation, 2clustertend

Une méthode de classification, quelle qu’elle soit, donnera toujours un résultat (i.e. la constitution de
groupes). Et ce méme si aucun groupe n’existe réellement dans les données, i.e. méme si la structuration
des individus est completement aléatoire. Avant de réaliser une classification, il est donc essentiel
de s’assurer qu'’il existe bien une certaine structuration dans le jeu de données (en anglais clustering
tendency).

Deux méthodes complémentaires peuvent étre employées pour tester sil existe une structuration,
I'une graphique et I'autre statistique.

Méthode graphique

La méthode est appelée Visual Assessment of cluster Tendency (VAT). Pour la mettre en ceuvre :
dissplot(mat.dist)! ot mat.dist est une matrice de distance (calculée a partir d'un ensemble de
variables ou qui constitue le jeu de données lui-méme, voir fiche 100). La fonction renvoie un graphe
représentatnt la matrice de distance, oi1 les individus ont été automatiquement ré-ordonnés pour regrou-
per les plus semblables. Linterprétation est simple : si au moins deux carrés foncés apparaissent le long
de la diagonale, il existe des groupes dans le jeu de données (mais peu importe le nombre a ce stade) ; si
aucune structuration n’apparait, les individus sont structurés aléatoirement. Dans le premier cas on peut
utiliser une procédure de classification pour révéler les groupes, dans le second cas I'analyse s’arréte ici.

Structuration en au moins 2 groupes nets Structuration aléatoire

Méthode statistique
La méthode ne peut étre utilisée que sur un tableau de variables, et repose sur la statistique d’'Hopkins.
Une valeur de 0.5 de cette statistique indique une structuration aléatoire des individus, tandis qu'une
valeur qui s’en éloigne pour se rapprocher de 0 indique qu'il existe une structuration.
Pour calculer la statistique d’'Hopkins : hopkins (tableau,n=10)2 ol tableau est le jeu de données.
Largument n est un nombre nécessaire a I'algorithme de calcul (il peut valoir au maximum le nombre de
lignes de tableau —1).
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93. Classification - 2. Identifier le nombre optimal de groupes

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
INbClust

A Ilestsupposé que I'étape précédente d'une bonne classification a été A\
réalisée (voir fiche 92).

Identifier le nombre optimal de groupes est une des étapes les plus importantes d'une procédure de
classification. La stratégie repose sur l'utilisation d’'un indice, que I’on calcule pour toute une série de
nombres de groupes possibles (2, 3, 4...). Le nombre de groupes qui donne la meilleure valeur de I'indice
indique le nombre de groupes optimal.

Il n’existe cependant pas qu'un indice, mais au moins une trentaine qui ne renvoient pas toujours
le méme nombre de groupes optimal. L'idée est donc de calculer tous ces indices, et de retenir comme
nombre de groupes optimal la valeur renvoyée le plus fréquemment. La procédure differe légérement
selon que le jeu de données est un tableau de variables ou directement une matrice de distance (voir
fiche 100).

Le jeu de données est un tableau de variables
Pour mettre en ceuvre la procédure : nc<-NbClust (tableau,diss=mat.dist,distance=NULL,me-
thod="ward.D2")!outableauestlejeu de donnéesetmat.dist lamatrice de distance calculée a partir
de ce méme jeu de données (voir fiche 100). Le résultat de la fonction est socké dans un objet (ici nc
mais peu importe son nom) qui ne sera pas réutilisé par la suite, cela simplifie seulement I'affichage des
résultats. Le nombre de groupes minimal testé est 2, et le maximal 15. Pour changer ces valeurs utiliser
les arguments min.nc et max.nc.
La fonction calcule la valeur de 26 indices pour 2 a 15 groupes (par défaut) et renvoie deux sorties
complémentaires :
— Un résumé des nombres de groupes optimaux calculés (la somme peut parfois étre inférieure
a26). Le nombre le plus fréquent est retenu comme optimal.
— Deux graphes a propos d'un Dindex. Sur celui de droite, la valeur la plus élevée indique le nombre
de groupes optimal.

Le jeu de données est une matrice de distance
Seuls cinq indices sont calculables et il faut effectuer I'opération pour chacun d’entre eux. Pour cela :
nc<-NbClust (diss=mat.dist,distance=NULL,method="ward.D2",index=indice)! ol indice
vaut successivement "frey", "mcclain", "cindex", "silhouette" et "dunn". A chaque fois, noter
le nombre de groupes optimal présent dans le compartiment $Best .nc de la liste renvoyée, sous I'in-
titulé Number _clusters. Considérer comme nombre de groupes optimal la valeur renvoyée le plus
fréquemment parmi les cinq indices.
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94. Classification — 3. Réaliser la classification

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

Icluster, ?factoextra, 3clValid, *fpc

A Il est supposé que les étapes précédentes d'une bonne classification A\
ont été réalisées (voir fiches 92 a 93).

Il existe deux grandes familles de méthodes de classification :

— Les méthodes de partitionnement, auxquelles on doit fournir le nombre de groupes a priori
(identifié par des analyses dédiées, voir fiche 93) et qui trouvent la meilleure fagon de créer de tels
groupes.

— Les méthodes hiérarchiques, qui n’ont pas d’a priori sur le nombre de groupes et aboutissent
a un arbre (de type phylogénétique) appelé dendrogramme. Cet arbre est ensuite « coupé » au
niveau du nombre de groupes optimal (voir fiche 93). Pour obtenir un dendrogramme, il y a deux
possibilités :

— Partir des individus et les agglomérer petit a petit jusqu’a ne former qu'un seul groupe les
réunissant tous. C’est 'objet des méthodes ascendantes hiérarchiques.

— Partir d'un unique groupe réunissant tous les individus et le diviser petit a petit jusqu’a former
autant de groupes qu’il y a d’'individus. C’est I'objet des méthodes descendantes hiérarchiques.

Partitionnement

La méthode décrite ici est celle des k-medoids (ou Partitioning Around Medoids, PAM), une extension
plus robuste de la méthode plus connue des k-means.

Pour la mettre en ceuvre : classif<-pam(mat.dist,k=nb)! o mat.dist est une matrice de dis-
tance (calculée a partir d'un ensemble de variables ou qui constitue le jeu de données lui-méme, voir
fiche 100) et nb le nombre de groupes souhaité. Le groupe auquel appartient chaque individu est renvoyé
dans classif$clustering.

Pour les grands jeux de données, voir 7claral.

Classification hiérarchique
Classification ascendante hiérarchique

La premiere étape est de créer le dendrogramme : dendro<-agnes (mat.dist,method="ward")l
Largument method précise le critere sur lequel se fait le regroupement des individus, celui de Ward est le
plus courant (voir 7agnes pour d’autres possibilités). Pour visualiser le dendrogramme : fviz_dend (den-
dro)?2.

La seconde étape est de couper le dendrogramme au niveau adéquat pour obtenir le nombre optimal
de groupes. Pour cela : classif<-cutree(dendro,k=nb). La fonction renvoie le groupe auquel appar-
tient chaque individu. Pour représenter ces groupes sur le dendrogramme, ajouter 'argument k=nb a la
fonction fviz_dend ()2

Classification descendante hiérarchique
Les deux étapes sont similaires a la méthode précédente, sauf que le dendrogramme est construit dans
le sens inverse. On créé d’abord le dendrogramme : dendro<-diana(mat.dist)!. Pour le visualiser :
fviz_dend(dendro)?2. On coupe ensuite le dendrogramme pour affecter chaque individu a un groupe :
classif<-cutree(dendro,k=nb). On peut la encore représenter les groupes sur le dendrogramme en
utilisant I'argument k=nb de la fonction fviz_dend ()2.

Quelle méthode choisir ?
Aux conditions (i) que le jeu de données soit un tableau de variables et (ii) que la distance utilisée pour
calculer la matrice de distance soit euclidienne, de Manhattan ou basée sur la corrélation de Pearson (voir
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fiche 100), on peut directement comparer le résultat des trois méthodes dans une procédure en deux
étapes. D’abord test<-clValid(tableau,nClust=nb,clMethods=c("pam","agnes","diana"),
validation=c("internal","stability") ,method="ward")3 ou tableau estle jeu de données et
nb le nombre de groupes optimal. Largument validation précise que I'on veut comparer les trois
méthodes a la fois sur des criteres dits internes et d’autres dits de stabilité. Le résultat de la comparaison
est ensuite obtenu via summary (test), dans le tableau Optimal Scores. Pour chacun des sept criteres
(les quatre premiers de stabilité, les trois suivants internes), la colonne Method donne la méthode la plus
efficace. Choisir celle qui ressort le plus souvent comme la plus efficace.

Remarque :1a fonction c1Valid ()3 utilise la distance euclidienne par défaut. Utiliser 'argument
metric pour choisir une autre mesure de distance.

Sil'on ne peut pas réaliser directement la comparaison des trois méthodes, on peut toujours le faire
manuellement. On se base pour cela sur trois indices de validation interne : la largeur de Silhouette
(Silhouette width) (voir fiche 94), I'indice de Dunn et la connectivité. Pour chacune des trois méthodes de
classification, calculer ces indices :

— largeur de Silhouette : cluster.stats(mat.dist,clustering=classif)$avg.silwidth? ol

classif estle vecteur contenant le groupe de chaque individu (sous forme numérique)

— indice de Dunn: cluster.stats(mat.dist,clustering=classif)$dunn? (idem)

— connectivité : connectivity(mat.dist,clusters=classif)? (idem).

Du point de vue de la largeur de Silhouette, la méthode donnant la valeur maximale est la meilleure. Il
en est de méme pour l'indice de Dunn. Du point de vue de la connectivité, la méthode donnant la valeur
minimale est la meilleure.
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95. Classification — 4. Valider le résultat d’une classification

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lcluster

A Il est supposé que les étapes précédentes d'une bonne classification A\
ont été réalisées (voir fiches 92 a 94).

Les méthodes de classification sont globalement tres efficaces, mais il peut arriver qu'un petit nombre
d’individus soient mal classés (ou du moins c’est ce que 'on suppose, puisqu’on ne connait pas les
«vrais » groupes). Pour identifier ces individus, on peut utiliser I'indice Silhouette. Celui-ci est calculé
pour chaque individu et varie entre -1 et 1 :

— une valeur proche de 1 indique un individu treés probablement bien classé

— une valeur proche de 0 indique un individu « a cheval » entre deux groupes

— une valeur négative indique un individu probablement mal classé.

Pour calculer les valeurs de I'indice Silhouette : sil<-silhouette(classif,mat.dist)!oliclas-
sif est le vecteur contenant le groupe de chaque individu (sous forme numérique, voir fiche 94) et
mat.dist la matrice de distance (calculée a partir d'un ensemble de variables ou qui constitue le jeu
de données lui-méme, voir fiche 100). La fonction renvoie un tableau avec pour chaque individu son
groupe tel que défini par la méthode de classification (colonne cluster), le groupe voisin dont il est le
plus proche (colonne neighbor) et I'indice Silhouette (colonne sil_width). Si un individu a une valeur
d’indice négative, changer manuellement son groupe dans le vecteur classif en le remplacant par le
groupe le plus proche (auquel il appartient plus probablement).

Pour aider a s’y retrouver dans les valeurs d’indice Silhouette, on peut :

— les représenter graphiquement : plot (sil). Sur le graphe sont aussi affichés les effectifs par

groupe, l'indice Silhouette moyen par groupe et 'indice Silhouette moyen tous groupes confondus

— les réordonner dans le méme ordre que sur le graphe : sortSilhouette(sil)!.

EXEMPLE(S)
On obtient les valeurs suivantes d’indice Silhouette (uniquement les cinq premiers individus) :
cluster neighbor silwidth
[1,] 3 2 0.46165580
[2,] 2 3 0.17075888
[3,] 2 3 -0.04842929
[4,] 3 2 0.55999150
[5,] 3 2 0.46112097

Lindividu 3, qui avait été classé dans le groupe 2, a une valeur d’indice négative. Il appartient donc
probablement non pas au groupe 2 mais au groupe le plus proche, i.e. le groupe 3. On change donc
le groupe de cet individu dans le vecteur classif (qui contient les groupes) :

> classif [3] <- 3
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96. Lanalyse en composantes principales

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse en composantes principales (ACP)
Anglais - Principal component analysis (PCA)

Préparation des données

L'ACP fonctionne d’autant mieux que les variables ont une distribution a peu prés normale (au moins
symétrique) et qu’elles sont reliées entre elles par des relations linéaires. Une transformation préalable
des données peut grandement aider a améliorer la situation (voir fiche 88).

Il est également recommandé, la plupart du temps, de standardiser les variables avant I'analyse (voir
fiche 88). Cela permet de donner le méme poids a toutes les variables, et d’interpréter les résultats en
termes de corrélation ce qui est souvent plus facile. Dans cette fiche on considérera que les variables sont
standardisées.

Réalisation de I'analyse
Pour réaliser 'ACP : ACP<-rda(tableau)! ou tableau est le tableau de données. Sil’on souhaite
standardiser les variables mais que I'on n’a pas effectué 'opération au préalable, ajouter I'argument
scale=TRUE. Par défaut les variables ne sont pas standardisées.

Qualité de 'analyse

L'ACP a pour objectif de synthétiser au mieux une certaine information qui est la variance totale du
jeu de données. Pour estimer la qualité de ’analyse, on s’'intéresse donc au pourcentage de variance
expliqué par chaque axe. Pour obtenir ces pourcentages : MVA. synt (ACP)2.

Remarque 1 :les pourcentages de variance sont toujours en ordre décroissant (i.e. 'axe 1 explique
plus de variance que 'axe 2, qui en explique lui-méme plus que I'axe 3...).

Remarque 2 :iln'y a pas de regle absolue sur le nombre d’axes a retenir pour 'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthese de 'information du jeu de données (qui augmente
avec le nombre d’axes) et une facilité a interpréter (qui diminue avec le nombre d’axes).

I1 peut arriver que les pourcentages de variance expliqués par I’ACP soient relativement faibles.
Cela ne veut pas forcément dire que I’analyse est inutile. En effet, ce qui compte est que les distances
interindividuelles dans I'espace multivarié créé par I'analyse soient bien représentatives des distances
interindividuelles réelles (i.e. dans le tableau de données). Pour vérifier cela, on trace un diagramme de
Shepard : stressplot (ACP)!. Sur ce diagramme, si les points sont a peu pres alignés le long d'une droite
alors les distances dans I'espace de ’ACP sont bien proportionnelles aux distances réelles, et I'on peut se
baser sur les résultats de I'analyse pour I'interprétation. Si les points ne dessinent clairement pas une
droite, les distances ne sont pas préservées et interpréter I'analyse est inutile car elle ne représente pas la
réalité.

Remarque 1 :1a droite rouge du diagramme de Shepard indique une proportionnalité parfaite entre
les distances. Si les points forment une droite proche de la droite rouge cela est signe d'un pourcentage de
variance expliqué élevé, s’ils forment une droite plus éloignée que ce pourcentage est moins important
(mais tout de méme qu'’il y a proportionnalité des distances).

Remarque 2 : par défaut le diagramme de Shepard considéere les deux premiers axes de I’ACP. Si
I'interprétation est basée sur plus d’axes, ajouter 'argument k=nb ou1 nb est le nombre total d’axes
utilisés.
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Représentations graphiques
En ACP on a deux représentations possibles : le graphe des individus qui montre la position de ces
individus sur un plan factoriel composé de deux axes, et le cercle des corrélations (voir fiche 89) qui
permet d’interpréter la répartition des individus.

Graphe des individus

Pour tracer le graphe : MVA.plot (ACP)?2. Les axes 1 (horizontal) et 2 (vertical) sont représentés par
défaut, ils peuvent étre changés grace aux arguments xax et yax.

Pour ajouter des groupes sur le graphe, utiliser I'argument fac=facteur ou facteur est le fac-
teur définissant le groupe de chaque individu. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation.

Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe : MVA.plot (ACP, "corr")2. Pour supprimer les fleches, ajouter 'argument
arrows=FALSE. Voir 7MVA. corplot pour bien d’autres d’options graphiques.

