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Einleitung

Diese Einfiihrung in R ist als Arbeitsmaterial in einem Kompaktkurs oder zum
Selbststudium gedacht. Der Kurs wendet sich an Studierende mit Grundkenntnissen
in Stochastik. Begriffe wie Verteilungsfunktion, Quantil, Erwartungswert und Vari-
anz und die damit verbundenen einfachen Eigenschaften werden vorausgesetzt. Eben-
so sollten klassische Verteilungen wie Binomial-, Uniform- und Gaufiverteilung sowie
daraus abgeleitete Verteilungen und deren asymptotisches Verhalten bekannt sein.
Kenntnisse in Statistik selbst werden nicht vorausgesetzt. Sie werden in diesem Kurs
aber auch nicht vermittelt. Der Kurs konzentriert sich auf die “Computing”-Aspekte.
Dabei werden statistische Betrachtungsweisen und Konzepte zwar eingefithrt und
diskutiert. Fiir eine eingehendere Diskussion wird aber auf die Statistik-Vorlesungen
verwiesen.

Kenntnisse in der Rechnerbenutzung und zumindest oberflichliche Kenntnisse
von Programmierkonzepten wie Variable, Schleifen und Funktionen werden voraus-
gesetzt. Weitergehende Kenntnisse werden nicht vorausgesetzt, aber auch nicht ver-
mittelt. Der Kurs fiihrt in die Benutzung von R als Anwender ein. Fiir eingehendere
Diskussion der Computing-Aspekte wird auf die Arbeitsgemeinschaft “Computatio-
nal Statistics” verwiesen.

<http://www.statlab.uni-heidelberg.de/studinfo/compstat/>

0.1. Was ist R?

R ist eine Programmiersprache, und auch der Name eines Software-Systems, das
diese Sprache implementiert. Die Programmiersprache R ist eine fiir die Statistik
und fiir stochastische Simulation entwickelte Programmiersprache, die mittlerweile
zum Standard geworden ist. Genau genommen miisste man hier unterscheiden: Die
Sprache heifit S, ihre Implementierung und das System heiflen R. Die urspriinglichen
Autoren von S sind John M. Chambers, R. A. Becker und A. R. Wilks, AT & T Bell
Laboratories, Statistics Research Department. Die Sprache und ihre Entwicklung

sind in einer Reihe von Biichern dokumentiert, nach ihrem Umschlag héufig als das
weile ([CH92]), blaue ([BCWS88]) und griine Buch ([Cha98|) bezeichnet.

Die AT & T-Implementierung von S war lange Zeit die “Referenz” fiir die Sprache
S. Heute gibt es S als kommerzielles System S-Plus <http://www.insightful.com/
> (basierend auf der AT & T-Implementierung) sowie als frei verfiigbare Version R,
auch “Gnu S” genannt' <http://www.r-project.org/>.

'R heiBt nur zufillig so, wie auch zufilligerweise die Vornamen der Originalautoren (Ross Thaka
& Robert Gentleman) mit R beginnen.
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Mittlerweile hat sich R zur Referenz-Implementierung entwickelt. Wesentliche
Prézisierungen, und - falls notwendig - auch Modifikationen der Sprache werden
durch R definiert. Der Einfachheit halber sprechen wir hier und in den folgenden
Kapiteln von der Sprache R, auch wenn es genauer heiflen miisste: die Sprache S in
der R-Implementierung.

R ist eine interpretierte Programmiersprache. Anweisungen in R werden unmittel-
bar ausgefiihrt. R beinhaltet neben den urspriinglichen Elementen von S eine Reihe
von Erweiterungen, zum Teil um Entwicklungen in der Statistik angemessen zu be-
riicksichtigen, zum Teil um experimentelle M6glichkeiten zu erdéffnen. Parallel dazu
gibt es Weiterentwicklungen der S-Sprache.

Die (2008) aktuelle Version von R ist R 2.x. Diese Version ist weitgehend kom-
patibel mit den Vorlduferversionen R 1.x. Die wesentlichen Verdnderungen sind im
Inneren des Systems. Fiir den Anfang gibt es praktisch keinen Unterschied zu R 1.x.
Fiir den fortgeschrittenen Nutzer gibt es drei wesentliche Neuerungen:

e Grafik: Das Basis-Grafiksystem von R implementiert ein Modell, dass an der
Vorstellung von Stift und Papier orientiert ist. Ein Grafik-Port (Papier) wird
eroffnet und darauf werden Linien, Punkte/Symbole gezeichnet. Mit R 2.x
gibt es zusétzlich ein zweites Grafiksystem, dass an einem Kamera/Objekt-
Modell orientiert ist. Grafische Objekte in unterschiedlicher Lage und Rich-
tung werden in einem visuellen Raum abgebildet.

e Packages: Das urspriingliche System von R hat eine lineare Geschichte und
einen einheitlichen Arbeitsraum. Mit R 2.x gibt es eine verbesserte Unter-
stiitzung von “Paketen”; die in sich abgeschirmt werden kénnen. Dazu dienen
Sprachkonzepte wie “name spaces”, aber auch unterstiitzende Werkzeuge.

e [nternationalisierung: Die urspriingliche Implementierung von R setzte Eng-
lisch als Sprache und ASCII als Zeichensatz voraus. Seit R 2.x gibt es umfas-
sende Unterstiitzung fiir andere Sprachen und Zeichensétze. Dies ermoglicht
es, “lokalisierte” Versionen zu erstellen. Derzeit ist man bei Kommandos,
Ausgaben und Erklarungen jedoch noch auf Englisch angewiesen.

Zwei Aspekte sind in R nur unzureichend beriicksichtigt: der interaktive Zugriff
und die Einbettung in eine vernetzte Umgebung. Diese und weitere Aspekte sind
Bestandteil von Omegahat - eines Versuchs, ein System der nichsten Generation
zu entwickeln, das auf den Erfahrungen mit R aufbaut. Diese mehr experimentellen
Arbeiten werden unter <http://www.omegahat.org/> bereitgestellt. Schon R bietet
einfache Moglichkeiten, Prozeduren aus anderen Sprachen wie C und Fortran aufzu-
rufen. Omegahat erweitert diese Moglichkeiten und bietet einen direkten Zugang zu
Java, Perl .. ..

Eine Java-basierte grafische Oberfliache ist als JGR unter <http://stats.math.
uni-augsburg.de/software/> zugénglich. Dort findet sich als iplots auch eine
Sammlung von interaktiven Displays fiir R.

Aktuelle Entwicklungen zu R finden sich in <ttp://r-forge.r-project.org/>.
Zahlreiche hilfreiche Erweiterungen sind auch unter <http://www.bioconductor.
org/> zu finden.
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0.2. Referenzen

R ist fiir die praktische Arbeit in der Statistik entworfen. Niitzlichkeit hat oft
Vorrang vor prinzipiellen Design-Uberlegungen. Als Folge ist eine systematische Ein-
fithrung in R nicht einfach. Stattdessen wird ein verschlungener Pfad gewé&hlt: Fall-
studien und Beispiele, an die sich systematische Ubersichten anschlieBen. Fiir die
praktische Arbeit sollte auf das reichhaltige Online-Material zu R zugegriffen werden.
Ein erster Zugriffspunkt sind dabei die “frequently asked questions” (FAQ) <http:
//www.cran.r-project.org/faqs.html>. “An Introduction to R” ([R D07al) ist
die “offizielle” Einfiihrung. Diese Dokumentation und andere Manuale sind unter
<http://www.cran.r-project.org/manuals.html> bereitgestellt.

R-Prozeduren sind zum Teil im Basis-System enthalten. Andere Prozeduren miis-
sen aus Bibliotheken hinzugeladen werden. Eine Reihe von Bibliotheken ist in der
Standard-Distribution von R enthalten und muss lediglich aktiviert werden. Die tech-
nischen Hinweise dazu sind jeweils angegeben. Speziellere Bibliotheken miissen evtl.
hinzu geladen werden. Die erste Quelle dafiir ist <http://www.cran.r-project.
org/src/contrib/PACKAGES.html>.

Groflere Unterschiede gibt es bei unterschiedlichen Versionen von S-Plus. S-Plus
4.z und S-Plus 2000 benutzen S Version 3 und sind weitestgehend mit R kompa-
tibel. S-Plus 5 ist eine Implementierung von S Version 4 mit Anderungen, die ei-
ne Sonderbehandlung bei der Programmierung benotigen. Auf diese Besonderhei-
ten wird hier nicht eingegangen. Informationen zu S-Plus findet man bei <http:
//www.insightful.com/>.

0.3. Umfang und Aufbau des Kurses

R beinhaltet in der Basis-Version mehr als 1500 Funktionen - zu viele, um sie in
einem Kurs zu vermitteln, und zu viel, um sie sinnvollerweise zu lernen. Der Kurs
kann nur dazu dienen, den Zugang zu R zu eréffnen.

Teilnehmerkreise kénnen aus unterschiedlichem Hintergrund kommen und unter-
schiedliche Vorbedingungen mitbringen. Gerade fiir jiingere Schiiler oder Studenten
kann ein reiner Programmierkurs, der sich auf die technischen Grundlagen konzen-
triert, angemessen sein. Fiir diese Teilnehmer ist dieser Kurs nicht geeignet. Fiir
Fortgeschrittene stellt sich eher die Frage nach einer sinnvollen Einordnung und nach
dem Hintergrund. Hierauf zielt der vorliegende Kurs. Das “technische” Material bil-
det das Skelett. Daneben wird versucht, den Blick auf statistische Fragestellungen
zu richten und das Interesse am Hintergrund zu wecken. Der Kurs soll Appetit auf
die Substanz wecken, die eine fundierte statistische Vorlesung bieten kann.

Das hier bereitgestellte Material besteht zunéchst aus einer thematisch geord-
neten Sammlung, in der anhand von Beispiel-Fragestellungen illustriert wird, wie
ein erster Zugang mit R erfolgen kann. Hinzu kommt eine Zusammenstellung von
Sprachbestandteilen und Funktionen, die als Orientierungshilfe fiir das umfangrei-
che in R enthaltene Informationsmaterial dient. Fiir die praktische Arbeit sind die
Online-Hilfen und Manuale die erste Informationsquelle.
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Der Kurs kann bei einer Auswahl der Aufgaben in etwa vier Tagen durchge-
fithrt werden. Konzeptuell ist er eine viertdgige Einfithrung in die Statistik mit den
Themenbereichen

e Ein-Stichprobenanalyse und Verteilungen
e Regression

e Zwei- oder Mehr-Stichprobenanalysen

e Multivariate Analysen

Eine grofziigigere Zeit fiir die Ubungsaufgaben wird empfohlen (ein Halbtag zusitz-
lich fiir einfithrende Aufgaben, ein Halbtag zusétzlich fiir eine der Projektaufgaben).
Mit dieser Zeit kann der Kurs als Block in einer Woche durchgefiihrt werden, wenn
im Anschluss die Moglichkeit geschaffen wird, die aufgetreten Fragen zu beantworten
und das geweckte Interesse am statistischen Hintergrund zu vertiefen.

Fiir ein anschliessendes vertiefendes Selbststudium von R als Programmiersprache
wird ([VROO]) empfohlen.

Beispiele und Eingaben im Text sind so formatiert, dass sie mit “Cut & Paste”
iibernommen und als Programmeingabe verwandt werden konnen. Deshalb sind bei
Programmbeispielen im Text bisweilen Satzzeichen fortgelassen, und Eingabebeispie-
le werden ohne “Prompt” gezeigt. Einem Beispiel

Beispiel 0.1:
Eingabe
1 +2 &
Ausgabe
3 g
enstpricht auf dem Bildschirm etwa
> 1+2
[1] 3
>

wobei anstelle des Prompt-Zeichens ”>” je nach Konfiguration auch ein anderes
Zeichen erscheinen kann.

0.4. Dank

Zu danken ist dem R core team fir die Kommentare und Hinweise. Besonderen
Dank an Friedrich Leisch vom R core team sowie an Antony Unwin, Univ. Augsburg.

0.5. Literatur und weitere Hinweise

[R D07a] R Development Core Team (2000-2007): An Introduction to R.
Siehe: <http://www.r-project.org/manuals.html>.
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KAPITEL 1

Grundlagen

1.1. Programmierung: Konventionen

Wie jede Programmiersprache hat R bestimmte Konventionen. Hier die ersten

Grundregeln.

R-Konventionen

Zahlen

Dezimaltrenner ist ein Punkt. Zahlen kénnen im Exponential-
format eingegeben werden; der Exponentialteil wird mit E ein-
geleitet. Zahlen kénnen komplex sein. Der Imaginérteil wird mit
i gekennzeichnet.
Beispiel: 1

2.3

3.4E5

6i+7.8

Zahlen konnen auch die Werte Inf, -Inf, NaN fiir “not a num-
ber” und NA fiir “not available” = fehlend annehmen.

Beispiel:  1/0 ergibt Inf; 0/0 ergibt Nal.

Zeichenketten

Zeichenketten (Strings) werden zu Beginn und zu Ende durch
" oder ' begrenzt.
Beispiel: ~ "ABC"

'def’

”gh lij n

Damit die folgenden Beispiele nicht zu simpel werden, greifen wir hier vor: in R
ist a:b eine Sequenz von Zahlen von a bis hochstens b in Schritten von 1 bzw. -1.

R-Konventionen

Objekte

Die Datenbausteine in R sind Objekte. Objekte kénnen Klassen
zugeordnet werden.

Beispiel:  Die Basis-Objekte in R sind Vektoren.

(Fortsetzung)—

1-1
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R-Konventionen

(Fortsetzung)
Namen R-Objekte kénnen Namen haben. Dann kann anhand ihres Na-
mens auf sie zugegriffen werden.
Namen beginnen mit einem Buchstaben oder einem Punkt, ge-
folgt vom einer Folge von Buchstaben, Ziffer, oder den Sonder-
zeichen _ oder .
Beispiele: x
y_1
Grof3- und Kleinschreibung werden unterschieden.
Beispiele: Y87
y87
Zuweisungen Zuweisungen haben die Form
Aufruf:  Name <- Wert oder alternativ Name = Wert.
Beispiel: a <- 10
x <- 1:10
Abfragen Wird nur der Name eines Objekts eingegeben, so wird der Wert
des Objekts ausgegeben.
Beispiel:  x
Indizes Auf Vektorkomponenten wird iiber Indizes zugegriffen. Die
Index-Zahlung beginnt mit 1.
Beispiel:  x[3]
Dabei koénnen fiir die Indizes auch symbolische Namen oder
Regeln verwandt werden.
Beispiele: x[-3]
x[ x°2 < 10]
al1]
Hilfe wund In-
spektion
Hilfe Dokumentation und Zusatzinformation fiir ein Objekt kann mit

help angefordert werden.
Aufruf:  help(Name)
Beispiele: help(exp)
help(x)
Alternative Form ?Name

Beispiele: 7exp

7x

(Fortsetzung)—
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Hilfe wund In-
spektion

(Fortsetzung)

Inspektion

help() kann nur vorbereitete Dokumentation bereitstellen.
str() kann den aktuellen Zustand inspizieren und darstellen.

Aufruf: str(Object, ...)

Beispiele: str(x)

R-Konventionen

Funktionen Funktionen in R werden aufgerufen in der Form
Aufruf:  Name (Parameter ... )
Beispiel:  e_10 <- exp(10)
Diese Konvention gilt selbst, wenn keine Parameter vorhanden
sind.
Beispiel:  Um R zu verlassen ruft man eine “Quit”-Prozedur auf
q().
Parameter werden sehr flexibel gehandhabt. Sie kénnen De-
fault-Werte haben, die benutzt werden, wenn kein expliziter
Parameter angegeben ist.
Beispiele: log(x, base = exp(1))
Funktionen kénnen polymorph sein. Die aktuelle Funktion
wird dann durch die Klasse der aktuellen Parameter bestimmt.
Beispiele: plot(x)
plot(x, x°2)
summary (x)
Operatoren Fiir Vektoren wirken Operatoren auf jede Komponente der Vek-

toren.

Beispiel:  Fiir Vektoren y, z ist y*z ein Vektor, der kompo-
nentenweise das Produkt enthilt.

Operatoren sind spezielle Funktionen. Sie konnen auch in
Préafix-Form aufgerufen werden.

Beispiel:  "+"(x, y)

In Situationen, in denen die Operanden nicht gleiche Léange
haben, wird der kiirzere Operand zyklisch wiederholt.

Beispiel:  (1:2)*(1:6)
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Wir beschéftigen uns im folgenden mit statistischen Methoden. Wir benutzen
die Methoden zunéchst in Simulationen, d.h. mit synthetischen Daten, deren Erzeu-
gung wir weitgehend unter Kontrolle haben. Das erlaubt es uns, Erfahrung mit den
Methoden zu gewinnen und sie kritisch zu beurteilen. Erst dann benutzen wir die
Methoden zur Analyse von Daten.

1.2. Erzeugung von Zufallszahlen und Mustern

1.2.1. Zufallszahlen. Die Funktion runif () erlaubt die Erzeugung von uni-
form verteilten Zufallsvariablen. Mit help (runif) oder ?runif erhalten wir Infor-
mationen, wie die Funktion benutzt werden kann:

help(runif)

Uniform The Uniform Distribution

Description.

These functions provide information about the uniform distribution on the in-
terval from min to max. dunif gives the density, punif gives the distribution
function qunif gives the quantile function and runif generates random devi-
ates.

Usage.

dunif (x, min=0, max=1, log = FALSE)
punif (q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)

qunif (p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)

runif (n, min=0, max=1)

Arguments.

X,q vector of quantiles.

P vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to
be the number required.

min,max lower and upper limits of the distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise,
PIX > z.

Details.

If min or max are not specified they assume the default values of 0 and 1 respec-
tively.
The uniform distribution has density
flx) = e
max — min
for min < x < max.
For the case of u := min == max, the limit case of X = u is assumed.
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References.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

See Also.

.Random. seed about random number generation, rnorm, etc for other distribu-
tions.

Ezramples.

u <- runif (20)

## The following relations always hold :

punif(u) == u
dunif (u) ==
var (runif (10000))#- ~ = 1/12 = .08333

Diese Hilfsinformation sagt uns: Als Parameter fiir runif () muss die Anzahl
n der zu generierenden Zufallswerte angegeben werden. Als weitere Parameter fiir
runif () konnen das Minimum und das Maximum des Wertebereichs angeben wer-
den. Geben wir keine weiteren Parameter an, so werden die Default-Werte min =
0 und max = 1 genommen. Z. B. runif (100) erzeugt einen Vektor mit 100 uni-
form verteilten Zufallsvariablen im Bereich (0, 1). Der Aufruf runif (100, -10,
10) erzeugt einen Vektor mit 100 uniform verteilten Zufallsvariablen im Bereich
(=10, 10). Die zusétzlichen Parameter konnen in der definierten Reihenfolge angege-
ben werden, oder mithilfe der Namen spezifiziert werden. Bei Angabe des Namens
kann die Reihenfolge frei gewéhlt werden. Anstelle von runif (100, -10, 10) kann
also runif (100, min = -10, max = 10) oder runif (100, max = 10, min = -
10) benutzt werden. Dabei kénnen auch ausgewéhlt einzelne Parameter gesetzt wer-
den. Wird zum Beispiel das Minimum nicht angegeben, so wird fiir das Minimum
der Default-Wert eingesetzt: die Angabe von runif (100, max = 10) ist gleichwer-
tig mit runif (100, min = 0, max = 10). Der besseren Lesbarkeit halber geben
wir oft die Namen von Parametern an, auch falls es nicht notig ist.

Jeder Aufruf von runif () erzeugt 100 neue uniforme Zufallszahlen. Wir kénnen
diese speichern.

x <- runif(100)
erzeugt einen neuen Vektor von Zufallszahlen und weist ihn der Variablen x zu.
X

gibt jetzt dessen Werte aus; damit kénnen wir die Resultate inspizieren. Eine grafi-
sche Darstellung, den Serienplot - einen Scatterplot der Eintrége in x gegen den
laufenden Index, erhalten wir mit

plot(x)
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Beispiel 1.1:

x <- runif(100)
plot(x)
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Aufgabe 1.1

Experimentieren Sie mit den Plots und runif (). Sind die Plots
Bilder von Zufallszahlen?

Genauer: Akzeptieren Sie die Plots als Bilder von 100 unab-
hiangigen Realisationen von uniform auf (0, 1) verteilten Zu-
fallszahlen?

Wiederholen Sie das Experiment und versuchen Sie, die Argu-
mente, die fiir oder gegen die (uniforme) Zufélligkeit sprechen,
moglichst genau zu notieren. Thr Resumée?

Gehen Sie die Argumente noch einmal durch und versuchen
Sie, eine Priifstrategie zu entwerfen, mit der Sie eine Folge von
Zahlen auf (uniforme) Zufélligkeit iiberpriifen konnten. Versu-
chen Sie, diese Strategie moglichst genau zu formulieren.

(Fortsetzung)—
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Aufgabe 1.1 | (Fortsetzung)

Hinweis: Sie konnen mehrere Abbildungen in einem Fenster
halten. Mit

par (mfrow = c(2, 3))
wird das Grafik-System so eingestellt, dass jeweils sechs Ab-
bildungen zeilenweise als 2 x 3-Matrix angeordnet (2 Zeilen, 3
Spalten) gezeigt werden.

Die Funktion par ist die zentrale Funktion, mit der die Grafik-
Ausgabe parametrisiert wird. Weitere Information erhélt man
mit help(par).

Wir liiften gleich das Geheimnis!: die Zahlen sind nicht zufillig, sondern ganz
deterministisch. Genauer: im Hintergrund von runif () wird eine deterministische
Folge z; generiert. Verschiedene Algorithmen stehen zur Verfiigung. Informationen
dazu erhélt man mit help(.Random.seed). Im einfachsten Fall, fiir lineare Kon-
gruenzgeneratoren, werden aufeinanderfolgende Werte z;, z;,; sogar nur mit einer
linearen Funktion generiert. Damit die Werte im kontrollierten Bereich bleiben, wird
modulo einer oberen Grenze gerechnet, also

Ziv1=a z;+b  mod M.

Die resultierenden Werte, die uns iibergeben werden, sind umskaliert auf

g (max — min) + min.

M

Die dadurch definierte Folge kann regelméflig sein und schnell zu periodischer Wie-
derholung fiithren. Bei geeigneter Wahl der Parameter, wie beim Beispiel in der Fuf3-
note, kann sie jedoch zu einer sehr langen Periode (in der Gréenordnung von M)
fithren und scheinbar zufillig sein. Die Zahlenfolge ist jedoch keine unabhéngige
Zufallsfolge, und die Verteilung ist auch nicht uniform auf (min, mazx).

Selbst wenn man das Geheimnis kennt, ist es nur mit viel weiterem Wissen mog-
lich nachzuweisen, dass die erzeugte Folge nicht den Gesetzen folgt, die fiir eine
unabhéngige Folge von identisch uniform verteilten Zufallszahlen gelten.

Zahlenfolgen, die den Anspruch erheben, sich wie zufillige Zahlen zu verhalten,
nennen wir Pseudo-Zufallszahlen, wenn es wichtig ist, auf den Unterschied hinzu-
weisen. Wir benutzen diese Pseudo-Zufallszahlen, um uns geeignete Test-Datensétze
zu generieren. Wir konnen damit untersuchen, wie sich statistische Verfahren unter
nahezu bekannten Bedingungen verhalten. Dabei benutzen wir Pseudo-Zufallszahlen,
als ob wir Zufallszahlen hétten.

Pseudo-Zufallszahlen sollten wir zum anderen als Herausforderung nehmen: Sind

wir in der Lage, sie als nicht unabhéngige Zufallszahlen zu erkennen? Wenn wir einen

1 .. nur teilweise. Die benutzten Zufallsgeneratoren in R sind konfigurierbar und konnen we-
sentlich komplexer sein, als hier vorgestellt. Fiir unsere Diskussion reicht jedoch hier die Familie
der linearen Kongruenzgeneratoren. Sie konnen deren Verhalten in anderen Programmiersystemen
nachvollziehen. Die iibliche Referenz ist dabei der “minimal standard generator” mit z; 11 = (z; x7°)
mod 23! — 1.
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Unterschied erkennen, werden wir versuchen, den Pseudo-Zufallszahlengenerator ge-
gen einen besseren auszutauschen. Aber zunéchst geht die Herausforderung an uns.
Sind wir iiberhaupt in der Lage, z.B. eine mit einem linearen Generator erzeugte de-
terministische Folge als nicht zuféllig zu erkennen? Falls nicht: welche intellektuellen
Konsequenzen ziehen wir daraus?

1.2.2. Muster. Aufler Pseudo-Zufallszahlen gibt es in R eine ganze Reihe von
Moglichkeiten, regelméflige Sequenzen zu generieren. Die in anderen Sprachen not-
wendigen Schleifen werden damit weitgehend vermieden. Hier eine erste Ubersicht:

R Sequenzen
Erzeugt Sequenz von Anfang bis hochstens Ende.
Aufruf:  Anfang:Ende
Beispiele: 1:10
10.1:1.2
cO) “combine”. Kombiniert Argumente zu einem neuen Vektor.
Aufruf: c(..., recursive = FALSE)
Beispiele: c(1, 2, 3)
clx, y)
Bezeichnen die Argumente zusammengesetzte Datentypen, so
arbeitet die Funktion rekursiv absteigend in die Daten hinab,
wenn sie mit recursive = TRUE aufgerufen wird.
seq() Erzeugt allgemeine Sequenzen.
Aufruf:  Siehe help(seq)
rep() Wiederholt Argument.
Aufruf: rep(x, times, ...)
Beispiele: rep(x, 3)
rep(1:3, c(2, 3, 1))
Dabei steht “...” fiir eine variable Liste von Argumenten. Wir werden diese No-

tation noch haufiger benutzen.

Aufgabe 1.2

Generieren Sie mit

plot(sin(1:100))
einen Plot mit einer diskretisierten Sinusfunktion. (Falls Sie die
Sinusfunktion nicht sofort erkennen, benutzen Sie plot(sin
(1:100), type = 1"), um die Punkte zu verbinden. Benut-
zen Sie Thre Strategie aus Aufgabe 1.1. Kénnen Sie damit die
Sinusfunktion als nicht zuféllig erkennen?
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Die Zahlenreihe eines Datensatzes, wie z.B. die Ausgabe eines Zufallszahlenge-
nerators hilft selten, zugrunde liegende Strukturen zu erkennen. Nur wenig helfen
einfache, unspezifische grafische Darstellungen wie der Serienplot. Selbst bei klaren
Mustern sind diese Informationen selten aussagekriftig. Zielgerichtete Darstellungen
sind notig, um Verteilungseigenschaften zu untersuchen.

1.3. Fallstudie: Verteilungsdiagnostik

Wir brauchen genauere Strategien, um Strukturen zu erkennen oder deren Verlet-
zung festzustellen. Wie diese Strategien aussehen konnen, skizzieren wir am Beispiel
der Zufallszahlen. Wir konzentrieren uns hier auf die Verteilungseigenschaft. Ange-
nommen, die Folge besteht aus unabhéngigen Zufallszahlen mit einer gemeinsamen
Verteilung. Wie iiberpriifen wir, ob dies die uniforme Verteilung ist? Wir ignorieren
die mogliche Umskalierung auf (min, max) - dies ist ein technisches Detail, das die
Fragestellung nicht wesentlich tangiert. Wir betrachten min = 0; max = 1.

Aus Realisierungen von Zufallsvariablen kénnen Verteilungen nicht direkt abge-
lesen werden. Dies ist unser kritisches Problem. Wir brauchen Kennzeichnungen der
Verteilungen, die wir empirisch {iberpriifen kénnen. Wir kénnen zwar Beobachtun-
gen als Mafle betrachten: Fiir n Beobachtungen X, ..., z, konnen wir formal die
empirische Verteilung P, definieren als das Mafl P, = > (1/n)d,,, wobei 0x, das
Dirac-Maf3 an der Stelle X; ist. Also

P.(A) =#{i: X, € A}/n.

Aber leider ist das empirische Maf3 P, einer Beobachtungsreihe von unabhéngigen
Beobachtungen mit gemeinsamem Mafl P im allgemeinen sehr von P verschieden.
Einige Eigenschaften gehen unwiederbringlich verloren. Dazu gehéren infinitesimale
Eigenschaften: so ist z.B. P, immer auf endlich viele Punkte konzentriert. Wir brau-
chen Konstrukte, die anhand von Realisierungen von Zufallsvariablen bestimmbar
und mit den entsprechenden Konstrukten von theoretischen Verteilungen vergleich-
bar sind. Eine Strategie ist es, sich auf (empirisch handhabbare) Testmengen zu
beschranken.

BEISPIEL 1.1. Verteilungsfunktion
Anstelle der Verteilung P betrachten wir ihre Verteilungsfunktion /' = Fp mit
F(z) =P(X <ux).

Fiir eine empirische Verteilung P, von n Beobachtungen X1, ..., X, ist entsprechend
die empirische Verteilungsfunktion

F.(x)=#{i: X; < x}/n.
BEIsPIEL 1.2. Histogramm

Wir wahlen disjunkte Testmengen A;,j =1,...,J, die den Wertebereich von X
tiberdecken. Fiir die uniforme Verteilung auf (0, 1) kénnen wir z.B. die Intervalle

n(5

als Testmengen wahlen.
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Anstelle der Verteilung P betrachten wir den Vektor (P (Aj))j:1 _; bzw. den empi-
rischen Vektor (P,(4;))

g=1,...,J°

Wir diskutieren diese Beispiele ausfiihrlicher. Einige allgemeine Lehren konnen
wir daraus ziehen. Wir machen mehrere Durchgénge, um von einem naiven Zugang
zu einem entwickelten statistischen Ansatz zu kommen.

An dieser Stelle sei schon darauf hingewiesen, dass Histogramme kritisch von
der Wahl der Testmengen abhéngen. Insbesondere wenn Diskretisierungen in den
Daten ungliicklich mit der Wahl der Testmengen zusammentreffen, kann es zu sehr
irrefiihrenden Ergebnissen kommen. Eine Alternative zu Histogrammen ist es, die
Daten zu glétten.

BEeISPIEL 1.3. Glattung Wir ersetzen jeden Datenpunkt durch eine (lokale)
Verteilung, d.h. wir verschmieren die Datenpunkte etwas. Wir benutzen dazu Ge-
wichtsfunktionen. Diese Gewichtsfunktionen werden Kerne genannt und mit K
bezeichnet. Wenn die Kerne integrierbar sind, normieren wir sie konventionell so,
dass [ K(z)dx = 1. Einige iibliche Kerne sind in Tabelle 1.9 aufgelistet und in Abb.
1.1 gezeigt. Wenn sie einen kompakten Trager haben, so ist als Tréger das Intervall
[—1,1] gewidhlt (Die R-Konvention ist es, die Kerne so zu standardisieren, dass sie
die Standardabweichung 1 haben).

Kern K(x)

Uniform 1/2

Dreieck 1— |z

Epanechnikov (quadratisch) | 3/4(1 — x?)

Biweight 15/16(1 — 22)?

Triweight 35/32(1 — 2%)3

GauB (2m) "2 exp(—2?/2)
TABELLE 1.9. Einige iibliche Kerne

Durch Verschiebung und Umskalierung definiert jeder Kern eine ganze Familie

1 x—x

EK( - ).

Der Skalenfaktor h wird Bandbreite genannt. Der mit h skalierte Kern wird mit
K, bezeichnet:

Die Funktion
1
— K - X
e~ 21: n(z

ergibt anstelle des Histogramms ein gegliattetes Bild.

Néheres dazu findet man unter dem Stichwort smoothing in der Literatur.
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R's density() kernels with bw = 1

5
o .
—— gaussian
— epanechniko|
—— rectangular
— triangular
biweight
g — —— cosine
| optcosine
2
7N
g oS
o
]
o /
o | J \K
o

ABBILDUNG 1.1. Kerne in R

1.3.1. Erster Durchgang zu Beispiel 1.1: Verteilungsfunktion. Um zu
priifen, ob eine Zufallsfolge zu einer Verteilung mit Verteilungsfunktion F' passt,
vergleiche man F mit F,. Im Fall der uniformen Verteilung auf (0,1) ist F(z) =
Funig(z) = x fir 0 < 2 < 1. Der ganz naive Zugang berechnet die Funktionen F,,
und F. Eine erste Uberlegung sagt: F), ist eine stiickweise konstante Funktion mit
Sprungstellen an den Beobachtungspunkten. Wir bekommen also ein vollsténdiges
Bild von F,, wenn wir F, an den Beobachtungspunkten X;,¢ = 1..n auswerten.
Ist X(; die i. Ordnungsstatistik, so ist - bis auf Bindungen - F,(Xy)) = i/n. Wir
vergleichen F,,(X(;)) mit dem “Sollwert” F(X(;) = X(;. Eine R-Implementierung,
mit Hilfsvariablen notiert:

n <- 100
x <- runif(n)
xsort <- sort(x)
i <= (1:n)
y <= i/n
plot(xsort, y)
Eine zusatzliche Gerade fiir die “Sollwerte” kann mit
abline(0, 1)

eingezeichnet werden.

Eine kompaktere Implementierung mit der Funktion length():
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Beispiel 1.2:
Eingabe

x <- runif(100)
plot(sort(x), 1:length(x)/length(x))
abline (0, 1)

1:length(x)/length(x)

sort(x)

R Funktionen

sort () Sortiert Vektor
Beispiel:  sort (runif (100))

length() Lénge eines Vektors
Beispiel:  length(x)

abline () Fiigt Linie in Plot hinzu
Beispiel: abline(a = 0, b = 2)

Die Funktion plot () fiigt defaultméflig Beschriftungen hinzu. Damit die Grafik
fiir sich aussagekriftig ist, wollen wir diese durch genauere Beschriftungen ersetzen.
Dazu ersetzen wir die Default-Parameter von plot() durch unsere eigenen. Der
Parameter main kontrolliert die Hauptiiberschrift (Default: leer). Wir kénnen diese
zum Beispiel ersetzen wie in

plot(sort(x), (1:length(x))/length(x),
main = "Empirische Verteilungsfunktion\n (X uniform)").
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Mit xlab und ylab wird die Beschriftung der Achsen gesteuert. Uber diese und
weitere Parameter kann man Information mit help(plot) abfragen, werden dann
aber weiter an help(title) verwiesen.

Die vertikale Achse gibt noch eine Herausforderung: mit ylab = Fn(x)" als Pa-
rameter wiirden wir eine Beschriftung mit F'n(z) erhalten. Die {ibliche Bezeichnung
setzt aber den Stichprobenumfang als Index, also F,(z). Hier hilft eine versteckte
Eigenschaft der Beschriftungsfunktionen: Wird als Parameter eine Zeichenkette iiber-
geben, so wird sie ohne Umwandlung angezeigt. Wird als Parameter ein R-Ausdruck
iibergeben, so wird versucht, die mathematisch iibliche Darstellung zu geben. De-
tails findet man mit help(plotmath) und Beispiele mit demo (plotmath). Die Um-
wandlung einer Zeichenkette in einen (unausgewerteten) R-Ausdruck geschieht mit
expression().

Beispiel 1.3:

x <- runif(100)
plot(sort(x), (1:length(x))/length(x),
xlab = "x", ylab = expression(F[n]),
main = "Empirische Verteilungsfunktion\n (X uniform)"

Eingabe

)
abline (0, 1)

Empirische Verteilungsfunktion
(X uniform)

Dieses Beispiel dient hier nur zur Einfithrung. Es ist nicht notwendig, die Ver-
teilungsfunktion selbst zu programmieren. In R gibt es z.B. die Klasse ecdf fiir die
empirische Verteilungsfunktion. Wird die Funktion plot () auf ein Objekt der Klasse
ecdf angewandt, so fithrt die “generische” Funktion plot () intern auf die spezielle
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Funktion plot.ecdf, und diese zeichnet in der fiir Verteilungsfunktionen speziel-
len Weise. Wir konnen das Beispiel also abkiirzen durch den Aufruf plot (ecdf (
runif (100) )).

Aufgabe 1.3
Ergédnzen Sie den Aufruf plot(ecdf( runif(10) )) durch
weitere Parameter so, das die Ausgabe die folgende Form hat:
Empirische Verteilungsfunktion
(X uniform)
= =
L
3 —
—
= 3
: -
S - F
[
S —
—
g 77\7 777777 T T T T I
0.0 0.2 0.4 0.6 0.8 1.0
X

Aufgabe 1.4

Mit rnorm() generieren Sie gaufiverteilte Zufallsvariablen. Ver-
suchen Sie, anhand der Serienplots gaufiverteilte Zufallsvaria-
blen von uniform verteilten zu unterscheiden.

Benutzen Sie dann die empirischen Verteilungsfunktionen.
Konnen Sie damit gauflverteilte von uniform verteilten unter-
scheiden? Die Sinus-Serie von uniform verteilten? von gaufiver-
teilten?

Wie grof3 ist der bendtigte Sichprobenumfang, um die Vertei-
lungen verldsslich zu unterscheiden?

1.3.2. Erster Durchgang zu Beispiel 1.2: Histogramm. Wir wihlen Test-
mengen A;, j=1,...,J im Wertebereich von X. Strategie: Um zu priifen, ob eine
Zufallsfolge zu einer Verteilung P gehort, vergleiche man den Vektor (P(A;))j=1,..s
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mit (P,(A;));=1,..s. Fiir die uniforme Verteilung auf (0,1) kénnen wir z.B. die In-

tervalle 1
J— J
054
! J J
als Testmengen wihlen. Dann ist

(P(A3))j=t,g = (1/ ;.. 1)
der theoretische Vergleichsvektor zum Vektor der beobachteten relative Haufigkeiten
M j=1,...,J. Vorlaufige Implementierung: wir benutzen hier gleich eine
vorgefertlgte Funkt10n die Histogramme zeichnet. Als Seiteneffekt liefert sie uns die

gewiinschten Werte. Mit der Funktion rug () kénnen wir die Originaldaten zusétzlich
einblenden.

Bezispiel 1.4:

x <- runif(100)
hist(x)
rug (x)

Eingabe

Histogram of x

12
|

10
1

Frequency
6
I

B M X I T A
I I I 1
0.0 0.2 0.4 0.6 0.8 1.0

Zum Vergleich kénnen wir einen Dichteschétzer iiberlagern. Da density () im
Gegensatz zu hist () das Resultat nicht zeichnet, sondern ausdruckt, miissen wir
die Grafik explizit anfordern. Damit die Skalen vergleichbar sind, fordern wir fiir das
Histogramm mit dem Parameter probability = TRUE eine Wahrscheinlichkeitsdar-
stellung an.
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Beispiel 1.5:

hist(x, probability = TRUE)
rug (x)
lines(density(x))

1.2
J

1.0

Eingabe

Histogram of x

Density
0.6
|

0.4

0.2
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Histogramm und Kern-Dichteschétzer haben jeweils ihre spezifischen Vorteile
und Probleme. Histogramme leiden unter ihrer Diskretisierung, die mit einer Dis-
kretisierung in den Daten ungliicklich zusammen treffen kann. Kern-Dichteschétzer
“verschmieren” die Daten, und konnen dadurch insbesondere am Rand des Datenbe-
reichs zu unangemessenen Rand-Effekten fiihren.

Zuriick zum Histogramm: Benutzen wir eine Zuweisung

xhist <- hist(x),

so wird die interne Information des Histogramm unter xhist gespeichert und kann

mit

xhist

abgerufen werden. Sie ergibt z.B.
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Beispiel 1.6:

Eingabe
x <- runif(100)
xhist <- hist(x)
xhist

Ausgabe
$breaks

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$counts
[1] 8 13 8 12 12 7 6 11 10 13

$intensities
[1] 0.7999998 1.3000000 0.8000000 1.2000000 1.2000000 0.7000000
[7] 0.6000000 1.1000000 1.0000000 1.3000000

$density
[1] 0.7999998 1.3000000 0.8000000 1.2000000 1.2000000 0.7000000
[7] 0.6000000 1.1000000 1.0000000 1.3000000

$mids
[1] 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

$xname
[1] an

$equidist
[1] TRUE

attr(,"class")
[1] "histogram"

Counts gibt dabei die Besetzungszahlen der Histogrammzellen, d.h. die von uns
gesuchte Anzahl. Die in xhist gespeicherte interne Information des Histogramms
besteht aus fiinf wesentlichen Komponenten - hier jeweils Vektoren. Diese Kompo-
nenten von xhist haben Namen und kénnen mit Hilfe dieser Namen angesprochen
werden. So gibt z.B.

xhist$counts

den Vektor der Besetzungszahlen.

R Datenstruktu-
ren

(Fortsetzung)—
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R Datenstruktu-
ren

(Fortsetzung)
Vektoren Komponenten eines Vektors werden iiber ihren Index angespro-
chen. Alle Elemente eines Vektors haben denselben Typ.
Beispiele: x
x[10]
Listen Listen sind zusammengesetzte Datenstrukturen. Die Kompo-

nenten einer Liste haben Namen, iiber die sie angesprochen
werden konnen. Teilkomponenten einer Liste kdnnen von un-
terschiedlichem Typ sein.

Beispiele: xhist
xhist$counts

Weitere zusammengesetzte Datenstrukturen sind im Anhang (A.8) beschrieben.

Die Wahl der Histogrammgrenzen erfolgt automatisch. Fiir die genaue Behand-
lung der Intervallgrenzen gibt es unterschiedliche Konventionen, deren Wahl durch
Parameter von hist () gesteuert werden kann. Um unsere Testmengen zu benutzen,
miissen wir die Aufrufstruktur von hist () erfragen.

Aufgabe 1.5

Generieren Sie zu runif (100) Histogramme mit 5, 10, 20, 50
gleichgrofien Zellen und ziehen Sie wiederholt Stichproben.
Entsprechen die Bilder dem, was Sie von unabhéngig uniform
verteilten Zufallsvariablen erwarten? Versuchen Sie, ihre
Beobachtungen moglichst genau zu notieren.

Wiederholen Sie das Experiment mit zwei Zellen
(0,0.5],(0.5,1).

Wiederholen Sie das Experiment analog mit rnorm(100)
und vergleichen Sie die Resultate von runif(100) und
rnorm(100).

hist(runif (100), breaks = c(0, 0.5, 1))

1.3.2.1. Balkendiagramme. Als Hinweis: wenn die Daten nicht quantitativ sind,
sondern kategorial (durch Kategorien-Label bezeichnet, wie z.B. “sehr gut, gut, be-

b

friedigend, ...

, oder durch Kennziffern bezeichnet, wie z.B. “1, 2, 3, ...”), so ist

ein Balkendiagramm eher geeignet. Einfache Balkendiagramme werden von plot ()
selbst durch den Parameter type = h unterstiitzt. Dazu miissen aus den Rohdaten
die Haufigkeiten der einzelnen Stufen bestimmt werden. Dies kann mit der Funktion

table () geschehen.
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Beispiel 1.7:

Eingabe

noten <- ¢(2, 1, 3, 4, 2, 2, 3, 5, I, 3, 4, 3, 6)
plot(1:6, table(noten), type = 'h')

table(noten)

15 2.0 25 3.0 35 4.0

1.0

1:6
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Aufgabe 1.6

Modifizieren Sie den Aufruf von plot im obigen Beispiel so,
dass der Plot das folgende Aussehen hat:

Notenverteilung

o -

- -

o -
T T T T T T
1 2 3 4 5 6

Note

Anzahl
2
|

1.3.3. Zweiter Durchgang zu Beispiel 1.1: Verteilungsfunktion. Wir ma-
chen jetzt einen Schritt von einem naiven Ansatz zu einer statistischen Betrach-
tung. Naiv haben wir fiir unabhéngig identisch verteilte Variable (X7, ..., X,) mit
Verteilungsfunktion F' angenommen, dass i/n = F,(X;)) = F(X()) und dies zur
Uberpriifung der Verteilungsannahme benutzt. Speziell fiir uniform (0,1) verteilte
Variable ist diese naive Annahme: i/n ~ X = F(X(;)).

Statistisch gesehen ist X(;) eine Zufallsvariable. Damit ist auch F'(X;)) eine Zu-
fallsvariable mit Werten in [0, 1], und wir kénnen die Verteilung dieser Zufallsvaria-
blen untersuchen.

THEOREM 1.4. Sind (X1, ..., X,) unabhdingig identisch verteilte Zufallsvariablen
mit stetiger Verteilungsfunktion F, so ist F(X ;) verteilt nach der Beta-Verteilung
Bli,n—i+1).

BEWEIS. — Wahrscheinlichkeitstheorie. Hinweis: Benutze

Xy <ao & (#):X; <) >0

Fiir stetige Verteilungen ist (#j : X; < x,) binomialverteilt mit Parametern (n, «).
0

KOROLLAR 1.5.
E(F(X()) =i/(n+1).
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Aufgabe 1.7

Mit help(rbeta) erhalten Sie Informationen iiber die Funk-
tionen, die fiir die Beta-Verteilungen bereitstehen. Plotten Sie
die entsprechenden Dichten der Beta-Verteilungen fiir n =
10,50, 100 und ¢ = n/4,n/2,3n/4. Benutzen Sie zum plotten
die Funktion curve (). Zum Aufruf, siche help(curve).

Wir kénnen also im statistischen Mittel fiir uniform auf (0, 1) verteilte Variable
nicht erwarten, dass X(;y ~ i/n, sondern im Mittel erhalten wir i/(n+1). Die “richtige
Sollwertgerade” sollte also mit abline(a = 0, b = n/n+1) gezeichnet werden.

Aufgabe 1.8

Zeichnen Sie die Verteilungsfunktion mit der korrigierten Ge-
raden.

* Fiir die grafische Darstellung wird jeweils nur ein Plot benutzt.
Ist der Erwartungswert von X(; hier der richtige Vergleichs-
mafistab? Gibt es Alternativen?

Falls Sie Alternativen sehen: implementieren Sie diese.

1.3.3.1. Monte Carlo Konfindenzbdnder. Mit einer Simulation kénnen wir uns
auch ein Bild von der typischen Fluktuation verschaffen. Wir benutzen Zufallszahlen,
um eine (kleine) Anzahl von Stichproben bekannter Verteilung zu generieren, und
vergleichen die in Frage stehende Stichprobe mit den Simulationen. Dazu bilden wir
fiir die Simulationen die Einhiillende, und priifen, ob die Stichprobe innerhalb dieses
Bereichs liegt. Ist « der in Frage stehende Vektor mit Lénge n, so benutzen wir z.B.
die folgende Programmidee:
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Beispiel 1.8:

Eingabe

x <= (sin(1:100)+1)/2 # demo example only
y <- (1:length(x))/length(x)

plot(sort(x), y)
nrsamples <- 19

# nr of simulations

samples <- matrix(data = runif(length(x)* nrsamples),
nrow = length(x), ncol = nrsamples)

samples <- apply(samples, 2, sort)

envelope <- t(apply(samples, 1, range))
lines(envelopel[, 1], y, col = "red")

lines(envelope[, 2], y, col = "red")

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

sort(x)

Dieses Beipiel ist [VRO02], entnommen, einer reichen Quelle von R-Beipielen.
Fiir die Programmierung wird hier eine fiir R typische Strategie erkennbar. R ist
eine interpretierte vektor-orientierte Sprache. Einzelne Interpretationsschritte sind
zeitintensiv. Deshalb sind Operationen mit weniger, dafiir komplexeren Schritten

effektiver als Operationen aus mehreren elementaren Schritten.

e Operationen auf Vektorebene sind effektiver als Ketten einzelner elementare

Operationen.

e [terationen und Schleifen werden vermieden zugunsten strukturierter Vektor-

Operationen.
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Aufgabe 1.9

Benutzen Sie die help () -Funktion und kommentieren Sie das
obige Beispiel Schritt fiir Schritt. Notieren Sie insbesondere die
neu hinzugekommenen Funktionen.

R Iteratoren

apply () wendet eine Funktion auf die Zeilen oder Spalten einer Matrix
an.
Beispiel:  samples <- apply(samples, 2, sort)

sortiert spaltenweise.

outer () erzeugt eine Matrix mit allen Paar-Kombinationen aus zwei
Vektoren, und wendet eine Funktion auf jedes Paar an.

Wenn die Kurve fiir unsere Stichprobe die durch die Simulation gewonnenen
Grenzen {iiberschreitet, so widerspricht das der Hypothese, dass der Stichprobe und
der Simulation das selbe Modell zugrunde liegt. Das hier skizzierte Verfahren heift
Monte-Carlo-Test. Die Idee dahinter ist von sehr allgemeiner Bedeutung.

Aufgabe 1.10
* Wieso 197

Hinweis: versuchen Sie, das Problem zunéchst abstrakt und
vereinfacht zu betrachten: sei T' eine messbare Funktion und
Xo, X1, ..., Xnrsamples Unabhéngige Stichproben mit einer ge-
meinsamen stetigen Verteilungsfunktion.

Berechnen Sie P (T (Xy) > T'(X;)) fiir alle ¢ > 0.

Formulieren Sie dann das obige Beispiel abstrakt. Spezialisie-
ren Sie dann fiir nrsamples = 19.

Aufgabe 1.11

* Schétzen Sie die Uberdeckungswahrscheinlichkeit des Monte-
Carlo-Bands, in dem Sie wie folgt vorgehen: Generieren Sie
zunéchst analog zum obigen Beispiel ein Band. (Wie kénnen
Sie das Band zeichnen, ohne zuvor fiir eine spezielle Stichprobe
einen Plot zu machen?)

Ziehen Sie fiir eine zu wéhlende Anzahl sim (1007 10007 9997)
jeweils eine Stichprobe von uniform verteilten Zufallszahlen
vom Stichprobenumfang 100. Zahlen Sie aus, wie oft die empi-
rische Verteilungsfunktion der Stichprobe innerhalb des Bands
verlauft.

Schétzen Sie hieraus die Uberdeckungswahrscheinlichkeit.

(Fortsetzung)—
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Aufgabe 1.11

(Fortsetzung)

Hinweis: any() kann benutzt werden, um fiir einen ganzen
Vektor einen Vergleich zu machen.

