
Statistical Computing

Einführung in

Günther Sawitzki

StatLab Heidelberg

17. März 2008

noch in Vorbereitung

E-mail address : gs@statlab.uni-heidelberg.de

URL: http://www.statlab.uni-heidelberg.de/projects/r/

Key words and phrases. statistical computing, S programming language,
R programming, data analysis, exploratory statistics, residual diagnostics

17. März 2008.

Inhaltsverzeichnis

Einleitung v
0.1. Was ist R? v
0.2. Referenzen vii
0.3. Umfang und Aufbau des Kurses vii
0.4. Dank viii
0.5. Literatur und weitere Hinweise viii

Kapitel 1. Grundlagen 1-1
1.1. Programmierung: Konventionen 1-1
1.2. Erzeugung von Zufallszahlen und Mustern 1-4
1.2.1. Zufallszahlen 1-4
1.2.2. Muster 1-8
1.3. Fallstudie: Verteilungsdiagnostik 1-9
1.3.1. Erster Durchgang zu Beispiel 1.1: Verteilungsfunktion 1-11
1.3.2. Erster Durchgang zu Beispiel 1.2: Histogramm 1-14
1.3.3. Zweiter Durchgang zu Beispiel 1.1: Verteilungsfunktion 1-20
1.3.4. Zweiter Durchgang zu Beispiel 1.2: Histogramm 1-27
1.4. Momente und Quantile 1-33
1.5. Ergänzungen 1-37
1.5.1. Ergänzung: Zufallszahlen 1-37
1.5.2. Ergänzung: Grafische Vergleiche 1-37
1.5.3. Ergänzung: Grafik-Aufbereitung 1-42
1.5.4. Ergänzung: Funktionen 1-43
1.5.5. Ergänzung: Das Innere von R 1-46
1.5.6. Ergänzung: Pakete 1-47
1.6. Statistische Zusammenfassung 1-49
1.7. Literatur und weitere Hinweise: 1-50

Kapitel 2. Regression 2-1
2.1. Allgemeines Regressionsmodell 2-1
2.2. Lineares Model 2-2
2.2.1. Faktoren 2-4
2.2.2. Kleinste-Quadrate-Schätzung 2-5
2.2.3. Weitere Beispiele für lineare Modelle 2-14
2.2.4. Modellformeln 2-15
2.2.5. Gauß-Markov-Schätzer und Residuen 2-17
2.3. Streuungszerlegung und Varianzanalyse 2-18
2.4. Simultane Schätzung 2-25
2.4.1. Scheffé’s Konfidenz-Bänder 2-25
2.4.2. Tukey’s Konfidenz-Intervalle 2-27

i

ii INHALTSVERZEICHNIS

2.5. Nichtparametrische Regression 2-32
2.5.1. Zwischenspiel: verallgemeinerte lineare Modelle 2-33
2.5.2. Lokale Regression 2-34
2.6. Ergänzungen 2-37
2.6.1. Ergänzung: Diskretisierungen 2-37
2.6.2. Ergänzung: Externe Daten 2-37
2.6.3. Ergänzung: Software-Test 2-38
2.6.4. R-Datentypen 2-39
2.6.5. Klassen und polymorphe Funktionen 2-39
2.6.6. Extraktor-Funktionen 2-40
2.7. Statistische Zusammenfassung 2-41
2.8. Literatur und weitere Hinweise: 2-41

Kapitel 3. Vergleich von Verteilungen 3-1
3.1. Shift/Skalenfamilien 3-3
3.2. QQ-Plot, PP -Plot 3-5
3.2.1. Kolmogorov Smirnov Tests 3-10
3.3. Tests auf Shift 3-10
3.4. Güte 3-17
3.4.1. Theoretische Güte 3-17
3.4.2. Simulation der Güte 3-21
3.4.3. Quantilschätzung durch Simulation 3-24
3.5. Qualitative Eigenschaften von Verteilungen 3-26
3.6. Ergänzungen 3-27
3.7. Statistische Zusammenfassung 3-29
3.8. Literatur und weitere Hinweise: 3-29

Kapitel 4. Dimensionen 1, 2, 3, . . . , ∞ 4-1
4.1. Ergänzungen 4-1
4.2. Dimensionen 4-4
4.3. Selektionen 4-5
4.4. Projektionen 4-6
4.4.1. Randverteilungen und Scatterplot-Matrix 4-7
4.4.2. Projection Pursuit 4-11
4.4.3. Projektionen für dim 1, 2, 3, . . . 7 4-13
4.4.4. Parallel-Koordinaten 4-13
4.5. Schnitte, bedingte Verteilungen und Coplots 4-14
4.6. Transformationen und Dimensionsreduktion 4-21
4.7. Höhere Dimensionen 4-26
4.7.1. Linearer Fall 4-26
4.7.2. Nichtlinearer Fall 4-28
4.7.3. “Curse of Dimension” 4-32
4.7.4. Fallstudie 4-32
4.8. Hohe Dimensionen 4-43
4.9. Statistische Zusammenfassung 4-45
4.10. Literatur und weitere Hinweise: 4-45

R als Programmiersprache: Übersicht A-1
A.1. Hilfe und Information A-1

INHALTSVERZEICHNIS iii

A.2. Namen und Suchpfade A-1
A.3. Anpassung A-2
A.4. Basis-Datentypen A-3
A.5. Ausgabe von Objekten A-5
A.6. Inspektion von Objekten A-7
A.7. Inspektion des Systems A-9
A.8. Komplexe Datentypen A-11
A.9. Zugriff auf Komponenten A-13
A.10. Tabellen-Transformationen A-15
A.11. Operatoren A-17
A.12. Funktionen A-19
A.13. Debugging und Profiling A-21
A.14. Kontrollstrukturen A-23
A.15. Verwaltung und Anpassung A-25
A.16. Ein- und Ausgabe in Ausgabeströme A-27
A.17. Externe Daten A-29
A.18. Libraries, Pakete A-31
A.19. Lineare Algebraoperatoren A-33
A.20. Modell-Beschreibungen A-35
A.21. Grafik-Funktionen A-37
A.21.1. high level Grafik A-37
A.21.2. low level Grafik A-37
A.21.3. Annotationen und Legenden A-38
A.21.4. Grafik-Parameter und Layout A-39
A.22. Einfache Statistische Funktionen A-41
A.23. Verteilungen, Zufallszahlen, Dichten. . . A-43
A.24. Verarbeitung von Ausdrücken A-45

Literaturverzeichnis Literatur-1

Index Index-1

Einleitung

Diese Einführung in R ist als Arbeitsmaterial in einem Kompaktkurs oder zum
Selbststudium gedacht. Der Kurs wendet sich an Studierende mit Grundkenntnissen
in Stochastik. Begriffe wie Verteilungsfunktion, Quantil, Erwartungswert und Vari-
anz und die damit verbundenen einfachen Eigenschaften werden vorausgesetzt. Eben-
so sollten klassische Verteilungen wie Binomial-, Uniform- und Gaußverteilung sowie
daraus abgeleitete Verteilungen und deren asymptotisches Verhalten bekannt sein.
Kenntnisse in Statistik selbst werden nicht vorausgesetzt. Sie werden in diesem Kurs
aber auch nicht vermittelt. Der Kurs konzentriert sich auf die “Computing”-Aspekte.
Dabei werden statistische Betrachtungsweisen und Konzepte zwar eingeführt und
diskutiert. Für eine eingehendere Diskussion wird aber auf die Statistik-Vorlesungen
verwiesen.

Kenntnisse in der Rechnerbenutzung und zumindest oberflächliche Kenntnisse
von Programmierkonzepten wie Variable, Schleifen und Funktionen werden voraus-
gesetzt. Weitergehende Kenntnisse werden nicht vorausgesetzt, aber auch nicht ver-
mittelt. Der Kurs führt in die Benutzung von R als Anwender ein. Für eingehendere
Diskussion der Computing-Aspekte wird auf die Arbeitsgemeinschaft “Computatio-
nal Statistics” verwiesen.

<http://www.statlab.uni-heidelberg.de/studinfo/compstat/>

0.1. Was ist R?

R ist eine Programmiersprache, und auch der Name eines Software-Systems, das
diese Sprache implementiert. Die Programmiersprache R ist eine für die Statistik
und für stochastische Simulation entwickelte Programmiersprache, die mittlerweile
zum Standard geworden ist. Genau genommen müsste man hier unterscheiden: Die
Sprache heißt S, ihre Implementierung und das System heißen R. Die ursprünglichen
Autoren von S sind John M. Chambers, R. A. Becker und A. R. Wilks, AT & T Bell
Laboratories, Statistics Research Department. Die Sprache und ihre Entwicklung
sind in einer Reihe von Büchern dokumentiert, nach ihrem Umschlag häufig als das
weiße ([CH92]), blaue ([BCW88]) und grüne Buch ([Cha98]) bezeichnet.

Die AT & T-Implementierung von S war lange Zeit die “Referenz” für die Sprache
S. Heute gibt es S als kommerzielles System S-Plus <http://www.insightful.com/
> (basierend auf der AT & T-Implementierung) sowie als frei verfügbare Version R,
auch “Gnu S” genannt1 <http://www.r-project.org/>.

1R heißt nur zufällig so, wie auch zufälligerweise die Vornamen der Originalautoren (Ross Ihaka
& Robert Gentleman) mit R beginnen.

v

vi EINLEITUNG

Mittlerweile hat sich R zur Referenz-Implementierung entwickelt. Wesentliche
Präzisierungen, und - falls notwendig - auch Modifikationen der Sprache werden
durch R definiert. Der Einfachheit halber sprechen wir hier und in den folgenden
Kapiteln von der Sprache R, auch wenn es genauer heißen müsste: die Sprache S in
der R-Implementierung.

R ist eine interpretierte Programmiersprache. Anweisungen in R werden unmittel-
bar ausgeführt. R beinhaltet neben den ursprünglichen Elementen von S eine Reihe
von Erweiterungen, zum Teil um Entwicklungen in der Statistik angemessen zu be-
rücksichtigen, zum Teil um experimentelle Möglichkeiten zu eröffnen. Parallel dazu
gibt es Weiterentwicklungen der S-Sprache.

Die (2008) aktuelle Version von R ist R 2.x. Diese Version ist weitgehend kom-
patibel mit den Vorläuferversionen R 1.x. Die wesentlichen Veränderungen sind im
Inneren des Systems. Für den Anfang gibt es praktisch keinen Unterschied zu R 1.x.
Für den fortgeschrittenen Nutzer gibt es drei wesentliche Neuerungen:

• Grafik: Das Basis-Grafiksystem von R implementiert ein Modell, dass an der
Vorstellung von Stift und Papier orientiert ist. Ein Grafik-Port (Papier) wird
eröffnet und darauf werden Linien, Punkte/Symbole gezeichnet. Mit R 2.x
gibt es zusätzlich ein zweites Grafiksystem, dass an einem Kamera/Objekt-
Modell orientiert ist. Grafische Objekte in unterschiedlicher Lage und Rich-
tung werden in einem visuellen Raum abgebildet.
• Packages: Das ursprüngliche System von R hat eine lineare Geschichte und

einen einheitlichen Arbeitsraum. Mit R 2.x gibt es eine verbesserte Unter-
stützung von“Paketen”, die in sich abgeschirmt werden können. Dazu dienen
Sprachkonzepte wie “name spaces”, aber auch unterstützende Werkzeuge.
• Internationalisierung: Die ursprüngliche Implementierung von R setzte Eng-

lisch als Sprache und ASCII als Zeichensatz voraus. Seit R 2.x gibt es umfas-
sende Unterstützung für andere Sprachen und Zeichensätze. Dies ermöglicht
es, “lokalisierte” Versionen zu erstellen. Derzeit ist man bei Kommandos,
Ausgaben und Erklärungen jedoch noch auf Englisch angewiesen.

Zwei Aspekte sind in R nur unzureichend berücksichtigt: der interaktive Zugriff
und die Einbettung in eine vernetzte Umgebung. Diese und weitere Aspekte sind
Bestandteil von Omegahat - eines Versuchs, ein System der nächsten Generation
zu entwickeln, das auf den Erfahrungen mit R aufbaut. Diese mehr experimentellen
Arbeiten werden unter <http://www.omegahat.org/> bereitgestellt. Schon R bietet
einfache Möglichkeiten, Prozeduren aus anderen Sprachen wie C und Fortran aufzu-
rufen. Omegahat erweitert diese Möglichkeiten und bietet einen direkten Zugang zu
Java, Perl

Eine Java-basierte grafische Oberfläche ist als JGR unter <http://stats.math.
uni-augsburg.de/software/> zugänglich. Dort findet sich als iplots auch eine
Sammlung von interaktiven Displays für R.

Aktuelle Entwicklungen zu R finden sich in <ttp://r-forge.r-project.org/>.
Zahlreiche hilfreiche Erweiterungen sind auch unter <http://www.bioconductor.

org/> zu finden.

0.3. UMFANG UND AUFBAU DES KURSES vii

0.2. Referenzen

R ist für die praktische Arbeit in der Statistik entworfen. Nützlichkeit hat oft
Vorrang vor prinzipiellen Design-Überlegungen. Als Folge ist eine systematische Ein-
führung in R nicht einfach. Stattdessen wird ein verschlungener Pfad gewählt: Fall-
studien und Beispiele, an die sich systematische Übersichten anschließen. Für die
praktische Arbeit sollte auf das reichhaltige Online-Material zu R zugegriffen werden.
Ein erster Zugriffspunkt sind dabei die “frequently asked questions” (FAQ) <http:

//www.cran.r-project.org/faqs.html>. “An Introduction to R” ([R D07a]) ist
die “offizielle” Einführung. Diese Dokumentation und andere Manuale sind unter
<http://www.cran.r-project.org/manuals.html> bereitgestellt.

R-Prozeduren sind zum Teil im Basis-System enthalten. Andere Prozeduren müs-
sen aus Bibliotheken hinzugeladen werden. Eine Reihe von Bibliotheken ist in der
Standard-Distribution von R enthalten und muss lediglich aktiviert werden. Die tech-
nischen Hinweise dazu sind jeweils angegeben. Speziellere Bibliotheken müssen evtl.
hinzu geladen werden. Die erste Quelle dafür ist <http://www.cran.r-project.

org/src/contrib/PACKAGES.html>.

Größere Unterschiede gibt es bei unterschiedlichen Versionen von S-Plus. S-Plus
4.x und S-Plus 2000 benutzen S Version 3 und sind weitestgehend mit R kompa-
tibel. S-Plus 5 ist eine Implementierung von S Version 4 mit Änderungen, die ei-
ne Sonderbehandlung bei der Programmierung benötigen. Auf diese Besonderhei-
ten wird hier nicht eingegangen. Informationen zu S-Plus findet man bei <http:
//www.insightful.com/>.

0.3. Umfang und Aufbau des Kurses

R beinhaltet in der Basis-Version mehr als 1500 Funktionen - zu viele, um sie in
einem Kurs zu vermitteln, und zu viel, um sie sinnvollerweise zu lernen. Der Kurs
kann nur dazu dienen, den Zugang zu R zu eröffnen.

Teilnehmerkreise können aus unterschiedlichem Hintergrund kommen und unter-
schiedliche Vorbedingungen mitbringen. Gerade für jüngere Schüler oder Studenten
kann ein reiner Programmierkurs, der sich auf die technischen Grundlagen konzen-
triert, angemessen sein. Für diese Teilnehmer ist dieser Kurs nicht geeignet. Für
Fortgeschrittene stellt sich eher die Frage nach einer sinnvollen Einordnung und nach
dem Hintergrund. Hierauf zielt der vorliegende Kurs. Das “technische” Material bil-
det das Skelett. Daneben wird versucht, den Blick auf statistische Fragestellungen
zu richten und das Interesse am Hintergrund zu wecken. Der Kurs soll Appetit auf
die Substanz wecken, die eine fundierte statistische Vorlesung bieten kann.

Das hier bereitgestellte Material besteht zunächst aus einer thematisch geord-
neten Sammlung, in der anhand von Beispiel-Fragestellungen illustriert wird, wie
ein erster Zugang mit R erfolgen kann. Hinzu kommt eine Zusammenstellung von
Sprachbestandteilen und Funktionen, die als Orientierungshilfe für das umfangrei-
che in R enthaltene Informationsmaterial dient. Für die praktische Arbeit sind die
Online-Hilfen und Manuale die erste Informationsquelle.

viii EINLEITUNG

Der Kurs kann bei einer Auswahl der Aufgaben in etwa vier Tagen durchge-
führt werden. Konzeptuell ist er eine viertägige Einführung in die Statistik mit den
Themenbereichen

• Ein-Stichprobenanalyse und Verteilungen
• Regression
• Zwei- oder Mehr-Stichprobenanalysen
• Multivariate Analysen

Eine großzügigere Zeit für die Übungsaufgaben wird empfohlen (ein Halbtag zusätz-
lich für einführende Aufgaben, ein Halbtag zusätzlich für eine der Projektaufgaben).
Mit dieser Zeit kann der Kurs als Block in einer Woche durchgeführt werden, wenn
im Anschluss die Möglichkeit geschaffen wird, die aufgetreten Fragen zu beantworten
und das geweckte Interesse am statistischen Hintergrund zu vertiefen.

Für ein anschliessendes vertiefendes Selbststudium von R als Programmiersprache
wird ([VR00]) empfohlen.

Beispiele und Eingaben im Text sind so formatiert, dass sie mit “Cut & Paste”
übernommen und als Programmeingabe verwandt werden können. Deshalb sind bei
Programmbeispielen im Text bisweilen Satzzeichen fortgelassen, und Eingabebeispie-
le werden ohne “Prompt” gezeigt. Einem Beispiel

Beispiel 0.1:

Eingabe
1 + 2

Ausgabe
3

enstpricht auf dem Bildschirm etwa

> 1+2

[1] 3

>

wobei anstelle des Prompt-Zeichens ”>” je nach Konfiguration auch ein anderes
Zeichen erscheinen kann.

0.4. Dank

Zu danken ist dem R core team für die Kommentare und Hinweise. Besonderen
Dank an Friedrich Leisch vom R core team sowie an Antony Unwin, Univ. Augsburg.

0.5. Literatur und weitere Hinweise

[R D07a] R Development Core Team (2000-2007): An Introduction to R.
Siehe: <http://www.r-project.org/manuals.html>.

0.5. LITERATUR UND WEITERE HINWEISE ix

[R D07d] R Development Core Team (2000-2007): R Reference Manual.
Siehe: <http://www.r-project.org/manuals.html>.

The Omega Development Group (2000): Omega.
Siehe: <http://www.omegahat.org/>.

[BCW88] Becker, R.A.; Chambers, J.M.; Wilks, A.R. (1988): The New S Language.
NewYork: Chapman and Hall.

[CH92] Chambers, J.M.; Hastie, T.J. (eds) (1992): Statistical Models in S. NewYork:
Chapman and Hall.

[Cle93] Cleveland, W.F. (1993): Visualizing Data. Summit: Hobart Press.

[VR02] Venables, W.N.; Ripley, B.D. (2002): Modern Applied Statistics with S.
Heidelberg:Springer.
Siehe: <http://www.stats.ox.ac.uk/pub/MASS4/>.

[VR00] Venables, W.N.; Ripley, B.D. (2000): Programming in S. Heidelberg:Springer.
Siehe: <http://www.stats.ox.ac.uk/pub/MASS3/Sprog>.

KAPITEL 1

Grundlagen

1.1. Programmierung: Konventionen

Wie jede Programmiersprache hat R bestimmte Konventionen. Hier die ersten
Grundregeln.

R-Konventionen

Zahlen Dezimaltrenner ist ein Punkt. Zahlen können im Exponential-
format eingegeben werden; der Exponentialteil wird mit E ein-
geleitet. Zahlen können komplex sein. Der Imaginärteil wird mit
i gekennzeichnet.

Beispiel: 1

2.3

3.4E5

6i+7.8

Zahlen können auch die Werte Inf, -Inf, NaN für “not a num-
ber” und NA für “not available” = fehlend annehmen.

Beispiel: 1/0 ergibt Inf ; 0/0 ergibt NaN.

Zeichenketten Zeichenketten (Strings) werden zu Beginn und zu Ende durch
" oder ' begrenzt.

Beispiel: "ABC"

'def'
"gh'ij"

Damit die folgenden Beispiele nicht zu simpel werden, greifen wir hier vor: in R
ist a:b eine Sequenz von Zahlen von a bis höchstens b in Schritten von 1 bzw. -1.

R-Konventionen

Objekte Die Datenbausteine in R sind Objekte. Objekte können Klassen
zugeordnet werden.

Beispiel: Die Basis-Objekte in R sind Vektoren.

(Fortsetzung)→

1-1

1-2 1. GRUNDLAGEN

R-Konventionen

(Fortsetzung)

Namen R-Objekte können Namen haben. Dann kann anhand ihres Na-
mens auf sie zugegriffen werden.
Namen beginnen mit einem Buchstaben oder einem Punkt, ge-
folgt vom einer Folge von Buchstaben, Ziffer, oder den Sonder-
zeichen _ oder .

Beispiele: x

y_1

Groß- und Kleinschreibung werden unterschieden.

Beispiele: Y87

y87

Zuweisungen Zuweisungen haben die Form

Aufruf: Name <- Wert oder alternativ Name = Wert.

Beispiel: a <- 10

x <- 1:10

Abfragen Wird nur der Name eines Objekts eingegeben, so wird der Wert
des Objekts ausgegeben.

Beispiel: x

Indizes Auf Vektorkomponenten wird über Indizes zugegriffen. Die
Index-Zählung beginnt mit 1.

Beispiel: x[3]

Dabei können für die Indizes auch symbolische Namen oder
Regeln verwandt werden.

Beispiele: x[-3]

x[x^2 < 10]

a[1]

Hilfe und In-
spektion

Hilfe Dokumentation und Zusatzinformation für ein Objekt kann mit
help angefordert werden.

Aufruf: help(Name)

Beispiele: help(exp)

help(x)

Alternative Form ?Name

Beispiele: ?exp

?x

(Fortsetzung)→

1.1. PROGRAMMIERUNG: KONVENTIONEN 1-3

Hilfe und In-
spektion

(Fortsetzung)

Inspektion help() kann nur vorbereitete Dokumentation bereitstellen.
str() kann den aktuellen Zustand inspizieren und darstellen.

Aufruf: str(Object, ...)

Beispiele: str(x)

R-Konventionen

Funktionen Funktionen in R werden aufgerufen in der Form

Aufruf: Name(Parameter . . .)

Beispiel: e_10 <- exp(10)

Diese Konvention gilt selbst, wenn keine Parameter vorhanden
sind.

Beispiel: Um R zu verlassen ruft man eine “Quit”-Prozedur auf
q() .

Parameter werden sehr flexibel gehandhabt. Sie können De-
fault-Werte haben, die benutzt werden, wenn kein expliziter
Parameter angegeben ist.

Beispiele: log(x, base = exp(1))

Funktionen können polymorph sein. Die aktuelle Funktion
wird dann durch die Klasse der aktuellen Parameter bestimmt.

Beispiele: plot(x)

plot(x, x^2)

summary(x)

Operatoren Für Vektoren wirken Operatoren auf jede Komponente der Vek-
toren.

Beispiel: Für Vektoren y, z ist y*z ein Vektor, der kompo-
nentenweise das Produkt enthält.

Operatoren sind spezielle Funktionen. Sie können auch in
Präfix-Form aufgerufen werden.

Beispiel: "+"(x, y)

In Situationen, in denen die Operanden nicht gleiche Länge
haben, wird der kürzere Operand zyklisch wiederholt.

Beispiel: (1:2)*(1:6)

1-4 1. GRUNDLAGEN

Wir beschäftigen uns im folgenden mit statistischen Methoden. Wir benutzen
die Methoden zunächst in Simulationen, d.h. mit synthetischen Daten, deren Erzeu-
gung wir weitgehend unter Kontrolle haben. Das erlaubt es uns, Erfahrung mit den
Methoden zu gewinnen und sie kritisch zu beurteilen. Erst dann benutzen wir die
Methoden zur Analyse von Daten.

1.2. Erzeugung von Zufallszahlen und Mustern

1.2.1. Zufallszahlen. Die Funktion runif() erlaubt die Erzeugung von uni-
form verteilten Zufallsvariablen. Mit help(runif) oder ?runif erhalten wir Infor-
mationen, wie die Funktion benutzt werden kann:

help(runif)

Uniform The Uniform Distribution

Description.

These functions provide information about the uniform distribution on the in-
terval from min to max. dunif gives the density, punif gives the distribution
function qunif gives the quantile function and runif generates random devi-
ates.

Usage.

dunif(x, min=0, max=1, log = FALSE)

punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)

qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)

runif(n, min=0, max=1)

Arguments.

x,q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to

be the number required.
min,max lower and upper limits of the distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise,

P [X > x].

Details.

If min or max are not specified they assume the default values of 0 and 1 respec-
tively.

The uniform distribution has density

f(x) =
1

max−min
for min ≤ x ≤ max.

For the case of u := min == max, the limit case of X ≡ u is assumed.

1.2. ERZEUGUNG VON ZUFALLSZAHLEN UND MUSTERN 1-5

References.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

See Also.

.Random.seed about random number generation, rnorm, etc for other distribu-
tions.

Examples.

u <- runif(20)

The following relations always hold :
punif(u) == u
dunif(u) == 1

var(runif(10000))#- ~ = 1/12 = .08333

Diese Hilfsinformation sagt uns: Als Parameter für runif() muss die Anzahl
n der zu generierenden Zufallswerte angegeben werden. Als weitere Parameter für
runif() können das Minimum und das Maximum des Wertebereichs angeben wer-
den. Geben wir keine weiteren Parameter an, so werden die Default-Werte min =

0 und max = 1 genommen. Z. B. runif(100) erzeugt einen Vektor mit 100 uni-
form verteilten Zufallsvariablen im Bereich (0, 1). Der Aufruf runif(100, -10,

10) erzeugt einen Vektor mit 100 uniform verteilten Zufallsvariablen im Bereich
(−10, 10). Die zusätzlichen Parameter können in der definierten Reihenfolge angege-
ben werden, oder mithilfe der Namen spezifiziert werden. Bei Angabe des Namens
kann die Reihenfolge frei gewählt werden. Anstelle von runif(100, -10, 10) kann
also runif(100, min = -10, max = 10) oder runif(100, max = 10, min = -

10) benutzt werden. Dabei können auch ausgewählt einzelne Parameter gesetzt wer-
den. Wird zum Beispiel das Minimum nicht angegeben, so wird für das Minimum
der Default-Wert eingesetzt: die Angabe von runif(100, max = 10) ist gleichwer-
tig mit runif(100, min = 0, max = 10). Der besseren Lesbarkeit halber geben
wir oft die Namen von Parametern an, auch falls es nicht nötig ist.

Jeder Aufruf von runif() erzeugt 100 neue uniforme Zufallszahlen. Wir können
diese speichern.

x <- runif(100)

erzeugt einen neuen Vektor von Zufallszahlen und weist ihn der Variablen x zu.

x

gibt jetzt dessen Werte aus; damit können wir die Resultate inspizieren. Eine grafi-
sche Darstellung, den Serienplot - einen Scatterplot der Einträge in x gegen den
laufenden Index, erhalten wir mit

plot(x)

1-6 1. GRUNDLAGEN

Beispiel 1.1:
Eingabe

x <- runif(100)

plot(x)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

x

Aufgabe 1.1

Experimentieren Sie mit den Plots und runif(). Sind die Plots
Bilder von Zufallszahlen?

Genauer: Akzeptieren Sie die Plots als Bilder von 100 unab-
hängigen Realisationen von uniform auf (0, 1) verteilten Zu-
fallszahlen?

Wiederholen Sie das Experiment und versuchen Sie, die Argu-
mente, die für oder gegen die (uniforme) Zufälligkeit sprechen,
möglichst genau zu notieren. Ihr Resumée?

Gehen Sie die Argumente noch einmal durch und versuchen
Sie, eine Prüfstrategie zu entwerfen, mit der Sie eine Folge von
Zahlen auf (uniforme) Zufälligkeit überprüfen könnten. Versu-
chen Sie, diese Strategie möglichst genau zu formulieren.

(Fortsetzung)→

1.2. ERZEUGUNG VON ZUFALLSZAHLEN UND MUSTERN 1-7

Aufgabe 1.1 (Fortsetzung)

Hinweis: Sie können mehrere Abbildungen in einem Fenster
halten. Mit

par(mfrow = c(2, 3))

wird das Grafik-System so eingestellt, dass jeweils sechs Ab-
bildungen zeilenweise als 2× 3-Matrix angeordnet (2 Zeilen, 3
Spalten) gezeigt werden.

Die Funktion par ist die zentrale Funktion, mit der die Grafik-
Ausgabe parametrisiert wird. Weitere Information erhält man
mit help(par).

Wir lüften gleich das Geheimnis1: die Zahlen sind nicht zufällig, sondern ganz
deterministisch. Genauer: im Hintergrund von runif() wird eine deterministische
Folge zi generiert. Verschiedene Algorithmen stehen zur Verfügung. Informationen
dazu erhält man mit help(.Random.seed). Im einfachsten Fall, für lineare Kon-
gruenzgeneratoren, werden aufeinanderfolgende Werte zi, zi+1 sogar nur mit einer
linearen Funktion generiert. Damit die Werte im kontrollierten Bereich bleiben, wird
modulo einer oberen Grenze gerechnet, also

zi+1 = a zi + b mod M.

Die resultierenden Werte, die uns übergeben werden, sind umskaliert auf
zi
M
· (max−min) +min.

Die dadurch definierte Folge kann regelmäßig sein und schnell zu periodischer Wie-
derholung führen. Bei geeigneter Wahl der Parameter, wie beim Beispiel in der Fuß-
note, kann sie jedoch zu einer sehr langen Periode (in der Größenordnung von M)
führen und scheinbar zufällig sein. Die Zahlenfolge ist jedoch keine unabhängige
Zufallsfolge, und die Verteilung ist auch nicht uniform auf (min,max).

Selbst wenn man das Geheimnis kennt, ist es nur mit viel weiterem Wissen mög-
lich nachzuweisen, dass die erzeugte Folge nicht den Gesetzen folgt, die für eine
unabhängige Folge von identisch uniform verteilten Zufallszahlen gelten.