Interprétation

Le graphe des individus permet d’identifier s’il existe une structuration dans le jeu de données (en
groupes, le long d'un gradient...). Si des groupes sont suspectés, ils peuvent étre déterminés de fagon
objective grace a une méthode de classification (voir fiches 92 a 95). On peut également tester si des
groupes connus et/ou des covariables « corrélent » significativement avec la structuration révélée par
I’ACP (voir fiche 91).

Dans un second temps, le cercle des corrélations permet d’identifier les variables du jeu de données
qui expliquent la structuration observée. Pour cela, on repére quelles sont les directions pertinentes
pour l'interprétation biologique sur le graphe des individus (ce peuvent étre des axes ou n'importe
quelles diagonales), et on identifie les variables qui correlent le plus avec ces directions sur le cercle des
corrélations (voir fiche 89).

Axe 2 (26 %)
Axe 2 (26 %)

Axe 1 (34 %) Ave 1(34%)

Ordination Distance
4

Observed Dissimilarity
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97. Lanalyse factorielle des correspondances

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse factorielle des correspondances (AFC)
Anglais - Correspondence analysis (CA ou COA)

Préparation des données
Le jeu de données est soit un tableau de contingence (i.e. valeurs nulles ou entiéres positives) soit
un tableau de présence-absence (i.e. 0/1). En AFC les lignes et les colonnes du tableau sont considérées
de fagon symétrique, i.e. il n'y a pas d’«individus » et de « variables ». Lignes et colonnes peuvent donc
parfaitement étre inversées sans changer I’analyse.

Réalisation de 'analyse
Pour réaliser 'AFC : AFC<-cca(tableau)! ol tableau estle tableau de données.

Qualité de 'analyse

L'AFC a pour objectif de synthétiser au mieux une certaine information qui est la correspondance
entre les lignes et les colonnes du jeu de données, que I'on appellera plus généralement inertie (I'inertie
est en fait un terme générique, le fait qu’elle représente une correspondance est un cas particulier). Pour
estimer la qualité de 'analyse, on s’intéresse donc au pourcentage d’inertie expliqué par chaque axe. Pour
obtenir ces pourcentages : MVA. synt (AFC)?2.

Remarque 1 :les pourcentages d’inertie sont toujours en ordre décroissant (i.e. I'axe 1 explique plus
d’inertie que I'axe 2, qui en explique lui-méme plus que 'axe 3...).

Remarque 2 :iln'y a pas de regle absolue sur le nombre d’axes a retenir pour l'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthése de I'information du jeu de données (qui augmente
avec le nombre d’axes) et une facilité a interpréter (qui diminue avec le nombre d’axes).

Il peut arriver que les pourcentages d’inertie expliqués par ’AFC soient relativement faibles. Cela
ne veut pas forcément dire que I'analyse est inutile. En effet, ce qui compte est que les distances in-
terindividuelles dans I'espace multivarié créé par I’analyse soient bien représentatives des distances
interindividuelles réelles (i.e. dans le tableau de données). Pour vérifier cela, on trace un diagramme de
Shepard : stressplot (AFC) 1. Sur ce diagramme, si les points sont & peu pres alignés le long d'une droite
alors les distances dans I'espace de I’AFC sont bien proportionnelles aux distances réelles, et 'on peut se
baser sur les résultats de I'analyse pour I'interprétation. Si les points ne dessinent clairement pas une
droite, les distances ne sont pas préservées et interpréter 'analyse est inutile car elle ne représente pas la
réalité.

Remarque 1 :1a droite rouge du diagramme de Shepard indique une proportionnalité parfaite entre
les distances. Si les points forment une droite proche de la droite rouge cela est signe d'un pourcentage
d’inertie expliqué élevé, s’ils forment une droite plus éloignée que ce pourcentage est moins important
(mais tout de méme qu’il y a proportionnalité des distances).

Remarque 2 : par défaut le diagramme de Shepard considere les deux premiers axes de I’AFC. Si
I'interprétation est basée sur plus d’axes, ajouter 'argument k=nb o1 nb est le nombre total d’axes utilisés.

Représentation graphique
En AFC les lignes et les colonnes sont représentées chacune par un point sur le méme graphe, qu’'on
pourrait appeler « graphe d’association ». Il est cependant impossible de représenter a la fois les distances
interlignes et les distances intercolonnes sans biais sur le méme graphe. Il faut donc choisir entre
représenter sans biais les premiéres (échelle de type 1) ou les secondes (échelle de type 2).
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Pour représenter les distances interlignes sans biais : MVA . plot (AFC,points=FALSE,scaling=1)2
Pour représenter les distances intercolonnes sans biais : MVA.plot (AFC,points=FALSE,scaling=2)2.
Les axes 1 (horizontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux
arguments xax et yax. Les arguments col, pch et points permettent de personnaliser une telle repré-
sentation. Voir 7MVA. scoreplot pour bien d’autres d’options graphiques.

Ajouter des groupes sur le graphe est possible mais la procédure est plus complexe :
> assoc <- MVA.plot(AFC,points=FALSE, col=couleurs)? ol couleurs est un vecteur a deux va-
leurs, la premieére pour les colonnes et la seconde pour les lignes. S’il 'on souhaite afficher des groupes de
colonnes, la premiere couleur doit étre "white" ; pour des groupes de lignes la seconde couleur doit étre
"white".
> par (new=TRUE)
> MVA.plot (AFC,points=FALSE,xlim=assoc$xlim,ylim=assoc$ylim,set=nb,fac=facteur)?ol
nb vaut 1 pour des groupes de lignes ou 2 pour des groupes de colonnes, et facteur est le facteur dé-
finissant le groupe de chaque ligne/colonne. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation. Voir ?MVA . scoreplot pour bien
d’autres d’options graphiques.

Interprétation

Lidée est relativement simple et repose sur trois principes :

— plus les points représentant deux lignes sont proches et plus ces lignes sont similaires

— idem pour les colonnes

— la proximité entre les points représentant des lignes et des colonnes indique I'association entre

ces lignes et ces colonnes.

De maniéere générale, plus il y a de points éloignés de I'origine du graphe et plus il y a une association
forte entre les lignes et les colonnes. Cette association est d’ailleurs directement testable grace a un test
du y? d’indépendance (voir fiche 86).
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98. Lanalyse des correspondances multiples

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lade4, 2RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse des correspondances multiples (ACM)
Anglais - Multiple correspondence analysis (MCA)

Préparation des données
L'ACM est sensible aux effectifs faibles (i.e. aux modalités représentées par peu d’individus). Quand
ceux-ci sont trop nombreux, mieux vaut regrouper les modalités peu représentées pour obtenir des
effectifs plus élevés.

Réalisation de 'analyse
Pour réaliser 'ACM : ACM<-dudi.acm(tableau,scannf=FALSE,nf=10)! ol1 tableau est le tableau
de données.

Qualité de 'analyse

L'ACM a pour objectif de synthétiser au mieux une certaine information du jeu de données qu’on ap-
pellera de facon générique inertie. Pour estimer la qualité de 'analyse, on s’'intéresse donc au pourcentage
d’inertie expliqué par chaque axe. Pour obtenir ces pourcentages : MVA . synt (ACM)2.

Remarque 1 :1les pourcentages d’inertie sont toujours en ordre décroissant (i.e. I'axe 1 explique plus
d’inertie que I'axe 2, qui en explique lui-méme plus que 'axe 3...).

Remarque 2 :il n’y a pas de regle absolue sur le nombre d’axes a retenir pour 'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthese de I'information du jeu de données (qui augmente
avec le nombre d’axes) et une facilité a interpréter (qui diminue avec le nombre d’axes).

Représentation graphique

L'unique représentation graphique est le graphe des individus, qui montre la position de ces individus
sur un plan factoriel composé de deux axes. Pour tracer le graphe : MVA.plot (ACM)2. Les axes 1 (hori-
zontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux arguments xax et
yax.

Par défaut le graphe des individus est tracé autant de fois qu'il y a de variables dans le jeu de données,
et sur chacun des graphes les modalités d'une seule variable sont représentées. Pour ne représenter
qu'une seule variable, ajouter les arguments byfac=FALSE et fac=variable oul variable estla variable
d’intérét (nécessairement un facteur). Qu’il y ait un seul ou plusieurs graphes, les arguments col, pch,
contours, stars et barycenters permettent de personnaliser la représentation.

Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Interprétation

Lidée est relativement simple : plus deux modalités de variables différentes sont proches, plus elles
sont associées dans le jeu de données. Linterprétation nécessite de superposer mentalement les différents
graphes, ce qui complique sérieusement les choses quand le nombre de variables augmente. Mieux vaut
donc limiter ce nombre de variables.

Sil'on souhaite interpréter biologiquement un axe de I'analyse (ce qui est intéressant si cet axe est
une direction structurante du nuage de points), il faut se concentrer sur les variables dont le poids est le
plus important dans la construction de cet axe. En ACM cela se mesure par un rapport de corrélation, qui
varie entre 0 (poids nul) et 1 (poids trés important). Pour obtenir les rapports : scat.cr (ACM, axis=nb)?
ou nb est le numéro de 'axe choisi.
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99. Lanalyse mixte

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lade4, 2RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS
Francais — Analyse mixte
Anglais - Mix analysis

Préparation des données
Comme I'’ACP (voir fiche 96), 'analyse mixte fonctionne d’autant mieux que les variables quantitatives
du jeu de données ont une distribution au moins a peu prés symétrique. Une transformation préalable
de ces variables peut grandement aider a améliorer la situation (voir fiche 88).
Comme I"’ACM (voir fiche 98), I'analyse mixte est sensible aux effectifs faibles (i.e. aux modalités des
variables qualitatives représentées par peu d’individus). Quand ceux-ci sont trop nombreux, mieux vaut
regrouper les modalités peu représentées pour obtenir des effectifs plus élevés.

Réalisation de 'analyse
Pour réaliser 'analyse mixte : AMix<-dudi.mix (tableau,scannf=FALSE,nf=10)! oll tableau est
le tableau de données. Les variables quantitatives sont standardisées (voir fiche 88) automatiquement.

Qualité de 'analyse

L'analyse mixte a pour objectif de synthétiser au mieux une certaine information du jeu de données
qu’on appellera de fagon générique inertie. Pour estimer la qualité de 'analyse, on s'intéresse donc au
pourcentage d’inertie expliqué par chaque axe. Pour obtenir ces pourcentages : MVA. synt (AMix)?2.

Remarque 1 :les pourcentages d’inertie sont toujours en ordre décroissant (i.e. 'axe 1 explique plus
d’inertie que I'axe 2, qui en explique lui-méme plus que I'axe 3...).

Remarque 2 :iln'y a pas de regle absolue sur le nombre d’axes a retenir pour l'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthese de I'information du jeu de données (qui augmente
avec le nombre d’axes) et une facilité a interpréter (qui diminue avec le nombre d’axes).

Représentations graphiques
A partir du moment oi1 il y a au moins une variable quantitative dans le jeu de données, deux re-
présentations sont possibles : le graphe des individus qui montre la position de ces individus sur un
plan factoriel composé de deux axes, et le cercle des corrélations (voir fiche 89). S’il n'y a aucune variable
quantitative le seul graphe possible est celui des individus.

Graphe des individus

Pour tracer le graphe : MVA.plot (AMix)?2. Les axes 1 (horizontal) et 2 (vertical) sont représentés par
défaut, ils peuvent étre changés grace aux arguments xax et yax.

Par défaut le graphe des individus est tracé autant de fois qu’il y a de variables qualitatives dans le
jeu de données, et sur chacun des graphes les modalités d'une seule variable sont représentées. Pour ne
représenter qu'une seule variable, ajouter les arguments byfac=FALSE et fac=variable oul variable
est la variable d’intérét (nécessairement un facteur). Qu'’il y ait un seul ou plusieurs graphes, les arguments
col, pch, contours, stars et barycenters permettent de personnaliser la représentation.

Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations

Pour tracer le graphe : MVA.plot (AMix, "corr")?2 Pour supprimer les féeches, ajouter 'argument
arrows=FALSE. Voir 7MVA . corplot pour bien d’autres d’options graphiques.
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Interprétation
L'analyse mixte est une sorte d’intermédiaire entre ’ACP (a laquelle est est équivalente s’il n'y a que

des variables quantitatives) et 'ACM (a laquelle est équivalente s’il n’y a que des variables qualitatives
nominales, i.e. non ordonnées). Linterprétation se fait donc comme en ACP pour les variables quantita-
tives (voir fiche 96), et comme en ACM pour les variables qualitatives (voir fiche 98). Les relations entre
variables quantitatives et qualitatives s’interpretent simplement : plus le barycentre d'une modalité est
situé vers I'avant d'une fleche (quand on le projette perpendiculairement a cette fleche) et plus la valeur
moyenne des individus de cette modalité est élevée pour la variable quantitative représentée par la feche
(et vice-versa, voir fiche 89).

Sil’on souhaite interpréter biologiquement un axe de ’analyse (ce qui est intéressant si cet axe est
une direction structurante du nuage de points), il faut se concentrer sur les variables dont le poids est le
plus important dans la construction de cet axe. En analyse mixte cela se mesure par différents indicateurs
selon la nature des variables, mais qui varient tous entre 0 (poids nul) et 1 (poids trés important). Pour
obtenir ces indicateurs : scat.cr (AMix,axis=nb)?2 ol nb est le numéro de I’axe choisi.
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100. Les matrices de distance

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lade4, 2vegan, 3factoextra, ‘cluster

Une matrice de distance est une matrice dans laquelle chaque paire d’individus est caractérisée par
une distance les séparant. Ce sont donc des matrices (i) carrées (i.e. autant de lignes et de colonnes que
d’'individus), (ii) symétriques (car la distance entre A et B est la méme qu’entre B et A) et (iii) dont la
diagonale — qui sépare deux triangles symétriques, I'un inférieur et I'autre supérieur - est constituée de 0.
Par souci d’affichage et de stockage, seul le triangle inférieur est souvent créé.

EXEMPLE(S)
La méme matrice de distance (entre trois individus ici) peut étre représentée entierement ou par
I'un de ses triangles (habituellement I'inférieur), qui contient a lui seul toute I'information :

A B C A B
A 0.00 2.17 2.10 B 2.17
B 2.17 0.00 0.29 C 2.10 0.29
C 2.10 0.29 0.00

Pour certains types de données on travaille nécessairement sur des matrices de distance (distances
géographiques, distances basées sur des séquences (de nucléotides ou d’acides aminés par exemple)...).
Pour d’autres, travailler sur une matrice de distance permet de synthétiser I'information contenue dans
plusieurs variables. Dans ce dernier cas cependant, la contribution de chaque variable aux distances
interindividuelles est perdue. Quand le jeu de données est un tableau de variables, on a donc le choix
entre deux types d’analyses (sur les variables ou sur une matrice de distance). Il est relativement simple
de décider : si la question porte (et donc sil'interprétation biologique repose) sur les variables, utiliser
une analyse sur les variables. Sila question porte sur la (dis)similarité globale entre individus, utiliser une
analyse sur une matrice de distance.

Distance et similarité sont des mesures totalement liées (mais opposées), i.e. plus la distance (ou
dissimilarité) entre deux individus est élevée, plus leur similarité est faible. De nombreuses distances
sont ainsi calculées a partir d'un indice de similarité, par la simple relation : Distance =1-Similarité.

Une matrice de distance est dite euclidienne si elle est représentable dans un espace multidimen-
sionnel euclidien (i.e. I'espace géométrique traditionnel). Il est important de savoir si une matrice
de distance est euclidienne ou non, car un certain nombre de méthodes d’analyse exigent une ma-
trice euclidienne. Quelle que soit la matrice de distance, on peut tester simplement si elle est eu-
clidienne via is.euclid(mat.dist)! ot mat.dist est la matrice. Pour rendre une matrice de dis-
tance euclidienne, une solution simple et quasiment toujours efficace est d’utiliser la racine carrée :
mat.dist2<-sqrt(mat.dist).