Wir wollen auch hier die Ausgabe noch iiberarbeiten, so dass der Plot geniigend
Information enthélt. Bei der Beschriftung konnen wir zunéchst analog zu Abschnitt
1.3.1 vorgehen. Die Anzahl nrsamples bedarf des Nachdenkens. Wenn wir nur ei-
ne feste Anzahl (z.B. 19) betrachten wollen, kénnen wir diese wie gewohnt in die
Beschriftung aufnehmen. Wenn das Programmfragment jedoch allgemeiner nutzbar
sein soll, so miissten wir die jeweils gewédhlte Anzahl von Simulationen angeben.
Dies von Hand zu tun ist eine Fehlerquelle, die vermieden werden kann. Die Funkti-
on bquote () ermoglicht es, den jeweils aktuellen Wert zu erfragen oder im jeweiligen
Kontext zu berechnen. Damit die Anzahl von Simulationen in die Uberschrift iiber-
nommen werden kann, vertauschen wir die Anweisungen so dass die Anzahl der
Simulationen vor dem Aufruf von plot festgelegt ist.
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Beispiel 1.9:

Eingabe

x <- (sin(1:100)+1)/2 # demo example only

y <- (1:length(x))/length(x)
nrsamples <- 19 # nr of simulations
plot(sort(x), y,

main = paste("Monte-Carlo-Band: ", bquote( . (nrsamples)), " Monte-Carl]

xlab = 'x', ylab = expression(F[n]))
samples <- matrix(data = runif(length(x) * nrsamples),
nrow = length(x), ncol = nrsamples)
samples <- apply(samples, 2, sort)
envelope <- t(apply(samples, 1, range))
lines(envelope[, 1], y, col = "red")
lines(envelopel[, 2], y, col = "red")

Monte-Carlo-Band: 19 Monte-Carlo-Samples

1.0

0.8

0.6

0.4

0.2

0.0

Fiir die Simulationen werden jeweils neue Monte-Carlo-Stichproben gezogen. Des-
halb erhalten Sie bei jedem Aufruf unterschiedliche Monte-Carlo-Konfidenzbander
und die Bander hier sind von denen im vorherigen Beispiel verschieden.

Fiir die praktische Arbeit kann es notwendig sein, die Verteilungsdiagnostik auf
ein einfaches Entscheidungsproblem zu reduzieren, etwa um anhand von Tabellen
oder Kontrollkarten zu entscheiden, ob eine Verteilung in einem hypothetischen Be-
reich liegt, oder eine Kenngrofle anzugeben, die die Abweichung von einem gegebenen
Modell charakterisiert. Wenn wir auf Tabellen oder einfache Zahlen zuriickgreifen
wollen, miissen wir uns weiter einschranken. Wir miissen die Information, die in den
Funktionen (F,, F') steckt, weiter reduzieren, wenn wir die Unterschiede numerisch

zusammenfassen wollen. Eine Zusammenfassung ist etwa

sup |F, — F(x).

o-Samples",
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Wenn wir diese Zusammenfassung als Kriterium beniitzen wollen, stehen wir wieder
vor der Aufgabe, ihre Verteilung zu untersuchen.

THEOREM 1.6. (Kolmogorov, Smirnov) Fir stetige Verteilungsfunktionen F ist

die Verteilung von
sup |F, — F|(x)

unabhdingig von F (jedoch abhingig von n).

BEWEIS. — Wahrscheinlichkeitstheorie. Z.B. [Génfller & Stute, Lemma 3.3.8].
U

THEOREM 1.7. (Kolmogorov): Fir stetige Verteilungsfunktionen F und n — oo
hat
vnsup|F, — F|
asymptotisch die Verteilungsfunktion

—om2y2 .
FKolmogorav—Smirnov(y) = Z(_l)me my fUT’ Yy > 0.
mEZ

BEWEIS. — Wahrscheinlichkeitstheorie. Z.B. [GanBler & Stute, Formel (3.3.11)].
UJ

Fiir die praktische Arbeit bedeutet dies: Fiir stetige Verteilungsfunktionen kon-
nen wir eine Entscheidungsstrategie formulieren: wir entscheiden, dass die Beobachtung( Xy, ..., X,
nicht mit der Hypothese von unabhéngig, identisch nach F' verteilten Zufallsvaria-
blen vereinbar ist, falls sup |F,, — F| zu gro8 ist:

Sup‘Fn - F|>ka’t/\/ﬁ7

wobei Fj,.; aus der (von F unabhéngigen) Verteilungsfunktion der Kolmogorov-
Smirnov-Statistik zum Stichprobenumfang n entnommen wird. Wéahlen wir speziell
das obere a-Quantil Fiit = Froimogorov—Smirnov,1—a, SO Wissen wir, dass bei Zutreffen
der Hypothese der Wert F},;; oder ein hoherer Wert hochstens mit Wahrscheinlich-
keit « erreicht wird. Damit kénnen wir unsere Irrtumswahrscheinlichkeit fiir eine
ungerechtfertigte Ablehnung der Hypothese kontrollieren.

Asymptotisch, fiir grole n, konnen wir anstelle der Verteilungsfunktion die Kol-
mogorov-Approximation benutzen. Wenn die Modellverteilung F' nicht stetig ist,
sind weitere Uberlegungen notig.

Wir wollen uns hier auf die Programmierung konzentrieren und gehen nicht in
die Details des Kolmogorov-Smirnov-Tests. Mit elementaren Mitteln konnen wir die
Teststatistik sup, |F,, — F|(x) fir die uniforme Verteilung programmieren. Aus
Monotoniegriinden ist

sup |F, — F|(:c):r§?gc|Fn — F| X(i)

und fiir die uniforme Verteilung ist
max |F, — F|X(i) =max|i/n — X(i)|.

X(2)
Damit gibt in R-Schreibweise der Ausdruck
max( abs((1: length(x)) / length(x)) - sort(x)) )
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die fiir uns die gewiinschte Statistik, wenn x unser Datenvektor ist.

Diese Statistik (und viele weitere allgemein benutzte Statistiken) sind in der
Regel schon programmiert, ebenso wie die zugehorigen Verteilungsfunktionen.?

Aufgabe 1.12

Mit
help(ks.test)

erhalten Sie die Information, wie die Funktion ks. test ange-
wandt wird.

Welche Resultate erwarten Sie, wenn Sie die folgenden Vekto-
ren auf uniforme Verteilung testen:

1:100

runif (100)
sin(1:100)
rnorm(100)?

Fithren Sie diese Tests durch (skalieren Sie dabei die Werte
so, dass sie im Intervall [0, 1] liegen, oder benutzen Sie eine
uniforme Verteilung auf einem angepassten Intervall.) und dis-
kutieren Sie die Resultate.

1.3.4. Zweiter Durchgang zu Beispiel 1.2: Histogramm. Wie bei der Ver-
teilungsfunktion machen wir einen Schritt in Richtung auf eine statistische Analy-
se. Der Einfachheit halber nehmen wir an, dass wir disjunkte Testmengen A;,j =
1,...,J gewdhlt haben, die den Wertebereich von X iiberdecken Die Beobachtung
(%1,...,%,) gibt dann Besetzungszahlen n;

n; = (#’l . Xz € AJ)

ein Zufallsvektor mit Multinomialverteilung zu den Parametern n, (p;);=1, s mit
p; = P(A;). Fiir den Spezialfall J = 2 haben wir die Binomialverteilung. Da wir
freie Wahl iiber die Testmengen A; haben, kénnen wir damit eine ganze Reihe von
oft hilfreichen Spezialfillen abdecken, z.B.

Wenn (X;);=1,., unabhingig sind mit identischer Verteilung P, so ist (n;);=1,..s

Mediantest auf Symmetrie:

Ay ={z <05} Ay ={x > x5}

2Unterschiedliche Implementierungen kénnen hier andere Aufrufstrukturen vorsehen. Der
Kolmogorov-Smirnov-Test findet sich in ks. test.

Vor R Version 2.x gehorten diese jedoch nicht zum Basis-Umfang von R, sondern sind in speziel-
len Bibliotheken enthalten, die explizit hinzugeladen werden mussten. Die Bibliothek mit klassischen
Tests in der R1.x-Implementierung heifit ctest und wird mit

library(ctest)
geladen.
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Midrange-Test auf Konzentration:

Ay = {2025 < x < 2075} Ay = {x < w95 oderz > x75}.

Fiir den allgemeinen Fall miissen wir jedoch die empirischen Besetzungszahlen
n; anhand der Multinomialverteilung beurteilen, und diese ist sehr unangenehm zu
berechnen. Deshalb greift man oft auf Approximationen zuriick. Auf Pearson geht
folgende Approximation zuriick:

LEMMA 1.8. (Pearson): Fir (pj)j=1..s, p; > 0 gilt im Limes n — oo die
Approximation

Pmult(nb v 7nj;n7p17 cee 7}937) ~

(27”1)71/2 ( H pj> —-1/2

g=1,...,J

oo (~12 Y =)

/”L .
J=1,...,J Pi

n; — np;
-1/2 2
P

g=1,..,

+1/6° Y w«..).

2
jil ..... J (np])
BEWEIS. — Wahrscheinlichkeitstheorie. Z.B. [JK70] p. 285. O

Der erste Term wird bestimmt von y2 = > i—1..5(nj —np;)*/np;. Dieser Term
wird y2-Statistik genannt. Zumindest asymptotisch fiir n — oo fithren groie Werte

von x2 zu kleinen Wahrscheinlichkeiten. Dies motiviert, die y2-Statistik approximativ
als Anpassungsmafl zu benutzen. Der Name kommt aus der Verteilungsasymptotik:

THEOREM 1.9. (Pearson): Fir (p;)j=1,.7.p; > 0 ist im Limes n — oo die

Statistik )
;{5 — Z (nj —np;)
7=1,...,J npj

x2-verteilt mit J — 1 Freiheitsgraden.

Fiir eine formale Entscheidungsregel konnen wir wieder einen kritischen Wert
X2, festlegen, und die Hypothese verwerfen, dass die Beobachtungen (X1, ..., X))
identisch uniform verteilte Zufallszahlen sind, wenn die y2-Statistik {iber diesem Wert
liegt. Withlen wir als kritischen Wert das obere a-Quantil der y2-Verteilung, so wissen
wir, dass bei Zutreffen der Hypothese der Wert x3,,, oder ein hherer Wert hochstens
mit Wahrscheinlichkeit o erreicht wird. Damit konnen wir zumindest asymptotisch
auch hier unsere Irrtumswahrscheinlichkeit fiir eine ungerechtfertigte Ablehnung der
Hypothese kontrollieren.

Die y2-Tests gehoren zum Basisumfang von R als Funktion chisq.test (). Sie
sind so ausgelegt, dass sie fiir allgemeinere “Kontingenztafeln” genutzt werden kon-
nen. Wir benétigen sie hier nur fiir einen Spezialfall: die Tafel ist in unserem Fall
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der (eindimensionale) Vektor der Besetzungszahlen fiir vorgewéhlte Zellen. (Hinweis:
in der R-Implementierung sind allgemeinere Varianten in Iibrary(loglin) zu fin-
den.)

Aufgabe 1.13

Orientieren Sie sich mit help(chisq.test) iiber die Auf-
rufstruktur der y?-Tests. Wenden Sie ihn fiir die Hypothese
(pj = 1/J),J = 5 auf folgende Vektoren von Besetzungszah-
len an:

(33333)  (12533) (00906).

Aufgabe 1.14

Welche Resultate erwarten Sie, wenn Sie die folgenden Vekto-
ren mit dem y2-Test auf uniforme Verteilung testen:

1:100
runif (100)
sin(1:100)
rnorm(100) 7
Fiithren Sie diese Tests durch und diskutieren Sie die Resultate.

Hinweis: Die Funktione chisq.test() erwartet als Ein-
gabe eine Haufigkeitstabelle. Die Prozedur table() gibt
die Moglichkeit, Besetzungstabellen direkt zu erstellen (sie-
he help(chisq.test). Sie konnen aber auch die Funktion
hist () benutzen, und den Eintrag counts aus dem Resul-
tat benutzen.

Die Approximationen fiir die y2-Statistik gelten zunichst nur, wenn die Zellen
fest gewéhlt sind, unabhéngig von der Information aus der Stichprobe. Praktische
Histogramm-Algorithmen bestimmen jedoch Zellenanzahl und Zellgrenzen aufgrund
der Stichprobe. Dazu werden (implizit) Parameter der Verteilung geschétzt. Unter
bestimmten Voraussetzungen gilt noch immer eine y?-Asymptotik, wie z.B nach dem
folgenden Theorem aus [Rao73, Section 6b.2]:

THEOREM 1.10. (i) Let the cell probabilities be the specified functions m(8), ...,
7,(0) involving q unknown parameters (61, ...,60,) = 0'. Further let

(a) 8 be an efficient estimator of 6 in the sense of (5¢.2.6),

(b) each m;(0) admit continuous partial derivatives of the first order (only) with
respect to 0;, 7 = 1,...,q or each m;(0) be a totally differentiable function
of 01,...,04, and
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(c¢) the matriz M = (7r,71/287rr/898) of order (k X q) computed at the true values

of 0 is of rank q. Then the asymptitoc distribution of
;— ;)2 0—FE)?
1.1 2 — (nl nﬂ-l) — (
(L.1) =) E s
is X2(k — 1 — q), where 7 = m;(6).

BEWEIS. Siche [Rao73] Abschnitt 6b.2. O

Aufgabe 1.15

* Entwerfen Sie vergleichbare Testumgebungen fiir feste und fiir
adaptive Zellwahlen.

Ziehen Sie fiir feste und fiir adaptive Zellwahlen jeweils s =
1000 Stichproben aus runif() vom Umfang 50; berechnen
Sie formal die y2-Statistik und plotten Sie deren Verteilungs-
funktion.

Vergleichen Sie die Verteilungsfunktionen.

Wiederholte Stichproben

Wir haben uns bis jetzt darauf konzentriert, die Verteilung einer Zufallsvaria-
blen zu untersuchen. Wir kénnen das Verfahren fortsetzen. Wenn (Xj, ..., X,,) iden-
tisch uniform verteilte Zufallszahlen sind, dann ist bei vorgewihlten Zellen die x2-
Statistik approximativ x2-verteilt, und £ := /nsup|F, — F| hat asymptotisch
die Kolmogorov-Smirnov-Verteilung.

Wir kénnen wiederholt Stichproben (X, ..., X,;)j=1.m zichen und daraus Sta-

tistiken ?j und k; berechnen. Bei unabhéngig, identisch verteilten Ausgangsdaten
miissen diese nach x? bzw. Kolmogorov-Smirnov verteilt sein. Bei diesen wiederhol-
ten Stichproben wird nicht nur die Verteilung der einzelnen Beobachtungen, sondern
die gemeinsame Verteilung der jeweils n Stichprobenelemente untersucht.

Aufgabe 1.16

Ziehen Sie fiir n = 10, 50, 100 wiederholt jeweils 300 Stichpro-
ben nach runif(). Berechnen Sie dafiir jeweils die x2- und
Kolmogorov-Smirnov-Statistik.

Welchen y2-Test benutzen Sie?

Plotten Sie die Verteilungsfunktionen dieser Statistiken und
vergleichen Sie sie mit den theoretischen asymptotischen Ver-
teilungen.

Sprechen irgendwelche Befunde gegen die Annahme unabhén-
gig uniform verteilter Zufallszahlen?

(Fortsetzung)—
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Aufgabe 1.16 | (Fortsetzung)

Hinweis: die Funktionen fiir den y2- und Kolmogorov-Smirnov-
Test speichern ihre Information intern als Liste. Um die Namen
der Listenelemente zu bekommen, kann man sich ein Testob-
jekt generieren. Benutzen Sie z.B.

names (chisq.test (runif (100))).

Gliite

Die uniforme Verteilung war in unserer Diskussion bislang die angezielte Mo-
dellverteilung, unsere “Hypothese”. Wir haben diskutiert, wie die unterschiedlichen
Verfahren sich verhalten miissten, wenn diese Hypothese gilt. Das daraus abgeleitete
Verteilungsverhalten kann dazu dienen, kritische Grenzen fiir formale Tests festzule-
gen. Wir verwerfen die Hypothese, wenn die beobachteten Test-Statistiken zu extrem
sind. Was “zu extrem” ist, wird anhand der abgeleiteten Verteilungen bestimmt. Dies
fithrt zu Entscheidungsregeln wie:

—

verwerfe die Hypothese, wenn Fi2(x?) > 1 — «
oder

verwerfe die Hypothese, wenn Fioimogorov—Smirnov(K) > 1 —
fiir geeignet festzulegende (kleine) Werte von a.

Wenn wir ein Entscheidungsverfahren formal festgelegt haben, kénnen wir im
néchsten Schritt fragen, wie scharf das Verfahren ist, wenn die Hypothese tatsichlich
abzulehnen ist. Eine genauere Analyse bleibt der Statistik-Vorlesung vorbehalten.
Mit den bis jetzt diskutierten Moglichkeiten kénnen wir jedoch schon das Verhalten
mit einer Monte-Carlo-Strategie untersuchen.

Als Simulations-Szenario wéhlen wir eine Familie von Alternativen. Die uniforme
Verteilung fiigt sich in die Beta-Verteilungen mit den Dichten
Fla+b) , 4
Porl®) = Fayr)
ein. Wir wihlen als Alternativen Verteilungen aus dieser Familie. Daraus ziehen wir
wiederholt Stichproben, und wenden jeweils formal unsere Entscheidungsverfahren
an. Wir registrieren, ob das Verfahren zu einer Ablehnung der Hypothese fithrt oder

nicht. Zu gegebener Wahl eines Stichprobenumfangs n und einer Wiederholungsan-
zahl m und bei Wahl einer Grenzwahrscheinlichkeit o erhalten wir eine Tabelle

1—2)' fira>0b>0und0<z<1

(a,b) +— # Simulationen, bei denen die Hypothese verworfen wird.

Speziell fiir die uniforme Verteilung (a,b) = (1, 1) erwarten wir annéhernd m -« Ver-
werfungen. Fiir andere Verteilungen ist ein Verfahren um so entscheidungsschérfer,
je grofer der Anteil der Verwerfungen ist.
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Aufgabe 1.17

*ok

Untersuchen Sie die Trennschérfe des Kolmogorov-Smirnov-
Test und des y2-Tests. Wihlen Sie jeweils einen Wert fiir n, m
und «, und wéhlen Sie 9 Paare fiir (a,b). Notieren Sie die
Uberlegungen hinter Threr Wahl.

Ziehen Sie zu diesen Parametern mit rbeta () Zufallsstichpro-
ben.

Fiithren Sie jeweils den Kolmogorov-Smirnov-Test und einen
x>-Test mit 10 gleichgroBen Zellen auf (0, 1) durch.

Wiéhlen Sie Alternativparameter (a,b) so, dass Sie entlang
der folgenden Geraden die Entscheidungsverfahren vergleichen
konnen:

i)a=Db
i) b=1
i) a = 1

und fithren Sie eine entsprechende Simulation durch.

Wiéhlen Sie Alternativparameter (a,b) so, dass Sie fiir den Be-
reich 0 < a,b < 5 die Entscheidungsverfahren vergleichen kon-
nen.

Ihre Schliisse?

Hinweis: Mit outer(x, y, fun) wird eine Funktion fun()
auf alle Paare aus den Werten von x,y angewandt und das
Ergebnis als Resultat zuriickgeliefert.
Mit

contour ()

konnen Sie einen Contour-Plot erzeugen.
Siehe demo ("graphic").

Aufgabe 1.18

*k

Entwerfen Sie eine Priifstrategie, um “Pseudozufallszahlen” zu
entlarven.
Testen Sie diese Strategie an einfachen Beispielen
i) x 2 =1.100 mod m fiir geeignete m
ii) sin(z) x = 1..100
iii) ...
Werden diese als “nicht zuféllig” erkannt?

Versuchen Sie dann, die bereitgestellten Zufallszahlengenera-
toren zu entlarven.
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1.4. Momente und Quantile

Verteilungsfunktionen oder Dichten sind mathematisch nicht einfach zu handha-
ben: der Raum der Funktionen ist im allgemeinen unendlich-dimensional und endli-
che geometrische Argumente oder endliche Optimierungsargumente sind nicht direkt
anwendbar. Um die Analyse zu vereinfachen, greift man bisweilen auf endliche Be-
schreibungen zuriick.

Historisch haben die Momente eine wichtige Rolle gespielt: Wahrscheinlichkei-
ten werden als Masse-Verteilungen interpretiert, und die Momente analog zu den
Momenten der Mechanik eingefiihrt. Das erste Moment, entsprechend dem Schwer-
punkt, heiflt in der Statistik Erwartungswert.

DEFINITION 1.11. Ist X eine reellwertige Zufallsvariable mit Verteilung P, so ist
der Erwartungswert von X definiert als

z%uy:Euy:/mm
falls das Integral existiert.

Das zweite Moment und hohere Momente werden konventionell zentriert. Fiir
das zweite (zentrale) Moment, die Varianz, haben wir die folgende Definition:

DEFINITION 1.12. Ist X eine reellwertige Zufallsvariable mit Verteilung P, so ist
die Varianz von X definiert als

Varp (X) :=Var (X) = /(X — B (X))*dP.

Die Integralausdriicke miissen nicht immer definiert sein, d.h. die Momente miis-
sen nicht immer existieren. Existieren sie jedoch, so geben sie eine erste Information
iiber die Verteilung. Der Erwartungswert wird oft als das “statistische Mittel” inter-
pretiert; die Wurzel aus der Varianz, die Standardabweichung, als “Streuung’.

Die Definitionen kénnen auch auf empirische Verteilungen angewandt werden.
Dies gibt einen ersten Weg, die Momente einer unbekannten theoretischen Verteilung
aus den Daten zu schétzen. Fiir den Mittelwert gilt Konsistenz:

Ep( Ep, (X)) = Ep(X),

d.h. im statististischen Mittel stimmen empirischer Erwartungswert und Erwartungs-
wert der zu Grunde liegenden Verteilung iiberein (falls definiert).

Fiir die Varianz gilt diese Konsistenz nicht, sondern es gilt

”1m4mmﬂxn=vWﬂX%

falls n > 1. Der mathematische Hintergrund ist, dass der Erwartungswert ein li-
nearer Operator ist. Er kommutiert mit linearen Operatoren. Aber die Varianz ist
ein quadratischer Operator, und dass macht eine Korrektur nétig, wenn man Konsi-
stenz will. Die entsprechend korrigierte Varianz wird oft als Stichprobenvarianz
bezeichnet.

Fiir die Schétzung der ersten beiden Momente eines Vektor von Zufallszah-
len stehen in R Funktionen bereit: mean () schatzt den Mittelwert und var () die
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(Stichproben-)Varianz. Die Funktion sd() schitzt die Standardabweichung eines
Vektors.

Aufgabe 1.19

Generieren Sie jeweils eine Stichprobe von 100 Zufallsvariablen
aus den Verteilungen mit den folgenden Dichten:
(

0 <0
pr)=41 0<z<1
0 =z>1
\
sowie
(
0 =<0
2 0<zx<1/4
px) =40 1/4<z<3/4
2 3/d<z<1
0 =z>1

\
Schatzen Sie dazu Mittelwert, Varianz und Standardabwei-
chung.

Wiederholen Sie die Schéatzung fiir 1000 Stichproben. Analy-
sieren Sie die Verteilung von geschitztem Mittelwert, Varianz
und Standardabweichung bei wiederholten Stichproben.

Momente sind durch einfache arithmetische Operationen zu berechnen und ihre
Kombination folgt (exakt oder approximierbar) einfachen Gesetzen. Sie sind jedoch
sehr sensitiv. Die Verschiebung einer beliebig kleinen Wahrscheinlichkeitsmasse kann
sie zum Zusammenbruch bringen. Fiir die empirische Verteilung bedeutet dies: stam-
men die beobachteten Daten zu einem Anteil 1 —e¢ aus einer Modellverteilung und zu
einem Anteil € aus einer anderen Verteilung, so konnen die Momente jeden beliebi-
gen Wert annehmen, fiir jeden beliebig kleinen Wert von €. Quantile sind gegeniiber
einem Zusammenbruch robuster als Momente. So miissen 50% der Daten “Ausreiler”
sein, bis der der Median beeinflusst wird, wihrend das erste Moment, der Erwar-
tungswert, schon bei Verdnderung nur eines Datenpunkte beliebige Werte annehmen
kann.

Mit der Verfiigbarkeit von programmierbaren Rechnern haben Quantile als be-
schreibende Grofle an Bedeutung gewonnen. Thre Berechnung setzt implizit eine
Sortier-Operation voraus, ist also komplexer als die Berechnung von Momenten.
Auch die Regeln zur Kombination sind nicht so einfach wie bei Momenten und setzt
oft eine explizite Rechnung voraus. Aber mit den verfiigharen technischen Mitteln
ist dies keine wesentliche Einschréinkung.

R bietet eine Reihe von Funktionen, um mit Quantilen zu arbeiten. quantile ()
ist eine elementare Funktion, um Quantile zu bestimmen. Die Funktion summary ()
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gibt eine Zusammenfassung der Verteilungsinformation, die auch auf Quantilen ba-
siert ist.

Aufgabe 1.20

Generieren Sie jeweils eine Stichprobe von 100 Zufallsvariablen
aus den Verteilungen von Aufgabe 1.19.
Schétzen Sie dazu Median, oberes und unteres Quartil.

Wiederholen Sie die Schéitzung fiir 1000 Stichproben. Analy-
sieren Sie die Verteilung von geschétztem Median, oberen und
unterem Quartil bei wiederholten Stichproben.

Mit boxplot() erhélt man eine grafische Représentation dieser Zusammenfas-
sung. Der hier benutzte “Box&Whisker-Plot” hat eine Reihe von Variationen. Des-
halb ist es bei der Interpretation notwendig, sich jeweils iiber die benutzten Details
zu informieren. Ublich ist eine Kennzeichnung durch eine “Box”, die den zentralen
Teil der Verteilung beschreibt. In der Standardversion kennzeichnet eine Linie den
Median, und eine “Box” darum reicht vom Median der oberen Hélfte bis zum Medi-
an der unteren Hélfte. Grob entspricht dies dem oberen und dem unteren Quartil.
Die feinere Definition sorgt dafiir, dass die Information auch noch verlasslich wie-
der gegeben wird, wenn Bindungen, d.h. vielfache Beobachtungen des selben Wertes
auftreten. Die “Whisker” beschreiben die angrenzenden Bereiche. Ausreifler sind be-
sonders gekennzeichnet.

Bezspiel 1.10:

Eingabe
oldpar <- par(mfrow = c(1, 4))
boxplot (runif (100), main = "uniform")
boxplot (rnorm(100), main = "normal")

boxplot (exp (rnorm(100)), main = "lognormal")
boxplot (rcauchy(100), main = "cauchy")
par (oldpar)

uniform normal lognormal cauchy

JE— - JE—

400

300

200

100
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Theorem 1.4 gibt eine Moéglichkeit, Konfidenzintervalle fiir Quantile zu bestim-

men, die allgemein giiltig sind, unabhéngig von der Form der zu Grunde liegenden

Verteilung.

Um das p-Quantil z, einer stetigen Verteilungsfunktion durch eine Ordnungssta-
tistik X(4.n) zum Konfidenzniveau 1 — a nach oben abzuschétzen, suchen wir

mkin t P( Xy > 1) 21—

Aber Xy > 2, <= F(X(ppn) > p und wegen Theorem 1.4 ist damit

Wir kénnen also min, direkt aus der Beta-Verteilung ermitteln, oder wir benutzen

P<X(kn) > LUp) =1- Fbeta(p; k, n—k+ ].)

die Beziehung zur Binomialverteilung und bestimmen £ als

mkin:Pbm(X <k-1np >1-a.

Aufgabe 1.21

Fiir stetige Verteilungen und den Verteilungsmedian X,,.4 ist
P(X; > X,ea) = 0.5. Deshalb kann ein & so bestimmt werden,
dass

k= mm{k : P(X(k) < Xmed) < Oé}
und X () als obere Abschitzung fiir den Median zum Konfi-
denzniveau 1 — o gewahlt werden.

Konstruieren Sie mit dieser Idee ein Konfidenzintervall fiir den
Median zum Konfidenzniveau 1 — a = 0.9.

Modifizieren Sie den Box & Whiskerplot so, dass er dieses In-
tervall einzeichnet.

Hinweis: Sie benotigen dazu die Verteilungsfunktion Fx, aus-
gewertet an der durch die Ordnungsstatistik X definierten
Stelle. Die Verteilungen von Fx (X)) wird in Theorem 1.4
diskutiert.

Der Boxplot bietet eine Option notch = TRUE, um Konfidenz-
intervalle zu generieren. Versuchen Sie, mithilfe der Dokumen-
tation herauszufinden, wie ein notch bestimmt wird. Verglei-
chen Sie Thre Konfidenzintervalle mit den durch notch gekenn-
zeichneten Intervallen.

* Bestimmen Sie analog ein verteilungsunabhéngiges Konfiden-
zintervall fiir den Interquartilsabstand.
* K K Ergianzen Sie den Box & Whiskerplot so, dass er die Skalenin-

formation statistisch verldsslich darstellt.

Hinweis: Wieso reicht es nicht, Konfidenzintervalle fiir die
Quartile einzuzeichnen?
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1.5. Ergidnzungen

1.5.1. Erginzung: Zufallszahlen. Wenn wir unabhéngige identisch uniform
verteilte Zufallszahlen hétten, konnten wir auch Zufallszahlen mit vielen anderen
Verteilungen generieren. 7.B.

LEMMA 1.13. (Inversionsmethode): Ist (U;) eine Folge unabhingiger U[0, 1] ver-
teilter Zufallsvariablen und F eine Verteilungsfunktion, so ist (X;) := (F~'U;) eine
Folge unabhdngiger Zufallsvariablen mit Verteilung F'.

Analytisch ist dieses Lemma nur brauchbar, wenn F~! bekannt ist. Numerisch
hilft es jedoch viel weiter: anstelle von F~! werden Approximationen benutzt, oft
sogar nur eine Inversionstabelle.

Die Inversionsmethode ist eine Methode, aus gleichverteilten Zufallszahlen andere
Zielverteilungen abzuleiten. Weitere (evtl. effektivere) Methoden, aus gleichverteil-
ten Zufallszahlen andere Zielverteilungen abzuleiten, werden in der Literatur zur
statistischen Simulation diskutiert.

Fiir eine Reihe von Verteilungen werden transformierte Zufallsgeneratoren bereit-
gestellt. Eine Liste ist im Anhang (Seite A-43) angegeben. Zu jeder Verteilungsfamilie
gibt es dabei eine Reihe von Funktionen, deren Namen aus einem Kurznamen fiir
die Verteilung abgeleitet sind. Fiir die Familie zyz ist rxyz eine Funktion, die Zu-
fallszahlen erzeugt. dxyz berechnet die Dichte bzw. das Zahlmaf fiir diese Familie,
pxyz die Verteilungsfunktion, und gxyz die Quantile®.

Ubersicht: einige ausgewiihlte Verteilungen. Weitere Verteilungen siehe
A.23 (Seite A-43).

Verteilung Zufalls- Dichte Verteilungs-| Quantile
zahlen funktion

Binomial rbinom dbinom pbinom gbinom

Hypergeometrisch | rhyper dhyper phyper ghyper

Poisson rpois dpois ppois gpois

Gauf rnorm dnorm pnorm gnorm

Exponential rexp dexp pexp gexp

1.5.2. Erginzung: Grafische Vergleiche. Abweichungen von einfachen geo-
metrischen Formen werden besser wahrgenommen als Abweichungen zwischen all-
gemeinen Grafen dhnlicher Form. Deshalb kann es hilfreich sein, Darstellungen zu
wéhlen, die auf einfache Formen wie z.B. Geraden fithren. So wihlt man um zwei Ver-
teilungsfunktionen F, G zu vergleichen anstelle der Funktionsgraphen den Graphen
von

r = (F(x), G(x).

3d.h. mit den in der Statistik iiblichen Bezeichnungen ist verwirrender Weise Day- = dxyz und
Fpy. = pxyz.
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Dieser Graph heifit PP-Plot oder probability plot. Stimmen die Verteilungen
iiberein, so ist der Plot eine diagonale Gerade. Abweichungen von der Diagonalgestalt
sind leicht zu erkennen.

Alternativ kann die Merkmalsskala als Bezug genommen werden und der Graph
von
p = (F7(p),G"'(p))
betrachtet werden. Dieser Graph heifit Q@Q-Plot oder Quantilplot. Stimmen die
Verteilungen iiberein, so zeigt auch dieser Plot eine diagonale Gerade.

Im Spezialfall der uniformen Verteilung auf [0, 1] ist auf diesem Intervall x =
F(x) = F7'(z), d.h. QQ-Plot und PP-Plot stimmen iiberein und sind der Graph
der Verteilungsfunktion. Bei nicht-uniformen Verteilungen werden die Graphen im
PP-Plot auf die Wahrscheinlichkeitsskala [0, 1] standardisiert, und im QQ-Plot auf
die Merkmalsskala umskaliert.

Aufgabe 1.22

Erstellen Sie einen PP-Plot der t(v)-Verteilung gegen die
Standardnormalverteilung im Bereich 0.01 < p < 0.99 fiir
v=1,23,....

Erstellen Sie einen QQ-Plot der t(v)-Verteilung gegen die
Standardnormalverteilung im Bereich —3 < z < 3 fiir v =
1,2,3,....

Wie grofl muss v jeweils sein, damit jeweils die ¢-Verteilung in
diesen Plots kaum von der Normalverteilung zu unterscheiden
ist?

Wie grofl muss v sein, damit die ¢-Verteilung bei einem Ver-
gleich der Verteilungsfunktionen kaum von der Normalvertei-
lung zu unterscheiden ist?

Konnen die Verteilungen durch eine affine Transformation im Merkmalsraum
ineinander iiberfiithrt werden, so zeigt der QQQ)-Plot immer noch eine Gerade; Steigung
und Achsenabschnitt repriasentieren die affine Transformation. Dies ist zum Beispiel
so bei der Familie der Normalverteilungen: ist F' die Standard-Normalverteilung
N(0,1) und G = N(u,0?), so ist der QQ-Plot eine Gerade mit Achsenabschnitt p
und Steigung o.

Fiir empirische Verteilungen findet Korollar 1.5 Anwendung: anstelle von i/n wird
ein fiir die Schiefe korrigierter Bezugspunkt gewé&hlt, damit im Mittel eine Gerade
erzeugt wird. Der Quantilplot mit dieser Korrktur fiir empirische Verteilungen ist
als Funktion ggplot () bereitgestellt. Fiir den Spezialfall der Normalverteilung ist
eine Variante von qgplot () als ggnorm() verfiighar, um eine empirische Verteilung
mit der theoretischen Normalverteilung zu vergleichen.

Durch die Transformationen auf die Wahrscheinlichkeits- bzw. Merkmalsskala
gewinnen die graphischen Verfahren an Schérfe. So ist zum Beispiel selbst bei einem
Stichprobenumfang von n = 50 die Verteilungsfunktion der Normalverteilung oft nur
fiir den geiibten Betrachter von der uniformen zu unterscheiden. Im Normal-QQ-Plot
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hingegen zeigen sich uniforme Stichproben als deutlich nicht-linear, normalverteilte
Daten hingegen geben weitgehend lineare Bilder.

Zur Illustration erzeugen wir uns zunéchst zufillige Datensétze:

Eingabe
unif50 <- runif(50)

unif100 <- runif(100)

norm50 <- rnorm(50)

norm100 <- rnorm(100)
lognorm50 <- exp(rnorm(50))
lognorm100 <- exp( rnorm(100))

Mit diesen Datensétzen generieren wir Plots der Verteilungsfunktionen.

Bezispiel 1.11:

Eingabe

oldpar <- par(mfrow = c(2, 3))
plot(ecdf (unif50), pch = "[")
plot(ecdf (norm50), pch = "[")
plot (ecdf (lognorm50), pch = "[")
plot(ecdf (unif100), pch = "[")
plot (ecdf (norm100), pch = "[")
plot (ecdf (lognorm100), pch = "[")

par (oldpar)
ecdf(unif50) ecdf(norm50) ecdf(lognorm50)
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Zum Vergleich dazu die entsprechenden QQQ-Plots fiir die selben Daten:
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Beispiel 1.12:
Eingabe

oldpar <- par(mfrow = c(2, 3))

qqnorm(unif50, main "Normal Q-Q unif50")
qqnorm(norm50, main = "Normal @-Q norm50")
gqnorm(lognorm50, main = "Normal Q- lognorm50")
qqnorm(unif100, main = "Normal Q-Q unif100")

qqnorm(norm100, main = "Normal (-Q norm100")
qqnorm(lognorm100, main = "Normal (-Q lognorm100")
par (oldpar)
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Aufgabe 1.23

Benutzen Sie P P-Plots anstelle von Verteilungsfunktionen, um
die % und Kolmogorov-Smirnov-Approximationen darzustel-
len.

Aufgabe 1.24

Benutzen Sie QQ-Plots anstelle von Verteilungsfunktionen.
Konnen Sie in diesem Plot mit Hilfe der y2- bzw. Kolmogorov-
Smirnov-Stastistik Konfidenzbereiche darstellen?
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Um einen Eindruck iiber die Fluktuation zu bekommen, miissen wir empirische
Plots mit typischen Plots einer Modellverteilung vergleichen. Eine Plot-Matrix ist
ein einfacher Weg dazu. Wir geben hier ein Beispiel fiir den Normal-Q@Q-Plot, das
wir gleich als Funktion implementieren:

Eingabe
qgnormx <- function(x, nrow = 5, ncol = 5, main = deparse(substitute(x))){

oldpar <- par(mfrow = c(nrow, ncol))

qqnorm(x, main = main)

for (i in 1:(nrow*ncol-1)) qqnorm(rnorm(length(x)), main = "N(0, 1)")
par (oldpar)

Wir haben in diesem Beispiel eine for-Schleife benutzt. Wie alle Programmier-
sprachen hat R Kontrollstrukuren, wie bedingte Anweisungen und Schleifen. Eine
Ubersicht iiber die Kontrollstrukturen in R ist im Anhang A.14 zu finden.

Abweichung von einer linearen Struktur ist als Fluktuation zu betrachten, wenn
sie im Rahmen der simulierten Beispiele bleibt. Ist der zu untersuchende Datensatz
extrem im Vergleich zu den simulierten Beispiele, so widerspricht das der Modellver-
teilung.

Beispiel 1.13:
Eingabe

gqnormx (runif (100))

runif(100) N, 1) N, 1) N, 1) N, 1)
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Auf lange Sicht lohnt es sich, die Plot-Funktionen so zu modifizieren, dass sie
auch Informationen iiber die zu erwartende Fluktuation wieder geben. In Beispiel 1.9
haben wir fiir die Verteilungsfunktion Monte-Carlo-Bénder konstruiert. Wir kénnen
diese Idee auf den PP-Plot und den QQ-Plot iibertragen. Dazu ist es nur notwendig,
die Bander jeweils in der fiir den Plot geeigneten Skala darzustellen.

Aufgabe 1.25

Erzeugen Sie sich mit rnorm() Pseudozufallszahlen fiir die
Gaufiverteilung zum Stichprobenumfang n = 10, 20, 50, 100.

Erzeugen Sie jeweils einen P P-Plot und einen QQQ-Plot, wobei
die theoretische Gauflverteilung als Bezug dient.

Fiigen Sie Monte-Carlo-Béander aus der Einhiillenden von 19
Simulationen hinzu.

Sie miissen zunéchst anstelle der uniformen Verteilung die Nor-
malverteilung zur Erzeugung der Monte-Carlo-Bénder benut-
zen. Sie miissen auflerdem die Resultate im Koordinatensy-
stem des QQQ-Plots darstellen, d.h. die x-Achse reprasentiert
die Quantile der Normalverteilung. Hinweis: inspizieren Sie da-
zu die Quelle von qgqnorm().

* Die Béander sind zunachst Bander fiir die Standard-
Normalverteilung. Finden Sie Bénder fiir die vorliegenden Da-
ten.

1.5.3. Erginzung: Grafik-Aufbereitung. Bislang wurde die R-Grafik in ru-
dimentédrer Form benutzt. Fiir ernsthafte Arbeit muss die Grafik so aufbereitet
werden, dass ihre Bestandteile identifiziert und wiedererkennbar sind. Dazu geho-
ren Uberschriftungen, Achsenkennzeichnungen etc. R unterscheidet zwischen “high
level”-Grafik und “low level”. “High level”-Funktionen erzeugen eine neue Grafik. Sie
bieten dariiber hinaus Moglichkeiten, allgemeine Grafikparameter zu steuern.

Die “low level’-Funktionen fiigen Elemente zu vorhandenen Grafiken hinzu oder
modifizieren die Grafik im Detail. Die Funktion 1egend () zum Beispiel kann Legen-
den innerhalb der Graphik hinzu fiigen.
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Beispiel 1.14:

Eingabe
plot(1:10, xlab = "xlab", ylab = "yIlab", main = "main", sub = "sub")
mtext ("mtext 1", side = 1, col = "blue")
mtext ("mtext 2", side = 2, col = "blue'")
mtext ("mtext 3", side = 3, col = "blue")
mtext ("mtext 4", side = 4, col = "blue")

legend("topleft", legend = "topleft legend")
legend("center", legend = "center" , 1ty = 1:4, title = "line types")

ylab

main
mtext 3
o _J
= topleft legend °
0 — o
© OH . <
% line typés %
‘é‘ - center g
< 4 o
o
N o
‘ ‘ mtext 1 ‘ ‘
2 4 6 8 10
xlab

sub

Aufgabe 1.26

Inspizieren Sie mit help(plot) die Steuerungsmoglichkeiten
der plot-Funktion. Einige Detail-Information zu den Parame-
tern erhalten Sie erst in help(plot.default). Korrigieren Sie
Thren letzten Plot so, dass er eine korrekte Uberschrift trigt.

Weitere Hinweise:[R D07a] Ch. 12.

1.5.4. Erginzung: Funktionen. R-Kommandos kénnen zu Funktionen zu-

sammengefasst werden. Funktionen kénnen parametrisiert sein. Funktionen erlauben

eine flexible Wiederverwendbarkeit.

Beispiel fiir eine Funktion
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Beispiel 1.15:

Eingabe
197 {

ppdemo <- function (x, samps
# samps: nr of simulations

y <= (1:length(x))/length(x)

plot(sort(x), y, xlab = substitute(x), ylab = expression(F[n]),
main = "Verteilungsfunktion mit Monte-Carlo-Band (unif.)",
type = Hs")

mtext (paste (samps, "Monte-Carlo-Stichproben"), side = 3)

samples <- matrix(runif(length(x)* samps), nrow = length(x), ncol

sS4

samples <- apply(samples, 2, sort)

envelope <- t(apply(samples, 1, range))
lines(envelope[, 11, y, type = "s", col = "red");
lines(envelope[, 2], y, type = "s", col = "red")

Wir haben bei ppdemo () die Funktion mtext () benutzt, die Randbeschriftungen
erlaubt.

Funktionen werden in der Form (Name) ((Aktuelle Parameterliste)) aufgerufen.

Beispiel 1.16:

2100 <- runif(100)
ppdemo (z100)

Eingabe

Verteilungsfunktion mit Monte—Carlo—Band (unif.)
19 Monte-Carlo-Stichproben

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

2100

mps)
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Wird nur der Name der Funktion eingegeben, so wird die Definition der Funktion
zuriick gegeben, d.h. die Funktion wird aufgelistet. Beispiel:

Beispiel 1.17:

opdemo Eingabe

Ausgabe
function (x, samps = 19) {

# samps: nr of simulations

y <= (1:length(x))/length(x)

plot(sort(x), y, xlab = substitute(x), ylab = expression(F[n]),
main = "Verteilungsfunktion mit Monte-Carlo-Band (unif.)",
type = ngM)

mtext (paste(samps, "Monte-Carlo-Stichproben"), side = 3)

samples <- apply(samples, 2, sort)

envelope <- t(apply(samples, 1, range))
lines(envelopel[, 1], y, type = "s", col = "red");
lines(envelope[, 2], y, type = "s", col = "red")

samples <- matrix(runif(length(x)* samps), nrow = length(x), ncol = san

Aufgabe 1.27

Inspizieren Sie runif () mit qgplot() und plot().
Uberarbeiten Sie Thre bisherigen Programmieraufgaben und schrei-
ben Sie die wiederverwendbaren Teile als Funktionen.

Parameter bei Funktionen werden dem Wert nach iibergeben. Jede Funktion erhélt eine
Kopie der aktuellen Parameterwerte. Dies sorgt fiir eine sichere Programmierumgebung.
Auf der anderen Seite fiihrt dies zu eine Speicherbelastung und bringt einen Zeitverlust mit
sich. In Situationen, wo der Parameterumfang grofl ist oder die Zeit eine kritische Grofle
ist, kann dieser Aufwand vermieden werden, indem direkt auf Variable zugegriffen wird,
die in der Umgebung der Funktion definiert sind. Entsprechende Techniken sind in [GI00]
beschrieben.

Funktionen in R kénnen auch geschachtelt sein, d. h. innerhalb einer Funktion kon-
ne auch wieder Funktionen definiert werden. Diese sind nur innerhalb der umgebenden
Funktion sichtbar.

Funktionen kénnen Objekte als Resultate haben. Ein Objekt wird explizit als Resultat
iibergeben mit return(obj). Das Resultat kann auch implizit iibergeben werden: wird das
Ende einer Funktion erreicht, ohne dass return() aufgerufen wurden, so wird der Wert
des letzten ausgewerteten Ausdruck iibergeben.

Eingabe
circlearea <- function( r) r~2 * pi

circlearea(1:4)

Ausgabe
[1] 3.141593 12.566371 28.274334 50.265482

ps)
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Resultate konnen auch bereit gestellt werde, so dass sie nur auf Anfrage iibergeben
werden. Wir haben diese Technik beim Histogramm kennen gelernt. Der Aufruf hist (x)
iibergibt kein Resultat, sondern hat nur den (gewiinschten) Seiteneffekt, ein Histogramm
zu zeichnen. Benutzen wir hist () jedoch in einem Ausdruck, zum Beispiel in einer Zu-
weisung xhist <- hist(x), so erhalten wir als Wert die Beschreibung des Histogramms.
Um Resultate nur bei Bedarf zu tibergeben, wird anstelle return(obj) der Aufruf invi-
sible(obj) benutzt.

Aufgabe 1.28

Schreiben Sie als Funktionen:

e Eine Funktion ehist, die ein Histogramm mit Ergédnzun-
gen zeigt.

e Fine Funktion eecdf, die die empirische Verteilung zeigt.

e Fine Funkion eqgnorm, die einen @QQ-Plot mit der
Standard-Normalverteilung vergleicht.

e Eine Funkion eboxplot, die einen Box&Whisker-Plot
zeigt.

e Eine zusammenfasende Funktion eplot, die eine Plot-
Matrix mit diesen vier Plots zeigt.

Ihre Funktionen sollten die Standardfunktionen so aufrufen (oder

modifizieren, falls notwendig), dass die Plots eine angemessene Be-
schriftung erhalten.

Wihrend Anweisungen in R schrittweise ausgefiithrt werden und so die Resultate bei
jedem Schritt inspiziert werden konnen, werden beim Aufruf einer Funktion alle Anweisun-
gen in der Funktion als Einheit ausgefiihrt. Dies kann eine Fehlersuche schwierig machen.
R bietet Moglichkeiten, die Inspektion gezielt auf Funktionen zu ermoglichen. Details dazu
finden sich im Anhang A.13 “Debugging und Profiling” auf Seite Seite A-21.

1.5.5. Erginzung: Das Innere von R. Ein typischer Arbeitsabschnitt von R ver-
arbeitet Kommandos in drei Teilschritten:

e parse() analysiert einen Fingabetext und wandelt ihn in ein interne Darstellung
als R-Ausdruck. R-Ausdriicke sind spezielle R-Objekte.

e eval() interpretiert diesen Ausdruck und wertet ihn aus. Das Resultat ist wieder
ein R-Objekt.

e print() zeigt das resultierende Objekt.

Details sind zu ergénzen:

1.5.5.1. Parse. Der erste Schritt besteht aus zwei Teilen: einem Leseprozess, der die
Eingabe einscannt und in Bausteine (Tokens) zerlegt, und dem eigentlichen Parsing, das
die Bausteine falls moglich zu einem syntaktisch korrekten Ausdruck zusammenfasst. Die
Funktion parse () fasst beide Schritte zusammen. Dabei kann parse () sowohl auf lokalen
Dateien arbeiten, als auch auf externen, durch eine URL-Referenz bezeichneten Dateien.

Als inverse Funktion steht substitute () zur Verfiigung. Eine typische Anwendung ist
es, aktuelle Parameter eines Funktionsaufrufs zu entschliisseln und informative Beschrif-
tungen zu erzeugen.
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1.5.5.2. Ewval. Die Funktion eval() wertet einen R-Ausdruck aus. Dazu miissen die
Referenzen im Ausdruck je nach den aktuellen Umgebungsbedingungen in entsprechende
Werte iibersetzt werden. Da R ein interpretiertes System ist, konnen die Umgebungs-
bedingungen variieren; je nach Umgebung kann derselbe Ausdruck zu unterschiedlichen
Resultaten fiihren.

Jede Funktion definiert eine eigene lokale Umgebung. Funktionen kénnen geschachtelt
sein und somit auch die Umgebungen. Die Umgebung kann auch dadurch verdndert werden,
dass Zusatzpakete fiir R geladen werden. Die aktuelle unmittelbare Umgebung kann mit
environment () erfragt werden. Mit search () erhélt man eine Liste der Umgebungen, die
sukzessive durchsucht werden, um Referenzen aufzulésen. Mit 1s() erhélt man eine Liste
der Objekte in einer Umgebung.