Zahlenfolgen, die den Anspruch erheben, sich wie zufällige Zahlen zu verhalten,
nennen wir Pseudo-Zufallszahlen , wenn es wichtig ist, auf den Unterschied hinzu-
weisen. Wir benutzen diese Pseudo-Zufallszahlen, um uns geeignete Test-Datensätze
zu generieren. Wir können damit untersuchen, wie sich statistische Verfahren unter
nahezu bekannten Bedingungen verhalten. Dabei benutzen wir Pseudo-Zufallszahlen,
als ob wir Zufallszahlen hätten.

Pseudo-Zufallszahlen sollten wir zum anderen als Herausforderung nehmen: Sind
wir in der Lage, sie als nicht unabhängige Zufallszahlen zu erkennen? Wenn wir einen

1. . . nur teilweise. Die benutzten Zufallsgeneratoren in R sind konfigurierbar und können we-
sentlich komplexer sein, als hier vorgestellt. Für unsere Diskussion reicht jedoch hier die Familie
der linearen Kongruenzgeneratoren. Sie können deren Verhalten in anderen Programmiersystemen
nachvollziehen. Die übliche Referenz ist dabei der“minimal standard generator”mit xi+1 = (xi×75)
mod 231 − 1.

1-8 1. GRUNDLAGEN

Unterschied erkennen, werden wir versuchen, den Pseudo-Zufallszahlengenerator ge-
gen einen besseren auszutauschen. Aber zunächst geht die Herausforderung an uns.
Sind wir überhaupt in der Lage, z.B. eine mit einem linearen Generator erzeugte de-
terministische Folge als nicht zufällig zu erkennen? Falls nicht: welche intellektuellen
Konsequenzen ziehen wir daraus?

1.2.2. Muster. Außer Pseudo-Zufallszahlen gibt es in R eine ganze Reihe von
Möglichkeiten, regelmäßige Sequenzen zu generieren. Die in anderen Sprachen not-
wendigen Schleifen werden damit weitgehend vermieden. Hier eine erste Übersicht:

R Sequenzen

: Erzeugt Sequenz von Anfang bis höchstens Ende.

Aufruf: Anfang:Ende

Beispiele: 1:10

10.1:1.2

c() “combine”. Kombiniert Argumente zu einem neuen Vektor.

Aufruf: c(..., recursive = FALSE)

Beispiele: c(1, 2, 3)

c(x, y)

Bezeichnen die Argumente zusammengesetzte Datentypen, so
arbeitet die Funktion rekursiv absteigend in die Daten hinab,
wenn sie mit recursive = TRUE aufgerufen wird.

seq() Erzeugt allgemeine Sequenzen.

Aufruf: Siehe help(seq)

rep() Wiederholt Argument.

Aufruf: rep(x, times, ...)

Beispiele: rep(x, 3)

rep(1:3, c(2, 3, 1))

Dabei steht “. . . ” für eine variable Liste von Argumenten. Wir werden diese No-
tation noch häufiger benutzen.

Aufgabe 1.2

Generieren Sie mit

plot(sin(1:100))

einen Plot mit einer diskretisierten Sinusfunktion. (Falls Sie die
Sinusfunktion nicht sofort erkennen, benutzen Sie plot(sin

(1:100), type = l"), um die Punkte zu verbinden. Benut-
zen Sie Ihre Strategie aus Aufgabe 1.1. Können Sie damit die
Sinusfunktion als nicht zufällig erkennen?

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-9

Die Zahlenreihe eines Datensatzes, wie z.B. die Ausgabe eines Zufallszahlenge-
nerators hilft selten, zugrunde liegende Strukturen zu erkennen. Nur wenig helfen
einfache, unspezifische grafische Darstellungen wie der Serienplot. Selbst bei klaren
Mustern sind diese Informationen selten aussagekräftig. Zielgerichtete Darstellungen
sind nötig, um Verteilungseigenschaften zu untersuchen.

1.3. Fallstudie: Verteilungsdiagnostik

Wir brauchen genauere Strategien, um Strukturen zu erkennen oder deren Verlet-
zung festzustellen. Wie diese Strategien aussehen können, skizzieren wir am Beispiel
der Zufallszahlen. Wir konzentrieren uns hier auf die Verteilungseigenschaft. Ange-
nommen, die Folge besteht aus unabhängigen Zufallszahlen mit einer gemeinsamen
Verteilung. Wie überprüfen wir, ob dies die uniforme Verteilung ist? Wir ignorieren
die mögliche Umskalierung auf (min,max) - dies ist ein technisches Detail, das die
Fragestellung nicht wesentlich tangiert. Wir betrachten min = 0; max = 1.

Aus Realisierungen von Zufallsvariablen können Verteilungen nicht direkt abge-
lesen werden. Dies ist unser kritisches Problem. Wir brauchen Kennzeichnungen der
Verteilungen, die wir empirisch überprüfen können. Wir können zwar Beobachtun-
gen als Maße betrachten: Für n Beobachtungen X1, . . . , xn können wir formal die
empirische Verteilung Pn definieren als das Maß Pn =

∑
(1/n)δxi , wobei δXi das

Dirac-Maß an der Stelle Xi ist. Also

Pn(A) = #{i : Xi ∈ A}/n.
Aber leider ist das empirische Maß Pn einer Beobachtungsreihe von unabhängigen
Beobachtungen mit gemeinsamem Maß P im allgemeinen sehr von P verschieden.
Einige Eigenschaften gehen unwiederbringlich verloren. Dazu gehören infinitesimale
Eigenschaften: so ist z.B. Pn immer auf endlich viele Punkte konzentriert. Wir brau-
chen Konstrukte, die anhand von Realisierungen von Zufallsvariablen bestimmbar
und mit den entsprechenden Konstrukten von theoretischen Verteilungen vergleich-
bar sind. Eine Strategie ist es, sich auf (empirisch handhabbare) Testmengen zu
beschränken.

Beispiel 1.1. Verteilungsfunktion

Anstelle der Verteilung P betrachten wir ihre Verteilungsfunktion F = FP mit

F (x) = P (X ≤ x).

Für eine empirische Verteilung Pn von n Beobachtungen X1, . . . , Xn ist entsprechend
die empirische Verteilungsfunktion

Fn(x) = #{i : Xi ≤ x}/n.

Beispiel 1.2. Histogramm

Wir wählen disjunkte Testmengen Aj, j = 1, . . . , J , die den Wertebereich von X
überdecken. Für die uniforme Verteilung auf (0, 1) können wir z.B. die Intervalle

Aj =
(j − 1

J
,
j

J

]
als Testmengen wählen.

1-10 1. GRUNDLAGEN

Anstelle der Verteilung P betrachten wir den Vektor
(
P (Aj)

)
j=1,...,J

bzw. den empi-

rischen Vektor
(
Pn(Aj)

)
j=1,...,J

.

Wir diskutieren diese Beispiele ausführlicher. Einige allgemeine Lehren können
wir daraus ziehen. Wir machen mehrere Durchgänge, um von einem naiven Zugang
zu einem entwickelten statistischen Ansatz zu kommen.

An dieser Stelle sei schon darauf hingewiesen, dass Histogramme kritisch von
der Wahl der Testmengen abhängen. Insbesondere wenn Diskretisierungen in den
Daten unglücklich mit der Wahl der Testmengen zusammentreffen, kann es zu sehr
irreführenden Ergebnissen kommen. Eine Alternative zu Histogrammen ist es, die
Daten zu glätten.

Beispiel 1.3. Glättung Wir ersetzen jeden Datenpunkt durch eine (lokale)
Verteilung, d.h. wir verschmieren die Datenpunkte etwas. Wir benutzen dazu Ge-
wichtsfunktionen. Diese Gewichtsfunktionen werden Kerne genannt und mit K
bezeichnet. Wenn die Kerne integrierbar sind, normieren wir sie konventionell so,
dass

∫
K(x)dx = 1. Einige übliche Kerne sind in Tabelle 1.9 aufgelistet und in Abb.

1.1 gezeigt. Wenn sie einen kompakten Träger haben, so ist als Träger das Intervall
[−1, 1] gewählt (Die R-Konvention ist es, die Kerne so zu standardisieren, dass sie
die Standardabweichung 1 haben).

Kern K(x)

Uniform 1/2

Dreieck 1− |x|
Epanechnikov (quadratisch) 3/4(1− x2)

Biweight 15/16(1− x2)2

Triweight 35/32(1− x2)3

Gauß (2π)−1/2 exp(−x2/2)
Tabelle 1.9. Einige übliche Kerne

Durch Verschiebung und Umskalierung definiert jeder Kern eine ganze Familie

1

h
K(

x− x0

h
).

Der Skalenfaktor h wird Bandbreite genannt. Der mit h skalierte Kern wird mit
Kh bezeichnet:

Kh(x) =
1

h
K(

x

h
).

Die Funktion

x 7→ 1

n

∑
i

Kh(x−Xi)

ergibt anstelle des Histogramms ein geglättetes Bild.

Näheres dazu findet man unter dem Stichwort smoothing in der Literatur.

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-11

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

R's density() kernels with bw = 1

D
en

si
ty

gaussian
epanechnikov
rectangular
triangular
biweight
cosine
optcosine

Abbildung 1.1. Kerne in R

1.3.1. Erster Durchgang zu Beispiel 1.1: Verteilungsfunktion. Um zu
prüfen, ob eine Zufallsfolge zu einer Verteilung mit Verteilungsfunktion F passt,
vergleiche man F mit Fn. Im Fall der uniformen Verteilung auf (0, 1) ist F (x) =
Funif (x) = x für 0 ≤ x ≤ 1. Der ganz naive Zugang berechnet die Funktionen Fn
und F . Eine erste Überlegung sagt: Fn ist eine stückweise konstante Funktion mit
Sprungstellen an den Beobachtungspunkten. Wir bekommen also ein vollständiges
Bild von Fn, wenn wir Fn an den Beobachtungspunkten Xi, i = 1..n auswerten.
Ist X(i) die i. Ordnungsstatistik, so ist - bis auf Bindungen - Fn(X(i)) = i/n. Wir
vergleichen Fn(X(i)) mit dem “Sollwert” F (X(i)) = X(i). Eine R-Implementierung,
mit Hilfsvariablen notiert:

n <- 100

x <- runif(n)

xsort <- sort(x)

i <- (1:n)

y <- i/n

plot(xsort, y)

Eine zusätzliche Gerade für die “Sollwerte” kann mit

abline(0, 1)

eingezeichnet werden.

Eine kompaktere Implementierung mit der Funktion length() :

1-12 1. GRUNDLAGEN

Beispiel 1.2:
Eingabe

x <- runif(100)

plot(sort(x), 1:length(x)/length(x))

abline(0, 1)

● ●●
●●

●●
●●

●●
●●●

●●
●●●

●●
●●
●●
●●
●●

●●
●●

● ● ●●●
●● ●●●

●●
●●

●●
● ●●

●●
●●●●

●●
●●
●●

● ●●●
●●
●●●

●●
●●
●●

●●
●●●

●●
●●
●●

●●
●●●

●●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sort(x)

1:
le

ng
th

(x
)/

le
ng

th
(x

)

R Funktionen

sort() Sortiert Vektor

Beispiel: sort(runif(100))

length() Länge eines Vektors

Beispiel: length(x)

abline() Fügt Linie in Plot hinzu

Beispiel: abline(a = 0, b = 2)

Die Funktion plot() fügt defaultmäßig Beschriftungen hinzu. Damit die Grafik
für sich aussagekräftig ist, wollen wir diese durch genauere Beschriftungen ersetzen.
Dazu ersetzen wir die Default-Parameter von plot() durch unsere eigenen. Der
Parameter main kontrolliert die Hauptüberschrift (Default: leer). Wir können diese
zum Beispiel ersetzen wie in

plot(sort(x), (1:length(x))/length(x),

main = "Empirische Verteilungsfunktion\n (X uniform)").

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-13

Mit xlab und ylab wird die Beschriftung der Achsen gesteuert. Über diese und
weitere Parameter kann man Information mit help(plot) abfragen, werden dann
aber weiter an help(title) verwiesen.

Die vertikale Achse gibt noch eine Herausforderung: mit ylab = Fn(x)" als Pa-
rameter würden wir eine Beschriftung mit Fn(x) erhalten. Die übliche Bezeichnung
setzt aber den Stichprobenumfang als Index, also Fn(x). Hier hilft eine versteckte
Eigenschaft der Beschriftungsfunktionen: Wird als Parameter eine Zeichenkette über-
geben, so wird sie ohne Umwandlung angezeigt. Wird als Parameter ein R-Ausdruck
übergeben, so wird versucht, die mathematisch übliche Darstellung zu geben. De-
tails findet man mit help(plotmath) und Beispiele mit demo(plotmath). Die Um-
wandlung einer Zeichenkette in einen (unausgewerteten) R-Ausdruck geschieht mit
expression() .

Beispiel 1.3:
Eingabe

x <- runif(100)

plot(sort(x), (1:length(x))/length(x),

xlab = "x", ylab = expression(F[n]),

main = "Empirische Verteilungsfunktion\n (X uniform)"

)

abline(0, 1)

●●
●●

●●
●●
●●●

●●
●●

● ● ●●
●●●●

●●
●●
●●
● ●● ●●

●●●
●●

●●
●●

● ●●
●●

●●
●● ●●

●●
●●
●●

●●●
● ●●●

●●
●●

●● ●●●
●●●

●●
●●

●●
●●
●●
● ●●

●●
●●
●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirische Verteilungsfunktion
 (X uniform)

x

F
n

Dieses Beispiel dient hier nur zur Einführung. Es ist nicht notwendig, die Ver-
teilungsfunktion selbst zu programmieren. In R gibt es z.B. die Klasse ecdf für die
empirische Verteilungsfunktion. Wird die Funktion plot() auf ein Objekt der Klasse
ecdf angewandt, so führt die “generische” Funktion plot() intern auf die spezielle

1-14 1. GRUNDLAGEN

Funktion plot.ecdf, und diese zeichnet in der für Verteilungsfunktionen speziel-
len Weise. Wir können das Beispiel also abkürzen durch den Aufruf plot(ecdf(

runif(100))).

Aufgabe 1.3

Ergänzen Sie den Aufruf plot(ecdf(runif(10))) durch
weitere Parameter so, das die Ausgabe die folgende Form hat:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirische Verteilungsfunktion
 (X uniform)

x

F
n((x

))

[

[

[

[

[

[

[

[

[

[

Aufgabe 1.4

Mit rnorm() generieren Sie gaußverteilte Zufallsvariablen. Ver-
suchen Sie, anhand der Serienplots gaußverteilte Zufallsvaria-
blen von uniform verteilten zu unterscheiden.

Benutzen Sie dann die empirischen Verteilungsfunktionen.
Können Sie damit gaußverteilte von uniform verteilten unter-
scheiden? Die Sinus-Serie von uniform verteilten? von gaußver-
teilten?

Wie groß ist der benötigte Sichprobenumfang, um die Vertei-
lungen verlässlich zu unterscheiden?

1.3.2. Erster Durchgang zu Beispiel 1.2: Histogramm. Wir wählen Test-
mengen Aj, j = 1, . . . , J im Wertebereich von X. Strategie: Um zu prüfen, ob eine
Zufallsfolge zu einer Verteilung P gehört, vergleiche man den Vektor (P (Aj))j=1,...,J

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-15

mit (Pn(Aj))j=1,...,J . Für die uniforme Verteilung auf (0, 1) können wir z.B. die In-
tervalle

Aj =
(j − 1

J
,
j

J

]
als Testmengen wählen. Dann ist

(P (Aj))j=1,...,J = (1/J, . . . , 1/J)

der theoretische Vergleichsvektor zum Vektor der beobachteten relative Häufigkeiten
#i:Xi∈Aj

n
j = 1, . . . , J. Vorläufige Implementierung: wir benutzen hier gleich eine

vorgefertigte Funktion, die Histogramme zeichnet. Als Seiteneffekt liefert sie uns die
gewünschten Werte. Mit der Funktion rug() können wir die Originaldaten zusätzlich
einblenden.

Beispiel 1.4:
Eingabe

x <- runif(100)

hist(x)

rug(x)

Histogram of x

x

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

Zum Vergleich können wir einen Dichteschätzer überlagern. Da density() im
Gegensatz zu hist() das Resultat nicht zeichnet, sondern ausdruckt, müssen wir
die Grafik explizit anfordern. Damit die Skalen vergleichbar sind, fordern wir für das
Histogramm mit dem Parameter probability = TRUE eine Wahrscheinlichkeitsdar-
stellung an.

1-16 1. GRUNDLAGEN

Beispiel 1.5:
Eingabe

hist(x, probability = TRUE)

rug(x)

lines(density(x))

Histogram of x

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Histogramm und Kern-Dichteschätzer haben jeweils ihre spezifischen Vorteile
und Probleme. Histogramme leiden unter ihrer Diskretisierung, die mit einer Dis-
kretisierung in den Daten unglücklich zusammen treffen kann. Kern-Dichteschätzer
“verschmieren” die Daten, und können dadurch insbesondere am Rand des Datenbe-
reichs zu unangemessenen Rand-Effekten führen.

Zurück zum Histogramm: Benutzen wir eine Zuweisung

xhist <- hist(x),

so wird die interne Information des Histogramm unter xhist gespeichert und kann
mit

xhist

abgerufen werden. Sie ergibt z.B.

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-17

Beispiel 1.6:

Eingabe
x <- runif(100)

xhist <- hist(x)

xhist

Ausgabe
$breaks
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$counts
[1] 8 13 8 12 12 7 6 11 10 13

$intensities
[1] 0.7999998 1.3000000 0.8000000 1.2000000 1.2000000 0.7000000
[7] 0.6000000 1.1000000 1.0000000 1.3000000

$density
[1] 0.7999998 1.3000000 0.8000000 1.2000000 1.2000000 0.7000000
[7] 0.6000000 1.1000000 1.0000000 1.3000000

$mids
[1] 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

$xname
[1] "x"

$equidist
[1] TRUE

attr(,"class")
[1] "histogram"

Counts gibt dabei die Besetzungszahlen der Histogrammzellen, d.h. die von uns
gesuchte Anzahl. Die in xhist gespeicherte interne Information des Histogramms
besteht aus fünf wesentlichen Komponenten - hier jeweils Vektoren. Diese Kompo-
nenten von xhist haben Namen und können mit Hilfe dieser Namen angesprochen
werden. So gibt z.B.

xhist$counts

den Vektor der Besetzungszahlen.

R Datenstruktu-
ren

(Fortsetzung)→

1-18 1. GRUNDLAGEN

R Datenstruktu-
ren

(Fortsetzung)

Vektoren Komponenten eines Vektors werden über ihren Index angespro-
chen. Alle Elemente eines Vektors haben denselben Typ.

Beispiele: x

x[10]

Listen Listen sind zusammengesetzte Datenstrukturen. Die Kompo-
nenten einer Liste haben Namen, über die sie angesprochen
werden können. Teilkomponenten einer Liste können von un-
terschiedlichem Typ sein.

Beispiele: xhist

xhist$counts

Weitere zusammengesetzte Datenstrukturen sind im Anhang (A.8) beschrieben.

Die Wahl der Histogrammgrenzen erfolgt automatisch. Für die genaue Behand-
lung der Intervallgrenzen gibt es unterschiedliche Konventionen, deren Wahl durch
Parameter von hist() gesteuert werden kann. Um unsere Testmengen zu benutzen,
müssen wir die Aufrufstruktur von hist() erfragen.

Aufgabe 1.5

Generieren Sie zu runif(100) Histogramme mit 5, 10, 20, 50
gleichgroßen Zellen und ziehen Sie wiederholt Stichproben.
Entsprechen die Bilder dem, was Sie von unabhängig uniform
verteilten Zufallsvariablen erwarten? Versuchen Sie, ihre
Beobachtungen möglichst genau zu notieren.
Wiederholen Sie das Experiment mit zwei Zellen
(0, 0.5], (0.5, 1).

hist(runif(100), breaks = c(0, 0.5, 1))

Wiederholen Sie das Experiment analog mit rnorm(100)

und vergleichen Sie die Resultate von runif(100) und
rnorm(100).

1.3.2.1. Balkendiagramme. Als Hinweis: wenn die Daten nicht quantitativ sind,
sondern kategorial (durch Kategorien-Label bezeichnet, wie z.B. “sehr gut, gut, be-
friedigend, . . . ”, oder durch Kennziffern bezeichnet, wie z.B. “1, 2, 3, . . . ”), so ist
ein Balkendiagramm eher geeignet. Einfache Balkendiagramme werden von plot()

selbst durch den Parameter type = h unterstützt. Dazu müssen aus den Rohdaten
die Häufigkeiten der einzelnen Stufen bestimmt werden. Dies kann mit der Funktion
table() geschehen.

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-19

Beispiel 1.7:
Eingabe

noten <- c(2, 1, 3, 4, 2, 2, 3, 5, 1, 3, 4, 3, 6)

plot(1:6, table(noten), type = 'h')

1 2 3 4 5 6

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

1:6

ta
bl

e(
no

te
n)

1-20 1. GRUNDLAGEN

Aufgabe 1.6

Modifizieren Sie den Aufruf von plot im obigen Beispiel so,
dass der Plot das folgende Aussehen hat:

1 2 3 4 5 6

0
1

2
3

4

Notenverteilung

Note

A
nz

ah
l

1.3.3. Zweiter Durchgang zu Beispiel 1.1: Verteilungsfunktion. Wir ma-
chen jetzt einen Schritt von einem naiven Ansatz zu einer statistischen Betrach-
tung. Naiv haben wir für unabhängig identisch verteilte Variable (X1, . . . , Xn) mit
Verteilungsfunktion F angenommen, dass i/n = Fn(X(i)) ≈ F (X(i)) und dies zur

Überprüfung der Verteilungsannahme benutzt. Speziell für uniform (0, 1) verteilte
Variable ist diese naive Annahme: i/n ≈ X(i) = F (X(i)).

Statistisch gesehen ist X(i) eine Zufallsvariable. Damit ist auch F (X(i)) eine Zu-
fallsvariable mit Werten in [0, 1], und wir können die Verteilung dieser Zufallsvaria-
blen untersuchen.

Theorem 1.4. Sind (X1, . . . , Xn) unabhängig identisch verteilte Zufallsvariablen
mit stetiger Verteilungsfunktion F , so ist F (X(i)) verteilt nach der Beta-Verteilung
β(i, n− i+ 1).

Beweis. → Wahrscheinlichkeitstheorie. Hinweis: Benutze

X(i) ≤ xα ⇔ (#j : Xj ≤ xα) ≥ i.

Für stetige Verteilungen ist (#j : Xj ≤ xα) binomialverteilt mit Parametern (n, α).
�

Korollar 1.5.
E(F (X(i))) = i/(n+ 1).

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-21

Aufgabe 1.7

Mit help(rbeta) erhalten Sie Informationen über die Funk-
tionen, die für die Beta-Verteilungen bereitstehen. Plotten Sie
die entsprechenden Dichten der Beta-Verteilungen für n =
10, 50, 100 und i = n/4, n/2, 3n/4. Benutzen Sie zum plotten
die Funktion curve() . Zum Aufruf, siehe help(curve).

Wir können also im statistischen Mittel für uniform auf (0, 1) verteilte Variable
nicht erwarten, dass X(i) ≈ i/n, sondern im Mittel erhalten wir i/(n+1). Die“richtige
Sollwertgerade” sollte also mit abline(a = 0, b = n/n+1) gezeichnet werden.

Aufgabe 1.8

Zeichnen Sie die Verteilungsfunktion mit der korrigierten Ge-
raden.

∗ Für die grafische Darstellung wird jeweils nur ein Plot benutzt.
Ist der Erwartungswert von X(i) hier der richtige Vergleichs-
maßstab? Gibt es Alternativen?

Falls Sie Alternativen sehen: implementieren Sie diese.

1.3.3.1. Monte Carlo Konfindenzbänder. Mit einer Simulation können wir uns
auch ein Bild von der typischen Fluktuation verschaffen. Wir benutzen Zufallszahlen,
um eine (kleine) Anzahl von Stichproben bekannter Verteilung zu generieren, und
vergleichen die in Frage stehende Stichprobe mit den Simulationen. Dazu bilden wir
für die Simulationen die Einhüllende, und prüfen, ob die Stichprobe innerhalb dieses
Bereichs liegt. Ist x der in Frage stehende Vektor mit Länge n, so benutzen wir z.B.
die folgende Programmidee:

1-22 1. GRUNDLAGEN

Beispiel 1.8:
Eingabe

x <- (sin(1:100)+1)/2 # demo example only

y <- (1:length(x))/length(x)

plot(sort(x), y)

nrsamples <- 19 # nr of simulations

samples <- matrix(data = runif(length(x)* nrsamples),

nrow = length(x), ncol = nrsamples)

samples <- apply(samples, 2, sort)

envelope <- t(apply(samples, 1, range))

lines(envelope[, 1], y, col = "red")

lines(envelope[, 2], y, col = "red")

●●
●●
●●
●●
●●
●●

●●
●●

●●
●●

●●
●●
● ●●

●●
●●

●●
●●

●●
●●

●●
●●

● ●●
●●

●●
●●

●●
●●

● ●●
●●

●●
●●
● ●●

●●
●●
●●

● ●●
●●

●●
●●
●●●

●●
●●●

●●
●●
●●
●●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sort(x)

y

Dieses Beipiel ist [VR02], entnommen, einer reichen Quelle von R-Beipielen.
Für die Programmierung wird hier eine für R typische Strategie erkennbar. R ist
eine interpretierte vektor-orientierte Sprache. Einzelne Interpretationsschritte sind
zeitintensiv. Deshalb sind Operationen mit weniger, dafür komplexeren Schritten
effektiver als Operationen aus mehreren elementaren Schritten.

• Operationen auf Vektorebene sind effektiver als Ketten einzelner elementare
Operationen.
• Iterationen und Schleifen werden vermieden zugunsten strukturierter Vektor-

Operationen.

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-23

Aufgabe 1.9

Benutzen Sie die help() -Funktion und kommentieren Sie das
obige Beispiel Schritt für Schritt. Notieren Sie insbesondere die
neu hinzugekommenen Funktionen.

R Iteratoren

apply() wendet eine Funktion auf die Zeilen oder Spalten einer Matrix
an.

Beispiel: samples <- apply(samples, 2, sort)

sortiert spaltenweise.

outer() erzeugt eine Matrix mit allen Paar-Kombinationen aus zwei
Vektoren, und wendet eine Funktion auf jedes Paar an.

Wenn die Kurve für unsere Stichprobe die durch die Simulation gewonnenen
Grenzen überschreitet, so widerspricht das der Hypothese, dass der Stichprobe und
der Simulation das selbe Modell zugrunde liegt. Das hier skizzierte Verfahren heißt
Monte-Carlo-Test . Die Idee dahinter ist von sehr allgemeiner Bedeutung.

Aufgabe 1.10

∗ Wieso 19?

Hinweis: versuchen Sie, das Problem zunächst abstrakt und
vereinfacht zu betrachten: sei T eine messbare Funktion und
X0, X1, . . . , Xnrsamples unabhängige Stichproben mit einer ge-
meinsamen stetigen Verteilungsfunktion.

Berechnen Sie P (T (X0) > T (Xi)) für alle i > 0.

Formulieren Sie dann das obige Beispiel abstrakt. Spezialisie-
ren Sie dann für nrsamples = 19.

Aufgabe 1.11

∗ Schätzen Sie die Überdeckungswahrscheinlichkeit des Monte-
Carlo-Bands, in dem Sie wie folgt vorgehen: Generieren Sie
zunächst analog zum obigen Beispiel ein Band. (Wie können
Sie das Band zeichnen, ohne zuvor für eine spezielle Stichprobe
einen Plot zu machen?)
Ziehen Sie für eine zu wählende Anzahl sim (100? 1000? 999?)
jeweils eine Stichprobe von uniform verteilten Zufallszahlen
vom Stichprobenumfang 100. Zählen Sie aus, wie oft die empi-
rische Verteilungsfunktion der Stichprobe innerhalb des Bands
verläuft.
Schätzen Sie hieraus die Überdeckungswahrscheinlichkeit.

(Fortsetzung)→

1-24 1. GRUNDLAGEN

Aufgabe 1.11 (Fortsetzung)

Hinweis: any() kann benutzt werden, um für einen ganzen
Vektor einen Vergleich zu machen.

Wir wollen auch hier die Ausgabe noch überarbeiten, so dass der Plot genügend
Information enthält. Bei der Beschriftung können wir zunächst analog zu Abschnitt
1.3.1 vorgehen. Die Anzahl nrsamples bedarf des Nachdenkens. Wenn wir nur ei-
ne feste Anzahl (z.B. 19) betrachten wollen, können wir diese wie gewohnt in die
Beschriftung aufnehmen. Wenn das Programmfragment jedoch allgemeiner nutzbar
sein soll, so müssten wir die jeweils gewählte Anzahl von Simulationen angeben.
Dies von Hand zu tun ist eine Fehlerquelle, die vermieden werden kann. Die Funkti-
on bquote() ermöglicht es, den jeweils aktuellen Wert zu erfragen oder im jeweiligen
Kontext zu berechnen. Damit die Anzahl von Simulationen in die Überschrift über-
nommen werden kann, vertauschen wir die Anweisungen so dass die Anzahl der
Simulationen vor dem Aufruf von plot festgelegt ist.

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-25

Beispiel 1.9:
Eingabe

x <- (sin(1:100)+1)/2 # demo example only

y <- (1:length(x))/length(x)

nrsamples <- 19 # nr of simulations

plot(sort(x), y,

main = paste("Monte-Carlo-Band: ", bquote(.(nrsamples)), " Monte-Carlo-Samples"),

xlab = 'x', ylab = expression(F[n]))

samples <- matrix(data = runif(length(x) * nrsamples),

nrow = length(x), ncol = nrsamples)

samples <- apply(samples, 2, sort)

envelope <- t(apply(samples, 1, range))

lines(envelope[, 1], y, col = "red")

lines(envelope[, 2], y, col = "red")

●●
●●
●●
●●
●●
●●

●●
●●

●●
●●

●●
●●
● ●●

●●
●●

●●
●●

●●
●●

●●
●●

● ●●
●●

●●
●●

●●
●●

● ●●
●●

●●
●●
● ●●

●●
●●
●●

● ●●
●●

●●
●●
●●●

●●
●●●

●●
●●
●●
●●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Monte−Carlo−Band: 19 Monte−Carlo−Samples

x

F
n

Für die Simulationen werden jeweils neue Monte-Carlo-Stichproben gezogen. Des-
halb erhalten Sie bei jedem Aufruf unterschiedliche Monte-Carlo-Konfidenzbänder
und die Bänder hier sind von denen im vorherigen Beispiel verschieden.