Le choix d'une mesure de distance dépend avant tout du type de données dont on dispose, mais
aussi de son champ disciplinaire. Il n’est donc pas question ici de toutes les comparer. Les fonctions
permettant de calculer les distances les plus courantes sont présentées, selon le type de données.

Données binaires (0/1)

Dix distances — basées sur des indices de similarité — sont proposées par la fonction dist.binary()!,
dont les plus classiques (indices de Jaccard, de Sokal & Michener ou de Serensen - Dice). Elles sont
numérotées de 1 a 10 (voir 7dist.binary pour laliste complete). Pour calculer la matrice de distance :
dist.binary(tableau,numero)! ol tableau est le tableau de données et numero le numéro de la
distance choisie. Toutes les matrices renvoyées par cette fonction sont euclidiennes.

Le point important avec les données binaires est la question du double zéro, i.e. de 'absence simulta-
née de ce que I'on mesure chez deux individus. Cette absence peut en effet avoir du sens, ou non. Les
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indices qui prennent en compte la double absence comme preuve d’une similarité (comme celui de Sokal
& Michener) sont dits symétriques, tandis que ceux qui font le postulat inverse (comme ceux de Jaccard et
de Serensen - Dice) sont dits asymétriques.

Tableaux de contingence (i.e. croisement des modalités de deux facteurs) ou données de pourcen-
tage

Dans ces deux cas, les valeurs ne peuvent étre que positives ou nulles. Les valeurs d'un méme individu
(i.e. sur une méme ligne dans le tableau de données) sont interprétées comme des pourcentages du total
de la ligne.

Cinq distances sont proposées par dist.prop ()!. Elles sont numérotées de 1 a 5 (voir 7dist.prop
pour la liste compléte). Pour calculer la matrice de distance : dist . prop(tableau,numero)!. Seule la
méthode n° 3 donne une matrice de distance euclidienne.

Une distance fréquemment utilisée mais non proposée par dist.prop()! estla distance de Bray -
Curtis. Pour la calculer : vegdist (tableau, "bray")2. La matrice renvoyée n’est pas euclidienne.

Données quantitatives

La fonction dist () permet de calculer les distances principales (Euclidienne, Manhattan...). Pour
l'utiliser : dist (tableau, "methode") ou methode est le nom de la méthode entre guillemets (voir
7dist pour la liste compléte). D’autres mesures de distance sont proposées par dist.quant (!, qui
fonctionne avec des numéros de méthode (voir 7dist.quant pour la liste compleéte).

Une alternative a calculer les distances a partir des valeurs des variables (ce que font les fonc-
tions précédentes) est d'utiliser la corrélation entre les individus. Pour calculer de telles distances :
get_dist(tableau,method="pearson")3.

Remarque : pour des données quantitatives il peut étre intéressant (et méme recommandé si'on
souhaite faire de la classification) de standardiser le tableau de données avant de calculer les distances,
afin de donner le méme poids a toutes les variables (voir fiche 88).

Données mixtes (variables de plusieurs types)

La distance utilisée est celle de Gower, qui permet de traiter a la fois les variables quantitatives,
binaires (codées 0/1), ordinales et nominales. La matrice est calculée via daisy(tableau)®. Les va-
riables qualitatives nominales (i.e. facteurs non ordonnés) sont reconnues comme telles, tout comme les
variables qualitatives ordinales (i.e. facteurs ordonnés, voir fiche 52 pour les créer). Pour les variables
binaires, mieux vaut préciser explicitement si elles doivent étre considérées de maniére symétrique
ou non. Ajouter pour cela 'argument type=1list (symm=var.sym,asymm=var.asym) oll var.sym est
un vecteur donnant le nom (ou le numéro) des colonnes de tableau a considérer symétriquement, et
var.asymla méme chose pour les variables a considérer asymétriquement. La matrice renvoyée n’est
pas euclidienne.

Données génétiques
L'analyse de données génétiques est un monde en soi. Beaucoup de méthodes sont proposées par le
package adegenet, qui travaillent sur des données formatées d'une facon particuliére. Voir 7adegenet
(apres avoir chargé le package) pour une explication détaillée.

Finalement, il est possible d'importer dans R une matrice de distance quelconque, qui sera considérée
comme un tableau. Il est nécessaire de transformer ce tableau en un objet de type matrice de distance
pour qu’il puisse étre utilisé comme tel. Pour cela: mat.dist<-as.dist(tableau).
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> Analyser les résultats d'une étude > Statistique multivariée

101. Lanalyse en coordonnées principales

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse en coordonnées principales
Positionnement multidimensionnel métrique
Positionnement multidimensionnel classique

Anglais - Principal coordinate analysis (PCoA ou PCO)
Metric multidimensional scaling (MDS)
Classical multidimensional scaling (MDS)
Classical scaling

Préparation des données
Il est indispensable de vérifier sila matrice de distance est euclidienne ou non (voir fiche 100).

Réalisation de 'analyse
Pour réaliser la PCoA : PCoA<-dbrda(mat.dist~1)! ol mat.dist est la matrice de distance. Si
celle-ci n’est pas euclidienne, il est nécessaire d’appliquer une correction. Ajouter pour cela I'argument
add=TRUE.

Qualité de 'analyse

La PCoA a pour objectif de synthétiser au mieux une certaine information qui est la variance totale
de la matrice de distance. Pour estimer la qualité de ’analyse, on s’'intéresse donc au pourcentage de
variance expliqué par chaque axe. Pour obtenir ces pourcentages : MVA . synt (PCoA)?2.

Remarque 1 :les pourcentages de variance sont toujours en ordre décroissant (i.e. 'axe 1 explique
plus de variance que I'axe 2, qui en explique lui-méme plus que I'axe 3...).

Remarque 2 :iln'y a pas de regle absolue sur le nombre d’axes a retenir pour l'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthese de I'information du jeu de données (qui augmente
avec le nombre d’axes) et une facilité a interpréter (qui diminue avec le nombre d’axes).

Il peut arriver que les pourcentages de variance expliqués par la PCoA soient relativement faibles.
Cela ne veut pas forcément dire que I’analyse est inutile. En effet, ce qui compte est que les distances
interindividuelles dans I'espace multivarié créé par I'analyse soient bien représentatives des distances
interindividuelles réelles. Pour vérifier cela, on trace un diagramme de Shepard : stressplot (PCoA)®.
Sur ce diagramme, si les points sont a peu pres alignés le long d’'une droite alors les distances dans
I'espace de la PCoA sont bien proportionnelles aux distances réelles, et I'on peut se baser sur les résultats
de I'analyse pour I'interprétation. Si les points ne dessinent clairement pas une droite, les distances ne
sont pas préservées et interpréter I’analyse est inutile car elle ne représente pas la réalité.

Remarque 1 :1a droite rouge du diagramme de Shepard indique une proportionnalité parfaite entre
les distances. Si les points forment une droite proche de la droite rouge cela est signe d’'un pourcentage de
variance expliqué élevé, s’ils forment une droite plus éloignée que ce pourcentage est moins important
(mais tout de méme qu’il y a proportionnalité des distances).

Remarque 2 : par défaut le diagramme de Shepard considere les deux premiers axes de la PCoA. Si
I'interprétation est basée sur plus d’axes, ajouter 'argument k=nb ol nb est le nombre total d’axes utilisés.

Représentation graphique
Lunique représentation graphique est le graphe des individus, qui montre la position de ces individus
sur un plan factoriel composé de deux axes. Pour tracer le graphe : MVA.plot (PCoA)?2. Les axes 1 (hori-
zontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux arguments xax et
yax.
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Pour ajouter des groupes sur le graphe, utiliser I'argument fac=facteur ol facteur est le fac-
teur définissant le groupe de chaque individu. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation.

Voir ?MVA . scoreplot pour bien d’autres d’options graphiques.

Interprétation
Le graphe des individus permet d’identifier s’il existe une structuration dans le jeu de données (en

groupes, le long d'un gradient...). Si des groupes sont suspectés, ils peuvent étre déterminés de facon
objective grace a une méthode de classification (voir fiches 92 a 95). On peut également tester si des
groupes connus et/ou des covariables « corrélent » significativement avec la structuration révélée par la

PCoA (voir fiche 91).

Ordination Distance
Axe 2 (19 %)

Axe 1 (29 %)

Observed Dissimilarity
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> Analyser les résultats d'une étude > Statistique multivariée

102. Le positionnement multidimensionnel non métrique

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Positionnement multidimensionnel non métrique
Anglais — Non metric multidimensional scaling (nMDS)

Réalisation de 'analyse
Pour réaliser la nMDS : nMDS<-metaMDS (mat.dist,k=nb.axes,trace=FALSE)! oumat.dist est
la matrice de distance et nb. axes le nombre d’axes a construire. Largument trace=FALSE permet de ne
pas afficher les étapes intermédiaires du calcul.
Remarque : 1a nMDS est une analyse ol la construction des axes dépend du nombre d’axes a créer.
Son résultat est donc différent selon ce nombre.

Qualité de 'analyse

La qualité d'une nMDS s’évalue grace a un indicateur nommé stress, qui varie entre 0 et 1 (parfois
entre 0 et 100 %). Cette valeur est obtenue via MVA . synt (nMDS) 2. De facon empirique on considere qu'un
stress < 0.05 est synonyme d’'une excellente synthese, < 0.1 est bon, < 0.2 est correct et > 0.2 est suspect
(voire mauvais).

Une autre maniere d’évaluer la qualité d'une nMDS est de tester si les distances interindividuelles
dans I'espace multivarié créé par 'analyse sont bien représentatives des distances interindividuelles
réelles (ou plutét de 1'ordre de ces distances puisque la nMDS n'utilise pas les distances réelles mais
seulement une information semi-quantitative : « telle distance est plus grande que telle autre »). On
trace pour cela un diagramme de Shepard : stressplot (nMDS)!. Sur ce diagramme, si les points restent
proches de la courbe en escalier rouge I'ordre des distances est bien préservé et 'on peut se baser sur
les résultats de I’analyse pour I'interprétation. Si les points ne se regroupent clairement pas autour de
la courbe rouge, I'ordre des distances n’est pas préservé et interpréter 'analyse est inutile car elle ne
représente pas la réalité.

Remarque :le stress est en fait un indicateur global du regroupement des points autour de la courbe
du diagramme de Shepard.

Représentation graphique

L'unique représentation graphique est le graphe des individus, qui montre la position de ces individus
sur un plan factoriel composé de deux axes. Pour tracer le graphe : MVA.plot (nMDS)?2. Les axes 1 (hori-
zontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux arguments xax et
yax (si d’autres axes ont été construits).

Pour ajouter des groupes sur le graphe, utiliser I'argument fac=facteur ou facteur est le fac-
teur définissant le groupe de chaque individu. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation.

Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Interprétation
Le graphe des individus permet d’identifier s’il existe une structuration dans le jeu de données (en
groupes, le long d'un gradient...). Si des groupes sont suspectés, ils peuvent étre déterminés de facon
objective grace a une méthode de classification (voir fiches 92 a 95). Attention cependant, la nMDS ne
préserve pas les distances réelles entre individus, mais seulement une information relative. Ce n'est donc
pas parce qu'un point est deux fois plus éloigné d'un autre que d’'un troisiéme que la distance réelle entre

166



le premier et le troisieme est deux fois plus grande que la distance entre le premier et le deuxiéme. Il n'y a
ainsi pas vraiment de sens a « corréler » les résultats d'une nMDS a des variables externes.

Non-metric fit, R* =0.99
Linear fit, R® =0.943
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103. Lanalyse de redondance

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse de redondance
Analyse en composantes principales sur variables instrumentales
(ACPVI)

Anglais - Redundancy analysis (RDA)
Principal component analysis with respect to instrumental variables
(PCAIV)
Principal components of instrumental variables

Préparation des données

La RDA fonctionne d’autant mieux que les variables a expliquer ont une distribution a peu pres
normale (au moins symétrique), qu’elles sont reliées entre elles par des relations linéaires et qu’elles sont
reliées aux variables explicatives par des relations linéaires. Une transformation préalable du tableau a
expliquer peut grandement aider a améliorer la situation (voir fiche 88).

11 est également nécessaire que les matrices de variance-covariance (I’équivalent multivarié de la
variance) soient homogénes entre les différentes modalités des variables explicatives qualitatives (sl
y en a). Pour le tester : anova(betadisper(dist (tableau) ,facteur)!) ou tableau estle tableau a
expliquer et facteur le facteur définissant les groupes.

Enfin, il est recommandé la plupart du temps de standardiser les variables a expliquer avant I'analyse
(voir fiche 88). Cela permet de donner le méme poids a toutes les variables, et d’interpréter les résultats
en termes de corrélation ce qui est souvent plus facile. Dans cette fiche on considéerera que les variables
sont standardisées.

Réalisation de 'analyse
Pour réaliser la RDA : RDA<-rda(formule,data=tab.explicatif)! olitab.explicatif estle ta-
bleau contenant les variables explicatives. Voir fiche 40 pour une explication détaillée de la construction
d’une formule. Dans cette formule, la réponse est tableau (i.e. le tableau a expliquer). Sil’on souhaite
standardiser les variables de ce tableau mais que I'on n’a pas effectué 'opération au préalable, ajouter
I'argument scale=TRUE. Par défaut les variables ne sont pas standardisées.

Capacité explicative globale
La RDA consiste en fait en deux étapes :

1. Séparer la variation (du tableau a expliquer) due aux variables explicatives (appelée variation
contrainte) de la variation non expliquée (dite résiduelle ou non contrainte). La RDA travaille sur
une certaine variation qui est la variance.

2. Réaliser deux ACP séparées, I'une sur la variation contrainte (« ACP contrainte ») et 'autre sur la
variation non contrainte (« ACP non contrainte »).

On peut estimer la capacité explicative globale de la RDA grace au pourcentage de variance contrainte
de I'analyse (i.e. de variance du tableau a expliquer expliquée par les variables explicatives). Plus ce
pourcentage est élevé et plus la variation observée dans le tableau a expliquer est liée aux variables
explicatives. Ce pourcentage est obtenu via MVA.synt (RDA)?, dans le premier tableau renvoyé par la
fonction.
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Qualité de 'analyse
Test(s)

Leffet des variables explicatives est testé via MVA . anova (RDA)?2. Un test F par permutation est réalisé.

Si au moins une variable explicative a un effet significatif, on peut se baser sur les résultats de ’ACP
contrainte pour 'interprétation. Si aucune variable explicative n’a d’effet significatif, interpréter les
résultats de cette ACP n’a pas beaucoup d’intérét puisqu’aucun effet n'est montré.

En lien avec cette ACP contrainte, on peut réaliser des comparaisons multiples entre modalités d'un
facteur (ou combinaisons de modalités d'une interaction entre facteurs) a effet significatif. Pour réaliser
letest: pairwise.factorfit (RDA,facteur)? ot facteur estle facteur d’intérét.

Synthese

Si au moins une variable explicative a un effet significatif, on s’intéresse a 'ACP contrainte. Comme
pour une ACP classique (voir fiche 96), on estime la qualité de cette analyse par le pourcentage de variance
expliqué par chaque axe. Ces pourcentages sont obtenus via MVA . synt (RDA)?2, dans le deuxiéme tableau
renvoyé par la fonction.

Remarque 1 :il s’agit ici de pourcentages de variance contrainte, pas totale comme en ACP classique.

Remarque 2 :les pourcentages de variance sont toujours en ordre décroissant (i.e. 'axe 1 explique
plus de variance que 'axe 2, qui en explique lui-méme plus que 'axe 3...).

Remarque 3 :iln'y a pas de regle absolue sur le nombre d’axes a retenir pour l'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthése de I'information (qui augmente avec le nombre

.....

Représentations graphiques
En RDA on a deux représentations possibles : le graphe des individus qui montre la position de ces
individus sur un plan factoriel composé de deux axes, et le cercle des corrélations (voir fiche 89) qui
permet d’interpréter la répartition des individus.