Die Erweiterbarkeit von R bringt die Moglichkeit mit sich, dass Bezeichnungen kol-
lidieren und damit die Ubersetzung von Referenzen in aktuelle Werte fraglich wird. Als
Schutz dagegen bietet R 2.x die Moglichkeit, Bezeichnungen in (geschiitzten) Namensriu-
men zusammen zu fassen. In den meisten Féllen ist dies transparent fiir den Benutzer;
die Auflosung von Namen folgt der Suchreihenfolge, die durch die Kette der Umgebungen
bestimmt ist. Um explizit auf Objekte eines bestimmten Namensraums zuzugreifen, kann
dieser mit angegeben werden (z. B. base: :pi als expliziter Name fiir die Konstante pi im
Namensraum base).

1.5.5.3. Print. Die Funktion print () ist als polymorphe Funktion implementiert.
Um print () auszufithren bestimmt R anhand der Klasse des zu druckenden Objekts eine
geeignete Methode. Details folgen spéter in Abschnitt 2.6.5 Seite 2-39.

1.5.5.4. Ausfiihrung von Dateien. Die Funktion source () steht bereit, um eine Datei
als Eingabe fiir R zu benutzen. Dabei kann die Datei lokal sein, oder {iber eine URL-
Referenz bezeichnet sein. Konventionell wird fiir die Namen von R-Kommandodateien die
Endung .R benutzt.

Die Funktion Sweave () erlaubt es, Dokumentation und Kommandos miteinander zu
verweben. Konventionell wird fiir die Namen von Sweave ()-Eingabedateien die Endung
.Row benutzt. Details zum Format finden sich in der Sweave () -Dokumentation
<http://www.ci.tuwien.ac.at/ leisch/Sweave/Sweave-manual-20060104.pdf>.

1.5.6. Erginzung: Pakete. Funktionen, Beispiele, Datensétze etc. konnen in R zu
Paketen zusammengefasst werden, die bestimmten Konventionen entsprechen. Die Kon-
ventionen unterscheiden sich bei verschiedenen Implementierungen. Als aktuelle Referenz
sollten die Konventionen von R [R DO08] benutzt werden, denen wir auch hier folgen. Eine
Reihe von Paketen sind Standardbestandteil von R. Pakete fiir spezielle Zwecke findet man
im Internet z.B iiber http://www.cran.r-project.org/src/contrib/PACKAGES.html.

Nicht-Standard-Pakete miissen zunéchst im R-System installiert werden. In der Regel
gibt es dazu betriebssystem-spezifische Kommandos. Komfortabler ist jedoch die Installa-
tion aus R mit der Funktionen install.packages (). Ist keine spezielle Quelle angegeben,
so greift install.packages dabei auf eine vorbereitete Adresse (in der Regel die oben
angegebene) zuriick. Sie kénnen Pakete jedoch von jedem beliebigen Speicher laden. Ins-
besondere kann mit install.packages ({package), repos = NULL) unter (package) ein
direkter Zugriffspfad auf Ihrem Rechner angegeben werden.

Die Funktion update.packages () vergleicht installierte Versionen mit dem aktuellen
Stand im Netz und frischt gegebenenfalls die installierte Version auf.

Installierte Pakete werden mit
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library (pkgname)

geladen. Danach sind die im Paket definierten Objekte (Funktionen, Datensitze, . ..) iiber
den aktuellen Suchpfad auffindbar und direkt verwendbar.

Pakete werden mit
detach (pkgname)

wieder frei gegeben, d.h. ihre Objekte erscheinen nicht mehr im Suchpfad.

Technisch sind Pakete Verzeichnisse, die den R-Konventionen folgen. Ublich liegen sie
in gepackter Form als .tar.gz-Files vor. In der Regel wird man zun#chst als Benutzer
vorbereitete Binédrpakete installieren. Nur selten muss man auf die Quellpakete anderer
Entwickler zuriickgreifen.

Bei der Organisation der eigenen Arbeit lohnt es sich, den R-Konventionen zu folgen
und zusammen gehorende Teile als R-Pakete zu organisieren. Dann stellt R eine ganze
Reihe von Werkzeugen zur Unterstiitzung bereit. Die Konventionen und die bereitgestellten
Werkzeuge sind in [R DO08] dokumentiert. Fiir Unix/Linux/Mac OS X-Benutzer sind die
wichtigsten Werkzeuge als Kommandos verfiigbar:

R CMD check <directory> # iiberpriift ein Verzeichnis
R CMD build <directory> # generiert ein R-Paket

Als Einstieg: Die Funktion package.skeleton() hilft bei der Konstruktion neuer Pa-
kete. package.skeleton() erzeugt dabei aufler einem vorbereiteten Paket eine Hilfsdatei,
die die weiteren Schritte zur Erzeugung eines ladbaren Pakets beschreibt.

Pakete miissen eine Datei DESCRIPTION mit bestimmter Information enthalten. Die
Details sind in [R DO08] beschrieben, und ein Prototyp wird von package.skeleton()
erzeugt. Weiteres ist optional.

Name Art Inhalt

DESCRIPTION Datei eine Herkunftsbeschreibung nach Format-
konventionen.

R Verzeichnis R code. Dateien in diesem Verzeichnis soll-

ten mit source() gelesen werden konnen.
Empfohlene Namensendung: .R .

data Verzeichnis Zuséatzliche Daten. Dateien in diesem Ver-
zeichnis sollten mit data() gelesen werden
konnen.

Empfohlene Namensendungen und Formate:
R fiir R-Code. Alternativ: .r
stab  fiir Tabellen. Alternativ: .txt, .csv

.RData fiir Ausgaben von save (). Alter-
nativ: .rda.

Das Verzejchnis sollte eine Datei 00Index
mit einer Ubersicht iiber die Datensétze ent-
halten.

(Fortsetzung)—
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Name

Art Inhalt

exec

Verzeichnis Zusitzliche ausfithrbare Dateien, z.B. Perl-
oder Shell-Skripte.

nst

Verzeichnis Wird (rekursiv) in das Zielverzeichnis ko-
piert. Dieses Verzeichnis kann insbesondere
eine Datei CITATION enthalten, die in R
mit einer Funktion citation() ausgewertet
wird.

man

Verzeichnis Dokumentation im R-Dokumentationsfor-
mat (siehe: [R DO8] “Writing R extensions”,
zuganglich iiber

<http://www.cran.r-project.org/>).
Empfohlene Namensendung: .Rd

sre

Verzeichnis Fortran, C und andere Quellen.

demo

Verzeichnis ausfithrbare Beispiele. Dieses Verzeichnung
sollte in einer Datei 00Index eine Beschrei-
bung enthalten.

Aufgabe 1.29

Installieren Sie die Funktionen der letzten Aufgaben als Paket. Das
Paket sollte enthalten:

e Eine Funktion ehist, die ein Histogramm mit Ergédnzun-
gen zeigt.

e Fine Funktion eecdf, die die empirische Verteilung zeigt.

e Fine Funkion eqgnorm, die einen QQ-Plot mit der
Standard-Normalverteilung vergleicht

e Eine Funkion eboxplot, die einen Box&Whisker-Plot
zeigt.

e Fine zusammenfassende Funktion eplot, die eine Plot-
Matrix mit diesen vier Plots zeigt.

Sie kénnen das Paket mit package.skeleton() vorbereiten, wenn
Sie die einzelne Funktionen definiert haben.

Laden Sie dieses Paket. Uberpriifen Sie, ob Sie das Paket auch nach
Neustart wieder mit library() laden kénnen.

Hinweis: ist x ein Objekt, so erzeugt die Funktion prompt (x) ein
Geriist, aus dem eine Dokumentation fiir x entwickelt werden kann.

1.6. Statistische Zusammenfassung

Als Leitbeispiel diente in diesem Kapitel die statistische Analyse einer (univariaten)
Stichprobe. Dabei haben wir eine in der Statistik zentrale Modellvorstellung benutzt: die
Werte der Stichprobe werden als Zufallsvariable aufgefasst, die aus einer zugrundeliegen-
den theoretischen Verteilung entstammen. Ziel der statistischen Analyse ist der Schluss aus
der empirischen Verteilung der Stichprobe auf die unbekannte zu Grunde liegende theore-
tische Verteilung. Dieser Schluss kann zwei Formen annehmen: wir kénnen die empirische
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Verteilung mit einer hypothetischen Verteilung vergleichen. Dies ist das Vorgehen der klas-
sischen Statistik. Oder wir kénnen versuchen, aus der empirischen Verteilung Merkmale der
zu Grunde liegenden Verteilung zu extrahieren. Dies ist das Vorgehen der Datenanalyse.

Beide Wege sind eng miteinander verwandt. Das wesentliche Werkzeug fiir beide war
hier die Untersuchung der empirischen Verteilungsfunktion.

1.7. Literatur und weitere Hinweise:

[R DO8|R Development Core Team (2000-2005): Writing R extensions.
Siehe: <http://www.r-project.org/manuals.html>.

[GST77] Génfller, P; Stute, W.: Wahrscheinlichkeitstheorie. Heidelberg: Springer 1977.

[GI00] Gentleman, R.; Thaka, R.: Lexical Scope and Statistical Computing. Journal of
Computational and Graphical Statistics 9 (2000) 491-508.



KAPITEL 2

Regression

2.1. Allgemeines Regressionsmodell

Aus der Tradition experimenteller Wissenschaften stammt das Paradigma des (kon-
trollierten) Versuchs. Unter Versuchsbedingungen x wird ein Resultat y gemessen, zusam-
mengesetzt aus einem systematischen Effekt m(x) und einem Messfehler ¢.

y = m(z) + €.

Dies ist eine ganz spezielle Betrachtungsweise; es wird nicht unvoreingenommen das ge-
meinsame Verhalten von x und y untersucht, sondern eine Unsymmetrie hineingesteckt: z
ist die “Ursache”, y (oder eine Verdnderung von y) der Effekt. Die “Ursache” x ist in dieser
Vorstellung vorgegeben oder direkt kontrollierbar; y ist mittelbar (iiber die Versuchsbedin-
gungen) beeinflusst. In dieser Vorstellung ist € ein Messfehler, der durch geeignete Rah-
menbedingungen des Versuchs moglichst klein gehalten wird und im Mittel verschwinden
sollte: es sollte keinen systematischen Fehler geben.

Vom statistischen Standpunkt ist der wesentliche Unterschied der Rollen von x und
y, dass fiir y das stochastische Verhalten mithilfe von ¢ modelliert wird, wihrend x als
“gegeben” angenommen wird und dafiir keine Stochastik im Modell vorgesehen ist.

Um einen formal iiberschaubaren Rahmen zu bekommen, betrachten wir den Fall,
dass x als Vektor von reellen Variablen représentiert werden kann, x € RP, und dass
die Messwerte eindimensionale reelle Werte sind, y € R. In einem stochastischen Modell
kann die oben skizzierte Idee formal gefasst werden. Eine mogliche Formalisierung ist
es, den Messfehler ¢ als Zufallsvariable zu modellieren. Nehmen wir ferner an, dass der
Erwartungswert von ¢ existiert, so konnen wir die Annahme, dass der Messfehler im Mittel
verschwindet, formalisieren als E(¢) = 0.

Um den systematischen Effekt m zu untersuchen, betrachten wir Messreihen. Der Index
i,7=1,...,n, kennzeichnet den Messpunkt, und das Modell ist damit
yi = m(xz;) + & i=1,....n
mit r; € RP

Das statistische Problem ist:
schéitze die Funktion m aus den Messwerten y; bei Messbedingung ;.

Zu diesem Problem der Kurvenschiatzung oder “Regression” gibt es eine umfangreiche
Literatur in der Statistik. Wir wollen uns hier auf das “computing” konzentrieren. Dazu
betrachten wir zunéchst eine sehr vereinfachte Version des Regressionsproblems, die lineare
Regression. Wesentliche Aspekte lassen sich bereits an diesem Problem illustrieren.

Einer einheitlichen Sprechweise zuliebe nennen wir y; die Respons und die Komponen-
ten von x;; mit j = 1,...,p die Regressoren. Die Funktion m heifit die Modellfunktion.

2-1
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2.2. Lineares Model

Wir beginnen mit dem Regressionsmodell - jetzt in Vektorschreibweise! -

Y =m(X) + ¢
Y mit Werten in R"
X e R™*P
E()=0

(2.1)

und setzen zusétzlich voraus, dass m linear ist. Dann gibt es (mindestens) einen Vektor
8 € RP, so dass
m(X)=Xp
und das Regressionsproblem ist jetzt reduziert auf die Aufgabe, 5 aus der Information
(Y, X) zu schétzen.
Das so modifizierte Regressionsmodell
Y =X38 + ¢

Y mit Werten in R"
(2.2) X e R™*P

g eR?P

E()=0
heifit lineares Modell oder auch lineare Regression. Die Matrix X, in der die Werte

der Regressoren zusammengefasst ist, also die Information iiber die Versuchsbedingungen,
heiflt Design-Matriz des Modells.

BEISPIEL 2.1. (Einfache lineare Regression) Wird die Versuchsbedingung durch den

Wert einer reellen Variablen beschrieben, von der der Versuchsausgang iiber eine lineare
Modellfunktion

m(z) =a+b-x,

abhéingt, so konnen wir eine Versuchsserie mit Versuchsausgang y; bei Versuchsbedingung
xz; koordinatenweise schreiben als

(2.3) vi=a+b-z;+¢e;.

In Matrixschreibweise konnen wir die Versuchsserie zusammenfassen als lineares Modell

1 =
(2.4) Yy = |: |- (Z)Jre.

1 z,
—_—— ——
X B

Die einfache lineare Regression ist ein Beispiel fiir lineare Modelle. Die Einweg-Klassifikation
ist das andere Basis-Beispiel.

BEISPIEL 2.2. (Einweg-Klassifikation) Zum Vergleich von k Behandlungen (insbeson-
dere fiir den Spezialfall £ = 2) benutzen wir Indikatorvariablen, die in einer Matrix zusam-
mengefasst werden. Die Indikatorvariable fiir Behandlung ¢ steht in Spalte 7. In der Regel

'Wir wechseln Konventionen und Schreibweisen, wenn es hilfreich ist. Die Verwirrung gehort
zu den Konventionen: in einigen Konventionen kennzeichnen Grofibuchstaben Zufallsvariable, in
anderen Funktionen, in wieder anderen Vektoren. Die Auflésung bleibt jeweils dem Leser iiberlassen.
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haben wir wiederholte Beobachtungen j = 1,...,n; unter Behandlung i, insgesamt also
n= Zle n; Beobachtungen. Dem Modell

10 ... 0
0
0 1 2
(2.5) Y = /{2 +e
0
0 Mk
00 1
——
X B
entspricht in Koordinaten
(2.6) Yij = pi + Eij-
Dies ist das typische Modell, um die Hypothese “kein Unterschied” p1 = ... = ux gegen

die Alternative zu testen, dass sich die Behandlungen im Mittel unterscheiden.

Der selbe Zusammenhang kann auch dargestellt werden, wenn wir die Messwerte als
Summe eines Grundwertes p und dazu eines Behandlungseffekts p1; = p1; — po interpretie-
ren. Dies entspricht in Koordinaten

(2.7) Yij = Mo + 11 + €ij.

In Matrixschreibweise ist dies

1 10 ... 0
1 0 o
1 01 1y
(2.8) Y = ph | +e€
1 0 :
1 0 i
1 0 0 ... 1
——
X/ ﬁ/

Beispiel 2.2 illustriert, dass die Darstellung eines Problems als lineares Modell nicht
eindeutig ist. (2.5) und (2.8) sind gleichwertige Darstellungen und nur aus der Anwendung
kann entschieden werden, welche den Vorrang hat.

Fiir die mathematische Analyse ist die Design-Matrix X ein wesentliches Hilfsmittel.
Fiir die Datenanalyse konnen wir R zu Hilfe nehmen, um diese Matrix (implizit) fiir uns zu
erstellen. R versteht eine spezielle Notation, die Wilkinson-Rogers- Notation, mit der
Modelle beschrieben werden kénnen. In dieser Notation schreiben wir

¥~ X.
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Der Fehlerterm wird in diesem Modell nicht notiert.

Der konstante Term wird implizit angenommen. Fiir die Einweg-Klassifikation erhalten
wir also das Modell (2.8). Wenn wir keinen konstanten Term wollen (also bei der Regres-
sion die Regressionsgerade durch den Ursprung geht, bzw. bei der Einweg-Klassifikation
das Modell (2.5) benutzt und kein Gesamtmittel vorgegeben sein soll), so haben wir in
Koordinatenschreibweise

Yyi=b-xz; +&.
In der Wilkinson-Rogers-Notation muss der konstante Term explizit auf Null gesetzt wer-
den:
y ~0+4+ x.

Weitere Regressoren kénnen mit dem Operator + gekennzeichnet werden. So entspricht
y ~ u+ vin Koordinaten dem Modell

yi=a+b-u;+c-v;+&;.

Wir kommen in den Abschnitten 2.2.4 und 2.3 noch auf diese Notation zuriick.

Es gibt eine umfangreiche Literatur iiber lineare Modelle. Das Buch “The Theory of
Linear Models” von Bent Jgrgensen [Jgr93] ist besonders zu empfehlen. Es deckt den
mathematischen Hintergrund dieses Kapitels weitgehend ab und enthélt zahlreiche illu-
strierende Beispiele.

2.2.1. Faktoren. Mit Hilfe der Notation zur Design- und Modellbeschreibung kann
die Ubersetzung zwischen einer fallorientierten Beschreibung eines Designs in eine Design-
Matrix fiir ein lineares Modell in kanonischer Form automatisch geschehen. Bisweilen
braucht die Ubersetzung etwas Nachhilfe. Betrachten Sie z.B. einen Datensatz

y<-c(1.1, 1.2, 2.4, 2.3, 1.8, 1.9)
x<-c(1, 1, 2, 2, 3, 3).

Der Vektor x kann als quantitativer Vektor fiir das Regressions-Modell

Y = a+bx; + &
als Regressor gemeint sein, oder es kann in der Einweg-Klassifikation, dem Modell der
Einweg-Varianzanalyse,

Yiz = W+ oz + €z
die Kennzeichnung einer Behandlungsgruppe sein. Um beide Moglichkeiten zu unterschei-
den, konnen Vektoren in R als Faktoren definiert werden. Vektoren, die keine Faktoren
sind, werden als quantitative Variable behandelt wie im ersten Beispiel. Faktoren werden
als Kennzeichner behandelt und in der Design-Matrix in entsprechende Indikatorvariable
iibersetzt. So ergibt

y~x
das Regressionsmodell, jedoch
y ~ factor(x)

das Varianz-Modell fiir das Einweg-Layout.

Durch einen Parameter ordered = TRUE kann beim Aufruf der Funktion factor () die
erzeugte Variable als geordnet gekennzeichnet werden. Die erzeugte Variable wird dann bei
den Auswertungen als ordinal skaliert behandelt.

y ~ factor(x, ordered = TRUE)

Ohne diese Kennzeichnung werden Faktoren als kategorial skaliert betrachtet.
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Die Zahlenwerte von Faktoren brauchen keine aufsteigende Folge zu sein. Sie werden
(auch fiir ordinale Faktoren) als blofle Namen benutzt und durch eine laufende Nummer
ersetzt. So ergibt

factor( c(2, 2, 5, 5, 4, 4) )
einen Vektor mit drei Faktorwerten 1, 2, 3, die die Namen “2”, “5” und “4” haben. Faktoren
konnen auch durch Namen bezeichnet werden, z.B.

y ~ factor ( c("Behl", "Beh1", "Beh2", "Beh2", "Beh3", "Beh3") )

Die unterschiedlichen Werte eines Faktors nennt man Stufen des Faktors. Sie konnen mit
levels() erfragt werden, z.B.

levels(factor( c(2, 2, 5, 5, 4, 4) ))
levels(factor( c("Behl1", "Behl", "Beh2", "Beh2'", "Beh3", "Beh3") ))

2.2.2. Kleinste-Quadrate-Schitzung. Eine erste Idee zur Schitzung im linearen
Regressionsmodell kann so gewonnen werden: Bei gegebenem X ist E(Y) = Xf, also
XTE(Y)= X"Xp und damit (X' X)"XTE(Y) = J3. Dabei bedeutet X ' die transpo-
nierte Matrix zu X und (X' X)~ die (generalisierte) Inverse von (X ' X). Die Gleichung
motiviert das folgende Schéitzverfahren:

(2.9) 3=xX"X)x"y.

Setzt man aus 2.2 die Modellbeziehung Y = X3 + € ein und benutzt, dass E(g) = 0,
so erhélt man

(2.10) E(B) =E < (x7x) xT(xg+ e)) — 3,

d.h. B ist ein erwartungstreuer Schétzer fiir 8. Ob und wieweit dieser Schétzer neben dieser
Konsistenz auch noch statistische Qualitdten hat, wird in Statistik-Vorlesungen diskutiert.
Ein Satz zur Charakterisierung dieses Schétzers ist dort als Gaufl-Markov-Theorem be-
kannt. Wir werden auf diesen Schétzer hdufig zuriickkommen und geben ihm deshalb einen
Namen: Gauf3-Markov-Schitzer. Im Fall eines linearen Modells, wie dem Regressions-
modell, hat dieser Schitzer eine Reihe von Optimalitéitseigenschaften. So minimiert dieser
Schitzer die mittlere quadratische Abweichung, ist also in diesem Modell ein Kleinste-
Quadrate-Schdtzer.

Der Kleinste-Quadrate-Schétzer fiir lineare Modelle wird durch die Funktion 1m()
berechnet.

Zu Illustration erzeugen wir uns einen Beispiel-Datensatz.

Eingabe

x <= 1:100
err <- rnorm(100, mean = 0, sd = 10)
y <- 2.5%x + err

Den Kleinste-Quadrate-Schétzer erhalten wir nun durch
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Beispiel 2.1:

Eingabe

Im(y ~ x)
Ausgabe

Call:
Im(formula = y 7 x)

Coefficients:
(Intercept) X

1.460 2.492
Aufgabe 2.1

Wir haben die Daten ohne konstanten Term erzeugt, dies aber bei
der Schitzung nicht vorausgesetzt. Wiederholen Sie die Schétzung
im Modell ohne konstanten Term. Vergleichen Sie die Resultate.

Der Schitzer B fithrt unmittelbar zu einer Schéitzung m fiir die Funktion m in unserem
urspriinglichen Modell:

m(z) = z' - B.
Die Auswertung an einem Punkt z ergibt Werte y := m(z), den Fit an der Stelle x. Die
Auswertung an den Messpunkten ergibt den Vektor der gefitteten Werte Y = X 5.
In unserem Beispiel ist dies eine Regressionsgerade. Mit plot () konnen wir die Da-

tenpunkte zeichnen. Wenn wir das Resultat der Regression speichern, kénnen wir mit
abline() die Regressionsgerade hinzufiigen.
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Beispiel 2.2:

Eingabe
lmres <- 1m(y ~ x)

plot(x, y)

abline(lmres)

100 150 200 250

50

0 20 40 60 80 100

abline() ist eine Funktion, die Geraden anhand von unterschiedlichen Parametrisie-
rungen zeichnen kann. Weiter Information erhalten sie mit help(abline).

Die Schitzgleichung (2.9) gibt uns an, wie der Fit an den Messpunkten berechnet wird.

(2.11) Y= XX'X)X" V.
Die Matrix
(2.12) H:=XX"X)"xT

nennt man Hut- Matriz?. Sie ist das wesentliche Werkzeug, um den GauB-Markov-Schiitzer
fiir eine bestimmte Design-Matrix X zu untersuchen. Die Design-Matrix, und damit die
Hutmatrix, hdngt nur von den Versuchsbedingungen ab, nicht aber von dem Ausgang des
Versuchs. Der Fit hingegen bezieht sich auf eine bestimmte Stichprobe, die in den in den
beobachteten Stichprobenwerten Y représentiert ist.

Im linearen Modell ist ein Term e enthalten, der den Messfehler oder die Versuchsva-
riabilitét représentiert. Diesen stochastischen Fehler konnen wir nicht direkt beobachten -
sonst konnten wir ihn subtrahieren und damit die Modellfunktion exakt bestimmen. Wir
kénnen nur mittelbar darauf schlieffen.

Die Werte der Zufallsbeobachtung Y unterscheidet sich in der Regel vom Fit Y. Die
Differenz

Rx(Y):=Y -V

2sie setzt dem Y den Hut auf.
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heifit Residuum. Das Residuum kann als Schétzer fiir den nicht-beobachtbaren Fehlerterm
¢ angesehen werden. Die Residuen sind nicht wirklich der Fehlerterm. Dies wire nur der
Fall, wenn die Schitzung exakt wére. Fiir den allgemeinen Fall zeigt uns die Beziehung

Rx(Y)=Y -Y

(2.13) =Y
= - H)(XB+e)
= (I — H)e,

dass die Residuen Linearkombinationen der Fehler sind. Wir miissen aus diesen Linear-
kombinationen auf die Fehler zuriick schlieflen.

Existiert die Varianz der Fehlerterme, so ist durch die Varianzmatrix 3 der Fehlerterme
Var (¢) = ¥ die Varianz der Residuen bestimmt:
Var (Rx(Y)) =Var ((I — H)e)

(2.14) —(I-H)x{I-H)".

Bislang haben wir nur vorausgesetzt, dass kein systematischer Fehler vorliegt, model-
liert als die Annahme

E(e)=0.
Wir sprechen von einem einfachen linearen Modell, wenn dariiber hinaus gilt:
(€i)i=1,...n sind unabhéngig
Var () = o* fiir ein o das nicht von i abhéngt.

Im linearen Modell versuchen wir, den Parametervektor 3 zu schétzen. Die Varianzstruktur
des Fehlervektors bringt dabei Stérparameter mit sich, die die Schiatzung verkomplizieren
konnen. Im einfachen linearen Modell reduziert sich die Situation auf nur einen unbekann-
ten Storparameter o. Formeln wie eq:02-varerr vereinfachen sich, denn in diesem Fall ist
¥ = ¢%] und der Parameter ¢ kann aus der Formel herausgezogen werden. Wir kénnnen
diesen Parameter aus den Residuen schétzen, denn die residuelle Varianz

n
2 1 %

(2.15) s = m Z(Yz - Y)?
i=1

ist ein erwartungstreuer Schiitzer fiir o2. Wir schreiben deshalb auch 02 := s2. (Das Wur-
zelziehen ist keine lineare Operation und erhélt deshalb nicht den Erwartungswert. Die
residuelle Standardabweichung v/'s? ist kein erwartungstreuer Schitzer fiir o.) Wieder in

die Schitzformel (2.9) eingesetzt liefert uns dies auch eine Schitzung fiir die Varianz/Co-
varianzmatrix des Schétzers fiir 8, denn im einfachen Modell ist

(2.16) Var (B) = 2XTX
und kann durch s2X T X geschitzt werden.

Die Standard-Ausgabe in Beispiel 2.1 listet nur minimale Information iiber den Schét-
zer. Mehr Information iiber Schéitzer, Residuen und daraus abgeleitete Kenngrofien erhal-
ten wir, wenn wir eine zusammengefasste Darstellung anfordern.
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Beispiel 2.3:

Eingabe
summary (Im( y ~ x))
Ausgabe
Call:
Im(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max

-26.6301 -4.8625 0.2448 6.7120 25.5667

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept)  1.4602 1.9487 0.749 0.455
X 2.4918 0.0335 74.380 <2e-16 *xx
Signif. codes: 0 ‘“x*x*x’> 0.001 ‘xx’ 0.01 ‘*’ 0.056 “.” 0.1 ¢ * 1

Residual standard error: 9.671 on 98 degrees of freedom
Multiple R-squared: 0.9826, Adjusted R-squared: 0.9824
F-statistic: 5532 on 1 and 98 DF, p-value: < 2.2e-16

Aufgabe 2.2

Analysieren Sie die in Beispiel 2.3 (Seite 2-8) gezeigten Ausgaben
von 1m(). Welche Terme konnen Sie interpretieren? Stellen Sie die-
se Interpretationen schriftlich zusammen. Fiir welche Terme fehlt
Ihnen noch Information?

Erstellen Sie eine kommentierte Version der Ausgabe.

In Abschnitt 2.3 werden wir den theoretischen Hintergrund bereitstellen, der uns hilft,
die noch offenen Terme zu interpretieren.

Der Aufruf der Funktion Im() liefert immer ein Resultat - wenn es den Daten angemes-
sen ist, aber es gibt auch ein Resultat, wenn das lineare Modell gar nicht angemessen ist.
Wir brauchen deshalb eine Diagnostik, die uns hilft, zu erkennen, ob das Modell verldsslich
und brauchbar ist.

Aufgabe 2.3

Sei yy < —2.5% 2 + 0.012%2 + err. Welches Resultat erhalten Sie,
wenn Sie eine Regression mit dem (falschen) Modell yy ~x rech-
nen? Gibt es Hinweise darauf, dass dieses Modell nicht angemessen
ist?




2-10 2. REGRESSION

Die Funktion 1m() fiihrt nicht nur die Schéitzung im linearen Modell durch, sondern
liefert eine ganze Reihe von Diagnostiken, die helfen kénnen zu beurteilen, ob die Modell-
voraussetzungen vertretbar erscheinen. Eine Darstellung mit plot () zeigt vier Aspekte
davon.

Beispiel 2.4:

Eingabe

plot(Im(y ~ x))
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Der obere linke Plot zeigt die Residuen gegen den Fit. Die Verteilung der gefitteten
Werte hiangt vom Design ab.

Die Residuen sollten annihernd wie ein Scatterplot von unabhéngigen Variablen aus-
sehen. Die Verteilung der Residuen sollte nicht vom Fit abhéngen. Sind hier systematische
Strukturen zu erkennen, so ist das ein Warnzeichen dass das Modell oder die Modellvor-
aussetzungen nicht erfiillt sind.

Nach der vorausgegangen Diskussion kénnen wir noch genauer sein: die Residuen soll-
ten nach (2.13) Linearkombinationen von unabhéngig identisch verteilten Variablen sein.
Falls die Modellvoraussetzungen erfiillt sind, ist die Varianz durch (2.14) beschrieben.

In der eindimensionalen Situation wiirde ein Plot der Residuen gegen den Regressor
ausreichen. Fiir p Regressoren wird die graphische Darstellung problematisch. Der Plot der
Residuen gegen den Fit verallgemeinert sich auch auf hthere Dimensionen.

Verteilungsaussagen iiber die Schétzer und Residuen kénnen wir machen, wenn wir mit
Verteilungsaussagen iiber die Fehlerterme beginnen. Die kraftigsten Aussagen sind moglich,
wenn die Fehlerterme unabhéngig identisch normalverteilt sind. Der obere rechte Plot sollte
anndhernd wie der “normal probability plot” von normalverteilen Variablen aussehen, wobei
das “annihernd” wiederum bedeutet: bis auf Transformation mit der Matrix I — H.
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Die beiden iibrigen Plots sind spezielle Diagnostiken fiir lineare Modelle (siehe help(plot.1m)).

Aufgabe 2.4

Inspizieren Sie das Resultat von Aufgabe 2.3 grafisch. Welche Hin-
weise gibt es jetzt, dass das lineare Modell nicht angemessen ist?

plot () stellt fiir lineare Modelle noch weitere diagnostische Plots bereit. Diese miissen
explizit mit dem Parameter which angefordert werden.

help(lm)

1m Fitting Linear Models

Description.

1m is used to fit linear models. It can be used to carry out regression, single stratum
analysis of variance and analysis of covariance (although aov may provide a more
convenient interface for these).

Usage.

Im(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, ...)
Arguments.
formula a symbolic description of the model to be fit. The details of model
specification are given below.
data an optional data frame, list or environment (or object coercible by

as.data.frame to a data frame) containing the variables in the model.
If not found in data, the variables are taken from environment (formula),
typically the environment from which 1m is called.

subset an optional vector specifying a subset of observations to be used in the
fitting process.
weights an optional vector of weights to be used in the fitting process. Should

be NULL or a numeric vector. If non-NULL, weighted least squares is
used with weights weights (that is, minimizing sum(w*e~2)); other-
wise ordinary least squares is used.

na.action a function which indicates what should happen when the data contain
NAs. The default is set by the na.action setting of options, and
is na.fail if that is unset. The “factory-fresh” default is na.omit.
Another possible value is NULL, no action. Value na.exclude can be

useful.
method the method to be used; for fitting, currently only method = "qr" is
supported; method = "model.frame" returns the model frame (the

same as with model = TRUE, see below).
model, x, y, qr

logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are
returned.
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singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an

€rror.
contrasts an optional list. See the contrasts.arg of model.matrix.default.
offset this can be used to specify an a priori known component to be included

in the linear predictor during fitting. This should be NULL or a numeric
vector of length either one or equal to the number of cases. One or
more offset terms can be included in the formula instead or as well,
and if both are specified their sum is used. See model.offset.
additional arguments to be passed to the low level regression fitting
functions (see below).

Details.

Models for 1m are specified symbolically. A typical model has the form response
~ terms where response is the (numeric) response vector and terms is a series of
terms which specifies a linear predictor for response. A terms specification of the
form first + second indicates all the terms in first together with all the terms in
second with duplicates removed. A specification of the form first:second indicates
the set of terms obtained by taking the interactions of all terms in first with all terms
in second. The specification first*second indicates the cross of first and second.
This is the same as first + second + first:second.

If the formula includes an offset, this is evaluated and subtracted from the re-
sponse.

If response is a matrix a linear model is fitted separately by least-squares to each
column of the matrix.

See model .matrix for some further details. The terms in the formula will be re-
ordered so that main effects come first, followed by the interactions, all second-order,
all third-order and so on: to avoid this pass a terms object as the formula (see aov
and demo (glm.vr) for an example).

A formula has an implied intercept term. To remove this use either y ~ x - 1 or
y ~ 0 + x. See formula for more details of allowed formulae.

1m calls the lower level functions 1m.fit, etc, see below, for the actual numerical
computations. For programming only, you may consider doing likewise.

All of weights, subset and offset are evaluated in the same way as variables in
formula, that is first in data and then in the environment of formula.

Value.

1m returns an object of class "1m" or for multiple responses of class ¢ ("mlm", "1m").
The functions summary and anova are used to obtain and print a summary and
analysis of variance table of the results. The generic accessor functions coefficients,
effects, fitted.values and residuals extract various useful features of the value
returned by 1m.
An object of class "1m" is a list containing at least the following components:
coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.
fitted.values

the fitted mean values.

rank the numeric rank of the fitted linear model.
weights (only for weighted fits) the specified weights.
df .residual the residual degrees of freedom.

call the matched call.

terms the terms object used.
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contrasts (only where relevant) the contrasts used.

xlevels (only where relevant) a record of the levels of the factors used in fitting,.
offset the offset used (missing if none were used).

y if requested, the response used.

X if requested, the model matrix used.

model if requested (the default), the model frame used.

In addition, non-null fits will have components assign, effects and (unless not
requested) qr relating to the linear fit, for use by extractor functions such as summary
and effects.

Using time series.

Considerable care is needed when using 1m with time series.

Unless na.action = NULL, the time series attributes are stripped from the variables
before the regression is done. (This is necessary as omitting NAs would invalidate the
time series attributes, and if NAs are omitted in the middle of the series the result
would no longer be a regular time series.)

Even if the time series attributes are retained, they are not used to line up series,
so that the time shift of a lagged or differenced regressor would be ignored. It is good
practice to prepare a data argument by ts.intersect(..., dframe = TRUE), then
apply a suitable na.action to that data frame and call 1m with na.action = NULL so
that residuals and fitted values are time series.

Note.

Offsets specified by offset will not be included in predictions by predict.1lm, whereas
those specified by an offset term in the formula will be.

Author(s).

The design was inspired by the S function of the same name described in Chambers
(1992). The implementation of model formula by Ross Ihaka was based on Wilkinson
& Rogers (1973).

References.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models
for analysis of variance. Applied Statistics, 22, 392—9.

See Also.

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different
interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.lm (via predict) for prediction, including confidence and prediction in-
tervals; confint for confidence intervals of parameters.

1m.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, 1m.fit for plain, and 1lm.wfit for
weighted regression fitting.
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Examples.

## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.

ctl <- ¢(4.17,5.568,5.18,6.11,4.50,4.61,5.17,4.5
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.8
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)

anova(lm.D9 <- 1m(weight ~ group))

summary (1m.D90 <- lm(weight ~ group - 1))# omitting intercept
summary (resid(1m.D9) - resid(1lm.D90)) #- residuals almost identical

3,5.14)

3,
9 2,4.69)

5.3
,4.3

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(1m.D9, las = 1) # Residuals, Fitted,
par (opar)

## model frame :
stopifnot(identical (Im(weight ~ group, method = "model.frame"),
model.frame(1m.D9)))

Nicht erwihnt in der Help-Information: mit first-second werden Terme der ersten
Gruppe ins Modell aufgenommen, die der zweiten Gruppe aber ausgeschlossen. Ausfiihr-
lichere Information zur Formel-Darstellung erhilt man mit help(formula). Eine Zusam-
menfassung ist im Anhang A.53 (Seite A-35) zu finden.

Die Hut-Matrix ist eine Besonderheit linearer Modelle. Fit und Residuum jedoch sind
allgemeine Konzepte, die bei allen Arten der Schitzung angewandt werden kénnen. Die
Anwender sind oft mit dem Fit (oder der Schitzung) zufrieden. Fiir den ernsthaften An-
wender und fiir den Statistiker sind die Residuen oft wichtiger: sie weisen darauf hin, was
vom Modell oder der Schiatzung noch nicht erfasst ist.

2.2.3. Weitere Beispiele fiir lineare Modelle.
Die Matrix X heifit die Design-Matrixz des Modells. Sie kann die Matrix sein, die mit den
urspriinglichen Messbedingungen x; als Zeilenvektoren gebildet wird. Aber sie ist nicht auf
diesen Spezialfall beschrankt. Unter der scheinbar so einfachen Modellklasse der linearen
Modelle lassen sich viele wichtige Spezialfille einordnen. Ein paar davon sind im folgenden
zusammengestellt.

Einfache lineare Regression:
v = a+bx + g mit z; € R,a,b € R

kann als lineares Modell mit

X = (1z)
geschrieben werden, wobei 1 = (1,..., 1)T € R".
Polynomiale Regression:
Y = a+bla:i+b21:? +...+ bk:r:f + & mit z; € R,a,b; € R

kann als lineares Modell mit
X = 1z ... 25
. . . T
geschrieben werden, wobei 2/ = (29 ... x,)
Analog fiir eine Vielzahl von Modellen, die durch andere Transformationen erreicht
werden konnen.
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Varianzanalyse: Finweg-Layout

Gemessen wird unter m Versuchsbedingungen, dabei n; Messungen unter Versuchsbe-
dingung j,7 = 1,...,m. Die Messung setze sich additiv zusammen aus einem Grundeffekt
p, einem fiir die Bedingung j spezifischen Beitrag o, und einem Messfehler nach

Yij = Bt+a; + & mit g, €R, 7 =1,...,n;.
Mit n =) n; und
X =015nL... Iy,

wobei I; die Vektoren der Indikatorvariablen fiir die Zugehdrigkeit zur Versuchsgruppe j
sind, lisst sich dies als lineares Modell schreiben.?

Covarianzanalyse

Analog zur Varianzanalyse werden Unterschiede zwischen Gruppen untersucht, aber
zusiitzliche (linear eingehende) Einflussfaktoren werden korrigierend beriicksichtigt. Unter
Versuchsbedingung j bei Beobachtung i hingt die Messung zusétzlich von Einflussfaktoren
x;j der Versuchseinheit ij ab.

Yij = ptaj+ bxy+ey mit poa; € R,

2.2.4. Modellformeln. R erlaubt es, Modelle auch dadurch zu spezifizieren, dass die
Regeln angegeben werden, nach denen die Design-Matrix gebildet wird. Die Syntax, nach
denen die Regeln notiert werden, ist sehr kurz in der Beschreibung von 1m() angegeben.
Wir diskutieren sie jetzt etwas ausfiihrlicher. Diese Modell-Spezifikation ist auch fiir all-
gemeinere, nicht lineare Modelle méglich. Die Modell-Spezifikationen werden als Attribut
mit dem Namen “formula” gespeichert. Sie konnen mit formula() manipuliert werden.

Beispiele
y ~1+x entspricht y; = (1 2;)(81 f2)' +¢
y ~ x Kurzschreibweise fiir y ~ 1 + x (ein konstanter Term
wird implizit angenommen)
y~0+x entspricht y; = x;8+ ¢
log(y) ~ x1 + x2 entspricht log(y;) = (1 xi1 zi2)(61 B2 ﬁg)T + ¢ (ein

konstanter Term wird implizit angenommen)

Im(y ~ poly(x, 4), da- analysiert den Datensatz “Experiment” mit einem li-
ta = Experiment) nearen Modell fiir polynomiale Regression vom Grade
4 1in x.

Wichtige Spezialfille fiir faktorielle Designs sind:

3Es ist Konvention, dass bei Varianzanalysen der letzte Index die Beobachtung ziihlt, und
Indizes in alphabetischer Folge vergeben werden. Konventionell werden also im Vergleich zu unserer
Notation die Rollen von ¢ und j vertauscht.
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y ~A+B

y ~ A/B

2. REGRESSION

Einweg-Varianzanalyse mit Faktor A,

Covarianzanalyse mit Faktor A und Regressions-

Covariable x,

Zwei-Faktor-Kreuz-Layout mit Faktoren A und B oh-

ne Interaktion,

Zwei-Faktor-Kreuz-Layout mit Faktoren A und B

und allen Interaktionen (Kombinationen der Stufen

von A und B),

Zwei-Faktor hierarchisches Layout mit Faktor A und

Subfaktor B.

Eine Ubersicht iiber alle Operatoren zur Modellspezifikation ist im Anhang A.53 (Seite

A-35) zu finden.

Aufgabe 2.5

Schreiben Sie die vier oben in Abschnitt 2.2.3 genannten Modelle
als R-Modellformeln.

Erzeugen Sie sich fiir jedes dieser Modelle ein Beispiel durch Simu-
lation und wenden Sie 1m() auf diese Beispiele an. Vergleichen Sie
die durch Im() geschétzten Parameter mit den Parametern, die Sie
in der Simulation benutzt haben.

Die Modellformel wird in einem Eintrag im Resultat von 1m() gespeichert. Sie kann
also aus dem Resultat zuriick gewonnen werden. Anhand der Formel-Notation generiert
R implizit eine Design-Matrix. Mit model.matrix () kann diese Design-Matrix inspiziert

werden.

Aufgabe 2.6

Generieren Sie drei Vektoren mit je 10 N(p;, 1)-verteilten Zufalls-
variablen p; = j, j = 1,3,9. Verketten Sie diese zu einem Vektor

Y.
Generieren Sie sich einen Vektor x aus je 10 wiederholten Werten
J, 7=139.

Berechnen Sie die Gaufl-Markov-Schitzer in den linearen Modellen
y~x und y~factor(x).

Lassen Sie sich das Resultat jeweils als Tabelle mit summary () und
als Grafik mit plot () anzeigen und vergleichen Sie die Resultate.
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2.2.5. Gauf3-Markov-Schitzer und Residuen. Wir werfen nun einen genaueren
Blick auf den Gauf-Markov-Schitzer. Kenntnisse aus der linearen Algebra, langes Nach-
denken oder andere Quellen sagen uns:

BEMERKUNG 2.3.

(1) Die Design-Matrix X definiert eine Abbildung R? — R™ mit § — X[.
Der Bild-Raum dieser Abbildung sei .#x, #x C R"™. .#x ist der von den Spal-
tenvektoren von X aufgespannte Vektorraum.

(2) Sind die Modell-Annahmen erfiillt, so ist E(Y) € .#x.

(3) Y = Ty (Y), wobei 7 4, : R" — .#x die (euklidische) Orthogonalprojektion
ist.

(4) B =arg ming|Y — }A/g|2 wobei }A/g = Xp.

Die Charakterisierung (3) des Gaufl-Markov-Schétzers als Orthogonalprojektion hilft
fiir das Verstédndnis oft weiter: der Fit ist die Orthogonalprojektion des Beobachtungsvek-
tors auf den Erwartungswertraum des Modells (und minimiert damit den quadratischen
Abstand). Das Residuum ist das orthogonale Komplement.

In der Statistik ist die Charakterisierung als Orthogonalprojektion auch ein Ausgangs-
punkt, um den Schétzer systematisch zu analysieren. In einfachen Féllen helfen Kenntnisse
aus der Wahrscheinlichkeitstheorie schon weiter, etwa zusammengefasst im folgenden Satz:

THEOREM 2.4. Sei Z eine Zufallsvariable mit Werten in R™, die nach N(0,02I,xy)
verteilt ist und sei R" = Ly @& ... ® L, eine Orthogonalzerleqgung. Sei m; = wl; die
Orthogonalprojektion auf L;, i =0,...,r.

Dann gilt

(i) 7r0(Z2), ..., (Z) sind unabhingige Zufallsvariablen.
(ii) DL 2 (dim L) firi=0,...,7.

BEWEIS. — Wahrscheinlichkeitstheorie. Siehe z.B. [Jorgensen 1993, 2.5 Theorem 3].
O

Mit e =Y — X8 konnen daraus theoretische Verteilungsaussagen fiir Schétzer B und
Residuen Y — Y abgeleitet werden.

Insbesondere erhalten wir fiir einfache lineare Modelle aus der residuellen Varianz auch
einen Schitzer fiir die Varianz (bzw. Standardabweichung) jeder einzelnen Komponente fy.
Die entsprechende t-Statistik und der p-Wert fiir den Test der Hypothese B; = 0 sind in
der Ausgabe von summary() angegeben.

Aufgabe 2.7

Welche Verteilung hat |Ry (Y)|2 = |Y —Y |2, wenn £ nach N (0, 62I)
verteilt ist?

Auf den ersten Blick ist |[Ry (Y)|2 = |Y — Y|? ein geeignetes Ma, um die Qualitéit eines
Modells zu beurteilen: kleine Werte sprechen fiir den Fit, grofle Werte zeigen, dass der Fit
schlecht ist. Dies ist jedoch mit Sorgfalt zu betrachten. Zum einen hingt diese Gréfie von
linearen Skalenfaktoren ab. Zum anderen muss die Dimensionen der jeweiligen Rdume mit
in Betracht gezogen werden. Was passiert, wenn weitere Regressoren ins Modell aufgenom-
men werden? Wir haben z.B. gesehen, dass “linear” auch die Moglichkeit gibt, nichtlineare
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Beziehungen zu modellieren, zum Beispiel dadurch, dass geeignet transformierte Variable
in die Design-Matrix mit aufgenommen werden. Die Charakterisierung (3) aus Bemerkung
2.3 sagt uns, dass effektiv nur der von der Design-Matrix aufgespannte Raum relevant ist.
Hier sind die Grenzen des Gau-Markov-Schétzers im linearen Modell erkennbar: wenn
viele transformierte Variablen aufgenommen werden, oder generell wenn der durch die
Design-Matrix bestimmte Bildraum zu grof wird, gibt es eine Uberanpassung. Im Extrem
ist Y = Y. Damit werden alle Residuen zu null, aber die Schétzung ist nicht brauchbar.

Wir benutzen |Rx(Y)|?/dim(Lx), wobei Lx das orthogonale Komplement von .Z in
R™ ist (also dim(Lyx) = n — dim(.#Zx)), um die Dimensionsabhingigkeit zu kompensieren.

Aufgabe 2.8

Modifizieren Sie die Plot-Ausgabe plot.1m() fiir die linearen Mo-
delle so, dass anstelle des Tukey-Anscombe-Plots die studentisier-
ten Residuen gegen den Fit aufgetragen werden.

* FErgénzen Sie den QQ-Plot durch Monte-Carlo-Bénder fiir unab-
héngige Gauf’sche Fehler.

Hinweis: Sie konnen die Béander nicht direkt aus der Gaufivertei-
lung generieren - Sie brauchen die Residuenverteilung, nicht die
Fehlerverteilung.

Aufgabe 2.9

Schreiben Sie eine Prozedur, die fiir die einfache lineare Regression
Y = a+bxr; + ¢ mitz; €R,a,beR
den Gauf3-Markov-Schétzer berechnet und vier Plots darstellt:

e Respons gegen Regressor, mit geschitzter Geraden

e studentisierte Residuen gegen Fit

e Verteilungsfunktion der studentisierten Residuen im QQ-

Plot mit Bandern
e Histogramm der studentisierten Residuen

2.3. Streuungszerlegung und Varianzanalyse

Wenn ein einfaches lineares Modell mit gauflverteilten Fehlern vorliegt, sind die t-Tests
geeignet, eindimensionale Probleme (Tests oder Konfidenzintervalle fiir einzelne Parameter,
punktweise Konfidenzintervalle) zu 16sen. Um simultane oder mehrdimensionale Probleme
zu 16sen brauchen wir andere Werkzeuge. Anstelle der Differenzen oder Mittelwerte, die
den t-Tests zu Grunde liegen, benutzen wir Norm-Absténde (bzw. quadratische Absténde),
die auch auf hohere Dimensionen generalisieren.

Die Interpretation des Gaul-Markov-Schitzers als Orthogonalprojektion (Bem. 2.3 3)
zeigt eine Moglichkeit, Modelle zu vergleichen: Fiir X, X’ Design-Matrizen mit .#x C .#x,
betrachten wir die Zerlegung R" = Ly & ... & L, mit Ly := .#x/, und die orthogonale
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Komplemente L1 = #x & #x,Lo = R"™6& .#x. Wieder bezeichnet 7w jeweils die
entsprechende Projektion.

1 2
dim(L1) |7TL/ZXY - W//ZX/Y|

1
dim(L2) Y — mayy|?

Diese Statistik, die F-Statistik (nach R.A. Fisher) ist die Basis fiir die Varianzanalyse,
einer klassischen Strategie, Modelle zu vergleichen. Streuungszerlegung ist ein anderer
Name fiir diesen Ansatz.

F =

Die Idee wird auf Ketten von Modellen verallgemeinert. Ist .#y C ... C .#,. = R",
so liefert Lo := #y, L; := M; © M; 1 fir i = 1,...,r eine Orthogonalzerlegung. Mit den
Bezeichnungen von oben ist dann

1 2
dimL;_; Y — 7 Y

dinllLi Y — W//ZiYP

eine Teststatistik, die zum Test fiir das Modell .#;_1 im Vergleich zum Obermodell ./Z;
herangezogen wird.