Für die praktische Arbeit kann es notwendig sein, die Verteilungsdiagnostik auf
ein einfaches Entscheidungsproblem zu reduzieren, etwa um anhand von Tabellen
oder Kontrollkarten zu entscheiden, ob eine Verteilung in einem hypothetischen Be-
reich liegt, oder eine Kenngröße anzugeben, die die Abweichung von einem gegebenen
Modell charakterisiert. Wenn wir auf Tabellen oder einfache Zahlen zurückgreifen
wollen, müssen wir uns weiter einschränken. Wir müssen die Information, die in den
Funktionen (Fn, F) steckt, weiter reduzieren, wenn wir die Unterschiede numerisch
zusammenfassen wollen. Eine Zusammenfassung ist etwa

sup
x
|Fn − F |(x).

1-26 1. GRUNDLAGEN

Wenn wir diese Zusammenfassung als Kriterium benützen wollen, stehen wir wieder
vor der Aufgabe, ihre Verteilung zu untersuchen.

Theorem 1.6. (Kolmogorov, Smirnov) Für stetige Verteilungsfunktionen F ist
die Verteilung von

sup
x
|Fn − F |(x)

unabhängig von F (jedoch abhängig von n).

Beweis. → Wahrscheinlichkeitstheorie. Z.B. [Gänßler & Stute, Lemma 3.3.8].
�

Theorem 1.7. (Kolmogorov): Für stetige Verteilungsfunktionen F und n→∞
hat √

n sup |Fn − F |
asymptotisch die Verteilungsfunktion

FKolmogorov−Smirnov(y) =
∑
m∈Z

(−1)me−2m2y2 für y > 0.

Beweis. →Wahrscheinlichkeitstheorie. Z.B. [Gänßler & Stute, Formel (3.3.11)].
�

Für die praktische Arbeit bedeutet dies: Für stetige Verteilungsfunktionen kön-
nen wir eine Entscheidungsstrategie formulieren: wir entscheiden, dass die Beobachtung(X1, . . . , Xn)
nicht mit der Hypothese von unabhängig, identisch nach F verteilten Zufallsvaria-
blen vereinbar ist, falls sup |Fn − F | zu groß ist:

sup |Fn − F | > Fkrit/
√
n,

wobei Fkrit aus der (von F unabhängigen) Verteilungsfunktion der Kolmogorov-
Smirnov-Statistik zum Stichprobenumfang n entnommen wird. Wählen wir speziell
das obere α-Quantil Fkrit = FKolmogorov−Smirnov,1−α, so wissen wir, dass bei Zutreffen
der Hypothese der Wert Fkrit oder ein höherer Wert höchstens mit Wahrscheinlich-
keit α erreicht wird. Damit können wir unsere Irrtumswahrscheinlichkeit für eine
ungerechtfertigte Ablehnung der Hypothese kontrollieren.

Asymptotisch, für große n, können wir anstelle der Verteilungsfunktion die Kol-
mogorov-Approximation benutzen. Wenn die Modellverteilung F nicht stetig ist,
sind weitere Überlegungen nötig.

Wir wollen uns hier auf die Programmierung konzentrieren und gehen nicht in
die Details des Kolmogorov-Smirnov-Tests. Mit elementaren Mitteln können wir die
Teststatistik supx |Fn − F | (x) für die uniforme Verteilung programmieren. Aus
Monotoniegründen ist

sup
x
|Fn − F | (x) = max

X(i)
|Fn − F |X(i)

und für die uniforme Verteilung ist

max
X(i)
|Fn − F |X(i) = max

i
|i/n − X(i)|.

Damit gibt in R-Schreibweise der Ausdruck

max(abs((1: length(x)) / length(x)) - sort(x)))

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-27

die für uns die gewünschte Statistik, wenn x unser Datenvektor ist.

Diese Statistik (und viele weitere allgemein benutzte Statistiken) sind in der
Regel schon programmiert, ebenso wie die zugehörigen Verteilungsfunktionen.2

Aufgabe 1.12

Mit

help(ks.test)

erhalten Sie die Information, wie die Funktion ks.test ange-
wandt wird.

Welche Resultate erwarten Sie, wenn Sie die folgenden Vekto-
ren auf uniforme Verteilung testen:

1:100

runif(100)

sin(1:100)

rnorm(100)?

Führen Sie diese Tests durch (skalieren Sie dabei die Werte
so, dass sie im Intervall [0, 1] liegen, oder benutzen Sie eine
uniforme Verteilung auf einem angepassten Intervall.) und dis-
kutieren Sie die Resultate.

1.3.4. Zweiter Durchgang zu Beispiel 1.2: Histogramm. Wie bei der Ver-
teilungsfunktion machen wir einen Schritt in Richtung auf eine statistische Analy-
se. Der Einfachheit halber nehmen wir an, dass wir disjunkte Testmengen Aj, j =
1, . . . , J gewählt haben, die den Wertebereich von X überdecken Die Beobachtung
(x1, . . . , xn) gibt dann Besetzungszahlen nj

nj = (#i : Xi ∈ Aj).

Wenn (Xi)i=1,...,n unabhängig sind mit identischer Verteilung P , so ist (nj)j=1,...,J

ein Zufallsvektor mit Multinomialverteilung zu den Parametern n, (pj)j=1,...,J mit
pj = P (Aj). Für den Spezialfall J = 2 haben wir die Binomialverteilung. Da wir
freie Wahl über die Testmengen Aj haben, können wir damit eine ganze Reihe von
oft hilfreichen Spezialfällen abdecken, z.B.

Mediantest auf Symmetrie:

A1 = {x < x0.5} A2 = {x ≥ x0.5}

2Unterschiedliche Implementierungen können hier andere Aufrufstrukturen vorsehen. Der
Kolmogorov-Smirnov-Test findet sich in ks.test .

Vor R Version 2.x gehörten diese jedoch nicht zum Basis-Umfang von R, sondern sind in speziel-
len Bibliotheken enthalten, die explizit hinzugeladen werden mussten. Die Bibliothek mit klassischen
Tests in der R1.x-Implementierung heißt ctest und wird mit

library(ctest)

geladen.

1-28 1. GRUNDLAGEN

Midrange-Test auf Konzentration:

A1 = {x0.25 ≤ x < x0.75} A2 = {x < x0.25 oderx ≥ x0.75}.

Für den allgemeinen Fall müssen wir jedoch die empirischen Besetzungszahlen
nj anhand der Multinomialverteilung beurteilen, und diese ist sehr unangenehm zu
berechnen. Deshalb greift man oft auf Approximationen zurück. Auf Pearson geht
folgende Approximation zurück:

Lemma 1.8. (Pearson): Für (pj)j=1,...,J , pj > 0 gilt im Limes n → ∞ die
Approximation

Pmult(n1, . . . , nj;n, p1, . . . , pj;) ≈

(2πn)−1/2
(∏
j=1,...,J

pj

)−1/2

·

exp
(
− 1/2

∑
j=1,...,J

(nj − npj)2

npj

−1/2
∑

j=1,...,J

nj − npj
npj

+ 1/6
∑

j=1,...,J

(nj − npj)3

(npj)2
+ . . .

)
.

Beweis. → Wahrscheinlichkeitstheorie. Z.B. [JK70] p. 285. �

Der erste Term wird bestimmt von χ̂2 :=
∑

j=1...J(nj − npj)2/npj. Dieser Term

wird χ2-Statistik genannt. Zumindest asymptotisch für n → ∞ führen große Werte

von χ̂2 zu kleinen Wahrscheinlichkeiten. Dies motiviert, die χ2-Statistik approximativ
als Anpassungsmaß zu benutzen. Der Name kommt aus der Verteilungsasymptotik:

Theorem 1.9. (Pearson): Für (pj)j=1,...,J , pj > 0 ist im Limes n → ∞ die
Statistik

χ̂2 :=
∑

j=1,...,J

(nj − npj)2

npj

χ2-verteilt mit J − 1 Freiheitsgraden.

Für eine formale Entscheidungsregel können wir wieder einen kritischen Wert
χ2
krit festlegen, und die Hypothese verwerfen, dass die Beobachtungen (X1, . . . , Xn)

identisch uniform verteilte Zufallszahlen sind, wenn die χ2-Statistik über diesem Wert
liegt. Wählen wir als kritischen Wert das obere α-Quantil der χ2-Verteilung, so wissen
wir, dass bei Zutreffen der Hypothese der Wert χ2

krit oder ein höherer Wert höchstens
mit Wahrscheinlichkeit α erreicht wird. Damit können wir zumindest asymptotisch
auch hier unsere Irrtumswahrscheinlichkeit für eine ungerechtfertigte Ablehnung der
Hypothese kontrollieren.

Die χ2-Tests gehören zum Basisumfang von R als Funktion chisq.test() . Sie
sind so ausgelegt, dass sie für allgemeinere “Kontingenztafeln” genutzt werden kön-
nen. Wir benötigen sie hier nur für einen Spezialfall: die Tafel ist in unserem Fall

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-29

der (eindimensionale) Vektor der Besetzungszahlen für vorgewählte Zellen. (Hinweis:
in der R-Implementierung sind allgemeinere Varianten in library(loglin) zu fin-
den.)

Aufgabe 1.13

Orientieren Sie sich mit help(chisq.test) über die Auf-
rufstruktur der χ2-Tests. Wenden Sie ihn für die Hypothese
(pj = 1/J), J = 5 auf folgende Vektoren von Besetzungszah-
len an:

(3 3 3 3 3) (1 2 5 3 3) (0 0 9 0 6).

Aufgabe 1.14

Welche Resultate erwarten Sie, wenn Sie die folgenden Vekto-
ren mit dem χ2-Test auf uniforme Verteilung testen:

1:100

runif(100)

sin(1:100)

rnorm(100)?

Führen Sie diese Tests durch und diskutieren Sie die Resultate.

Hinweis: Die Funktione chisq.test() erwartet als Ein-
gabe eine Häufigkeitstabelle. Die Prozedur table() gibt
die Möglichkeit, Besetzungstabellen direkt zu erstellen (sie-
he help(chisq.test). Sie können aber auch die Funktion
hist() benutzen, und den Eintrag counts aus dem Resul-
tat benutzen.

Die Approximationen für die χ2-Statistik gelten zunächst nur, wenn die Zellen
fest gewählt sind, unabhängig von der Information aus der Stichprobe. Praktische
Histogramm-Algorithmen bestimmen jedoch Zellenanzahl und Zellgrenzen aufgrund
der Stichprobe. Dazu werden (implizit) Parameter der Verteilung geschätzt. Unter
bestimmten Voraussetzungen gilt noch immer eine χ2-Asymptotik, wie z.B nach dem
folgenden Theorem aus [Rao73, Section 6b.2]:

Theorem 1.10. (i) Let the cell probabilities be the specified functions π1(θ), . . . ,
πk(θ) involving q unknown parameters (θ1, . . . , θq) = θ′. Further let

(a) θ̂ be an efficient estimator of θ in the sense of (5c.2.6),
(b) each πi(θ) admit continuous partial derivatives of the first order (only) with

respect to θj, j = 1, . . . , q or each πi(θ) be a totally differentiable function
of θ1, . . . , θq, and

1-30 1. GRUNDLAGEN

(c) the matrix M = (π
−1/2
r ∂πr/∂θs) of order (k×q) computed at the true values

of θ is of rank q. Then the asymptitoc distribution of

(1.1) χ2 =
∑ (ni − nπ̂i)2

nπ̂i
=
∑ (0− E)2

E

is χ2(k − 1− q), where π̂i = πi(θ̂).

Beweis. Siehe [Rao73] Abschnitt 6b.2. �

Aufgabe 1.15

∗ Entwerfen Sie vergleichbare Testumgebungen für feste und für
adaptive Zellwahlen.

Ziehen Sie für feste und für adaptive Zellwahlen jeweils s =

1000 Stichproben aus runif() vom Umfang 50; berechnen
Sie formal die χ2-Statistik und plotten Sie deren Verteilungs-
funktion.

Vergleichen Sie die Verteilungsfunktionen.

Wiederholte Stichproben

Wir haben uns bis jetzt darauf konzentriert, die Verteilung einer Zufallsvaria-
blen zu untersuchen. Wir können das Verfahren fortsetzen. Wenn (X1, . . . , Xn) iden-
tisch uniform verteilte Zufallszahlen sind, dann ist bei vorgewählten Zellen die χ2-
Statistik approximativ χ2-verteilt, und κ :=

√
n sup |Fn − F | hat asymptotisch

die Kolmogorov-Smirnov-Verteilung.

Wir können wiederholt Stichproben (X1j, . . . , Xnj)j=1..m ziehen und daraus Sta-

tistiken χ̂2
j und κj berechnen. Bei unabhängig, identisch verteilten Ausgangsdaten

müssen diese nach χ2 bzw. Kolmogorov-Smirnov verteilt sein. Bei diesen wiederhol-
ten Stichproben wird nicht nur die Verteilung der einzelnen Beobachtungen, sondern
die gemeinsame Verteilung der jeweils n Stichprobenelemente untersucht.

Aufgabe 1.16

Ziehen Sie für n = 10, 50, 100 wiederholt jeweils 300 Stichpro-
ben nach runif(). Berechnen Sie dafür jeweils die χ2- und
Kolmogorov-Smirnov-Statistik.

Welchen χ2-Test benutzen Sie?

Plotten Sie die Verteilungsfunktionen dieser Statistiken und
vergleichen Sie sie mit den theoretischen asymptotischen Ver-
teilungen.

Sprechen irgendwelche Befunde gegen die Annahme unabhän-
gig uniform verteilter Zufallszahlen?

(Fortsetzung)→

1.3. FALLSTUDIE: VERTEILUNGSDIAGNOSTIK 1-31

Aufgabe 1.16 (Fortsetzung)

Hinweis: die Funktionen für den χ2- und Kolmogorov-Smirnov-
Test speichern ihre Information intern als Liste. Um die Namen
der Listenelemente zu bekommen, kann man sich ein Testob-
jekt generieren. Benutzen Sie z.B.

names(chisq.test(runif(100))).

Güte

Die uniforme Verteilung war in unserer Diskussion bislang die angezielte Mo-
dellverteilung, unsere “Hypothese”. Wir haben diskutiert, wie die unterschiedlichen
Verfahren sich verhalten müssten, wenn diese Hypothese gilt. Das daraus abgeleitete
Verteilungsverhalten kann dazu dienen, kritische Grenzen für formale Tests festzule-
gen. Wir verwerfen die Hypothese, wenn die beobachteten Test-Statistiken zu extrem
sind. Was“zu extrem” ist, wird anhand der abgeleiteten Verteilungen bestimmt. Dies
führt zu Entscheidungsregeln wie:

verwerfe die Hypothese, wenn Fχ2(χ̂2) ≥ 1− α
oder

verwerfe die Hypothese, wenn FKolmogorov−Smirnov(κ) ≥ 1− α
für geeignet festzulegende (kleine) Werte von α.

Wenn wir ein Entscheidungsverfahren formal festgelegt haben, können wir im
nächsten Schritt fragen, wie scharf das Verfahren ist, wenn die Hypothese tatsächlich
abzulehnen ist. Eine genauere Analyse bleibt der Statistik-Vorlesung vorbehalten.
Mit den bis jetzt diskutierten Möglichkeiten können wir jedoch schon das Verhalten
mit einer Monte-Carlo-Strategie untersuchen.

Als Simulations-Szenario wählen wir eine Familie von Alternativen. Die uniforme
Verteilung fügt sich in die Beta-Verteilungen mit den Dichten

pa,b(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 für a > 0, b > 0 und 0 < x < 1

ein. Wir wählen als Alternativen Verteilungen aus dieser Familie. Daraus ziehen wir
wiederholt Stichproben, und wenden jeweils formal unsere Entscheidungsverfahren
an. Wir registrieren, ob das Verfahren zu einer Ablehnung der Hypothese führt oder
nicht. Zu gegebener Wahl eines Stichprobenumfangs n und einer Wiederholungsan-
zahl m und bei Wahl einer Grenzwahrscheinlichkeit α erhalten wir eine Tabelle

(a, b) 7→ # Simulationen, bei denen die Hypothese verworfen wird.

Speziell für die uniforme Verteilung (a, b) = (1, 1) erwarten wir annähernd m ·α Ver-
werfungen. Für andere Verteilungen ist ein Verfahren um so entscheidungsschärfer,
je größer der Anteil der Verwerfungen ist.

1-32 1. GRUNDLAGEN

Aufgabe 1.17

∗∗ Untersuchen Sie die Trennschärfe des Kolmogorov-Smirnov-
Test und des χ2-Tests. Wählen Sie jeweils einen Wert für n,m
und α, und wählen Sie 9 Paare für (a, b). Notieren Sie die
Überlegungen hinter Ihrer Wahl.

Ziehen Sie zu diesen Parametern mit rbeta() Zufallsstichpro-
ben.

Führen Sie jeweils den Kolmogorov-Smirnov-Test und einen
χ2-Test mit 10 gleichgroßen Zellen auf (0, 1) durch.

Wählen Sie Alternativparameter (a, b) so, dass Sie entlang
der folgenden Geraden die Entscheidungsverfahren vergleichen
können:

i) a = b
ii) b = 1
iii) a = 1

und führen Sie eine entsprechende Simulation durch.

Wählen Sie Alternativparameter (a, b) so, dass Sie für den Be-
reich 0 < a, b < 5 die Entscheidungsverfahren vergleichen kön-
nen.

Ihre Schlüsse?

Hinweis: Mit outer(x, y, fun) wird eine Funktion fun()

auf alle Paare aus den Werten von x, y angewandt und das
Ergebnis als Resultat zurückgeliefert.

Mit

contour()

können Sie einen Contour-Plot erzeugen.
Siehe demo("graphic").

Aufgabe 1.18

?? Entwerfen Sie eine Prüfstrategie, um “Pseudozufallszahlen” zu
entlarven.

Testen Sie diese Strategie an einfachen Beispielen

i) x x = 1..100 mod m für geeignete m
ii) sin(x) x = 1..100
iii) . . .

Werden diese als “nicht zufällig” erkannt?

Versuchen Sie dann, die bereitgestellten Zufallszahlengenera-
toren zu entlarven.

1.4. MOMENTE UND QUANTILE 1-33

1.4. Momente und Quantile

Verteilungsfunktionen oder Dichten sind mathematisch nicht einfach zu handha-
ben: der Raum der Funktionen ist im allgemeinen unendlich-dimensional und endli-
che geometrische Argumente oder endliche Optimierungsargumente sind nicht direkt
anwendbar. Um die Analyse zu vereinfachen, greift man bisweilen auf endliche Be-
schreibungen zurück.

Historisch haben die Momente eine wichtige Rolle gespielt: Wahrscheinlichkei-
ten werden als Masse-Verteilungen interpretiert, und die Momente analog zu den
Momenten der Mechanik eingeführt. Das erste Moment, entsprechend dem Schwer-
punkt, heißt in der Statistik Erwartungswert .

Definition 1.11. Ist X eine reellwertige Zufallsvariable mit Verteilung P , so ist
der Erwartungswert von X definiert als

EP (X) := E (X) :=

∫
XdP,

falls das Integral existiert.

Das zweite Moment und höhere Momente werden konventionell zentriert. Für
das zweite (zentrale) Moment, die Varianz , haben wir die folgende Definition:

Definition 1.12. Ist X eine reellwertige Zufallsvariable mit Verteilung P , so ist
die Varianz von X definiert als

V arP (X) := V ar (X) :=

∫
(X − E (X))2dP.

Die Integralausdrücke müssen nicht immer definiert sein, d.h. die Momente müs-
sen nicht immer existieren. Existieren sie jedoch, so geben sie eine erste Information
über die Verteilung. Der Erwartungswert wird oft als das “statistische Mittel” inter-
pretiert; die Wurzel aus der Varianz, die Standardabweichung , als “Streuung”.

Die Definitionen können auch auf empirische Verteilungen angewandt werden.
Dies gibt einen ersten Weg, die Momente einer unbekannten theoretischen Verteilung
aus den Daten zu schätzen. Für den Mittelwert gilt Konsistenz:

EP (EPn (X)) = EP (X) ,

d.h. im statististischen Mittel stimmen empirischer Erwartungswert und Erwartungs-
wert der zu Grunde liegenden Verteilung überein (falls definiert).

Für die Varianz gilt diese Konsistenz nicht, sondern es gilt
n

n− 1
EP (V arPn (X)) = V arP (X) ,

falls n > 1. Der mathematische Hintergrund ist, dass der Erwartungswert ein li-
nearer Operator ist. Er kommutiert mit linearen Operatoren. Aber die Varianz ist
ein quadratischer Operator, und dass macht eine Korrektur nötig, wenn man Konsi-
stenz will. Die entsprechend korrigierte Varianz wird oft als Stichprobenvarianz
bezeichnet.

Für die Schätzung der ersten beiden Momente eines Vektor von Zufallszah-
len stehen in R Funktionen bereit: mean() schätzt den Mittelwert und var() die

1-34 1. GRUNDLAGEN

(Stichproben-)Varianz. Die Funktion sd() schätzt die Standardabweichung eines
Vektors.

Aufgabe 1.19

Generieren Sie jeweils eine Stichprobe von 100 Zufallsvariablen
aus den Verteilungen mit den folgenden Dichten:

p(x) =


0 x < 0

1 0 ≤ x ≤ 1

0 x > 1

sowie

p(x) =



0 x ≤ 0

2 0 < x ≤ 1/4

0 1/4 < x ≤ 3/4

2 3/4 < x ≤ 1

0 x > 1

Schätzen Sie dazu Mittelwert, Varianz und Standardabwei-
chung.

Wiederholen Sie die Schätzung für 1000 Stichproben. Analy-
sieren Sie die Verteilung von geschätztem Mittelwert, Varianz
und Standardabweichung bei wiederholten Stichproben.

Momente sind durch einfache arithmetische Operationen zu berechnen und ihre
Kombination folgt (exakt oder approximierbar) einfachen Gesetzen. Sie sind jedoch
sehr sensitiv. Die Verschiebung einer beliebig kleinen Wahrscheinlichkeitsmasse kann
sie zum Zusammenbruch bringen. Für die empirische Verteilung bedeutet dies: stam-
men die beobachteten Daten zu einem Anteil 1−ε aus einer Modellverteilung und zu
einem Anteil ε aus einer anderen Verteilung, so können die Momente jeden beliebi-
gen Wert annehmen, für jeden beliebig kleinen Wert von ε. Quantile sind gegenüber
einem Zusammenbruch robuster als Momente. So müssen 50% der Daten“Ausreißer”
sein, bis der der Median beeinflusst wird, während das erste Moment, der Erwar-
tungswert, schon bei Veränderung nur eines Datenpunkte beliebige Werte annehmen
kann.

Mit der Verfügbarkeit von programmierbaren Rechnern haben Quantile als be-
schreibende Größe an Bedeutung gewonnen. Ihre Berechnung setzt implizit eine
Sortier-Operation voraus, ist also komplexer als die Berechnung von Momenten.
Auch die Regeln zur Kombination sind nicht so einfach wie bei Momenten und setzt
oft eine explizite Rechnung voraus. Aber mit den verfügbaren technischen Mitteln
ist dies keine wesentliche Einschränkung.

R bietet eine Reihe von Funktionen, um mit Quantilen zu arbeiten. quantile()
ist eine elementare Funktion, um Quantile zu bestimmen. Die Funktion summary()

1.4. MOMENTE UND QUANTILE 1-35

gibt eine Zusammenfassung der Verteilungsinformation, die auch auf Quantilen ba-
siert ist.

Aufgabe 1.20

Generieren Sie jeweils eine Stichprobe von 100 Zufallsvariablen
aus den Verteilungen von Aufgabe 1.19.
Schätzen Sie dazu Median, oberes und unteres Quartil.

Wiederholen Sie die Schätzung für 1000 Stichproben. Analy-
sieren Sie die Verteilung von geschätztem Median, oberen und
unterem Quartil bei wiederholten Stichproben.

Mit boxplot() erhält man eine grafische Repräsentation dieser Zusammenfas-
sung. Der hier benutzte “Box&Whisker-Plot” hat eine Reihe von Variationen. Des-
halb ist es bei der Interpretation notwendig, sich jeweils über die benutzten Details
zu informieren. Üblich ist eine Kennzeichnung durch eine “Box”, die den zentralen
Teil der Verteilung beschreibt. In der Standardversion kennzeichnet eine Linie den
Median, und eine “Box” darum reicht vom Median der oberen Hälfte bis zum Medi-
an der unteren Hälfte. Grob entspricht dies dem oberen und dem unteren Quartil.
Die feinere Definition sorgt dafür, dass die Information auch noch verlässlich wie-
der gegeben wird, wenn Bindungen, d.h. vielfache Beobachtungen des selben Wertes
auftreten. Die “Whisker” beschreiben die angrenzenden Bereiche. Ausreißer sind be-
sonders gekennzeichnet.

Beispiel 1.10:
Eingabe

oldpar <- par(mfrow = c(1, 4))

boxplot(runif(100), main = "uniform")

boxplot(rnorm(100), main = "normal")

boxplot(exp(rnorm(100)), main = "lognormal")

boxplot(rcauchy(100), main = "cauchy")

par(oldpar)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uniform

●

●

−
2

−
1

0
1

2

normal

●

●

●

●

●

●

●

●

●

0
1

2
3

4
5

6
7

lognormal

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

0
10

0
20

0
30

0
40

0

cauchy

1-36 1. GRUNDLAGEN

Theorem 1.4 gibt eine Möglichkeit, Konfidenzintervalle für Quantile zu bestim-
men, die allgemein gültig sind, unabhängig von der Form der zu Grunde liegenden
Verteilung.

Um das p-Quantil xp einer stetigen Verteilungsfunktion durch eine Ordnungssta-
tistik X(k:n) zum Konfidenzniveau 1− α nach oben abzuschätzen, suchen wir

min
k

: P (X(k:n) ≥ xp) ≥ 1− α.

Aber X(k:n) ≥ xp ⇐⇒ F (X(k:n) ≥ p und wegen Theorem 1.4 ist damit

P (X(k:n) ≥ xp) = 1− Fbeta(p; k, n− k + 1).

Wir können also mink direkt aus der Beta-Verteilung ermitteln, oder wir benutzen
die Beziehung zur Binomialverteilung und bestimmen k als

min
k

: Pbin(X ≤ k − 1;n, p) ≥ 1− α.

Aufgabe 1.21

Für stetige Verteilungen und den Verteilungsmedian Xmed ist
P (Xi ≥ Xmed) = 0.5. Deshalb kann ein k so bestimmt werden,
dass

k = min{k : P (X(k) ≤ Xmed) < α}
und X(k) als obere Abschätzung für den Median zum Konfi-
denzniveau 1− α gewählt werden.

Konstruieren Sie mit dieser Idee ein Konfidenzintervall für den
Median zum Konfidenzniveau 1− α = 0.9.

Modifizieren Sie den Box & Whiskerplot so, dass er dieses In-
tervall einzeichnet.

Hinweis: Sie benötigen dazu die Verteilungsfunktion FX , aus-
gewertet an der durch die Ordnungsstatistik X(k) definierten
Stelle. Die Verteilungen von FX(X(k)) wird in Theorem 1.4
diskutiert.

Der Boxplot bietet eine Option notch = TRUE, um Konfidenz-
intervalle zu generieren. Versuchen Sie, mithilfe der Dokumen-
tation herauszufinden, wie ein notch bestimmt wird. Verglei-
chen Sie Ihre Konfidenzintervalle mit den durch notch gekenn-
zeichneten Intervallen.

∗ Bestimmen Sie analog ein verteilungsunabhängiges Konfiden-
zintervall für den Interquartilsabstand.

∗ ∗ ∗ Ergänzen Sie den Box & Whiskerplot so, dass er die Skalenin-
formation statistisch verlässlich darstellt.

Hinweis: Wieso reicht es nicht, Konfidenzintervalle für die
Quartile einzuzeichnen?

1.5. ERGÄNZUNGEN 1-37

1.5. Ergänzungen

1.5.1. Ergänzung: Zufallszahlen. Wenn wir unabhängige identisch uniform
verteilte Zufallszahlen hätten, könnten wir auch Zufallszahlen mit vielen anderen
Verteilungen generieren. Z.B.

Lemma 1.13. (Inversionsmethode): Ist (Ui) eine Folge unabhängiger U [0, 1] ver-
teilter Zufallsvariablen und F eine Verteilungsfunktion, so ist (Xi) := (F−1Ui) eine
Folge unabhängiger Zufallsvariablen mit Verteilung F .

Analytisch ist dieses Lemma nur brauchbar, wenn F−1 bekannt ist. Numerisch
hilft es jedoch viel weiter: anstelle von F−1 werden Approximationen benutzt, oft
sogar nur eine Inversionstabelle.

Die Inversionsmethode ist eine Methode, aus gleichverteilten Zufallszahlen andere
Zielverteilungen abzuleiten. Weitere (evtl. effektivere) Methoden, aus gleichverteil-
ten Zufallszahlen andere Zielverteilungen abzuleiten, werden in der Literatur zur
statistischen Simulation diskutiert.

Für eine Reihe von Verteilungen werden transformierte Zufallsgeneratoren bereit-
gestellt. Eine Liste ist im Anhang (Seite A-43) angegeben. Zu jeder Verteilungsfamilie
gibt es dabei eine Reihe von Funktionen, deren Namen aus einem Kurznamen für
die Verteilung abgeleitet sind. Für die Familie xyz ist rxyz eine Funktion, die Zu-
fallszahlen erzeugt. dxyz berechnet die Dichte bzw. das Zählmaß für diese Familie,
pxyz die Verteilungsfunktion, und qxyz die Quantile3.