Graphe des individus

Pour tracer le graphe : MVA.plot (RDA)2. Les axes 1 (horizontal) et 2 (vertical) sont représentés par
défaut, ils peuvent étre changés grace aux arguments xax et yax. Par défaut c’est '’ACP contrainte qui est
représentée. Pour représenter '’ACP non contrainte, ajouter 'argument space=2.

Pour ajouter des groupes sur le graphe, utiliser I'argument fac=facteur ou facteur est le fac-
teur définissant le groupe de chaque individu. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation.

Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations

Pour tracer le graphe : MVA.plot (RDA, "corr")?2. Comme pour le graphe des individus c’est 'ACP
contrainte qui est représentée, 'argument space=2 permettant de représenter '’ACP non contrainte. Par
défaut a la fois les variables a expliquer et les variables explicatives quantitatives sont représentées. Pour
ne représenter que les variables explicatives quantitatives ajouter I'argument set=1, pour les variables a
expliquer set=2.

Pour supprimer les fleches, ajouter I'argument arrows=FALSE. Voir 7MVA. corplot pour bien d’autres
d’options graphiques.

Interprétation

On ne considere que ’ACP contrainte puisque par définition c’est la seule qui permette d’interpréter
les résultats en lien avec les variables explicatives.

Le graphe des individus permet d’identifier la structuration des données du tableau a expliquer qui
est due aux variables explicatives. On y repére comment les modalités d'un facteur a effet significatif se
répartissent, ou des gradients linéaires.

Dans un second temps, le cercle des corrélations permet d’identifier les variables (i) qui différencient
d’éventuels groupes et/ou (ii) qui expliquent d’éventuels gradients. Pour cela, on repére quelles sont les
directions pertinentes pour 'interprétation biologique sur le graphe des individus (ce peuvent étre des
axes ou n'importe quelles diagonales), et on identifie les variables qui corrélent le plus avec ces directions
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sur le cercle des corrélations (voir fiche 89). La facon de procéder est la méme pour les variables a
expliquer que pour les variables explicatives quantitatives, sauf bien str sur que les variables a expliquer
sont influencées par les variables explicatives mais pas I'inverse.

Axe contraint 2 (13%)

Axe contraint 2 (13%)
S
<
N

A

Axe contraint 1 (73%) Axe contraint 1 (73%)
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> Analyser les résultats d'une étude > Statistique multivariée

104. Lanalyse discriminante linéaire

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
lvegan, 2MASS, SRVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse discriminante linéaire (ADL)

Anglais - Linear discriminant analysis (LDA)
Canonical variate analysis (CVA)
Discriminant function analysis (DFA)

Préparation des données

Les variables quantitatives doivent avoir une distribution normale multivariée. Voir fiche 65 pour
tester cette condition. La LDA est toutefois assez robuste si elle n’est pas tout a fait respectée.

Il est également nécessaire que les matrices de variance-covariance (I'équivalent multivarié de la va-
riance) soient homogenes entre les différents groupes. Pour le tester : anova (betadisper (dist (table-
au) ,facteur)!) ol1 tableau est le tableau de variables quantitatives et facteur le facteur définissant
les groupes. La encore la LDA est assez robuste a un non respect (modéré) de cette condition.

Si ces deux conditions ne sont pas du tout respectées, une transformation préalable des données peut
grandement aider a améliorer la situation (voir fiche 88).

Remarque : les variables quantitatives doivent étre standardisées (voir fiche 88), mais en pratique les
fonctions réalisant la LDA le feront automatiquement

Réalisation de I'analyse
Pour réaliser la LDA : LDA<-1da(tableau,facteur)?.

Qualité de 'analyse
Pourcentage d’erreur de classification

Une des fonctions de toute analyse discriminante est de faire de la prédiction, i.e. de prédire le groupe
auquel appartient un individu dont on connait seulement la valeur pour les variables quantitatives. Une
maniere d’estimer la qualité d’'une analyse discriminante est donc de tester a quel point elle permet de
classer un individu de groupe inconnu sans erreur. On utilise pour cela une méthode de validation croisée,
qui va générer plusieurs sous-modeles chacun sur une partie du jeu de données (définie aléatoirement) et
prédire le groupe des individus non pris en compte dans le modele. Pour plus de fiabilité I'ensemble de la
procédure peut étre répété plusieurs fois (avec a chaque fois un découpage aléatoire du jeu de données).

Pour réaliser la validation croisée : MVA . cv(tableau,facteur,model="LDA")3. Par défaut la fonc-
tion découpe le jeu de données en 7 parties (7-fold cross-validation), mais ce chiffre peut étre modifié
via 'argument k=nb ou nb est le nombre de sous-jeux de données a générer. La fonction peut égale-
ment ajuster ce chiffre automatiquement si au moins un groupe contient moins de 7 individus. Par
défaut 'ensemble de la procédure est répété 10 fois (argument repet), ce qui au final génere 7 x 10 =70
sous-modeles.

Sil'on souhaite utiliser la LDA dans un but prédictif, stocker le résultat de la fonction MVA . cv ()% dans
un objet.

Test(s)

Le test a réaliser est une MANOVA (Multivariate ANalysis Of VAriance), une extenstion de '’ANOVA au
cas multivarié. Les conditions d’emploi de ce test sont les mémes que celles de la LDA. Voir fiche 108
pour réaliser le test.

Si le facteur a un effet significatif et qu’il y a plus de deux groupes, il est nécessaire de réaliser
des comparaisons multiples pour identifier les modalités qui different. Voir fiche 43 pour réaliser ces
comparaisons.

171



Remarque 1 : pourcentage d’erreur de classification et significativité du facteur sont toujours cohé-
rents : si le pourcentage d’erreur est faible, le facteur a un effet significatif (et inversement).

Remarque 2 : sile facteur n’a pas d’effet significatif, I'interprétation des résultats de la LDA n’a pas
vraiment de sens et toute tentative de prédiction est inutile.

Représentations graphiques
En LDA on a deux représentations possibles : le graphe des individus qui montre la position de ces
individus sur un plan factoriel composé de deux axes, et le cercle des corrélations (voir fiche 89) qui
permet d’interpréter la répartition des individus.
Remarque : s'il n'y a que deux groupes, la LDA ne produit qu'un seul axe. Le graphe des individus et le
cercle des corrélations se réduisent donc a une seule dimension.

Graphe des individus

Pour tracer le graphe : MVA.plot (LDA,fac=facteur)?. Les axes 1 (horizontal) et 2 (vertical) sont
représentés par défaut (s'il y a au moins deux axes), ils peuvent étre changés grace aux arguments xax et
yax.

Dans le cas d'un graphe a deux dimensions, les arguments col, pch, fac.lab, contours, stars
et barycenters permettent de personnaliser la représentation. Dans le cas d'un graphe a une seule
dimension, les arguments col, legend et legend.lab sont intéressants. Voir 7MVA.scoreplot pour
bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe : MVA.plot (LDA, "corr")2.
Pour supprimer les fleches, ajouter 'argument arrows=FALSE. Voir 7MVA . corplot pour bien d’autres
d’options graphiques.

Interprétation

Le graphe des individus permet d’identifier comment les groupes se structurent, i.e. si tout ou partie
des groupes se séparent ou au contraire se chevauchent.

Dans un second temps, le cercle des corrélations permet d’identifier les variables qui différencient
ces groupes. Pour cela, on repeére quelles sont les directions pertinentes pour l'interprétation biologique
sur le graphe des individus (ce peuvent étre des axes ou n'importe quelles diagonales), et on identifie les
variables qui correlent le plus avec ces directions sur le cercle des corrélations (voir fiche 89).

Prédiction
Lun des intéréts des analyses discriminantes est a la fois de comprendre comment les groupes se
différencient, mais également de pouvoir prédire le groupe d'un individu pour des valeurs connues
des variables quantitatives. Prédire un groupe nécessite donc de fixer la valeur de foutes les variables
quantitatives.
Cette prédiction se fait en trois étapes :

1. Générer une série de sous-modeles a partir du jeu de données initial, par validation croisée.

2. Créer un tableau contenant une colonne par variable quantitative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du jeu de données initial), et remplir chaque
ligne en fonction des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction
par ligne de ce tableau). Si le jeu de données initial avait été standardisé, il faut également standar-
diser le jeu de données servant a la prédiction. Pour cela: new. tab<-stand (new.tab,tableau)!
ollnew.tab estle tableau des individus a classer.

3. Réaliser la prédiction : predict (LDA.vc,new.tab) olt LDA.vc est le résultat de la validation
croisée (étape 1). La fonction renvoie pour chaque ligne de new. tab le groupe prédit (colonne
Group) et la probabilité de cette prédiction (colonne Proba).

Remarque : tout I'intérét de générer un grand nombre de sous-modéles au moment de la validation
croisée est de pouvoir associer a chaque prédiction une probabilité, car chaque sous-modele va en fait
servir a faire sa propre prédiction, ce qui permet d’estimer la fiabilité de la prédiction « moyenne ».
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> Analyser les résultats d'une étude > Statistique multivariée

105. Larégression PLS discriminante

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE
IRVAideMemoire, ?pls

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Régression PLS discriminante
Régression des moindres carrés partiels discriminante
Anglais - Partial least squares discriminant analysis (PLS-DA)
Projection to latent structures discriminant analysis (PLS-DA)

Préparation des données

11 est fortement recommandé de standardiser les variables quantitatives (voir fiche 88). Une trans-
formation préalable est également souvent bénéfique, pour rendre plus linéaires les relations entre ces
variables. Dans tous les cas, le tableau de variables quantitatives doit étre transformé en matrice, par
exemple via tableau<-as.matrix(tableau) oll tableau est le tableau de variables quantitatives.

Remarque : si les variables ont été standardisées (voir fiche 88), le résultat de la standardisation est
déja une matrice.

Le facteur doit également étre transformé en variables indicatrices. Pour cela : var . ind<-dummy (fac-
teur)! oll facteur est le facteur définissant les groupes.

Réalisation de 'analyse
Pour réaliser la PLS-DA : PLSDA<-cppls(var.ind~tableau)?.
Remarque : par défaut autant d’axes sont créés qu’il y a de variables quantitatives, ce qui peut parfois
générer une erreur. Si tel est le cas, réduire le nombre d’axes en ajoutant 'argument ncomp=10 (10 axes
sont largement plus que nécessaire pour la suite).

Qualité de 'analyse
Pourcentage d'erreur de classification

Une des fonctions de toute analyse discriminante est de faire de la prédiction, i.e. de prédire le groupe
auquel appartient un individu dont on connait seulement la valeur pour les variables quantitatives. Une
maniere d’estimer la qualité d'une analyse discriminante est donc de tester a quel point elle permet de
classer un individu de groupe inconnu sans erreur. On utilise pour cela une méthode de validation croisée,
qui va générer plusieurs sous-modeles chacun sur une partie du jeu de données (définie aléatoirement)
et prédire le groupe des individus non pris en compte dans le modele. Pour plus de fiabilité 'ensemble
de la procédure peut étre répété plusieurs fois (avec a chaque fois un découpage aléatoire du jeu de
données). Dans le cas d'une PLS-DA les choses sont toutefois assez complexes, et une procédure de
double validation croisée (cross model validation ou 2CV) doit étre utilisée, qui consiste en une validation
croisée dont a chaque étape on réalise une seconde validation croisée interne (la validation croisée
«interne » étant appelée inner loop, tandis que la validation croisée « externe » est appelée outer loop).

Pour réaliser 'opération : MVA . cmv (tableau, facteur ,model="PPLS-DA" ,crit.inn="NMC")!. Par
défaut le découpage du jeu de données se fait en 7 parties au niveau de la boucle externe (7-fold cross-
validation) et en 6 parties au niveau de la boucle interne (6-fold cross-validation). Ces chiffres peuvent
étre modifiés grace aux arguments kout et kinn. La fonction peut également ajuster ces chiffres automa-
tiquement si au moins un groupe contient moins de 7 individus. Par défaut I’ensemble de la procédure
est répété 10 fois (argument repet), ce qui au final génére 7 x 10 = 70 sous-modeles.

Remarque 1 :si g estle nombre de groupes, on utilise souvent g — 1 axes pour tester et interpréter
une PLS-DA, car c’est théoriquement suffisant. Pour suivre ce principe, ajouter 'argument ncomp=nb ol
nb=g-1.

Remarque 2 : 1l existe en fait plusieurs versions de la PLS-DA. La PPLS-DA (Powered PLS-DA) en est la
plus efficace, c’est celle qui est recommandée et utilisée dans cette fiche.
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Sil'on souhaite utiliser la PLS-DA dans un but prédictif, stocker le résultat de la fonction MVA . cmv ()!
dans un objet.

Test(s)

Le test a réaliser est un test par permutation basé sur la double validation croisée. Pour le réaliser :
MVA.test (tableau,facteur,model="PPLS-DA", cmv=TRUE)!. Les arguments kout, kinn et surtout
ncomp sont disponibles. Le temps de calcul nécessaire pour ce test est relativement long.

Si le facteur a un effet significatif et qu’il y a plus de deux groupes, il est nécessaire de réaliser des com-
paraisons multiples pour identifier les modalités qui different. Pour cela : pairwise.MVA.test (tablea-
u,facteur,model="PPLS-DA", cmv=TRUE)' (avec toujours les arguments kout, kinn et surtout ncomp).
Le temps de calcul nécessaire pour réaliser toutes les comparaisons deux-a-deux est tres long.

Remarque : avec une PLS-DA, il est absolument indispensable de tester si le facteur a un effet signi-
ficatif avant toute interprétation. En effet, les représentations graphiques auront toujours tendance a
montrer des groupes séparés méme si cette séparation est totalement aléatoire (le phénomene est d’autant
plus probable que les variables quantitatives sont bien plus nombreuses que les individus). On ne peut
donc pas se fier a ces représentations graphiques si les groupes ne sont pas significativement différents.

Représentations graphiques
En PLS-DA on a deux représentations possibles : le graphe des individus qui montre la position de
ces individus sur un plan factoriel composé de deux axes, et le cercle des corrélations (voir fiche 89) qui
permet d’interpréter la répartition des individus.

Graphe des individus
Pour tracer le graphe : MVA . plot (PLSDA, fac=facteur)?. Les axes 1 (horizontal) et 2 (vertical) sont
représentés par défaut, ils peuvent étre changés grace aux arguments xax et yax.
Les arguments col, pch, fac.lab, contours, stars et barycenters permettent de personnaliser
la représentation. Voir ?MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe : MVA . plot (PLSDA, "corr")?2.
Pour supprimer les fleches, ajouter 'argument arrows=FALSE. Voir 7MVA . corplot pour bien d’autres
d’options graphiques.

Interprétation

On part du principe que les groupes sont significativement différents. Dans le cas contraire I'interpré-
tation doit étre évitée.

Le graphe des individus permet d’identifier comment les groupes se structurent, i.e. si tout ou partie
des groupes se séparent ou au contraire se chevauchent.

Dans un second temps, le cercle des corrélations permet d’identifier les variables qui différencient
ces groupes. Pour cela, on repere quelles sont les directions pertinentes pour 'interprétation biologique
sur le graphe des individus (ce peuvent étre des axes ou n'importe quelles diagonales), et on identifie les
variables qui correlent le plus avec ces directions sur le cercle des corrélations (voir fiche 89).

Prédiction
Lun des intéréts des analyses discriminantes est a la fois de comprendre comment les groupes se
différencient, mais également de pouvoir prédire le groupe d'un individu pour des valeurs connues
des variables quantitatives. Prédire un groupe nécessite donc de fixer la valeur de toutes les variables
quantitatives.
Cette prédiction se fait en trois étapes :

1. Générer une série de sous-modeles a partir du jeu de données initial, par double validation croisée.

2. Créer un tableau contenant une colonne par variable quantitative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du jeu de données initial), et remplir chaque
ligne en fonction des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction
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par ligne de ce tableau). Sile jeu de données initial avait été standardisé, il faut également standar-
diser le jeu de données servant a la prédiction. Pour cela: new. tab<-stand (new.tab,tableau)!
olnew.tab estle tableau des individus a classer.