Aufgabe 2.10

Welche Verteilung hat F', wenn E(Y) € .#x/ gilt und € nach
N(0,02I) verteilt ist?

Aufgabe 2.11

Geben Sie eine explizite Formel fiir die F'-Statistik zur Varianzana-
lyse im Einweg-Layout

Yij = B+a; + €
im Vergleich zum homogenen Modell

Yij = P+ Eij-

Die Varianzanalyse gibt eine andere Darstellung und Interpretation der linearen Mo-
delle. Hier im Vergleich zu Beispiel 2.3 die Varianzanalyse-Darstellung:

Beispiel 2.5:

Eingabe
summary (aov (lmres))
Ausgabe
Df Sum Sq Mean Sq F value Pr (>F)
X 1 517386 517386 5532.4 < 2.2e-16 **x

Residuals 98 9165 94

Signif. codes: 0 ‘“x*x*x’> 0.001 ‘xx’ 0.01 ‘%’ 0.056 “.” 0.1 ¢ * 1
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Aufgabe 2.12

Analysieren Sie die in Beispiel 2.3 (Seite 2-8) gezeigten Ausgaben
von 1m(). Welche Terme koénnen Sie jetzt interpretieren? Stellen
Sie diese Interpretationen schriftlich zusammen. Fiir welche Terme
fehlt Thnen noch Information?

In der Ausgabe finden Sie noch einen Hinweis auf “R-squared”. Der Term, der hier
angegeben wird, ist ein Schétzer fiir den Anteil von Var (Y'), der durch das Modell erklért
wird:

5 mSss

mss + rss

mit mss ;= 1 S(Y;—Y)2 und rss = LS (Rx(Y),—Rx(Y))?. Die Bezeichnung R? kommt
von der einfachen linearen Regression. Dort ist konventionell die Korrelation Cor (X,Y)
mit R bezeichnet, und R? = Cor (X, Y)2. R? beriicksichtigt nicht die Anzahl der geschiitz-
ten Parameter und kann deshalb zu optimistisch sein. Der Term “adjusted R-squared” hat
eine Gewichtung, die die Freiheitsgrade beriicksichtigt.

help(anova)

anova Anova Tables

Description.

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage.

anova(object, ...)

Arguments.

object an object containing the results returned by a model fitting function
(e.g., 1Im or glm).
additional objects of the same type.

Value.

This (generic) function returns an object of class anova. These objects represent
analysis-of-variance and analysis-of-deviance tables. When given a single argument it
produces a table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in
the order specified.

The print method for anova objects prints tables in a “pretty” form.

Warning.

The comparison between two or more models will only be valid if they are fitted to
the same dataset. This may be a problem if there are missing values and R’s default
of na.action = na.omit is used.

References.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth & Brook-
s/Cole.
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See Also.

coefficients, effects, fitted.values, residuals, summary, dropl, addl.

Modelle fiir die Varianzanalyse kénnen als Regeln angegeben werden. Dieselbe Syntax
zur Modellbeschreibung wird benutzt wie schon bei der Regression. Wenn Terme auf der
rechten Seite der Modellbeschreibung Faktoren sind, wird automatisch ein Varianzanalyse-
Modell anstelle eines Regressionsmodells generiert.

Die Modellbeschreibung bestimmt die linearen Rdume, in denen die Erwartungswerte
liegen. Die Streuungszerlegungen sind dadurch jedoch nicht eindeutig bestimmt: die An-
gabe der Rdume ldsst evtl. noch verschiedene Orthogonalzerlegungen zu (z.B. abhingig
von der Reihenfolge). Mehr noch: die Angabe der Faktoren bestimmt ein Erzeugenden-
system der Ridume. Die Faktoren brauchen nicht orthogonal zu sein, noch nicht einmal
unabhéngig.

Dies gilt fiir alle linearen Modelle. In der Regression ist Abhéngigkeit eher die Aus-
nahme. Bei faktoriellen Designs taucht dieser Fall haufig auf. Die Einweg-Varianzanalyse
in Koordinatendarstellung illustriert dieses Problem: mit

Yij = pt+o; + g5 mit g, €R
ist fiir n; > 0 die Zerlegung in ;1 und «; nicht eindeutig. Der tieferliegende Grund ist: der

globale Faktor u definiert den vom Einheitsvektor 1 aufgespannten Raum, und dieser liegt
in dem von den Gruppenindikatoren aufgespannten Raum.

Die Modellformel definiert eine Designmatrix X und damit einen Modellraum. Eine
zusétzliche Matrix C' wird benutzt, um die Matrix zu reduzieren und damit eine eindeutige
Streuungszerlegung zu spezifizieren. Die effektive Designmatrix ist dann [1 X C]; C heifit
Kontrastmatrixz. Die Funktionen zur Varianzanalyse wie z.B. 1m() oder aov() erlauben
es, die Kontraste zu spezifizieren.

Die Funktion anova() operiert wie eine spezielle Formatierung der Ausgabe und wird
analog summary () benutzt, also z.B. in der Form anova(1m()).

Aufgabe 2.13

Die Datei “micronuclei” enthélt einen Datensatz aus einem Muta-
genitdtstest. Zellkulturen (je 50 Einheiten) wurden in einer Kon-
trollgruppe und unter 5 chemischen Behandlungen beobachtet. Der
Effekt der Substanzen ist, die Chromosomen aufzubrechen und Mi-
kronuklei zu bilden. Registriert wurde die Grofle der Mikronuklei
(relativ zum Eltern-Nukleus).

Lesen Sie die Datei “micronuclei” und berechnen Sie fiir jede Grup-
pe Mittelwert und Varianz.

Hinweis: Sie konnen die Datei mit data() einlesen. Fiir Dateien
mit Tabellenformat gibt es die spezielle Anweisung read. table().
Informieren Sie sich mit help() iiber beide Funktionen.

Einige ausgewihlte statistische Funktionen (z.B. Mittelwert) finden
Sie in Tabelle A.22 im Anhang.

Vergleichen Sie die Resultate. Sind Behandlungseffekte nachweis-
bar? Hinweise: Versuchen Sie zunéchst, die Aufgabe als Einweg-
Varianzanalyse zu formulieren. Den Datensatz miissen Sie zunéchst
z.B. mit Hilfe von ¢ () auf eine geeignete Form bringen.
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Aufgabe 2.14

*

Schreiben Sie eine Funktion oneway (), die als Argument eine Da-
tentabelle nimmt und eine Einweg-Varianzanalyse als Test auf die
Differenz zwischen den Spalten durchfiihrt.

FErgénzen Sie oneway() durch die notwendigen diagnostischen
Plots. Welche Diagnostiken sind notwendig?

Aufgabe 2.15

Das Industrieunternehmen Kiwi-Hopp* machte einen neuen Hub-
schrauber auf den Markt bringen. Die Hubschrauber miissen also
danach beurteilt werden, wie lange sie sich in der Luft halten, bis sie
aus einer gegebenen Hohe (ca. 2m) den Boden erreichen®. Eine Kon-
struktionszeichnung ist unten (Abbildung 2.1, Seite 2-24) angege-
ben. Welche Faktoren konnten die Variabilitét der Flug(Sink)zeiten
beeinflussen? Welche Faktoren kénnten die mittlere Flugzeit beein-
flussen?

Fiihren Sie 30 Versuchsfliige mit einem Prototyp durch und messen
Sie die Zeit in 1/100s. (Sie miissen vielleicht zusammenarbeiten, um
die Messungen durchzufiihren.) Wiirden Sie die gemessene Zeit als
normalverteilt ansehen?

Die Anforderung ist, dass die mittlere Flugdauer mindestens 2.4s
erreicht. Erfillt der Prototyp diese Anforderung?

Sie haben die Aufgabe, einen Entwurf fiir die Produktion auszusu-
chen. Folgende Varianten stehen zur Diskussion:

Rotorbreite 45mm
Rotorbreite 35mm
Rotorbreite 45mm mit Zusatzfalte als Stabilisierung
Rotorbreite 35mm mit Zusatzfalte als Stabilisierung.

Ihr Haushalt erlaubt ca. 40 Testfliige. (Wenn Sie mehr Testfliige be-
notigen, miissen Sie dies gut begriinden.) Bauen Sie 4 Prototypen
und fithren sie Testfliige durch, bei denen Sie die Zeit messen. Fin-
den Sie diejenige Konstruktion, die die ldngste Flugdauer ergibt.
Erstellen Sie einen Bericht. Der Bericht sollte folgende Details ent-
halten:

e cine Liste der erhobenen Daten und eine Beschreibung des
experimentellen Vorgehens.

e geeignete Plots fiir jede Konstruktion

e eine Varianzanalyse

e cine klare Zusammenfassung IThrer Schliisse.

(Fortsetzung)—

4Nach einer Idee von Alan Lee, Univ. Auckland, Neuseeland
"Kiwis kénnen nicht fliegen.
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Aufgabe 2.15 | (Fortsetzung)

Weitere Hinweise: Randomisieren Sie die Reihenfolge Threr Expe-
rimente. Reduzieren Sie die Variation, indem Sie gleichméissige Be-
dingungen fiir das Experiment schaffen (gleiche Hohe, gleiche Ab-
wurftechnik etc.).

Die Zusatzfaltung verursacht zusétzliche Arbeitskosten. Schitzen
sie den Effekt ab, den diese Zusatzinvestition bringt.

Aufgabe 2.16

Benutzen Sie den Quantil-Quantil-Plot, um paarweise die Resultate
des Helikopter-Experiments aus dem letzten Kapitel zu vergleichen.
Formulieren Sie die Resultate.

Aufgabe 2.17

Inspizieren Sie die Implementierung von ggnorm(). Programmieren
Sie eine analoge Funktion fiir den PP-Plot und wenden Sie diese
auf die Helikopter-Daten an.
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Zurick falten 5 45 nach vom falten
i

schneiden 100 mm

35 mm

schneicien schneiden ¥

| a5 mm

30 30 30
falten falten

ABBILDUNG 2.1. KiwiHopp
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2.4. Simultane Schitzung

2.4.1. Scheffé’s Konfidenz-Binder. Der Kleinste-Quadrate-Schitzer schitzt im
Prinzip alle Komponenten des Parameter-Vektors simultan. Die Optimalitdts-Aussagen
des Gau3-Markov-Theorems beziehen sich nur auf eindimensionale lineare Statistiken. Die
Konfidenzaussagen gelten jedoch multivariat. Es gilt: Der mithilfe der F-Verteilung ge-
wonnene Konfidenzbereich zum Konfidenzniveau 1 — « hat die Form

k
(B e R < (3(B; - B)2lesl12/K) /o < Fioalkun — k),
j=1
d.h. der Konfidenzbereich ist eine Ellipse. Wir kénnen die Ellipse auch als den Bereich
definieren, der durch alle Tangenten der Ellipse begrenzt wird. Dies iibersetzt die (eine)
quadratischen Bedingung an die Punkte im Konfidenzbereich durch (unendlich viele) li-
neare Bedingungen. Diese geometrische Beziehung ist der Kern fiir den folgenden Satz:

THEOREM 2.5. Sei & C R¥ ein linearer Unterraum der Dimension d; EY = Xb mit
rk(X) =p <n. Dann ist

P8 € (5 + (AFS,_ ) 2s(((X'X) )2 W e £} = (1 - a).
Bewers. [Mil81, 2.2, p. 48] O

Dies ist ein simultaner Konfidenzbereich fiir alle Linearkombinationen aus .Z. Als Test
iibersetzt ergibt dies einen simultanen Test fiir alle linearen Hypothesen aus .Z. Im Falle
d = 1 reduziert sich dieser Scheffé-Test auf den iiblichen F-Test. Ublicherweise ist es
nicht méglich, am selben Datenmaterial mehrere Tests durchzufiihren, ohne dadurch das
Konfidenzniveau zu verschlechtern. Der F-Test ist eine Ausnahme. Nach einem globalen
F-Test konnen diese Linearkobinationen oder Kontraste einzeln getestet werden, ohne das
Niveau zu verletzen.

Im Falle der einfachen linearen Regression iibersetzt sich das Konfidenz-Ellipsoid im
Parameterraum so in ein Hyperboloid als Konfidenzbereich fiir die Regressionsgeraden im
Regressor/Respons-Raum.

Geht man zur Interpretation im Regressor/Respons-Raum, also dem Raum der Ver-
suchsbedingungen und Beobachtungen iiber, so ist man hiufig nicht so sehr an einem Kon-
fidenzbereich fiir die Regressionsgerade interessiert, sondern daran, einen Prognosebereich
(Toleranzbereich) fiir weitere Beobachtungen anzugeben. Fiir diesen muss zur Streuung der
Regression noch die Fehlerstreuung addiert werden. Der Toleranzbereich ist entsprechend
grofler. Konfidenzbereich fiir die Regressionsgerade und Toleranzbereich fiir Beobachtun-
gen konnen mit der Funktion predict () berechnet werden. Die folgende Abbildung zeigt
beide Bereiche. Die Funktion predict () ist eine generische Funktion. Fiir lineare Modelle
ruft sie predict.1m() auf. predict () erlaubt es, neue Stiitzstellen als Parameter newdata
vorzugeben, an denen anhand des geschétzten Modells ein Fit berechnet wird. Die Varia-
blen werden hier dem Namen nach zugeordnet. Deshalb muss newdata ein data.frame
sein, dessen Komponenten-Namen den urspriinglichen Variablen entsprechen.

Wir bereiten einen Beispieldatensatz vor.

Eingabe
n <- 100

sigma <- 1
x <- (1:n)/n-0.5
err <- rnorm(n)
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y <= 2.5 * x + sigma*err
Imxy <- 1m(y ~ x)

Um bessere Kontrolle iiber die Grafik zu bekommen, berechnen wir die Plot-Grenzen und
Stiitzpunkte vorab.

Eingabe

plotlim <- function(x){
xlim <- range(x)
# check implementation of plot. is this needed?
del <- x1im[2]-x1im[1]
if (del>0)
x1im <- xlim+c(-0.1*del, 0.1%*del)
else xlim <- xlim+c(-0.1, 0.1)
return(xlim)
F
x1lim <- plotlim(x)
ylim <- plotlim(y)
#newx <- data.frame(x = seq(1l.5*min(x), 1.5*max(x), 1/(2*n)))
newx <- data.frame(x = seq(x1im[1], x1im[2], 1/(2%*n)))

Fiir diese Daten berechnen wir nun Konfidenzbander und zeichnen sie.
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Beispiel 2.6:

Eingabe
plot(x, y, xlim = xlim, ylim = ylim
abline (1mxy)
pred.w.plim <- predict(lmxy, newdata = newx, interval = "prediction")
pred.w.clim <- predict(lmxy, newdata = newx, interval = "confidence")

matplot (newx$x,
cbind(pred.w.clim[, -1], pred.w.plim[, -1]),
1ty = c(2, 2, 6, 6),
col = c(2, 2, 4, 4),
type = "1", add = TRUE)
title(main = "Simultane Konfidenz")
legend("topleft",
1ty = c(2, 6),
legend = c("confidence", "prediction"),
col = c(2, 4),
inset = 0.05, bty = "n")

Simultane Konfidenz

--- confidence 3
-—-— prediction T

2.4.2. Tukey’s Konfidenz-Intervalle. Geometrisch ist das Konfidenz-Ellipsoid also
durch seine (unendlich vielen) Tangentialebenen gekennzeichnet. Ubersetzt als Test werden
hier unendlich viele lineare Tests simultan durchgefiihrt. In vielen Anwendungen ist es
jedoch moglich, gezieltere Fragestellungen anzugehen, etwa im Zwei-Stichprobenfall nur
die Hypothese 1 — (32 = 0. Diese reduzierten Fragestellungen kénnen in linearen Modellen
formuliert werden und zu schérferen Tests fithren. Dies geschieht durch die Spezifizierung
von Kontrasten und wird in R auch fiir die Varianzanalyse unterstiitzt.

2.4.2.1. Fuallstudie: Titrierplatte. Eine typisches Werkzeug in der Biologie und Medizin
sind Tritrierplatten, die z.B. bei Versuchen mit Zellkulturen eingesetzt werden. Die Platte
enthilt in einem rechteckigen Raster kleine Vertiefungen. Auf die Platte insgesamt kénnen
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Substanzen aufgebracht. Mit einer Multipipette kénnen auch spaltenweise oder zeilenweise
Substanzen aufgebracht werden (Abbildung 2.2).

ABBILDUNG 2.2. Titrierplatten. Mit Mulipipetten kénnen zeilenweise
oder spaltenweise Substanzen aufgebracht werden.

Die Experimente werden oft in Serien durchgefiihrt. Aus einer Serie benutzen wir als
Beispiel nur die Daten einer Platte.

Eingabe
p35 <- read.delim("../data/p35.tab")

Fiir die Analyse mit Im() miissen wir die Daten aus der Matrix-Form in eine lange Form
tiberfithren, die die Behandlung in einer Spaltenvariablen auffithrt. Die Spalte H in die-
sem Versuch enthélt keine Behandlung, sondern dient nur zur Qualitatskontrolle zwischen
denPlatten.

Eingabe
535 <- stack(p35[,3:9]) # ignore column H

835 <- data.frame(y=s35$%values,
Tmt=s35%ind,
Lane=rep(1:12, length.out=dim(s35)[1])) # rename
lmres <- Im(y ~ 0+ Tmt, data= s35) # we do not want an overall mean

Die Zusammenfassung als lineares Modell enthélt Tests fiir die einzelnen Koeffizienten.

Eingabe

summary (lmres)

Ausgabe
Call:

lm(formula = y ~ 0 + Tmt, data = s35)

Residuals:
Min 1Q Median 3Q Max
-0.084833 -0.016354 0.009125 0.022729 0.073083

Coefficients:

Estimate Std. Error t value Pr(>|tl)
TmtA 0.19383 0.01035 18.73 <2e-16 ***
TmtB 0.24892 0.01035 24.06 <2e-16 ***
TmtC 0.23783 0.01035 22.99 <2e-16 *xx*
TmtD 0.24117 0.01035 23.31 <2e-16 *xx*
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TmtE 0.24392 0.01035 23.57 <2e-16 **x*
TmtF 0.23558 0.01035 22.77 <2e-16 **x*
TmtG 0.22367 0.01035 21.62 <2e-16 **x*

Signif. codes: 0O ‘“*xx’ 0.001 ‘%%’ 0.01 ‘*x’> 0.05 ‘.’ 0.1 ¢ ’> 1

Residual standard error: 0.03584 on 77 degrees of freedom
Multiple R-squared: 0.9787, Adjusted R-squared: 0.9768
F-statistic: 506.2 on 7 and 77 DF, p-value: < 2.2e-16

Fiir dieses Beispiel sind die Tests fiir die einzelnen Koeflizienten nicht angebracht. anova ()
listet eine Zusammnenfassung, die auf die Varianzanalyse zugeschnitten ist.

Eingabe
anova (lmres)

Ausgabe
Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr (>F)
Tmt 7 4.5513 0.6502 506.15 < 2.2e-16 **x*
Residuals 77 0.0989 0.0013

Signif. codes: 0O ‘“*xx> 0.001 ‘%%’ 0.01 ‘*x’> 0.05 “.” 0.1 ¢ ’> 1

Wenn die Voraussetzungen des GauB-linearen Modells gegeben sind, so ist der Behand-
lungseffekt signifikant. Es stellt sich sofort die Frage, zwischen welchen der Behandlungen
ein signifikanter Unterschied besteht, d.h. uns interessieren die Kontraste, die die Behand-
lungsunterschiede beschreiben. Ohne das Niveau zu verletzen kénnen diese post-hoc mit
Tukey’s Ansatz untersucht werden. Dazu brauchen wir die Funktion glht () fiir den Test
fiir generalisierte lineare Hypothesen, die in der Bibliothek multcomp fiir multiples Testen
bereit gestellt. ist.
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Beispiel 2.7:

Eingabe
library (multcomp)
lhtres<-glht (lmres,linfct=mcp(Tmt="Tukey"))
summary (1htres) # muliple tests
Ausgabe

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: Im(formula =y ~ 0 + Tmt, data = s35)

Linear Hypotheses:

Estimate Std. Error t value p value
B-A==0 0.055083 0.014632 3.765 0.00577 *x*
C-A==0 0.044000 0.014632 3.007 0.05277 .
D-A==0 0.047333 0.014632 3.235 0.02834 *
E-A==0 0.050083 0.014632 3.423 0.01651 *
F-A==0 0.041750 0.014632 2.853 0.07793 .
G-A==0 0.029833 0.014632 2.039 0.39861
C-B==0-0.011083 0.014632 -0.757 0.98819
D - B ==0 -0.007750 0.014632 -0.530 0.99832
E - B ==0 -0.005000 0.014632 -0.342 0.99986
F -B==0-0.013333 0.014632 -0.911 0.96971
G - B ==0 -0.025250 0.014632 -1.726 0.60126
D-C==0 0.003333 0.014632 0.228 0.99999
E-C 0 0.006083 0.014632 0.416 0.99958
F-C==0 -0.002250 0.014632 -0.154 1.00000
G - C==0 -0.014167 0.014632 -0.968 0.95930
E-D==0 0.002750 0.014632 0.188 1.00000
F -D==0 -0.005583 0.014632 -0.382 0.99974
G -D==0 -0.017500 0.014632 -1.196 0.89361
F -E==0 -0.008333 0.014632 -0.570 0.99748
G - E ==0 -0.020250 0.014632 -1.384 0.80861
G -F==0-0.011917 0.014632 -0.814 0.98279
Signif. codes: O ‘*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ * 1

(Adjusted p values reported)

Unter den Voraussetzungen des Modells ist damit die Signifikanz der Unterschiede von
A zu B und D gesichert.

Um die Voraussetzungen zu priifen, stehen uns die Residuen zur Verfiigung, die wir
mit plot () inspizieren konnen.
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Eingabe
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Die Verteilung zeigt eine deutliche Abweichung von der Normalverteilung, insbesondere
bei kleinen Werten. Wir kénnen diese selektiv inspizieren.

Beispiel 2.9:

Eingabe
#diagnostic
library (MASS)
s35%studres <- studres(lmres)
s35[s35%studres < -1,]

Ausgabe

y Tmt Lane studres

13 0.174 B 1 -2.239390
24 0.173 B 12 -2.271296
25 0.153 C 1 -2.559766
33 0.202 C 9 -1.044865
36 0.186 C 12 -1.523409
37 0.165 D 1 -2.279286
48 0.174 D 12 -1.994858
49 0.171 E 1 -2.175828
60 0.172 E 12 -2.144169
61 0.168 F 1 -2.007887
72 0.174 F 12 -1.821449
73 0.177 G 1 -1.367608
84 0.189 G 12 -1.010381
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Das Muster ist auffillig. Fast allle besonders kleinen Werte sind am Rand der Platte.

Dieses Muster hdtten wir auch mit einer visuellen Inspektion erkennen kénnen:

Eingabe

P
rr risuvatisation

Bvﬁ%fﬂ&gé%% easy way

a35 <- as.matrix(p35[3:10])
a35rk <- apply(a35,2, rank)
#image (a35rk)

# enhanced image, using bertin

library(bertin)

oldpar<- par(mfrow=c(2,1))

imagem (t (a35rk), col=blueyellow4.colors(12), main="p35")
colramp(blueyellow4.colors(12),12,horizontal=TRUE)

par (oldpar)
p35
A
o~ _ B
C
< D
E
© F
G
© .\ I I H
I I I
2 4 6 8 10
blueyellow4.colors(12)
I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Bei unabhéngigen Fehlern hétten wir eine zuféllige Verteilung der Rénge in den Zeilen.
Die Konzentrierung der extremen Werte in den extremen Spalten zeigt eine inhomogenitét
im Produktionsprozef.

In diesem Beispiel kénnen wir also berichten, dass anscheinend ein Unterschied zwi-
schen der Behandlung A und speziellen anderen Behandlungen besteht. Die Beurteilung
ist aber mit Vorbehalt zu betrachten: die Modellvoraussetzungen sind nicht erfiillt. Es
gibt eine erkennbare Inhomogenitéit zwischen den Zeilen. Wichtiger ist also der Hinweis im
Produktionsprozess nach Ursachen dieser Inhomogenitét zu suchen.

5. Nichtparametrische Regression

2.5.0.2. Transformationen.
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2.5.0.3. Bozx-Coz-Transformationen. Lage- und Skalenparameter konnen auch als Ver-
such verstanden werden, die Verteilung auf eine Referenzgestalt zu transformieren. Lage-
und Skalenparameter erfassen nur lineare Transformationen.

Die Box -Cox -Transformationen

y -1

y()\) _ B fllI‘)\ # O,
log(y) firA=0
sind eine Familie, die so skaliert ist, dass die Logarithmus-Transformation stetig in Potenz-

Transformationen eingebettet ist. Die Funktion boxcox () in library(MASS) kann benutzt
werden, um A zu wéhlen.

Generalisierte lineare Modelle sind so erweitert, dass sie bestimmte Transformationen
schon im Modell beriicksichtigen kénnen. Dazu finden Sie weitere Information in [VRO02].

2.5.1. Zwischenspiel: verallgemeinerte lineare Modelle. Wir wollen schnell zur
praktischen Arbeit kommen. An dieser Stelle sollte jedoch eine Ausblick nicht fehlen, wie
wir tiber die einschrinkenden Annahmen des linearen Modells hinauskommen. Die linea-
ren Modelle gehoren zu den am besten untersuchten Modellen. Theorie und Algorithmen
hierfiir sind weit entwickelt. Von daher ist es naheliegend, zu probieren, wieweit sich die
Modellklasse so erweitern ldsst, dass theoretische und algorithmische Erfahrungen noch
nutzbar sind.

Wir notierten das lineare Modell als

Y = m(X) + ¢
Y mit Werten in R"
X € R™*P
E(€)=0
mit m(X) = X3, [ € RP.

Fine wichtige Erweiterung ist, die Bedingung der Linearitét aufzuheben. Sie wird ab-
gemildert mit einer Zwischenstufe. Wir setzen also nicht mehr voraus, dass m linear ist,
sondern nur, dass es sich iiber eine lineare Funktion faktorisieren ldsst. Dies ergibt ein
verallgemeinertes lineares Modell

Y = m(X) + ¢
Y mit Werten in R"
X € R™P
E(E)=0
m(X)=m(n) mitn = XB, § € R~

Die néchste naheliegende Verallgemeinerung ist, eine Transformation fiir Y zu beriick-
sichtigen. Zahlreiche weitere Abschwichungen sind diskutiert worden; eine kleine Anzahl
hat sich als handhabbar erwiesen. Die verbliebenen Modelle werden als generalisierte linea-
re Modelle bezeichnet. Generalisierte lineare Modelle haben in R eine weitgehende Unter-
stiitzung. In der Regel findet sich zu den hier diskutierten R-Funktionen fiir lineare Modelle
eine Entsprechung fiir generalisierte lineare Modelle. Weitere Information mit help (glm).
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2.5.2. Lokale Regression. Wir machen nun einen groflen Sprung. Wir haben lineare
Modelle diskutiert. Wir wissen, dass damit auch nichtlineare Funktionen modelliert werden
konnen. Aber die Terme, die in die Funktion eingehen, miissen vorab spezifiziert werden.
Zu viele Terme fithren zu einer Uberanpassung. Die statistische Behandlung von Regressi-
onsproblemen mit geringen Einschrinkungen an die Modellfunktion bleibt ein Problem.

Ein partieller Losungsansatz kommt aus der Analysis. Dort ist es eine Standard-
Technik, Funktionen lokal zu approximieren. Das analoge Vorgehen in der Statistik ist,
anstelle eines globalen Schéitzverfahrens eine lokalisierte Variante zu wahlen. Wir nehmen
immer noch an, dass

Y = mX)+e Y eR"
X € R™P
E() =0,

aber wir nehmen Linearitdt nur lokal an:
m(z) ~ 2Bz, Pz, € R und x ~ x.

Wenn wir praktisch arbeiten wollen, reicht abstrakte Asymptotik nicht. Wir miissen das
~ spezifizieren. Dies kann skalenspezifisch geschehen (z.B. x &~ g wenn |z — x| < 3) oder
designabhingig (z.B. = ~ z¢ wenn #i : |z — z;| < |z — x9| < n/3). Die heute iiblichen
Implementierungen haben feinere Varianten, die hier noch nicht diskutiert werden kénnen.
Der Illustration halber kann die folgende Vergréberung reichen:

Lokalisierter Gauf3-Markov-Schétzer:
Fiir x € RP, bestimme

5:mgn:(#i:]:c—xi| <d)>n-f
wobei f ein gewéhlter Anteil (z.B. 0.5) ist.

Bestimme den Gauf3-Markov-Schétzer Ex, wobei nur diejenigen Beobachtungen einbe-
zogen werden, fiir die |z — x;| < 4.
Schétze R
m(x) = 2B,
Diese Vergroberung ignoriert alle Messpunkte, die einen Abstand iiber § haben. Feinere
Methoden benutzen eine Gewichtung, um den Einfluss entfernter Messpunkte zunehmend
zu reduzieren.

help(loess)

loess Local Polynomial Regression Fitting

Description.

Fit a polynomial surface determined by one or more numerical predictors, using local
fitting.

Usage.

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)



Arguments.

formula

data

weights
subset
na.action
model

span
enp.target
degree
parametric

drop.square

normalize

family

method
control

Details.
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a formula specifying the numeric response and one to four numeric
predictors (best specified via an interaction, but can also be specified
additively).

an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model.

If not found in data, the variables are taken from environment (formula),

typically the environment from which loess is called.

optional weights for each case.

an optional specification of a subset of the data to be used.

the action to be taken with missing values in the response or predictors.
The default is given by getOption("na.action").

should the model frame be returned?

the parameter o which controls the degree of smoothing.

an alternative way to specify span, as the approximate equivalent num-
ber of parameters to be used.

the degree of the polynomials to be used, up to 2.

should any terms be fitted globally rather than locally? Terms can be
specified by name, number or as a logical vector of the same length as
the number of predictors.

for fits with more than one predictor and degree=2, should the qua-
dratic term (and cross-terms) be dropped for particular predictors?
Terms are specified in the same way as for parametric.

should the predictors be normalized to a common scale if there is more
than one? The normalization used is to set the 10% trimmed standard
deviation to one. Set to false for spatial coordinate predictors and
others know to be a common scale.

if "gaussian" fitting is by least-squares, and if "symmetric" a re-
descending M estimator is used with Tukey’s biweight function.

fit the model or just extract the model frame.

control parameters: see loess.control.

control parameters can also be supplied directly.

Fitting is done locally. That is, for the fit at point x, the fit is made using points in a
neighbourhood of =, weighted by their distance from x (with differences in ‘parametric’
variables being ignored when computing the distance). The size of the neighbourhood
is controlled by « (set by span or enp.target). For a < 1, the neighbourhood in-
cludes proportion « of the points, and these have tricubic weighting (proportional to
(1 — (dist/maxdist)*)3. For a > 1, all points are used, with the ‘maximum distance’
assumed to be /P times the actual maximum distance for p explanatory variables.

For the default family, fitting is by (weighted) least squares. For family="symmetric"
a few iterations of an M-estimation procedure with Tukey’s biweight are used. Be aware
that as the initial value is the least-squares fit, this need not be a very resistant fit.

It can be important to tune the control list to achieve acceptable speed. See
loess.control for details.

Value.

An object of class "loess".
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Note.

As this is based on the cloess package available at netlib, it is similar to but not
identical to the loess function of S. In particular, conditioning is not implemented.

The memory usage of this implementation of loess is roughly quadratic in the
number of points, with 1000 points taking about 10Mb.

Author(s).

B.D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu avaliable at
http://www.netlib.org/a/.

References.

W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chap-
ter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole.

See Also.

loess.control, predict.loess.
lowess, the ancestor of loess (with different defaults!).

Examples.

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)
# to allow extrapolation
cars.lo2 <- loess(dist ~ speed, cars,

control = loess.control(surface = "direct"))
predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)

Wiéhrend die lineare Regression durch die Modellannahmen verpflichtet ist, immer ein
lineares (oder linear parametrisiertes) Bild zu geben, kénnen bei einer lokalisierten Variante
auch Nichtlinearitédten dargestellt werden. Die Untersuchung dieser Familie von Verfahren
bildet ein eigenes Teilgebiet der Statistik, die nichtparametrische Regression.

Wir bereiten wieder ein Beispiel vor:

Eingabe

x <= runif(50) * pi
y <- sin(x)+rnorm(50)/10



2.6. ERGANZUNGEN 2-37

Beispiel 2.11:
Eingabe

plot(x, y)
abline(lm(y ~ x), 1ty = 3, col = "blue")
lines(loess.smooth(x, y), 1ty = 6, col = "red")
legend("topleft",

legend = c("linear", "loess"),

1ty = c(3, 6), col = c("blue", "red"), bty = "n")
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2.6. Erginzungen

2.6.1. Erginzung: Diskretisierungen. Analog zum Vorgehen bei den Histogram-
men kénnen wir wieder diskretisieren. Im Hinblick auf die Regressoren haben wir dies beim
Helikopter-Beispiel getan. Die Diskretisierung kénnen wir auch bei der Respons vorneh-
men. Damit wird aus dem Regressionsproblem ein Kontingenztafel-Problem. Wir gehen
hier nicht weiter auf diese Moglichkeit ein.

2.6.2. Erginzung: Externe Daten. Daten, wie auch andere R-Objekte kénnen mit
save () in eine externe Datei geschrieben und mit load() wieder daraus gelesen werden.
In diesen Dateien werden die Daten komprimiert; die Dateien sind zwischen verschiedenen
R-Systemen austauschbar.

Ein- Ausgabe von

Daten fiir R
save () Speichert Daten in eine externe Datei.
Aufruf: save ((Namen der zu speichernden Objekte), file
= (Dateiname), ...)

(Fortsetzung)—
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Ein- Ausgabe von
Daten fiir R

(Fortsetzung)

load() Ladt Daten aus einer externe Datei.
Aufruf: load(file = (Dateiname), ...)

Haufig werden Daten in anderen Systemen vorbereitet. R stellt eine Reihe von Funk-
tionen bereit, die Daten in unterschiedlichen Formaten einlesen konnen. Siehe dazu im
Anhang Abschnittt A.17 auf Seite Seite A-29. Weitere Information findet sich im Manual
“Data Import/Export” ([R D0O7b]).

Die Funktion data () biindelt verschieden Zugriffsroutinen, wenn die Zugriffspfade und
Datei-Namen den R-Konventionen folgen.

In der Regel miissen eingelesene Daten noch nachbearbeitet werden, um das Format
an die Aufrufkonventionen der gewiinschten R-Funktionen anzupassen.

So erwartet z. B. Im die Regressoren als getrennte Variable. Fiir faktorielle Designs ist
es hingegen iiblich, die Resultate in einer Tafel zusammenzufassen, die die Faktor-Stufen
als Zeilen- oder Spaltenlabels enthélt. Die Funktion stack() iiberfiihrt Tafeln in Spalten.

2.6.3. Erginzung: Software-Test. Alle vorbereiteten Algorithmen, wie hier die Al-
gorithmen zu den linearen Modellen und deren Varianten, sollten mit derselben Vorsicht
behandelt werden wie mathematische Veroffentlichungen und Zitate. Selbst einfache Pro-
gramme jedoch haben schnell eine semantische Komplexitét, die weit iiber die mathemati-
scher Beweise hinaus geht. Die iibliche Strategie des “Nachrechnens” oder des schrittweisen
Nachvollziehens verbietet sich dadurch. Anstelle einer vollstindigen Uberpriifung muss ein
selektives Testen treten. Eine Teststrategie ist z.B. in [Sawitzki, 1994] beschrieben.

Die Uberpriifung ist sowohl fiir die Implementierung als auch fiir den zu Grunde lie-
genden abstrakten Algorithmus nétig.

Aufgabe 2.18

Fiir diese Aufgabenserie sei y; = a + bx; + ¢; mit ¢; iid ~ N (0, 0?)
und z; =4, =1,...,10.

Wahlen Sie eine Strategie, um 1m() im Hinblick auf den Parame-
terraum (a, b, 0%) zu iiberpriifen.

Gibt es eine naheliegende Zellzerlegung fiir die einzelnen Parameter
a,b,o??

Welche trivialen Fille gibt es? Welche (uniforme) Asymptotik?

Wiéhlen Sie Testpunkte jeweils in der Mitte jeder Zelle und an den
Réndern.

Fiihren Sie diese Test durch und fassen Sie die Resultate zusammen.

Welche Symmetrien/Antisymmetrien gibt es?

Uberpriifen Sie diese Symmetrien.

Welche Invarianten/welches Covariate Verhalten gibt es?
Uberpriifen Sie diese Invarianten/Covariaten.
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Aufgabe 2.19

Fiir diese Aufgabenserie sei y; = a + bx; + ¢; mit g; iid ~ N (0, 0?).

Welche extremen Designs (x;) gibt es? Uberpriifen Sie das Verhal-
ten von 1m() bei vier extremalen Designs.

Fiihren Sie die Aufgaben aus der letzten Gruppe aus, jetzt mit
variablem Design. Fassen Sie Thren Bericht zusammen.

Aufgabe 2.20

Fiir diese Aufgabenserie sei y; = a + bx; + ¢; mit g; iid ~ N (0, 0?).

Modifizieren Sie 1m() so, dass eine gesicherte Funktion fiir das
einfache lineare Modell entsteht, die auch Abweichungen von den
Modellannahmen untersucht.

2.6.4. R-Datentypen. R ist eine interpretierte Programmiersprache. Sie will es dem
Anwender erlauben, Definitionen und Konkretisierungen flexibel zu handhaben. Aus Ge-
schwindigkeitsgriinden versucht R, Auswertungen so spit wie moglich durchzufiihren. Dies
erfordert einige Finschriankungen an die Sprache, die R von anderen Programmiersprachen
unterscheidet.

R kennt keine abstrakten Datentypen. Ein Datentyp ist durch seine Instanzen, die
Variablen, definiert.

Der Datentyp einer Variablen ist dynamisch: derselbe Name in denselben Kontext kann
zu unterschiedlichen Zeiten unterschiedliche Variablenwerte und Variablentypen kennzeich-
nen.

Dennoch hat zu jeder Zeit eine Variable einen bestimmten Typ. Das R-Typensystem
versteht man jedoch am besten in seiner historischen Entwicklung und die entsprechenden
Funktionen. In der ersten Stufe war der Typ beschrieben durch mode () (z.B. “numeric”)
und storage.mode () (z.B. “integer” oder “real”).

Beide Funktionen sind weitgehend durch typeof () abgelost. Eine Zusammenfassung
der Typen, die durch typeof () derzeit berichtet werden, ist in [R D07c] zu finden.

Komplexere Datentypen werden auf die in [R DO07c] definierten zuriickgefiihrt, indem
die Variablen mit Attributen versehen werden. Dies geschieht mit der Funktion attr (), die
auch benutzt werden kann, um Attribute zu inspizieren. So sind eine Matrix oder ein Array
nur spezielle Vektoren, die sich dadurch auszeichnen, dass sie ein dim-Attribut haben. Das
class-Attribut dient dazu, die Klasse explizit zu festzulegen.

Fiir die wesentlichen Typen sind Inspektionsprozeduren und Umwandlungsprozeduren:
is.(typ) () priift auf Typenzugehorigkeit, as.(typ) () wandelt den Typ.

2.6.5. Klassen und polymorphe Funktionen. Im Zuge der Weiterentwicklung
wurde eine Anleihe an objekt-orientierte Programmierung gemacht. Dafiir wurde ein spe-
zielles Attribut mit dem Namen class genutzt: der Name des Typs (oder der “Klasse”)
wird hier gespeichert. Multiple Klassenzugehorigkeit in einer Hierarchie von Klassen ist
auch moglich. In diesem Fall enthélt class einen Vektor von Klassennamen. So hat zum
Beispiel ein geordneter Faktor die Kennzeichnung class = c("ordered", factor"). Zur
Verwaltung der Klassen stehen Funktionen class (), unclass(), inherits() zur Verfii-

gung.
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Die Klassenzuordnung basiert dabei auf Vertrauen. R iiberpriift nicht, ob die Daten-
struktur mit der angegebenen Klasse konsistent ist.

Funktionen wie plot (), print () und viele weitere iiberpriifen die Typen- und Klas-
senzugehorigkeit ihrer Argument und verzweigen dann zu entsprechenden spezialisierten
Funktionen. Dieses nennt man Polymorphismus. Wenn man eine polymorphe Funktion
auflistet, erhélt man zunéchst nur den Hinweise, das eine Dispatch-Funktion UseMethod ()
aufgerufen wird. Beispiel:

Beispiel 2.12:

Eingabe
plot

Ausgabe
function (x, y, ...)

{
if (is.function(x) && is.null(attr(x, "class"))) {
if (missing(y))

y <- NULL

hasylab <- function(...) !all(is.na(pmatch(names(list(...)),
"ylab")))

if (hasylab(...))
plot.function(x, y, ...)

else plot.function(x, y, ylab = paste(deparse(substitute(x)),
"x", ...)

}
else UseMethod("plot")

}

<environment: namespace:graphics>

UseMethod () bestimmt die Klasse des ersten Argument, mit dem die Funktion auf-
gerufen wurde, sucht dann ein Spezialisierung fiir diese Klasse und ruft schliesslich die
gefundene Funktion auf. Fiir polymorphe Funktionen findet man die entsprechenden Spe-
zialisierungen mit Hilfe von methods (), z.B. methods (plot).

2.6.6. Extraktor-Funktionen. Funktionen wie 1m() liefern komplexe Datentypen
mit umfangreicher Information. In einer rein objekt-orientierten Umgebung wiirden Zu-
griffsmethoden mit den Daten gemeinsam verkapselt. In R ist Objekt-Orientierung in
Ansétzen und auf verschiedene Weisen realisiert. Dies spiegelt zum Teil die Entwicklung
wieder. Bei geniigend verallgemeinerbaren Strukturen werden Zugriffsmethoden wie in Ab-
schnitt 2.6.5 bereitgestellt. Fiir die Objekte wie die von 1m() gelieferten gibt es eine Reihe
von Extraktor-Funktionen, die auf Komponenten zugreifen und diese geeignet aufbereiten.

FExtraktor- Funkti-
onen fiir 1m

coef () extrahiert geschétzte Koeffizienten

effects() extrahiert sukzessiv orthogonale Komponenten

(Fortsetzung)—
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Extraktor- Funkti-

onen fiir 1lm

(Fortsetzung)

residuals () Roh-Residuen

stdres () (in library(MASS)) standardisierte Residuen
studres () (in library(MASS)) extern studentisiere Residuen
fitted()

veov () Varianz/Kovarianzmatrix der geschétzten Parameter
predict () Konfidenz- und Toleranzintervalle

confint () Konfidenz-Intervalle fiir Parameter

influence() extrahiert Einfluss-Diagnostiken

model .matrix () bildet die Design-Matrix

2.7. Statistische Zusammenfassung

Als Leitbeispiel diente in diesem Kapitel die statistische Analyse eines funktionel-
len Zusammenhangs. Die betrachteten Modelle sind finit in dem Sinne, dass ein endlich-
dimensionaler Funktionenraum den in Betracht gezogenen Zusammenhang zwischen Re-
gressoren und Respons beschreibt. Die stochastische Komponente in diesen Modellen ist
noch auf eine (eindimensionale) Zufallsverteilung beschrinkt. Die Dimensionsbegriffe ver-
dienen hier eine genauere Betrachtung. Wir haben zum einen die Regressor-Dimension.
Dies ist die Dimension des Raumes der beobachteten oder abgeleiteten Parameter. Nicht
alle Parameter sind identifizierbar oder schitzbar. Genauer gefasst ist die Dimension die
Vektorraum-Dimension des gew#hlten Modell-Raums. Die Modelle werden durch Parame-
ter in diesem Raum beschrieben. Diese Parameter konnen unbekannt oder hypothetisch
sein. In jedem Fall aber haben wir sie als deterministisch betrachtet. Zum anderen ha-
ben wir die stochastische Komponente, reprédsentiert durch den Fehler-Term. In diesem
Kapitel sind wir von homogenen Fehlern ausgegangen. Damit bestimmt der Fehler-Term
im Prinzip eine Dimension, die allerdings aus einem Raum von Verteilungen stammt. Fiir
den Spezialfall der einfachen GauB-linearen Modell sind die Verteilungen mit zwei Para-
metern prézisiert, dem Erwartungswert und der Varianz. Von dem Erwartungswert haben
wir uns durch die Annahme befreit, dass das Modell im Mittel alle systematischen Effekte
erfasst, also der Erwartungswert null ist. Die Varianz ist in unseren Problemen noch ein
unbekannter Storparameter. Wir haben die dadurch entstehenden Problemen vermieden,
indem wir uns auf Probleme beschriankt haben, in denen diese Stérparameter durch einen
geschéitzten Wert ersetzt und so eliminiert wird.

2.8. Literatur und weitere Hinweise:

[CH92] Chambers, J.M.; Hastie, T.J. (eds.) (1992): Statistical Models in S. NewYork:
Chapman & Hall.

[Jor93] Jergensen, B. (1993): The Theory of Linear Models. NewYork: Chapman & Hall.

[R DO07c| R Development Core Team (2004): The R language definition.
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[Saw94a] Sawitzki, G. (1994): Numerical Reliability of Data Analysis Systems. Computa-
tional Statistics & Data Analysis 18.2 (1994) 269-286. <http://www.statlab.
uni-heidelberg.de/reports/>.

[Saw94b| Sawitzki, G. (1994):Report on the Numerical Reliability of Data Analysis Sy-
stems. Computational Statistics & Data Analysis/SSN 18.2 (1994) 289-301. <http:
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KAPITEL 3

Vergleich von Verteilungen

Wir beginnen mit der Konstruktion eines kleinen Werkzeugs, das uns Beispieldaten
liefern wird. Basis ist ein kleiner Reaktionstester. Wir zeichen einen “zufilligen” Punkt,
warten auf einen Maus-Klick, und registrieren die Position des Mauszeigers. Damit bei
wiederholten Aufrufen das Bild stabil bleibt, fixieren wir das Koordinatensystem.

Beispiel 3.1:
Eingabe

plot(x = runif(1), y = runif(1),
x1lim = ¢(0, 1), ylim = c(0, 1),

main = "Bitte auf den Punkt klicken",
xlab = '', ylab = "',
axes = FALSE, frame.plot = TRUE)
locator (1)
Ausgabe
$x

[1] 0.6956522

$y
[1] 0.1260563

Bitte auf den Punkt klicken
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Wir verpacken nun diesen Basistester. Wir merken uns die Koordinaten, versuchen,
die Reaktionszeit des Benutzers zu messen, und liefern alle Resultate als Liste zuriick.

Beispiel 3.2:

Eingabe
clickl <- function(){

x <= runif(1);y <- runif(1)
plot(x = x, y =y, xlim = ¢(0, 1), ylim = c(0, 1),

main = "Bitte auf den Punkt klicken",
xlab = '', ylab = "',
axes = FALSE, frame.plot = TRUE)

clicktime <- system.time(xyclick <- locator(1))
list(timestamp = Sys.time(),
X=X, y=Y
xclick = xyclick$x, yclick = xyclick$y,
tclick = clicktime[3])

Zur weiteren Verarbeitung kénnen wir die Liste in einen data.frame integrieren und
diesen data.frame schrittweise mit Hilfe von rbind erweitern.

Beispiel 3.3:
Eingabe

dx <- as.data.frame(click1())
dx <- rbind(dx, data.frame(click1()))
dx

Ausgabe
timestamp X y xclick yclick tclick

elapsed 2008-03-17 21:40:49 0.29683 0.43955 0.69565 0.12606 0.261
elapsedl 2008-03-17 21:40:50 0.29617 0.58226 0.69565 0.12606 0.262

Aufgabe 3.1

Definieren Sie eine Funktion click (runs), die zu vorgegebener An-
zahl runs die Aufgabe von click1 () wiederholt und das Resultat
als data.frame iibergibt. Eine erste (zusétzliche) Messung sollte
als Warmlaufen betrachtet werden und nicht in die Auswertung
mit einbezogen werden.

Wihlen Sie eine Anzahl runs. Begriinden Sie Thre Wahl von runs.
Fiihren Sie click(runs) durch und speichern Sie das Resultat mit
Hilfe von write.table() in einer Datei.

Stellen Sie die Verteilung der Komponente tclick() mit den Me-
thoden aus Kapitel 1 (Verteilungsfunktion, Histogramm, Boxplot)
dar.
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3.1. Shift/Skalenfamilien

FEin Vergleich von Verteilungen kann eine sehr anspruchsvolle Aufgabe sein. Der ma-
thematische Raum, in dem Verteilungen angesiedelt sind, ist nicht mehr ein Zahlenraum
oder ein (endlichdimensionaler) Vektorraum. Der eigentliche Raum, in dem Verteilungen
beheimatet sind, ist ein Raum von Maflen. In einfachen Féllen, etwa bei Verteilungen auf
R, koénnen wir alles auf Verteilungsfunktionen reduzieren und sind damit immerhin bei
einem Funktionenraum. Selbst hier kann ein Vergleich noch grofle Schwierigkeiten machen.
Wir haben keine einfache Ordnungsrelation.

Aufgabe 3.2

Fiithren Sie Aufgabe 3.1 einmal mit der rechten und einmal mit der
linken Hand durch. Vergleichen Sie die empirischen Verteilungen
von tclick().

Die erhobenen Daten enthalten auch Information iiber die Positio-
nen. Definieren Sie ein Mafl dist fiir die Abweichung. Begriinden
Sie Thre Definition. Fiihren Sie auch fiir dist einen rechts/links
Vergleich durch.

Wir konzentrieren uns hier auf den Vergleich von nur zwei Verteilungen, etwa der von
Messungen in zwei Behandlungsgruppen. Wie nehmen wieder einen einfachen Fall: die
Beobachtungen seien jeweils unabhéingig identisch verteilt (jetzt mit der fiir den Vergleich
von Behandlungen {iblichen Index-Notation).