Übersicht: einige ausgewählte Verteilungen. Weitere Verteilungen siehe
A.23 (Seite A-43).

Verteilung Zufalls-
zahlen

Dichte Verteilungs-
funktion

Quantile

Binomial rbinom dbinom pbinom qbinom

Hypergeometrisch rhyper dhyper phyper qhyper

Poisson rpois dpois ppois qpois

Gauß rnorm dnorm pnorm qnorm

Exponential rexp dexp pexp qexp

1.5.2. Ergänzung: Grafische Vergleiche. Abweichungen von einfachen geo-
metrischen Formen werden besser wahrgenommen als Abweichungen zwischen all-
gemeinen Grafen ähnlicher Form. Deshalb kann es hilfreich sein, Darstellungen zu
wählen, die auf einfache Formen wie z.B. Geraden führen. So wählt man um zwei Ver-
teilungsfunktionen F,G zu vergleichen anstelle der Funktionsgraphen den Graphen
von

x 7→ (F (x), G(x)).

3d.h. mit den in der Statistik üblichen Bezeichnungen ist verwirrender Weise pxyz ≡ dxyz und
Fxyz ≡ pxyz.

1-38 1. GRUNDLAGEN

Dieser Graph heißt PP -Plot oder probability plot . Stimmen die Verteilungen
überein, so ist der Plot eine diagonale Gerade. Abweichungen von der Diagonalgestalt
sind leicht zu erkennen.

Alternativ kann die Merkmalsskala als Bezug genommen werden und der Graph
von

p 7→ (F−1(p), G−1(p))

betrachtet werden. Dieser Graph heißt QQ-Plot oder Quantilplot . Stimmen die
Verteilungen überein, so zeigt auch dieser Plot eine diagonale Gerade.

Im Spezialfall der uniformen Verteilung auf [0, 1] ist auf diesem Intervall x =
F (x) = F−1(x), d.h. QQ-Plot und PP -Plot stimmen überein und sind der Graph
der Verteilungsfunktion. Bei nicht-uniformen Verteilungen werden die Graphen im
PP -Plot auf die Wahrscheinlichkeitsskala [0, 1] standardisiert, und im QQ-Plot auf
die Merkmalsskala umskaliert.

Aufgabe 1.22

Erstellen Sie einen PP -Plot der t(ν)-Verteilung gegen die
Standardnormalverteilung im Bereich 0.01 ≤ p ≤ 0.99 für
ν = 1, 2, 3,

Erstellen Sie einen QQ-Plot der t(ν)-Verteilung gegen die
Standardnormalverteilung im Bereich −3 ≤ x ≤ 3 für ν =
1, 2, 3,

Wie groß muss ν jeweils sein, damit jeweils die t-Verteilung in
diesen Plots kaum von der Normalverteilung zu unterscheiden
ist?

Wie groß muss ν sein, damit die t-Verteilung bei einem Ver-
gleich der Verteilungsfunktionen kaum von der Normalvertei-
lung zu unterscheiden ist?

Können die Verteilungen durch eine affine Transformation im Merkmalsraum
ineinander überführt werden, so zeigt der QQ-Plot immer noch eine Gerade; Steigung
und Achsenabschnitt repräsentieren die affine Transformation. Dies ist zum Beispiel
so bei der Familie der Normalverteilungen: ist F die Standard-Normalverteilung
N(0, 1) und G = N(µ, σ2), so ist der QQ-Plot eine Gerade mit Achsenabschnitt µ
und Steigung σ.

Für empirische Verteilungen findet Korollar 1.5 Anwendung: anstelle von i/n wird
ein für die Schiefe korrigierter Bezugspunkt gewählt, damit im Mittel eine Gerade
erzeugt wird. Der Quantilplot mit dieser Korrktur für empirische Verteilungen ist
als Funktion qqplot() bereitgestellt. Für den Spezialfall der Normalverteilung ist
eine Variante von qqplot() als qqnorm() verfügbar, um eine empirische Verteilung
mit der theoretischen Normalverteilung zu vergleichen.

Durch die Transformationen auf die Wahrscheinlichkeits- bzw. Merkmalsskala
gewinnen die graphischen Verfahren an Schärfe. So ist zum Beispiel selbst bei einem
Stichprobenumfang von n = 50 die Verteilungsfunktion der Normalverteilung oft nur
für den geübten Betrachter von der uniformen zu unterscheiden. Im Normal-QQ-Plot

1.5. ERGÄNZUNGEN 1-39

hingegen zeigen sich uniforme Stichproben als deutlich nicht-linear, normalverteilte
Daten hingegen geben weitgehend lineare Bilder.

Zur Illustration erzeugen wir uns zunächst zufällige Datensätze:

Eingabe
unif50 <- runif(50)

unif100 <- runif(100)

norm50 <- rnorm(50)

norm100 <- rnorm(100)

lognorm50 <- exp(rnorm(50))

lognorm100 <- exp(rnorm(100))

Mit diesen Datensätzen generieren wir Plots der Verteilungsfunktionen.

Beispiel 1.11:
Eingabe

oldpar <- par(mfrow = c(2, 3))

plot(ecdf(unif50), pch = "[")

plot(ecdf(norm50), pch = "[")

plot(ecdf(lognorm50), pch = "[")

plot(ecdf(unif100), pch = "[")

plot(ecdf(norm100), pch = "[")

plot(ecdf(lognorm100), pch = "[")

par(oldpar)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(unif50)

x

F
n(

x)

[[[[[
[[

[[[[[
[[[

[[
[[[[

[[[
[[[

[[
[[[

[[[[
[[
[[
[[
[[

[[
[[

[[

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(norm50)

x

F
n(

x)

[[
[[

[[
[[[[

[[
[[
[[[

[[
[[[

[[
[[[

[[
[[[

[[
[[[

[[
[[

[[
[[
[[[[[

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(lognorm50)

x

F
n(

x)

[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[

[[
[[
[[[

[

[[[[[
[[

[[[[[
[[[

[[
[[[[

[[[
[[[

[[
[[[

[[[[
[[
[[
[[
[[

[[
[[

[[

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(norm50)

x

F
n(

x)

[[
[[

[[
[[[[

[[
[[
[[[

[[
[[[

[[
[[[

[[
[[[

[[
[[[

[[
[[

[[
[[
[[[[[

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(lognorm50)

x

F
n(

x)

[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[

[[
[[
[[[

[[
[[
[[
[[
[[[

[[
[[[[

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(unif100)

x

F
n(

x)

[[[
[[[

[[[
[[[

[[[
[[[

[[[
[[[
[[[
[[[

[[[[
[[[
[[[

[[[
[[[

[[[
[[[
[[[[[

[[[
[[[
[[[
[[[

[[[[
[[[[

[[[
[[[[[[[[[[

[[[[[
[[[

[[

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(norm100)

x

F
n(

x)

[[[[[[
[[[

[[[
[[[[[

[[[
[[[

[[[
[[[
[[[

[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[

[[[
[[[
[[[
[[[
[[[
[[[
[[[[[[[[

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(lognorm100)

x

F
n(

x)

[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[
[[[[[

[[[
[[[

[[[[[[[[

Zum Vergleich dazu die entsprechenden QQ-Plots für die selben Daten:

1-40 1. GRUNDLAGEN

Beispiel 1.12:
Eingabe

oldpar <- par(mfrow = c(2, 3))

qqnorm(unif50, main = "Normal Q-Q unif50")

qqnorm(norm50, main = "Normal Q-Q norm50")

qqnorm(lognorm50, main = "Normal Q-Q lognorm50")

qqnorm(unif100, main = "Normal Q-Q unif100")

qqnorm(norm100, main = "Normal Q-Q norm100")

qqnorm(lognorm100, main = "Normal Q-Q lognorm100")

par(oldpar)

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normal Q−Q unif50

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2

Normal Q−Q norm50

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●
●

●
●

●●

●

●

●

●
●

●

● ●

●

−2 −1 0 1 2

0
2

4
6

8

Normal Q−Q lognorm50

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normal Q−Q unif100

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Normal Q−Q norm100

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●
●●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

0
2

4
6

8
10

Normal Q−Q lognorm100

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Aufgabe 1.23

Benutzen Sie PP -Plots anstelle von Verteilungsfunktionen, um
die χ2- und Kolmogorov-Smirnov-Approximationen darzustel-
len.

Aufgabe 1.24

Benutzen Sie QQ-Plots anstelle von Verteilungsfunktionen.
Können Sie in diesem Plot mit Hilfe der χ2- bzw. Kolmogorov-
Smirnov-Stastistik Konfidenzbereiche darstellen?

1.5. ERGÄNZUNGEN 1-41

Um einen Eindruck über die Fluktuation zu bekommen, müssen wir empirische
Plots mit typischen Plots einer Modellverteilung vergleichen. Eine Plot-Matrix ist
ein einfacher Weg dazu. Wir geben hier ein Beispiel für den Normal-QQ-Plot, das
wir gleich als Funktion implementieren:

Eingabe
qqnormx <- function(x, nrow = 5, ncol = 5, main = deparse(substitute(x))){

oldpar <- par(mfrow = c(nrow, ncol))

qqnorm(x, main = main)

for (i in 1:(nrow*ncol-1)) qqnorm(rnorm(length(x)), main = "N(0, 1)")

par(oldpar)

}

Wir haben in diesem Beispiel eine for -Schleife benutzt. Wie alle Programmier-
sprachen hat R Kontrollstrukuren, wie bedingte Anweisungen und Schleifen. Eine
Übersicht über die Kontrollstrukturen in R ist im Anhang A.14 zu finden.

Abweichung von einer linearen Struktur ist als Fluktuation zu betrachten, wenn
sie im Rahmen der simulierten Beispiele bleibt. Ist der zu untersuchende Datensatz
extrem im Vergleich zu den simulierten Beispiele, so widerspricht das der Modellver-
teilung.

Beispiel 1.13:
Eingabe

qqnormx(runif(100))

●

●

●●
●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●
●●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 1 2

0.
0

0.
4

0.
8

runif(100)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●
●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●
●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●
●

●

●●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●
●●

●

●
●●

●

●●
●

●●●

●

●
●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●●

●●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●● ●

●●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●

●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●
●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●

●

●

●●

●
●

●

●

●
●●

●

●

●●
●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●●

●
●

●
●

●
●

●

●

●●

●
●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●●●

●

●
●

●●●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●

●
●●

●
●

●
●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●●

●

●

●

●
●

●
●●

●●

●

●
●●

●

●●
●●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●●

●

●

●

●

●●

● ●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

−2 0 1 2

−
3

−
1

1

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●●

●

●●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

−2 0 1 2

−
2

0
1

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●
●

●

●

●

●●
●●

●

●

●

●

●
●

●●
●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●●●

●●
●

●●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●●●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●
●

●●
●

●

●

●

●
●

●●●

●●

●

●

●
●●●●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●●●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●●

●

●

●

●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●●

●

●
●

●●

●

●
●

●

●
●

●●

●

●

●

●●
●

●

●

●●●
●●

●

●

●

●
●

●●●

●

●●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

−2 0 1 2

−
2

0
1

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 1 2

−
2

0
1

2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●●
●

●

●
●

●

−2 0 1 2

−
2

0
2

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●
●●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●
●

●
●

●

●

●●●

●

−2 0 1 2

−
3

−
1

1

N(0, 1)

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

1-42 1. GRUNDLAGEN

Auf lange Sicht lohnt es sich, die Plot-Funktionen so zu modifizieren, dass sie
auch Informationen über die zu erwartende Fluktuation wieder geben. In Beispiel 1.9
haben wir für die Verteilungsfunktion Monte-Carlo-Bänder konstruiert. Wir können
diese Idee auf den PP -Plot und den QQ-Plot übertragen. Dazu ist es nur notwendig,
die Bänder jeweils in der für den Plot geeigneten Skala darzustellen.

Aufgabe 1.25

Erzeugen Sie sich mit rnorm() Pseudozufallszahlen für die
Gaußverteilung zum Stichprobenumfang n = 10, 20, 50, 100.

Erzeugen Sie jeweils einen PP -Plot und einen QQ-Plot, wobei
die theoretische Gaußverteilung als Bezug dient.

Fügen Sie Monte-Carlo-Bänder aus der Einhüllenden von 19
Simulationen hinzu.
Sie müssen zunächst anstelle der uniformen Verteilung die Nor-
malverteilung zur Erzeugung der Monte-Carlo-Bänder benut-
zen. Sie müssen außerdem die Resultate im Koordinatensy-
stem des QQ-Plots darstellen, d.h. die x-Achse repräsentiert
die Quantile der Normalverteilung. Hinweis: inspizieren Sie da-
zu die Quelle von qqnorm().

* Die Bänder sind zunächst Bänder für die Standard-
Normalverteilung. Finden Sie Bänder für die vorliegenden Da-
ten.

1.5.3. Ergänzung: Grafik-Aufbereitung. Bislang wurde die R-Grafik in ru-
dimentärer Form benutzt. Für ernsthafte Arbeit muss die Grafik so aufbereitet
werden, dass ihre Bestandteile identifiziert und wiedererkennbar sind. Dazu gehö-
ren Überschriftungen, Achsenkennzeichnungen etc. R unterscheidet zwischen “high
level”-Grafik und “low level”. “High level”-Funktionen erzeugen eine neue Grafik. Sie
bieten darüber hinaus Möglichkeiten, allgemeine Grafikparameter zu steuern.

Die “low level”-Funktionen fügen Elemente zu vorhandenen Grafiken hinzu oder
modifizieren die Grafik im Detail. Die Funktion legend() zum Beispiel kann Legen-
den innerhalb der Graphik hinzu fügen.

1.5. ERGÄNZUNGEN 1-43

Beispiel 1.14:
Eingabe

plot(1:10, xlab = "xlab", ylab = "ylab", main = "main", sub = "sub")

mtext("mtext 1", side = 1, col = "blue")

mtext("mtext 2", side = 2, col = "blue")

mtext("mtext 3", side = 3, col = "blue")

mtext("mtext 4", side = 4, col = "blue")

legend("topleft", legend = "topleft legend")

legend("center", legend = "center" , lty = 1:4, title = "line types")

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

main

sub
xlab

yl
ab

mtext 1

m
te

xt
 2

mtext 3

m
te

xt
 4

topleft legend

line types

center

Aufgabe 1.26

Inspizieren Sie mit help(plot) die Steuerungsmöglichkeiten
der plot-Funktion. Einige Detail-Information zu den Parame-
tern erhalten Sie erst in help(plot.default). Korrigieren Sie
Ihren letzten Plot so, dass er eine korrekte Überschrift trägt.

Weitere Hinweise:[R D07a] Ch. 12.

1.5.4. Ergänzung: Funktionen. R-Kommandos können zu Funktionen zu-
sammengefasst werden. Funktionen können parametrisiert sein. Funktionen erlauben
eine flexible Wiederverwendbarkeit.

Beispiel für eine Funktion

1-44 1. GRUNDLAGEN

Beispiel 1.15:

Eingabe
ppdemo <- function (x, samps = 19) {

samps: nr of simulations

y <- (1:length(x))/length(x)

plot(sort(x), y, xlab = substitute(x), ylab = expression(F[n]),

main = "Verteilungsfunktion mit Monte-Carlo-Band (unif.)",

type = "s")

mtext(paste(samps, "Monte-Carlo-Stichproben"), side = 3)

samples <- matrix(runif(length(x)* samps), nrow = length(x), ncol = samps)

samples <- apply(samples, 2, sort)

envelope <- t(apply(samples, 1, range))

lines(envelope[, 1], y, type = "s", col = "red");

lines(envelope[, 2], y, type = "s", col = "red")

}

Wir haben bei ppdemo() die Funktion mtext() benutzt, die Randbeschriftungen
erlaubt.

Funktionen werden in der Form 〈Name〉(〈Aktuelle Parameterliste〉) aufgerufen.

Beispiel 1.16:
Eingabe

z100 <- runif(100)

ppdemo(z100)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Verteilungsfunktion mit Monte−Carlo−Band (unif.)

z100

F
n

19 Monte−Carlo−Stichproben

1.5. ERGÄNZUNGEN 1-45

Wird nur der Name der Funktion eingegeben, so wird die Definition der Funktion
zurück gegeben, d.h. die Funktion wird aufgelistet. Beispiel:

Beispiel 1.17:
Eingabe

ppdemo

Ausgabe
function (x, samps = 19) {

samps: nr of simulations

y <- (1:length(x))/length(x)
plot(sort(x), y, xlab = substitute(x), ylab = expression(F[n]),

main = "Verteilungsfunktion mit Monte-Carlo-Band (unif.)",
type = "s")

mtext(paste(samps, "Monte-Carlo-Stichproben"), side = 3)
samples <- matrix(runif(length(x)* samps), nrow = length(x), ncol = samps)
samples <- apply(samples, 2, sort)
envelope <- t(apply(samples, 1, range))
lines(envelope[, 1], y, type = "s", col = "red");
lines(envelope[, 2], y, type = "s", col = "red")

}

Aufgabe 1.27

Inspizieren Sie runif() mit qqplot() und plot().
Überarbeiten Sie Ihre bisherigen Programmieraufgaben und schrei-
ben Sie die wiederverwendbaren Teile als Funktionen.

Parameter bei Funktionen werden dem Wert nach übergeben. Jede Funktion erhält eine
Kopie der aktuellen Parameterwerte. Dies sorgt für eine sichere Programmierumgebung.
Auf der anderen Seite führt dies zu eine Speicherbelastung und bringt einen Zeitverlust mit
sich. In Situationen, wo der Parameterumfang groß ist oder die Zeit eine kritische Größe
ist, kann dieser Aufwand vermieden werden, indem direkt auf Variable zugegriffen wird,
die in der Umgebung der Funktion definiert sind. Entsprechende Techniken sind in [GI00]
beschrieben.

Funktionen in R können auch geschachtelt sein, d. h. innerhalb einer Funktion kön-
ne auch wieder Funktionen definiert werden. Diese sind nur innerhalb der umgebenden
Funktion sichtbar.

Funktionen können Objekte als Resultate haben. Ein Objekt wird explizit als Resultat
übergeben mit return(obj). Das Resultat kann auch implizit übergeben werden: wird das
Ende einer Funktion erreicht, ohne dass return() aufgerufen wurden, so wird der Wert
des letzten ausgewerteten Ausdruck übergeben.

Eingabe
circlearea <- function(r) r^2 * pi

circlearea(1:4)

Ausgabe
[1] 3.141593 12.566371 28.274334 50.265482

1-46 1. GRUNDLAGEN

Resultate können auch bereit gestellt werde, so dass sie nur auf Anfrage übergeben
werden. Wir haben diese Technik beim Histogramm kennen gelernt. Der Aufruf hist(x)
übergibt kein Resultat, sondern hat nur den (gewünschten) Seiteneffekt, ein Histogramm
zu zeichnen. Benutzen wir hist() jedoch in einem Ausdruck, zum Beispiel in einer Zu-
weisung xhist <- hist(x), so erhalten wir als Wert die Beschreibung des Histogramms.
Um Resultate nur bei Bedarf zu übergeben, wird anstelle return(obj) der Aufruf invi-
sible(obj) benutzt.

Aufgabe 1.28

Schreiben Sie als Funktionen:
• Eine Funktion ehist, die ein Histogramm mit Ergänzun-

gen zeigt.
• Eine Funktion eecdf, die die empirische Verteilung zeigt.
• Eine Funkion eqqnorm, die einen QQ-Plot mit der

Standard-Normalverteilung vergleicht.
• Eine Funkion eboxplot, die einen Box&Whisker-Plot

zeigt.

• Eine zusammenfasende Funktion eplot, die eine Plot-
Matrix mit diesen vier Plots zeigt.

Ihre Funktionen sollten die Standardfunktionen so aufrufen (oder
modifizieren, falls notwendig), dass die Plots eine angemessene Be-
schriftung erhalten.

Während Anweisungen in R schrittweise ausgeführt werden und so die Resultate bei
jedem Schritt inspiziert werden können, werden beim Aufruf einer Funktion alle Anweisun-
gen in der Funktion als Einheit ausgeführt. Dies kann eine Fehlersuche schwierig machen.
R bietet Möglichkeiten, die Inspektion gezielt auf Funktionen zu ermöglichen. Details dazu
finden sich im Anhang A.13 “Debugging und Profiling” auf Seite Seite A-21.

1.5.5. Ergänzung: Das Innere von R. Ein typischer Arbeitsabschnitt von R ver-
arbeitet Kommandos in drei Teilschritten:

• parse() analysiert einen Eingabetext und wandelt ihn in ein interne Darstellung
als R-Ausdruck. R-Ausdrücke sind spezielle R-Objekte.
• eval() interpretiert diesen Ausdruck und wertet ihn aus. Das Resultat ist wieder

ein R-Objekt.
• print() zeigt das resultierende Objekt.

Details sind zu ergänzen:

1.5.5.1. Parse. Der erste Schritt besteht aus zwei Teilen: einem Leseprozess, der die
Eingabe einscannt und in Bausteine (Tokens) zerlegt, und dem eigentlichen Parsing, das
die Bausteine falls möglich zu einem syntaktisch korrekten Ausdruck zusammenfasst. Die
Funktion parse() fasst beide Schritte zusammen. Dabei kann parse() sowohl auf lokalen
Dateien arbeiten, als auch auf externen, durch eine URL-Referenz bezeichneten Dateien.

Als inverse Funktion steht substitute() zur Verfügung. Eine typische Anwendung ist
es, aktuelle Parameter eines Funktionsaufrufs zu entschlüsseln und informative Beschrif-
tungen zu erzeugen.

1.5. ERGÄNZUNGEN 1-47

1.5.5.2. Eval. Die Funktion eval() wertet einen R-Ausdruck aus. Dazu müssen die
Referenzen im Ausdruck je nach den aktuellen Umgebungsbedingungen in entsprechende
Werte übersetzt werden. Da R ein interpretiertes System ist, können die Umgebungs-
bedingungen variieren; je nach Umgebung kann derselbe Ausdruck zu unterschiedlichen
Resultaten führen.

Jede Funktion definiert eine eigene lokale Umgebung. Funktionen können geschachtelt
sein und somit auch die Umgebungen. Die Umgebung kann auch dadurch verändert werden,
dass Zusatzpakete für R geladen werden. Die aktuelle unmittelbare Umgebung kann mit
environment() erfragt werden. Mit search() erhält man eine Liste der Umgebungen, die
sukzessive durchsucht werden, um Referenzen aufzulösen. Mit ls() erhält man eine Liste
der Objekte in einer Umgebung.

Die Erweiterbarkeit von R bringt die Möglichkeit mit sich, dass Bezeichnungen kol-
lidieren und damit die Übersetzung von Referenzen in aktuelle Werte fraglich wird. Als
Schutz dagegen bietet R 2.x die Möglichkeit, Bezeichnungen in (geschützten) Namensräu-
men zusammen zu fassen. In den meisten Fällen ist dies transparent für den Benutzer;
die Auflösung von Namen folgt der Suchreihenfolge, die durch die Kette der Umgebungen
bestimmt ist. Um explizit auf Objekte eines bestimmten Namensraums zuzugreifen, kann
dieser mit angegeben werden (z. B. base::pi als expliziter Name für die Konstante pi im
Namensraum base).

1.5.5.3. Print. Die Funktion print() ist als polymorphe Funktion implementiert.
Um print() auszuführen bestimmt R anhand der Klasse des zu druckenden Objekts eine
geeignete Methode. Details folgen später in Abschnitt 2.6.5 Seite 2-39.

1.5.5.4. Ausführung von Dateien. Die Funktion source() steht bereit, um eine Datei
als Eingabe für R zu benutzen. Dabei kann die Datei lokal sein, oder über eine URL-
Referenz bezeichnet sein. Konventionell wird für die Namen von R-Kommandodateien die
Endung .R benutzt.

Die Funktion Sweave() erlaubt es, Dokumentation und Kommandos miteinander zu
verweben. Konventionell wird für die Namen von Sweave() -Eingabedateien die Endung
.Rnw benutzt. Details zum Format finden sich in der Sweave() -Dokumentation
<http://www.ci.tuwien.ac.at/~leisch/Sweave/Sweave-manual-20060104.pdf>.

1.5.6. Ergänzung: Pakete. Funktionen, Beispiele, Datensätze etc. können in R zu
Paketen zusammengefasst werden, die bestimmten Konventionen entsprechen. Die Kon-
ventionen unterscheiden sich bei verschiedenen Implementierungen. Als aktuelle Referenz
sollten die Konventionen von R [R D08] benutzt werden, denen wir auch hier folgen. Eine
Reihe von Paketen sind Standardbestandteil von R. Pakete für spezielle Zwecke findet man
im Internet z.B über http://www.cran.r-project.org/src/contrib/PACKAGES.html.

Nicht-Standard-Pakete müssen zunächst im R-System installiert werden. In der Regel
gibt es dazu betriebssystem-spezifische Kommandos. Komfortabler ist jedoch die Installa-
tion aus R mit der Funktionen install.packages() . Ist keine spezielle Quelle angegeben,
so greift install.packages dabei auf eine vorbereitete Adresse (in der Regel die oben
angegebene) zurück. Sie können Pakete jedoch von jedem beliebigen Speicher laden. Ins-
besondere kann mit install.packages(〈package〉, repos = NULL) unter 〈package〉 ein
direkter Zugriffspfad auf Ihrem Rechner angegeben werden.

Die Funktion update.packages() vergleicht installierte Versionen mit dem aktuellen
Stand im Netz und frischt gegebenenfalls die installierte Version auf.

Installierte Pakete werden mit

1-48 1. GRUNDLAGEN

library(pkgname)

geladen. Danach sind die im Paket definierten Objekte (Funktionen, Datensätze, . . .) über
den aktuellen Suchpfad auffindbar und direkt verwendbar.

Pakete werden mit

detach(pkgname)

wieder frei gegeben, d.h. ihre Objekte erscheinen nicht mehr im Suchpfad.

Technisch sind Pakete Verzeichnisse, die den R-Konventionen folgen. Üblich liegen sie
in gepackter Form als .tar.gz-Files vor. In der Regel wird man zunächst als Benutzer
vorbereitete Binärpakete installieren. Nur selten muss man auf die Quellpakete anderer
Entwickler zurückgreifen.

Bei der Organisation der eigenen Arbeit lohnt es sich, den R-Konventionen zu folgen
und zusammen gehörende Teile als R-Pakete zu organisieren. Dann stellt R eine ganze
Reihe von Werkzeugen zur Unterstützung bereit. Die Konventionen und die bereitgestellten
Werkzeuge sind in [R D08] dokumentiert. Für Unix/Linux/Mac OS X-Benutzer sind die
wichtigsten Werkzeuge als Kommandos verfügbar:
R CMD check <directory> # überprüft ein Verzeichnis

R CMD build <directory> # generiert ein R-Paket

Als Einstieg: Die Funktion package.skeleton() hilft bei der Konstruktion neuer Pa-
kete. package.skeleton() erzeugt dabei außer einem vorbereiteten Paket eine Hilfsdatei,
die die weiteren Schritte zur Erzeugung eines ladbaren Pakets beschreibt.

Pakete müssen eine Datei DESCRIPTION mit bestimmter Information enthalten. Die
Details sind in [R D08] beschrieben, und ein Prototyp wird von package.skeleton()

erzeugt. Weiteres ist optional.

Name Art Inhalt

DESCRIPTION Datei eine Herkunftsbeschreibung nach Format-
konventionen.

R Verzeichnis R code. Dateien in diesem Verzeichnis soll-
ten mit source() gelesen werden können.
Empfohlene Namensendung: .R .

data Verzeichnis Zusätzliche Daten. Dateien in diesem Ver-
zeichnis sollten mit data() gelesen werden
können.

Empfohlene Namensendungen und Formate:

.R für R-Code. Alternativ: .r

.tab für Tabellen. Alternativ: .txt, .csv

.RData für Ausgaben von save() . Alter-
nativ: .rda.

Das Verzeichnis sollte eine Datei 00Index
mit einer Übersicht über die Datensätze ent-
halten.

(Fortsetzung)→

1.6. STATISTISCHE ZUSAMMENFASSUNG 1-49

Name Art Inhalt

exec Verzeichnis Zusätzliche ausführbare Dateien, z.B. Perl-
oder Shell-Skripte.

inst Verzeichnis Wird (rekursiv) in das Zielverzeichnis ko-
piert. Dieses Verzeichnis kann insbesondere
eine Datei CITATION enthalten, die in R
mit einer Funktion citation() ausgewertet
wird.

man Verzeichnis Dokumentation im R-Dokumentationsfor-
mat (siehe: [R D08] “Writing R extensions”,
zugänglich über

<http://www.cran.r-project.org/>).

Empfohlene Namensendung: .Rd

src Verzeichnis Fortran, C und andere Quellen.

demo Verzeichnis ausführbare Beispiele. Dieses Verzeichnung
sollte in einer Datei 00Index eine Beschrei-
bung enthalten.

Aufgabe 1.29

Installieren Sie die Funktionen der letzten Aufgaben als Paket. Das
Paket sollte enthalten:

• Eine Funktion ehist, die ein Histogramm mit Ergänzun-
gen zeigt.
• Eine Funktion eecdf, die die empirische Verteilung zeigt.
• Eine Funkion eqqnorm, die einen QQ-Plot mit der

Standard-Normalverteilung vergleicht
• Eine Funkion eboxplot, die einen Box&Whisker-Plot

zeigt.

• Eine zusammenfassende Funktion eplot, die eine Plot-
Matrix mit diesen vier Plots zeigt.

Sie können das Paket mit package.skeleton() vorbereiten, wenn
Sie die einzelne Funktionen definiert haben.

Laden Sie dieses Paket. Überprüfen Sie, ob Sie das Paket auch nach
Neustart wieder mit library() laden können.

Hinweis: ist x ein Objekt, so erzeugt die Funktion prompt(x) ein
Gerüst, aus dem eine Dokumentation für x entwickelt werden kann.