3. Réaliser la prédiction : predict (PLSDA.vc,new.tab) ol PLSDA. vc est le résultat de la doube
validation croisée (étape 1). La fonction renvoie pour chaque ligne de new. tab le groupe prédit
(colonne Group) et la probabilité de cette prédiction (colonne Proba).

Remarque : tout I'intérét de générer un grand nombre de sous-modeles au moment de la double
validation croisée est de pouvoir associer a chaque prédiction une probabilité, car chaque sous-modeéle va
en fait servir a faire sa propre prédiction, ce qui permet d’estimer la fiabilité de la prédiction « moyenne ».

Axe 2

Axe 1
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> Analyser les résultats d'une étude > Statistique multivariée

106. Lanalyse canonique des correspondances

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse canonique des correspondances
Analyse factorielle des correspondances sur variables instrumentales
(AFCVI)

Anglais - Canonical correspondence analysis (CCA)
Constrained correspondence analysis (CCA)
Correspondence analysis with respect to instrumental variables
(CAIV)

Préparation des données
Dans un tableau de contingence ou un tableau de présence-absence, les lignes et les colonnes ont
généralement un role symétrique (i.e. il n'y a pas d’«individus » et de « variables »). Cependant la CCA
impose que les entités pour lesquelles les variables explicatives sont définies soient placées en lignes,
comme dans un tableau classique. On appellera donc les lignes « individus ».

Réalisation de I'analyse
Pour réaliser la CCA : CCA<-cca(formule,data=tab.explicatif)!olitab.explicatif estle ta-
bleau contenant les variables explicatives. Voir fiche 40 pour une explication détaillée de la construction
d’une formule. Dans cette formule, la réponse est le tableau a expliquer.

Capacité explicative globale
La CCA consiste en fait en deux étapes :

1. Séparer la variation (du tableau a expliquer) due aux variables explicatives (appelée variation
contrainte) de la variation non expliquée (dite résiduelle ou non contrainte). La CCA travaille
sur une certaine information qui est la correspondance entre les lignes et les colonnes du jeu de
données, que I'on appellera plus généralement inertie (I'inertie est en fait un terme générique, le
fait qu’elle représente une correspondance est un cas particulier). A ce stade le tableau a expliquer
est considéré asymétriquement puisque les lignes jouent le réle d’individus.

2. Réaliser deux AFC séparées, I'une sur la variation contrainte (« AFC contrainte ») et 'autre sur la
variation non contrainte (« AFC non contrainte »). Comme en AFC classique (voir fiche 97), lignes
et colonnes jouent cette fois un role symétrique.

On peut estimer la capacité explicative globale de la CCA grace au pourcentage d’inertie contrainte de
I'analyse (i.e. d’inertie du tableau a expliquer expliquée par les variables explicatives). Plus ce pourcentage
est élevé et plus la variation observée dans le tableau a expliquer est liée aux variables explicatives. Ce
pourcentage est obtenu via MVA. synt (CCA)?, dans le premier tableau renvoyé par la fonction.

Qualité de 'analyse
Test(s)

Leffet des variables explicatives est testé via MVA . anova (CCA)2. Un test F par permutation est réalisé.

Si au moins une variable explicative a un effet significatif, on peut se baser sur les résultats de 'AFC
contrainte pour l'interprétation. Si aucune variable explicative n'a d’effet significatif, interpréter les
résultats de cette AFC n’a pas beaucoup d’intérét puisqu’aucun effet n’est montré.

En lien avec cette AFC contrainte, on peut réaliser des comparaisons multiples entre modalités d'un
facteur (ou combinaisons de modalités d'une interaction entre facteurs) a effet significatif. Pour réaliser
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le test: pairwise.factorfit (CCA,facteur)? ot facteur estle facteur d’intérét.

Synthese

Si au moins une variable explicative a un effet significatif, on s’intéresse a I’AFC contrainte. Comme
pour une AFC classique (voir fiche 97), on estime la qualité de cette analyse par le pourcentage d’inertie
expliqué par chaque axe. Ces pourcentages sont obtenus via MVA . synt (CCA)?, dans le deuxiéme tableau
renvoyé par la fonction.

Remarque 1 :il s’agit ici de pourcentages d’inertie contrainte, pas totale comme en AFC classique.

Remarque 2 :les pourcentages d’inertie sont toujours en ordre décroissant (i.e. 'axe 1 explique plus
d’inertie que I'axe 2, qui en explique lui-méme plus que 'axe 3...).

Remarque 3 :il n'y a pas de regle absolue sur le nombre d’axes a retenir pour I'interprétation. Il s’agit
toujours d'un compromis entre une bonne syntheése de I'information (qui augmente avec le nombre

.....

Représentations graphiques
A partir du moment ot1 il y a au moins une variable explicative quantitative, deux représentations
sont possibles : le « graphe d’association » et le cercle des corrélations (voir fiche 89). S’il n'y a aucune
variable explicative quantitative le seul graphe possible est celui d’association.

Graphe d’association

Sur ce graphe les lignes et les colonnes sont représentées chacune par un point. Il est cependant
impossible de représenter a la fois les distances interlignes et les distances intercolonnes sans biais sur le
méme graphe. Il faut donc choisir entre représenter sans biais les premieres (échelle de type 1) ou les
secondes (échelle de type 2).

Pour représenter les distances interlignes sans biais : MVA.plot (CCA,points=FALSE,scaling=1)2
Pour représenter les distances intercolonnes sans biais : MVA.plot (CCA,points=FALSE,scaling=2)2.
Les axes 1 (horizontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux
arguments xax et yax. Par défaut c’est 'AFC contrainte qui est représentée. Pour représenter ’AFC non
contrainte, ajouter 'argument space=2. Les arguments col, pch et points permettent de personnaliser
une telle représentation. Voir 7MVA. scoreplot pour bien d’autres d’options graphiques.

Ajouter des groupes sur le graphe est possible mais la procédure est plus complexe :
> assoc <- MVA.plot(CCA,points=FALSE,col=couleurs)? ol couleurs est un vecteur a deux va-
leurs, la premiére pour les colonnes et 1a seconde pour les lignes. S’il 'on souhaite afficher des groupes de
colonnes, la premiere couleur doit étre "white" ; pour des groupes de lignes la seconde couleur doit étre
"white".
> par (new=TRUE)
> MVA.plot (CCA,points=FALSE,xlim=assoc$xlim,ylim=assoc$ylim,set=nb,fac=facteur)?ol
nb vaut 1 pour des groupes de lignes ou 2 pour des groupes de colonnes, et facteur est le facteur dé-
finissant le groupe de chaque ligne/colonne. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation. Voir 7MVA . scoreplot pour bien
d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe : MVA.plot (CCA, "corr")2 Comme pour le graphe des individus c’est 'AFC
contrainte qui est représentée. LAFC non contrainte n'a pas de sens puisqu’elle ne concerne pas les
variables explicatives.
Pour supprimer les fleches, ajouter 'argument arrows=FALSE. Voir 7MVA . corplot pour bien d’autres
d’options graphiques.

Interprétation
On ne considere que '’AFC contrainte puisque par définition c’est la seule qui permette d’interpréter
les résultats en lien avec les variables explicatives.
Le graphe des individus permet (i) d’identifier les associations entre lignes et colonnes du tableau
a expliquer (de la méme facon qu’en AFC, voir fiche 97), (ii) d'identifier comment les modalités d'un
facteur a effet significatif se répartiessent et (iii) d'identifier des gradients linéaires.
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Dans un second temps, le cercle des corrélations permet d’identifier les variables explicatives quan-
titatives (i) qui différencient d’éventuels groupes et/ou (ii) qui expliquent d’éventuels gradients. Pour
cela, on repere quelles sont les directions pertinentes pour 'interprétation biologique sur le graphe
d’association (ce peuvent étre des axes ou n'importe quelles diagonales), et on identifie les variables qui
correlent le plus avec ces directions sur le cercle des corrélations (voir fiche 89).
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> Analyser les résultats d'une étude > Statistique multivariée

107. Lanalyse des correspondances discriminante

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lade4, 2RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse des correspondances discriminante
Analyse discriminante des correspondances
Anglais - Correspondence discriminant analysis (CDA)
Discriminant correspondence analysis (DCA)

Préparation des données

Dans un tableau de contingence ou un tableau de présence-absence, les lignes et les colonnes ont
généralement un role symétrique (i.e. il n'y a pas d’« individus » et de « variables »). Cependant la CDA
impose que les entités pour lesquelles les groupes sont définis soient placées en lignes, comme dans un
tableau classique. On appellera donc les lignes «individus » et les colonnes « variables ».

Remarque :1a CDA consiste en fait en deux étapes. La premiére est de réaliser une AFC sur le tableau
de contingence (ou de présence-absence) ; le tableau est bien considéré symétriquement a ce moment la
(voir fiche 97). Dans un second temps, les coordonnées des lignes du tableau de contingence sur les axes
de ’AFC sont utilisées pour réaliser une LDA (voir fiche 104), dans laquelle les colonnes du tableau de
contingence vont servir de variables pour 'interprétation.

Réalisation de I'analyse
Pour réaliser la CDA : CDA<-discrimin.coa(tableau,facteur,scannf=FALSE,nf=nlevels(fa-
cteur)-1)! o1 tableau est le tableau de contingence (ou de présence-absence) et facteur le facteur
définissant les groupes.

Qualité de 'analyse
Pourcentage d’erreur de classification

Une des fonctions de toute analyse discriminante est de faire de la prédiction, i.e. de prédire le groupe
auquel appartient un individu dont on connait seulement la valeur pour les variables quantitatives (i.e.
les colonnes du tableau de contingence). Une maniere d’estimer la qualité d'une analyse discriminante
est donc de tester a quel point elle permet de classer un individu de groupe inconnu sans erreur. On
utilise pour cela une méthode de validation croisée, qui va générer plusieurs sous-modeles chacun sur
une partie du jeu de données (définie aléatoirement) et prédire le groupe des individus non pris en
compte dans le modeéle. Pour plus de fiabilité I'’ensemble de la procédure peut étre répété plusieurs fois
(avec a chaque fois un découpage aléatoire du jeu de données).

Pour réaliser la validation croisée : CDA. cv (tableau,facteur)?. Par défaut la fonction découpe le
jeu de données en 7 parties (7-fold cross-validation), mais ce chiffre peut étre modifié via 'argument
k=nb oll nb est le nombre de sous-jeux de données a générer. La fonction peut également ajuster ce
chiffre automatiquement si au moins un groupe contient moins de 7 individus. Par défaut I'ensemble de
la procédure est répété 10 fois (argument repet), ce qui au final génére 7 x 10 = 70 sous-modéles.

Sil'on souhaite utiliser la CDA dans un but prédictif, stocker le résultat de la fonction CDA . cv ()2 dans
un objet.

Test(s)

Le test a réaliser repose sur les coordonnées des individus sur les axes de ’AFC intermédiaire. Pour le
réaliser : CDA.test (tableau,facteur). Si g estle nombre de groupes, par défaut g — 1 axes de ’AFC
sont retenus pour le test. Ce nombre d’axes peut étre modifié grace a 'argument ncomp=nb o1 nb est le
nombre d’axes souhaité.
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Si un seul axe est retenu (par choix ou parce qu’il n'y a que deux groupes), le test est une ANOVA.
Si au moins deux axes sont retenus, le test est une MANOVA (Multivariate ANalysis Of VAriance), une
extenstion de TANOVA au cas multivarié.

Sile facteur a un effet significatif et qu’il y a plus de deux groupes, il est nécessaire de réaliser des com-
paraisons multiples pour identifier les modalités qui different. Pour cela: pairwise.CDA.test (tableau,
facteur) (avec toujours I'argument ncomp).

Remarque : si le facteur n’a pas d’effet significatif, l'interprétation des résultats de la CDA n’a pas
vraiment de sens et toute tentative de prédiction est inutile.

Représentations graphiques
En CDA on a deux représentations possibles : le graphe des individus qui montre la position de ces
individus sur un plan factoriel composé de deux axes, et le cercle des corrélations (voir fiche 89) qui
permet d’interpréter la répartition des individus.
Remarque : s'il 'y a que deux groupes, la CDA ne produit qu’un seul axe. Le graphe des individus et le
cercle des corrélations se réduisent donc a une seule dimension.

Graphe des individus

Pour tracer le graphe : MVA.plot (CDA,fac=facteur)? Les axes 1 (horizontal) et 2 (vertical) sont
représentés par défaut (s'il y a au moins deux axes), ils peuvent étre changés grace aux arguments xax et
yax.

Dans le cas d'un graphe a deux dimensions, les arguments col, pch, fac.lab, contours, stars
et barycenters permettent de personnaliser la représentation. Dans le cas d'un graphe a une seule
dimension, les arguments col, legend et legend.lab sont intéressants. Voir 7MVA.scoreplot pour
bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe : MVA.plot (CDA, "corr")2.
Pour supprimer les fleches, ajouter I'argument arrows=FALSE. Voir 7MVA. corplot pour bien d’autres
d’options graphiques.

Interprétation

Le graphe des individus permet d’identifier comment les groupes se structurent, i.e. si tout ou partie
des groupes se séparent ou au contraire se chevauchent.

Dans un second temps, le cercle des corrélations permet d’identifier les variables (i.e. les colonnes du
tableau de contingence) qui différencient ces groupes. Pour cela, on repére quelles sont les directions
pertinentes pour l'interprétation biologique sur le graphe des individus (ce peuvent étre des axes ou
n’'importe quelles diagonales), et on identifie les variables qui correlent le plus avec ces directions sur le
cercle des corrélations (voir fiche 89).

Prédiction
Lun des intéréts des analyses discriminantes est a la fois de comprendre comment les groupes se
différencient, mais également de pouvoir prédire le groupe d'un individu pour des valeurs connues
des variables quantitatives. Prédire un groupe nécessite donc de fixer la valeur de foutes les variables
quantitatives.
Cette prédiction se fait en trois étapes :

1. Générer une série de sous-modeles a partir du jeu de données initial, par validation croisée.

2. Créer un tableau contenant une colonne par colonne du tableau initial (les noms de colonnes
doivent étre strictement identiques a ceux du jeu de données initial), et remplir chaque ligne en
fonction des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par
ligne de ce tableau).

3. Réaliser la prédiction : predict (CDA.vc,new.tab) ol CDA.vc est le résultat de la validation
croisée (étape 1) et new.tab le tableau des individus a classer. La fonction renvoie pour chaque
ligne de new. tab le groupe prédit (colonne Group) et la probabilité de cette prédiction (colonne
Proba).
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Remarque : tout 'intérét de générer un grand nombre de sous-modéles au moment de la validation
croisée est de pouvoir associer a chaque prédiction une probabilité, car chaque sous-modeéle va en fait
servir a faire sa propre prédiction, ce qui permet d’estimer la fiabilité de la prédiction « moyenne ».
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> Analyser les résultats d'une étude > Statistique multivariée

108. Analyser un ensemble de variables quantitatives

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire, 3car

A L'analyse présentée dans cette fiche est basée sur un modele. A
Il est indispensable de maitriser les notions des fiches 39 a 42.

Réponse

Le modele qui va étre utilisé fait '’hypotheése que les matrices de variance-covariance (I'équivalent
multivarié de la variance) sont homogeénes entre les différentes modalités des variables explicatives qua-
litatives. Pour le tester : anova (betadisper(dist(tableau) ,facteur)!) oll tableau estle tableau a
expliquer et facteur le facteur définissant les groupes. Le modele est toutefois assez robuste a un non
respect (modéré) de cette condition. Si elle n’est pas du tout respectée, une transformation préalable du
tableau peut grandement aider a améliorer la situation (voir fiche 88).

Dans tous les cas, les variables a expliquer doivent étre bien moins nombreuses que les individus
et elles ne doivent pas étre trop corrélées entre elles. Si cette double condition n’est pas respectée,
transformer le tableau a expliquer en matrice de distance (voir fiche 100) et utiliser cette matrice comme
réponse dans une analyse dédiée (voir fiche 110).