Y;; unabhéngig identisch verteilt mit Verteilungsfunktion F;
1=1,2 Behandlungen

j=1,...,n; Beobachtungen in Behandlungsgruppe 3.
Wie vergleichen wir die Beobachtungen in den Gruppen i = 1,2 ? Die (einfachen) linearen

Modelle
Yij=p+ o +¢ej
betrachten als Unterschied héufig nur eine Verschiebung A = a3 — as.

Bezeichnungen: Zu einer Verteilung mit Verteilungsfunktion F' heifit die Familie mit
F,(z) = F(z—a)
die Shift-Familie zu F. Die Verschiebung a heiffit Shift- oder Lage-Parameter.
Die Behandlung kann aber, in Wahrscheinlichkeiten gesprochen, die Wahrscheinlich-
keitsmassen auch in anderer Weise verschieben, als es ein additiver Term im Modell be-

wirken kann. Wir brauchen allgemeinere Vergleichsmoglichkeiten als die durch einen Shift
definierten.

Bezeichnung: Eine Verteilung mit Verteilungsfunktion F} heifit stochastisch kleiner
als eine mit Verteilungsfunktion Fo(F; < F»), wenn F; eher bei kleineren Werten liegt als
F5. Das bedeutet, dass F) eher ansteigt.

Fi(z) > Fy(z) Vz
und

Fi(z) > F5(z) fiir mindestens ein .

Fiir Shift-Familien gilt: Ist a < 0, so ist F, < F. Der Shift bewirkt eine Parallel-
Verschiebung der Verteilungsfunktionen.
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Ein typisches Resultat des Click-Experiments (Aufgabe 3.1 ist zum Beispiel in Ab-
bildung 3.1 dargestellt. Die Zeiten fiir die rechte Seite sind stochastisch kleiner als die
fiir die linke Seite. Die Verteilungen gehoren jedoch nicht zu einer Shift-Familie, denn die
Verteilungsfunktionen sind nicht parallel.
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ABBILDUNG 3.1. Verteilungsfunktion fiir die rechts/links-Klickzeit

Aufgabe 3.3

Wie sieht ein PP-Plot fiir F; gegen F5 aus, wenn F; < F5?7
Wie sieht ein QQ-Plot fiir F} gegen Fh aus, wenn £} < Fo?

Leider ist die dadurch definierte stochastische Ordnung nur von beschrianktem Wert.
Sie definiert keine vollstdndige Ordnung. Fiir Shift-Familien ist sie ausreichend. Aber Ge-
genbeispiele kann man sich konstruieren, wenn man die Shift-Familien nur geringfiigig
erweitert.

Bezeichnungen: Zu einer Verteilung mit Verteilungsfunktion F' heifit die Familie mit
Tr—a

;)

Fop(x) = F(
die Skalen-Shiftfamile zu F.

Aufgabe 3.4

Die Skalen-Shiftfamilien zur N (0, 1)-Verteilung sind die N (p,0?)-
Verteilungen. Welche N (p1, 02)-Verteilungen sind stochastisch klei-
ner als die N(0,1)-Verteilung? Welche sind stochastisch grofer?
Fiir welche ist die Ordnungsrelation undefiniert?
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Die aus der linearen Theorie kommende Einordnung nach Lage/Skalen und die stocha-
stische Ordnung klaffen auseinander, und beide Aspekte miissen oft getrennt betrachtet
werden. Viele statistische Methoden konzentrieren sich auf Aspekte, die durch Skalen-
Shiftfamilien motiviert sind. Unterschiede jenseits dessen, was durch Skala und Shift be-
schrieben werden kann, bediirfen oft besonderer Aufmerksamkeit.

In Kapitel 2 haben wir eine typische Situation fiir lineare Modelle betrachtet. Im Prin-
zip haben wir es mit Skalen-Shiftfamilien zu tun. Der (stochastische) Skalenparameter in
diesen Modellen ist jedoch nur ein Stérparameter, der eliminiert werden kann. Dazu be-
nutzten wir einen Schétzer fiir diesen Skalenparameter, die residuelle Varianz, die wir dann
heraus gekiirzt haben. Als eine Besonderheit bei Gauf-linearen Modellen erhalten wir hier
unabhéngige Schétzer fiir Erwartungswert und Varianz. Dadurch kénnen wir im Falle der
einfachen Gauf3-linearen Modelle Statistiken gewinnen, die nicht mehr vom Skalenparame-
ter abhéngen.

Im allgemeinen Fall haben wir jedoch eine aufsteigende Leiter von Problemen:

Shift- Alternativen

Shift /Skalen- Alternativen
stochastische Ordnung
allgemeinere Alternativen

Test- und Schétzprobleme konzentrieren sich oft nur auf einen Aspekt des Problems,
die Lage. Der Skalenparameter ist hier nur eine Storgrofle, ein “nuisance parameter”. Unter-
schiede im Shift-Parameter fithren zu stochastisch monotonen Beziehungen. Unterschiede
im Skalenparameter sind nicht so einfach einzuordnen und Test-Statistiken miissen erst
von diesem, Storparameter bereinigt werden, wenn ausser dem Shift-Parameter auch der
Skalenparameter variieren kann.

3.2. QQ-Plot, PP-Plot

Als Vergleichsdarstellung fiir Verteilungsfunktionen haben wir den PP-Plot und den
QQ-Plot kennengelernt. So lange man innerhalb einer Skalen-Shiftfamilie bleibt, hat der
QQ-Plot zumindest in einer Hinsicht einen Vorteil gegeniiber dem P P-Plot:

BEMERKUNG 3.1. Sind Fi, Fy Verteilungsfunktionen aus einer gemeinsamen Skalen-
Shiftfamilie, so ist der Q@Q-Plot von F; gegen F3 eine Gerade.

Insbesondere fiir die Gaufiverteilungen ist der QQ-Plot gegen N(0,1) ein wichtiges
Hilfsmittel. Jede Gauflverteilung gibt in diesem Plot eine Gerade. Der QQQ-Plot ist fiir
diese Situation bereits als Funktion gqnorm() vorbereitet.

Fiir den Vergleich von zwei Stichproben mit gleichem Stichprobenumfang kann die ent-
sprechende Funktion ggplot() genutzt werden: bezeichnen wir die empirischen Quantile
mit Y7 (j.p) bzw. Y5 (5.n), S0 ist dieser Plot der Graph (YL(M), Y27(i:"))i:1...n' Sind die Stich-
probenumfinge verschieden, so behilft sich R und generiert die Markierungspunkte durch
lineare Interpolation, wobei der kleinere der beiden Stichprobenumfinge die Anzahl der
Interpolationspunkte bestimmt.

Der PP-Plot hat keine dem QQ-Plot vergleichbare Aquivarianzeigenschaften. Wenn
wir Skalen-Shiftparameter eliminieren wollen, miissen wir die Daten zunéchst entsprechend
transformieren. Die mathematische Theorie ist jedoch fiir den PP-Plot einfacher. Insbe-
sondere gibt es auch hier einen entsprechenden Kolmogorov-Smirnov-Test (sieche Abschnitt

3.2.1).
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Der Aquivarianz des QQ-Plots als Vorteil stehen auf der anderen Seite strukturelle
Nachteile entgegen. In Bereichen niedriger Dichte bestimmen empirisch wenige Daten-
punkte den Plot. Entsprechend hat er hier eine grofle Varianz. Gleichzeitig sind hier der
Wahrscheinlichkeit nach benachbarte Quantile im Wertebereich weit entfernt: die grofie
Varianz kombiniert sich ungiinstig mit einer groflen Variabilitidt, und der QQ-Plot zeigt
entsprechend grofie Fluktuation. Fiir die meisten Lehrbuch-Verteilungen bedeutet dies,
dass der Q@-Plot in den Randbereichen kaum zu interpretieren ist. Der P P-Plot hat keine
entsprechenden Skalendefizite, aber auch nicht die Aquivarianzeigenschaft des QQ-Plots.
Er wird deshalb in der Regel auf geeignet standardisierte Variable angewandt.

help(qqgplot)

qgnorm Quantile-Quantile Plots

Description.

qgqnorm is a generic function the default method of which produces a normal QQ plot
of the values in y. qqline adds a line to a normal quantile-quantile plot which passes
through the first and third quartiles.

qgplot produces a QQ plot of two datasets.

Graphical parameters may be given as arguments to qgnorm, qgplot and ggline.

Usage.

qqnorm(y, ...)

## Default S3 method:

qgnorm(y, ylim, main = "Normal Q-Q Plot",
xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
plot.it = TRUE, datax = FALSE, ...)

qqline(y, datax = FALSE, ...)

qgplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)

Arguments.

X The first sample for qgplot.
y The second or only data sample.
xlab, ylab, main
plot labels. The x1lab and ylab refer to the y and x axes respectively
if datax = TRUE.

plot.it logical. Should the result be plotted?

datax logical. Should data values be on the x-axis?

ylim, ... graphical parameters.

Value.

For qgnorm and qgplot, a list with components

X The x coordinates of the points that were/would be plotted

y The original y vector, i.e., the corresponding y coordinates including

NAs.



References.

3.2. QQ-PLOT, PP-PLOT

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

See Also.

ppoints, used by qgnorm to generate approximations to expected order statistics for
a normal distribution.

Examples.

y <- rt(200, df = 5)
qgnorm(y); qqline(y, col = 2)
qgplot(y, rt(300, df = 5))

qgnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

Aufgabe 3.5

Benutzen Sie den Quantil-Quantil-Plot, um die Resultate des
rechts/links c1ick-Experiments zu vergleichen. Formulieren Sie die
Resultate.

Fassen Sie die rechts/links tclick-Daten zu einem Vektor zusam-
men. Vergleichen Sie den Quantil-Quantil-Plot mit dem von Monte-
Carlo-Stichproben aus dem zusammengefassten Vektor.
Erinnerung: Zufallsstichproben kénnen Sie mit sample() ziehen.
Mit par(mfrow = c(2, 2)) teilen Sie den Zeichenbereich so ein,
dass Sie vier Plots gleichzeitig sehen kénnen.

*3k

Benutzen Sie bei sample () den Parameterwert replace = FALSE.
Wie miissen Sie jetzt sample () anwenden, um den zusammengefas-
sten Vektor in zwei Vektoren mit Monte-Carlo-Stichproben aufzu-
teilen? Welche Unterschiede zu replace = TRUE sind zu erwarten?

Aufgabe 3.6

Bestimmen Sie fiir die tclick-Daten des rechts/links click-
Experiments Skalen- und Shiftparameter so, dass die Verteilun-
gen in den Gruppen nach Skalen-Shift-Transformation méoglichst
gut tibereinstimmen. Beschreiben Sie die Unterschiede anhand der
Skalen-Shiftparameter. Verwenden Sie dazu eine Modellierung mit
einem linearen Modell.

Benutzen Sie die Funktion boxplot (), um Quartile und Flanken-
verhalten darzustellen.

Vergleichen Sie die Information mit den Skalen-Shiftparametern.

Hinweis: was entspricht dem Shift(Lage)parameter? Was entspricht
dem Skalenparameter?
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Wenn Darstellungen affin invariant sind, kénnen Skalen-Shiftparameter ignoriert wer-
den. Wenn Darstellungen nicht affin invariant sind, ist es hidufig hilfreich, zunéchst Skalen-
Shiftparameter geeignet zu schétzen, die Verteilungen zu standardisieren, und dann die
standardisierten Verteilungen zu untersuchen.

Das Problem, das wir uns damit potentiell einhandeln, ist, dass dann das stochasti-
sche Verhalten der Schétzung fiir die Skalen-Shiftparameter beriicksichtigt werden muss.
Der iibliche Ausweg ist es, vorsichtigerweise “konservative” Tests und robuste Schétzer
zu benutzen. Die folgende Transformation versucht, Skala und Lage an eine Standard-
Normalverteilung anzupassen.

Eingabe

ScaleShiftStd <- function (x) {
xq <- quantile(x[!is.na(x)], c(0.25, 0.75))
y <- gnorm(c(0.25, 0.75))
slope <- diff(y)/diff (xq)
(x-median(x, na.rm = FALSE)) * slope
}

Um Verteilungen direkt miteinander vergleichen zu kénnen, greifen wir auf Techniken
aus dem ersten Kapitel zuriick. Was dort iiber den Vergleich zu einer theoretischen Ver-
teilung gesagt worden ist, kann analog auf den Vergleich von zwei Verteilungen, z.B. aus
zwel Behandlungsgruppen, iibertragen werden. Die statistischen Aussagen miissen jedoch
revidiert werden. Nun betrachten wir nicht mehr eine feste und eine zuféllige Verteilung,
sondern wir vergleichen zwei zufillige (empirische) Verteilungen.

Die fiir den Einstichproben-Fall (eine Stichprobe im Vergleich zu einer hypothetischen
Verteilung) benutzte Idee von Monte-Carlo-Béandern kann nicht unmittelbar iibertragen
werden: wir wollen zwei Verteilungen miteinander vergleichen, aber wir haben keine aus-
gezeichnete Modellverteilung, aus der wir Referenzstichproben ziehen kénnen.

Wir kénnen jedoch die Idee modifizieren und bedingte Monte-Carlo-Bénder konstruie-
ren. Bedingt bedeutet hier: die Konstruktion hingt von beobachteten Stichprobenwerten
ab. Wir nehmen an, dass wir zwei Stichproben Yii,...,Y1,, und Ya;,..., Y3,, von ins-
gesamt unabhéngigen und innerhalb der Gruppen identisch nach F; bzw. Fs verteilten
Beobachtungen haben. Falls kein Unterschied zwischen den Verteilungen besteht, so ist
(Y11,...,Y1n,, Y21, ..., Ys,,) eine iid-Stichprobe aus einer gemeinsamen Verteilung F' =
Fy = F5 mit Stichprobenumfang n = ny + ns. Bei einer iid-Stichprobe hétte jede Permu-
tation der Indizes die gleiche Wahrscheinlichkeit.

Die motiviert das folgende Verfahren: wir permutieren das Tupel (Yi1,...,Y1n,, Yo,
...,Ya,,) und ordnen die ersten n; Werte (nach Permutation) der ersten Gruppe zu, die
anderen der zweiten.

Die Permutationsgruppe ist schnell so grof3, dass sie nicht mehr vollstdndig ausgewertet
werden kann. Anstelle dessen benutzen wir eine zufillige Auswahl von Permutationen. Wir
benutzen die so generierten Werte, um Monte-Carlo-Bénder zu generieren.

Aufgabe 3.7

Modifizieren Sie die Funktionen fiir P P-Plot und Q@Q-Plot so, dass
Monte-Carlo-Bénder fiir den Vergleich von zwei Stichproben hin-
zugefiigt werden.

(Fortsetzung)—
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Aufgabe 3.7 (Fortsetzung)

Hinweis: mit der Funktion sample() konnen Sie zufillige Permu-
tationen generieren.

Bei groflerem Stichprobenumfang kann der Aufwand Permutationen zu generieren zu
zeitaufwendig sein. Um Verwaltungsaufwand zu sparen, konnen wir die Permutation durch
ein Ziehen aus den n Werten (Y11,...,Y1n,, Y12, .., Y1n,) mit Zuriicklegen ersetzen.
Diese approximative Losung wird als Bootstrap-Approximation' bezeichnet.

Da es nur endlich viele Permutationen gibt, konnen wir bei kleinem Stichprobenumfang
auch alle Permutationen durchgehen. Wir wihlen die Bdnder dann so, dass ein hinreichend
grofler Anteil (etwa mehr als 95 %) aller Kurven innerhalb der Bénder liegt. Permutatio-
nen, die sich nur innerhalb der Gruppen unterscheiden, ergeben dieselben Kurven. Diese
Zusatziiberlegung zeigt, dass wir nicht alle n! Permutationen {iberpriifen miissen, sondern
nur die (7’?1) Auswahlen fiir die Zuteilung zu den Gruppen.

Aufgabe 3.8

Kok Ergénzen Sie PP-Plot und QQ-Plot fiir die click-Experimente
durch Permutations-Bénder, die 95 % der Permutationen abdecken.

* Erzeugen Sie neue Plots, in denen Sie die PP-Plots und QQ-Plots
durch Monte-Carlo-Bénder aus den Permutationen ergénzen. Be-
nutzen Sie die Einhiillende von 19 Monte-Carlo-Stichproben.
Hinweis: benutzen Sie die Funktion sample() um eine Stichprobe
vom Umfang ny aus = = (Y11,..., Yin,, Y12, .., Yin,) zu zichen.
Hinweis: Siehe help (sample).

Aufgabe 3.9

* Versuchen Sie, die Eigenschaften der Permutationsbiander, Monte-
Carlo-Béander und Bootstrap-Bander zu vergleichen, wenn F; = F5
gilt.

Wenn nicht die Verteilungen verglichen werden sollen, sondern nur einzelne festgelegte
Kenngroflen, so konnen diese Strategien analog eingesetzt werden. Wenn wir uns z.B. auf
die Shift-Alternative beschrénken (d.h. F} und F5 sind aus eine Shiftfamilie, d.h. Fj(z) =
Fs(x — a) fiir ein a), so konnen wir etwa den Mittelwert (oder den Median) als Kenngrofie
nehmen. Auf diese Kenngréfle kann das obige Vorgehen analog angewandt werden, um zu
entscheiden, ob die Hypothese, dass die Verteilungen sich nicht unterscheiden (a = 0),
angesichts der Daten haltbar ist.

Aufgabe 3.10
* Formulieren Sie die obigen Strategien fiir Intervalle fiir einzelne
Teststatistiken (Beispiel: Mittelwert) anstelle fiir Bénder.
(Fortsetzung)—

Worsicht: es gibt beliebig wilde Definitionen von Bootstrap. Versuchen Sie stets, das Vorgehen
mathematisch genau zu formulieren, wenn von Bootstrap die Rede ist.
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Aufgabe 3.10 | (Fortsetzung)

Hinweis: Konnen Sie anstelle der zwei Mittelwerte fiir beide Grup-
pen eine eindimensionale zusammenfassende Statistik benutzen?

3.2.1. Kolmogorov Smirnov Tests. In Kapitel 1 haben wir den Kolmogorov-Smir-
nov-Test zum Vergleich einer Stichprobe (X;)i=1, .., und der zugehorigen empirischen Ver-
teilung F,, mit einer (festen, vorgegebenen) Verteilung F' kennengelernt. Die kritische Test-
grofe ist dabei

sup |F, — F|.
Wir konnen diesen Test etwas modifizieren, um zwei empirische Verteilungen zu verglei-
chen. Anstelle der Modellverteilung F' tritt nun eine zweite empirische Verteilung G, von
Beobachtungen (Y});j—1,.. m mit zu Grunde liegender (unbekannter) Verteilung G. Die kri-
tische Testgrofe ist dann

sup |Fp, — G-
Der darauf basierende Test ist in der Literatur als 2-Stichproben-Kolmogorov-Smirnov-Test
zu finden. Dieser Test korrespondiert zum P P-Plot und erlaubt es, Bander zum P P-Plot
zu konstruieren.

Wir kénnen Bénder auch durch Simulation bestimmen. Im Gegensatz zum 1-Stich-
proben-Test haben wir jetzt keine vorgegebene Verteilung, aus der wir simulieren kénnen.
Unter der Hypothese, dass die Verteilungen F' und G sich nicht unterscheiden, verhélt sich
jedoch bei unabhéngigen Beobachtungen der gemeinsame Vektor (Xi,..., X,, Y1,...,Y},)
wie ein Vektor von n + m unabhéingigen Zufallszahlen mit identischer Verteilung F' = G.
Bei gegebenen Daten kann diese Beziehung zur Simulation genutzt werden. Durch eine
Permutation 7 der Indizes erzeugt man aus dem Vektor Z = (Xy,..., X, Y1,...,Y,,) einen
neuen Vektor Z' mit Z! = Zr(iy- Die ersten n Komponenten benutzen wir als simulierte
Werte (X/)i=1,..n, die iibrigen m Komponenten als simulierte Werte (Yj’)jzlywm.

Aufgabe 3.11

* Programmieren Sie diesen Algorithmus und ergéinzen Sie den P P-
Plot durch simulierte PP-Plots fiir eine kleine Anzahl (197) von
Permutation.

Bestimmen Sie die Permutationsverteilung von sup |F,, — G,,| aus
den Simulation und berechnen Sie diesen Wert fiir die urspriingli-
chen Daten. Konnen Sie diesen Vergleich benutzen, um ein Test-
verfahren zu definieren?

Der implementierte Kolmogorov-Smirnov-Test beinhaltet eine Ap-
proximation fiir den 2-Stichprobenfall. In unserer Simulation wissen
wir, dass wir unter der Hypothese simulieren, die Hypothese also
zutrifft. Untersuchen Sie die Verteilung des nominellen Niveaus un-
ter den simulierten Bedingungen.

3.3. Tests auf Shift

Wenn wir zusétzliche Verteilungsannahmen machen, konnen wir andere Entscheidungs-
verfahren wéahlen. Fiir diese Verfahren sind aber die Verteilungsannahmen kritisch. Diese
Abhéngigkeit von den Verteilungsannahmen kann gemildert oder vermieden werden, wenn
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wir geeignete Verteilungsannahmen sicherstellen konnnen. Der F-Test, den wir im letz-
ten Kapitel kennengelernt haben, ist ein Beispiel fiir ein verteilungsabhéngiges Verfahren.
Fiir den Zwei-Stichprobenfall kann dieser Test modifiziert werden zum t-Test, der auch
die Richtung des Unterschiedes widerspiegelt. (Das Quadrat der t-Statistik ist eine F'-

Statistik.)

help(t.test)

t.test

Student’s t-Test

Description.

Performs one and two sample t-tests on vectors of data.

Usage.

t.test (x,

)

## Default S3 method:

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

## S3 method for class 'formula':

t.test(formula, data, subset, na.action, ...)

Arguments.

X a numeric vector of data values.

y an optional numeric vector data values.

alternative a character string specifying the alternative hypothesis, must be one
of "two.sided" (default), "greater" or "less". You can specify just
the initial letter.

mu a number indicating the true value of the mean (or difference in means
if you are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal

conf.level
formula

data

subset
na.action

a logical variable indicating whether to treat the two variances as being
equal. If TRUE then the pooled variance is used to estimate the variance
otherwise the Welch (or Satterthwaite) approximation to the degrees
of freedom is used.

confidence level of the interval.

a formula of the form lhs ~ rhs where lhs is a numeric variable
giving the data values and rhs a factor with two levels giving the
corresponding groups.

an optional matrix or data frame (or similar: see model.frame) con-
taining the variables in the formula formula. By default the variables
are taken from environment (formula).

an optional vector specifying a subset of observations to be used.

a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

further arguments to be passed to or from methods.
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The formula interface is only applicable for the 2-sample tests.

If paired is TRUE then both x and y must be specified and they must be the same
length. Missing values are removed (in pairs if paired is TRUE). If var.equal is TRUE
then the pooled estimate of the variance is used. By default, if var.equal is FALSE
then the variance is estimated separately for both groups and the Welch modification
to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means)
an error is generated.

Value.

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alter-
native hypothesis.

estimate the estimated mean or difference in means depending on whether it

was a one-sample test or a two-sample test.
the specified hypothesized value of the mean or mean difference de-
pending on whether it was a one-sample test or a two-sample test.

null.value

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.
data.name a character string giving the name(s) of the data.

See Also.

prop.test

Examples.

t.test(1:10,y=c(7:20)) # P = .00001855

t.test(1:10,y=c(7:20, 200)) # P = .1245 -- NOT significant anymore
## Classical example: Student's sleep data

plot(extra ~ group, data = sleep)

## Traditional interface

with(sleep, t.test(extralgroup == 1], extralgroup == 2]))
## Formula interface

t.test(extra ~ group, data = sleep)

In seiner einfachsten Form setzt der ¢-Test voraus, dass wir unabhéngig identisch ver-
teilte Stichproben aus Normalverteilungen haben. Tatséchlich reichen schwéchere Voraus-
setzungen. Wenn wir die ¢t-Test-Statistik als

i1 — 12
VWarGm - m)
schreiben, so sehen wir, dass ¢ t-verteilt ist, wenn 111 — 12 normalverteilt und (Var (pg — 12))

x? verteilt ist, und beide Term unabhiingig sind. Der zentrale Grenzwertsatz garantiert,
dass 11 — s unter milden Bedingungen zumindest asymptotisch normalverteilt ist. Analo-

(3.1) t =

ges gilt oft fiir (Var (11 — 12)). Gilt die Unabhéngigkeit beider Terme, so ist ¢ approximativ
t-verteilt.
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Aufgabe 3.12

*

Bestimmen Sie in einer Simulation die Verteilung von Y, Vm)
und der ¢-Statistik fiir Y aus der uniformen Verteilung U]0, 1] mit
Stichprobenumfang n = 1,...,10. Vergleichen Sie die Verteilungen
aus der Simulation mit der entsprechenden Normal-, x2- bzw. t-
Verteilung.

Bestimmen Sie in einer Simulation die Verteilung von Y, Var (Y)
und der ¢-Statistik fiir Y aus einer Mischung, die zu 90% aus einer
N(0,1)- und zu 10% aus einer N(0,10)-Verteilung stammt, mit
Stichprobenumfang n =1, ..., 10. Vergleichen Sie die Verteilungen
aus der Simulation mit der entsprechenden Normal-, x2- bzw. t-
Verteilung.

Der t-Test hat eine gewisse Robustheit, die ihm eine approximative Giiltigkeit ge-
ben kann. Man kann sich jedoch ganz von der Normalverteilungs-Voraussetzung befreien.
Wenn wir analog zum F'-Test bzw. t-Test vorgehen, aber anstelle der Urdaten die Rénge
benutzen, gewinnen wir Testverfahren, die verteilungsunabhiingig sind (zumindest, solan-
ge keine Bindungen auftreten kénnen). Der Wilcoxon-Test ist eine verteilungsunabhéngige
Variante des t-Tests. Theoretisch entspricht er genau dem ¢-Test, angewandt auf die (ge-
meinsam) rangtransformierten Daten. Wie der ¢-Test ist dieser Test nur darauf ausgelegt,
die Nullhypothese (kein Unterschied) gegen eine Shift-Alternative zu testen. Fiir die prak-
tische Anwendung kénnen arithmetische Vereinfachungen ausgenutzt werden. Deshalb ist
die Beziehung zwischen den iiblichen Formeln fiir den ¢-Test und fiir den Wilcoxon-Test
nicht einfach zu erkennen.

Um den Wilcoxon-Test anzuwenden, muss zum einen die Teststatistik berechnet wer-
den. Zur Bestimmung kritischer Werte, mit denen die Teststatistik zu vergleichen ist, muss
zum anderen die Verteilungsfunktion ausgewertet werden. Sind alle Beobachtungen paar-
weise verschieden, so héngt diese Funktion nur von nqy und ny ab, und relativ einfache
Algorithmen stehen zur Verfiigung. Diese sind in der Funktion R standardméfig verfiig-
bar und werden von wilcox.test () benutzt. Gibt es Bindungen in den Daten, d.h. gibt
es iibereinstimmende Werte, so hingt die Verteilung vom speziellen Muster dieser Bin-
dungen ab und die Berechnung ist aufwendiger. wilcox.test () greift in diesem Fall auf
Approximationen zuriick. Zur exakten (im Gegensatz zur approximativen) Auswertung
stehen jedoch die entsprechenden Algorithmen ebenfalls zur Verfiigung. Dazu bendtigt
man libary(coin). Die exakte Variante des Wilcoxon-Tests findet sich dort etwa als wil-
cox_test().

Auf den Réngen basierende verteilungsunabhéngige Verfahren zu charakterisieren und
mit den frither vorgestellten verteilungsunabhéngigen Monte-Carlo-Verfahren und deren
Varianten zu vergleichen ist ein klassischer Teil der Statistik. Literatur dazu findet man
unter den Schlagworten “Rangtests” oder “verteilungsfreie Verfahren”. Zusétzliche R-Funk-
tionen finden sich in 1ibary(coin) sowie in einigen speziellen Paketen.

Natiirlich stellt sich die Frage nach dem Informationsverlust. Wenn wir uns auf die Da-
ten beschréanken und keine oder geringe Verteilungsannahmen machen, haben wir weniger
Information als in einem Modell mit expliziten Verteilungsannahmen. Wenn wir die Daten
auf die Ringe reduzieren, verschenken wir zusétzlich moglicherweise Information. Dieser
Informationsverlust kann z.B. durch die asymptotische relative Effizienz gemessen werden.
Dies ist (asymptotisch) der Stichprobenumfang eines optimalen Tests, der benstigt wird,
eine vergleichbare Giite wie ein konkurrierender Test zu erreichen. Beim Wilcoxon-Test
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unter Normalverteilung hat dies einen Wert von 94%. Gilt also die Normalverteilungs-
annahme, so bendtigt der (optimale) ¢-Test nur 94% des Stichprobenumfangs, die der
Wilcoxon-Test bendtigt. 6% des Stichprobenumfangs sind die Kosten fiir die Reduzierung
auf Rénge. Gilt die Normalverteilungsannahme nicht, so kann der ¢-Test moglicherweise
zusammenbrechen. Der Wilcoxon-Test bleibt ein valider Test auf die Shift-Alternative.

help(wilcox.test )

wilcox.test

Wilcozon Rank Sum and Signed Rank Tests

Description.

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also
known as ‘Mann-Whitney’ test.

Usage.

wilcox.test(x, ...)

## Default S3 method:
wilcox.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
u = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

## S3 method for class 'formula':

wilcox.test(formula, data, subset, na.action, ...)

Arguments.

X numeric vector of data values. Non-finite (e.g. infinite or missing)
values will be omitted.

y an optional numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one
of "two.sided" (default), "greater" or "less". You can specify just
the initial letter.

mu a number specifying an optional location parameter.

paired a logical indicating whether you want a paired test.

exact a logical indicating whether an exact p-value should be computed.

correct a logical indicating whether to apply continuity correction in the nor-
mal approximation for the p-value.

conf.int a logical indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable
giving the data values and rhs a factor with two levels giving the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) con-
taining the variables in the formula formula. By default the variables
are taken from environment (formula).

subset an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").
further arguments to be passed to or from methods.
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Details.

The formula interface is only applicable for the 2-sample tests.

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon
signed rank test of the null that the distribution of x (in the one sample case) or of
x-y (in the paired two sample case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum
test (equivalent to the Mann-Whitney test: see the Note) is carried out. In this case,
the null hypothesis is that the distributions of x and y differ by a location shift of mu
and the alternative is that they differ by some other location shift.

By default (if exact is not specified), an exact p-value is computed if the sam-
ples contain less than 50 finite values and there are no ties. Otherwise, a normal
approximation is used.

Optionally (if argument conf.int is true), a nonparametric confidence interval
and an estimator for the pseudomedian (one-sample case) or for the difference of the
location parameters x-y is computed. (The pseudomedian of a distribution F' is the
median of the distribution of (u + v)/2, where u and v are independent, each with
distribution F'. If F' is symmetric, then the pseudomedian and median coincide. See
Hollander & Wolfe (1973), page 34.) If exact p-values are available, an exact confidence
interval is obtained by the algorithm described in Bauer (1972), and the Hodges-
Lehmann estimator is employed. Otherwise, the returned confidence interval and point
estimate are based on normal approximations.

With small samples it may not be possible to achieve very high confidence interval
coverages. If this happens a warning will be given and an interval with lower coverage
will be substituted.

Value.

A list with class "htest" containing the following components:

statistic the value of the test statistic with a name describing it.
parameter the parameter(s) for the exact distribution of the test statistic.
p.value the p-value for the test.

null.value the location parameter mu.
alternative a character string describing the alternative hypothesis.

method the type of test applied.

data.name a character string giving the names of the data.

conf.int a confidence interval for the location parameter. (Only present if ar-
gument conf.int = TRUE.)

estimate an estimate of the location parameter. (Only present if argument

conf.int = TRUE.)
Warning.

This function can use large amounts of memory and stack (and even crash R if the
stack limit is exceeded) if exact = TRUE and one sample is large (several thousands
or more).

Note.

The literature is not unanimous about the definitions of the Wilcoxon rank sum and
Mann-Whitney tests. The two most common definitions correspond to the sum of the
ranks of the first sample with the minimum value subtracted or not: R subtracts and
S-PLUS does not, giving a value which is larger by m(m + 1)/2 for a first sample of
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size m. (It seems Wilcoxon’s original paper used the unadjusted sum of the ranks but
subsequent tables subtracted the minimum.)

R’s value can also be computed as the number of all pairs (x[i], y[jl) for which
y[j] is not greater than x[i], the most common definition of the Mann-Whitney test.

References.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New
York: John Wiley & Sons. Pages 27-33 (one-sample), 68-75 (two-sample).
Or second edition (1999).

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal
of the American Statistical Association 67, 687—690.

See Also.

psignrank, pwilcox.

wilcox.exact in exactRankTests covers much of the same ground, but also pro-
duces exact p-values in the presence of ties.

kruskal.test for testing homogeneity in location parameters in the case of two
or more samples; t.test for an alternative under normality assumptions [or large
samples]

Examples.

## One-sample test.

## Hollander & Wolfe (1973), 29f.

## Hamilton depression scale factor measurements in 9 patients with
## mixed anxiety and depression, taken at the first (x) and second
## (y) visit after initiation of a therapy (administration of a

## tranquilizer).

x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)

y <- ¢(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

wilcox.test(x, y, paired = TRUE, alternative = "greater")
wilcox.test(y - x, alternative = "less") # The same.
wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample
# approximation

## Two-sample test.
## Hollander & Wolfe (1973), 69f.
## Permeability constants of the human chorioamnion (a placental
## membrane) at term (x) and between 12 to 26 weeks gestational
## age (y). The alternative of interest is greater permeability
## of the human chorioamnion for the term pregnancy.
x <- ¢(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g") # greater
wilcox.test(x, y, alternative = "greater",

exact = FALSE, correct = FALSE) # H&W large sample

# approximation

wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)
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## Formula interface.

boxplot(0zone ~ Month, data = airquality)

wilcox.test(Ozone ~ Month, data = airquality,
subset = Month %in% c(5, 8))

Aufgabe 3.13

Benutzen Sie den Wilcoxon-Test, um die Resultate des rechts/links
click-Experiments zu vergleichen.

Aufgabe 3.14

ook Beim rechts/links click-Experiment sind mehrere Effekte ver-
mischt. Einige Probleme:

e Die Antwortzeit beinhaltet Reaktionszeit, Zeit fir die
Grob-Bewegung der Maus, Zeit fiir die Fein-Adjustierung
etc.

e Fiir rechts-links-Bewegungen reicht in der Regel ein
Schwenken der Hand aus. Fiir vorwérts-riickwérts-
Bewegungen ist in der Regel eine Arm-Bewegung notig.
Es ist nicht zu erwarten, dass beide vergleichbares stati-
stisches Verhalten haben.

e Bei aufeinanderfolgenden Registrierungen kann es zum
einen Trainings- zum anderen Ermiidungseffekte geben.

Ko6nnen Sie Experiment und Auswertung so modifizieren, dass Un-
terschiede in der Reaktionszeit untersucht werden kénnen?
Ko6nnen Sie Experiment und Auswertung so modifizieren, dass Un-
terschiede in der Genauigkeit der Endposition untersucht werden
kénnen?

Hok* Untersuchen und dokumentieren Sie fiir sich rechts-links-
Unterschiede in der Reaktionszeit und in der Genauigkeit. Formu-
lieren Sie ihr Resultat als Bericht.

Aufgabe 3.15

Betrachten Sie als Verteilungsfamilien die Shift/Skalenfamilien von
N(0,1) und ¢(3). Entwerfen Sie ein Szenario, um den Wilcoxon-Test
mit dem ¢-Test jeweils innerhalb dieser Familien zu vergleichen.

Fiihren Sie diesen Test in einer Simulation fiir Stichprobenumféin-
ge n1 = ng = 10,20,50,100 durch und fassen Sie die Resultate
zusammen.

Fiihren Sie eine analoge Simulation fiir die Lognormal-Verteilungen
durch.

3.4. Giite

3.4.1. Theoretische Giite. Am Beispiel des t-Tests konnen wir illustrieren, wie
ein Test aufgebaut ist. Der Test benutzt eine Teststatistik, hier die ¢-Test-Statistik zum
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Vergleich zweier Gruppen (3.1). Wir kennen die Verteilung dieser Statistik: fiir den t¢-
Test ist bei unabhéingigen normalverteilten Fehlern und gleicher Varianz die Teststatistik
t(ny1 + ng — 2) verteilt. Zu gewihltem Niveau a konnen wir aus der Verteilungsfunktion
konnen wir Grenzen ablesen, die bei dieser Verteilung nur mit einer Wahrscheinlichkeit
a unter- bzw. {iberschritten werden. Benutzen wir beide Grenzen, so erhalten wir einen
zweiseitigen Bereich mit der Irrtumswahrscheinlichkeit 2c.

Beispiel 3.4:

Eingabe
ni<- 6; n2 <- 6

df <- nl + n2 -2

alpha <- 0.05

curve (pt (x,df=df) ,from=-5, to=5, ylab= expression(F[n]))
abline(h=1-alpha, col="red") # cut at upper quantile
abline(v=qt(1-alpha, df=df), lty=3, col="red") # get critical value

1.0
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0.6
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0.2
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Wollen wir z.B. die Hypothese mu; = mus gegen die Alternative mu; > musg testen, so
wihlen wir als Verwerfungsbereich den Bereich iiber der oberen dieser Grenze. Wir wissen,
dass wir bei Giiltigkeit der Hypothese hochstens mit Wahrscheinlichkeit o zufillig eine
Testgrofle in diesem Bereich bekommen.

Fiir den t-Test wissen wir sogar mehr. Unter den Modellvoraussetzungen unabhéngig
normalverteilter Fehler und gleicher Varianz ist die ¢-Test-Statistik immer ¢ verteilt. Auf
der Hypothese ist sie t verteilt mit Nichzentralitédtsparameter 0, folgt also der zentralen ¢-
Verteilung. Auf der Alternative haben wir eine ¢-Verteilung mit Nichzentralitdtsparameter
(p1—p2)ot \/ ning/(n1 + ng2). Damit kann fir jede Alternative unter den Modellannahmen
die Stirke des Tests abgelesen werden, d.h. die Wahrscheinlichkeit bei Vorliegen dieser
Alternative die Hypothese zu verwerfen.
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Beispiel 3.5:

ni<- 6; n2 <- 6

df <- nl + n2 -2

alpha <- 0.05

curve (pt (x,df=df),from=-5, to=5, ylab= expression(F[n]))
abline(h=1-alpha, col="red") # cut at upper quantile
abline(v=qt(l1-alpha, df=df), 1lty=3, col="red") # get critical value
nl <- 5

Eingabe

n2 <- 5
n <- nl+n2
theta <- 2

ncp <- theta * sqrt(nl * n2/(ni1+n2))
curve (pt (x,df=df, ncp=ncp),add=TRUE, col="blue")

1.0

0.8
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0.6

0.4

0.2
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Die Giite des Tests konnen wir darstellen, indem wir die Verwerfungswahrscheinlichkeit
in Abéngigkeit von (p; — po)o~! auftragen.?

2Konventionell wird er die Giitefunktion nur auf der Alternative, d.h z.B. fiir (3 — p2) > 0
betrachtet. Wir setzen sie hier auch auf der Hypothese, d. h. fiir (43 — pe) > 0 fort.
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Beispiel 3.6:
Eingabe

tpower <- function(nl, n2, alpha,...){

df <- nl + n2 -2

tlim <- qt(l-alpha,df=df)

prob <- function(theta){

pt(tlim, df = df,

ncp = theta * sqrt(nl * n2/(nl+n2)),
lower.tail=FALSE)}

curve(prob, 0, 5, xlab=expression(theta==mu[1]-mu[2]),

abline (h=alpha, col="red")

}

tpower (5, 5, 0.05)
tpower (10, 10, 0.05, add =TRUE, 1ty = 3)
tpower (100,100, 0.05, add =TRUE, 1ty = 4)
tpower (1000, 1000, 0.05, add =TRUE, 1ty = 5)
legend ("bottomright",
1ty=c(1,3,4,5),
legend=c("nl = n2 =5", "nl = n2 =10",
"nl = n2 =100","n1 = n2 =1000"),
inset=0.1, bty="n")

o |
—
[ee]
@
©
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<]
o
<
3 -
nl=n2=5
nl=n2=10
N nl=n2 =100
e - nl=n2=1000
T T T T T T
0 1 2 3 4 5

Der hier benutzte Zusammenhang kann auch benutzt werden, um zu bestimmen, wie
grof} der Stichprobenumfang sein muss, um auf der Hypothese hichstens mit einer Wahr-
scheinlichkeit « filschlich zu verwerfen, bei Vorliegen einer spezifizierten Alternative jedoch
mit einer gewéhlten Wahrscheinlichkeit die Hypothese richtigerweise zu verwerfen. Dazu

gibt es die vorbereitete Funktion power.t.test ().
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Beispiel 3.7:

Eingabe
power.t.test(delta=2,
power=0.8,
sig.level=0.01,
type="two.sample",
alternative="one.sided")
Ausgabe
Two-sample t test power calculation
n = 6.553292
delta = 2
sd =1
sig.level = 0.01
power = 0.8

alternative = one.sided

NOTE: n is number in *each* group

3.4.2. Simulation der Giite. Sind die theoretischen Eigenschaften einer Test-Statistik
bekannt, so ist dies der beste Weg, die Giite zu analyisieren. In einer Umgebung wir R ha-
ben wir die Moglichkeit, die Giite auch dann zu untersuchen, wenn theoretische Resultate
nicht vorliegen oder nicht zugéinglich sind. Zu festgelegten Alternativen kénnen wir Zu-
fallsstichproben generieren, Tests durchfithren und den relative Anteil der Verwerfungen
bestimmen. Generieren wir nsimul unabhéingige Zufallsstichproben mit identischer Ver-
teilung, so ist die Anzahl der Verwerfungen binomialverteilt und

. #Verwer fungen
b= nstmul
ein Schétzer fiir die Verwerfungswahrscheinlichkeit.

Als Beispiel untersuchen wir, wie sich der ¢-Test verhilt, wenn die Daten lognormal
verteilt sind. Wir vergleichen zwei Gruppen jeweils mit Stichprobenumfang n; = ns = 10,
zunichst auf der Hypothese:
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Beispiel (Fortsetzung):

Beispiel 3.8:
Eingabe

nsimul <- 300
ni<- 10; n2 <- 10
alpha <- 0.01
x <-0
for (i in 1:nsimul) {
if (t.test(exp(rnorm(nl)),exp(rnorm(n2)),
alternative="less",
var.equal = TRUE)$p.value < alpha){
x <- x+1}
}
p <- x/nsimul
cat("estim p", p)

Ausgabe

estim p 0.006666667

Die Funktion prop.test() berechnet nicht nur diesen Schétzer, sondern auch einen
Konfidenzbereich.

Beispiel 3.9:

Eingabe
prop.test (n=nsimul, x=x)

Ausgabe
1-sample proportions test with continuity correction

data: x out of nsimul, null probability 0.5
X-squared = 290.0833, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.001155561 0.026512753

sample estimates:

p
0.006666667

Analog z. B. wenn fiir die Alternative log(z2) nach N(ug,1) mit ps = 1 verteilt ist:
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Beispiel 3.10:

nsimul <- 300
ni<- 10; n2 <-10
alpha <- 0.01
x<-0
for (i in 1:nsimul) {
if (t.test(exp(rnorm(nl)),exp(rnorm(n2, mean = 1)),
alternative="less",
var.equal = TRUE)$p.value < alpha){
x <- x+1}

Eingabe

}
p <- x/nsimul
cat("estim p", p)

Ausgabe
estim p 0.1866667

Eingabe
prop.test(n = nsimul, x = Xx)

Ausgabe

1-sample proportions test with continuity correction

data: x out of nsimul, null probability 0.5
X-squared = 116.5633, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.1451407 0.2364119

sample estimates:

p
0.1866667

In Iibrary(binom) finden sich eine Reihe von Werkzeugen fiir eine differenziertere
Analyse der Binomialverteilung.

Die Konfidenzintervalle in diesem Beispiel zeige, dass hier ein Simulationsumfang von
nsimul = 300 nur grobe Ergebnisse liefert. Fiir die Simulation wollen wir die Genauigkeit
besser kontrollieren. Den Simulationsumfang kénnen wir so wihlen, dass eine gewiinschte
Genauigkeit erreicht werden kann. Eine genaue Planung kénnen wir mit power. prop. test ()
machen. Fiir Simulationszwecke reicht oft schon eine Abschétzung.

Mit p := Z/n als Schétzer einer Wahrscheinlichkeit p haben wir F (p) = p und
Var (p) = p(1—p)/n. Ist p tatséchlich der interessierende Parameter, so sind Fehler relativ
zum Zielparameter zu messen. Bei p = 50% ist ein Fehler von +1% anders zu bewerten,
als bei p = 99%. Der relative Fehler, der Variationskoeffizient, ist

Var (p) 1-p
Ep Vo

Um einen Variationskoeffizienten von hochsten 7 zu erhalten, brauchen wir eine Stichpro-
benumfang
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Sind n und p in einer Groéflenordnung, bei der eine Normalapproximation gilt, so haben
wir fiir ein Konfidenzniveau 1 — « ein approximatives Konfidenzintervall mit Grenzen

. p(1—p
PEd1ay (n)

Soll das Konfidenzintervall eine Lénge von 7np nicht iiberschreiten, so brauchen wir einen
Stichprobenumfang
2
1—a/2(1=P)
Z 5
n

Wie {iblich ist eine Wahl von a zu treffen. Fiir z. B. a =1% mit ¢;_,/» = 2.575829
erhalten wir die Werte in Tabelle 3.26. Falls wir mit hoheren Quantilen arbeiten, werden
wir versuchen, die Fehler relativ zu 1 — p zu beschréinken. Beispiele sind in Tabelle 3.26.

TABELLE 3.26. Erforderlicher Stichprobenumfang fiir zweiseitige
Konfidenzintervalle mit relativer Lange < n

p | 1—p|n(a=10%) n(a =1%)
n=0.1 n=001]| n=0.1 n = 0.01
0.500 | 0.500 271 27 055 663 66 349
0.250 | 0.750 812 81 166 1990 199 047
0.100 | 0.900 2435 243 499 5971 597 141
0.010 | 0.990 26 785 | 2678 488 65 685 6 568 547
0.001 | 0.999 270 283 | 27 028 379 662 826 | 662 822 617

Zu merken sind die groben Zahlen: um mit 90% Konfidenz eine Wahrscheinlichkeit im
Bereich von 50% 4 5% zu schitzen, sind ca. 300 Simulationen notwendig. Um einen Wert
bei 99% bis auf + 0.1% genau zu schiitzen sind 30000 Simulationen nétig.

3.4.3. Quantilschitzung durch Simulation.

Die andere Seite des Problems ist es, ein Quantil anhand einer Stichprobe zu schitzen.
Wir wissen bereits, dass fiir eine Zufallsvariable X mit stetiger Verteilungsfunktion F' die
Variable F'(X) eine uniforme Verteilung auf [0, 1] hat. Fiir die Quantilschitzung benétigen
wir die Verteilungsfunktion, ausgewertet an den Ordnungsstatistiken. Diese haben wir
bereits in Kapitel 7?7 kennen gelernt. Dort hatten wir als Theorem 77.

THEOREM 3.2. Sind X;,i=1,...,n unabhdngige Beobachtungen aus einer Verteilung
mit stetiger Verteilungsfunktion F' und ist X 4.,y die k. Ordnungsstatistik daraus, so ist

F(X(kn)) ~ Preta(-5k,n —k+1).

Wir wiederholen:

BEMERKUNG 3.3. Im allgemeinen ist die beta-Verteilung schief. Der Erwartungswert
der Beta(k,n—k+1)-Verteilung ist £/(n+1). Um eine unverzerrte Schétzung des Quantils
7 zu erhalten, benutzt man X j.,) mit k/(n+1) = p. Die “plug in”™-Approximation k/n = p
gibt eine verzerrte Schétzung.
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Das Theorem kann direkt angewendet werden, um eine obere oder untere Abschét-
zung fiir Quantile zu gewinnen. Insbesondere kénnen wir versuchen, das Minimum der
beobachteten Wertes X(;.,,) als untere Abschitzung fiir das p-Quantil. zu benutzen Das
Konfidenzniveau ist

P(Xqy < Fp) = P(F(Xu) <p)=1,(1,n),

wobei I das unvollstéindige Beta-Integral ist. Fiir die speziellen Parameter (1, n) vereinfacht
sich die Beta-Dichte zu n(1—p)"~! und wir bekommen fiir das unvollstindige Beta-Integral
I,(1,n) =1 — (1 — p)". Daraus folgt
P(X(l) S Fp) =1- (1 _p)n
und wir kénnen ein Konfidenzniveau 1 — « sicherstellen, wenn
"> Ina

~ In(1-p)
Der beobachtete Hochstwert kann als obere Abschitzung fiir das p-Quantil verwendet
werden. Aus Symmetriegriinden erhalten wir einen Konfidenzniveau von 1 — a;, wenn

n > lnia'
T Inp
Beispiele sind in Tabelle 3.27 angegeben.

TABELLE 3.27. Benétigter Stichprobenumfang zur Abschétzung eines
Quantils mit Konfidenzniveau > 1 — «

P n
Xy <Fp | X2 F|a=10%|a=5%|a=1% | a=0.5%
0.500 0.500 4 5 7 8
0.250 0.750 9 11 17 19
0.100 0.900 22 29 44 51
0.010 0.990 230 299 459 528
0.001 0.999 2302 | 2995 | 4603 5296

Zu merken sind wieder die groben Zahlen: um eine einseitige Abschiitzung fiir ein 1%
(99%)-Quantil einer stetigen Verteilungsfunktion mit einer Konfidenz von 99% zu erhalten,
werden beinahe 500 Simulationen benétigt.