1.6. Statistische Zusammenfassung

Als Leitbeispiel diente in diesem Kapitel die statistische Analyse einer (univariaten)
Stichprobe. Dabei haben wir eine in der Statistik zentrale Modellvorstellung benutzt: die
Werte der Stichprobe werden als Zufallsvariable aufgefasst, die aus einer zugrundeliegen-
den theoretischen Verteilung entstammen. Ziel der statistischen Analyse ist der Schluss aus
der empirischen Verteilung der Stichprobe auf die unbekannte zu Grunde liegende theore-
tische Verteilung. Dieser Schluss kann zwei Formen annehmen: wir können die empirische

1-50 1. GRUNDLAGEN

Verteilung mit einer hypothetischen Verteilung vergleichen. Dies ist das Vorgehen der klas-
sischen Statistik. Oder wir können versuchen, aus der empirischen Verteilung Merkmale der
zu Grunde liegenden Verteilung zu extrahieren. Dies ist das Vorgehen der Datenanalyse.

Beide Wege sind eng miteinander verwandt. Das wesentliche Werkzeug für beide war
hier die Untersuchung der empirischen Verteilungsfunktion.

1.7. Literatur und weitere Hinweise:

[R D08]R Development Core Team (2000-2005): Writing R extensions.
Siehe: <http://www.r-project.org/manuals.html>.

[GS77] Gänßler, P; Stute, W.: Wahrscheinlichkeitstheorie. Heidelberg: Springer 1977.

[GI00] Gentleman, R.; Ihaka, R.: Lexical Scope and Statistical Computing. Journal of
Computational and Graphical Statistics 9 (2000) 491–508.

KAPITEL 2

Regression

2.1. Allgemeines Regressionsmodell

Aus der Tradition experimenteller Wissenschaften stammt das Paradigma des (kon-
trollierten) Versuchs. Unter Versuchsbedingungen x wird ein Resultat y gemessen, zusam-
mengesetzt aus einem systematischen Effekt m(x) und einem Messfehler ε.

y = m(x) + ε.

Dies ist eine ganz spezielle Betrachtungsweise; es wird nicht unvoreingenommen das ge-
meinsame Verhalten von x und y untersucht, sondern eine Unsymmetrie hineingesteckt: x
ist die “Ursache”, y (oder eine Veränderung von y) der Effekt. Die “Ursache” x ist in dieser
Vorstellung vorgegeben oder direkt kontrollierbar; y ist mittelbar (über die Versuchsbedin-
gungen) beeinflusst. In dieser Vorstellung ist ε ein Messfehler, der durch geeignete Rah-
menbedingungen des Versuchs möglichst klein gehalten wird und im Mittel verschwinden
sollte: es sollte keinen systematischen Fehler geben.

Vom statistischen Standpunkt ist der wesentliche Unterschied der Rollen von x und
y, dass für y das stochastische Verhalten mithilfe von ε modelliert wird, während x als
“gegeben” angenommen wird und dafür keine Stochastik im Modell vorgesehen ist.

Um einen formal überschaubaren Rahmen zu bekommen, betrachten wir den Fall,
dass x als Vektor von reellen Variablen repräsentiert werden kann, x ∈ Rp, und dass
die Messwerte eindimensionale reelle Werte sind, y ∈ R. In einem stochastischen Modell
kann die oben skizzierte Idee formal gefasst werden. Eine mögliche Formalisierung ist
es, den Messfehler ε als Zufallsvariable zu modellieren. Nehmen wir ferner an, dass der
Erwartungswert von ε existiert, so können wir die Annahme, dass der Messfehler im Mittel
verschwindet, formalisieren als E(ε) = 0.

Um den systematischen Effekt m zu untersuchen, betrachten wir Messreihen. Der Index
i, i = 1, . . . , n, kennzeichnet den Messpunkt, und das Modell ist damit

yi = m(xi) + εi i = 1, . . . , n
mit xi ∈ Rp

E(εi) = 0.

Das statistische Problem ist:
schätze die Funktion m aus den Messwerten yi bei Messbedingung xi.

Zu diesem Problem der Kurvenschätzung oder “Regression” gibt es eine umfangreiche
Literatur in der Statistik. Wir wollen uns hier auf das “computing” konzentrieren. Dazu
betrachten wir zunächst eine sehr vereinfachte Version des Regressionsproblems, die lineare
Regression. Wesentliche Aspekte lassen sich bereits an diesem Problem illustrieren.

Einer einheitlichen Sprechweise zuliebe nennen wir yi die Respons und die Komponen-
ten von xij mit j = 1, . . . , p die Regressoren . Die Funktion m heißt die Modellfunktion .

2-1

2-2 2. REGRESSION

2.2. Lineares Model

Wir beginnen mit dem Regressionsmodell - jetzt in Vektorschreibweise1 -

Y = m(X) + ε

Y mit Werten in Rn

X ∈ Rn×p

E(ε) = 0

(2.1)

und setzen zusätzlich voraus, dass m linear ist. Dann gibt es (mindestens) einen Vektor
β ∈ Rp, so dass

m(X) = Xβ

und das Regressionsproblem ist jetzt reduziert auf die Aufgabe, β aus der Information
(Y,X) zu schätzen.

Das so modifizierte Regressionsmodell
Y = Xβ + ε

Y mit Werten in Rn

X ∈ Rn×p

β ∈ Rp

E(ε) = 0

(2.2)

heißt lineares Modell oder auch lineare Regression . Die Matrix X, in der die Werte
der Regressoren zusammengefasst ist, also die Information über die Versuchsbedingungen,
heißt Design-Matrix des Modells.

Beispiel 2.1. (Einfache lineare Regression) Wird die Versuchsbedingung durch den
Wert einer reellen Variablen beschrieben, von der der Versuchsausgang über eine lineare
Modellfunktion

m(x) = a+ b · x,
abhängt, so können wir eine Versuchsserie mit Versuchsausgang yi bei Versuchsbedingung
xi koordinatenweise schreiben als

(2.3) yi = a+ b · xi + εi.

In Matrixschreibweise können wir die Versuchsserie zusammenfassen als lineares Modell

(2.4) Y =

1 x1
...

...

1 xn


︸ ︷︷ ︸

X

·

(
a

b

)
︸ ︷︷ ︸
β

+ ε.

Die einfache lineare Regression ist ein Beispiel für lineare Modelle. Die Einweg-Klassifikation
ist das andere Basis-Beispiel.

Beispiel 2.2. (Einweg-Klassifikation) Zum Vergleich von k Behandlungen (insbeson-
dere für den Spezialfall k = 2) benutzen wir Indikatorvariablen, die in einer Matrix zusam-
mengefasst werden. Die Indikatorvariable für Behandlung i steht in Spalte i. In der Regel

1Wir wechseln Konventionen und Schreibweisen, wenn es hilfreich ist. Die Verwirrung gehört
zu den Konventionen: in einigen Konventionen kennzeichnen Großbuchstaben Zufallsvariable, in
anderen Funktionen, in wieder anderen Vektoren. Die Auflösung bleibt jeweils dem Leser überlassen.

2.2. LINEARES MODEL 2-3

haben wir wiederholte Beobachtungen j = 1, . . . , ni unter Behandlung i, insgesamt also
n =

∑k
i=1 ni Beobachtungen. Dem Modell

(2.5) Y =



1 0 . . . 0
...

...
...

...

1 0 . . . 0

0 1 . . . 0
...

...
...

...

0 1 . . . 0

0 0 . . . 1
...

...
...

...

0 0 . . . 1


︸ ︷︷ ︸

X

·


µ1

µ2
...

µk



︸ ︷︷ ︸
β

+ ε.

entspricht in Koordinaten

(2.6) yij = µi + εij .

Dies ist das typische Modell, um die Hypothese “kein Unterschied”µ1 = . . . = µk gegen
die Alternative zu testen, dass sich die Behandlungen im Mittel unterscheiden.

Der selbe Zusammenhang kann auch dargestellt werden, wenn wir die Messwerte als
Summe eines Grundwertes µ0 und dazu eines Behandlungseffekts µ′i = µi−µ0 interpretie-
ren. Dies entspricht in Koordinaten

(2.7) yij = µ0 + µ′i + εij .

In Matrixschreibweise ist dies

(2.8) Y =



1 1 0 . . . 0
...

...
...

...

1 1 0 . . . 0

1 0 1 . . . 0
...

...
...

...

1 0 1 . . . 0

1 0 0 . . . 1
...

...
...

...

1 0 0 . . . 1


︸ ︷︷ ︸

X′

·



µ0

µ′1

µ′2
...

µ′k



︸ ︷︷ ︸
β′

+ ε.

Beispiel 2.2 illustriert, dass die Darstellung eines Problems als lineares Modell nicht
eindeutig ist. (2.5) und (2.8) sind gleichwertige Darstellungen und nur aus der Anwendung
kann entschieden werden, welche den Vorrang hat.

Für die mathematische Analyse ist die Design-Matrix X ein wesentliches Hilfsmittel.
Für die Datenanalyse können wir R zu Hilfe nehmen, um diese Matrix (implizit) für uns zu
erstellen. R versteht eine spezielle Notation, die Wilkinson-Rogers-Notation , mit der
Modelle beschrieben werden können. In dieser Notation schreiben wir

y ∼ x.

2-4 2. REGRESSION

Der Fehlerterm wird in diesem Modell nicht notiert.

Der konstante Term wird implizit angenommen. Für die Einweg-Klassifikation erhalten
wir also das Modell (2.8). Wenn wir keinen konstanten Term wollen (also bei der Regres-
sion die Regressionsgerade durch den Ursprung geht, bzw. bei der Einweg-Klassifikation
das Modell (2.5) benutzt und kein Gesamtmittel vorgegeben sein soll), so haben wir in
Koordinatenschreibweise

yi = b · xi + εi.

In der Wilkinson-Rogers-Notation muss der konstante Term explizit auf Null gesetzt wer-
den:

y ∼ 0 + x.

Weitere Regressoren können mit dem Operator + gekennzeichnet werden. So entspricht
y ∼ u + v in Koordinaten dem Modell

yi = a+ b · ui + c · vi + εi.

Wir kommen in den Abschnitten 2.2.4 und 2.3 noch auf diese Notation zurück.

Es gibt eine umfangreiche Literatur über lineare Modelle. Das Buch “The Theory of
Linear Models” von Bent Jørgensen [Jør93] ist besonders zu empfehlen. Es deckt den
mathematischen Hintergrund dieses Kapitels weitgehend ab und enthält zahlreiche illu-
strierende Beispiele.

2.2.1. Faktoren. Mit Hilfe der Notation zur Design- und Modellbeschreibung kann
die Übersetzung zwischen einer fallorientierten Beschreibung eines Designs in eine Design-
Matrix für ein lineares Modell in kanonischer Form automatisch geschehen. Bisweilen
braucht die Übersetzung etwas Nachhilfe. Betrachten Sie z.B. einen Datensatz

y <- c(1.1, 1.2, 2.4, 2.3, 1.8, 1.9)

x <- c(1, 1, 2, 2, 3, 3).

Der Vektor x kann als quantitativer Vektor für das Regressions-Modell

yi = a+ b xi + εi

als Regressor gemeint sein, oder es kann in der Einweg-Klassifikation, dem Modell der
Einweg-Varianzanalyse,

yi x = µ+ αx + εi x

die Kennzeichnung einer Behandlungsgruppe sein. Um beide Möglichkeiten zu unterschei-
den, können Vektoren in R als Faktoren definiert werden. Vektoren, die keine Faktoren
sind, werden als quantitative Variable behandelt wie im ersten Beispiel. Faktoren werden
als Kennzeichner behandelt und in der Design-Matrix in entsprechende Indikatorvariable
übersetzt. So ergibt

y ∼ x

das Regressionsmodell, jedoch
y ∼ factor(x)

das Varianz-Modell für das Einweg-Layout.

Durch einen Parameter ordered = TRUE kann beim Aufruf der Funktion factor() die
erzeugte Variable als geordnet gekennzeichnet werden. Die erzeugte Variable wird dann bei
den Auswertungen als ordinal skaliert behandelt.

y ∼ factor(x, ordered = TRUE)

Ohne diese Kennzeichnung werden Faktoren als kategorial skaliert betrachtet.

2.2. LINEARES MODEL 2-5

Die Zahlenwerte von Faktoren brauchen keine aufsteigende Folge zu sein. Sie werden
(auch für ordinale Faktoren) als bloße Namen benutzt und durch eine laufende Nummer
ersetzt. So ergibt

factor(c(2, 2, 5, 5, 4, 4))

einen Vektor mit drei Faktorwerten 1, 2, 3, die die Namen “2”, “5” und “4” haben. Faktoren
können auch durch Namen bezeichnet werden, z.B.

y ∼ factor (c("Beh1", "Beh1", "Beh2", "Beh2", "Beh3", "Beh3"))

Die unterschiedlichen Werte eines Faktors nennt man Stufen des Faktors. Sie können mit
levels() erfragt werden, z.B.

levels(factor(c(2, 2, 5, 5, 4, 4)))

levels(factor(c("Beh1", "Beh1", "Beh2", "Beh2", "Beh3", "Beh3")))

2.2.2. Kleinste-Quadrate-Schätzung. Eine erste Idee zur Schätzung im linearen
Regressionsmodell kann so gewonnen werden: Bei gegebenem X ist E(Y) = Xβ, also
X>E(Y) = X>Xβ und damit (X>X)−X>E(Y) = β. Dabei bedeutet X> die transpo-
nierte Matrix zu X und (X>X)− die (generalisierte) Inverse von (X>X). Die Gleichung
motiviert das folgende Schätzverfahren:

(2.9) β̂ = (X>X)−X>Y.

Setzt man aus 2.2 die Modellbeziehung Y = Xβ + ε ein und benutzt, dass E(ε) = 0,
so erhält man

(2.10) E(β̂) = E

((
X>X

)−
X> (Xβ + ε)

)
= β,

d.h. β̂ ist ein erwartungstreuer Schätzer für β. Ob und wieweit dieser Schätzer neben dieser
Konsistenz auch noch statistische Qualitäten hat, wird in Statistik-Vorlesungen diskutiert.
Ein Satz zur Charakterisierung dieses Schätzers ist dort als Gauß-Markov-Theorem be-
kannt. Wir werden auf diesen Schätzer häufig zurückkommen und geben ihm deshalb einen
Namen: Gauß-Markov-Schätzer . Im Fall eines linearen Modells, wie dem Regressions-
modell, hat dieser Schätzer eine Reihe von Optimalitätseigenschaften. So minimiert dieser
Schätzer die mittlere quadratische Abweichung, ist also in diesem Modell ein Kleinste-
Quadrate-Schätzer .

Der Kleinste-Quadrate-Schätzer für lineare Modelle wird durch die Funktion lm()

berechnet.

Zu Illustration erzeugen wir uns einen Beispiel-Datensatz.

Eingabe
x <- 1:100

err <- rnorm(100, mean = 0, sd = 10)

y <- 2.5*x + err

Den Kleinste-Quadrate-Schätzer erhalten wir nun durch

2-6 2. REGRESSION

Beispiel 2.1:

Eingabe
lm(y ~ x)

Ausgabe
Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

1.460 2.492

Aufgabe 2.1

Wir haben die Daten ohne konstanten Term erzeugt, dies aber bei
der Schätzung nicht vorausgesetzt. Wiederholen Sie die Schätzung
im Modell ohne konstanten Term. Vergleichen Sie die Resultate.

Der Schätzer β̂ führt unmittelbar zu einer Schätzung m̂ für die Funktion m in unserem
ursprünglichen Modell:

m̂(x) = x> · β̂.
Die Auswertung an einem Punkt x ergibt Werte ŷ := m̂(x), den Fit an der Stelle x. Die
Auswertung an den Messpunkten ergibt den Vektor der gefitteten Werte Ŷ = Xβ̂.

In unserem Beispiel ist dies eine Regressionsgerade. Mit plot() können wir die Da-
tenpunkte zeichnen. Wenn wir das Resultat der Regression speichern, können wir mit
abline() die Regressionsgerade hinzufügen.

2.2. LINEARES MODEL 2-7

Beispiel 2.2:
Eingabe

lmres <- lm(y ~ x)

plot(x, y)

abline(lmres)

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●●●

●

●●
●
●
●
●●

●●

●

●
●
●

●

●
●●

●
●
●

●

●
●●

●●

●
●●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●
●
●●

●

●●

●

●

●

●●
●
●

●

●
●
●
●
●

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

x

y

abline() ist eine Funktion, die Geraden anhand von unterschiedlichen Parametrisie-
rungen zeichnen kann. Weiter Information erhalten sie mit help(abline).

Die Schätzgleichung (2.9) gibt uns an, wie der Fit an den Messpunkten berechnet wird.

(2.11) Ŷ = X(X>X)−X> · Y.

Die Matrix

(2.12) H := X(X>X)−X>

nennt man Hut-Matrix 2. Sie ist das wesentliche Werkzeug, um den Gauß-Markov-Schätzer
für eine bestimmte Design-Matrix X zu untersuchen. Die Design-Matrix, und damit die
Hutmatrix, hängt nur von den Versuchsbedingungen ab, nicht aber von dem Ausgang des
Versuchs. Der Fit hingegen bezieht sich auf eine bestimmte Stichprobe, die in den in den
beobachteten Stichprobenwerten Y repräsentiert ist.

Im linearen Modell ist ein Term ε enthalten, der den Messfehler oder die Versuchsva-
riabilität repräsentiert. Diesen stochastischen Fehler können wir nicht direkt beobachten -
sonst könnten wir ihn subtrahieren und damit die Modellfunktion exakt bestimmen. Wir
können nur mittelbar darauf schließen.

Die Werte der Zufallsbeobachtung Y unterscheidet sich in der Regel vom Fit Ŷ . Die
Differenz

RX(Y) := Y − Ŷ

2sie setzt dem Y den Hut auf.

2-8 2. REGRESSION

heißt Residuum . Das Residuum kann als Schätzer für den nicht-beobachtbaren Fehlerterm
ε angesehen werden. Die Residuen sind nicht wirklich der Fehlerterm. Dies wäre nur der
Fall, wenn die Schätzung exakt wäre. Für den allgemeinen Fall zeigt uns die Beziehung

RX(Y) = Y − Ŷ
= (I −H)Y

= (I −H)(Xβ + ε)

= (I −H)ε,

(2.13)

dass die Residuen Linearkombinationen der Fehler sind. Wir müssen aus diesen Linear-
kombinationen auf die Fehler zurück schließen.

Existiert die Varianz der Fehlerterme, so ist durch die Varianzmatrix Σ der Fehlerterme
V ar (ε) = Σ die Varianz der Residuen bestimmt:

V ar (RX(Y)) = V ar ((I −H)ε)

= (I −H)Σ(I −H)>.
(2.14)

Bislang haben wir nur vorausgesetzt, dass kein systematischer Fehler vorliegt, model-
liert als die Annahme

E(ε) = 0.
Wir sprechen von einem einfachen linearen Modell , wenn darüber hinaus gilt:

(εi)i=1,...,n sind unabhängig

V ar (εi) = σ2 für ein σ das nicht von i abhängt.

Im linearen Modell versuchen wir, den Parametervektor β zu schätzen. Die Varianzstruktur
des Fehlervektors bringt dabei Störparameter mit sich, die die Schätzung verkomplizieren
können. Im einfachen linearen Modell reduziert sich die Situation auf nur einen unbekann-
ten Störparameter σ. Formeln wie eq:02-varerr vereinfachen sich, denn in diesem Fall ist
Σ = σ2I und der Parameter σ kann aus der Formel herausgezogen werden. Wir könnnen
diesen Parameter aus den Residuen schätzen, denn die residuelle Varianz

(2.15) s2 :=
1

n−Rk(X)

n∑
i=1

(Yi − Ŷi)2

ist ein erwartungstreuer Schätzer für σ2. Wir schreiben deshalb auch σ̂2 := s2. (Das Wur-
zelziehen ist keine lineare Operation und erhält deshalb nicht den Erwartungswert. Die
residuelle Standardabweichung

√
s2 ist kein erwartungstreuer Schätzer für σ.) Wieder in

die Schätzformel (2.9) eingesetzt liefert uns dies auch eine Schätzung für die Varianz/Co-
varianzmatrix des Schätzers für β, denn im einfachen Modell ist

(2.16) V ar
(
β̂
)

= σ2X>X

und kann durch s2X>X geschätzt werden.

Die Standard-Ausgabe in Beispiel 2.1 listet nur minimale Information über den Schät-
zer. Mehr Information über Schätzer, Residuen und daraus abgeleitete Kenngrößen erhal-
ten wir, wenn wir eine zusammengefasste Darstellung anfordern.

2.2. LINEARES MODEL 2-9

Beispiel 2.3:

Eingabe
summary(lm(y ~ x))

Ausgabe
Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-26.6301 -4.8625 0.2448 6.7120 25.5667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.4602 1.9487 0.749 0.455
x 2.4918 0.0335 74.380 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.671 on 98 degrees of freedom
Multiple R-squared: 0.9826, Adjusted R-squared: 0.9824
F-statistic: 5532 on 1 and 98 DF, p-value: < 2.2e-16

Aufgabe 2.2

Analysieren Sie die in Beispiel 2.3 (Seite 2-8) gezeigten Ausgaben
von lm(). Welche Terme können Sie interpretieren? Stellen Sie die-
se Interpretationen schriftlich zusammen. Für welche Terme fehlt
Ihnen noch Information?

Erstellen Sie eine kommentierte Version der Ausgabe.

In Abschnitt 2.3 werden wir den theoretischen Hintergrund bereitstellen, der uns hilft,
die noch offenen Terme zu interpretieren.

Der Aufruf der Funktion lm() liefert immer ein Resultat - wenn es den Daten angemes-
sen ist, aber es gibt auch ein Resultat, wenn das lineare Modell gar nicht angemessen ist.
Wir brauchen deshalb eine Diagnostik, die uns hilft, zu erkennen, ob das Modell verlässlich
und brauchbar ist.

Aufgabe 2.3

Sei yy < −2.5 ∗ x+ 0.01x2 + err. Welches Resultat erhalten Sie,
wenn Sie eine Regression mit dem (falschen) Modell yy ∼x rech-
nen? Gibt es Hinweise darauf, dass dieses Modell nicht angemessen
ist?

2-10 2. REGRESSION

Die Funktion lm() führt nicht nur die Schätzung im linearen Modell durch, sondern
liefert eine ganze Reihe von Diagnostiken, die helfen können zu beurteilen, ob die Modell-
voraussetzungen vertretbar erscheinen. Eine Darstellung mit plot() zeigt vier Aspekte
davon.

Beispiel 2.4:

Eingabe
plot(lm(y ~ x))

0 50 100 150 200 250

−
30

−
10

10
30

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

Residuals vs Fitted

15

76

54

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

−2 −1 0 1 2

−
3

−
1

1
2

3
Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

15

76

54

0 50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

Scale−Location
15 7654

0.00 0.01 0.02 0.03 0.04

−
3

−
1

1
2

3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

Cook's distance

Residuals vs Leverage

15

8812

Der obere linke Plot zeigt die Residuen gegen den Fit. Die Verteilung der gefitteten
Werte hängt vom Design ab.

Die Residuen sollten annähernd wie ein Scatterplot von unabhängigen Variablen aus-
sehen. Die Verteilung der Residuen sollte nicht vom Fit abhängen. Sind hier systematische
Strukturen zu erkennen, so ist das ein Warnzeichen dass das Modell oder die Modellvor-
aussetzungen nicht erfüllt sind.

Nach der vorausgegangen Diskussion können wir noch genauer sein: die Residuen soll-
ten nach (2.13) Linearkombinationen von unabhängig identisch verteilten Variablen sein.
Falls die Modellvoraussetzungen erfüllt sind, ist die Varianz durch (2.14) beschrieben.

In der eindimensionalen Situation würde ein Plot der Residuen gegen den Regressor
ausreichen. Für p Regressoren wird die graphische Darstellung problematisch. Der Plot der
Residuen gegen den Fit verallgemeinert sich auch auf höhere Dimensionen.

Verteilungsaussagen über die Schätzer und Residuen können wir machen, wenn wir mit
Verteilungsaussagen über die Fehlerterme beginnen. Die kräftigsten Aussagen sind möglich,
wenn die Fehlerterme unabhängig identisch normalverteilt sind. Der obere rechte Plot sollte
annähernd wie der“normal probability plot”von normalverteilen Variablen aussehen, wobei
das “annähernd” wiederum bedeutet: bis auf Transformation mit der Matrix I −H.

2.2. LINEARES MODEL 2-11

Die beiden übrigen Plots sind spezielle Diagnostiken für lineare Modelle (siehe help(plot.lm)).

Aufgabe 2.4

Inspizieren Sie das Resultat von Aufgabe 2.3 grafisch. Welche Hin-
weise gibt es jetzt, dass das lineare Modell nicht angemessen ist?

plot() stellt für lineare Modelle noch weitere diagnostische Plots bereit. Diese müssen
explizit mit dem Parameter which angefordert werden.

help(lm)

lm Fitting Linear Models

Description.

lm is used to fit linear models. It can be used to carry out regression, single stratum
analysis of variance and analysis of covariance (although aov may provide a more
convenient interface for these).

Usage.

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

Arguments.

formula a symbolic description of the model to be fit. The details of model
specification are given below.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model.
If not found in data, the variables are taken from environment(formula),
typically the environment from which lm is called.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

weights an optional vector of weights to be used in the fitting process. Should
be NULL or a numeric vector. If non-NULL, weighted least squares is
used with weights weights (that is, minimizing sum(w*e^2)); other-
wise ordinary least squares is used.

na.action a function which indicates what should happen when the data contain
NAs. The default is set by the na.action setting of options, and
is na.fail if that is unset. The “factory-fresh” default is na.omit.
Another possible value is NULL, no action. Value na.exclude can be
useful.

method the method to be used; for fitting, currently only method = "qr" is
supported; method = "model.frame" returns the model frame (the
same as with model = TRUE, see below).

model, x, y, qr
logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are
returned.

2-12 2. REGRESSION

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an
error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.
offset this can be used to specify an a priori known component to be included

in the linear predictor during fitting. This should be NULL or a numeric
vector of length either one or equal to the number of cases. One or
more offset terms can be included in the formula instead or as well,
and if both are specified their sum is used. See model.offset.

... additional arguments to be passed to the low level regression fitting
functions (see below).

Details.

Models for lm are specified symbolically. A typical model has the form response
~ terms where response is the (numeric) response vector and terms is a series of
terms which specifies a linear predictor for response. A terms specification of the
form first + second indicates all the terms in first together with all the terms in
second with duplicates removed. A specification of the form first:second indicates
the set of terms obtained by taking the interactions of all terms in first with all terms
in second. The specification first*second indicates the cross of first and second.
This is the same as first + second + first:second.

If the formula includes an offset, this is evaluated and subtracted from the re-
sponse.

If response is a matrix a linear model is fitted separately by least-squares to each
column of the matrix.

See model.matrix for some further details. The terms in the formula will be re-
ordered so that main effects come first, followed by the interactions, all second-order,
all third-order and so on: to avoid this pass a terms object as the formula (see aov
and demo(glm.vr) for an example).

A formula has an implied intercept term. To remove this use either y ~ x - 1 or
y ~ 0 + x. See formula for more details of allowed formulae.

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical
computations. For programming only, you may consider doing likewise.

All of weights, subset and offset are evaluated in the same way as variables in
formula, that is first in data and then in the environment of formula.

Value.

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").
The functions summary and anova are used to obtain and print a summary and

analysis of variance table of the results. The generic accessor functions coefficients,
effects, fitted.values and residuals extract various useful features of the value
returned by lm.

An object of class "lm" is a list containing at least the following components:
coefficients a named vector of coefficients
residuals the residuals, that is response minus fitted values.
fitted.values

the fitted mean values.
rank the numeric rank of the fitted linear model.
weights (only for weighted fits) the specified weights.
df.residual the residual degrees of freedom.
call the matched call.
terms the terms object used.

2.2. LINEARES MODEL 2-13

contrasts (only where relevant) the contrasts used.
xlevels (only where relevant) a record of the levels of the factors used in fitting.
offset the offset used (missing if none were used).
y if requested, the response used.
x if requested, the model matrix used.
model if requested (the default), the model frame used.

In addition, non-null fits will have components assign, effects and (unless not
requested) qr relating to the linear fit, for use by extractor functions such as summary
and effects.

Using time series.

Considerable care is needed when using lm with time series.
Unless na.action = NULL, the time series attributes are stripped from the variables

before the regression is done. (This is necessary as omitting NAs would invalidate the
time series attributes, and if NAs are omitted in the middle of the series the result
would no longer be a regular time series.)

Even if the time series attributes are retained, they are not used to line up series,
so that the time shift of a lagged or differenced regressor would be ignored. It is good
practice to prepare a data argument by ts.intersect(..., dframe = TRUE), then
apply a suitable na.action to that data frame and call lm with na.action = NULL so
that residuals and fitted values are time series.

Note.

Offsets specified by offset will not be included in predictions by predict.lm, whereas
those specified by an offset term in the formula will be.

Author(s).

The design was inspired by the S function of the same name described in Chambers
(1992). The implementation of model formula by Ross Ihaka was based on Wilkinson
& Rogers (1973).

References.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models
for analysis of variance. Applied Statistics, 22, 392–9.

See Also.

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different
interface.

The generic functions coef, effects, residuals, fitted, vcov.
predict.lm (via predict) for prediction, including confidence and prediction in-

tervals; confint for confidence intervals of parameters.
lm.influence for regression diagnostics, and glm for generalized linear models.
The underlying low level functions, lm.fit for plain, and lm.wfit for

weighted regression fitting.

2-14 2. REGRESSION

Examples.

Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
anova(lm.D9 <- lm(weight ~ group))
summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept
summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(lm.D9, las = 1) # Residuals, Fitted, ...
par(opar)

model frame :
stopifnot(identical(lm(weight ~ group, method = "model.frame"),

model.frame(lm.D9)))

Nicht erwähnt in der Help-Information: mit first-second werden Terme der ersten
Gruppe ins Modell aufgenommen, die der zweiten Gruppe aber ausgeschlossen. Ausführ-
lichere Information zur Formel-Darstellung erhält man mit help(formula). Eine Zusam-
menfassung ist im Anhang A.53 (Seite A-35) zu finden.