Apres avoir fait ces vérifications et possiblement transformé le tableau a expliquer, celui-ci doit étre
converti en matrice. Pour cela: tableau<-as.matrix(tableau).

Modeéle utilisé
Le modele utilisé est un Modele Linéaire Multivarié (Multivariate Linear Model ou MLM), une exten-
sion du Modele Linéaire classique du cadre univarié (voir fiche 76). A la différence du Modele Linéaire
classique, il y a plusieurs variables a expliquer dans le MLM.

Construction du modele
Pour créer le modele : modele<-1m(formule). Voir fiche 40 pour une explication détaillée de la
construction d'une formule. Dans cette formule, la réponse est tableau (i.e. le tableau a expliquer). De
maniere générale, on peut dire que :

— inclure un facteur permet de tester si la position des individus dans I’espace multidimensionnel
des variables a expliquer différe entre les niveaux de ce facteur.

— inclure une covariable permet de tester s'il existe une relation entre cette covariable et les variables
a expliquer.

— inclure une interaction entre deux variables explicatives permet de tester si I'effet de 'une dépend
de l'autre (le raisonnement est le méme pour une interaction incluant plus de deux termes). Le
cas particulier d'une interaction entre une covariable et un facteur permet de tester si la relation
entre la covariable et les variables a expliquer est différente selon la modalité du facteur.

Remarque : bien que la gestion des covariables ne pose pas de probléme théorique avec les MLMs, il

est en pratique difficile de se représenter leur effet dans le cadre multivarié (sauf a I'interpréter séparé-
ment pour chaque variable a expliquer). Ce type de modele se préte par contre trés bien a ’analyse de
I'effet de facteurs.

Vérification de la validité du modéle
Avant d’aller plus loin, il est indispensable de vérifier que le modele s’ajuste bien aux données.
Cette étape est fondamentale, et ce pour tout modele, car un test basé sur un modele mal ajusté n’est
simplement pas fiable (ni valide). Lajustement d'un MLM est cependant plus difficile a vérifier que celui
d’'un modele a réponse univariée. Le seul criteére réellement observable est la distribution des résidus du
modele (i.e. les écarts entre les valeurs réellement observées et celles prédites par le modeéle). Pour que le
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modele soit validé, les résidus doivent suivre une distribution normale multivariée (une extension de la
distribution normale classique).

Pour faire cette vérification : plotresid(modele)2 Lhypotheése de normalité est acceptée lorsque
les points sont a peu pres alignés sur une droite. Ces points peuvent ne pas étre parfaitement alignés sur
la droite, mais s’ils restent a peu pres dans l'intervalle de confiance de celle-ci (représenté en pointillés),
I'ajustement est considéré comme correct.

Si’hypotheése de normalité est intenable, ’alternative au MLM est de transformer I’ensemble des
variables a expliquer en une matrice de distance (voir fiche 100) et d’utiliser cette matrice comme réponse
dans une analyse dédiée (voir fiche 110).

Test

Leffet des variables explicatives est testé par une MANOVA (Multivariate ANalysis Of VAriance), une
extension de '’ANOVA au cas multivarié. Pour réaliser le test : Manova (modele)3. Le test réalisé est de
type II (voir fiche 42 pour une explication détaillée des hypothéses testées).

Si un facteur (ou une interaction entre plusieurs facteurs) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui
différent. Voir fiche 43 pour réaliser ces comparaisons.

Si une covariable a une effet significatif, il n'y a pas vraiment d’autre solution pour estimer la direction
de son effet que de I'étudier séparément sur chaque variable a expliquer. Cette direction est donnée par
le signe du parametre associé. Les valeurs de tous les parametres des différents modeles (un par variable
a expliquer) sont obtenues via summary (modele). Elles sont appelées Estimate et se trouvent dans
les tableaux Coefficients. Sile coefficient portant le nom de la covariable est négatif, la valeur de la
variable a expliquer correspondante diminue quand la valeur de la covariable augmente;; s’il est positif, la
valeur de la variable a expliquer augmente quand la valeur de la covariable augmente.

Prédiction a partir du modele
Lintérét des modeles est a la fois de comprendre I'importance des différentes variables explicatives sur
les variables a expliquer, mais également de prédire les valeurs que prendraient ces variables a expliquer
pour des valeurs connues des variables explicatives. Faire une prédiction (une par variable a expliquer)
nécessite donc de fixer la valeur de foutes les variables explicatives.

Deux méthodes peuvent étre utilisées pour la prédiction, les deux étant basées sur la fonction

predict():

— donner la valeur (ou les valeurs pour faire plusieurs prédictions) de chacune des variables expli-
catives directement dans la fonction, sous la forme d'une liste : predict (modele ,newdata=1i-
st (variables)), ou variables est un enchainement de variablel=valeur,variable2=va-
leur...

— créer un tableau contenant une colonne par variable explicative (les noms de colonnes doivent
étre strictement identiques aux noms des variables du modele), et remplir chaque ligne en fonction
des valeurs pour lesquelles la prédiction doit étre faite (il y a donc une prédiction par ligne de ce
tableau). Puis : predict (modele,newdata=tab.pred).

EXEMPLE(S)
Avec un modele contenant un facteur a deux niveaux (A et B), une covariable variant de 0 a 30, et
leur interaction :

> modele <- 1lm(reponse~facteur*covariable)

On peut prédire la valeur de chaque variable a expliquer de cette facon :

> predict(modele,newdata=list(facteur="A", covariable=10))

Ou, pour plusieurs prédictions :

> predict(modele,newdata=list(facteur=c("A","B"),covariable=c(10,10)))

Ou encore créer un tableau de ce type :

> tab.pred

facteur covariable
1 A 10
2 B 10
Puis :

> predict(modele,newdata=tab.pred)
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109. Lanalyse de redondance sur matrice de distance

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse de redondance sur matrice de distance

Anglais - Distance-based redundancy analysis (db-RDA)
Canonical analysis of principal coordinates (CAP)
Constrained analysis of principal coordinates (CAP)

Préparation des données
Il est indispensable de vérifier si la matrice de distance est euclidienne ou non (voir fiche 100).

Réalisation de 'analyse
Pour réaliser la db-RDA : dbRDA<-dbrda(formule,data=tab.explicatif)!ou tab.explicatif
est le tableau contenant les variables explicatives. Voir fiche 40 pour une explication détaillée de la
construction d'une formule. Dans cette formule, la réponse est mat .dist (i.e. la matrice de distance). Si
celle-ci n’est pas euclidienne, il est nécessaire d’appliquer une correction. Ajouter pour cela I'argument
add=TRUE.

Capacité explicative globale
La db-RDA consiste en fait en deux étapes :

1. Réaliser une PCoA sur la matrice de distance (voir fiche 101).

2. Réaliser une RDA (voir fiche 103) sur les résultats de la PCoA. Le résultat de la RDA consiste en
deux ACP (voir fiche 96) :
— Une sur la variation (de la matrice de distance) due aux variables explicatives, appelée variation
contrainte. C’'est '« ACP contrainte ».
— Une sur la variation non expliquée, appelée variation résiduelle ou non contrainte. C’est '« ACP
non contrainte ».

On peut estimer la capacité explicative globale de la db-RDA grace au pourcentage de variance
contrainte de I'analyse (i.e. de variance de la matrice de distance expliquée par les variables explicatives).
Plus ce pourcentage est élevé et plus la variation observée dans la matrice de distance est liée aux variables
explicatives. Ce pourcentage est obtenu via MVA . synt (dbRDA)?, dans le premier tableau renvoyé par la
fonction.

Qualité de 'analyse
Test(s)

Leffet des variables explicatives est testé via MVA.anova (dbRDA)2. Un test F par permutation est
réalisé.

Si au moins une variable explicative a un effet significatif, on peut se baser sur les résultats de 'ACP
contrainte pour l'interprétation. Si aucune variable explicative n’a d’effet significatif, interpréter les
résultats de cette ACP n’a pas beaucoup d’intérét puisqu’aucun effet n’est montré.

En lien avec cette ACP contrainte, on peut réaliser des comparaisons multiples entre modalités d'un
facteur (ou combinaisons de modalités d'une interaction entre facteurs) a effet significatif. Pour réaliser
le test: pairwise.factorfit (dbRDA,facteur)? ol facteur estle facteur d'intérét.
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Synthese

Si au moins une variable explicative a un effet significatif, on s’intéresse a 'ACP contrainte. Comme
pour une ACP classique (voir fiche 96), on estime la qualité de cette analyse par le pourcentage de variance
expliqué par chaque axe. Ces pourcentages sont obtenus via MVA.synt (dbRDA)?, dans le deuxiéme
tableau renvoyé par la fonction.

Remarque 1 :il s’agit ici de pourcentages de variance contrainte, pas totale comme en ACP classique.

Remarque 2 : les pourcentages de variance sont toujours en ordre décroissant (i.e. 'axe 1 explique
plus de variance que I'axe 2, qui en explique lui-méme plus que I'axe 3...).

Remarque 3 :iln'y a pas de regle absolue sur le nombre d’axes a retenir pour l'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthese de I'information (qui augmente avec le nombre

.....

Représentations graphiques
A partir du moment ol il y a au moins une variable explicative quantitative, deux représentations sont
possibles : le graphe des individus qui montre la position de ces individus sur un plan factoriel composé
de deux axes, et le cercle des corrélations (voir fiche 89). S’il n’y a aucune variable explicative quantitative
le seul graphe possible est celui des individus.

Graphe des individus

Pour tracer le graphe : MVA . plot (dbRDA)?2. Les axes 1 (horizontal) et 2 (vertical) sont représentés par
défaut, ils peuvent étre changés grace aux arguments xax et yax. Par défaut c’est 'ACP contrainte qui est
représentée. Pour représenter ’ACP non contrainte, ajouter 'argument space=2.

Pour ajouter des groupes sur le graphe, utiliser I'argument fac=facteur ou facteur est le fac-
teur définissant le groupe de chaque individu. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation.

Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe : MVA.plot (RDA, "corr")2. Comme pour le graphe des individus c’est 'ACP
contrainte qui est représentée. LACP non contrainte n'a pas de sens puisqu’elle ne concerne pas les
variables explicatives.
Pour supprimer les fleches, ajouter I'argument arrows=FALSE. Voir 7MVA . corplot pour bien d’autres
d’options graphiques.

Interprétation

On ne consideére que ’ACP contrainte puisque par définition c’est la seule qui permette d’interpréter
les résultats en lien avec les variables explicatives.

Le graphe des individus permet d’identifier la structuration des données de la matrice de distance qui
est due aux variables explicatives. On y repére comment les modalités d'un facteur a effet significatif se
répartissent, ou des gradients linéaires.

Dans un second temps, le cercle des corrélations permet d’identifier les variables explicatives quanti-
tatives qui expliquent d’éventuels gradients. Pour cela, on repére quelles sont les directions pertinentes
pour l'interprétation biologique sur le graphe des individus (ce peuvent étre des axes ou n'importe
quelles diagonales), et on identifie les variables qui correlent le plus avec ces directions sur le cercle des
corrélations (voir fiche 89).
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Axe contraint 2 (13%)

Axe contraint 1 (73%)
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110. Analyser une matrice de distance

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire

Le test a réaliser est non paramétrique et souvent appelé « MANOVA par permutation ». Il est basé sur
un modele (assez analogue au MLM, voir fiche 108), ce qui permet d’étudier I'effet de plusieurs variables
explicatives a la fois (quantitatives et/ou qualitatives), possiblement en interactions. Les p-values sont
cependant obtenues par permutation, donc non paramétriquement.

Pour réaliser le test : adonis.II(formule)!. Voir fiche 40 pour une explication détaillée de la
construction d'une formule. Dans cette formule, la réponse est la matrice de distance. Cette matrice n'a
pas a étre euclidienne.

Si un facteur (ou une interaction entre plusieurs facteurs) a un effet significatif, il est nécessaire de
réaliser des comparaisons multiples pour identifier les modalités (ou combinaisons de modalités) qui dif-
ferent. Pour réaliser ces comparaisons : pairwise.perm.manova(mat.dist,facteur)! oimat.dist
est la matrice de distance et facteur la facteur d’'intérét.

Si une covariable a un effet significatif, I'interprétation n’est pas si facile. Le plus simple est soit de
réaliser une PCoA sur la matrice de distance (voir fiche 101) puis de corréler ses résultats a la covariable
(voir fiche 91), soit de réaliser une db-RDA (voir fiche 109). La premiére approche est préférable si la
covariable n’est pas contrdlée, la seconde si elle I'est.
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111. Danalyse PLS a deux blocs

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

ImixOmics, 2RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse PLS a deux blocs
Anglais - 2-block partial least squares (2B-PLS)
2-block projection to latent structures (2B-PLS)

Préparation des données
La 2B-PLS fonctionne d’autant mieux que les variables de chaque tableau ont une distribution a
peu prés normale (au moins symétrique) et qu’elles sont reliées entre elles par des relations a peu prés
linéaires. Une transformation préalable des données peut grandement aider a améliorer la situation (voir
fiche 88).
Il est également recommandé, la plupart du temps, de standardiser les variables de chaque tableau
avant I'analyse (voir fiche 88). Cela permet de donner le méme poids a toutes les variables.

Réalisation de 'analyse

Pour réaliser la 2B-PLS : PLS2B<-pls(tableaul,tableau2,mode="canonical")! oli tableaul et
tableau?2 sont les deux tableaux. Sil’on souhaite standardiser les variables mais que 'on n’a pas effectué
I'opération au préalable, la fonction pls ()! le fait par défaut. Deux paires d’axes sont construits par
défaut, pour changer cette valeur ajouter I’argument ncomp=nb ol nb est le nombre de paires d’axes
souhaité.

Remarque : on parle de paires d’axes en 2B-PLS car I'analyse créé deux ordinations séparées, I'une
pour le premier tableau et 'autre pour le second. On a donc un axe 1 pour le premier tableau, et un axe 1
pour le second tableau (et ainsi de suite).

Qualité de 'analyse
Test

La 2B-PLS a pour objectif de synthétiser au mieux une certaine information qui est la covariance
entre les deux jeux de données. Mais pour que son interprétation soit pertinente, encore faut-il qu’il
y ait une covariance (i.e. une relation) significative. La significativité de la covariance est testée via
cov.test(tableaul,tableau2)? Un test par permutation est réalisé. Si sa p-value est significative,
les résultats de la 2B-PLS peuvent étre interprétés. Dans le cas contraire I'interprétation n'a pas de sens
puisqu’il n’y a pas d’association significative entre les deux tableaux.

Remarque : la covariance est intimement liée a la notion de corrélation (voir fiche 84). Elle peut
donc étre négative ou positive, indiquant une relation négative ou positive entre les deux tableaux (ou
parties de ces tableaux). Cependant la covariance n’est pas bornée, donc sa valeur absolue n’est pas di-
rectement interprétable (d’ol1]'intérét de la corrélation, qui est une version standardisée de la covariance).

Synthese

Sila covariance entre les deux tableaux est significative, on estime la qualité de I'analyse par le pourcen-
tage de covariance expliqué par chaque paire d’axes. Ces pourcentages sont obtenus via MVA . synt (PLS-
2B)?2, dans le premier tableau renvoyé par la fonction.

Remarque 1 :les pourcentages renvoyés par la fonction MVA. synt ()2 sont en fait des pourcentages
de covariance au carré. Peu importe pour I'interprétation : plus le pourcentage est élevé et plus la paire
d’axes en question explique une part importante de la covariance entre les jeux de données.

Remarque 2 :les pourcentages de covariance sont toujours en ordre décroissant (i.e. la paire d’axes 1
explique plus de covariance que la paire d’axes 2, qui en explique elle-méme plus que la paire d’axes 3...).
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Remarque 3 :il n’y a pas de régle absolue sur le nombre d’axes a retenir pour 'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthese de 'information des jeux de données (qui augmente
avec le nombre d’axes) et une facilité a interpréter (qui diminue avec le nombre d’axes).