Wir konnen einseitige Schranken zu Intervallen verkniipfen. Das entsprechende Resul-
tat zur Berechnung der Wahrscheinlichkeit von Intervallen ist in Korollar 77:

KOROLLAR 3.4. Mit der ki-ten und k1 + ko-ten Ordnungsstatistz’l? ist das Intervall
(X(kr:n)s X(ky+kom)) €in Konfidenzintervall fiir das p-Quantil mit der Uberdeckungswahr-
scheinlichkeit

Ip(kl,n — k1 + 1) — Ip(kl 4+ ko,n— ki — ko + 1).

Die Simulationsumfinge zur Abschitzung von Quantilen sind drastisch geringer als
diejenigen, die zur vergleichbaren Schitzung von Wahrscheinlichkeiten benotigt werden.
Im Nachhinein ist dies nicht verwunderlich: die Frage, ob eine Beobachtung iiber einem
bestimmten Quantil liegt, ist einfacher, als die Aufgabe, den p-Wert zu schétzen. In Ab-
schnitt ?? werden wir sehen, dass der notwendige Stichprobenumfang noch einmal drastisch
verringert werden kann, wenn die Fragestellung auf ein Testproblem reduziert wird.
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Ohne weitere Verteilungsannahmen gibt dies eine erste Moglichkeit, den Umfang ei-
ner Simulation festzulegen. In speziellen Situationen kénnen geschickte Einfille eine be-
deutende Reduzierung des Stichprobenumfangs erlauben. Zunéchst aber sind die obigen
Abschéitzungen die Grundlage fiir Simulationen.

3.5. Qualitative Eigenschaften von Verteilungen



3.6. ERGANZUNGEN 3-27

3.6. Erginzungen






3.8. LITERATUR UND WEITERE HINWEISE: 3-29

3.7. Statistische Zusammenfassung

Als Leitbeispiel diente in diesem Kapitel der Vergleich von Stichproben. In einfachen
Fillen unterscheiden sich Stichproben nur um eine Verschiebung des Mittelwerts. In die-
sem Fall kénnen die Probleme auf die Ansétze aus Kapitel 2 reduziert werden. In diesem
reduzierten Fall stimmen die um den Mittelwert zentrierten Verteilungen iiberein. Fiir
den allgemeineren Fall, den wir jetzt untersucht haben, gilt diese Vereinfachung nicht. Ein
wichtiges Beispiel ist etwa die Untersuchung von Therapie-Studien. Hat eine Behandlung
einen homogenen Effekt, so konnen wir diesen mit den Mitteln von Kapitel 2 untersu-
chen. Haufig aber gibt es unter einer Behandlung eine Aufspaltung in “Responder” und
“Nicht-Responder”. Dies geht iiber die in Kapitel 2 skizzierten Modelle hinaus, und die
allgemeineren Ansétze aus diesem Kapitel 3 werden notig.

Wir haben uns hier auf den Vergleich von zwei Stichproben beschrinkt. Die Praxis
fithrt oft auf andere Probleme. So ist ein typischer Fall, dass eine neue Behandlung mit ei-
ner bekannten Referenz-Behandlung verglichen werden soll, wobei fiir die neue Behandlung
nur eine Stichprobeninformation, fiir die Referenz-Behandlung aber umfassendere Vorin-
formation bereit steht. Oder eine Referenz-Behandlung soll mit einer Serie von Alternativ-
Behandlungen verglichen werden. Diese Probleme gehen iiber den Rahmen unserer Einfiih-
rung hinaus. Hier kann nur auf weiterfithrende Literatur, z.B [Mil81] verwiesen werden.

3.8. Literatur und weitere Hinweise:
[VRO2] Venables, W.N.; Ripley, B.D. (2002): Modern Applied Statistics with S. Hei-
delberg: Springer
[VROO] Venables, W.N.; Ripley, B.D. (2000): S Programming. Heidelberg: Springer
[Mil81] Miller, R. G. (1981): Simultaneous Statistical Inference. Heidelberg: Springer






KAPITEL 4

Dimensionen 1, 2, 3, ..., c©

4.1. Erginzungen

In diesem Kapitel beginnen wir Ergénzungen zu R, um uns dann auf statistische Fra-
gen zu konzentrieren. Fiir werfen einen Blick auf die graphischen Moglichkeiten, die uns
zur Verfiigung stehen. Die Basis-Graphik von R ist an einem Plotter-Modell orientiert. Die
Graphik folgt den Moglichkeiten, die das Zeichnen mit einem Stift bietet. Neben den ein-
und zweidimensionalen Moglichkeiten, die wir bis jetzt kennengelernt haben, gibt es Mog-
lichkeiten, eine Funktion darzustellen, die {iber einem Raster definiert sind. Dazu stehen
im wesentlichen drei Funktionen zur Verfiigung.

3d-Graphik

image () Gibt die Werte einer Variablen z in Graustufen oder Farbcodierung
wieder.

contour () Gibt die Kontouren einer Variablen z.

persp() Gibt einen perspektivischen Plot einer Variablen z.

image () und contour () konnen auch benutzt werden, um andere Plots zu iiberlagern.
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Bezispiel 4.1:

Eingabe

#oldpar <- par(mfrow=c(1,3))
x <= 10*(1:nrow(volcano))
y <= 10*(1:ncol(volcano))
image(x, y, volcano, col = terrain.colors(100), axes = FALSE)
axis(1, at = seq(100, 800, by = 100))
axis(2, at = seq(100, 600, by = 100))
box ()
title(main = "Maunga Whau Volcano", font.main = 4)
contour(x, y, volcano, levels = seq(90, 200, by = 5),
col = "peru", main = "Maunga Whau Volcano", font.main = 4)
z <- 2 * volcano # Exaggerate the relief
x <= 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <= 10 * (1:ncol(z)) # 10 meter spacing (E to W)
## Don't draw the grid lines : border = NA
#par (bg = "slategray")
persp(x, y, z, theta = 135, phi = 30, col
ltheta = -120, shade = 0.75, border

"green3", scale = FALSE,
NA, box = FALSE)

Maunga Whau Volcano

100 200 300 400 500 600
100 200 300 400 500 600

0
I

100 200 300 400 500 600 700 800

image () contour () persp()

Die Basis-Graphik ist einfach zu handhaben, aber limitiert. Ein neues Grafiksystem
arbeitet konzeptuell mit Objekten und einem Kamera-Modell. Die Grafik-Objekte konnen
kombiniert und bearbeitet werden. Die Darstellung erfolgt in einem getrennten Schritt.
Einfache 2d-Grafiken kénnen hier nachbearbeitet werden. Fiir eine 3d-Darstellung konnen
wie bei einer Kamera Abstand, Betrachtungsebene und Brennweite bestimmt werden. Das
objektorientierte Graphiksystem besteht aus einer Bibliothek grid mit den notwendigen
elementaren Operationen, und einer darauf aufbauende Bibliothek lattice, die die aus
der Basis-Graphik bekannten Darstellungen neu implementiert und durch weitere ergénzt.

Lattice-Objekte werden mit print () ausgegeben.
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Beispiel 4.2:

Eingabe
library(lattice)

## volcano ## 87 x 61 matrix

print(wireframe(volcano, shade = TRUE,
aspect = c(61/87, 0.4),
light.source = ¢(10,0,10)))

olcano /X

)
|
(f

X
(] v"»
column

Basis-Graphik und Lattice-Graphik sind getrennte Graphik-Systeme. Leider benutzen
sie auch fiir vergleichbare Funktionen unterschiedliche Bezeichnungen, und vergleichbare
Displays haben unterschiedliche Darstellungen. Eine kleine Ubersetzungshilfe ist in Tabelle
4.4 angegeben. Einige Hilfsfunktionen, um beide Graphik-Systeme in Kombination zu nut-
zen, werden durch die Bibliothek gridBase bereitgestellt. Eine ausfiihrliche Einfithrung in
beide Graphik-System ist [Mur06].

Fiir Visualisierungen im weiten Spektrum von wissenschaftlichen Visualisierungen bis
hin zu aufwendigen Spielen wird verbreitet OpenGL benutzt. Dessen Funktionen stehen
auch in R durch die Bibliothek rgl zur Verfiigung. Es gibt jedoch einen deutlichen Unter-
schied zwischen den iiblichen Anforderungen an Graphik, und den speziellen Erfordernissen
statistischer Graphik. Wenn es um die Darstellungen von Funktionen geht, ist statistische
Graphik noch vergleichbar mit den Anforderungen der iiblichen Analysis. Der kleine Unter-
schied ist, dass Funktionen in der Statistik haufig stiickweise konstant oder nur stiickweise
stetig sind, wihrend z.B. in der Analysis stetige oder sogar in differenzierbare Funktionen
die Regel sind. Bei der Darstellung von Daten &ndert sich die Situation drastisch. Sta-
tistische Daten sind {iblicherweise diskret. Glattheitseigenschaften, die die Visualisierung
analytischer Daten einfacher machen, fehlen bei statistischen Daten. Deshalb sind spezielle
angepasste Visualisierungen notig.
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Basis-Graphik Lattice
barplot () bar chart barchart ()
boxplot () box and whisker plot bwplot ()

3 dimensional scatter plot | cloud()
contour contour plot contourplot ()
coplot conditional scatter plots contourplot ()
curve (density()) | density estimator densityplot ()
dotchartt () dot plot dotplot ()
hist() dot plot histogram()
image () colour map plots splom()

parallel coordinate plots parallel()

pairs() scatter plot matrices wireframe ()
persp() three dimensional surface wireframe ()
plot() scatter plot xyplot ()
qqnorm() theoretical () — @-plot qqmath ()
qqplot () empirical @ — Q-plot qq )
stripchart () one dimensional scatterplot | stripplot ()

TABELLE 4.4. Basis-Graphik und Lattice

4.2. Dimensionen

Wenn wir von einer Dimension zu hoheren Dimensionen gehen, gibt es sowohl fiir die
theoretische Untersuchung als auch fiir die grafische Darstellung neue Herausforderungen.
Die linearen Modelle kénnen wieder als leitendes oder warnendes Beispiel dienen.

Die Herausforderungen kénnen von ernsthaften Problemen stammen. So kénnen Ver-
teilungen auf hoherdimensionalen Riéumen selbst unter Regularitéitsvoraussetzungen un-
iiberschaubar komplex sein. Die Klassifikations- und Identifikationsprobleme fiir Funktio-
nen und Rdume aus Analysis und Geometrie geben einen Vorgeschmack davon, was bei
der Untersuchung von Wahrscheinlichkeitsverteilungen zu bewéltigen ist.

Daneben gibt es hausgemachte Probleme: Eigentore, die durch selbstgetroffene Wahlen
erst erzeugt werden.

Ein Beispiel fiir hausgemachte Probleme kann an linearen Modellen illustriert werden.
Die Interpretation des Gaufl-Markoff-Schéitzers als lineare Projektion zeigt, dass nur schein-
bar Koeffizienten fiir einzelne Regressoren geschétzt werden. Eigentlich wird ein Vektor im
von den Regressoren aufgespannten Raum geschétzt; die Zuordnung zu den einzelnen Re-
gressoren ist dann nur lineare Algebra. Diese hingt nicht von dem Einfluss des einzelnen
Regressors ab, sondern von der gemeinsamen Geometrie der Regressoren. Nur wenn die
Regressoren eine Orthogonalbasis bilden, gibt es eine direkte Interpretation der Koeffizi-
enten. Wird im linearen Modell die Liste der Regressoren z.B. dupliziert, so dndert sich
der Raum nicht. Die Rechnungen in Koordinaten werden etwas komplizierter, weil die Re-
gressoren nun auf keinen Fall eine Basis bilden, aber von einem abstrakten Standpunkt
bleibt die Situation unveréndert. Gibt es aber kein echtes Duplikat, sondern geringfiigige
Abweichungen (durch minimale “Fehler”, Rundungen, Transformationen), so #ndert sich
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die Situation drastisch. Fiir den Gaufi-Markoff-Schéitzer ist nur der von den Regressoren
aufgespannte Raum relevant, und selbst durch minimale Anderungen im Duplikat kann
sich dessen Dimension verdoppeln. Dies ist ein Beispiel fiir ein hausgemachtes Problem.

Dies und andere Beispiele sind ein Grund, die Beziehungen zwischen den Variablen
genauer zu untersuchen. Bei der Regression etwa betrifft dies nicht nur die Beziehung
zwischen Respons und Regressor, sondern, wie durch das letzte Beispiel illustriert, auch
die Beziehungen zwischen den Regressoren.

Um die Verbindung zu den Regressionsproblemen zu halten und auf die Erfahrungen
in diesem Bereich zuriickzugreifen, betten wir formal die Regressionsprobleme in einen
allgemeineren Rahmen ein. Bei der Regression hatten wir eine herausgehobene Variable,
die Respons Y, deren Verteilung in Abhéngigkeit von den Werten der {ibrigen Variablen,
der Regressoren X, modelliert werden sollte. Wir fassen jetzt Respons und Regressor zu
einem Datenvektor Z = (Y'; X) zusammen und werden auch die gemeinsame Verteilung von
7 diskutieren. Wir finden das Regressionsproblem in diesem allgemeineren Rahmen wieder:
beim Regressionsproblem suchten wir nach einem Schétzer fiir die Mittelwertsfunktion m
im Modell

Y=m(X)+e.
Im allgemeineren Rahmen beriicksichtigen wir eine gemeinsame Verteilung von X und Y.
Das Regressionsmodell wird damit zum Modell

Y = E(Y|X)+e
und wir haben zunéchst die Identifizierung m(X) = E(Y|X).

Wenn wir tatséchlich am urspriinglichen Regressionsmodell interessiert sind, miissen
wir weitere Arbeit leisten. Eine Schétzung des bedingten Erwartungswerts E(Y|X) ist nicht
dasselbe wie die Schitzung einer Regressionsfunktion m(X). Bei dem Regressionsproblem
haben wir keine Annahmen iiber die Verteilung von X gemacht. Um von E(Y|X) (oder
einem Schétzer dafiir) auf m(X) zuriick zu schliefen, miissen wir iiberpriifen, dass die
Schitzung von Verteilungsannahmen iiber X unabhéngig ist. Fiir unsere augenblicklichen
Zwecke ist diese Unterscheidung aber nicht relevant. Wir kénnen uns eine Ignoranz auf
Zeit erlauben.

Der allgemeine Rahmen in diesem Kapitel ist also:
wir untersuchen Daten (Zz‘)z‘:l,...,m wobei die einzelnen Beobachtungen Werte in R? an-
nehmen.

Haben wir im wesentlichen lineare Strukturen, so kénnen wir oft auch héher—dimen-
sionale Strukturen mit Methoden analysieren, die fiir eindimensionale Modelle entwickelt
sind. Wir miissen die Methoden evtl. modifizieren oder iteriert anwenden. Sie helfen uns
jedoch, die wesentlichen Merkmale zu erkennen. Sie versagen jedoch, wenn sich héhere
Dimensionalitéit mit Nichtlinearitat verbindet. Dann sind speziellere Methoden gefragt.

4.3. Selektionen

Urspriinglich bedeutet eine Selektion eine Auswahl von Beobachtungen. Fiir die gra-
fische Darstellung wird die Selektion mit einer Ausprigung von Attributen (z.B. Farbe,
Plot-Zeichen, Dicke) assoziiert. Alle Variablenwerte, die zu Beobachtungen in der Selektion
gehoren, werden mit diesen Attributen in dieser Auspriagung dargestellt. Dies ermoglicht
es, die Verbindung (“linking”) der Selektion in verschiedenen Plots zu verfolgen. So kénnen
Selektionen helfen, Strukturen in verbundenen Plots, zu erkennen.

In der praktischen Datenanalyse werden die Selektionen variiert (“brushing”), um
Beobachtungen zu zusammengehorigen Beobachtungsgruppen zusammen zu fassen. Dies
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Name | Variable Einheit, Bem.
I'w relatives Gewicht
fpg Plasma-Glukose [mg/100 ml]

(nach Fasten)

ga Glukosespiegel [mg/100 ml X h]
integriert iiber 3 Stunden Toleranztest

ina Insulinspiegel [©U/100 ml x h]
integriert iiber 3 Stunden Toleranztest

sspg | Plasma-Glukose [mg/100 ml]
(steady state)

cc Klassifikation chemische, normale, offene Diabetes
TABELLE 4.5. Diabetes-Datensatz: Variable

ist ein wichtiges Werkzeug der interaktiven Datenanalyse. Selektionen werden, statistisch
gesprochen, zur Modellwahl benutzt. Ihnen entspricht das Konzept der lokalen Modelle:
anstelle ein fiir die Daten globales, moglicherweise sehr komplexes Modell zu benutzen,
werden fiir jede Selektion moglicherweise einfachere Modelle bestimmt, die jeweils nur fiir
die Beobachtungen aus dieser Selektion gelten.

Das Linking wird leider von R nicht direkt unterstiitzt. Wir miissen also jeweils selbst
sicher stellen, dass Selektionen mit den entsprechenden Attributen dargestellt werden.
Auch die Représentation von Selektionen ist in R nicht einheitlich. Bei Funktionsaufrufen
konnen diese durch selection-Parameter realisiert sein, oder durch group-Variable, oder
als Bedingung in einem Formelausdruck. Deshalb miissen wir uns in jedem Fall mit ad-
hoc-Losungen begniigen.

R bleibt weitgehend auf statische Selektionen beschriankt, so dass Brushing nur rudi-
mentir moéglich ist.

Selektionen werden im Zusammenhang bei den nachfolgenden Beispielen illustriert.

4.4. Projektionen

Als erstes Beispiel betrachten wir einen Datensatz aus einer Arbeit ([RM79]), in der
unterschiedliche Diabetes-Arten untersucht worden. Der Datensatz ist zum Beispiel in 1i-
brary(locfit) verfiigbar. Die Variablen umfassen Laborwerte zum Glukose-Stoffwechsel
und sind in Tabelle 4.5 erklart.

Eingabe
library(locfit)

data(chemdiab)

Eine erste Ubersicht erhalten wir mit

Eingabe
summary (chemdiab)
Ausgabe
rw fpg ga ina
Min. :0.7100  Min. : 70.0 Min. : 269.0 Min. : 10.0

1st Qu.:0.8800 1st Qu.: 90.0 1st Qu.: 352.0 1st Qu.:118.0
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Median :0.9800 Median : 97.0 Median : 413.0 Median :156.0

Mean :0.9773 Mean :122.0 Mean : 543.6 Mean :186.1
3rd Qu.:1.0800 3rd Qu.:112.0 3rd Qu.: 558.0 3rd Qu.:221.0
Max. :1.2000 Max. :353.0 Max. :1568.0 Max. :748.0
sspg cc

Min. : 29.0 Chemical_Diabetic:36

1st Qu.:100.0 Normal 176

Median :159.0 Overt_Diabetic :33

Mean :184.2

3rd Qu.:257.0

Max. :480.0

Wie in der Originalarbeit lassen wir das relative Gewicht aufler Betracht. Die chemi-
sche Klassifikation cc ist aus den Stoffwechseldaten abgeleitet. Sie beinhaltet also keine
eigene Information. Zur Orientierung benutzen wir sie dennoch als Markierung, d.h. wir
benutzen die Selektion cc = Chemical_Diabetic, Normal, Overt_Diabetic. Der Kern
des Datensatzes ist vierdimensional mit den Variablen fpg, ga, ina, sspg.

4.4.1. Randverteilungen und Scatterplot-Matrix. Wir kénnen versuchen, die
mehrdimensionale Verteilung zu untersuchen, indem wir uns die zweidimensionalen Mar-
ginalverteilungen (Randverteilungen) fiir alle Variablenpaare ansehen. Die grafische
Darstellung dazu heifit Scatterplot-Matriz, in R als Funktion pairs() implementiert.

help(pairs)

pairs Scatterplot Matrices

Description.

A matrix of scatterplots is produced.
Usage.

pairs(x, ...)

## S3 method for class 'formula':
pairs(formula, data = NULL, ..., subset,
na.action = stats::na.pass)

## Default S3 method:

pairs(x, labels, panel = points, ...,
lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels =1,
rowlattop = TRUE, gap = 1)
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Arguments.

X the coordinates of points given as numeric columns of a matrix or
dataframe. Logical and factor columns are converted to numeric in
the same way that data.matrix does.

formula a formula, such as © x + y + z. Each term will give a separate vari-
able in the pairs plot, so terms should be numeric vectors. (A response
will be interpreted as another variable, but not treated specially, so it
is confusing to use one.)

data a data.frame (or list) from which the variables in formula should be
taken.

subset an optional vector specifying a subset of observations to be used for
plotting.

na.action a function which indicates what should happen when the data contain

NAs. The default is to pass missing values on to the panel functions,
but na.action = na.omit will cause cases with missing values in any
of the variables to be omitted entirely.

labels the names of the variables.

panel function(x,y,...) which is used to plot the contents of each panel
of the display.
arguments to be passed to or from methods.
Also, graphical parameters can be given as can arguments to plot such

as main. par("oma") will be set appropriately unless specified.
lower.panel, upper.panel

separate panel functions to be used below and above the diagonal

respectively.
diag.panel optional function(x, ...) to be applied on the diagonals.
text.panel optional function(x, y, labels, cex, font, ...) to be applied

on the diagonals.

label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.

rowlattop logical. Should the layout be matrix-like with row 1 at the top, or
graph-like with row 1 at the bottom?

gap Distance between subplots, in margin lines.

Details.

The 75th scatterplot contains x[,i] plotted against x[,j]. The “scatterplot” can be
customised by setting panel functions to appear as something completely different.
The off-diagonal panel functions are passed the appropriate columns of x as x and y:
the diagonal panel function (if any) is passed a single column, and the text.panel
function is passed a single (x, y) location and the column name.

The graphical parameters pch and col can be used to specify a vector of plotting
symbols and colors to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an
argument.

A panel function should not attempt to start a new plot, but just plot within a
given coordinate system: thus plot and boxplot are not panel functions.

By default, missing values are passed to the panel functions and will often be
ignored within a panel. However, for the formula method and na.action = na.omit,
all cases which contain a missing values for any of the variables are omitted completely
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(including when the scales are selected). (The latter was the default behaviour prior
to R 2.0.0.)

Author(s).

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core
members.

References.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

Examples.

pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue") [unclass(iris$Species)])

## formula method
pairs(” Fertility + Education + Catholic, data = swiss,
subset = Education < 20, main = "Swiss data, Education < 20")

pairs(USJudgeRatings)

## put histograms on the diagonal
panel.hist <- function(x, ...)
{
usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)
}
pairs(USJudgeRatings[1:5], panel=panel.smooth,
cex = 1.5, pch = 24, bg="1light blue",
diag.panel=panel.hist, cex.labels = 2, font.labels=2)

## put (absolute) correlations on the upper panels,
## with size proportional to the correlations.
panel.cor <- function(x, y, digits=2, prefix="", cex.cor)
{
usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits=digits) [1]
txt <- paste(prefix, txt, sep="")
if (missing(cex.cor)) cex <- 0.8/strwidth(txt)
text (0.5, 0.5, txt, cex = cex * r)
}

pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

Wir benutzen die chemischen Diabetes-Klassen cc als Selektionen. Jeder dieser Selek-
tionen wird ein Farbwert zugeordnet; dies ist das verbindende Attribut, das ermoglicht,
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Verbindungen zwischen den Plots zu verfolgen. Um diese Verbindung zu dokumentieren,
miissen wir in die Grafiksteuerung eingreifen und die Plots modifizieren. Wir erzeugen mit
dem Parameter oma einen dusseren Rand, in dem wir eine Legende platzieren.

Beispiel 4.3:
Eingabe
pairs(“fpg + ga + ina + sspg, data = chemdiab, pch = 21,
main = "Diabetes-Daten',
bg = c("magenta", "green3", "cyan") [unclass(chemdiab$cc)],
oma = c(8, 8, 8, 8))
mtext (c("Colour codes:", levels(chemdiab$cc)),
col = c("black", "magenta", "green3", "cyan"),
at = ¢(0.1, 0.4, 0.6, 0.8), side = 1, line = 2)
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Colour codes: Chemical_Diabetic Normal

Die Funktion pairs() kontrolliert nur das “Layout” der Matrix, die Auswahl und
Anordnung der Projektionen. Die Darstellung in den Plot-Feldern kann durch den Aufruf
gesteuert werden. Die Default-Belegungen fithren dazu, dass in der Diagonale die Namen
der Variablen und auflerhalb der Diagonalen die paarweisen Scatterplots gezeigt werden.
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Aufgabe 4.1

Generieren Sie eine Scatterplot-Matrix fiir den Diabetes-Datensatz,
die in der Diagonale die Histogramme der jeweiligen Variablen
zeigt.

Hinweis: Siehe help (pairs).

Bestimmte Aspekte der Verteilung konnen aus den Randverteilungen einfach abgelesen
werden. Andere geometrische Strukturen sind aus Randverteilungen gar nicht oder nur
schwer zu rekonstruieren.

Zwischen dem Glukose-Spiegel bei Fasten fpg und dem integrierten Glukose- Spiegel
bei Belastung ga besteht z.B. ein deutlicher linearer Zusammenhang. Dieser ist in den
zweidimensionalen Marginalverteilungen erkennbar und kann mit den Methoden fiir lineare
Modelle untersucht werden.

Diese deutliche Beziehung pflanzt sich auf die Beziehungen zu den anderen Variablen
ina, sspg fort. In der Originalarbeit wird deshalb fpg nicht weiter beriicksichtigt. Zu
untersuchen sind noch die Variablen ga, ina, sspg. Die dreidimensionale Struktur dieses
Teils des Datensatzes ist aus den Marginalverteilungen nicht einfach abzulesen.

4.4.2. Projection Pursuit. Geometrische Beziehungen oder stochastische Abhén-
gigkeiten, die nicht parallel zu den Koordinaten-Achsen ausgerichtet sind, werden durch
die Randverteilungen nicht ausgedriickt. Wir kénnen die Idee verallgemeinern und anstelle
von zweidimensionale Marginalverteilungen beliebige Projektionen beniitzen. Dazu greifen
wir auf library(lattice) zu. Darin ist ein an einer Kamera orientiertes Grafik-Modell
implementiert.

Die grid-Grafik liefert mit dem Paket lattice eine weitgehende Unterstiitzung fiir
multivariate Darstellungen. grid ist dabei die Basis. Das urspriingliche Grafiksystem von R
implementiert ein Modell, dass an der Vorstellung von Stift und Papier orientiert ist. Ein
Grafik-Port (Papier) wird erdffnet und darauf werden Linien, Punkte/Symbole gezeich-
net. grid ist ein zweites Grafiksystem, das an einem Kamera/Objekt-Modell orientiert
ist. Grafische Objekte in unterschiedlicher Lage und Richtung werden in einem visuellen
Raum abgebildet. Auf der grid baut lattice auf. In <http://cm.bell-labs.com/cm/
ms/departments/sia/project/trellis/> sind die Grundideen zur Visualisierung multi-
dimensionaler Daten dokumentiert, die in lattice implementiert sind.

Die erzeugte Grafik wird mit print () ausgegeben. Mit dem Parameter split kénnen
wir den Ausgabebereich aufteilen. Leider ist das Linking hier gebrochen: cloud() kann
zwar eine Legende erzeugen, diese zeigt jedoch die Farbskala bei Beginn der Grafik, nicht die
bei der Ausgabe benutzte. Wir miissen deshalb wieder ins System eingreifen und diesmal

i i Eingabe

library("lattice™)
diabcloud <- function(y, where, more = TRUE, ...) {
print(cloud(ga ~ ina + sspg, data = chemdiab, groups = cc,

screen = list(x = -90, y = y), distance = .4, zoom = .6,
auto.key = TRUE, ...),
split = c(where, 3, 2), more = more)

}

supsym <- trellis.par.get("superpose.symbol")

supsymold <- supsym

supsym$col = c("magenta", "green3", "cyan")
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trellis.par.set("superpose.symbol" = supsym)
diabcloud(y = 70, where = c(1, 1))

diabcloud(y = 40, where = c(2, 1))

diabcloud(y = 10, where = c(3, 1))

diabcloud(y = -20, where = c(1, 2))

diabcloud(y = -50, where = c(2, 2))

diabcloud(y = -80, where = c(3, 2), more = FALSE)

trellis.par.set ("superpose.symbol" = supsymold)
rm(diabcloud, supsymold, supsym)

Chemical_Diabetic © Chemical_Diabetic ° Chemical_Diabetic ©
Normal ° Normal ° Normal °
Overt_Diabetic Overt_Diabetic Overt_Diabetic

ga

Chemical_Diabetic Chemical_Diabetic Chemical_Diabetic
ormal ° Normal ° ormal °
Overt_Diabetic Overt_Diabetic Overt_Diabetic

ina sspg

Aufgabe 4.2

Modifizieren Sie dieses Beispiel so, dass Sie einen Eindruck der
dreidimensionalen Struktur bekommen.

Wie unterscheidet sich offene Diabetes von chemischer Diabetes?

Wie verhélt sich die Normal-Gruppe zu den beiden Diabetes-
Gruppen?

Auch mit Serien von Projektionen ist es oft nicht einfach, eine dreidimensionale Struk-
tur zu identifizieren. Mit animierten Folgen kann dies einfacher sein. Unterstiitzung dazu
findet sich in Iibrary(rggobi), die allerdings ggobi, zu finden in <http://www.ggobi.
org/>, als zusétzliche Software voraussetzt.

Was hier ad-hoc gemacht wird, kann auch systematisch durchgefiihrt werden und fiir
beliebige Dimensionen verallgemeinert werden: man sucht fiir einen Datensatz im R? nach
“interessanten” Projektionen. Dazu definiert man einen Index, der messen soll, wie interes-
sant eine Projektion ist, und ldsst dann eine Suche laufen, die diesen Index maximiert. Die
auf dieser Idee basierende Familie statistischer Verfahren findet man unter dem Stichwort
projection pursuit. Das System ggobi beinhaltet Implementierungen von projection
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pursuit fiir eine Reihe von Indizes, die {iber die Funktionen in library(rggobi) von R
aus angesprochen werden konnen.

4.4.3. Projektionen fiir dim 1, 2, 3, ... 7. Projektionsmethoden versuchen, in
einem hoherdimensionalen Datensatz Strukturen niedrigerer Dimension zu identifizieren.
Die identifizierbare Dimension ist dabei beschrinkt. Projezieren wir Struktur mit einer
Dimension, die grofler ist als das Projektionsziel, so iiberdeckt die typische Projektion
alles, gibt also keine Information mehr.

Wieviele Dimension kénnen wir erfassen? Die grafische Darstellung in der Ebene gibt
zunéchst eine niedrig angesetzte Grenze von zwei Dimensionen, d.h. zweidimensionale
Strukturen konnen wir direkt mit cartesischen Koordinaten in der zy-Ebene darstellen. Die
Wahrnehmung kann dreidimensionale Strukturen anhand von Hinweisen auf die Raumtiefe
(etwa durch Schatten) oder aus Folgen von 2d-Bildern rekonstruieren. Mit Animationen
erhalten wir einen Eindruck von veradnderlichen 3d-Folgen und sind damit bei vier Dimen-
sionen.

Mit zusétzlichen Informationskanilen wie z.B. mit Farbcodierungen kénnen wir dies
leicht erhohen, bleiben aber effektiv bei vier bis sieben Dimensionen fiir ein Display.

Die Kombination mehrerer Displays hilft kaum iiber diese Grenze hinaus. Stellen wir
mehrere Displays z.B. in einer Scatterplot-Matrix dar, so verlieren wir die Fahigkeit, fiir die
einzelnen Szenen durch die Wahrnehmung komplexere Strukturen zu generieren. Anstelle
dessen miissen wir aktiv durch Vergleichen die komplexeren Strukturen aus den zweidi-
mensionalen Displays erarbeiten. Die Fahigkeit, simultane Vergleiche durchzufiihren, ist
dabei beschrénkt. Ebenso die Anzahl von Displays, die simultan auf einem Seiten-Medium
wie Bildschirm oder Papier dargestellt werden kann.

4.4.4. Parallel-Koordinaten. Die grafische Darstellung (in kartesischen Koordina-
ten) sind zunéchst auf ein- und zweidimensionale Projektionen beschriankt. Aber selbst
bei Darstellungen in der Ebene ist die Beschréinkung auf zwei Dimensionen nicht vorge-
geben, sondern ist eine Folge unserer Wahl der Darstellung in kartesischen Koordinaten.
Plot-Matrizen durchbrechen diese Dimensionsschranke durch Kombination von kartesi-
schen Koordinatensystemen.

Parallel-Koordinaten orientieren die Achsen fiir die Variablen parallel zueinander. Fiir
Haufigkeiten bei kategorialen Variablen ist dies eine iibliche Darstellung: (evtl. iiberlager-
te) Balkendiagramme benutzen Parallel-Koordinaten. Die Prozedur parallel() in 1i-
brary(lattice) unterstiitzt Parallel-Koordinaten auch fiir quantitative Variable. Die zu
einem Fall gehorenden Markierungen auf diesen Achsen werden durch einen Linienzug
verbunden. Diese Form der Parallel-Koordinaten stammt von A. Inselberg ([ICR87]).

Eingabe
library("lattice")

print(parallel(chemdiab[2:5], groups = chemdiab$cc))
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Sspg

ina

ga

fpg

Die Information ist dieselbe wie in den vorausgehenden Grafiken. Durch die verénderte
Darstellung werden die Zusammenhénge auf neue Weise zugénglich.

Aufgabe 4.3

Notieren Sie fiir den chemdiab-Datensatz (schriftlich!) die
Beziehungen zwischen den Variablen, die Sie im Parallel-
Koordinatenplot erkennen kénnen.

Anstelle von chemdiab[2:5] kénnen Sie die Variablen auch explizit
als chemdiab[c(2, 3, 4, 5)] angeben. Durch dieser Form erhal-
ten Sie Kontrolle iiber die Reihenfolge der Variablen. Vergleichen
Sie zwei unterschiedliche Anordnungen der Variablen und notieren
Sie (schriftlich!) ihre Beobachtungen.

Welche Variablen-Anordnung gibt die einfachere Darstellung?
Welche Beziehungen zwischen den Variablen sind in beiden ables-
bar?

Welche nur in einer der Anordnungen?

4.5. Schnitte, bedingte Verteilungen und Coplots

Schnitte sind, abstrakt gesehen, bedingte Verteilungen des Typs P(- | X = z). Sie
sind nur dort zuverldssig, wo der Schnitt eine Bedingung definiert, die ein positives Maf}
hat. Um die Idee der Reduktion auf bedingte Verteilungen auch auf Daten anwenden zu
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konnen, dicken wir die Schnitte auf. Anstelle bedingter Verteilungen des Typs P(- | X = x)
zu untersuchen, betrachten wir P(- | || X — x| < ¢), wobei € auch mit z variieren kann.
In grafischen Darstellungen von Daten verlangt dies eine Serie von Plots, die jeweils nur
den durch die Bedingung eingeschriankten Teildatensatz zeigen.

Statistisch fithren Projektionen zu Marginalverteilungen und Schnitte zu bedingten
Verteilungen. Schnitte und Projektionen sind in gewissem Sinne komplementér: Projektio-
nen zeigen Strukturmerkmale niedriger Dimension. Schnitte sind geeignet, Strukturmerk-
male niedriger Co-Dimension zu entdecken. Beide kénnen zur Datenanalyse kombiniert
werden. Das Wechselspiel von Projektionen und Schnitten ist in [FB94] untersucht.

Wie die Dimensionsgrenzen bei der Projektion gibt es Grenzen fiir die Co-Dimension
bei den Schnitten. Wir kénnen nur Strukturen kleiner Co-Dimension erfassen. Ist die Co-
Dimension zu grof, so ist ein typischer Schnitt leer, gibt also keine Information.

Als erstes Hilfsmittel stellt R die Moglichkeit bereit, zwei Variablen bedingt auf eine
oder mehre weitere Variable zu analysieren. Als grafische Darstellung dient dazu der Co-
plot. Er ist eine Variante der Plot-Matrix und zeigt in jedem Feld den Scatterplot zweier
Variabler, gegeben die Bedingung.

Der Coplot kann nun auf bestimmte Muster untersucht werden. Sind die dargestellten
Variablen stochastisch unabhéingig von den bedingenden Variablen, so zeigen alle Plot-
Elemente dieselbe Gestalt. Dargestellte Variable und bedingende Variable kénnen dann
entkoppelt werden.

Stimmt die Gestalt iiberein, aber Ort und Grofe variieren, so weist dies auf eine (nicht
notwendig lineare) Shift /Skalenbeziehung hin. Additive Modelle oder Varianten davon kon-
nen benutzt werden, um die Beziehung zwischen dargestellten Variablen und bedingenden
Variablen zu modellieren.

Verdndert sich bei Variation der Bedingung die Gestalt, so liegt eine wesentliche Ab-
héngigkeitsstruktur oder Interaktion vor, die genauerer Modellierung bedarf.

help(coplot)

coplot Conditioning Plots

Description.

This function produces two variants of the conditioning plots discussed in the
reference below.

Usage.

coplot (formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, x1lim, ylim, ...)
co.intervals(x, number = 6, overlap = 0.5)
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Arguments.

formula

data

given.values

panel
rows

columns
show.given

col
pch

bar.bg

xlab

ylab

subscripts

axlabels
number

overlap

4. DIMENSIONEN 1, 2, 3, ..., o0

a formula describing the form of conditioning plot. A formula of the
formy ~ x | aindicates that plots of y versus x should be produced
conditional on the variable a. A formula of the form y ~ x| a * b
indicates that plots of y versus x should be produced conditional on
the two variables a and b.

All three or four variables may be either numeric or factors. When
x or y are factors, the result is almost as if as.numeric() was ap-
plied, whereas for factor a or b, the conditioning (and its graphics if
show.given is true) are adapted.

a data frame containing values for any variables in the formula. By
default the environment where coplot was called from is used.

a value or list of two values which determine how the conditioning on
a and b is to take place.

When there is no b (i.e., conditioning only on a), usually this is a
matrix with two columns each row of which gives an interval, to be
conditioned on, but is can also be a single vector of numbers or a set
of factor levels (if the variable being conditioned on is a factor). In
this case (no b), the result of co.intervals can be used directly as
given.values argument.

a function(x, y, col, pch, ...) which gives the action to be car-
ried out in each panel of the display. The default is points.

the panels of the plot are laid out in a rows by columns array. rows
gives the number of rows in the array.

the number of columns in the panel layout array.

logical (possibly of length 2 for 2 conditioning variables): should con-
ditioning plots be shown for the corresponding conditioning variables
(default TRUE)

a vector of colors to be used to plot the points. If too short, the values
are recycled.

a vector of plotting symbols or characters. If too short, the values are
recycled.

a named vector with components "num" and "fac" giving the back-
ground colors for the (shingle) bars, for numeric and factor condi-
tioning variables respectively.

character; labels to use for the x axis and the first condition-
ing variable. If only one label is given, it is used for the x axis
and the default label is used for the conditioning variable.
character; labels to use for the y axis and any second condi-
tioning variable.

logical: if true the panel function is given an additional (third)
argument subscripts giving the subscripts of the data passed
to that panel.

function for creating axis (tick) labels when x or y are factors.
integer; the number of conditioning intervals, for a and b,
possibly of length 2. It is only used if the corresponding
conditioning variable is not a factor.

numeric < 1; the fraction of overlap of the conditioning vari-
ables, possibly of length 2 for x and y direction. When overlap
< 0, there will be gaps between the data slices.
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x1lim the range for the x axis.
ylim the range for the y axis.
additional arguments to the panel function.
X a numeric vector.
Details.

In the case of a single conditioning variable a, when both rows and columns are
unspecified, a “close to square” layout is chosen with columns >= rows.

In the case of multiple rows, the order of the panel plots is from the bottom and
from the left (corresponding to increasing a, typically).

A panel function should not attempt to start a new plot, but just plot within a
given coordinate system: thus plot and boxplot are not panel functions.

As from R 2.0.0 the rendering of arguments x1ab and ylab is not controlled by par
arguments cex.lab and font.lab even though they are plotted by mtext rather than
title.

Value.

co.intervals(., number, .) returns a (number X 2) matrix, say ci, where ci[k,]
is the range of x values for the k-th interval.

References.

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J.
M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also.
pairs, panel.smooth, points.
Examples.

## Tonga Trench Earthquakes

coplot(lat ~ long | depth, data = quakes)

given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)
coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

## Conditioning on 2 variables:
11.dm <- lat ~ long | depth * mag
coplot(ll.dm, data = quakes)
coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))
coplot(1l.dm, data = quakes, number=c(3,7),
overlap=c(-.5,.1)) # negative overlap DROPS values

## given two factors

Index <- seq(length=nrow(warpbreaks)) # to get nicer default labels
coplot(breaks ~ Index | wool * tension, data = warpbreaks, show.given =
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

0:1)

col = "red", bg = "pink", pch = 21, bar.bg = c(fac = "light blue"))

## Example with empty panels:
with(data.frame(state.x77), {
coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,
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panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))
## y ~ factor -- not really sensical, but 'show off':
coplot(Life.Exp ~ state.region | Income * state.division,

panel = panel.smooth)

i9)

Wir illustrieren die Coplots mit dem “Quakes”-Datensatz. Dieser Datensatz gibt die
geografische Liange und Breite einer Reihe von Erdbeben in der Niahe der Fiji-Inseln, zu-
sammen mit der Tiefe des Erdbebenherdes. Wir benutzen die geografische Lénge und Breite

als Variablen, auf die wir projizieren, und die Tiefe als Covariable, nach der wir Schnitte
bilden.

Die Tiefen codieren wir um, damit bei grafischen Darstellungen grofie Tiefen nach
unten zeigen.

Eingabe

quakes$depth <- -quakes$depth
given.depth <- co.intervals(quakes$depth, number = 4, overlap = .1)
coplot(lat ~ long | depth, data = quakes, given.values = given.depth, columns = 1)
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Analog fiir zwei Covariable, die Tiefe und die Stirke des Erdbebens.

Eingabe

coplot(lat ~ long | mag* depth , data = quakes, number = c(5, 4))
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Given : mag
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Aufgabe 4.4

Analysieren Sie den “quakes”-Datensatz.
Fassen Sie Thre Ergebnisse zusammen.
Versuchen Sie, ein formales Modell zu formulieren.

Wie héngt die geographische Position mit der Tiefe zusammen?

Ist ein Zusammenhang von Tiefe und Stérke des Erdbebens erkenn-
bar? (Evtl. miissen Sie bei coplot () eine andere Formel wéhlen.)

Die Idee der Coplots wird generalisiert in den Trellis-Displays (siche [Cle93]). Trellis-
Displays sind in R in library(lattice") implementiert.

Eingabe

library("lattice")
Depth <- equal.count(quakes$depth, number = 4, overlap = .1)
print (xyplot(lat ~ long | Depth , data = quakes, columns = 1, layout = c(1, 4)))
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4.6. Transformationen und Dimensionsreduktion

Variable liegen oft in der Form vor, die von den Messprozessen oder fachlichen Kon-
ventionen vorgegeben sind. Sie entspricht nicht unbedingt der Form, die von der Sache
her vorgegeben ist, oder die fiir die statistische Modellierung am besten geeignet ist. Diese
Form enthilt eine gewisse Beliebigkeit:

e Bei einer akustischen Reizbestimmung kann die Stédrke der Reizes zum Beispiel
durch die Energie beschrieben werden, oder durch den Schalldruck [Phon]. Von
der einen zur anderen Skala fiihrt die Logarithmus- Transformation. Das Weber-
Fechnersche Gesetz der Psychologie sagt, dass fiir die menschliche Wahrnehmung
die (logarithmische) Phon-Skala die richtige ist.

e Benzinverbrauch wird in den USA als Miles per Gallon angegeben, in Europa
als Liter auf 100 km. Bis auf eine Umrechnungskonstante ist die eine Variable
das inverse der anderen. Die Angabe in Liter auf 100 km scheint zu einfacheren
statistischen Modellen zu fithren; Analysen in Miles per Gallon kénnen beliebig
kompliziert sein.
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Die Wahl der richtigen Variablen kann ein entscheidender Schritt in der Analyse sein.
Dabei kann es hilfreich sein, zunéchst Transformationen und zusétzliche konstruierte Va-
riablen einzufithren, und dann in einem zweiten Schritt die Dimension wieder zu reduzieren
und die effektiven Variablen zu bestimmen.

Koordinatensysteme sind nicht kanonisch vorgegeben. Dies trifft schon auf univaria-
te Probleme zu. Bei univariaten Problemen koénnen wir Koordinatensysteme noch relativ
einfach transformieren. Die Modellierung der Fehlerverteilung einerseits und die Trans-
formation der Daten auf eine Standard-Verteilung sind in gewisser Weise austauschbar.
In mehrdimensionalen Situationen sind geeignete Transformationsfamilien bisweilen nicht
verfiighbar oder nicht zugénglich, und die Struktur des Problems kann kritisch von der Wahl
geeigneter Koordinaten abhéingig sein. Hier hat eine sachorientierte Wahl der Koordina-
tendarstellung oft den Vorzug vor automatischen Selektionen.

Dieses kann an Anderson’s Iris-Datensatz illustriert werden. Der Datensatz hat fiinf
Dimensionen: vier quantitative Variable (Linge und Breite von Bliitenblatt (engl. petal)
und Kelchblatt (engl. sepal) von Iris-Bliiten) und eine kategoriale Variable (die Spezies: iris
setosa canadensis, iris versicolor, iris Virginica)l. Gesucht ist eine Klassifikation der Spezies
anhand der vier quantitativen Variablen.

TABELLE 4.11. Iris Spezies.

Iris setosa Iris versicolor Iris virginica

Die Struktur ist dhnlich der des Diabetes-Datensatzes chemdiab. Die Klassifikation
nach iris$Species ist hier jedoch eine (extern) gegebene Klassifikation, im Gegensatz
zur anhand der anderen Variablen definierten Klassifikation chemdiab$cc. Gesucht ist hier
nicht eine allgemeine Beschreibung wie bei chemdiab, sondern eine Klassifikationsregel, die
iris$Species aus den anderen Variablen ableitet.

Die Spezies definieren die Selektionen, die in diesem Beispiel von Interesse sind.

Um eine erste Ubersicht zu bekommen ist es naheliegend, die vier Variablen getrennt
nach Spezies zu betrachten. Die Standard-Konventionen von R machen dies umsténdlich.
D1e Spezies ist eine kategoriale Variable. Dies veranlasst R, bei der plot ()-Funktion von

&lp bmuwxuu \/IL\JJJ.
oldpar <- par}mfro% = c22, §§3 & ©

plot(iris$Species, iris$Petal.Length,

ylab = '', main = 'Petal Length', col = c("magenta", "green3", "yellow"))
plot(iris$Species, iris$Petal.Width,
ylab = '', main = 'Petal Width', col = c("magenta", "green3", "yellow"))

plot(iris$Species, iris$Sepal.Length,

Photos: The Species Iris Group of North America. Mit freundlicher Genehmigung
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ylab = '', main = 'Sepal Length', col = c("magenta", "green3", "yellow"))
plot(iris$Species, iris$Sepal.Width,
ylab = '', main = 'Sepal Width', col = c("magenta", "green3", "yellow"))
par (oldpar)
Petal Length Petal Width
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Wir kénnten die R-Funktionen modifizieren, um einen Scatterplot der einzelnen Varia-
blen nach Gruppen zu erhalten. Anstelle dessen greifen wir wieder auf grid und lattice
zuriick und benutzen die Funktion stripplot (). Weil bei der gegebenen Messgenauigkeit
Werte vielfach auftreten, benutzen wir ein ‘jitter’: wir ‘verwackeln’ vielfache Werte, um sie
getrennt darzustellen.

Eingabe
library("lattice")

print (stripplot (Petal.Length ~ Species, data = iris,

jitter = TRUE, ylab = '', main = 'Petal Length'), split = c(1, 1, 2, 2), more = TI
print (stripplot (Petal.Width ~ Species, data = iris,

jitter = TRUE, ylab = '', main = 'Petal Width'), split = c(2, 1, 2, 2), more = TRI
print (stripplot (Sepal.Length ~ Species, data = iris,

jitter = TRUE, ylab = '', main = 'Sepal Length'), split = c(1, 2, 2, 2), more = TI

print (stripplot(Sepal.Width ~ Species, data = iris,
jitter = TRUE, ylab = '', main = 'Sepal Width'), split = c(2, 2, 2, 2))
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Die eindimensionalen Randverteilungen geben noch wenig Hinweis darauf, wie die drei
Gruppen zu trennen sind. Auch die zweidimensionale Darstellung hilft wenig weiter.

Aufgabe 4.5

Benutzen Sie die Methoden aus Abschnitt 4.4 und 4.5, um den Da-
tensatz zu untersuchen. Kénnen Sie Klassifikationsregeln erkennen,
die die drei Spezies weitgehend richtig klassifizieren?

Mit formalen Methoden wie der Diskriminanzanalyse (z. B. 1da() in library (MASS))
kann die Klassifikation anhand der urspriinglichen Variablen gefunden werden. Die Tren-
nung der Spezies ist nicht trivial.

Die urspriinglichen Variablen reprisentieren jedoch nur den Aspekt der Daten, der
technisch am einfachsten erhebbar ist. Biologisch gesehen wiirde man jedoch anders para-
metrisieren: die Variablen spiegeln Grofle und Form der Blatter wieder. Eine erste Appro-
ximation wére

(4.1) area = length - width
(4.2) aspectratio = length /width.

Damit erhélt man die Darstellung
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Eingabe
iris$Sepal.Area <- iris$Sepal.Length*iris$Sepal.Width

iris$Petal.Area <- iris$Petal.Length*iris$Petal.Width
iris$Sepal .Ratio <- iris$Sepal.Length/iris$Sepal.Width
iris$Petal .Ratio <- iris$Petal.Length/iris$Petal.Width
pairs(iris[6:9], main = "Anderson's Iris Data -- 3 species",
pch = 21,
bg = c("magenta", "green3", "yellow")[unclass(iris$Species)],
oma = c(8, 8, 8, 8))
mtext (c("Colour codes:", levels(iris$Species)),
col = c("black", "magenta", "green3", "yellow"),
at = ¢c(0.1, 0.4, 0.6, 0.8),
side = 1, line = 2)
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Colour codes: setosa versicolor

In der Marginalverteilung sind die Spezies fast vollsténdig getrennt - mit zwei Grenzfillen.
In diesen mehr biologischen Koordinaten sieht man, dass zur Klassifikation Fliche und
Léangenverhéltnis des Bliitenblatts allein ausreichen. Jedes kompliziertere formale Verfah-
ren muss sich mit dieser trivialen Klassifikationsregel erst einmal messen.