Die Hut-Matrix ist eine Besonderheit linearer Modelle. Fit und Residuum jedoch sind
allgemeine Konzepte, die bei allen Arten der Schätzung angewandt werden können. Die
Anwender sind oft mit dem Fit (oder der Schätzung) zufrieden. Für den ernsthaften An-
wender und für den Statistiker sind die Residuen oft wichtiger: sie weisen darauf hin, was
vom Modell oder der Schätzung noch nicht erfasst ist.

2.2.3. Weitere Beispiele für lineare Modelle.
Die Matrix X heißt die Design-Matrix des Modells. Sie kann die Matrix sein, die mit den
ursprünglichen Messbedingungen xi als Zeilenvektoren gebildet wird. Aber sie ist nicht auf
diesen Spezialfall beschränkt. Unter der scheinbar so einfachen Modellklasse der linearen
Modelle lassen sich viele wichtige Spezialfälle einordnen. Ein paar davon sind im folgenden
zusammengestellt.

Einfache lineare Regression:

yi = a+ b xi + εi mit xi ∈ R, a, b ∈ R
kann als lineares Modell mit

X = (1x)
geschrieben werden, wobei 1 = (1, . . . , 1)> ∈ Rn.

Polynomiale Regression:

yi = a+ b1xi + b2x
2
i + . . .+ bkx

k
i + εi mit xi ∈ R, a, bj ∈ R

kann als lineares Modell mit
X = (1 x x2 . . . xk)

geschrieben werden, wobei xj = (xj1 . . . x
j
n)
>

.

Analog für eine Vielzahl von Modellen, die durch andere Transformationen erreicht
werden können.

2.2. LINEARES MODEL 2-15

Varianzanalyse: Einweg-Layout

Gemessen wird unter m Versuchsbedingungen, dabei nj Messungen unter Versuchsbe-
dingung j, j = 1, . . . ,m. Die Messung setze sich additiv zusammen aus einem Grundeffekt
µ, einem für die Bedingung j spezifischen Beitrag αj , und einem Messfehler nach

yij = µ+ αj + εij mit µ, αj ∈ R, j = 1, . . . , ni.

Mit n =
∑
nj und

X = (1 I1 . . . Im),

wobei Ij die Vektoren der Indikatorvariablen für die Zugehörigkeit zur Versuchsgruppe j
sind, lässt sich dies als lineares Modell schreiben.3

Covarianzanalyse

Analog zur Varianzanalyse werden Unterschiede zwischen Gruppen untersucht, aber
zusätzliche (linear eingehende) Einflussfaktoren werden korrigierend berücksichtigt. Unter
Versuchsbedingung j bei Beobachtung i hängt die Messung zusätzlich von Einflussfaktoren
xij der Versuchseinheit ij ab.

yij = µ+ αj + b xij + εij mit µ, αj ∈ R.

2.2.4. Modellformeln. R erlaubt es, Modelle auch dadurch zu spezifizieren, dass die
Regeln angegeben werden, nach denen die Design-Matrix gebildet wird. Die Syntax, nach
denen die Regeln notiert werden, ist sehr kurz in der Beschreibung von lm() angegeben.
Wir diskutieren sie jetzt etwas ausführlicher. Diese Modell-Spezifikation ist auch für all-
gemeinere, nicht lineare Modelle möglich. Die Modell-Spezifikationen werden als Attribut
mit dem Namen “formula” gespeichert. Sie können mit formula() manipuliert werden.

Beispiele

y ∼ 1 + x entspricht yi = (1 xi)(β1 β2)> + ε

y ∼ x Kurzschreibweise für y ∼ 1 + x (ein konstanter Term
wird implizit angenommen)

y ∼ 0 + x entspricht yi = xiβ + ε

log(y) ∼ x1 + x2 entspricht log(yi) = (1 xi1 xi2)(β1 β2 β3)> + ε (ein
konstanter Term wird implizit angenommen)

lm(y ∼ poly(x, 4), da-

ta = Experiment)

analysiert den Datensatz “Experiment” mit einem li-
nearen Modell für polynomiale Regression vom Grade
4 in x.

Wichtige Spezialfälle für faktorielle Designs sind:

3Es ist Konvention, dass bei Varianzanalysen der letzte Index die Beobachtung zählt, und
Indizes in alphabetischer Folge vergeben werden. Konventionell werden also im Vergleich zu unserer
Notation die Rollen von i und j vertauscht.

2-16 2. REGRESSION

y ∼ A Einweg-Varianzanalyse mit Faktor A,

y ∼ A + x Covarianzanalyse mit Faktor A und Regressions-
Covariable x,

y ∼ A + B Zwei-Faktor-Kreuz-Layout mit Faktoren A und B oh-
ne Interaktion,

y ∼ A * B Zwei-Faktor-Kreuz-Layout mit Faktoren A und B

und allen Interaktionen (Kombinationen der Stufen
von A und B),

y ∼ A/B Zwei-Faktor hierarchisches Layout mit Faktor A und
Subfaktor B.

Eine Übersicht über alle Operatoren zur Modellspezifikation ist im Anhang A.53 (Seite
A-35) zu finden.

Aufgabe 2.5

Schreiben Sie die vier oben in Abschnitt 2.2.3 genannten Modelle
als R-Modellformeln.

Erzeugen Sie sich für jedes dieser Modelle ein Beispiel durch Simu-
lation und wenden Sie lm() auf diese Beispiele an. Vergleichen Sie
die durch lm() geschätzten Parameter mit den Parametern, die Sie
in der Simulation benutzt haben.

Die Modellformel wird in einem Eintrag im Resultat von lm() gespeichert. Sie kann
also aus dem Resultat zurück gewonnen werden. Anhand der Formel-Notation generiert
R implizit eine Design-Matrix. Mit model.matrix() kann diese Design-Matrix inspiziert
werden.

Aufgabe 2.6

Generieren Sie drei Vektoren mit je 10 N(µj , 1)-verteilten Zufalls-
variablen µj = j, j = 1, 3, 9. Verketten Sie diese zu einem Vektor
y.

Generieren Sie sich einen Vektor x aus je 10 wiederholten Werten
j, j = 1, 3, 9.

Berechnen Sie die Gauß-Markov-Schätzer in den linearen Modellen

y∼x und y∼factor(x).

Lassen Sie sich das Resultat jeweils als Tabelle mit summary() und
als Grafik mit plot() anzeigen und vergleichen Sie die Resultate.

2.2. LINEARES MODEL 2-17

2.2.5. Gauß-Markov-Schätzer und Residuen. Wir werfen nun einen genaueren
Blick auf den Gauß-Markov-Schätzer. Kenntnisse aus der linearen Algebra, langes Nach-
denken oder andere Quellen sagen uns:

Bemerkung 2.3.

(1) Die Design-Matrix X definiert eine Abbildung Rp → Rn mit β 7→ Xβ.
Der Bild-Raum dieser Abbildung sei MX , MX ⊂ Rn. MX ist der von den Spal-
tenvektoren von X aufgespannte Vektorraum.

(2) Sind die Modell-Annahmen erfüllt, so ist E(Y) ∈MX .
(3) Ŷ = πMX

(Y), wobei πMX
: Rn → MX die (euklidische) Orthogonalprojektion

ist.
(4) β̂ = argminβ|Y − Ŷβ|2 wobei Ŷβ = Xβ.

Die Charakterisierung (3) des Gauß-Markov-Schätzers als Orthogonalprojektion hilft
für das Verständnis oft weiter: der Fit ist die Orthogonalprojektion des Beobachtungsvek-
tors auf den Erwartungswertraum des Modells (und minimiert damit den quadratischen
Abstand). Das Residuum ist das orthogonale Komplement.

In der Statistik ist die Charakterisierung als Orthogonalprojektion auch ein Ausgangs-
punkt, um den Schätzer systematisch zu analysieren. In einfachen Fällen helfen Kenntnisse
aus der Wahrscheinlichkeitstheorie schon weiter, etwa zusammengefasst im folgenden Satz:

Theorem 2.4. Sei Z eine Zufallsvariable mit Werten in Rn, die nach N(0, σ2In×n)
verteilt ist und sei Rn = L0 ⊕ . . . ⊕ Lr eine Orthogonalzerlegung. Sei πi = πLi die
Orthogonalprojektion auf Li, i = 0, . . . , r.
Dann gilt

(i) π0(Z), . . . , πr(Z) sind unabhängige Zufallsvariablen.
(ii) |πi(Z)|2

σ2 ∼ χ2(dimLi) für i = 0, . . . , r.

Beweis. → Wahrscheinlichkeitstheorie. Siehe z.B. [Jørgensen 1993, 2.5 Theorem 3].
�

Mit ε = Y −Xβ können daraus theoretische Verteilungsaussagen für Schätzer β̂ und
Residuen Y − Ŷ abgeleitet werden.

Insbesondere erhalten wir für einfache lineare Modelle aus der residuellen Varianz auch
einen Schätzer für die Varianz (bzw. Standardabweichung) jeder einzelnen Komponente β̂k.
Die entsprechende t-Statistik und der p-Wert für den Test der Hypothese β̂k = 0 sind in
der Ausgabe von summary() angegeben.

Aufgabe 2.7

Welche Verteilung hat |RX(Y)|2 = |Y −Ŷ |2, wenn ε nach N(0, σ2I)
verteilt ist?

Auf den ersten Blick ist |RX(Y)|2 = |Y −Ŷ |2 ein geeignetes Maß, um die Qualität eines
Modells zu beurteilen: kleine Werte sprechen für den Fit, große Werte zeigen, dass der Fit
schlecht ist. Dies ist jedoch mit Sorgfalt zu betrachten. Zum einen hängt diese Größe von
linearen Skalenfaktoren ab. Zum anderen muss die Dimensionen der jeweiligen Räume mit
in Betracht gezogen werden. Was passiert, wenn weitere Regressoren ins Modell aufgenom-
men werden? Wir haben z.B. gesehen, dass “linear” auch die Möglichkeit gibt, nichtlineare

2-18 2. REGRESSION

Beziehungen zu modellieren, zum Beispiel dadurch, dass geeignet transformierte Variable
in die Design-Matrix mit aufgenommen werden. Die Charakterisierung (3) aus Bemerkung
2.3 sagt uns, dass effektiv nur der von der Design-Matrix aufgespannte Raum relevant ist.
Hier sind die Grenzen des Gauß-Markov-Schätzers im linearen Modell erkennbar: wenn
viele transformierte Variablen aufgenommen werden, oder generell wenn der durch die
Design-Matrix bestimmte Bildraum zu groß wird, gibt es eine Überanpassung. Im Extrem
ist Ŷ = Y . Damit werden alle Residuen zu null, aber die Schätzung ist nicht brauchbar.

Wir benutzen |RX(Y)|2/ dim(LX), wobei LX das orthogonale Komplement von MX in
Rn ist (also dim(LX) = n− dim(MX)), um die Dimensionsabhängigkeit zu kompensieren.

Aufgabe 2.8

Modifizieren Sie die Plot-Ausgabe plot.lm() für die linearen Mo-
delle so, dass anstelle des Tukey-Anscombe-Plots die studentisier-
ten Residuen gegen den Fit aufgetragen werden.

∗ Ergänzen Sie den QQ-Plot durch Monte-Carlo-Bänder für unab-
hängige Gauß’sche Fehler.
Hinweis: Sie können die Bänder nicht direkt aus der Gaußvertei-
lung generieren - Sie brauchen die Residuenverteilung, nicht die
Fehlerverteilung.

Aufgabe 2.9

Schreiben Sie eine Prozedur, die für die einfache lineare Regression
yi = a+ bxi + εi mit xi ∈ R, a, b ∈ R
den Gauß-Markov-Schätzer berechnet und vier Plots darstellt:

• Respons gegen Regressor, mit geschätzter Geraden
• studentisierte Residuen gegen Fit
• Verteilungsfunktion der studentisierten Residuen im QQ-

Plot mit Bändern
• Histogramm der studentisierten Residuen

2.3. Streuungszerlegung und Varianzanalyse

Wenn ein einfaches lineares Modell mit gaußverteilten Fehlern vorliegt, sind die t-Tests
geeignet, eindimensionale Probleme (Tests oder Konfidenzintervalle für einzelne Parameter,
punktweise Konfidenzintervalle) zu lösen. Um simultane oder mehrdimensionale Probleme
zu lösen brauchen wir andere Werkzeuge. Anstelle der Differenzen oder Mittelwerte, die
den t-Tests zu Grunde liegen, benutzen wir Norm-Abstände (bzw. quadratische Abstände),
die auch auf höhere Dimensionen generalisieren.

Die Interpretation des Gauß-Markov-Schätzers als Orthogonalprojektion (Bem. 2.3 3)
zeigt eine Möglichkeit, Modelle zu vergleichen: FürX,X ′ Design-Matrizen mit MX′ ⊂MX ,
betrachten wir die Zerlegung Rn = L0 ⊕ . . . ⊕ Lr mit L0 := MX′ , und die orthogonale

2.3. STREUUNGSZERLEGUNG UND VARIANZANALYSE 2-19

Komplemente L1 := MX 	MX′ , L2 := Rn 	MX . Wieder bezeichnet π jeweils die
entsprechende Projektion.

F :=
1

dim(L1) |πMX
Y − πMX′

Y |2
1

dim(L2) |Y − πMXY |2
.

Diese Statistik, die F -Statistik (nach R.A. Fisher) ist die Basis für die Varianzanalyse ,
einer klassischen Strategie, Modelle zu vergleichen. Streuungszerlegung ist ein anderer
Name für diesen Ansatz.

Die Idee wird auf Ketten von Modellen verallgemeinert. Ist M0 ⊂ . . . ⊂ Mr = Rn,
so liefert L0 := M0, Li := Mi 	Mi−1 für i = 1, . . . , r eine Orthogonalzerlegung. Mit den
Bezeichnungen von oben ist dann

1
dimLi−1

|πMi
Y − πMi−1

Y |2
1

dimLi
|Y − πMi

Y |2

eine Teststatistik, die zum Test für das Modell Mi−1 im Vergleich zum Obermodell Mi

herangezogen wird.

Aufgabe 2.10

Welche Verteilung hat F , wenn E(Y) ∈ MX′ gilt und ε nach
N(0, σ2I) verteilt ist?

Aufgabe 2.11

Geben Sie eine explizite Formel für die F -Statistik zur Varianzana-
lyse im Einweg-Layout

yij = µ+ αj + εij

im Vergleich zum homogenen Modell

yij = µ+ εij .

Die Varianzanalyse gibt eine andere Darstellung und Interpretation der linearen Mo-
delle. Hier im Vergleich zu Beispiel 2.3 die Varianzanalyse-Darstellung:

Beispiel 2.5:

Eingabe
summary(aov(lmres))

Ausgabe
Df Sum Sq Mean Sq F value Pr(>F)

x 1 517386 517386 5532.4 < 2.2e-16 ***
Residuals 98 9165 94

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

2-20 2. REGRESSION

Aufgabe 2.12

Analysieren Sie die in Beispiel 2.3 (Seite 2-8) gezeigten Ausgaben
von lm(). Welche Terme können Sie jetzt interpretieren? Stellen
Sie diese Interpretationen schriftlich zusammen. Für welche Terme
fehlt Ihnen noch Information?

In der Ausgabe finden Sie noch einen Hinweis auf “R-squared”. Der Term, der hier
angegeben wird, ist ein Schätzer für den Anteil von V ar (Y), der durch das Modell erklärt
wird:

R2 =
mss

mss+ rss

mit mss := 1
n

∑
(Ŷi−Ŷ)2 und rss := 1

n

∑
(RX(Y)i−RX(Y))2. Die Bezeichnung R2 kommt

von der einfachen linearen Regression. Dort ist konventionell die Korrelation Cor (X,Y)
mit R bezeichnet, und R2 = Cor (X,Y)2. R2 berücksichtigt nicht die Anzahl der geschätz-
ten Parameter und kann deshalb zu optimistisch sein. Der Term “adjusted R-squared” hat
eine Gewichtung, die die Freiheitsgrade berücksichtigt.

help(anova)

anova Anova Tables

Description.

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage.

anova(object, ...)

Arguments.

object an object containing the results returned by a model fitting function
(e.g., lm or glm).

... additional objects of the same type.

Value.

This (generic) function returns an object of class anova. These objects represent
analysis-of-variance and analysis-of-deviance tables. When given a single argument it
produces a table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in
the order specified.

The print method for anova objects prints tables in a “pretty” form.

Warning.

The comparison between two or more models will only be valid if they are fitted to
the same dataset. This may be a problem if there are missing values and R’s default
of na.action = na.omit is used.

References.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth & Brook-
s/Cole.

2.3. STREUUNGSZERLEGUNG UND VARIANZANALYSE 2-21

See Also.

coefficients, effects, fitted.values, residuals, summary, drop1, add1.

Modelle für die Varianzanalyse können als Regeln angegeben werden. Dieselbe Syntax
zur Modellbeschreibung wird benutzt wie schon bei der Regression. Wenn Terme auf der
rechten Seite der Modellbeschreibung Faktoren sind, wird automatisch ein Varianzanalyse-
Modell anstelle eines Regressionsmodells generiert.

Die Modellbeschreibung bestimmt die linearen Räume, in denen die Erwartungswerte
liegen. Die Streuungszerlegungen sind dadurch jedoch nicht eindeutig bestimmt: die An-
gabe der Räume lässt evtl. noch verschiedene Orthogonalzerlegungen zu (z.B. abhängig
von der Reihenfolge). Mehr noch: die Angabe der Faktoren bestimmt ein Erzeugenden-
system der Räume. Die Faktoren brauchen nicht orthogonal zu sein, noch nicht einmal
unabhängig.

Dies gilt für alle linearen Modelle. In der Regression ist Abhängigkeit eher die Aus-
nahme. Bei faktoriellen Designs taucht dieser Fall häufig auf. Die Einweg-Varianzanalyse
in Koordinatendarstellung illustriert dieses Problem: mit

yij = µ+ αj + εij mit µ, αj ∈ R
ist für nj > 0 die Zerlegung in µ und αj nicht eindeutig. Der tieferliegende Grund ist: der
globale Faktor µ definiert den vom Einheitsvektor 1 aufgespannten Raum, und dieser liegt
in dem von den Gruppenindikatoren aufgespannten Raum.

Die Modellformel definiert eine Designmatrix X und damit einen Modellraum. Eine
zusätzliche Matrix C wird benutzt, um die Matrix zu reduzieren und damit eine eindeutige
Streuungszerlegung zu spezifizieren. Die effektive Designmatrix ist dann [1 X C];C heißt
Kontrastmatrix . Die Funktionen zur Varianzanalyse wie z.B. lm() oder aov() erlauben
es, die Kontraste zu spezifizieren.

Die Funktion anova() operiert wie eine spezielle Formatierung der Ausgabe und wird
analog summary() benutzt, also z.B. in der Form anova(lm()).

Aufgabe 2.13

Die Datei “micronuclei” enthält einen Datensatz aus einem Muta-
genitätstest. Zellkulturen (je 50 Einheiten) wurden in einer Kon-
trollgruppe und unter 5 chemischen Behandlungen beobachtet. Der
Effekt der Substanzen ist, die Chromosomen aufzubrechen und Mi-
kronuklei zu bilden. Registriert wurde die Größe der Mikronuklei
(relativ zum Eltern-Nukleus).

Lesen Sie die Datei “micronuclei” und berechnen Sie für jede Grup-
pe Mittelwert und Varianz.

Hinweis: Sie können die Datei mit data() einlesen. Für Dateien
mit Tabellenformat gibt es die spezielle Anweisung read.table().
Informieren Sie sich mit help() über beide Funktionen.

Einige ausgewählte statistische Funktionen (z.B. Mittelwert) finden
Sie in Tabelle A.22 im Anhang.

Vergleichen Sie die Resultate. Sind Behandlungseffekte nachweis-
bar? Hinweise: Versuchen Sie zunächst, die Aufgabe als Einweg-
Varianzanalyse zu formulieren. Den Datensatz müssen Sie zunächst
z.B. mit Hilfe von c() auf eine geeignete Form bringen.

2-22 2. REGRESSION

Aufgabe 2.14

∗ Schreiben Sie eine Funktion oneway(), die als Argument eine Da-
tentabelle nimmt und eine Einweg-Varianzanalyse als Test auf die
Differenz zwischen den Spalten durchführt.

∗ Ergänzen Sie oneway() durch die notwendigen diagnostischen
Plots. Welche Diagnostiken sind notwendig?

Aufgabe 2.15

Das Industrieunternehmen Kiwi-Hopp4 möchte einen neuen Hub-
schrauber auf den Markt bringen. Die Hubschrauber müssen also
danach beurteilt werden, wie lange sie sich in der Luft halten, bis sie
aus einer gegebenen Höhe (ca. 2m) den Boden erreichen5. Eine Kon-
struktionszeichnung ist unten (Abbildung 2.1, Seite 2-24) angege-
ben. Welche Faktoren könnten die Variabilität der Flug(Sink)zeiten
beeinflussen? Welche Faktoren könnten die mittlere Flugzeit beein-
flussen?

Führen Sie 30 Versuchsflüge mit einem Prototyp durch und messen
Sie die Zeit in 1/100s. (Sie müssen vielleicht zusammenarbeiten, um
die Messungen durchzuführen.) Würden Sie die gemessene Zeit als
normalverteilt ansehen?

Die Anforderung ist, dass die mittlere Flugdauer mindestens 2.4s
erreicht. Erfüllt der Prototyp diese Anforderung?

Sie haben die Aufgabe, einen Entwurf für die Produktion auszusu-
chen. Folgende Varianten stehen zur Diskussion:

Rotorbreite 45mm

Rotorbreite 35mm

Rotorbreite 45mm mit Zusatzfalte als Stabilisierung

Rotorbreite 35mm mit Zusatzfalte als Stabilisierung.

Ihr Haushalt erlaubt ca. 40 Testflüge. (Wenn Sie mehr Testflüge be-
nötigen, müssen Sie dies gut begründen.) Bauen Sie 4 Prototypen
und führen sie Testflüge durch, bei denen Sie die Zeit messen. Fin-
den Sie diejenige Konstruktion, die die längste Flugdauer ergibt.
Erstellen Sie einen Bericht. Der Bericht sollte folgende Details ent-
halten:

• eine Liste der erhobenen Daten und eine Beschreibung des
experimentellen Vorgehens.
• geeignete Plots für jede Konstruktion
• eine Varianzanalyse
• eine klare Zusammenfassung Ihrer Schlüsse.

(Fortsetzung)→

4Nach einer Idee von Alan Lee, Univ. Auckland, Neuseeland
5Kiwis können nicht fliegen.

2.3. STREUUNGSZERLEGUNG UND VARIANZANALYSE 2-23

Aufgabe 2.15 (Fortsetzung)

Weitere Hinweise: Randomisieren Sie die Reihenfolge Ihrer Expe-
rimente. Reduzieren Sie die Variation, indem Sie gleichmässige Be-
dingungen für das Experiment schaffen (gleiche Höhe, gleiche Ab-
wurftechnik etc.).

Die Zusatzfaltung verursacht zusätzliche Arbeitskosten. Schätzen
sie den Effekt ab, den diese Zusatzinvestition bringt.

Aufgabe 2.16

Benutzen Sie den Quantil-Quantil-Plot, um paarweise die Resultate
des Helikopter-Experiments aus dem letzten Kapitel zu vergleichen.
Formulieren Sie die Resultate.

Aufgabe 2.17

Inspizieren Sie die Implementierung von qqnorm(). Programmieren
Sie eine analoge Funktion für den PP -Plot und wenden Sie diese
auf die Helikopter-Daten an.

2-24 2. REGRESSION

Abbildung 2.1. KiwiHopp

2.4. SIMULTANE SCHäTZUNG 2-25

2.4. Simultane Schätzung

2.4.1. Scheffé’s Konfidenz-Bänder. Der Kleinste-Quadrate-Schätzer schätzt im
Prinzip alle Komponenten des Parameter-Vektors simultan. Die Optimalitäts-Aussagen
des Gauß-Markov-Theorems beziehen sich nur auf eindimensionale lineare Statistiken. Die
Konfidenzaussagen gelten jedoch multivariat. Es gilt: Der mithilfe der F -Verteilung ge-
wonnene Konfidenzbereich zum Konfidenzniveau 1− α hat die Form

{β̂ ∈ Rk : (
k∑
j=1

(β̂j − βj)2‖xj‖2/k)/σ̂2 ≤ F1−α(k, n− k)},

d.h. der Konfidenzbereich ist eine Ellipse. Wir können die Ellipse auch als den Bereich
definieren, der durch alle Tangenten der Ellipse begrenzt wird. Dies übersetzt die (eine)
quadratischen Bedingung an die Punkte im Konfidenzbereich durch (unendlich viele) li-
neare Bedingungen. Diese geometrische Beziehung ist der Kern für den folgenden Satz:

Theorem 2.5. Sei L ⊂ Rk ein linearer Unterraum der Dimension d; EY = Xb mit
rk(X) = p < n. Dann ist

P{`tβ ∈ `tβ̂ ± (dFαd,n−α)1/2s(`t(XtX)−1`)1/2 ∀` ∈ L } = (1− α).

Beweis. [Mil81, 2.2, p. 48] �

Dies ist ein simultaner Konfidenzbereich für alle Linearkombinationen aus L . Als Test
übersetzt ergibt dies einen simultanen Test für alle linearen Hypothesen aus L . Im Falle
d = 1 reduziert sich dieser Scheffé-Test auf den üblichen F -Test. Üblicherweise ist es
nicht möglich, am selben Datenmaterial mehrere Tests durchzuführen, ohne dadurch das
Konfidenzniveau zu verschlechtern. Der F -Test ist eine Ausnahme. Nach einem globalen
F -Test können diese Linearkobinationen oder Kontraste einzeln getestet werden, ohne das
Niveau zu verletzen.

Im Falle der einfachen linearen Regression übersetzt sich das Konfidenz-Ellipsoid im
Parameterraum so in ein Hyperboloid als Konfidenzbereich für die Regressionsgeraden im
Regressor/Respons-Raum.

Geht man zur Interpretation im Regressor/Respons-Raum, also dem Raum der Ver-
suchsbedingungen und Beobachtungen über, so ist man häufig nicht so sehr an einem Kon-
fidenzbereich für die Regressionsgerade interessiert, sondern daran, einen Prognosebereich
(Toleranzbereich) für weitere Beobachtungen anzugeben. Für diesen muss zur Streuung der
Regression noch die Fehlerstreuung addiert werden. Der Toleranzbereich ist entsprechend
größer. Konfidenzbereich für die Regressionsgerade und Toleranzbereich für Beobachtun-
gen können mit der Funktion predict() berechnet werden. Die folgende Abbildung zeigt
beide Bereiche. Die Funktion predict() ist eine generische Funktion. Für lineare Modelle
ruft sie predict.lm() auf. predict() erlaubt es, neue Stützstellen als Parameter newdata
vorzugeben, an denen anhand des geschätzten Modells ein Fit berechnet wird. Die Varia-
blen werden hier dem Namen nach zugeordnet. Deshalb muss newdata ein data.frame

sein, dessen Komponenten-Namen den ursprünglichen Variablen entsprechen.

Wir bereiten einen Beispieldatensatz vor.

Eingabe
n <- 100

sigma <- 1

x <- (1:n)/n-0.5

err <- rnorm(n)

2-26 2. REGRESSION

y <- 2.5 * x + sigma*err

lmxy <- lm(y ~ x)

Um bessere Kontrolle über die Grafik zu bekommen, berechnen wir die Plot-Grenzen und
Stützpunkte vorab.

Eingabe
plotlim <- function(x){

xlim <- range(x)

check implementation of plot. is this needed?

del <- xlim[2]-xlim[1]

if (del>0)

xlim <- xlim+c(-0.1*del, 0.1*del)

else xlim <- xlim+c(-0.1, 0.1)

return(xlim)

}

xlim <- plotlim(x)

ylim <- plotlim(y)

#newx <- data.frame(x = seq(1.5*min(x), 1.5*max(x), 1/(2*n)))

newx <- data.frame(x = seq(xlim[1], xlim[2], 1/(2*n)))

Für diese Daten berechnen wir nun Konfidenzbänder und zeichnen sie.

2.4. SIMULTANE SCHäTZUNG 2-27

Beispiel 2.6:
Eingabe

plot(x, y, xlim = xlim, ylim = ylim)

abline(lmxy)

pred.w.plim <- predict(lmxy, newdata = newx, interval = "prediction")

pred.w.clim <- predict(lmxy, newdata = newx, interval = "confidence")

matplot(newx$x,

cbind(pred.w.clim[, -1], pred.w.plim[, -1]),

lty = c(2, 2, 6, 6),

col = c(2, 2, 4, 4),

type = "l", add = TRUE)

title(main = "Simultane Konfidenz")

legend("topleft",

lty = c(2, 6),

legend = c("confidence", "prediction"),

col = c(2, 4),

inset = 0.05, bty = "n")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
2

0
2

4

x

y

Simultane Konfidenz

confidence
prediction

2.4.2. Tukey’s Konfidenz-Intervalle. Geometrisch ist das Konfidenz-Ellipsoid also
durch seine (unendlich vielen) Tangentialebenen gekennzeichnet. Übersetzt als Test werden
hier unendlich viele lineare Tests simultan durchgeführt. In vielen Anwendungen ist es
jedoch möglich, gezieltere Fragestellungen anzugehen, etwa im Zwei-Stichprobenfall nur
die Hypothese β1−β2 = 0. Diese reduzierten Fragestellungen können in linearen Modellen
formuliert werden und zu schärferen Tests führen. Dies geschieht durch die Spezifizierung
von Kontrasten und wird in R auch für die Varianzanalyse unterstützt.

2.4.2.1. Fallstudie: Titrierplatte. Eine typisches Werkzeug in der Biologie und Medizin
sind Tritrierplatten, die z.B. bei Versuchen mit Zellkulturen eingesetzt werden. Die Platte
enthält in einem rechteckigen Raster kleine Vertiefungen. Auf die Platte insgesamt können

2-28 2. REGRESSION

Substanzen aufgebracht. Mit einer Multipipette können auch spaltenweise oder zeilenweise
Substanzen aufgebracht werden (Abbildung 2.2).