Représentations graphiques
En 2B-PLS on a deux représentations possibles pour chaque tableau : le graphe des individus qui
montre la position de ces individus sur un plan factoriel composé de deux axes, et le cercle des corrélations
(voir fiche 89) qui permet d’interpréter la répartition des individus.

Graphe des individus
Pour tracer le graphe du premier tableau : MVA.plot (PLS2B, space=1)2. Pour le second tableau :
MVA.plot (PLS2B,space=2)2.
Les axes 1 (horizontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux
arguments xax et yax. Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe du premier tableau : MVA.plot (PLS2B, "corr",space=1)2. Pour le second
tableau : MVA.plot (PLS2B, "corr",space=2)2.
Pour supprimer les fleches, ajouter 'argument arrows=FALSE. Voir 7MVA . corplot pour bien d’autres
d’options graphiques.

Interprétation

Lobjectif dela 2B-PLS est le plus souvent d’identifier les variables de chaque tableau qui sont associées
entre elles, mais aussi (et surtout) les associations entre variables de tableaux différents. A ce titre
I'interprétation se base essentiellement sur les cercles des corrélations.

Les pourcentages de covariance expliqués indiquent sur quels axes se concentrer pour I'interprétation.
On se place dans le cas le plus fréquent, o1 une seule paire d’axes est suffisante pour expliquer une grande
part de la covariance entre les deux tableaux. Dans un tel cas, on repére pour chaque tableau les variables
les plus corrélées au premier axe (voir fiche 89). Ce sont ces variables qui sont les plus associées.

Au sein d’'un tableau, I'interprétation est simple : les variables aux extrémités opposées d'un axe sont
corrélées négativement (voir fiche 89). Pour la relation entre variables de tableaux différents, il manque
cependant une information essentielle : dans quel sens sont corrélées les paires d’axes. Ces corrélations
sont données par la fonction MVA . synt ()2, dans le second tableau qu’elle renvoie. Si la corrélation pour
la premiere paire d’axes est positive, les variables dirigées vers la gauche de I'axe 1 pour le premier tableau
sont positivement reliées aux variables dirigées vers la gauche de ’axe 1 pour le second tabeau. Si la
corrélation pour la premiére paire d’axes est négative, les variables dirigées vers la gauche de I’axe 1 pour
le premier tableau sont positivement reliées aux variables dirigées vers la droifte de 'axe 1 pour le second
tabeau.

Tableau 1 5 Tableau 2

Axe 2 (11 %)
Axe 2 (11 %)

Axe 1 (81 %) Axe 1 (81 %)
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112. Lanalyse procustéenne

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lvegan, RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse procustéenne
Analyse Procuste
Rotation procustéenne
Rotation Procuste
Anglais - Procrustes analysis (Proc)
Procrustes rotation (Proc)
Procrustean superimposition analysis (Proc)

Préparation des données
L'analyse procustéenne est intéressante quand elle est réalisée sur deux tableaux a deux colonnes
chacun (voir fiche 114 pour le cas oll au moins un tableau contient plus de deux colonnes). Ce peuvent
étre deux tableaux a deux variables chacun, ou deux axes d'une précédente ordination (voir fiche 90
pour récupérer les coordonnées des individus sur ces axes). Une des applications courantes de I’analyse
procustéenne est ainsi de comparer les résultats de deux ordinations réalisées sur une matrice de distance,
en particulier deux nMDS (voir fiche 102).

Réalisation de I'analyse
Pour réaliser I’analyse procustéenne : Proc<-procrustes (tableaul,tableau2)! ol tableaul et
tableau?2 sont les deux tableaux. Le premier est appelé X et le second Y.
Remarque :'un et/ou 'autre des deux tableaux peut étre directement une ordination si elle a été
réalisée avec le package vegan.

Qualité de 'analyse
On peut a la fois estimer la « corrélation » entre les deux tableaux et la tester viaprotest (tableaul, t-
ableau2)!. La fonction renvoie ce qui s’apparente a un coefficient de corrélation (Correlation in a
symmetric Procrustes rotation) etle résultat d'un test non paramétrique appelé PROTEST (basé
sur le coefficient de corrélation). Une p-value significative indique qu’il y a une concordance significative
entre les deux tableaux.

Représentation graphique

La seule représentation possible en analyse procustéenne est le graphe des individus, qui montre la
position des individus a la fois pour le tableau X et le tableau Y, sur un plan factoriel composé de deux
axes. Ces deux axes correspondent aux variables du tableau X.

Pour tracer le graphe : MVA.plot (Proc, "pairs")2. Chaque individu est représenté par une fleche.
Celle-ci démarre aux coordonnées de I'individu pour le tableau X, et s’arréte aux coordonnées de ce
méme individu pour le tableau Y (celui-ci ayant subi rotation, translation et/ou homothétie pour s’ajuster
au mieux au tableau X).

Voir 7MVA . pairplot pour bien d’autres options graphiques.

Interprétation
Plus les fleches du graphe des individus sont courtes et plus cela indique une concordance forte
entre les deux tableaux (i.e. les individus sont a peu pres positionnés au méme endroit quel que soit le
tableau). A l'inverse, plus les fleches sont longues et partent dans tous les sens, et plus cela indique une
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concordance faible entre les deux tableaux. Il y aura toujours une cohérence entre le graphe et le résultat

du test statistique.
Lalongueur des fleches n’est jamais identique pour tous les individus ; on peut ainsi identifier lesquels

sont « semblables » dans les deux tableaux ou au contraire tres différents.

- |
7t

Axe 1 (X)

Axe 2 (X)
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113. Lanalyse de co-inertie

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire, 2aded

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse de co-inertie
Anglais - Co-inertia analysis (ColA ou CIA)

Préparation des données

La CIA est une méthode trés générale permettant de coupler deux tableaux. Ceux-ci peuvent étre
de types différents (un tableau de variables classique et un tableau de contingence par exemple), ou
contenir des variables de nature différente (quantitatives et/ou qualitatives).

La premiere étape de I'analyse est de réaliser une ordination séparée sur les deux tableaux. Selon la
nature des variables, on utilise le plus souvent I’ACP (voir fiche 96), I’AFC (voir fiche 97), 'ACM (voir fiche
98) ou I'analyse mixte (voir fiche 99). les deux analyses n’ont pas a étre identiques.

Remarque 1 :1a CIA exige que les poids des lignes des deux tableaux soient égaux entre ces tableaux.
Avec I'ACP, 'ACM et I'analyse mixte c’est bien le cas puisque, sauf volonté contraire explicite, toutes les
lignes ont le méme poids. Avec ’AFC la situation est différente, car dans cette analyse le poids d'une ligne
est fonction de la somme des valeurs de cette ligne. Pour coupler une AFC a une autre analyse dans une
CIA, il est donc nécessaire de recréer cette autre analyse en spécifiant comme poids ceux utilisés par
I'AFC. Cette opération peut se faire automatiquement via analyse.bis<-ord.rw(analyse,AFC)! ol
analyse est'ordination a coupler avec 'AFC, et AFC '’AFC. Lordination analyse.bis est celle qui sera
utilisée dans la CIA.

Remarque 2 : pour la raison expliquée dans la remarque précédente, il n’est pas possible de coupler
deux AFC dans une CIA.

Réalisation de 'analyse

Pourréaliserla CIA: CIA<-coinertia(analysel,analyse2,scannf=FALSE,nf=10)2ouanalysel
et analyse2 sont les ordinations réalisées séparément sur chaque tableau.

Remarque : la fonction coinertia()? n'accepte que des ordinations réalisées grace a des fonc-
tions du package ade4. Cela est bien le cas pour ’ACM (voir fiche 98) et I'analyse mixte (voir fiche 99),
mais pas pour ’ACP (voir fiche 96) et ’AFC (voir fiche 97) qui sont réalisées grace au package vegan.
Pour convertir le résultat d'une de ces ordinations en objet utilisable par la fonction coinertia()?:
analyse.bis<-to.dudi(analyse)! ol analyse estle nom de ’ACP oul’AFC. Sila fonction ord.rw()!
est utilisée en amont de la CIA, I'ordination qu’elle renvoie est directement compatible avec coinertia ()2

EXEMPLE(S)
On veut coupler dans une CIA une ACP (nommée ACP) et une AFC (nommée AFC), les deux ayant
été réalisées grace au package vegan comme expliqué dans les fiches 96 et 97. On commence par
recréer I’ACP en donnant aux lignes les poids utilisés par 'AFC :

> ACP.bis <- ord.rw(ACP,AFC)!

L'objet ACP.bis est directement compatible avec la fonction coinertia()2. Cependant ce n’est
pas le cas de I'objet AFC. On transforme celui-ci au bont format :

> AFC.bis <- to.dudi(AFC)!

La CIA peut maintenant étre réalisée :

> CIA <- coinertia(ACP.bis,AFC.bis,scannf=FALSE,nf=10)2
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Qualité de 'analyse
Test

La CIA a pour objectif de synthétiser au mieux une certaine information qui est la co-inertie entre
les deux tableaux, i.e. la partie de leurs informations respectives qui varie en commun. Mais pour que
I'interprétation de la CIA soit pertinente, encore faut-il qu’il y ait une co-inertie (i.e. une relation) signifi-
cative. La significativité de la co-inertie est testée par un test par permutation basé sur le coefficient RV
(aucun rapport avec 'auteur de cet aide-mémoire). Ce test est réalisé via randtest (CIA)2. La valeur du
coefficient est appelée Observation et vaut entre 0 (aucune co-inertie) et 1 (co-inertie parfaite). Une
p-value significative indique qu’il y a une concordance significative entre les deux tableaux, et donc
que les résultats de la CIA peuvent étre interprétés. Dans le cas contraire I'interprétation n’a pas de sens
puisqu’il n'y a pas de relation significative entre les deux tableaux.

Remarque : sil'une des deux ordinations couplées par la CIA est une AFC, il est nécessaire d’ajouter
I'argument fixed=nb oli nb est le numéro de I’AFC (1 si c’est le premier argument de coinertia()?, 2 si
c’est le deuxieme).

Synthese

Sila co-inertie entre les deux tableaux est significative, on estime la qualité de ’analyse par le pourcen-
tage de co-inertie expliqué par chaque paire d’axes. Ces pourcentages sont obtenus viaMVA.synt (CIA),
dans le premier tableau renvoyé par la fonction.

Remarque 1 : on parle de paires d’axes en CIA car I'analyse créé deux ordinations séparées (sur la base
de celles fournies), 'une pour le premier tableau et I'autre pour le second. On a donc un axe 1 pour le
premier tableau, et un axe 1 pour le second tableau (et ainsi de suite).

Remarque 2 :les pourcentages de co-inertie sont toujours en ordre décroissant (i.e. la paire d’axes 1
explique plus de co-inertie que la paire d’axes 2, qui en explique elle-méme plus que la paire d’axes 3...).

Remarque 3 :iln'y a pas de regle absolue sur le nombre d’axes a retenir pour l'interprétation. Il s’agit
toujours d'un compromis entre une bonne synthese de 'information des jeux de données (qui augmente
avec le nombre d’axes) et une facilité a interpréter (qui diminue avec le nombre d’axes).

Représentations graphiques
En CIA on a deux représentations possibles pour chaque tableau : le graphe des individus qui montre
la position de ces individus sur un plan factoriel composé de deux axes, et le cercle des corrélations (voir
fiche 89) qui permet d’interpréter la répartition des individus.
Remarque : seul le graphe des individus est disponible pour une ACM (voie fiche 98).

Graphe des individus

Pour tracer le graphe du premier tableau : MVA.plot (CIA,space=1)!. Pour le second tableau :
MVA.plot (CIA,space=2)L

Les axes 1 (horizontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux
arguments xax et yax.

Pour ajouter des groupes sur le graphe, utiliser I'argument fac=facteur ol facteur est le fac-
teur définissant le groupe de chaque individu. Les arguments col, pch, fac.lab, contours, stars et
barycenters permettent de personnaliser une telle représentation.

Voir 7MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe du premier tableau : MVA.plot (CIA,"corr",space=1)2. Pour le second ta-
bleau: MVA.plot (CIA,"corr",space=2)2.
Pour supprimer les fleches, ajouter I'argument arrows=FALSE. Voir 7MVA . corplot pour bien d’autres
d’options graphiques.

Interprétation
Lobjectif de la CIA est d’identifier les associations entre variables de tableaux différents.
Pour les variables quantitatives, I'interprétation est basée sur la comparaison des deux cercles des
corrélations : deux fleches pointant dans la méme direction ou dans des directions diamétralement
opposées indiquent deux variables corrélées (voir fiche 89). Le sens de la corrélation est indiqué par le
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signe de la corrélation entre les axes d'une méme paire. Ces corrélations entre axes sont données par la
fonction MVA.synt ()1, dans le second tableau qu’elle renvoie. Si la corrélation pour une paire d’axes
est positive, les variables dirigées vers la gauche de cet axe pour le premier tableau sont positivement
reliées aux variables dirigées vers la gauche du méme axe pour le second tabeau. Si la corrélation pour
la paire d’axes est négative, les variables dirigées vers la gauche de cet axe pour le premier tableau sont
positivement reliées aux variables dirigées vers la droite du méme axe pour le second tabeau.

Pour les variables qualitatives I'interprétation est similaire a 'ACM : plus deux modalités sont proches
et plus elles sont associées (voir fiche 98). La encore, le sens de I’association dépend de la corrélation
entre paires d’axes.

Les relations entre variables quantitatives et qualitatives s’interpretent comme en analyse mixte : plus
le barycentre d’'une modalité est situé vers 'extrémité d'une fleche (quand on le projette perpendicu-
lairement a cette fleche) et plus la valeur moyenne des individus de cette modalité est extréme pour la
variable quantitative représentée par la feche (le sens de la relation étant donné par la corrélation entre
paires d’axes).

Remarque : les relations entre variables d'un méme tableau s’interprétent comme en ACP (voir
fiche 96), ACM (voir fiche 98) et analyse mixte (voir fiche 99).

Tableau 1 . Tableau 2

Axe 2 (10 %)
Axe 2 (10 %)

Axe 1 (88 %) Axe 1 (88 %)

Tableau 1 Tableau 2
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> Analyser les résultats d'une étude > Statistique multivariée

114. Lanalyse de de co-inertie procustéenne

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

lade4, 2RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse de co-inertie procustéenne
Anglais - Procustean co-inertia analysis (PCIA)

Préparation des données
La PCIA généralise I'analyse procustéenne (voir fiche 112) au cas olt au moins un tableau contient
plus de deux colonnes. Les deux tableaux peuvent étre des tableaux de variables, ou des axes d’'une
précédente ordination (voir fiche 90 pour récupérer les coordonnées des individus sur ces axes). Toutes
les variables doivent étre quantitatives, et une standardisation de ces variables est souvent bénéfique
(voir fiche 88).

Réalisation de 'analyse
Pour réaliser la PCIA : PCIA<-procuste(tableaul,tableau2)! oli tableaul et tableau?2 sontles
deux tableaux. Le premier est appelé X et le second Y.

Qualité de 'analyse
On peut a la fois estimer la « concordance » entre les deux tableaux et la tester via randtest (PCIA)1.
La fonction renvoie une statistique appelée m? (Observation) qui varie entre 0 (concordance parfaite)
et 1 (aucune concordance), et le résultat d'un test non paramétrique appelé PROTEST (basé sur le m32).
Une p-value significative indique qu’il y a une concordance significative entre les deux tableaux.

Représentations graphiques
En PCIA on a deux représentations possibles : le graphe des individus, qui montre la position des
individus a la fois pour le tableau X et le tableau Y sur un plan factoriel composé de deux axes, et le cercle
des corrélations (voir fiche 89) qui permet d’interpréter la répartition des individus.
Remarque : en PCIA chaque individu a deux coordonnées dans le méme plan factoriel, I'une pour le
tableau X et 'autre pour le tableau Y. Il y a donc deux nuages de points dans le méme espace.