Selbst eine umfassende Suche, z.B. mit projection pursuit, erfasst nur die Projektio-
nen, also nur spezielle Linearkombinationen der Variablen. Bei den Iris-Daten haben wir
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zunéchst neue Variablen, die Flichen und Seitenverhéltnisse, eingefiihrt. Dies sind nicht-
lineare Transformationen. Erst in einem weiteren Schritt sind dann die klassifizierenden
Variablen identifiziert worden, und dabei ist die Dimension drastisch reduziert. Bei echten
multivariaten Problemen ist es ganz typisch, dass zunéchst eine Dimensionserweiterung
notwendig ist, um das Problem zu l6sen. Dimensionsreduktion ist erst dann sinnvoll, wenn
die beschreibenden Variablen hinreichend komplex sind, um zu einer Lésung zu fiihren.

4.7. Hohere Dimensionen

4.7.1. Linearer Fall. Haben wir im wesentlichen lineare Strukturen, so kénnen wir
oft auch héher—dimensionale Strukturen mit Methoden analysieren, die fiir eindimensio-
nale Modelle entwickelt sind. Wir miissen die Methoden evtl. modifizieren oder iteriert
anwenden. Sie helfen uns jedoch, die wesentlichen Merkmale zu erkennen.

In Kapitel 2 haben wir lineare Modelle bereits allgemein fiir beliebige Dimension p
der Regressoren eingefiihrt und damit bereits den mehrdimensionalen Fall eingeschlossen.
Kapitel 2 setzt voraus, dass das Modell der statistischen Analyse vorab fest steht, d.h. das
Information aus dem Datenmaterial die Wahl des Modells nicht beeinflusst, sondern nur
die Entscheidung im Rahmen des Modells.

Insbesondere bei hoherdimensionalen Problemen ist es jedoch so, dass das Modell erst
zu bestimmen ist. Ein wichtiger Spezialfall ist die Auswahl von Regressoren: die Variablen
sind Kandidaten, aus denen eine (moglichst kleine) Anzahl von Regressoren zu wihlen ist.

Bringen kompliziertere Modelle eine wesentliche Verbesserung gegeniiber dem einfa-
chen Modell? Welche Parameter bzw. welche abgeleitete Variable sollten in das Modell
einbezogen werden? Die Lehre aus den linearen Modellen ist, dass nicht der Wert des ein-
zelnen Parameters den Beitrag im Modell bestimmt, sondern dass die durch die Parameter
bestimmten Riéume die wesentlichen Faktoren sind. An dieser Stelle sind angepasste Stra-
tegien gefragt. Wir kénnen mit einfachen Modellen beginnen und fragen, ob zusétzliche
Parameter einen weiteren Beitrag liefern. Dadurch erreichen wir einen besseren Fit, aber
erhohen die Varianz unserer Schitzungen. Oder wir kénnen mit einem relativ komplexen
Modell beginnen, und fragen, ob wir Parameter fortlassen konnen. Dadurch wird zwar der
Restfehler erhoht, wir gewinnen aber an Verlésslichkeit der Schiatzungen.

Beide Strategien fithren im abstrakten linearen Regressionsmodell zu einem Vergleich
von zwei Modellrdumen .#x: C .#x. Die entsprechenden Schétzer sind 7 4,,(Y) und
Ty (Y). Die Beziehung zwischen beiden wird klar, wenn wir die orthogonale Zerlegung
Mx = Mx & Lx = My, Lx = Mx © Mx von Mx wihlen. Dann ist 7 4, (Y) =
Tttsr (V) + 7Ly (V).

4.7.1.1. Partielle Residuen und Added- Variable-Plots. In der Regression sind .#x: und

Mx Raume, die von den Regressor-Variablenvektoren aufgespannt werden. In unserer
Situation interessiert uns der Spezialfall

X" =span(Xy, ..., X,); X = span(X1,..., X,)
mit p > p’. Dann wird aber Lx aufgespannt von den Vektoren
Ry = Xy =g (Xpa), - By = Xp — g (Xp).

Wenn wir also (formal) eine lineare Regression der zusitzlichen Regressoren nach den
bereits in X’ enthaltenen durchfiihren, sind die dabei entstehenden Residuen ein Erzeu-
gendensystem fiir L. Eine weitere Regression von Y nach diesen Residuen liefert uns den
Term 77, ,(Y), der den Unterschied zwischen den Modellen beschreibt. Nach Konstruktion
wissen wir, dass 74, (Y') orthogonal zu Lx ist. Bei dieser zweiten Regression wird deshalb
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dieser Anteil auf null abgebildet. Wir konnen diesen Anteil gleich eliminieren und uns auf
die Regression von Y/ =Y — 7 4 ,(Y) nach Ry,..., R, beschranken.

Die Strategiewahl ist einfach: wir untersuchen, ob zusétzliche Parameter in das Modell
aufgenommen werden sollten. Anstelle der Scatterplot-Matrix der urspriinglichen Daten
betrachten wir die Scatterplots der (formalen) Residuen aus diesem einfachen Modell.
Diese Scatterplots werden Added- Variable-Plots genannt.

Um den Unterschied zur Scatterplot-Matrix der Ausgangsdaten zu betonen: lineare
Strukturen im Scatterplot der Ausgangsdaten sind ein klarer Hinweis auf lineare Abhén-
gigkeiten. Nichtlineare Strukturen, wie z.B. die Dreiecksgestalt in einigen der Scatterplots
konnen eine entsprechende Abhéngigkeit widerspiegeln; sie konnen aber auch Artefakte
sein, die als Folge der Verteilungs- und Korrelationsstruktur der Regressoren auftreten. Sie
haben in der Regel keine einfache Deutung. Im Gegensatz dazu sind die Darstellungen in
der Matrix der Added-Variable-Plots fiir lineare Effekte der vorausgehenden Variablen ad-
justiert. Dadurch hingen sie von der Wahl der Reihenfolge ab, in der Variable einbezogen
werden. Sie korrigieren aber fiir lineare Effekte, die aus den Korrelationen zu vorausgehen-
den Variablen kommen. Dadurch wird eine ganze Reihe von Artefakten vermieden und sie
konnen unter Beriicksichtigung des Zusammenhangs unmittelbar interpretiert werden.

Aufgabe 4.6

Modifizieren Sie die nachfolgende Prozedur pairslm() so, dass sie
fiir alle Variablen in der urspriinglichen Matrix x die Residuen der
Regression nach der neuen Variablen x$fit berechnet und eine
Scatterplot-Matrix dieser Residuen zeigt.

pairslm <- function(model, x, ... )
{ x$fit <- Im(model, x)$fit; pairs(x, ...)}

Fiigen Sie auch Titel, Legenden etc. hinzu.

Benutzen Sie den "trees”’-Datensatz als Beispiel.

Wir haben den Ubergang von p’ zu p’ +1 Variablen untersucht. Die Scatterplot-Matrix
erlaubt uns einen schnellen Uberblick iiber eine (nicht zu) groBe Zahl von Kandidaten (bei
uns drei mogliche zusitzliche Regressoren). Der Ubergang von p zu p — 1, zur Elimination
einer Variablen, ist in gewisser Weise dual dazu. Dies entspricht der zweiten Strategie, der
schrittweisen Elimination.

Statt eine einzelne Variable als Leitvariable auszuwéhlen ist es effizienter, Kombina-
tionen von Variablen als synthetische Leitvariablen zu benutzen. Entsprechende Methoden
werden in der Theorie als Hauptkomponentenanalyse behandelt und durch die Funktion
prcomp() in der library(mva) bereitgestellt. Wir kommen daraus in einem spéteren
Beispiel (Seite 4-40) zuriick.

Das Beispiel der linearen Modelle lehrt uns, dass die marginalen Beziehungen nur die
halbe Wahrheit sind. Anstelle die einzelnen Regressoren zu betrachten, miissen wir im
linearen Modell schrittweise orthogonalisieren. Komponentenweise Interpretationen sind
damit fragwiirdig - sie sind weitgehend von der Reihenfolge abhéngig, in der Variablen
einbezogen werden.

In komplexeren Situtationen fithren formale Methoden oft nur in die Irre. Handwerkli-
ches Geschick ist hier notwendig. Leider sind die Kennntnisse dariiber, wie handwerkliche
Eingriffe die Giiltigkeit formaler Methoden beeinflussen, noch sehr beschrénkt. Deshalb ist
es gerade hier wichtig, gewihlte Strategien anhand von Simulationen kritisch zu beurteilen.
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4.7.2. Nichtlinearer Fall. Nichtlineare Beziehungen in htheren Dimension stellen
eine Herausforderung dar. Neben den Methoden brauchen wir auch ein Repertoire an Bei-
spielen, die uns zeigen, welche Strukturen auftreten kénnen und worauf wir achten miissen.
Das folgende Beispiel, Cusp(Spitzen)-Singularitit gehort dazu: es ist mit die einfachste
Struktur, die in héheren Dimensionen auftreten kann. Die Basis ist hier ein zweidimensio-
nale Struktur, eine Fléche, die nicht trivial in einem dreidimensionale Raum eingebettet ist.
Das interessante Merkmal ist hier die Aufspaltung von einer unimodalen in eine bimodale
Situation.

4.7.2.1. Beispiel: Spitzen-Nichtlinearitdt. Das einfachste Beispiel kann im Hinblick auf
physikalische Anwendungen illustriert werden. In physikalischen Systemen hingen Wahr-
scheinlichkeitsverteilungen oft mit Energiezustidnden zusammen; (lokale) Minima der Ener-
gie entsprechen dabei den Moden der Verteilung. Ein typischer Zusammenhang ist: verhé&lt
sich die Energie wie ¢(y), so verhiilt sich die Verteilung nach Standardisierung wie e=%®),
Ist ¢(y) in der Nihe des Minimums quadratisch, so erhalten wir (bis auf Skalentransfor-
mation) Verteilungen aus der Familie der Normalverteilungen.

Die Differentialtopologie lehrt uns, dass auch bei kleinen Stérungen oder Variationen
dieses qualitative Bild erhalten bleibt. Die Energie bleibt zumindest lokal approximativ
quadratisch, und die Normalverteilungen bleiben zumindest approximativ eine geeignete
Verteilungsfamilie.

Das Verhalten #indert sich drastisch, wenn das Potential sich lokal wie y* verhilt. Schon
geringe Variationen kénnen dazu fithren, dass das Potential lokal quadratisch ist. Aber sie
kénnen auch dazu fithren, dass das lokale Minimum aufbricht und zu zwei Minima, fiihrt.
Das typische Bild ist von der Gestalt

(4.3) i) =y +u-y’ +v-y.

Dabei sind die Variationen durch die Parameter u, v repriasentiert. Am einfachsten lasst
sich die Situation dynamisch interpretieren: wir stellen uns vor, dass u, v duflere Parameter
sind, die sich veréindern kénnen. Dieses Bild kennen wir von der magnetischen Hystere-
se: y gibt die Magnetisierung in einer Richtung an, u spielt die Rolle der Temperatur; v
die eines dufleren Magnetfelds. Bei hoher Temperatur folgt die Magnetisierung direkt dem
duleren Magnetfeld. Sinkt die Temperatur, so zeigt das Material Gedédchtnis: die Magneti-
sierung héngt nicht nur vom dufleren Magnetfeld ab, sondern auch von der vorhergehenden
Magnetisierung.

Ahnliche “Gediichtniseffekte” kennen wir auch in anderen Bereichen. Man stelle sich
einen Markt vor mit Preisen y, Kosten v und einem “Konkurrenzdruck” u. Bei ausrei-
chender Konkurrenz folgen die Preise (mehr oder weniger) den Kosten bei sonst gleichen
Bedingungen. Bei Monopol-Situationen scheinen die Preise ein Gedéchtnis zu haben: sind
sie einmal gestiegen, so sinken sie erst, wenn die Kosten drastisch reduziert sind.

Die in Formel 4.3 angegebenen “Entfaltung” des Potentials y* hat eine typische Form.
Aus

(4.4) ¢ (y;u,0) = 4y° +2u-y+v =0
erhélt man die kritischen Punkte (sieche Abb. 4.2). Siehe Abbildung 4.2 auf Seite 4-30.

Projeziert auf die u,v-Ebene gibt dies eine Spitze (engl.: “cusp”, Abb. 4.3). Bei Para-
metern im inneren dieser Spitze gibt es zwei lokale Minima; auflerhalb der Spitze gibt es
nur einen Extremalwert.
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ABBILDUNG 4.1. Entfaltung von y*: o(y;u,v) = y* + u -

Die diesen Potentialen entsprechenden Verteilungen sind — bis auf Skalentransformation
zur Normalisierung —

(4.5) p(y;u,v) o e

Die Struktur der Potentiale spiegelt sich auch in den entsprechenden Verteilungen wieder;
der exponentielle Abfall macht allerdings die kritische Grenze etwas komplizierter.

yruy?4uvy)

Die Situation erscheint hier noch harmlos: der Parameterraum (der Raum der Regres-
soren) = = (u,v) hat nur zwei Dimensionen. Die Verteilung ist eindimensional mit einer
glatten Dichte. Aber die Situation kann mit linearen Methoden nur unzureichend erfasst
werden. Der typische nichtlineare Effekt wird nicht erkannt, wenn man darauf nicht vorbe-
reitet ist. Erst das Gesamtbild im Dreidimensionalen vermittelt die eigentliche Struktur.

Dieses einfache Beispiel ist eine Herausforderung. Wie kann eine derartige Struktur
diagnostiziert werden?
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ABBILDUNG 4.2. Kritische Punkte ¢'(y;u,v) =4y> +2u-y+v =0

ABBILDUNG 4.3. Grenze zwischen Uni— und Bimodalitéit im (u, v)-Raum
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ABBILDUNG 4.4.

Aufgabe 4.7

Schreiben Sie eine Funktion dx4exp(x, u, v), die die zentrier-
te Wahrscheinlichkeitsdichte zu (4.5) berechnet. Dazu miissen Sie
die Dichte aus (4.5) integrieren, um die Normierungskonstante zu
bestimmen, und den Erwartungswert berechnen, um die Dichte zu
zentrieren. Benutzen Sie fiir beides eine numerische Integration mit
integrate().

k%%

Simulieren Sie zu Werten u, v auf einem Gitter in u = —2...2 und
v = —1...1 je 100 Zufallszahlen aus dx4exp(x, u, v). Untersu-
chen Sie diese mit den Methoden aus Kapitel 2.

Ko6nnen Sie Hinweise auf nicht—lineare Abhéngigkeit erkennen?
Ist die Bimodalitét erkennbar?

Wie weit konnen Sie die Struktur identifizieren?
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Bei nichtlinearen Beziehungen kénnen gemeinsame Abhéngigkeiten eine grofie Bedeu-
tung haben. Im allgemeinen erfordert dies Umsicht bei der Modellbildung. Nichtlineare
Beziehungen konnen in Projektionen versteckt sein. Artefakte der (linearen) Projektion
konnen ein Bild vermitteln, das nicht den urspriinglichen Beziehungen entspricht.
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4.7.3. “Curse of Dimension”. Ohne angepasste Koordinatensysteme ist eine umfas-
sende Suche nach interessanten Projektionen und Schnitten notig. Die Anzahl der Méglich-
keiten steigt rasch mit der Dimension. Zur Illustration: Um einen Kubus zu identifizieren
miissen zumindest die Eckpunkte erkannt werden. In d Dimensionen sind dies 2¢ Eckpunk-
te. Die Anzahl steigt exponentiell mit der Dimension. Dies ist ein Aspekt des als curse of
dimension bekannten Problems.

Anders betrachtet: bezeichnen wir die Datenpunkte, die in mindestens einer Variablen-
dimension extrem sind, so sind dies im eindimensionalen Fall zwei Punkte. in d Dimensio-
nen sind dies typischerweise 2¢ Punkte. Betrachten wir nicht nur Koordinatenrichtungen,
sondern beliebige Richtungen, so ist typisch jeder Punkt extremal, wenn d sehr grofl wird.

Ein dritter Aspekt: im d-dimensionalen Raum ist fast jeder Punkt isoliert. Lokalisie-
rungen, wie wir sie in Abschnitt 2.5 kennengelernt haben, brechen zusammen. Wihlen wir
um einen Punkt eine Umgebung, die einen Anteil p, z.B. p = 10% der Variablenspannweite
umfasst, so haben wir in einer Dimension typischerweise der Gréflenordnung nach auch
einen Anteil p der Datenpunkte erfasst. In d Dimensionen ist dies nur noch ein Anteil der
GroBenordnung p?. Bei zum Beispiel 6 Dimensionen brauchen wir also mehrere Millionen
Datenpunkte, damit wir nicht mit leeren Umgebungen arbeiten.

4.7.4. Fallstudie. Als fortlaufendes Beispiel benutzen wir nun den Fat-Datensatz.
Dieser Datensatz ist in der Literatur wiederholt veroffentlicht und in R unter anderem im
Paket UsingR zugénglich.

Ziel der Untersuchung hinter diesem Datensatz ist die Bestimmung des Korperfettan-
teils. Die verlésslichste Methode ist es, in einem Wasserbad die mittlere Dichte des Gewebes
zu bestimmen und daraus auf den Korperfettanteil zuriick zu schliessen. Diese Bestimmung
ist sehr aufwendig. Kann sich durch einfacher zu messende Korperparameter ersetzt wer-
den? Die zur Verfiigung stehenden Parameter sind in Tabelle 4.15 zusammengefasst.

Anhand der Ubersicht in Tabelle 4.15 sehen wir gleich, dass metrische Angaben und
US-Mafle gemischt sind. Damit fiir uns die Interpretation einfacher ist, stellen wir alle
Angaben auf metrische Werte um.

Eingabe

library("UsingR")

data(fat)

fat$weightkg <- fat$weight*0.453
fat$heightcm <- fat$height * 2.54
fat$ffweightkg <- fat$ffweight*0.453

Die Variablen body.fat und body.fat.siri sind aus dem gemessenen Wert density
abgeleitet. Hinter den Formeln stecken Annahmen iiber die mittlere Dichte von Fett und
von fettfreiem Gewebe. Mit diesen Annahmen kann aus density der Fettanteil errechnet
(oder besser: geschiitzt) werden. In beiden Formeln ist der dichtabhingige Faktor 1/den-
sity. Bis auf (gegebene oder angenommene) Konstanten ist dies also der fiir uns relevante
Term (und nicht density).

Der erste Schritt ist eine kritische Inspektion und Bereinigung des Datensatzes. Dies ist
fast immer notig, nicht nur bei héherdimensionalen Datensétzen. Bei hoherdimensionalen
Datensétzen haben wir allerdings oft Redundanzen, die Konsistenzpriifungen und evtl.
Korrekturen ermoglichen. In unserem Fall sind body. fat, body.fat.siri, ffweight und
BMI abgeleitete Groflen, die zu anderen Variablen in deterministischer Beziehung stehen.
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Name Variable Einheit, Bem.
case Case Number
body.fat Percent body fat using Brozek’s equation,
457/ Density — 414.2
body.fat.siri | Percent body fat using Siri’s equation,
495/ Density — 450
density Density [g/cm?]
age Age [yrs]
weight Weight [lbs]
height Height [inches]
BMI Adiposity index = Weight/Height? [kg/m?]
ffweight Fat Free Weight = (1 — fractionofbody fat) * | [lbs]
Weight, using Brozek’s formula
neck Neck circumference [em]
chest Chest circumference [em)
abdomen Abdomen circumference “at the umbilicus | [em)]
and level with the iliac crest”
hip Hip circumference [em]
thigh Thigh circumference [em)]
knee Knee circumference [em]
ankle Ankle circumference [em)
bicep Extended biceps circumference [em]
forearm Forearm circumference [em)
wrist Wrist circumference “distal to the styloid pro- | [em)]
cesses”

TABELLE 4.15. Fat data set: variables
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Wir betrachten zunéchst die Gruppe body.fat, body.fat.siri, 1/density. Die
paarweisen Scatterplots sollten Geraden zeigen. pairs() leistet gute Dienste. Wir be-
nutzen es hier in der Formel-Variante. Um zu signalisieren, dass 1/density berechnet
werden soll, und die Division nicht als Formel-Operator zu verstehen ist, markieren wir
den Term entsprechend.

Eingabe

pairs(~body.fat + body.fat.siri + I(1/density), data =

fat)
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Die inkonsistenten Werte und Ausreifler sind deutlich. Leider ist es in R nicht einfach
moglich, Werte in der Scatterplot-Matrix zu markieren.



4.7. HOHERE DIMENSIONEN 4-35

Aufgabe 4.8
Benutzen Sie plot() und identify (), um die folgenden Ausga-
ben zu erzeugen:
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Wenn eine klare Korrektur vorgenommen werden kann, so sollte es hier getan und im
Auswertungsbericht notiert werden. Fall 42 ist einfach: eine Grofie von 0.73m bei einem
Gewicht von 63.5kg ist unplausibel und inkonsistent zu BMI 29.9. Aus dem BMI lésst sich
die Grofle riickrechnen. Der eingetragene Wert von 29.5 Zoll sollte wohl 69.5 Zoll sein.

Eingabe

fat$height [42] <- 69.5
fat$heightcm[42] <- fat$height[42] * 2.54

Fall 216 ist eine Ermessenssache. Die Dichte ist extrem niedrig, der BMI extrem hoch.
Andererseits passen die Korpermafle zu diesen Extremen. Diese Fall kann ein Ausreisser
sein, der die Auswertungen verzerren kann. Es kann aber auch eine besonders informative
Beobachtung sein. Wir notieren ihn als Besonderheit.

Nach dieser Voruntersuchung bereinigen wir den Datensatz. Die Variablen, die keine
Information mehr enthalten oder die wir ersetzt haben, 16schen wir. Als Zielvariable be-
nutzen wir body.fat. Wir behalten jedoch noch die Variable density fiir spitere Zwecke.

Eingabe

fat$weight <- NULL
fat$height <- NULL
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fat$ffweight <- NULL
fat$ffweightkg <- NULL
fat$body.fat.siri <- NULL

Es gibt eine Reihe von géingigen Indizes (siche Abb. 4.5). Frither war die Faustformel
‘Idealgewicht = Korpergrofle -100° gédngig. Heute ist der “body mass index” BMI = Ge-
wicht/ KorpergroBe? gingig. (Handelsiibliche Korperfettwaagen bestimmen die elektrische
Impedanz. Diese Variable ist im Fat-Datensatz nicht enthalten.)
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ABBILDUNG 4.5. Fettanteil gegen konventionelle Indizes

Wir konnen mit den konventionelle Indizes im linearen Modell schitzen. Dabel las-
sen wir die offensichtlichen Ausreisser und moglichen Hebelpunkte unberiicksichtigt. Dazu
benutzen wir den subset-Parameter der Funktion Im().

Fiir die Faustformel ‘Idealgewicht = Korpergrofie -100° erhalten wir:
Eingabe
Im.height <- 1m(body.fat"~I(weightkg-(heightcm-100)),
data = fat,
subset = -c(39, 41, 216))
summary (1m.height)

Ausgabe
Call:

lm(formula = body.fat ~ I(weightkg - (heightcm - 100)), data = fat,

subset = -c(39, 41, 216))
Residuals:
Min 1Q Median 3Q Max

-11.90734 -3.68697 -0.05303 3.65458 12.28000

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 17.70722 0.33296 53.18 <2e-16
I(weightkg - (heightcm - 100)) 0.54557  0.03283 16.62 <2e-16

(Intercept) okok
I(weightkg - (heightcm - 100)) *x*x*
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Signif. codes: 0O ‘*xx’ 0.001 ‘%%’ 0.01 ‘*’> 0.05 ‘.’ 0.1 ¢ ’> 1

Residual standard error: 5.166 on 247 degrees of freedom
Multiple R-squared: 0.5279, Adjusted R-squared: 0.526
F-statistic: 276.2 on 1 and 247 DF, p-value: < 2.2e-16

Die Regression von body.fat nach BMI ergibt:

Eingabe
1m.BMI <- 1m(body.fat BMI,
data = fat,
subset = -c(39, 41, 216))
summary (1m.BMI)
Ausgabe
Call:
lm(formula = body.fat ~ BMI, data = fat, subset = -c(39, 41,
216))
Residuals:
Min 1Q Median 3Q Max

-12.49460 -3.53561 -0.05228 3.69129 11.72720

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -25.6130 2.6212 -9.772 <2e-16 **x
BMI 1.7564 0.1031 17.042 <2e-16 **x
Signif. codes: O “kkx’ 0,001 ‘*kx’ 0.01 ‘x’ 0.05 ¢.” 0.1 ¢’ 1

Residual standard error: 5.097 on 247 degrees of freedom
Multiple R-squared: 0.5404, Adjusted R-squared: 0.5385
F-statistic: 290.4 on 1 and 247 DF, p-value: < 2.2e-16

Der Fit ist jedoch mit R? = 0.53 bzw. R? = 0.54 in beiden Fillen nur méBig.

Selbst mit allen Datenpunkten und allen Regressoren wird maximal R? = 0.75 erreicht:

Eingabe
Im.fullres <- lm(body.fat ~ age + BMI + neck + chest +

abdomen + hip + thigh + knee + ankle +
bicep + forearm + wrist + weightkg + heightcm,
data = fat)

summary (1m.fullres)

Ausgabe
Call:

Im(formula = body.fat ~ age + BMI + neck + chest + abdomen +
hip + thigh + knee + ankle + bicep + forearm + wrist + weightkg +
heightcm, data = fat)

Residuals:
Min 1Q Median 3Q Max
-10.0761 -2.6118 -0.1055 2.8993 9.2691
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Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -50.804727 36.489198 -1.392 0.16513

age 0.061005 0.029862  2.043 0.04217 *
BMI 0.782993  0.733562 1.067 0.28688
neck -0.439082  0.218157 -2.013 0.04528 x*
chest -0.040915 0.098266 -0.416 0.67751
abdomen 0.866361 0.085550 10.127 < 2e-16 ***
hip -0.206231 0.136298 -1.513 0.13159
thigh 0.246127  0.135373 1.818 0.07031 .
knee -0.005706  0.229564 -0.025 0.98019
ankle 0.135779 0.208314 0.652 0.51516
bicep 0.149100 0.159807 0.933 0.35177
forearm 0.409032 0.186022 2.199 0.02886 =*
wrist -1.514111 0.493759 -3.066 0.00242 *x
weightkg -0.3897563 0.221592 -1.759 0.07989 .
heightcm 0.187196  0.199854  0.937 0.34989
Signif. codes: 0O “*xx’ 0.001 ‘*x> 0.01 ‘*x’ 0.05 “.” 0.1 ¢’ 1

Residual standard error: 3.991 on 237 degrees of freedom
Multiple R-squared: 0.7497, Adjusted R-squared: 0.7349
F-statistic: ©50.7 on 14 and 237 DF, p-value: < 2.2e-16

Dies ist ein Modell mit 15 Koeffizienten. Das Modell ist so komplex, das es kaum zu inter-
pretieren ist, und man wird versuchen, das Modell zu reduzieren. Anstelle “von Hand” nach
einfacheren Modellen zu suchen, kann dieser Prozess automatisiert werden. Dazu dient die
Funktion regsubsets () in library(leaps). Der quadratische Fehler (bzw. das Bestimmt-
heitsmaf8 R?) muss dabei modifiziert werden: der quadratische Fehler wird minimiert, wenn
wir alle Regressoren ins Modell aufnehmen, also immer im vollen Modell. Zur Modellwahl
benutzt man Varianten des quadratischen Fehlers (bzw. des BestimmtheitsmaBes R?), die
fiir die Anzahl der Parameter adjustiert sind.

Aufgabe 4.9

*

Benutzen Sie library(leaps)

lm.reg <- regsubsets(body.fat age + BMI + neck +
chest + abdomen + hip + thigh + knee + ankle + bicep +
forearm + wrist + weightkg + heightcm, data = fat)

und inspizieren Sie das Resultat mit

summary (1m.reg)

plot(lm.reg, scale = r2")
plot(lm.reg, scale = "bic")
plot(lm.reg, scale = Cp")

Hinweis: sieche help(plot.regsubsets)

Benutzen Sie die Funktion Ieaps() zur Modellselektion.

Allerdings sind nun die Werkzeuge, die wir in Kapitel 2 kennengelernt haben, un-
brauchbar geworden. Die statistischen Aussagen in der Zusammenfassung sind nur giiltig,
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wenn Modell bzw. Hypothesen unabhéingig vom Datenmaterial festgelegt sind. Wenn an-
hand des Datenmaterials das Modell erst bestimmt wird, ist unklar, wie die geschéitzten
Koeffizienten verteilt, d.h. wie Konfidenzintervalle zu bestimmen sind bzw. wie zu testen
ist. Die Software hat keine Information dariiber, dass wir uns in einem Modellwahlprozess
befinden und gibt die Wahrscheinlichkeiten aus, die bei festem Modell unter Normalver-
teilungsannahme gelten wiirden.

Auch die Diagnostik wird unbrauchbar: der zentrale Grenzwertsatz sorgt dafiir, dass
unter schwachen Unabhéngigkeitsannahmen die Residuen bei der groflen Anzahl von Ter-
men approximativ normalverteilt sind, selbst wenn dies fiir die Fehler nicht zutrifft.

Wir sind in einer Sackgasse.

Wir illustrieren nun einen anderen Zugang, der etwas weiter fithrt. Dazu versetzen wir
uns an den Anfang der Analyse, nach der ersten Inspektion und Datenkorrektur. Damit
wir nicht in das oben gesehen Problem laufen, dass die statistischen Verteilungen durch
vorhergehende Modellwahlschritte beeinflusst werden, teilen wir den Datensatz auf. Einen
Teil benutzen wir als Trainingsteil, an dem wir das Modell wihlen und verschieden Al-
ternativimoglichkeiten durchspielen kénnen. Der Rest wird als Auswertungsteil reserviert.
Dessen Information wird erst nach Modellwahl fiir die statistische Analyse benutzt.

Bei genauerer Uberlegung zeigt sich, dass der Modellwahlschritt nur fiir die Abschiit-
zung der Fehler kritisch ist, nicht fiir die Parameter-Schétzung. Wird der Fehler anhand
der Daten geschétzt, die zur Modellwahl benutzt sind, so unterschitzen wir tendenziell
die Fehler. Der Auswertungsteil dient der verlésslichen Fehlerabschéitzung und Residuen-
diagnostik. Dies ist eine eingeschrinkte Aufgabe. Deshalb reservieren wir dafiir nur einen
kleineren Teil.

Eingabe
sel <- runif(dim(fat)[1])

fat$train <- sel < 2/3
rm(sel)

Die Ausreisser eliminieren wir aus dem Trainingsteil

Eingabe
fat$train[c (39, 41, 216)] <- FALSE
summary (fat$train)

Ausgabe

Mode  FALSE TRUE
logical 93 159

Unsere Zielvariable ist body. fat, oder, proportional dazu, 1/density.

Wir versuchen zunéchst, die Variablen inhaltlich zu sortieren. Fiir die Dichte habe wir
eine physikalische Definition
Gewicht

Dichte = ———.
rente Volumen

Unter den Variablen, die als Regressoren in Betracht kommen, haben wir eine Variable,
die direkt das Gewicht angibt (weight bzw. weightkg), eine ganze Reihe von Variablen,
die Koérpermafle widerspiegeln, sowie das Alter age.

Aus der gemessenen Dichte und dem gemessenen Gewicht lédsst sich das Volumen er-
rechnen. Wir erweitern dadurch die Variablen. Da wir hier nur eine Gewichtsmessung pro
Person haben, bleibt kein Platz fiir personenbezogene Statistik.
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Eingabe
fat$vol <- fat$weightkg/fat$density

Wir versuchen nun, das Volumen fat$vol zu schitzen Die Kérpermafle sind lineare Wer-
te. In einer groben Approximation kénnen wir daraus Volumen-Werte ableiten. Die einzige
Langeninformation, die wir haben, steckt in height. Mangels besserer Information neh-
men wir an, dass alle Korperteile eine Linge haben, die proportional zur Kérpergrofie ist.
Wir zielen auf ein lineares Modell. Deshalb kénnen wir lineare Faktoren vernachldssigen.
Approximieren wir die Korperteile durch Zylinder, so erhalten wir, bis auf lineare Faktoren

Eingabe
fat$neckvol <- fat$neck"2 * fat$heightcm

fat$chestvol <- fat$chest"2 * fat$heightcm
fat$abdomenvol <- fat$abdomen~2 * fat$heightcm
fat$hipvol <- fat$hip~2 * fat$heightcm
fat$thighvol <- fat$thigh~2 * fat$heightcm
fat$kneevol <- fat$knee~2 * fat$heightcm
fat$anklevol <- fat$ankle~2 * fat$heightcm
fat$bicepvol <- fat$bicep™2 * fat$heightcm
fat$forearmvol <- fat$forearm~2 * fat$heightcm
fat$wristvol <- fat$wrist~2 * fat$heightcm

Als néchstes untersuchen wir die interne Struktur der Regressor-Kandidaten im Trainings-
teil. Wir tun dies getrennt fiir die linearen Variablen und fiir die Volumen- Variablen. Dazu
benutzen wir die Funktion prcomp (), die zu gegebenen Variablen schrittweise beste lineare
Prediktoren liefert.

Fiir die approximativen Korperteil-Volumen sind die Hauptkomponenten:

Eingabe
pcfatvol <- prcomp(fat[, 20:29], subset = fat$train)
round (pcfatvol$rotation, 3)

Ausgabe
PC1 PC2 PC3 pPC4 PC5 PC6 PC7 PC8

neckvol 0.054 -0.017 0.063 -0.070 0.570 0.045 0.787 -0.169
chestvol 0.548 0.457 0.691 0.012 -0.113 -0.004 -0.003 -0.012
abdomenvol 0.650 0.290 -0.697 -0.059 0.049 -0.011 -0.017 0.016
hipvol 0.483 -0.748 0.099 0.437 -0.031 0.069 0.003 0.018
thighvol 0.185 -0.370 0.074 -0.870 -0.244 -0.017 0.079 0.012
kneevol 0.056 -0.082 0.055 -0.061 0.336 -0.822 -0.278 -0.159
anklevol 0.016 -0.032 0.034 -0.005 0.140 -0.236 -0.047 -0.120
bicepvol 0.051 -0.047 0.079 -0.180 0.552 0.508 -0.531 -0.333
forearmvol 0.024 -0.019 0.074 -0.086 0.388 0.019 -0.104 0.906
wristvol 0.009 -0.005 0.017 0.002 0.110 -0.053 0.044 0.003
PC9 PC10
neckvol 0.067 0.093

chestvol 0.005 0.002
abdomenvol -0.015 -0.002

hipvol 0.011 0.004
thighvol -0.015 -0.019
kneevol 0.299 .056

0
anklevol -0.949 0.073
bicepvol 0.030 0.010
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forearmvol -0.049 0.044
wristvol -0.048 -0.990

Das Muster der Vorzeichen bei den Ladungen gibt Hinweise auf die interne Struktur.
Die erste Hauptkomponente PC1 ist eine Linearkombination von Variablen, die im wesent-
lichen den Torso beschreiben. Die zweite Hauptkomponente kontrastiert den Oberkorper
bis zum Bauch mit den unteren Teil des Torsos. Die dritte unterscheidet das Bauchvolumen
vom Rest des Torsos.

Aufgabe 4.10

Skizzieren Sie fiir die nachfolgenden Komponenten PC4, ..., PC10,
welche Korpergeometrie durch sie beschrieben wird.

Der Versuch, das errechnete Volumen durch die approximativen Korperteil-Volumen
darzustellen, ergibt fiir den Trainingsteil ein hohes Bestimmtheitsmas.

Eingabe
Im.vol <- 1m(vol ~ neckvol + chestvol + abdomenvol +

hipvol + thighvol + kneevol +

anklevol + bicepvol + forearmvol +

wristvol,

data = fat, subset = fat$train)
summary (1m.vol)

Ausgabe

Call:

Im(formula = vol ~ neckvol + chestvol + abdomenvol + hipvol +
thighvol + kneevol + anklevol + bicepvol + forearmvol + wristvol,
data = fat, subset = fat$train)

Residuals:
Min 1Q Median 3Q Max
-5.7799 -1.1548 0.1726 1.1230 4.4839

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.869e-01 1.519e+00 0.386 0.699789
neckvol 1.450e-05 8.860e-06 1.637 0.103805
chestvol 9.449e-06 1.320e-06 7.156 3.58e-11 *xx*
abdomenvol 1.213e-05 1.154e-06 10.514 < 2e-16 *xx*
hipvol 7.830e-06 2.009e-06 3.897 0.000147 x**x*
thighvol 1.497e-05 3.425e-06 4.373 2.30e-05 *x*x*
kneevol -5.814e-06 9.550e-06 -0.609 0.543548
anklevol 5.387e-05 1.405e-05 3.834 0.000186 *x*x*
bicepvol 2.246e-05 8.691e-06 2.584 0.010744 *
forearmvol 3.047e-05 9.577e-06 3.182 0.001783 *x*
wristvol 9.623e-06 4.106e-05 0.234 0.815029
Signif. codes: 0O ‘“*xx> 0.001 ‘%%’ 0.01 ‘*x’> 0.05 “.” 0.1 ¢ ’> 1

Residual standard error: 1.867 on 148 degrees of freedom
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Multiple R-squared: 0.9777, Adjusted R-squared: 0.9762
F-statistic: 649.4 on 10 and 148 DF, p-value: < 2.2e-16

Bei Einbeziehung auch der linearen Variablen koénnen wir im Trainingsteil des Be-
stimmtheitsmafl nur geringfiigig erhdhen.

Mit den Funktionen aus library(leap) kann wieder automatisch nach “optimalen”
Modellen gesucht werden.

Eingabe

library(leaps)
11 <- leaps(x = fat[, c(6:15, 20:29)], y = fat$vol)

Wenn wir versuchen wollen, nicht das Volumen zu schétzen, sondern den Fettanteil
als Linearkombination der entsprechenden Komponenten darzustellen, konnen wir die ent-
sprechenden Hilfsvariablen konstruieren.

Eingabe
fat$neckvolf <- fat$neckvol / fat$weightkg

fat$chestvolf <- fat$chestvol / fat$weightkg
fat$abdomenvolf <- fat$abdomenvol / fat$weightkg
fat$hipvolf <- fat$hipvol / fat$weightkg
fat$thighvolf <- fat$thighvol / fat$weightkg
fat$kneevolf <- fat$kneevol / fat$weightkg
fat$anklevolf <- fat$anklevol / fat$weightkg
fat$bicepvolf <- fat$bicepvol / fat$weightkg
fat$forearmvolf <- fat$forearmvol / fat$weightkg
fat$wristvolf <- fat$wristvol / fat$weightkg

Wir beginnen mit einem einfachen Modell. Wir benutzen nur eine Variable (abdomen-
volf) aus der Gruppe der Variablen, die den Torso beschreibt, und eine der Variablen
(wristvolf) aus den hoheren Hauptkomponenten. Damit erreichen wir fast die Genauig-
keit des ersten Modells mit dem vollen Variablensatz.

Eingabe
Im.volf <- 1m(body.fat ~ abdomenvolf + wristvolf, data = fat, subset = fat$train)

summary (1m.volf)

Ausgabe
Call:
Im(formula = body.fat ~ abdomenvolf + wristvolf, data = fat,
subset = fat$train)
Residuals:
Min 1Q Median 3Q Max

-10.4925 -2.8068 0.2003 3.3089 8.5725

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.1738092 6.4631443 -0.646 0.519
abdomenvolf 0.0024661 0.0001843 13.378 < 2e-16 *xx*
wristvolf -0.0313941 0.0055045 -5.703 5.73e-08 **x

Signif. codes: 0O ‘“*xx’ 0.001 ‘%%’ 0.01 ‘*x’> 0.05 “.” 0.1 ¢ ’> 1
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Residual standard error: 4.282 on 156 degrees of freedom
Multiple R-squared: 0.6888, Adjusted R-squared: 0.6848
F-statistic: 172.7 on 2 and 156 DF, p-value: < 2.2e-16

Aufgabe 4.11

* Ergénzen Sie die Variablen durch andere volumenbezogene Variable
in dem obigen Modell. gewinnen Sie an Schéitzgenauigkeit?

ok Versuchen Sie, die Variable age in die Modellierung mit einzube-
ziehen. Wie bertiicksichtigen Sie age im Modell?

ok

Die Funktion mvr () in library(pls) steht bereit, um Regressio-
nen auf der Basis der Hauptkomponenten durchzufiihren. Benutzen
Sie die Funktion zur Regression. Wie unterscheidet sie sich von der
gewohnlichen Kleinste-Quadrate-Regression?

Zur Konstruktion des Modells haben wir den Trainingsteil benutzt. Die Genauigkeit
des so gewonnenen Modells iiberpriifen wir nun am Auswertungsteil. Dazu benutzen wir
die Funktion predict.1m(), die ein mit Im() geschétztes lineares Modell auf einen neuen
Datensatz anwendet. Z.B.

Eingabe
fat.eval <- fat[fat$train == FALSE, 5
pred <- predict.lm(lm.volf, fat.eval, se.fit = TRUE)

Aufgabe 4.12

* Schitzen Sie die Genauigkeit des Modells durch die Daten des Aus-
wertungsteils.

Fiithren Sie die eine Diagnostik des gewonnen Modells anhand der
Daten des Auswertungsteils durch.

4.8. Hohe Dimensionen

Probleme in kleinen Dimensionen kénnen wir umfassend darstellen und analysieren.
Hohere Dimensionen erfordern es oft, eine spezielle Analyse-Strategie zu entwerfen. Die
formale Anwendung von Standard-Methoden kommt hier schnell an ihre Grenzen.

Hohere Dimensionen, etwa von 10 bis 100, sind in vielen Anwendungsbereichen iiblich.
Aber auch Probleme in grofien Dimensionen sind alltidglich. Wir miissen uns dariiber im
Klaren sein, dass die Dimension eine Frage der Modellierung ist, nicht nur eine Frage des
Problems. Digitales Video (DV PAL) zum Beispiel zeichnet Bilder im Format 720 x 576
auf. Ein einzelnes Bild mit drei Farben gibt also einen Vektor im 720 x 576 x 3 = 1244160-
dimensionalen Raum, jede Sekunde Video das 25-fache. Haben wir Bilddaten zu bearbeiten,
so ist es unsere Wahl, ob wir die Bildbearbeitung als Problem mit Dimension d = 1244160,
betrachten, oder als Folge von 1244160 (nicht unabhéngigen!) Beobachtungen mit d = 1.

Beim Ubergang von d = 1244160 zu d = 1 verlagern wir Information, die implizit in
den Dimensionen steckt, in Strukturinformation, die folglich modelliert werden muss.

Als Anmerkung: in der Praxis geht man einen Mittelweg. Man zerlegt das Bild in
Blocke, z.B. der Grofle 64 x 64. Pixel innerhalb eines Blockes werden simultan behandelt.
Die Blocke werden sequentiell behandelt - sichtbar bei der néchsten Storung im Fernsehen.
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ABBILDUNG 4.6. Ein 4227 x 4 Datum aus einem Microarray-Experiment

Bei hochdimensionalen Problem ist die Statistik oft gar nicht sichtbar - sie ist versteckt

Die Abbildung 4.6 ist ein Beispiel aus einer Analyse mit R fiir einen hochdimensiona-
len Datensatz vom Mikroarray-cDNA-Daten ([Saw02]). Ein einzelnes Datum in diesem
Datensatz besteht aus Messungen an 4227 Proben mit jeweils 4 Teilmessungen (fg.green,
fg.red, bg.green, bg.red). Die wesentliche Funktion, die hier zur Visualisierung benutzt
wird, ist image (), mit der eine Variable z anhand eine Farbtabelle gegen zwei Koordina-
ten x, y dargestellt werden kann. Dargestellt ist eine Beobachtung. Die vier Kanéle der



4.10. LITERATUR UND WEITERE HINWEISE: 4-45

Die Farben codieren das Ergebnis einer Voranalyse - die roten Punkte signalisieren
Problemzonen auf dem ¢cDNA-Chip. In diesem Fall kann aus dem Muster der Selektion ein
spezifisches Problem in der Fertigung identifiziert werden.

Themenorientierte Ubersichten iiber R-Pakete, insbesondere auch zu multivariaten Pro-
blemen, sind in <http://cran.at.r-project.org/src/contrib/Views/> zu finden.

4.9. Statistische Zusammenfassung

Die Analyse multivariater Daten konnte in diesem Zusammenhang nur gestreift werden.
Multivariate Probleme tauchen implizit schon bei Regressionsproblemen auf (siehe Kapitel
2). Bei den einfachen Regressionsproblemen bezogen sich die multivariaten Aspekte aber
nur auf deterministische Parameter. Im allgemeinen Fall haben wir aber eine multivariate
statistische Verteilung zu analysieren. An dieser Stelle muss die Einfiihrung abbrechen,
und weiteres bleibt weiterfithrenden Vorlesungen vorbehalten.

4.10. Literatur und weitere Hinweise:






R als Programmiersprache: Ubersicht

R ist eine interpretierte Ausdruckssprache. Ausdriicke sind zusammengesetzt aus Objekten

und Operatoren.

A.1. Hilfe und Information

R Hilfe

help() Information iiber ein Objekt/eine Funktion
Beispiel:  help(help)

args () Zeigt Argumente einer Funktion

example () Fiihrt evtl. vorhandene Beispiele aus

Beispiel:  example(plot)

help.search()

Sucht Information iiber ein Objekt/eine Funktion

apropos ()

Lokalisiert nach Stichwort

demo ()

Fiihrt Demos zu einem Themenbereich aus
Beispiel:  demo (graphics)

demo () listet die zur Verfiigung stehenden Themenbereiche

A.2. Namen und Suchpfade

Objekte werden durch Namen identifiziert. Anhand des Namens werden Objekte in einer
Kette von Suchbereichen identifiziert. Die aktuellen Suchbereiche kénnen mit search()

inspiziert werden.

R Suchpfade

search() Liste der aktuellen Suchbereiche, beginnend mit .GlobalEnv bis
hinab zum Basis-Paket package:base.
Beispiel:  search()

searchpaths () Liste der Zugriffspfade zu aktuellen Suchbereichen
Beispiel: ~ searchpaths ()

objects() Liste der Objekte in einem Suchbereich

Beispiele: objects()
objects("package:base")

(Fortsetzung)—
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R Suchpfade
(Fortsetzung)
1s0) Liste der Objekte in einem Suchbereich
Beispiele:  1s()
1s("package:base")
1s.str() Liste der Objekte und ihrer Struktur in einem Suchbereich
Beispiele: 1s.str()
1sf.str("package:base")
find () Lokalisiert nach Stichwort. Findet auch {iberlagerte Eintrége
Aufruf: find(what, mode = "any", numeric = FALSE, sim-
ple.words = TRUE)
apropos () Lokalisiert nach Stichwort. Findet auch iiberlagerte Eintrége
Aufruf: apropos (what, where = FALSE, ignore.case =
TRUE, mode = "any")

Funktionen kénnen sowohl bei Definition als auch bei Aufruf geschachtelt sein. Dies macht
eine Erweiterung der Suchpfade nétig. Die dynamische Identifikation von Objekten benutzt
Umgebungen (environments), um in Funktionen lokale Variable oder globale Variablen
aufzultsen.

R Suchpfade

(Fortsetzung)

environment () Aktuelle Auswertungsumgebung
Beispiel:  environment ()

sys.parent () Vorausgehende Auswertungsumgebungen
Beispiel:  sys.parent (1)

Objekte haben zwei implizite Attribute, die erfragt werden mit mode () und length().
Die Funktion typeof () gibt den (internen) Speichermodus eines Objektes an.

Ein class-Attribut benennt die Klasse eines Objektes.

A.3. Anpassung

R bietet eine Reihe von Moglichkeiten, das System zu konfigurieren, so dass beim Start
und beim Ende bestimmte Kommandos ausgefiithrt werden. Falls vorhanden, werden beim
Start die Dateien .Rprofile und .RData eingelesen und ausgewertet. Details konnen
system-spezifisch sein. Die jeweils spezifische Information erhélt man mit help (Startup).
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A.4. Basis-Datentypen

R Bastis-Daten-
typen

numeric

real oder integer. In R: real ist stets doppelt-genau. Einfache Ge-
nauigkeit wird fiir externe Aufrufe zu anderen Sprachen mit .C oder
FORTRAN unterstiitzt. Funktionen wie mode () und typedef ()
konnen je nach Implementierung auch den Speicherungsmodus (sin-
gle, double . ..) melden.

1.0

2
3.14E0

Beispiele:

complex

komplex, in cartesischen Koordinaten

Beispiel:  1.0+01

logical

TRUE, FALSE.
In R: auch vordefinierte Variable T, F. In S-Plus sind T und F Basis-
Objekte.

character

Zeichenketten. Delimiter sind alternativ " oder .

Beispiel:  T", 'k1m'

list

Allgemeine Liste.
Die Listenelemente kénnen auch von unterschiedlichem Typ sein.

Beispiel:  1ist(1:10, "Hello")

function

R-Funktion

Beispiel:  sin

NULL

Spezialfall: leeres Objekt

Beispiel:  NULL

Zusétzlich zu den Konstanten TRUE und FALSE gibt es drei spezielle Werte fiir Ausnah-

mesituationen:
spezielle Kon-
stanten
TRUE Alternativ: T. Typ: logical.
FALSE Alternativ: F. Typ: logical.
NA “not available”. Typ: logical.
NA ist von TRUE und FALSE verschieden
NaN "not a valid numeric value”. Implementationsabhéngig.