Abbildung 2.2. Titrierplatten. Mit Mulipipetten können zeilenweise
oder spaltenweise Substanzen aufgebracht werden.

Die Experimente werden oft in Serien durchgeführt. Aus einer Serie benutzen wir als
Beispiel nur die Daten einer Platte.

Eingabe
p35 <- read.delim("../data/p35.tab")

Für die Analyse mit lm() müssen wir die Daten aus der Matrix-Form in eine lange Form
überführen, die die Behandlung in einer Spaltenvariablen aufführt. Die Spalte H in die-
sem Versuch enthält keine Behandlung, sondern dient nur zur Qualitätskontrolle zwischen
denPlatten.

Eingabe
s35 <- stack(p35[,3:9]) # ignore column H

s35 <- data.frame(y=s35$values,

Tmt=s35$ind,

Lane=rep(1:12, length.out=dim(s35)[1])) # rename

lmres <- lm(y ~ 0+ Tmt, data= s35) # we do not want an overall mean

Die Zusammenfassung als lineares Modell enthält Tests für die einzelnen Koeffizienten.

Eingabe
summary(lmres)

Ausgabe
Call:
lm(formula = y ~ 0 + Tmt, data = s35)

Residuals:
Min 1Q Median 3Q Max

-0.084833 -0.016354 0.009125 0.022729 0.073083

Coefficients:
Estimate Std. Error t value Pr(>|t|)

TmtA 0.19383 0.01035 18.73 <2e-16 ***
TmtB 0.24892 0.01035 24.06 <2e-16 ***
TmtC 0.23783 0.01035 22.99 <2e-16 ***
TmtD 0.24117 0.01035 23.31 <2e-16 ***

2.4. SIMULTANE SCHäTZUNG 2-29

TmtE 0.24392 0.01035 23.57 <2e-16 ***
TmtF 0.23558 0.01035 22.77 <2e-16 ***
TmtG 0.22367 0.01035 21.62 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03584 on 77 degrees of freedom
Multiple R-squared: 0.9787, Adjusted R-squared: 0.9768
F-statistic: 506.2 on 7 and 77 DF, p-value: < 2.2e-16

Für dieses Beispiel sind die Tests für die einzelnen Koeffizienten nicht angebracht. anova()
listet eine Zusammnenfassung, die auf die Varianzanalyse zugeschnitten ist.

Eingabe
anova(lmres)

Ausgabe
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

Tmt 7 4.5513 0.6502 506.15 < 2.2e-16 ***
Residuals 77 0.0989 0.0013

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Wenn die Voraussetzungen des Gauß-linearen Modells gegeben sind, so ist der Behand-
lungseffekt signifikant. Es stellt sich sofort die Frage, zwischen welchen der Behandlungen
ein signifikanter Unterschied besteht, d.h. uns interessieren die Kontraste, die die Behand-
lungsunterschiede beschreiben. Ohne das Niveau zu verletzen können diese post-hoc mit
Tukey’s Ansatz untersucht werden. Dazu brauchen wir die Funktion glht() für den Test
für generalisierte lineare Hypothesen, die in der Bibliothek multcomp für multiples Testen
bereit gestellt. ist.

2-30 2. REGRESSION

Beispiel 2.7:

Eingabe
library(multcomp)

lhtres<-glht(lmres,linfct=mcp(Tmt="Tukey"))

summary(lhtres) # muliple tests

Ausgabe
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = y ~ 0 + Tmt, data = s35)

Linear Hypotheses:
Estimate Std. Error t value p value

B - A == 0 0.055083 0.014632 3.765 0.00577 **
C - A == 0 0.044000 0.014632 3.007 0.05277 .
D - A == 0 0.047333 0.014632 3.235 0.02834 *
E - A == 0 0.050083 0.014632 3.423 0.01651 *
F - A == 0 0.041750 0.014632 2.853 0.07793 .
G - A == 0 0.029833 0.014632 2.039 0.39861
C - B == 0 -0.011083 0.014632 -0.757 0.98819
D - B == 0 -0.007750 0.014632 -0.530 0.99832
E - B == 0 -0.005000 0.014632 -0.342 0.99986
F - B == 0 -0.013333 0.014632 -0.911 0.96971
G - B == 0 -0.025250 0.014632 -1.726 0.60126
D - C == 0 0.003333 0.014632 0.228 0.99999
E - C == 0 0.006083 0.014632 0.416 0.99958
F - C == 0 -0.002250 0.014632 -0.154 1.00000
G - C == 0 -0.014167 0.014632 -0.968 0.95930
E - D == 0 0.002750 0.014632 0.188 1.00000
F - D == 0 -0.005583 0.014632 -0.382 0.99974
G - D == 0 -0.017500 0.014632 -1.196 0.89361
F - E == 0 -0.008333 0.014632 -0.570 0.99748
G - E == 0 -0.020250 0.014632 -1.384 0.80861
G - F == 0 -0.011917 0.014632 -0.814 0.98279

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported)

Unter den Voraussetzungen des Modells ist damit die Signifikanz der Unterschiede von
A zu B und D gesichert.

Um die Voraussetzungen zu prüfen, stehen uns die Residuen zur Verfügung, die wir
mit plot() inspizieren können.

2.4. SIMULTANE SCHäTZUNG 2-31

Beispiel 2.8:

Eingabe
oldpar <- par(mfrow=c(2,2))

plot(lmres)

par(oldpar)

0.20 0.22 0.24

−
0.

10
0.

00

Fitted values

R
es

id
ua

ls
●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●●

●

●

●●

●
●

●

●
●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●●

●

●
●●
●●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

Residuals vs Fitted

25
3724

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

25
3724

0.20 0.22 0.24

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●●
●●
●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

Scale−Location
25

3724

−
3

−
1

0
1

2

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

A G F C D E B
Tmt :

●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●●

●

●

●●

●
●

●

●
●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

● ●

●

●
●●
●●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

Constant Leverage:
 Residuals vs Factor Levels

25
3724

Die Verteilung zeigt eine deutliche Abweichung von der Normalverteilung, insbesondere
bei kleinen Werten. Wir können diese selektiv inspizieren.

Beispiel 2.9:

Eingabe
#diagnostic

library(MASS)

s35$studres <- studres(lmres)

s35[s35$studres < -1,]

Ausgabe
y Tmt Lane studres

13 0.174 B 1 -2.239390
24 0.173 B 12 -2.271296
25 0.153 C 1 -2.559766
33 0.202 C 9 -1.044865
36 0.186 C 12 -1.523409
37 0.165 D 1 -2.279286
48 0.174 D 12 -1.994858
49 0.171 E 1 -2.175828
60 0.172 E 12 -2.144169
61 0.168 F 1 -2.007887
72 0.174 F 12 -1.821449
73 0.177 G 1 -1.367608
84 0.189 G 12 -1.010381

2-32 2. REGRESSION

Das Muster ist auffällig. Fast allle besonders kleinen Werte sind am Rand der Platte.

Dieses Muster hätten wir auch mit einer visuellen Inspektion erkennen können:

Beispiel 2.10:

Eingabe
visualisation

image, the easy way

a35 <- as.matrix(p35[3:10])

a35rk <- apply(a35,2, rank)

#image(a35rk)

enhanced image, using bertin

library(bertin)

oldpar<- par(mfrow=c(2,1))

imagem(t(a35rk), col=blueyellow4.colors(12), main="p35")

colramp(blueyellow4.colors(12),12,horizontal=TRUE)

par(oldpar)

2 4 6 8 10

8
6

4
2

p35

A
B
C
D
E
F
G
H

0.0 0.2 0.4 0.6 0.8 1.0

blueyellow4.colors(12)

Bei unabhängigen Fehlern hätten wir eine zufällige Verteilung der Ränge in den Zeilen.
Die Konzentrierung der extremen Werte in den extremen Spalten zeigt eine inhomogenität
im Produktionsprozeß.

In diesem Beispiel können wir also berichten, dass anscheinend ein Unterschied zwi-
schen der Behandlung A und speziellen anderen Behandlungen besteht. Die Beurteilung
ist aber mit Vorbehalt zu betrachten: die Modellvoraussetzungen sind nicht erfüllt. Es
gibt eine erkennbare Inhomogenität zwischen den Zeilen. Wichtiger ist also der Hinweis im
Produktionsprozess nach Ursachen dieser Inhomogenität zu suchen.

2.5. Nichtparametrische Regression

2.5.0.2. Transformationen.

2.5. NICHTPARAMETRISCHE REGRESSION 2-33

2.5.0.3. Box-Cox-Transformationen. Lage- und Skalenparameter können auch als Ver-
such verstanden werden, die Verteilung auf eine Referenzgestalt zu transformieren. Lage-
und Skalenparameter erfassen nur lineare Transformationen.

Die Box -Cox -Transformationen

y(λ) =

yλ−1
λ fürλ 6= 0,

log(y) fürλ = 0

sind eine Familie, die so skaliert ist, dass die Logarithmus-Transformation stetig in Potenz-
Transformationen eingebettet ist. Die Funktion boxcox() in library(MASS) kann benutzt
werden, um λ zu wählen.

Generalisierte lineare Modelle sind so erweitert, dass sie bestimmte Transformationen
schon im Modell berücksichtigen können. Dazu finden Sie weitere Information in [VR02].

2.5.1. Zwischenspiel: verallgemeinerte lineare Modelle. Wir wollen schnell zur
praktischen Arbeit kommen. An dieser Stelle sollte jedoch eine Ausblick nicht fehlen, wie
wir über die einschränkenden Annahmen des linearen Modells hinauskommen. Die linea-
ren Modelle gehören zu den am besten untersuchten Modellen. Theorie und Algorithmen
hierfür sind weit entwickelt. Von daher ist es naheliegend, zu probieren, wieweit sich die
Modellklasse so erweitern lässt, dass theoretische und algorithmische Erfahrungen noch
nutzbar sind.

Wir notierten das lineare Modell als

Y = m(X) + ε

Y mit Werten in Rn

X ∈ Rn×p

E(ε) = 0

mit m(X) = Xβ, β ∈ Rp.

Eine wichtige Erweiterung ist, die Bedingung der Linearität aufzuheben. Sie wird ab-
gemildert mit einer Zwischenstufe. Wir setzen also nicht mehr voraus, dass m linear ist,
sondern nur, dass es sich über eine lineare Funktion faktorisieren lässt. Dies ergibt ein
verallgemeinertes lineares Modell

Y = m(X) + ε

Y mit Werten in Rn

X ∈ Rn×p

E(ε) = 0

m(X) = m(η) mit η = Xβ, β ∈ Rp.

Die nächste naheliegende Verallgemeinerung ist, eine Transformation für Y zu berück-
sichtigen. Zahlreiche weitere Abschwächungen sind diskutiert worden; eine kleine Anzahl
hat sich als handhabbar erwiesen. Die verbliebenen Modelle werden als generalisierte linea-
re Modelle bezeichnet. Generalisierte lineare Modelle haben in R eine weitgehende Unter-
stützung. In der Regel findet sich zu den hier diskutierten R-Funktionen für lineare Modelle
eine Entsprechung für generalisierte lineare Modelle. Weitere Information mit help(glm).

2-34 2. REGRESSION

2.5.2. Lokale Regression. Wir machen nun einen großen Sprung. Wir haben lineare
Modelle diskutiert. Wir wissen, dass damit auch nichtlineare Funktionen modelliert werden
können. Aber die Terme, die in die Funktion eingehen, müssen vorab spezifiziert werden.
Zu viele Terme führen zu einer Überanpassung. Die statistische Behandlung von Regressi-
onsproblemen mit geringen Einschränkungen an die Modellfunktion bleibt ein Problem.

Ein partieller Lösungsansatz kommt aus der Analysis. Dort ist es eine Standard-
Technik, Funktionen lokal zu approximieren. Das analoge Vorgehen in der Statistik ist,
anstelle eines globalen Schätzverfahrens eine lokalisierte Variante zu wählen. Wir nehmen
immer noch an, dass

Y = m(X) + ε Y ∈ Rn

X ∈ Rn×p

E(ε) = 0,

aber wir nehmen Linearität nur lokal an:

m(x) ≈ x′βx0 βx0 ∈ Rp und x ≈ x0.

Wenn wir praktisch arbeiten wollen, reicht abstrakte Asymptotik nicht. Wir müssen das
≈ spezifizieren. Dies kann skalenspezifisch geschehen (z.B. x ≈ x0 wenn |x− x0| < 3) oder
designabhängig (z.B. x ≈ x0 wenn #i : |x − xi| ≤ |x − x0| < n/3). Die heute üblichen
Implementierungen haben feinere Varianten, die hier noch nicht diskutiert werden können.
Der Illustration halber kann die folgende Vergröberung reichen:

Lokalisierter Gauß-Markov-Schätzer:

Für x ∈ Rp, bestimme

δ = min
d

: (#i : |x− xi| ≤ d) ≥ n · f

wobei f ein gewählter Anteil (z.B. 0.5) ist.

Bestimme den Gauß-Markov-Schätzer β̂x, wobei nur diejenigen Beobachtungen einbe-
zogen werden, für die |x− xi| ≤ δ.
Schätze

m̂(x) = x′β̂x.

Diese Vergröberung ignoriert alle Messpunkte, die einen Abstand über δ haben. Feinere
Methoden benutzen eine Gewichtung, um den Einfluss entfernter Messpunkte zunehmend
zu reduzieren.

help(loess)

loess Local Polynomial Regression Fitting

Description.

Fit a polynomial surface determined by one or more numerical predictors, using local
fitting.

Usage.

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)

2.5. NICHTPARAMETRISCHE REGRESSION 2-35

Arguments.

formula a formula specifying the numeric response and one to four numeric
predictors (best specified via an interaction, but can also be specified
additively).

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model.
If not found in data, the variables are taken from environment(formula),
typically the environment from which loess is called.

weights optional weights for each case.
subset an optional specification of a subset of the data to be used.
na.action the action to be taken with missing values in the response or predictors.

The default is given by getOption("na.action").
model should the model frame be returned?
span the parameter α which controls the degree of smoothing.
enp.target an alternative way to specify span, as the approximate equivalent num-

ber of parameters to be used.
degree the degree of the polynomials to be used, up to 2.
parametric should any terms be fitted globally rather than locally? Terms can be

specified by name, number or as a logical vector of the same length as
the number of predictors.

drop.square for fits with more than one predictor and degree=2, should the qua-
dratic term (and cross-terms) be dropped for particular predictors?
Terms are specified in the same way as for parametric.

normalize should the predictors be normalized to a common scale if there is more
than one? The normalization used is to set the 10% trimmed standard
deviation to one. Set to false for spatial coordinate predictors and
others know to be a common scale.

family if "gaussian" fitting is by least-squares, and if "symmetric" a re-
descending M estimator is used with Tukey’s biweight function.

method fit the model or just extract the model frame.
control control parameters: see loess.control.
... control parameters can also be supplied directly.

Details.

Fitting is done locally. That is, for the fit at point x, the fit is made using points in a
neighbourhood of x, weighted by their distance from x (with differences in ‘parametric’
variables being ignored when computing the distance). The size of the neighbourhood
is controlled by α (set by span or enp.target). For α < 1, the neighbourhood in-
cludes proportion α of the points, and these have tricubic weighting (proportional to
(1 − (dist/maxdist)3)3. For α > 1, all points are used, with the ‘maximum distance’
assumed to be α1/p times the actual maximum distance for p explanatory variables.

For the default family, fitting is by (weighted) least squares. For family="symmetric"
a few iterations of an M-estimation procedure with Tukey’s biweight are used. Be aware
that as the initial value is the least-squares fit, this need not be a very resistant fit.

It can be important to tune the control list to achieve acceptable speed. See
loess.control for details.

Value.

An object of class "loess".

2-36 2. REGRESSION

Note.

As this is based on the cloess package available at netlib, it is similar to but not
identical to the loess function of S. In particular, conditioning is not implemented.

The memory usage of this implementation of loess is roughly quadratic in the
number of points, with 1000 points taking about 10Mb.

Author(s).

B.D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu avaliable at
http://www.netlib.org/a/.

References.

W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chap-
ter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole.

See Also.

loess.control, predict.loess.
lowess, the ancestor of loess (with different defaults!).

Examples.

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)
to allow extrapolation
cars.lo2 <- loess(dist ~ speed, cars,
control = loess.control(surface = "direct"))

predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)

Während die lineare Regression durch die Modellannahmen verpflichtet ist, immer ein
lineares (oder linear parametrisiertes) Bild zu geben, können bei einer lokalisierten Variante
auch Nichtlinearitäten dargestellt werden. Die Untersuchung dieser Familie von Verfahren
bildet ein eigenes Teilgebiet der Statistik, die nichtparametrische Regression.

Wir bereiten wieder ein Beispiel vor:

Eingabe
x <- runif(50) * pi

y <- sin(x)+rnorm(50)/10

2.6. ERGÄNZUNGEN 2-37

Beispiel 2.11:
Eingabe

plot(x, y)

abline(lm(y ~ x), lty = 3, col = "blue")

lines(loess.smooth(x, y), lty = 6, col = "red")

legend("topleft",

legend = c("linear", "loess"),

lty = c(3, 6), col = c("blue", "red"), bty = "n")

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

y

linear
loess

2.6. Ergänzungen

2.6.1. Ergänzung: Diskretisierungen. Analog zum Vorgehen bei den Histogram-
men können wir wieder diskretisieren. Im Hinblick auf die Regressoren haben wir dies beim
Helikopter-Beispiel getan. Die Diskretisierung können wir auch bei der Respons vorneh-
men. Damit wird aus dem Regressionsproblem ein Kontingenztafel-Problem. Wir gehen
hier nicht weiter auf diese Möglichkeit ein.

2.6.2. Ergänzung: Externe Daten. Daten, wie auch andere R-Objekte können mit
save() in eine externe Datei geschrieben und mit load() wieder daraus gelesen werden.
In diesen Dateien werden die Daten komprimiert; die Dateien sind zwischen verschiedenen
R-Systemen austauschbar.

Ein- Ausgabe von
Daten für R

save() Speichert Daten in eine externe Datei.

Aufruf: save(〈Namen der zu speichernden Objekte〉, file

= 〈Dateiname〉, ...)

(Fortsetzung)→

2-38 2. REGRESSION

Ein- Ausgabe von
Daten für R

(Fortsetzung)

load() Lädt Daten aus einer externe Datei.

Aufruf: load(file = 〈Dateiname〉, ...)

Häufig werden Daten in anderen Systemen vorbereitet. R stellt eine Reihe von Funk-
tionen bereit, die Daten in unterschiedlichen Formaten einlesen können. Siehe dazu im
Anhang Abschnittt A.17 auf Seite Seite A-29. Weitere Information findet sich im Manual
“Data Import/Export” ([R D07b]).

Die Funktion data() bündelt verschieden Zugriffsroutinen, wenn die Zugriffspfade und
Datei-Namen den R-Konventionen folgen.

In der Regel müssen eingelesene Daten noch nachbearbeitet werden, um das Format
an die Aufrufkonventionen der gewünschten R-Funktionen anzupassen.

So erwartet z. B. lm die Regressoren als getrennte Variable. Für faktorielle Designs ist
es hingegen üblich, die Resultate in einer Tafel zusammenzufassen, die die Faktor-Stufen
als Zeilen- oder Spaltenlabels enthält. Die Funktion stack() überführt Tafeln in Spalten.

2.6.3. Ergänzung: Software-Test. Alle vorbereiteten Algorithmen, wie hier die Al-
gorithmen zu den linearen Modellen und deren Varianten, sollten mit derselben Vorsicht
behandelt werden wie mathematische Veröffentlichungen und Zitate. Selbst einfache Pro-
gramme jedoch haben schnell eine semantische Komplexität, die weit über die mathemati-
scher Beweise hinaus geht. Die übliche Strategie des “Nachrechnens” oder des schrittweisen
Nachvollziehens verbietet sich dadurch. Anstelle einer vollständigen Überprüfung muss ein
selektives Testen treten. Eine Teststrategie ist z.B. in [Sawitzki, 1994] beschrieben.

Die Überprüfung ist sowohl für die Implementierung als auch für den zu Grunde lie-
genden abstrakten Algorithmus nötig.

Aufgabe 2.18

Für diese Aufgabenserie sei yi = a+ bxi + εi mit εi iid ∼ N(0, σ2)
und xi = i, i = 1, . . . , 10.

Wählen Sie eine Strategie, um lm() im Hinblick auf den Parame-
terraum (a, b, σ2) zu überprüfen.

Gibt es eine naheliegende Zellzerlegung für die einzelnen Parameter
a, b, σ2?

Welche trivialen Fälle gibt es? Welche (uniforme) Asymptotik?

Wählen Sie Testpunkte jeweils in der Mitte jeder Zelle und an den
Rändern.

Führen Sie diese Test durch und fassen Sie die Resultate zusammen.

Welche Symmetrien/Antisymmetrien gibt es?

Überprüfen Sie diese Symmetrien.

Welche Invarianten/welches Covariate Verhalten gibt es?
Überprüfen Sie diese Invarianten/Covariaten.

2.6. ERGÄNZUNGEN 2-39

Aufgabe 2.19

Für diese Aufgabenserie sei yi = a+ bxi + εi mit εi iid ∼ N(0, σ2).

Welche extremen Designs (xi) gibt es? Überprüfen Sie das Verhal-
ten von lm() bei vier extremalen Designs.

Führen Sie die Aufgaben aus der letzten Gruppe aus, jetzt mit
variablem Design. Fassen Sie Ihren Bericht zusammen.

Aufgabe 2.20

Für diese Aufgabenserie sei yi = a+ bxi + εi mit εi iid ∼ N(0, σ2).

Modifizieren Sie lm() so, dass eine gesicherte Funktion für das
einfache lineare Modell entsteht, die auch Abweichungen von den
Modellannahmen untersucht.

2.6.4. R-Datentypen. R ist eine interpretierte Programmiersprache. Sie will es dem
Anwender erlauben, Definitionen und Konkretisierungen flexibel zu handhaben. Aus Ge-
schwindigkeitsgründen versucht R, Auswertungen so spät wie möglich durchzuführen. Dies
erfordert einige Einschränkungen an die Sprache, die R von anderen Programmiersprachen
unterscheidet.

R kennt keine abstrakten Datentypen. Ein Datentyp ist durch seine Instanzen, die
Variablen, definiert.

Der Datentyp einer Variablen ist dynamisch: derselbe Name in denselben Kontext kann
zu unterschiedlichen Zeiten unterschiedliche Variablenwerte und Variablentypen kennzeich-
nen.

Dennoch hat zu jeder Zeit eine Variable einen bestimmten Typ. Das R-Typensystem
versteht man jedoch am besten in seiner historischen Entwicklung und die entsprechenden
Funktionen. In der ersten Stufe war der Typ beschrieben durch mode() (z.B. “numeric”)
und storage.mode() (z.B. “integer” oder “real”).

Beide Funktionen sind weitgehend durch typeof() abgelöst. Eine Zusammenfassung
der Typen, die durch typeof() derzeit berichtet werden, ist in [R D07c] zu finden.

Komplexere Datentypen werden auf die in [R D07c] definierten zurückgeführt, indem
die Variablen mit Attributen versehen werden. Dies geschieht mit der Funktion attr() , die
auch benutzt werden kann, um Attribute zu inspizieren. So sind eine Matrix oder ein Array
nur spezielle Vektoren, die sich dadurch auszeichnen, dass sie ein dim -Attribut haben. Das
class -Attribut dient dazu, die Klasse explizit zu festzulegen.

Für die wesentlichen Typen sind Inspektionsprozeduren und Umwandlungsprozeduren:
is.〈typ〉() prüft auf Typenzugehörigkeit, as.〈typ〉() wandelt den Typ.

2.6.5. Klassen und polymorphe Funktionen. Im Zuge der Weiterentwicklung
wurde eine Anleihe an objekt-orientierte Programmierung gemacht. Dafür wurde ein spe-
zielles Attribut mit dem Namen class genutzt: der Name des Typs (oder der “Klasse”)
wird hier gespeichert. Multiple Klassenzugehörigkeit in einer Hierarchie von Klassen ist
auch möglich. In diesem Fall enthält class einen Vektor von Klassennamen. So hat zum
Beispiel ein geordneter Faktor die Kennzeichnung class = c("ordered", factor"). Zur
Verwaltung der Klassen stehen Funktionen class() , unclass() , inherits() zur Verfü-
gung.

2-40 2. REGRESSION

Die Klassenzuordnung basiert dabei auf Vertrauen. R überprüft nicht, ob die Daten-
struktur mit der angegebenen Klasse konsistent ist.

Funktionen wie plot() , print() und viele weitere überprüfen die Typen- und Klas-
senzugehörigkeit ihrer Argument und verzweigen dann zu entsprechenden spezialisierten
Funktionen. Dieses nennt man Polymorphismus. Wenn man eine polymorphe Funktion
auflistet, erhält man zunächst nur den Hinweise, das eine Dispatch-Funktion UseMethod()

aufgerufen wird. Beispiel:

Beispiel 2.12:

Eingabe
plot

Ausgabe
function (x, y, ...)
{

if (is.function(x) && is.null(attr(x, "class"))) {
if (missing(y))

y <- NULL
hasylab <- function(...) !all(is.na(pmatch(names(list(...)),

"ylab")))
if (hasylab(...))

plot.function(x, y, ...)
else plot.function(x, y, ylab = paste(deparse(substitute(x)),

"(x)"), ...)
}
else UseMethod("plot")

}
<environment: namespace:graphics>

UseMethod() bestimmt die Klasse des ersten Argument, mit dem die Funktion auf-
gerufen wurde, sucht dann ein Spezialisierung für diese Klasse und ruft schliesslich die
gefundene Funktion auf. Für polymorphe Funktionen findet man die entsprechenden Spe-
zialisierungen mit Hilfe von methods() , z.B. methods(plot).

2.6.6. Extraktor-Funktionen. Funktionen wie lm() liefern komplexe Datentypen
mit umfangreicher Information. In einer rein objekt-orientierten Umgebung würden Zu-
griffsmethoden mit den Daten gemeinsam verkapselt. In R ist Objekt-Orientierung in
Ansätzen und auf verschiedene Weisen realisiert. Dies spiegelt zum Teil die Entwicklung
wieder. Bei genügend verallgemeinerbaren Strukturen werden Zugriffsmethoden wie in Ab-
schnitt 2.6.5 bereitgestellt. Für die Objekte wie die von lm() gelieferten gibt es eine Reihe
von Extraktor-Funktionen, die auf Komponenten zugreifen und diese geeignet aufbereiten.

Extraktor-Funkti-
onen für lm

coef() extrahiert geschätzte Koeffizienten

effects() extrahiert sukzessiv orthogonale Komponenten

(Fortsetzung)→

2.8. LITERATUR UND WEITERE HINWEISE: 2-41

Extraktor-Funkti-
onen für lm

(Fortsetzung)

residuals() Roh-Residuen

stdres() (in library(MASS)) standardisierte Residuen

studres() (in library(MASS)) extern studentisiere Residuen

fitted()

vcov() Varianz/Kovarianzmatrix der geschätzten Parameter

predict() Konfidenz- und Toleranzintervalle

confint() Konfidenz-Intervalle für Parameter

influence() extrahiert Einfluss-Diagnostiken

model.matrix() bildet die Design-Matrix

2.7. Statistische Zusammenfassung

Als Leitbeispiel diente in diesem Kapitel die statistische Analyse eines funktionel-
len Zusammenhangs. Die betrachteten Modelle sind finit in dem Sinne, dass ein endlich-
dimensionaler Funktionenraum den in Betracht gezogenen Zusammenhang zwischen Re-
gressoren und Respons beschreibt. Die stochastische Komponente in diesen Modellen ist
noch auf eine (eindimensionale) Zufallsverteilung beschränkt. Die Dimensionsbegriffe ver-
dienen hier eine genauere Betrachtung. Wir haben zum einen die Regressor-Dimension.
Dies ist die Dimension des Raumes der beobachteten oder abgeleiteten Parameter. Nicht
alle Parameter sind identifizierbar oder schätzbar. Genauer gefasst ist die Dimension die
Vektorraum-Dimension des gewählten Modell-Raums. Die Modelle werden durch Parame-
ter in diesem Raum beschrieben. Diese Parameter können unbekannt oder hypothetisch
sein. In jedem Fall aber haben wir sie als deterministisch betrachtet. Zum anderen ha-
ben wir die stochastische Komponente, repräsentiert durch den Fehler-Term. In diesem
Kapitel sind wir von homogenen Fehlern ausgegangen. Damit bestimmt der Fehler-Term
im Prinzip eine Dimension, die allerdings aus einem Raum von Verteilungen stammt. Für
den Spezialfall der einfachen Gauß-linearen Modell sind die Verteilungen mit zwei Para-
metern präzisiert, dem Erwartungswert und der Varianz. Von dem Erwartungswert haben
wir uns durch die Annahme befreit, dass das Modell im Mittel alle systematischen Effekte
erfasst, also der Erwartungswert null ist. Die Varianz ist in unseren Problemen noch ein
unbekannter Störparameter. Wir haben die dadurch entstehenden Problemen vermieden,
indem wir uns auf Probleme beschränkt haben, in denen diese Störparameter durch einen
geschätzten Wert ersetzt und so eliminiert wird.

2.8. Literatur und weitere Hinweise:

[CH92] Chambers, J.M.; Hastie, T.J. (eds.) (1992): Statistical Models in S. NewYork:
Chapman & Hall.

[Jør93] Jørgensen, B. (1993): The Theory of Linear Models. NewYork: Chapman & Hall.

[R D07c] R Development Core Team (2004): The R language definition.

2-42 2. REGRESSION

[Saw94a] Sawitzki, G. (1994): Numerical Reliability of Data Analysis Systems. Computa-
tional Statistics & Data Analysis 18.2 (1994) 269-286. <http://www.statlab.
uni-heidelberg.de/reports/>.

[Saw94b] Sawitzki, G. (1994):Report on the Numerical Reliability of Data Analysis Sy-
stems. Computational Statistics & Data Analysis/SSN 18.2 (1994) 289-301. <http:
//www.statlab.uni-heidelberg.de/reports/>.