Graphe des individus
Pour tracer le graphe : MVA. plot (PCIA, "pairs")2. Chaque individu est représenté par une fleche.
Celle-ci démarre aux coordonnées de I'individu pour le tableau X, et s’arréte aux coordonnées de ce
méme individu pour le tableau Y.
Voir 7MVA . pairplot pour bien d’autres options graphiques.

Cercle des corrélations

Pour tracer le graphe : MVA.plot (PCIA,"corr")2 Par défaut les variables des deux tableaux sont
représentées. Pour ne représenter que les variables du tableau X ajouter I’argument set=1, pour les
variables du tableau Y set=2.

Pour supprimer les fleches, ajouter 'argument arrows=FALSE. Pour représenter différemment les
variables des différents tableaux, ajouter 'argument fac=facteur ou facteur est le facteur définissant
le groupe (i.e. le tableau) de chaque variable. Les arguments col, pch et 1wd permettent de personnaliser
une telle représentation. Voir 7MVA. corplot pour bien d’autres d’options graphiques.
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Interprétation

Plus les fleches du graphe des individus sont courtes et plus cela indique une concordance forte
entre les deux tableaux (i.e. les individus sont a peu pres positionnés au méme endroit quel que soit le
tableau). A l'inverse, plus les fleches sont longues et partent dans tous les sens, et plus cela indique une
concordance faible entre les deux tableaux. Il y aura toujours une cohérence entre le graphe et le résultat
du test statistique.

Remarque : la longueur des fleches n’est jamais identique pour tous les individus; on peut ainsi
identifier lesquels sont « semblables » dans les deux tableaux ou au contraire tres différents.

Ala condition que la concordance entre les deux tableaux soit significative, le cercle des corrélations
permet d’identifier les variables qui sont associées entre ces tableaux. Son interprétation est identique a
un cercle des corrélations classique (voir fiche 89).

—
A
o3

Axe 1

Axe 2

Axe 2

T1.V6 V10

T1.V8V4

Axe 1

197



A

> Analyser les résultats d'une étude > Statistique multivariée

115. Danalyse canonique des corrélations régularisée généralisée

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IRVAideMemoire, ‘mixOmics

SYNONYMES, TRADUCTIONS ET ABREVIATIONS

Francais — Analyse canonique des corrélations régularisée généralisée
Anglais - Regularized generalized canonical correlation analysis (RGCCA)

Préparation des données

La RGCCA exige que toutes les variables soient quantitatives. Ce peuvent étre des variables mesurées
telles quelles et/ou des axes d'une précédente ordination (voir fiche 90 pour récupérer les coordonnées
des individus dans ce dernier cas). Les différents tableaux (appelés « blocs ») n'ont pas a contenir le méme
nombre de variables.

L'analyse fonctionne d’autant mieux que les variables ont une distribution a peu pres normale (au
moins symétrique) et que dans chaque tableau elles sont reliées entre elles par des relations linéaires.
Une transformation préalable des données peut grandement aider a améliorer la situation (voir fiche 88).
Une standardisation des variables de chaque tableau est également souvent bénéfique, car elle permet
de donner le méme poids a toutes les variables (voir fiche 88).

Remarque : on peut intégrer un facteur dans I’analyse en le transformant en variables indicatrices,
viavar .ind<-dummy (facteur)! oll facteur est un vecteur définissant le groupe de chaque individu.
Le tableau var . ind est ensuite traité comme les autres, excepté pour la transformation qui n’est jamais
nécessaire. Cette fagcon de procéder permet d’utiliser la RGCCA comme analyse discriminante.

Tous les tableaux doivent étre rassemblés dans une liste. Pour cela: blocs<-1list(blocl=tableaul,
bloc2=tableau2...) oll tableaul, tableau 2et ... sont les différents tableaux (qui seront nommés
«blocl », «bloc2 »... dans I'analyse). Les compartiments de la liste doivent obligatoirement avoir un nom.

Pour finir, il est nécessaire de définir les relations interblocs a analyser (i.e. les tableaux a relier).
Rien n’oblige en effet a ce que I'analyse cherche I'information commune a toutes les paires de tableaux
deux-a-deux. Au contraire, il vaut mieux définir les relations qui sont les plus pertinentes vis-a-vis des
questions biologiques. Ces relations sont définies dans une matrice symétrique (design matrix) a autant
de lignes et de colonnes que de blocs, remplie de 0 (pas de relation) et de 1 (relation). La diagonale est
nécessairement constituée uniquement de 0.

EXEMPLE(S)
Les blocs 1 et 2 sont a relier chacun au bloc 3, mais pas entre eux:
> matrice <- matrix(c(0,0,1,0,0,1,1,1,0),nrow=3)
> matrice
[,11 [,2]1 [,3]
[1,] 0 0 1
[2,] 0 0 1
[3,] 1 1 0

Réalisation de 'analyse

Pour réaliser la RGCCA : RGCCA<-wrapper .rgcca(blocs,C=matrice,tau="optimal" ,ncomp=nb)?
olumatrice estla design matrix et nb le nombre d’axes a construire.

Remarque 1 :sil’argument C n’est pas fourni toutes les paires de tableaux deux-a-deux sont considé-
rées.

Remarque 2 : par défaut la fonction standardise tous les jeux de données, ce qui est souvent intéressant
car cela permet de donner le méme poids a toutes les variables (voir fiche 88). Pour ne pas standardiser,
ajouter 'argument scale=FALSE.
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Remarque 3 :1a RGCCA créé autant d’ordinations séparées qu’il y a de tableaux. On a donc un axe 1
pour chaque bloc, un axe 2 pour chaque bloc et ainsi de suite. Si I’argument ncomp n’est pas précisé un
seul axe est construit par bloc.

Remarque 4 :1a RGCCA a pour objectif de maximiser une certaine information qui se situe sur un
continuum a deux extrémes : (i) la variance totale intrabloc expliquée et (ii) 1a corrélation entre les axes
de méme niveau (i.e. les axes 1, les axes 2...). Largument tau permet de préciser ou1’on doit se situer
sur ce continuum. On peut ainsi choisir de maximiser plutot I'information de chaque bloc expliquée par
I'analyse (extréme «variance », via tau=rep(1,nb) oli nb estle nombre de blocs), plutét la corrélation
entre les axes de méme niveau (extréme « corrélation », via tau=rep (0,nb)) ou de trouver le meilleur
compromis entre ces deux extrémes (tau="optimal", intéressant par défaut).

Qualité de 'analyse

On estime la qualité de I'analyse par le pourcentage de variance totale intrabloc expliqué par chaque
axe (de chaque bloc), et par la corrélation entre les axes qui doivent étre reliés selon la design matrix.
Toutes ces valeurs sont obtenues via MVA. synt (RGCCA)!, dans les différents tableaux renvoyés par la
fonction (un par critere et par bloc).

Remarque : contrairement a la plupart des analyses multivariées, les pourcentages de variance ex-
pliqués ne sont pas nécessairement en ordre décroissant (méme si c’est le cas le plus souvent). Les
corrélations entre axes sont elles toujours de moins en moins fortes.

Représentations graphiques
En RGCCA on a deux représentations possibles pour chaque bloc : le graphe des individus qui montre
la position de ces individus sur un plan factoriel composé de deux axes, et le cercle des corrélations (voir
fiche 89) qui permet d’interpréter la répartition des individus.

Graphe des individus
Pour tracer le graphe du premier bloc : MVA . plot (RGCCA, space=1) . Pour le bloc suivant : MVA.plo-
t (RGCCA, space=2) . Et ainsi de suite.
Les axes 1 (horizontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux
arguments xax et yax. Voir ?MVA . scoreplot pour bien d’autres d’options graphiques.

Cercle des corrélations
Pour tracer le graphe du premier bloc : MVA.plot (RGCCA, "corr",space=1)!. Pour le bloc suivant :
MVA.plot (RGCCA,"corr",space=2)!. Etainsi de suite.
Pour supprimer les fleches, ajouter I'argument arrows=FALSE. Voir 7MVA. corplot pour bien d’autres
d’options graphiques.

Interprétation

Lobjectif de la RGCCA est le plus souvent d’identifier les variables de chaque tableau qui sont
associées entre elles, mais aussi (et surtout) les associations entre variables de tableaux différents. A ce
titre I'interprétation se base essentiellement sur les cercles des corrélations.

Les corrélations interblocs (i.e. entre axes de méme niveau) indiquent sur quels axes se concentrer
pour l'interprétation. On ne retient que les axes trés corrélés entre eux, car c’est cette corrélation (i.e. cette
information commune a plusieurs tableaux) qui est la cible de 'analyse et donc la base de l'interprétation.
Si par exemple la corrélation est forte pour les axes 1, on repére pour chaque tableau les variables les plus
corrélées a ce premier axe (voir fiche 89). Ce sont ces variables qui sont les plus associées.

Au sein d’'un tableau, I'interprétation est simple : les variables aux extrémités opposées d'un axe sont
corrélées négativement (voir fiche 89). Pour la relation entre variables de deux tableaux différents, si la
corrélation pour la premiére paire d’axes est positive, les variables dirigées vers la gauche de I'axe 1 pour
le premier tableau sont positivement reliées aux variables dirigées vers la gauche de I’axe 1 pour le second
tabeau. Sila corrélation pour la premieére paire d’axes est négative, les variables dirigées vers la gauche de
I'axe 1 pour le premier tableau sont positivement reliées aux variables dirigées vers la droite de 'axe 1
pour le second tabeau.
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> Analyser les résultats d'une étude > Statistique multivariée

116. Lanalyse procustéenne généralisée

— PACKAGE(S) ADDITIONNEL(S) UTILISE(S) DANS CETTE FICHE

IFactoMineR, 2RVAideMemoire

SYNONYMES, TRADUCTIONS ET ABREVIATIONS
Francais — Analyse procustéenne généralisée
Anglais - Generalized Procrustes analysis (GPA)

Generalized Procrustes superimposition

Préparation des données

La GPA exige que toutes les variables soient quantitatives. Ce peuvent étre des variables mesurées
telles quelles et/ou des axes d'une précédente ordination (voir fiche 90 pour récupérer les coordonnées
des individus dans ce dernier cas). Les différents tableaux n'ont pas a contenir le méme nombre de
variables.

L'analyse fonctionne d’autant mieux que les variables ont une distribution a peu prés normale (au
moins symétrique) et que dans chaque tableau elles sont reliées entre elles par des relations linéaires.
Une transformation préalable des données peut grandement aider a améliorer la situation (voir fiche 88).

Pour finir, tous les tableaux doivent étre rassemblés dans un unique tableau. Pour cela: tableau<-da-
ta.frame(tableaul,tableau2...) o tableaul, tableau 2 et ... sontles différents tableaux (de
gauche a droite dans le tableau final).

Réalisation de 'analyse

Pour réaliser la GPA : GPA<-GPA(tableau,group=colonnes,plot=FALSE)! ol1 colonnes est un
vecteur donnant le nombre de colonnes de chaque tableau (de la gauche vers la droite), afin que la
fonction puisse les séparer en interne. Pour donner un nom a chaque tableau (ce qui peut faciliter
Iinterprétation graphique ultérieure), ajouter I’argument name . group=noms oll noms est un vecteur
contenant le nom de chaque tableau (de la gauche vers la droite). Par défaut ils sont nommés group. 1,
group.2...

Remarque : par défaut la fonction standardise tous les jeux de données, ce qui est souvent intéressant
car cela permet de donner le méme poids a toutes les variables (voir fiche 88). Pour ne pas standardiser,
ajouter 'argument scale=FALSE.

Qualité de 'analyse
Test

Lobjectif de la GPA est de trouver une configuration consensus, i.e. une « moyenne » des ordinations
respectives de chaque tableau, aprés que celles-ci aient subi les étapes de translation, rotation et ho-
mothétie qui les ajustent au mieux les unes par rapport aux autres. C’est souvent cette configuration
consensus qui est I'objectif de I'analyse, afin d’étre interprétée ou utilisée dans une analyse ultérieure
(voir fiche 90 pour en récupérer les coordonnées).

Remarque : la premiére étape de la GPA est en fait de réaliser une ACP sur chaque tableau, d’ot
I'obligation que les variables soient toutes quantitatives (voir fiche 96). Ce sont ces ACP qui sont ensuite
ajustées les unes sur les autres.

On peut tester si la configuration consensus est significative, i.e. s'il y a réellement concordance entre
les différents tableaux. Pour réaliser le test : GPA . test (tableau, group=colonnes)?2. Le temps de calcul
nécessaire pour ce test est relativement long.

Synthese
Si la concordance entre les différents tableaux est significative, un certain nombre d’indicateurs
permettent d’estimer la qualité de 'analyse. La maniére dont la GPA identifie la configuration consensus
est de capter un maximum de la variance totale de I'ensemble des tableaux. On s’intéresse donc au
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pourcentage de variance totale globalement capté, et plus précisément pour chaque axe de cette ordina-
tion consensus. Ces pourcentages sont obtenus via MVA . synt (GPA)?, dans les deux premiers tableaux
renvoyés par la fonction. Le troisieme tableau renvoyé differe du deuxiéme car il donne le pourcentage
de variance consensus expliqué par chaque axe. Traditionnellement on utilise plutot les pourcentages de
variance totale.

Une autre maniere d’estimer la qualité de I'analyse est d’identifier si tous les tableaux sont aussi bien
représentés par la configuration consensus. Pour cela on examine la variance résiduelle, i.e. celle qui n’est
pas captée par la configuration consensus. Si la synthése est efficace pour tous les tableaux, cette variance
résiduelle devrait se répartir équitablement entre eux. Si un ou quelques tableaux ont un pourcentage
de variance résiduelle bien plus élevé que les autres tableaux, c’est que la configuration consensus n’est
pas a méme de bien les représenter (cependant il est important de prendre en compte le pourcentage
de variance consensus global, car si celui-ci est tres élevé on peut considérer que les tableaux sont tous
plutot bien représentés, méme si certains le sont moins bien que d’autres). La répartition de la variance
résiduelle est fournie dans le dernier tableau renvoyé par la fonction MVA . synt ()2.

Représentations graphiques
En GPA on a deux représentations graphiques possibles : le graphe des individus qui montre la position
de ces individus sur un plan factoriel composé de deux axes, et éventuellement le cercle des corrélations
(voir fiche 89) si l'interprétation en termes de variables originales est ’objectif de I'analyse.

Graphe des individus

Pour tracer le graphe : MVA . plot (GPA)?2. C’est la configuration consensus qui est représentée.

Les axes 1 (horizontal) et 2 (vertical) sont représentés par défaut, ils peuvent étre changés grace aux ar-
guments xax et yax. Pour ajouter des groupes sur le graphe, utiliser 'argument fac=facteur ot facteur
est le facteur définissant le groupe de chaque individu. Les arguments col, pch, fac.lab, contours,
stars et barycenters permettent de personnaliser une telle représentation. Voir 7MVA.scoreplot
pour bien d’autres d’options graphiques.

Pour représenter les individus dans toutes les ordinations : plot (GPA). Les points d'un méme in-
dividu sont reliés au point de 'individu dans la configuration consensus. On peut ainsi identifier les
individus qui sont « semblables » dans les différents tableaux, ou au contraire tres différents (donc pour
lesquels le consensus est probablement moins pertinent).

Cercle des corrélations
Pour tracer le graphe : MVA.plot (GPA, "corr")2. Pour supprimer les fleches, ajouter 'argument
arrows=FALSE. Pour représenter différemment les variables des différents tableaux, ajouter 'argument
fac=facteur out facteur est le facteur définissant le groupe (i.e. le tableau) de chaque variable. Les
arguments col, pch et 1wd permettent de personnaliser une telle représentation. Voir 7MVA. corplot
pour bien d’autres d’options graphiques.

Interprétation
Sil'interprétation de la configuration consensus est I'objectif de I'analyse, celle-ci est identique a
I'interprétation d'une ACP (voir fiche 96).

Groupe T

Axe 2 (9%)
Axe 2 (9 %)

Axe 1 (58 %)

Axe 1(58 %)
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