Sollte dem ITEEE Standard 754 entsprechen. Typ: numeric.

Beispiel:  0/0

(Fortsetzung)—
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spezielle Kon-
stanten

(Fortsetzung)

Inf unendlich. Implementationsabhingig.
Sollte dem IEEE Standard 754 entsprechen. Typ: numeric.

Beispiel:  1/0
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A.5. Ausgabe von Objekten

Die Objekt-Attribute und weitere Eigenschaften konnen abgefragt oder mit Ausgaberou-
tinen angefordert werden. Die Ausgaberoutinen sind in der Regel polymorph, d.h. sie
erscheinen in Varianten, die den jeweiligen Objekten angepasst werden.

R Inspektion

print ()

Standard-Ausgabe

structure()

Ausgabe, optional mit Attributen

summary ()

Standard-Ausgabe als Ubersicht, insbesondere fiir Modellanpassun-
gen

plot ()

Standard-Grafikausgabe
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A.6. Inspektion von Objekten

Die folgende Tabelle fasst die wichtigsten Informationsmoglichkeiten iiber Objekte zusam-

men.

Inspektion
Objekten

von

str()

Stellt die interne Struktur eines Objekts in kompakter Form dar.
Aufruf: str((object))

structure()

Stellt die interne Struktur eines Objekts dar. Dabei kénnen Attri-
bute fiir die Darstellung als Parameter iibergeben werden.

Beispiel:  structure(1:6, dim = 2:3)

Aufruf: structure ((object), ...)

class() Objekt-Klasse. Bei neueren Objekten ist die Klasse als Attribut ge-
speichert. In &lteren S oder R-Versionen ist sie durch Typ und andere
Attribute implizit bestimmt.

mode () Modus (Typ) eines Objekts.

storage.mode ()

Speichermodus eines Objekts.

typeof () Modus eines Objekts. Kann vom Speichermodus abweichen. Je nach
Implementierung kann etwa eine numerische Variable standardmé-
Big doppelt- oder einfach genau abgespeichert werden.

length() Lange = Anzahl der Elemente

attributes() Liest /setzt Attribute eines Objekts, wie z.B. Namen, Dimensionen,
Klassen.

names () Namen-Attribut fiir Elemente eines Objekts, z.B. eines Vektors.

Aufruf: names ({(obj)) gibt das Namen-Attribut von (obj).
names ((obj))<-(charvec) setzt es.

Beispiel:  x<-values
names (x)<- (charvec)
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A.7. Inspektion des Systems

Die folgende Tabelle fasst die wichtigsten Informationsmoglichkeiten iiber die allgemeine
Systemumgebung zusammen.

System-
Inspektion
search() aktueller Suchpfad
1s0) aktuelle Objekte
methods () generische Methoden
Aufruf: methods ((fun))
zeigt spezialisierte Funktionen zu (fun),
methods (class = (c)) die klassenspezifischen Funktio-
nen zu class (c).
Beispiele: methods(plot)
methods (class = 1m)
data() zugreifbare Daten
library() zugreifbare Bibliotheken
help() allgemeines
Hilfe-System
options() globale Optionen
par() Parameter-Einstellungen des Grafik-Systems

Die Optionen des lattice-Systems kénnen mit trellis.par.set() bzw. latti-
ce.options() kontrolliert werden.

R ist im umgebenden Betriebssystem verankert. Einige Variable, wie z.B. Zugriffpfade,
Zeichencodierung etc. werden von dort iibernommen.

System-

Umgebung

getwd () aktuelles Arbeitsverzeichnis

getwd () setzt aktuelles Arbeitsverzeichnis

dir() listet Dateien im aktuellen Arbeitsverzeichnis
system() ruft System-Funktionen auf
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A.8. Komplexe Datentypen

Die Interpretation von Basistypen oder abgeleiteten Typen kann durch ein oder meh-
rere class-Attribute spezifiziert werden. Polymorphe Funktionen wie print oder plot
werten dieses Attribut aus und rufen nach Moglichkeit entsprechend der Klasse speziali-
sierte Varianten auf (Siehe 2.6.5Seite 2-39).

Zur Speicherung von Datumsangaben und Zeiten stehen entsprechende Klassen bereit.
Néhere Information zu diesen Datentypen erhélt man mit

help(DateTimeClasses) .

R ist vektor-basiert. Einzelne Konstanten oder Werte sind nur Vektoren der speziellen
Lénge 1. Sie genieflen keine Sonderbehandlung.

Zusammengesetzte
Objekttypen
Vektoren R Basis-Datentypen
Matrizen Vektoren mit zwei-dimensionalem Layout
Arrays Vektoren mit hoherdimensionalem Layout
dim() definiert Dimensionsvektor
Beispiel:  x < -runif(100)
dim(x) < - c(5, 5, 4)
array()  konstruiert neuen Vektor mit gegebener Dimensions-
struktur
Beispiel:  z < - array(0, c(4, 3, 2))
rbind()  kettet Reihen an
cbind()  Kkettet Spalten an
Faktoren Sonderfall fiir kategorielle Daten
factor() wandelt Vektor in Faktor um
Siehe auch Abschnitt 2.2.1
ordered () wandelt Vektor im Faktor mit geordneten Stufen um.
Dies ist eine Abkiirzung fiir factor(x, ..., ordered
= TRUE)
levels() gibt die Stufen eines Faktors an
BeiSpie].’ X <_ c ("al" Hb"’ Ila"’ ”C", IIaH)
xf <- factor(x)
levels (xf)
ergibt
[ 1 J "abc"
tapply () wendet eine Funktion getrennt fiir alle Stufen von Fak-
toren einer Faktorliste an
Listen Analog Vektoren, mit Elementen auch unterschiedlichen Typs

(Fortsetzung)—
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Zusammengesetzte
Objekttypen
(Fortsetzung)
list() erzeugt Liste
Aufruf: list ((Komponenten))
[r i1 Indexweiser Zugriff auf Komponenten
Liste$Komponente
Zugriff nach Namen
Beispiel: 1 <- list(name = "xyz", age = 22, fak = math")
> 1[[2]]
22
>1$age
22
Datenrahmen data frames Analog Arrays bzw. Listen, mit spaltenweise einheit-

lichem Typ und einheitlicher Spaltenlidnge

data.frame ()
analog 1ist (), aber Restriktionen miissen erfiillt sein

attach() fiigt Datenrahmen in die aktuelle Suchliste ein, d.h. fiir
Komponenten reicht der Komponentenname.

detach()
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A.9. Zugriff auf Komponenten

Die Lange von Vektoren ist ein dynamisches Attribut. Sie wird bei Bedarf erweitert und
gekiirzt. Insbesondere gilt implizit eine “Recycling-Regel”: Hat ein Vektor nicht die er-
forderliche Lénge fiir eine Operation, so wird er periodisch bis zur erforderlichen Lénge

wiederholt.

Auf Vektor-Komponenten kann iiber Indizes zugegriffen werden. Die Indizes kénnen expli-
zit oder als Regel-Ausdruck angegeben werden.

R Index-Zugriff

x[(indices)]

Indizierte Komponenten von x

Beispiel:  x[1:3]

x[-(indices)]

x ohne indizierte Komponenten

Beispiel:  x[-3] x ohne 3. Komponente

x[(condition)]

Komponenten von z, fiir die (condition) gilt.
Beispiel:  x[x<0.5]

Vektoren (und andere Objekte) konnen auf htherdimensionale Konstrukte abgebildet wer-
den. Die Abbildung wird durch zus#tzliche Dimensions-Attribute beschrieben. Nach Kon-
vention erfolgt eine spaltenweise Einbettung, d.h. der erste Index variiert zuerst (FORTRAN-
Konvention). Operatoren und Funktionen kénnen die Dimensions-Attribute auswerten.

R Index-Zugriff
dim() Setzt oder liest die Dimensionen eines Objekts
Beispiel: x <- 1:12 ; dim (x) <- c(3, 4)
dimnames () Setzt oder liest Namen fiir die Dimensionen eines Objekts
nrow() Gibt die Anzahl der Zeilen = Dimension 1
ncol() Gibt die Anzahl der Spalten = Dimension 2
matrix() Erzeugt eine Matrix mit vorgegebenen Spezifikationen
Aufruf: matrix(data = NA, nrow = 1, ncol =1, byrow
= FALSE, dimnames = NULL)
Siehe auch Beispiel 1.8 (Seite 1-21)
array () Erzeugt eine evtl. hoherdimensionale Matrix
Beispiel:  array (x, dim = length(x), dimnames = NULL)
R
Array-Zugriffe
cbind () Verkettet Zeilen bzw. Spalten
rbind ()

(Fortsetzung)—
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Elrray-Zugriﬁ'e

(Fortsetzung)

split() Teilt einen Vektor nach Faktoren auf
table() Erzeugt eine Tabelle von Besetzungszahlen

R Iteratoren

apply ()

wendet eine Funktion auf die Zeilen oder Spalten einer Matrix an
Aufruf apply(x, MARGIN, FUNCTION, ...)

Margin = 1: Zeilen, Margin = 2: Spalten.
Siehe auch Beispiel 1.8 (Seite 1-21)

lapply ()

wendet eine Funktion auf die Elemente einer Liste an
Aufruf: lapply (X, FUN, ...)

sapply ()

wendet eine Funktion auf die Elemente einer Liste, eines Vektors
oder einer Matrix an. Falls mogliche werden Dimensionsnamen iiber-
nommen.

Aufruf: sapply (X, FUN, ..., simplify = TRUE, USE.NAMES
= TRUE)

tapply ()

wendet eine Funktion auf Komponenten eines Objekts in Abhéngig-
keit von einer Liste von kontrollierenden Faktoren an.

by ()

Objekt-orientierte Variante von tapply
Aufruf: by(data, INDICES, FUN, ...)

aggregate ()

Berechnet Statistiken fiir Teilmengen

Aufruf: aggregate(x, ...)

replicate()

Wertet eine Ausdruck wiederholt aus (z. Bsp. mit Erzeugung von
Zufallszahlen zur Simulation).

Aufruf: replicate(n, expr, simplify = TRUE)

outer()

erzeugt eine Matrix mit allen Paar-Kombinationen aus zwei Vekto-
ren, und wendet eine Funktion auf jedes Paar an.

Aufruf: outer(vecl, vec2, FUNCTION, ...)
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A.10. Tabellen-Transformationen

Transformationen

seq()

Erzeugt eine Sequenz

abbreviate()

Transformationen

duplicated() Priift auf mehrfach auftretende Werte
unique () Erzeugt Vektor ohne mehrfach auftretende Werte
match() Gibt Position eines Werts in einem Vektor
pmatch() Partielles Matching

Zeichenketten-

Transformationen

casefold() Wandelt in Klein- oder Grofbuchstaben um
tolower () Wandelt in Kleinbuchstaben um

toupper () Wandelt in Grolbuchstaben um

chartr() Ubersetzt Zeichen in einem Zeichen-Vektor
substring ()

Transformationen

table() Erzeugt eine Kreuztabelle

expand.grid()

Erzeugt einen Datenrahmen mit allen Kombinationen gegebener
Faktoren

reshape ()

Wandelt zwischen einer Kreuztabelle (Spalte pro Variable) und ei-
ner langen Tabelle (Variablen in Zeilen, mit zusétzlicher Indikator-
Spalte) um

merge ()

Kombiniert Datenrahmen

Transformationen

Transformationen

t()

Transponiert Zeilen und Spalten
Aufruf: t(x)

(Fortsetzung)—
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Transformationen
(Fortsetzung)
aperm() Generalisierte Permutation

Aufruf: aperm(x, perm)

Dabei ist perm eine Permutation der Indizes von x.
split() Teilt einen Vektor nach einem Faktor auf
unsplit() Kombiniert Komponenten zu einem Vektor
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A.11. Operatoren

A-17

Ausdriicke in R konnen aus Objekten und Operatoren zusammengesetzt sein. Die fol-

gende Tabelle ist nach Vorrang geordnet (hochster Rang oben).

R  Basisoperato-
ren
$ Komponenten-Selektion
Beispiel:  list$item
[ [ Indizierung, Elementzugriff
Beispiel:  x[i]
- Potenzierung
Beispiel: x°3
- unitdres Minus
Folge-Generierung
Beispiele: 1:5
5:1
7% (name) % spezielle Operatoren. Kénnen auch benutzer-definiert sein.
Beispiele: "} deg2),"<-function(a, b) a + b2
2 Jdeg2l 4
* / Multiplikation, Division
+ - Addition, Subtraktion
<><=>=-== Vergleichsoperatoren
| =
! Negation
& | && || und, oder
&& , || sind “Shortcut”™Operatoren
<= => Zuweisung

Haben die Operanden nicht die gleiche Lénge, so wird der kiirzere Operand zyklisch

wiederholt.

Operatoren der Form % (name)% konnen vom Benutzer definiert werden. Die Definition

folgt den Regeln fiir Funktionen.

Ausdriicke koénnen als Folge mit trennendem Semikolon geschrieben werden. Aus-

drucksgruppen kénnen durch {...} zusammengefasst werden.
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A.12. Funktionen

Funktionen sind spezielle Objekte. Funktionen kénnen Resultat-Objekte iibergeben.

R Funktions-
deklarationen
Deklaration function ( (formale Parameterliste) )
(Ausdruck)
Beispiel:  fak <- function(n) prod(1:n)
Formale (Parametername)
Parameter (Parametername) = (Default-Wert)
Formale Liste von formalen Parametern, durch Komma getrennt
Parameterliste
Beispiele: n, mean = 0, sd = 1
Variable Parameterliste. Variable Parameterlisten konnen innerhalb
von Prozeduren weitergegeben werden.
Beispiel:  mean.of.all <- function (...)mean(c(...))
Funktions- return (Wert) bricht Funktionsauswertung ab und iibergibt Wert
Resultate
(Wert) als letzter Ausdruck in einer Funktionsdeklaration: iibergibt
Wert
Funktions- (Variable)<<-(Wert) iibergibt Wert. Normalerweise wirken Zuwei-
Resultate sungen nur auf lokale Kopien der Variablen. Die Zuweisung mit <<-
jedoch sucht die Zielvariable in der gesamten Umgebungshierachie.
R Funktions-
aufruf
Funktionsaufruf | (Name) ((Aktuelle Parameterliste))
Beispiel:  fak(3)
Aktuelle Werte werden zunéchst der Position nach zugeordnet. Abweichend
Parameterliste davon konnen Namen benutzt werden, um Werte gezielt zuzuord-

nen.
Dabei reichen die Anfangsteile der Namen (Ausnahme: nach einer
variablen Parameterliste miissen die Namen vollstandig angegeben
werden).

Mit der Funktion missing() kann tiberpriift werden, ob fiir einen
formalen Parameter ein entsprechender aktueller Parameter fehlt.

Aufruf: (Werteliste)

(Parametername) =

rnorm(10, sd = 2)

(Werte)
Beispiel:
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Parameter bei Funktionen werden dem Wert nach iibergeben. Soll der damit verbun-
dene Aufwand vermieden werden, so kann mit Hilfe der environment-Information direkt
auf Variable zugegriffen werden. Entsprechende Techniken sind in [GI00] beschrieben.

Spezialfall: Funktionen mit Namen der Form xxx<- erweitern die Zuweisungsfunktion.
Beispiel:

"inc<-" <-function (x, value) x+value

x <- 10
inc(x)<- 3
x

In R-Zuweisungsfunktionen muss das Wert-Argument “value” heiflen.



A.13. DEBUGGING UND PROFILING A-21

A.13. Debugging und Profiling

R bietet eine Reihe von Werkzeugen zur Identifizierung von Fehlern. Diese sind beson-
ders im Zusammenhang mit Funktionen hilfreich. Mit browser () kann in einen Browser-
Modus geschaltet werden. In diesem Modus sind die iiblichen R-Anweisungen moglich.
Daneben gibt es eine kleine Zahl von speziellen Anweisungen. Der Browser-Modus kann
mit debug() automatisch bei Eintritt in eine Funktion aktiviert werden. Durch den spe-
ziellen Prompt Browse [xx]> ist der Browser-Modus erkennbar.

(return): geht zur nichsten Anweisung, falls die Funktion unter debug-Kontrolle
steht. Fahrt mit der Anweisungsausfithrung fort, falls browser direkt aufgerufen

wurde.

n: geht zur nichsten Anweisung (auch falls browser direkt aufgerufen wurde).

cont: Fahrt mit der Anweisungsausfiihrung fort.

c: Kurzform fiir cont. Fahrt mit der Anweisungsausfithrung fort.

where: Zeigt Aufrufverschachtelung.

Q: Stoppt Ausfithrung und springt in Grundzustand zuriick.

Debug-Hilfen

browser () Hilt die Ausfithrung an und geht in den Browser-Modus.
Aufruf: browser ()

recover () recover () zeigt eine Liste der aktuellen Aufrufe, aus der einer zur
browser () -Inspektion gewéahlt werden kann. Mit ¢ kehrt man aus
dem browser zu recover zuriick. Mit 0 verldsst man recover ()

Aufruf: recover ()

Hinweis: ~ Mit options(error = recover) kann die Fehlerbe-
handlung so konfiguriert werden, dass im Fehlerfalle au-
tomatisch browser () aufgerufen wird.

debug () Markiert eine Funktion zur Debugger-Kontrolle. Bei nachfolgenden

Aufrufen der Funktion wird der Debugger aktiviert und schaltet in

den Browser-Modus.

Aufruf: debug ((Funktion))

undebug () Loscht Debugger-Kontrolle fiir eine Funktion.
Aufruf: undebug ((Funktion))
trace() Markiert eine Funktion zur Trace-Kontrolle. Bei nachfolgenden Auf-

rufen der Funktion wird der Aufruf mit seinen Argumenten ange-
zeigt.

Aufruf: trace ((Funktion))

(Fortsetzung)—
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Debug-Hilfen

(Fortsetzung)

untrace() Loscht Trace-Kontrolle fiir eine Funktion.
Aufruf: untrace ((Funktion))

traceback () Im Fehlerfall innerhalb einer Funktion wird die aktuelle Aufruf-
verschachtelung in einer Variablen .Traceback gespeichert. tra-
ceback () wertet diese Variable aus und zeigt den Inhalt an.
Aufruf: traceback ()

try () Erlaubt benutzer-definierte Fehlerbehandlung.

Aufruf: traceback ((Ausdruck))

Um die Laufzeit in einzelnen Bereichen zu messen, bietet R ein “profiling”, das jedoch
nur verfiigbar ist, wenn R mit den entsprechenden Optionen compiliert worden ist. Die
beim Compilieren benutzten Informationen kénnen mit capabilities() erfragt werden.

Profiling- Hilfen

system.time ()

Misst die Ausfithrungszeit einer Anweisung. Diese Funktion ist stets
verfiigbar.

Aufruf: system. time ((expr), (gcFirst))

Rprof ()

Registriert periodisch die jeweils aktiven Funktionen. Diese Funkti-
on ist nur verfiighar, wenn R fiir “profiling” compiliert ist.

Mit memory.profiling = TRUE wird aufler der Zeit auch periodisch
die Speicherplatznutzung protokolliert. Diese Option ist nur verfiig-
bar, wenn R entsprechend compiliert ist.

Aufruf: Rprof (filename = Rprof.out", append = FALSE,
interval = 0.02, memory.profiling = FALSE)

Rprofmem()

Registriert Speicherplatz- Anforderungen im Anforderungsfall.
Diese Funktion ist nur verfiighar, wenn R fiir “memory profiling”
compiliert ist.

Aufruf: Rprofmem(filename = Rprofmem.out", append =
FALSE, threshold = 0)

summaryRprof ()

Fasst die Ausgabe von Rprof () zusammen und berichtet den Zeit-
bedarf je Funktion.

Aufruf: summaryRprof (filename = Rprof.out", chunksize
= 5000, memory = c(none", "both", tseries",
Btats"), index = 2, diff = TRUE, exclude =
NULL)
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A.14. Kontrollstrukturen

R  Kontrollstruk-
turen

if Bedingte Ausfithrung
Aufruf: if ((log. Ausdruck 1)) (Ausdruck?2)
Der logische Ausdruck 1 darf nur einen logischen Wert,
ergeben. Fiir vektorisierten Zugriff benutze man ifelse.
Aufruf: if ((log. Ausdruckl)) (Ausdruck2) else (Ausdruck3)
ifelse Elementweise bedingte Ausfithrung
Aufruf: ifelse((log. Ausdruckl), (Ausdruck2), (Ausdruck3))
Wertet den logischen Ausdruck 1 elementweise auf einen
Vektor an, und iibergibt bei wahrem Resultat den ele-
mentweisen Wert von Ausdruck2, sonst von Ausdruck3)
Beispiel:  trimmedX <- ifelse (abs (x)<2, X, 2)
switch Auswahl aus einer Liste von Alternativen
Aufruf: switch((Ausdruckl), ...)
Ausdruckl muss einen numerischen Wert oder eine Zei-
chenkette ergeben. ... ist eine explizite Liste der Alter-
nativen.
Beispiel:  centre <- function (x , type) { switch(type,
mean = mean (x),
median = median (x),
trimmed = mean (x, trim = .1)}
for Iteration (Schleife)
Aufruf: for ((name) in (Ausdruckl)) (Ausdruck?2)
repeat Wiederholung. Muss z.B. mit break verlassen werden.
Aufruf: repeat (Ausdruck)
Beispiel: ~ pars<-init
repeat { res<- get.resid (data, pars)
if (converged(res) ) break
pars<-new.fit (data, pars)}
while Bedingte Wiederholung
Aufruf: while ((log. Ausdruck)) (Ausdruck)
Beispiel:  pars<-init; res <- get.resid (data, pars) while
(!converged(res)) { pars<-
new.fit(data, pars) res<- get.resid}
break verlédsst die aktuelle Schleife
next verlésst einen Schleifenzyklus und springt zum néchsten
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A.15. Verwaltung und Anpassung
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objects () Liste der aktuellen Objekte
1s()
rm() Loscht die angegebenen Objekte

Aufruf: rm((Objektliste))
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A.16. Ein- und Ausgabe in Ausgabestréome

R Ein/Ausgabe

write() Schreibt Daten in eine Datei.
Aufruf: write(val, file)

Beispiel:  write(x, file = "data")

source() Fiihrt die R-Anweisungen aus der angegebenen Datei aus.
Aufruf: source (" (Dateiname) ")
Beispiel:  source(cmnds.R")

sink () Lenkt Ausgaben in die angegebene Datei.

Aufruf: sink(”(Dateiname)”)

Beispiel:  sink() lenkt die Ausgabe wieder auf die Konsole.

dump () Schreibt fiir ein Objekt die definierenden Kommandos. Mit sour-

ce () kann aus der Ausgabe das Objekt regeneriert werden

Aufruf: dump (list, file = "(dumpdata.R)", append =
FALSE)
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A.17. Externe Daten

Zum Editieren und fiir die Eingabe nach Spreadsheet-Art innerhalb von R gibt es
edit () (fritherer Name: data.entry()).

Fiir den Austausch miissen die Datenformate zwischen allen Beteiligten abgestimmt
sein. Zum Import aus Datenbanken und anderen Paketen steht eine Reihe von Bibliotheken
zur Verfiigung, z.B. stataread fiir Stata, foreign fiir SAS, Minitab und SPSS, RODBC fiir
SQL. Weitere Information findet sich im Manual “Data Import/Export” ([R D07b]).

Innerhalb von R werden vorbereitete Daten {iiblicherweise als data frames bereitge-
stellt. Sind zusétzliche Objekte wie Funktionen oder Parameter nétig, so kénnen sie ge-
biindelt als Paket bereit gestellt werden (sieche Aufgabe A.18 (Seite A-31)).

Fiir den Austausch zu R kann ein spezielles Austauschformat benutzt werden. Datei-
en in diesem Format kénnen mit save() generiert werden und haben konventionell die
Namensendung .Rda. Diese Dateien werden mit load () wieder geladen.

Daten werden allgemeiner mit der Funktion data() geladen. Abhéngig von der Endung
des Dateinamens der Eingabedatei verzweigt data () in mehreren Spezialfillen. Neben den
.Rda sind iibliche Endungen fiir reine Daten-Eingabedateien .tab oder .txt. Die online-
help-Funktion help(data) gibt weitere Auskunft.

Ein- Ausgabe von

Daten fiir R

save () Speichert Daten in externe Datei.
Aufruf: save((Namen der zu speichernden Objekte), file

= (Dateiname), ...)

load() Ladt Daten aus exterener Datei.
Aufruf: load(file = (Dateiname), ...)

data() Lidt Daten. data() kann unterschiedliche Formate verarbeiten,
wenn die Zugriffspfade und Datei-Namen den R-Konventionen fol-
gen.

Aufruf: data(... , 1list = character(0),
package = c(.packages(), .Autoloaded),
lib.loc = .lib.loc)

Beispiel:  data(crimes) # 1l4dt den Datensatz ’crimes’

Fiir den flexiblen Austausch mit anderen Programmen werden Daten in der Regel als
Text-Dateien bereitgestellt, nach Moglichkeit

in Tabellenform,

nur ASCII-Zeichen (z.B. keine Umlaute!)
Variablen spaltenweise angeordnet

Spalten durch Tabulator-Spriinge getrennt.
evtl. Spalteniiberschriften in Zeile 1

evtl. Zeilennr. in Spalte 1.
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Dafiir wird zum Lesen die Funktion read.table() und zum Schreiben die Funktion wri-
te.table() bereitgestellt. Neben read. table () gibt es eine Reihe von Varianten, die auf
andere gebrauchliche Datenformate abgestimmt sind. Diese sind unter help (read.table)

aufgefiihrt.

Ein- Ausgabe von
Daten zum Awus-
tausch

read.table()

Liest Daten-Tabelle

Aufruf: read.table(file, header = FALSE,
sep = "\t", ...)

Beispiele: read.table((Dateiname),
header = TRUE, sep = ’\t’)
Uberschriften in Zeile 1, Zeilennr. in Spalte 1
read.table((Dateiname)
, header = TRUE, sep = ’\t’)
keine Zeilennr., Uberschriften in Zeile 1,

write.table()

Schreibt Daten-Tabelle

Aufruf: write.table(file, header = FALSE, sep = ’\t’,
22D
Beispiele: write.table((data frame), (Dateiname),
header = TRUE, sep = ’\t’)
Uberschriften in Zeile 1, Zeilennr. in Spalte 1
write.table((data frame), (Dateiname),
header = TRUE, sep = ’\t’)
keine Zeilennr., Uberschriften in Zeile 1,

Defaultméfig konvertiert read. table () Daten in factor-Variable, falls moglich. Die-
ses Verhalten kann mit dem Parameter as.is beim Aufruf von read.table () modifiziert
werden. Diese Modifikation ist z. B. n6tig, um Datums- und Zeitangaben einzulesen, wie
in dem folgen Beispiel aus [GP04]:

# date col in all numeric format yyyymmdd

df <- read.table("laketemp.txt", header = TRUE)
as.Date(as.character(df$date), "%Y-Jm-7d")

# first two cols in format mm/dd/yy hh:mm:ss

# Note as.is =

in read.table to force character

library("chron")
df <- read.table("oxygen.txt", header = TRUE,

as.is = 1:2)

chron (df$date,

df$time)

Fiir sequentielles Lesen steht scan() zur Verfiigung. Dateien mit stellengenau fest
vorgegebenenem Format kénnen mit read.fwf () gelesen werden.
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A.18. Libraries, Pakete

Externe Information kann in (Text)-Dateien und Paketen(Packages) gespeichert sein.
Bibliotheken und Pakete sind dabei nach speziellen R-Konventionen strukturiert. “Biblio-
theken” sind Sammlungen von “Paketen”.

Zusétzliche Funktionen werden in der Regel als Pakete bereitgestellt. Pakete werden mit

library()
geladen. Im Paket enthaltene Datensitze sind dann direkt auffindbar und werden mit
data()
(ohne Argument) aufgelistet.
Beispiel:
library(nls)
data()
data (Puromycin)
Pakete
library() Ladt Zusatzpaket
Aufruf: library(package, ...)
Siehe auch Abschnitt 1.5.6
require () L&adt Zusatzpaket; gibt Warnung bei Fehler.
Aufruf: require (package, ...)
detach() Gibt Zusatzpaket frei und entfernt es aus dem Suchpfad.

Aufruf: detach ({(name))

install.packages ()| Installiert Pakete in (1ib), ladt sie bei Bedarf aus dem Archiv CRAN

Aufruf: install.packages(pkgs, 1ib, CRAN = getOpti-
on(CRAN"), ...)

package.manager () | Falls implementiert: Interface zur Verwaltung installierter Pakete.

Aufruf: package.manager ()

package.skeleton ()| Erstellt das Gertist fiir ein neues Paket.

Aufruf: package.skeleton(name = "(anRpackage)", list,
)

Detailinformation zur Erstellung von R-Paketen findet man in “Writing R Extensions”
([R DO8]J).
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A.19. Lineare Algebraoperatoren

Fiir die lineare Algebra sind die wichtigsten Funktionen weitgehend standardisiert und
in C-Bibliotheken wie BLAS/ATLAS und Lapack verfiigbar. R benutzt diese Bibliotheken
und bietet fiir die wichtigsten Funktionen einen direkten Zugang.

Lineare Algebra

eigen() Berechnet Eigenwerte und Eigenvektoren von rellen oder komplexen
Matrizen

svd () Eigenwertzerlegung einer Matrix

qr() QR-Zerlegung einer Matrix

determinant () Determinante einer Matrix

solve() Lost lineare Gleichung

Falls moglich sollten jedoch statistische Funktioen benutzt und der direkte Zugriffe auf
Funktionen der linearen Algebra vermieden werden.
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A.20. Modell-Beschreibungen

Lineare statistische Modelle kénnen durch Angabe einer Design-Matrix X spezifiziert
werden und in der allgemeinen Form
Y=XB+¢
dargestellt werden, wobei die Matrix X jeweils genauer bestimmt werden muf3.

R erlaubt es, Modelle auch dadurch zu spezifizieren, dass die Regeln angegeben werden,

nach denen die Design-Matrix gebildet wird.

Operator | Syntax Bedeutung Beispiel
~ Y ~M Y hingt von M ab |Y ~ X ergibt
EY)=a+bX
+ My + My My und Mo Y~X+Z7
einschliessen E(Y) =
a+bX +cZ
— M — M, M, einschliessen, | Y ~ X —1
aber My ausschlies- | E(Y) = bX
sen
My : M Tensorprodukt, d.h.
alle Kombinationen
von Stufen von My
und Mo
%in % | M1% in %My | modifiziertes Tensor- | a + b%in%a en-
produkt spricht a +a : b
* My * Mo “gekreuzt” M, + Mo
entspricht
My + My + My -
My
/ My /My “geschachtelt”: My +
My %in% M,
) M™n M mit allen "Inter-
aktionen” bis Stufe n
1) I(M) Interpretiere M. Ter- | YV ~ (1 +
me in M behalten | I(X"2) )
ihre  urspriingliche | entspricht
Bedeutung; das | BE(Y) = a+ bX?
Resultat  bestimmt
das Modell.

Die Modell-Spezifikation ist auch fiir allgemeinere, nicht lineare Modelle moglich.

Beispiele

TABELLE A.53.

y~1+x
y~ X

Wilkinson-Rogers-Notation fiir lineare Modelle

entspricht y; =

(1 x:)(B1 Ba)

+ €

Kurzschreibweise fiir y ~1 + x

(Konstanter Term wird implizit angenommen)
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y~0+x entspricht y; =x; - 8+ ¢

log(y) ~ x1 + x2 entspricht log(ys) = (1 x11 x12)(B1 B2 B3) +¢

(Konstanter Term wird implizit angenommen)

y~ A Einweg-Varianzanalyse mit Faktor A
vy~ A+ x Covarianzanalyse mit Faktor A und Covariable x
y~ A *B Zwei-Faktor-Kreuz-Layout
mit Faktoren A und B
y ~ A/B Zwei-Faktor hierarchisches Layout

mit Faktor A und Subfaktor B

Um zwischen verschiedenen Modellen 6konomisch wechseln zu kénnen, steht die Funktion
update () zur Verfiigung.

Modell-

Verwaltung

formula() extrahiert Modellformel aus einem Objekt

terms () extrahiert Terme der Modell-Formal aus einem Objekt

contrasts()

spezifiziert Kontraste

update ()

Wechsel zwischen Modellen

model .matrix()

Generiert die Design-Matrix zu einem Modell

Anwendungsbeispiel:

Im(y ~poly(x, 4), data = experiment)

analysiert den Datensatz “experiment” mit einem linearen Modell fiir polynomiale Regres-

sion vom Grade 4.

Standard-
Analysen
Im() lineares Modell
Siehe auch Kapitel 2
glm() generalisiertes lineares Modell
nls() nicht-lineare kleinste Quadrate
nlm() allgemeine nicht-lineare Minimierung
update () Wechsel zwischen Modellen
anova () Varianz-Analyse
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A.21. Grafik-Funktionen

R bietet zwei Grafik-Systeme: Das Basis-Grafiksystem von R implementiert ein Modell,
dass an der Vorstellung von Stift und Papier orientiert ist. Das Lattice-Grafiksystem ist
ein zusétzliches zweites Grafiksystem, dass an einem Kamera/Objekt-Modell orientiert ist.
Information iiber Lattice erhilt man mit help (lattice), eine Ubersicht iiber die Funktio-
nen in Lattice mit 1ibrary (help = lattice). Informationen iiber das Basis-Grafiksystem

folgen hier.

Grafik-Funktionen fallen im wesentlichen in drei Gruppen:

“high level”-Funktionen. Diese definieren eine neue Ausgabe.

“low level”-Funktionen.

Parametrisierungen.

Diese modifizieren eine vorhandene Ausgabe.

Diese modifizieren die Voreinstellungen des Grafik-Systems.

A.21.1. high level Grafik.

“high level”

plot() Generische Grafikfunktion

pairs() paarweise Scatterplots

coplot() Scatterplots, bedingt auf Covariable

qgplot () Quantil-Quantil-Plot

qqnorm() GauB-Quantil-Quantil-Plot

qqline() fiigt eine Linie zu einem Gauf3-Quantil-Quantil-Plot hinzu, die durch
das erste und dritte Quantil verlduft.

hist() Histogramm
Siehe auch Abschnitt 1.3.2, Seite 1-27

boxplot () Box& Whisker-Plot

dotplot ()

curve () Wertet eine Funktion oder einen Ausdruck nach Bedarf aus und
zeichnet eine Kurve.
Beispiel: curve (dnorm, from = -3, to = 3)

image () farbcodiertes z gegen x,y

contour () Contourplot von z gegen z,y

persp() 3D-Fliche

A.21.2. low level Grafik. Die high-level-Funktionen haben in der Regel einen Pa-
rameter add. Wird beim Aufruf add = FALSE gesetzt, so konnen sie auch benutzt werden,
um zu einem vorhandenen Plot Elemente hinzu zu fiigen. Daneben gibt es eine Reihe von
low-level-Funktionen, die voraussetzen, dass bereits eine Plot-Umgebung geschaffen ist.

“low level”

(Fortsetzung)—
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“low level”

(Fortsetzung)

points() Generische Funktion. Markiert Punkte an angegebenen Koordina-
ten.
Aufruf: points(x, ...)

lines() Generische Funktion. Verbindet Punkte an angegebenen Koordina-
ten.
Aufruf: lines(x, ...)

abline Fiigt Linie (in mehreren Darstellungen) zum Plot hinzu.
Aufruf: abline(a, b, ...)

polygon() Fiigt Polygon mit spezifizierten Ecken hinzu.

axis() Fiigt Achsen hinzu.

Daneben hat R rudimentédre Moglichkeiten fiir Interaktion mit Grafik.

Interaktionen

locator() bestimmt die Position von Mausklicks. Eine aktuelle Grafik muss
definiert sein, bevor locator () benutzt wird.

Beispiel:  plot(runif(19))
locator(n = 3, type = "1")

A.21.3. Annotationen und Legenden. Die high-level-Funktion bieten in der Regel
die Moglichkeiten, Standard-Beschriftungen durch geeignete Parameter zu kontrollieren.

main = Haupt-Uberschrift, iiber dem Plot
sub = Plot-Unterschrift

xlab =  Beschriftung der x-Achse

ylab =  Beschriftung der y-Achse

Beschreibungen erhélt man mit help(plot.default).

Zur Ergidnzung stehen low-level-Funktionen bereit.

“low level”

title() Setzt Uberschrift, analog high-level-Parametern.

Aufruf: title(main = NULL, sub = NULL, xlab = NULL,
ylab = NULL, ...)

text Fiigt Text an spezifizierten Koordinaten hinzu.

Aufruf: text(x, y = NULL, text, ...)

legend () Fiigt einen Block mit einer Legende hinzu.
Aufruf: legend(x, y = NULL, text, ...)

(Fortsetzung)—
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“low level”

(Fortsetzung)

mtext ()

Fiigt Randbeschriftung hinzu.

Aufruf: mtext (text, side = 3, ...). Die Rander werden be-
zeichnet durch 1 = unten, 2 = links, 3 = oben, 4 = rechts)

R gibt auch (eingeschrinkte) Moglichkeiten zum Formelsatz. Ist der Text-Parameter ei-
ne Zeichenkette, so wird sie direkt iibernommen. Ist der Text-Parameter ein (unausge-
werteter) R-Ausdruck, so wird versucht, die mathematisch iibliche Darstellung zu geben.
R-Ausdriicke kénnen mit den Funktionen expression() oder bquote() erzeugt werden.

Beispiel:

text (x, y, expression(paste(bquote("(", atop(n, x), ")"),
.(p)°x, .(@)°{ n-x})))

Ausgabe-Beispiele erhilt man mit demo (plotmath).

A.21.4. Grafik-Parameter und Layout.

Parametrisierun-
gen

par()

Setzt Parameter des Basis-Grafiksystems
Aufruf: siehe help(par)
Beispiel:  par(mfrow = c(m, n)) unterteilt den Grafikbereich in

m Zeilen und n Spalten, die Zeile fiir Zeile gefiillte wer-
den. par (mfcol = c(m, n)) fiillt den Bereich Spalte fiir

Spalte.
split.screen() Teilt den Grafik-Bereich in Teile
Aufruf: split.screen(figs, screen, erase = TRUE). Hat

figs zwei Eintrige, so werden damit die Anzahl der
Zeilen und Spalten festgelegt. Ist figs eine Matrix, so
gibt jede Zeile die Koordinaten eines Grafikbereichs in
relativen Koordinaten [0...1] an. split.screen() kann
auch geschachtelt werden.

screen() Wihlt Grafik-Bereich fiir die néchste Ausgabe.
Aufruf: screen(n = cur.screen , new = TRUE).
layout () Unterteilt den Grafik-Bereich. Diese Funktion ist mit anderen

Layout-Funktionen nicht vertraglich.
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A.22. Einfache Statistische Funktionen

A-41

Statistik-
Funktionen
sum () summiert Komponenten eines Vektors
cumsum () bildet kumulierte Summen
prod () multipliziert Komponenten eines Vektors
cumprod () bildet kumulierte Produkte
length() Lange eines Objekts, z.B. Vektors
max () Maximum, Minimum.
min() Siehe auch pmax, pmin
range () Minimum und Maximum
cummax () Kumulatives Maximum, Minimum
cummin ()
quantile() Stichprobenquantile.

Fiir theoretische Verteilungen: gqxxxx, z.B. gqnorm
median () Median
mean () Mittelwert

auch getrimmte Mittel
var () Varianz, Varianz / Covarianzmatrix
sort () Sortierung
rev()
order () Sortierung nach Leit-Element, auch fiir mehrere Variable
rev() Umgekehrte Sortierung
rank() Stichprobenringe
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A.23. Verteilungen, Zufallszahlen, Dichten. ..

Der Basis-Generator fiir uniforme Zufallszahlen wird von Random verwaltet. Verschiede-
ne mogliche Basis-Generatoren stehen zur Verfiigung. Fiir ernsthafte Simulation wird
eine Lektiire der Empfehlungen von Marsaglia et al. dringend empfohlen. (Siehe
help(.Random.seed) ). Alle nicht-uniformen Zufallszahlengeneratoren sind vom aktuellen
Basisgenerator abgleitet. Eine Ubersicht iiber die wichtigsten nicht-uniformen Zufallszah-
lengeneratoren, ihre Verteilungsfunktionen und ihre Quantile findet sich am Ende dieses
Abschnitts.

R Zufallszahlen

.Random. seed .Random. seed ist eine globale Variable, die den augenblicklichen
Zustand des Zufallszahlengenerators speichert. Diese Variable kann
gesichtert und mit set.seed() wieder restauriert werden.

set.seed() initialisiert den Zufallszahlengenerator
Aufruf: set.seed(seed, kind = NULL)

RngKind () RngKind () gibt den Namen des aktuellen Basisgenerators.
RngKind ((name)) setzt einen Basisgenerator.

Aufruf: RngKind ()
RngKind((name))

Beispiel:  RngKind ("Wichmann-Hill")
RngKind ("Marsaglia-Multicarry")
RngKind ("Super-Duper")

sample () sample () zieht eine Zufallsstichprobe aus den im Vektor z ange-
gebenen Werten, mit oder ohne Zuriicklegen (je nach Wert von
replace).

Size ist defaultméfig die Léange von .

Optional kann prob ein Vektor von Wahrscheinlichkeiten fiir
die Werte von z sein.

Aufruf: sample(x, size, replace = FALSE, prob)

Beispiel:  Zufallige Permutation:
sample(x)

val<-c ("H", T)
prob<-c(0.3, 0.7)
sample(val, 10,
replace = T, prob)

Sollen Simulationen reproduzierbar sein, so muss der Zufallszahlengenerator in einen
kontrollierten Zustand gesetzt sein. Ein Beispiel dafiir ist die folgende Anweisungsfolge:
save.seed <- .Random.seed
save.kind <- RNGkind()

Mit set.seed(save.seed, save.kind) wird dann der Zustand des Genarators bei Bedarf
restauriert.
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Die einzelnen Funktionsnamen fiir die wichtigsten nicht-uniformen Generatoren und Funk-
tionen setzen sich aus einem Prifix und dem Kurznamen zusammen. Allgemeiner Schliissel:
xxxx ist der Kurzname

rxxxx erzeugt Zufallszahlen

dxxxx Dichte oder Wahrscheinlichkeit

pxxxx Verteilungsfunktion

gxxxx Quantile
Beispiel:

x<-runif (100) erzeugt 100 U(0, 1)-verteilte Zufallsvariable

gf(0.95, 10, 2) berechnet das 95%-Quantil der F(10, 2)-Verteilung.

Verteilungen Kurzname | Parameter und Default- Werte
Beta beta shapel, shape2, ncp = 0
Binomial binom size, prob

Cauchy cauchy location = 0, scale =1
X2 chisq df, ncp =0

Exponential exp rate = 1

F f df1, df2 (ncp = 0)
Gamma gamma shape, scale = 1

Gaufl norm mean = 0, sd =1
Geometrisch geom prob

Hypergeometrisch hyper m, n, k

Lognormal lnorm meanlog = 0, sdlog =1
Logistisch logis location = 0, scale = 1
Negativ-Binomial nbinom size, prob

Poisson pois lambda

Student’s t t df

Tukey Studentised Range | tukey

Uniform unif min = 0, max = 1
Wilcoxon Signed Rank signrank n

Wilcoxon Rank Sum wilcox m, n

Weibull weibull shape, scale = 1
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A.24. Verarbeitung von Ausdriicken

Die Sprachausdriicke von R sind genau so Objekte wie Daten oder Funktionen. Wie
diese koénnen sie gelesen oder verdndert werden.

Umwandlungen

parse() Wandelt Eingabe in eine Liste von R-Ausdriicken um. parse fiihrt
den Parse-Schritt durch, wertet die Ausdriicke aber nicht aus.

deparse () Wandelt einen R-Ausdruck in interner Darstellung in eine Zeichen-

darstellung um.

expression()

erzeugt einen R-Ausdruck in interner Darstellung.
Beispiel:  integrate <- expression(integral(fun, lims))

Siehe auch 1.3.1: Mathematischer Formelsatz in Plot-Beschriftungen

substitute() R-Ausdriicke mit Auswertung aller definierten Terme.

bquote () R-Ausdriicke mit selektiver Auswertung. Terme in . () werden aus-
gewertet.
Beispiele: n<-10; bquote( n"2 == . (n*n))

Auswertung

eval()

wertet einen Ausdruck aus.
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Marginalverteilung, 4-7
MASS, 2-/1

match, A-15

matrix, 4-17, A-18
max, A-41

mean, 1-33, A-/1
median, A-/1

merge, A-15



methods, 2-40, A-9
min, A-41
missing, A-19
mode, 2-39, A-2, A-3, A-7
model.frame, 3-11, 3-14
model .matrix, 2-12, 2-16, 2-41, A-36
model .matrix.default, 2-12
model.offset, 2-12
Modell
einfaches lineares, 2-8
lineares, 2-2
Modellfunktion, 2-1
mtext, 1-44, 4-17, A-39
mva, 4-27
mvr, 4-43

NA, 3-6
na.exclude, 2-11
na.fail, 2-11
na.omit, 2-11
names, A-7
ncol, A-13

nlm, A-36

nls, A-36

nrow, A-13

objects, A-1, A-25
offset, 2-12
optioms, 2-11, A-9
order, A-41
ordered, A-11
outer, 1-23, A-14

package .manager, A-31
package.skeleton, 1-48, 1-49, A-31
pairs, 4-4, 4-7, 4-7, 4-10, 4-17, 4-33, A-37
panel.smooth, 4-17
par, 4-17, A-9
parallel, 4-4
Parameter
default, 1-3
parse, 1-46, A-45
persp, ‘4_17 4'27 4'47 A-37
plot, 1-5
plot, 1-12, 1-13, 2-30, 2-40, 4-4, 4-22, 4-35,
A-5, A-37
plotmath, 1-13
pmatch, A-15
points, 4-17, A-38
polygon, A-38
polymorph, 1-3, 1-47, 2-39, 2-40, A-5
power.prop.test, 3-23
power.t.test, 3-20
ppoints, 3-7
prcomp, 4-27, 440
predict, 2-13, 2-25, 2-41
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predict.lm, 2-13, 2-25, 4-43
predict.loess, 2-36

print, 1-46, 1-47, 2-40, 4-2, 4-11, A-5
print.anova (anova), 2-20
print.lm (im), 2-11
probability plot, 1-38

prod, A-41

Profiling, A-21

projection pursuit, 4-12
prop.test, 3-12, 3-22
psignrank, 3-16

punif (Uniform), 1-4
pwilcox, 3-16

q, 1I-3

a9, 4-4

qqline (gqgnorm), 3-6, A-37
qqmath, 4-4

qqnorm, 3-5, 3-6, 4-4, A-37
qqgplot, 3-5, 4-4, A-37
qgplot (ggnorm), 3-6

qr, A-33

quantile, 1-34, A-41
Quantilplot, 1-38

qunif (Uniform), 1-4

range, 4-17, A-41

rank, A-41

rbind, A-11, A-13

read.fuf, A-30

read.table, A-30

recover, A-21

Regression
lineare, 2-2

Regressor, 2-1

regsubsets, 4-38

rep, 1-8

replicate, A-14

require, A-31

reshape, A-15

residuals, 2-13, 2-21, 2-41

Residuum, 2-8

Respons, 2-1

rev, A-41

rm, A-25

RngKind, A-43

rnorm, 1-5

Rprof, A-22

Rprofmem, A-22

rug, 1-15

runif, 1-4

runif (Uniform), 1-4

sample, A-43
sapply, A-14
save, 1-48, 2-37, A-29
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scan, A-30
Scatterplot-Matrix, 4-7
screen, A-39
sd, 1-34
search, 1-47, A-1, A-9
searchpaths, A-1
seq, 1-8, A-15
Serienplot, 1-5
set.seed, A-43
Shift-Familie, 3-3
sink, A-27
Skala

kategorial, 2-4

ordinal, 2-4
Skalen-Shiftfamile, 3-4
smoothing, 1-10
solve, A-33
sort, 1-12, A-41
source, 1-47, 1-48, A-27
split, A-1/4, A-16
split.screen, A-59
SplOIIl, 4'4
stack, 2-38
Standardabweichung, 1-33
stdres, 2-41
Stichproben

wiederholte, 1-30
Stichprobenvarianz, 1-33
stochastisch kleiner, 3-3
storage.mode, 2-39, A-7
str, A-7
Streuungszerlegung, 2-19
stripchart, 4-4
stripplot, 4-4, 4-23
structure, A-5, A-7
studres, 2-41
substitute, A-45
substring, A-15
sum, A-41
summary, 1-34, 2-21, A-5
summary.lm, 2-13
summaryRprof, A-22
svd, A-33
Sweave, 1-47
sys.parent, A-2
system, A-9
system.time, A-22

t, A-15
t.test, 3-11, 3-16
table, 1-18, A-14, A-15
tapply, A-11, A-1/
terms, 2-12, A-36
Test

x2, 1-28
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exakt, 3-13
Kolmogorov-Smirnov, 1-27
Median-, 1-27
Monte-Carlo, 1-23
t, 3-11
Wilcoxon, 3-13
title, 4-17, A-38
tolower, A-15
toupper, A-15
trace, A-21
traceback, A-22
trellis.par.set, A-9
try, A-22
ts.intersect, 2-13
typedef, A-3
typeof, 2-39, A-2, A-7

unclass, 2-39
undebug, A-21
Uniform, 1-4

unique, A-15

unsplit, A-16
untrace, A-22

update, A-36
update.packages, 1-47
UseMethod, 2-40

var, 1-38, A-41
Varianz, 1-33

residuelle, 2-8
Varianzanalyse, 2-19
Variationskoeflizient, 3-23
vcov, 2-13, 2-41

wilcox.exact, 3-16
wilcox.test, 3-13, 3-14
wilcox_test, 3-13
Wilkinson-Rogers-Notation, 2-3
wireframe, 4-4

write, A-27

write.table, A-30

xyplot, 4-4
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see DateTimeClasses, A-30
Zufallszahlen, 1-4
Pseudo-, 1-7
reproduzierbare, A-43