KAPITEL 3

Vergleich von Verteilungen

Wir beginnen mit der Konstruktion eines kleinen Werkzeugs, das uns Beispieldaten
liefern wird. Basis ist ein kleiner Reaktionstester. Wir zeichen einen “zufälligen” Punkt,
warten auf einen Maus-Klick, und registrieren die Position des Mauszeigers. Damit bei
wiederholten Aufrufen das Bild stabil bleibt, fixieren wir das Koordinatensystem.

Beispiel 3.1:
Eingabe

plot(x = runif(1), y = runif(1),

xlim = c(0, 1), ylim = c(0, 1),

main = "Bitte auf den Punkt klicken",

xlab = '', ylab = '',
axes = FALSE, frame.plot = TRUE)

locator(1)

Ausgabe
$x
[1] 0.6956522

$y
[1] 0.1260563

●

Bitte auf den Punkt klicken

3-1

3-2 3. VERGLEICH VON VERTEILUNGEN

Wir verpacken nun diesen Basistester. Wir merken uns die Koordinaten, versuchen,
die Reaktionszeit des Benutzers zu messen, und liefern alle Resultate als Liste zurück.

Beispiel 3.2:
Eingabe

click1 <- function(){

x <- runif(1);y <- runif(1)

plot(x = x, y = y, xlim = c(0, 1), ylim = c(0, 1),

main = "Bitte auf den Punkt klicken",

xlab = '', ylab = '',
axes = FALSE, frame.plot = TRUE)

clicktime <- system.time(xyclick <- locator(1))

list(timestamp = Sys.time(),

x = x, y = y,

xclick = xyclick$x, yclick = xyclick$y,

tclick = clicktime[3])

}

Zur weiteren Verarbeitung können wir die Liste in einen data.frame integrieren und
diesen data.frame schrittweise mit Hilfe von rbind erweitern.

Beispiel 3.3:
Eingabe

dx <- as.data.frame(click1())

dx <- rbind(dx, data.frame(click1()))

dx

Ausgabe
timestamp x y xclick yclick tclick

elapsed 2008-03-17 21:40:49 0.29683 0.43955 0.69565 0.12606 0.261
elapsed1 2008-03-17 21:40:50 0.29617 0.58226 0.69565 0.12606 0.262

Aufgabe 3.1

Definieren Sie eine Funktion click(runs), die zu vorgegebener An-
zahl runs die Aufgabe von click1() wiederholt und das Resultat
als data.frame übergibt. Eine erste (zusätzliche) Messung sollte
als Warmlaufen betrachtet werden und nicht in die Auswertung
mit einbezogen werden.

Wählen Sie eine Anzahl runs. Begründen Sie Ihre Wahl von runs.
Führen Sie click(runs) durch und speichern Sie das Resultat mit
Hilfe von write.table() in einer Datei.
Stellen Sie die Verteilung der Komponente tclick() mit den Me-
thoden aus Kapitel 1 (Verteilungsfunktion, Histogramm, Boxplot)
dar.

3.1. SHIFT/SKALENFAMILIEN 3-3

3.1. Shift/Skalenfamilien

Ein Vergleich von Verteilungen kann eine sehr anspruchsvolle Aufgabe sein. Der ma-
thematische Raum, in dem Verteilungen angesiedelt sind, ist nicht mehr ein Zahlenraum
oder ein (endlichdimensionaler) Vektorraum. Der eigentliche Raum, in dem Verteilungen
beheimatet sind, ist ein Raum von Maßen. In einfachen Fällen, etwa bei Verteilungen auf
R, können wir alles auf Verteilungsfunktionen reduzieren und sind damit immerhin bei
einem Funktionenraum. Selbst hier kann ein Vergleich noch große Schwierigkeiten machen.
Wir haben keine einfache Ordnungsrelation.

Aufgabe 3.2

Führen Sie Aufgabe 3.1 einmal mit der rechten und einmal mit der
linken Hand durch. Vergleichen Sie die empirischen Verteilungen
von tclick().

Die erhobenen Daten enthalten auch Information über die Positio-
nen. Definieren Sie ein Maß dist für die Abweichung. Begründen
Sie Ihre Definition. Führen Sie auch für dist einen rechts/links
Vergleich durch.

Wir konzentrieren uns hier auf den Vergleich von nur zwei Verteilungen, etwa der von
Messungen in zwei Behandlungsgruppen. Wie nehmen wieder einen einfachen Fall: die
Beobachtungen seien jeweils unabhängig identisch verteilt (jetzt mit der für den Vergleich
von Behandlungen üblichen Index-Notation).

Yij unabhängig identisch verteilt mit Verteilungsfunktion Fi

i = 1, 2 Behandlungen

j = 1, . . . , ni Beobachtungen in Behandlungsgruppe i.
Wie vergleichen wir die Beobachtungen in den Gruppen i = 1, 2 ? Die (einfachen) linearen
Modelle

Yij = µ+ αi + εij

betrachten als Unterschied häufig nur eine Verschiebung ∆ = α1 − α2.

Bezeichnungen: Zu einer Verteilung mit Verteilungsfunktion F heißt die Familie mit

Fa(x) = F (x− a)

die Shift-Familie zu F . Die Verschiebung a heißt Shift- oder Lage-Parameter.

Die Behandlung kann aber, in Wahrscheinlichkeiten gesprochen, die Wahrscheinlich-
keitsmassen auch in anderer Weise verschieben, als es ein additiver Term im Modell be-
wirken kann. Wir brauchen allgemeinere Vergleichsmöglichkeiten als die durch einen Shift
definierten.

Bezeichnung: Eine Verteilung mit Verteilungsfunktion F1 heißt stochastisch kleiner
als eine mit Verteilungsfunktion F2(F1 ≺ F2), wenn F1 eher bei kleineren Werten liegt als
F2. Das bedeutet, dass F1 eher ansteigt.

F1(x) ≥ F2(x) ∀x
und

F1(x) > F2(x) für mindestens ein x.

Für Shift-Familien gilt: Ist a < 0, so ist Fa ≺ F . Der Shift bewirkt eine Parallel-
Verschiebung der Verteilungsfunktionen.

3-4 3. VERGLEICH VON VERTEILUNGEN

Ein typisches Resultat des Click-Experiments (Aufgabe 3.1 ist zum Beispiel in Ab-
bildung 3.1 dargestellt. Die Zeiten für die rechte Seite sind stochastisch kleiner als die
für die linke Seite. Die Verteilungen gehören jedoch nicht zu einer Shift-Familie, denn die
Verteilungsfunktionen sind nicht parallel.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

click time

time [s]

F
n(

x)

[
[

[
[
[

[
[

[
[
[
[
[
[
[
[
[
[

[
[
[
[

[

[
[
[
[
[
[

[
[

[
[
[

[
[
[
[

[
[

[
[
[

[

right
left

Abbildung 3.1. Verteilungsfunktion für die rechts/links-Klickzeit

Aufgabe 3.3

Wie sieht ein PP -Plot für F1 gegen F2 aus, wenn F1 ≺ F2?

Wie sieht ein QQ-Plot für F1 gegen F2 aus, wenn F1 ≺ F2?

Leider ist die dadurch definierte stochastische Ordnung nur von beschränktem Wert.
Sie definiert keine vollständige Ordnung. Für Shift-Familien ist sie ausreichend. Aber Ge-
genbeispiele kann man sich konstruieren, wenn man die Shift-Familien nur geringfügig
erweitert.

Bezeichnungen: Zu einer Verteilung mit Verteilungsfunktion F heißt die Familie mit

Fa,b(x) = F (
x− a
b

)

die Skalen-Shiftfamile zu F .

Aufgabe 3.4

Die Skalen-Shiftfamilien zur N(0, 1)-Verteilung sind die N(µ, σ2)-
Verteilungen. Welche N(µ, σ2)-Verteilungen sind stochastisch klei-
ner als die N(0, 1)-Verteilung? Welche sind stochastisch größer?
Für welche ist die Ordnungsrelation undefiniert?

3.2. QQ-PLOT, PP -PLOT 3-5

Die aus der linearen Theorie kommende Einordnung nach Lage/Skalen und die stocha-
stische Ordnung klaffen auseinander, und beide Aspekte müssen oft getrennt betrachtet
werden. Viele statistische Methoden konzentrieren sich auf Aspekte, die durch Skalen-
Shiftfamilien motiviert sind. Unterschiede jenseits dessen, was durch Skala und Shift be-
schrieben werden kann, bedürfen oft besonderer Aufmerksamkeit.

In Kapitel 2 haben wir eine typische Situation für lineare Modelle betrachtet. Im Prin-
zip haben wir es mit Skalen-Shiftfamilien zu tun. Der (stochastische) Skalenparameter in
diesen Modellen ist jedoch nur ein Störparameter, der eliminiert werden kann. Dazu be-
nutzten wir einen Schätzer für diesen Skalenparameter, die residuelle Varianz, die wir dann
heraus gekürzt haben. Als eine Besonderheit bei Gauß-linearen Modellen erhalten wir hier
unabhängige Schätzer für Erwartungswert und Varianz. Dadurch können wir im Falle der
einfachen Gauß-linearen Modelle Statistiken gewinnen, die nicht mehr vom Skalenparame-
ter abhängen.

Im allgemeinen Fall haben wir jedoch eine aufsteigende Leiter von Problemen:

• Shift-Alternativen
• Shift/Skalen-Alternativen
• stochastische Ordnung
• allgemeinere Alternativen

Test- und Schätzprobleme konzentrieren sich oft nur auf einen Aspekt des Problems,
die Lage. Der Skalenparameter ist hier nur eine Störgröße, ein“nuisance parameter”. Unter-
schiede im Shift-Parameter führen zu stochastisch monotonen Beziehungen. Unterschiede
im Skalenparameter sind nicht so einfach einzuordnen und Test-Statistiken müssen erst
von diesem, Störparameter bereinigt werden, wenn ausser dem Shift-Parameter auch der
Skalenparameter variieren kann.

3.2. QQ-Plot, PP -Plot

Als Vergleichsdarstellung für Verteilungsfunktionen haben wir den PP -Plot und den
QQ-Plot kennengelernt. So lange man innerhalb einer Skalen-Shiftfamilie bleibt, hat der
QQ-Plot zumindest in einer Hinsicht einen Vorteil gegenüber dem PP -Plot:

Bemerkung 3.1. Sind F1, F2 Verteilungsfunktionen aus einer gemeinsamen Skalen-
Shiftfamilie, so ist der QQ-Plot von F1 gegen F2 eine Gerade.

Insbesondere für die Gaußverteilungen ist der QQ-Plot gegen N(0, 1) ein wichtiges
Hilfsmittel. Jede Gaußverteilung gibt in diesem Plot eine Gerade. Der QQ-Plot ist für
diese Situation bereits als Funktion qqnorm() vorbereitet.

Für den Vergleich von zwei Stichproben mit gleichem Stichprobenumfang kann die ent-
sprechende Funktion qqplot() genutzt werden: bezeichnen wir die empirischen Quantile
mit Y1,(i:n) bzw. Y2,(i:n), so ist dieser Plot der Graph

(
Y1,(i:n), Y2,(i:n)

)
i=1...n

. Sind die Stich-
probenumfänge verschieden, so behilft sich R und generiert die Markierungspunkte durch
lineare Interpolation, wobei der kleinere der beiden Stichprobenumfänge die Anzahl der
Interpolationspunkte bestimmt.

Der PP -Plot hat keine dem QQ-Plot vergleichbare Äquivarianzeigenschaften. Wenn
wir Skalen-Shiftparameter eliminieren wollen, müssen wir die Daten zunächst entsprechend
transformieren. Die mathematische Theorie ist jedoch für den PP -Plot einfacher. Insbe-
sondere gibt es auch hier einen entsprechenden Kolmogorov-Smirnov-Test (siehe Abschnitt
3.2.1).

3-6 3. VERGLEICH VON VERTEILUNGEN

Der Äquivarianz des QQ-Plots als Vorteil stehen auf der anderen Seite strukturelle
Nachteile entgegen. In Bereichen niedriger Dichte bestimmen empirisch wenige Daten-
punkte den Plot. Entsprechend hat er hier eine große Varianz. Gleichzeitig sind hier der
Wahrscheinlichkeit nach benachbarte Quantile im Wertebereich weit entfernt: die große
Varianz kombiniert sich ungünstig mit einer großen Variabilität, und der QQ-Plot zeigt
entsprechend große Fluktuation. Für die meisten Lehrbuch-Verteilungen bedeutet dies,
dass der QQ-Plot in den Randbereichen kaum zu interpretieren ist. Der PP -Plot hat keine
entsprechenden Skalendefizite, aber auch nicht die Äquivarianzeigenschaft des QQ-Plots.
Er wird deshalb in der Regel auf geeignet standardisierte Variable angewandt.

help(qqplot)

qqnorm Quantile-Quantile Plots

Description.

qqnorm is a generic function the default method of which produces a normal QQ plot
of the values in y. qqline adds a line to a normal quantile-quantile plot which passes
through the first and third quartiles.

qqplot produces a QQ plot of two datasets.
Graphical parameters may be given as arguments to qqnorm, qqplot and qqline.

Usage.

qqnorm(y, ...)
Default S3 method:
qqnorm(y, ylim, main = "Normal Q-Q Plot",

xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
plot.it = TRUE, datax = FALSE, ...)

qqline(y, datax = FALSE, ...)

qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)

Arguments.

x The first sample for qqplot.
y The second or only data sample.
xlab, ylab, main

plot labels. The xlab and ylab refer to the y and x axes respectively
if datax = TRUE.

plot.it logical. Should the result be plotted?
datax logical. Should data values be on the x-axis?
ylim, ... graphical parameters.

Value.

For qqnorm and qqplot, a list with components
x The x coordinates of the points that were/would be plotted
y The original y vector, i.e., the corresponding y coordinates including

NAs.

3.2. QQ-PLOT, PP -PLOT 3-7

References.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

See Also.

ppoints, used by qqnorm to generate approximations to expected order statistics for
a normal distribution.

Examples.

y <- rt(200, df = 5)
qqnorm(y); qqline(y, col = 2)
qqplot(y, rt(300, df = 5))

qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

Aufgabe 3.5

Benutzen Sie den Quantil-Quantil-Plot, um die Resultate des
rechts/links click -Experiments zu vergleichen. Formulieren Sie die
Resultate.

Fassen Sie die rechts/links tclick -Daten zu einem Vektor zusam-
men. Vergleichen Sie den Quantil-Quantil-Plot mit dem von Monte-
Carlo-Stichproben aus dem zusammengefassten Vektor.
Erinnerung: Zufallsstichproben können Sie mit sample() ziehen.
Mit par(mfrow = c(2, 2)) teilen Sie den Zeichenbereich so ein,
dass Sie vier Plots gleichzeitig sehen können.

** Benutzen Sie bei sample() den Parameterwert replace = FALSE.
Wie müssen Sie jetzt sample() anwenden, um den zusammengefas-
sten Vektor in zwei Vektoren mit Monte-Carlo-Stichproben aufzu-
teilen? Welche Unterschiede zu replace = TRUE sind zu erwarten?

Aufgabe 3.6

Bestimmen Sie für die tclick -Daten des rechts/links click -
Experiments Skalen- und Shiftparameter so, dass die Verteilun-
gen in den Gruppen nach Skalen-Shift-Transformation möglichst
gut übereinstimmen. Beschreiben Sie die Unterschiede anhand der
Skalen-Shiftparameter. Verwenden Sie dazu eine Modellierung mit
einem linearen Modell.

Benutzen Sie die Funktion boxplot(), um Quartile und Flanken-
verhalten darzustellen.

Vergleichen Sie die Information mit den Skalen-Shiftparametern.

Hinweis: was entspricht dem Shift(Lage)parameter? Was entspricht
dem Skalenparameter?

3-8 3. VERGLEICH VON VERTEILUNGEN

Wenn Darstellungen affin invariant sind, können Skalen-Shiftparameter ignoriert wer-
den. Wenn Darstellungen nicht affin invariant sind, ist es häufig hilfreich, zunächst Skalen-
Shiftparameter geeignet zu schätzen, die Verteilungen zu standardisieren, und dann die
standardisierten Verteilungen zu untersuchen.

Das Problem, das wir uns damit potentiell einhandeln, ist, dass dann das stochasti-
sche Verhalten der Schätzung für die Skalen-Shiftparameter berücksichtigt werden muss.
Der übliche Ausweg ist es, vorsichtigerweise “konservative” Tests und robuste Schätzer
zu benutzen. Die folgende Transformation versucht, Skala und Lage an eine Standard-
Normalverteilung anzupassen.

Eingabe
ScaleShiftStd <- function (x) {

xq <- quantile(x[!is.na(x)], c(0.25, 0.75))

y <- qnorm(c(0.25, 0.75))

slope <- diff(y)/diff(xq)

(x-median(x, na.rm = FALSE)) * slope

}

Um Verteilungen direkt miteinander vergleichen zu können, greifen wir auf Techniken
aus dem ersten Kapitel zurück. Was dort über den Vergleich zu einer theoretischen Ver-
teilung gesagt worden ist, kann analog auf den Vergleich von zwei Verteilungen, z.B. aus
zwei Behandlungsgruppen, übertragen werden. Die statistischen Aussagen müssen jedoch
revidiert werden. Nun betrachten wir nicht mehr eine feste und eine zufällige Verteilung,
sondern wir vergleichen zwei zufällige (empirische) Verteilungen.

Die für den Einstichproben-Fall (eine Stichprobe im Vergleich zu einer hypothetischen
Verteilung) benutzte Idee von Monte-Carlo-Bändern kann nicht unmittelbar übertragen
werden: wir wollen zwei Verteilungen miteinander vergleichen, aber wir haben keine aus-
gezeichnete Modellverteilung, aus der wir Referenzstichproben ziehen können.

Wir können jedoch die Idee modifizieren und bedingte Monte-Carlo-Bänder konstruie-
ren. Bedingt bedeutet hier: die Konstruktion hängt von beobachteten Stichprobenwerten
ab. Wir nehmen an, dass wir zwei Stichproben Y11, . . . , Y1n1 und Y21, . . . , Y2n2 von ins-
gesamt unabhängigen und innerhalb der Gruppen identisch nach F1 bzw. F2 verteilten
Beobachtungen haben. Falls kein Unterschied zwischen den Verteilungen besteht, so ist
(Y11, . . . , Y1n1 , Y21, . . . , Y2n2) eine iid-Stichprobe aus einer gemeinsamen Verteilung F =
F1 = F2 mit Stichprobenumfang n = n1 + n2. Bei einer iid-Stichprobe hätte jede Permu-
tation der Indizes die gleiche Wahrscheinlichkeit.

Die motiviert das folgende Verfahren: wir permutieren das Tupel (Y11, . . . , Y1n1 , Y21,
. . . , Y2n2) und ordnen die ersten n1 Werte (nach Permutation) der ersten Gruppe zu, die
anderen der zweiten.

Die Permutationsgruppe ist schnell so groß, dass sie nicht mehr vollständig ausgewertet
werden kann. Anstelle dessen benutzen wir eine zufällige Auswahl von Permutationen. Wir
benutzen die so generierten Werte, um Monte-Carlo-Bänder zu generieren.

Aufgabe 3.7

Modifizieren Sie die Funktionen für PP -Plot und QQ-Plot so, dass
Monte-Carlo-Bänder für den Vergleich von zwei Stichproben hin-
zugefügt werden.

(Fortsetzung)→

3.2. QQ-PLOT, PP -PLOT 3-9

Aufgabe 3.7 (Fortsetzung)

Hinweis: mit der Funktion sample() können Sie zufällige Permu-
tationen generieren.

Bei größerem Stichprobenumfang kann der Aufwand Permutationen zu generieren zu
zeitaufwendig sein. Um Verwaltungsaufwand zu sparen, können wir die Permutation durch
ein Ziehen aus den n Werten (Y11, . . . , Y1n1 , Y12, . . . , Y1n2) mit Zurücklegen ersetzen.
Diese approximative Lösung wird als Bootstrap-Approximation1 bezeichnet.

Da es nur endlich viele Permutationen gibt, können wir bei kleinem Stichprobenumfang
auch alle Permutationen durchgehen. Wir wählen die Bänder dann so, dass ein hinreichend
großer Anteil (etwa mehr als 95 %) aller Kurven innerhalb der Bänder liegt. Permutatio-
nen, die sich nur innerhalb der Gruppen unterscheiden, ergeben dieselben Kurven. Diese
Zusatzüberlegung zeigt, dass wir nicht alle n! Permutationen überprüfen müssen, sondern
nur die

(
n
n1

)
Auswahlen für die Zuteilung zu den Gruppen.

Aufgabe 3.8

∗∗ Ergänzen Sie PP -Plot und QQ-Plot für die click -Experimente
durch Permutations-Bänder, die 95 % der Permutationen abdecken.

∗ Erzeugen Sie neue Plots, in denen Sie die PP -Plots und QQ-Plots
durch Monte-Carlo-Bänder aus den Permutationen ergänzen. Be-
nutzen Sie die Einhüllende von 19 Monte-Carlo-Stichproben.

Hinweis: benutzen Sie die Funktion sample() um eine Stichprobe
vom Umfang n1 aus x = (Y11, . . . , Y1n1 , Y12, . . . , Y1n2) zu ziehen.

Hinweis: Siehe help(sample).

Aufgabe 3.9

∗ Versuchen Sie, die Eigenschaften der Permutationsbänder, Monte-
Carlo-Bänder und Bootstrap-Bänder zu vergleichen, wenn F1 = F2

gilt.

Wenn nicht die Verteilungen verglichen werden sollen, sondern nur einzelne festgelegte
Kenngrößen, so können diese Strategien analog eingesetzt werden. Wenn wir uns z.B. auf
die Shift-Alternative beschränken (d.h. F1 und F2 sind aus eine Shiftfamilie, d.h. F1(x) =
F2(x− a) für ein a), so können wir etwa den Mittelwert (oder den Median) als Kenngröße
nehmen. Auf diese Kenngröße kann das obige Vorgehen analog angewandt werden, um zu
entscheiden, ob die Hypothese, dass die Verteilungen sich nicht unterscheiden (a = 0),
angesichts der Daten haltbar ist.

Aufgabe 3.10

∗ Formulieren Sie die obigen Strategien für Intervalle für einzelne
Teststatistiken (Beispiel: Mittelwert) anstelle für Bänder.

(Fortsetzung)→
1Vorsicht: es gibt beliebig wilde Definitionen von Bootstrap. Versuchen Sie stets, das Vorgehen

mathematisch genau zu formulieren, wenn von Bootstrap die Rede ist.

3-10 3. VERGLEICH VON VERTEILUNGEN

Aufgabe 3.10 (Fortsetzung)

Hinweis: Können Sie anstelle der zwei Mittelwerte für beide Grup-
pen eine eindimensionale zusammenfassende Statistik benutzen?

3.2.1. Kolmogorov Smirnov Tests. In Kapitel 1 haben wir den Kolmogorov-Smir-
nov-Test zum Vergleich einer Stichprobe (Xi)i=1,...,n und der zugehörigen empirischen Ver-
teilung Fn mit einer (festen, vorgegebenen) Verteilung F kennengelernt. Die kritische Test-
größe ist dabei

sup |Fn − F |.
Wir können diesen Test etwas modifizieren, um zwei empirische Verteilungen zu verglei-
chen. Anstelle der Modellverteilung F tritt nun eine zweite empirische Verteilung Gm von
Beobachtungen (Yj)j=1,...,m mit zu Grunde liegender (unbekannter) Verteilung G. Die kri-
tische Testgröße ist dann

sup |Fn − Gm|.
Der darauf basierende Test ist in der Literatur als 2-Stichproben-Kolmogorov-Smirnov-Test
zu finden. Dieser Test korrespondiert zum PP -Plot und erlaubt es, Bänder zum PP -Plot
zu konstruieren.

Wir können Bänder auch durch Simulation bestimmen. Im Gegensatz zum 1-Stich-
proben-Test haben wir jetzt keine vorgegebene Verteilung, aus der wir simulieren können.
Unter der Hypothese, dass die Verteilungen F und G sich nicht unterscheiden, verhält sich
jedoch bei unabhängigen Beobachtungen der gemeinsame Vektor (X1, . . . , Xn, Y1, . . . , Ym)
wie ein Vektor von n + m unabhängigen Zufallszahlen mit identischer Verteilung F = G.
Bei gegebenen Daten kann diese Beziehung zur Simulation genutzt werden. Durch eine
Permutation π der Indizes erzeugt man aus dem Vektor Z = (X1, . . . , Xn, Y1, . . . , Ym) einen
neuen Vektor Z ′ mit Z ′i = Zπ(i). Die ersten n Komponenten benutzen wir als simulierte
Werte (X ′i)i=1,...,n, die übrigen m Komponenten als simulierte Werte (Y ′j)j=1,...,m.

Aufgabe 3.11

∗ Programmieren Sie diesen Algorithmus und ergänzen Sie den PP -
Plot durch simulierte PP -Plots für eine kleine Anzahl (19?) von
Permutation.

Bestimmen Sie die Permutationsverteilung von sup |Fn − Gm| aus
den Simulation und berechnen Sie diesen Wert für die ursprüngli-
chen Daten. Können Sie diesen Vergleich benutzen, um ein Test-
verfahren zu definieren?

Der implementierte Kolmogorov-Smirnov-Test beinhaltet eine Ap-
proximation für den 2-Stichprobenfall. In unserer Simulation wissen
wir, dass wir unter der Hypothese simulieren, die Hypothese also
zutrifft. Untersuchen Sie die Verteilung des nominellen Niveaus un-
ter den simulierten Bedingungen.

3.3. Tests auf Shift

Wenn wir zusätzliche Verteilungsannahmen machen, können wir andere Entscheidungs-
verfahren wählen. Für diese Verfahren sind aber die Verteilungsannahmen kritisch. Diese
Abhängigkeit von den Verteilungsannahmen kann gemildert oder vermieden werden, wenn

3.3. TESTS AUF SHIFT 3-11

wir geeignete Verteilungsannahmen sicherstellen könnnen. Der F -Test, den wir im letz-
ten Kapitel kennengelernt haben, ist ein Beispiel für ein verteilungsabhängiges Verfahren.
Für den Zwei-Stichprobenfall kann dieser Test modifiziert werden zum t-Test, der auch
die Richtung des Unterschiedes widerspiegelt. (Das Quadrat der t-Statistik ist eine F -
Statistik.)

help(t.test)

t.test Student’s t-Test

Description.

Performs one and two sample t-tests on vectors of data.

Usage.

t.test(x, ...)

Default S3 method:
t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

S3 method for class 'formula':
t.test(formula, data, subset, na.action, ...)

Arguments.

x a numeric vector of data values.
y an optional numeric vector data values.
alternative a character string specifying the alternative hypothesis, must be one

of "two.sided" (default), "greater" or "less". You can specify just
the initial letter.

mu a number indicating the true value of the mean (or difference in means
if you are performing a two sample test).

paired a logical indicating whether you want a paired t-test.
var.equal a logical variable indicating whether to treat the two variances as being

equal. If TRUE then the pooled variance is used to estimate the variance
otherwise the Welch (or Satterthwaite) approximation to the degrees
of freedom is used.

conf.level confidence level of the interval.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable

giving the data values and rhs a factor with two levels giving the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) con-
taining the variables in the formula formula. By default the variables
are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain

NAs. Defaults to getOption("na.action").
... further arguments to be passed to or from methods.

3-12 3. VERGLEICH VON VERTEILUNGEN

Details.

The formula interface is only applicable for the 2-sample tests.
If paired is TRUE then both x and y must be specified and they must be the same

length. Missing values are removed (in pairs if paired is TRUE). If var.equal is TRUE
then the pooled estimate of the variance is used. By default, if var.equal is FALSE
then the variance is estimated separately for both groups and the Welch modification
to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means)
an error is generated.

Value.

A list with class "htest" containing the following components:
statistic the value of the t-statistic.
parameter the degrees of freedom for the t-statistic.
p.value the p-value for the test.
conf.int a confidence interval for the mean appropriate to the specified alter-

native hypothesis.
estimate the estimated mean or difference in means depending on whether it

was a one-sample test or a two-sample test.
null.value the specified hypothesized value of the mean or mean difference de-

pending on whether it was a one-sample test or a two-sample test.
alternative a character string describing the alternative hypothesis.
method a character string indicating what type of t-test was performed.
data.name a character string giving the name(s) of the data.

See Also.

prop.test

Examples.

t.test(1:10,y=c(7:20)) # P = .00001855
t.test(1:10,y=c(7:20, 200)) # P = .1245 -- NOT significant anymore

Classical example: Student's sleep data
plot(extra ~ group, data = sleep)
Traditional interface
with(sleep, t.test(extra[group == 1], extra[group == 2]))
Formula interface
t.test(extra ~ group, data = sleep)

In seiner einfachsten Form setzt der t-Test voraus, dass wir unabhängig identisch ver-
teilte Stichproben aus Normalverteilungen haben. Tatsächlich reichen schwächere Voraus-
setzungen. Wenn wir die t-Test-Statistik als

(3.1) t =
µ̂1 − µ̂2√

̂(V ar (µ̂1 − µ̂2))

schreiben, so sehen wir, dass t t-verteilt ist, wenn µ̂1 − µ̂2 normalverteilt und ̂(V ar (µ̂1 − µ̂2))
χ2 verteilt ist, und beide Term unabhängig sind. Der zentrale Grenzwertsatz garantiert,
dass µ̂1 − µ̂2 unter milden Bedingungen zumindest asymptotisch normalverteilt ist. Analo-
ges gilt oft für ̂(V ar (µ̂1 − µ̂2)). Gilt die Unabhängigkeit beider Terme, so ist t approximativ
t-verteilt.

3.3. TESTS AUF SHIFT 3-13

Aufgabe 3.12

* Bestimmen Sie in einer Simulation die Verteilung von Y , ̂V ar (Y)
und der t-Statistik für Y aus der uniformen Verteilung U [0, 1] mit
Stichprobenumfang n = 1, . . . , 10. Vergleichen Sie die Verteilungen
aus der Simulation mit der entsprechenden Normal-, χ2- bzw. t-
Verteilung.

Bestimmen Sie in einer Simulation die Verteilung von Y , ̂V ar (Y)
und der t-Statistik für Y aus einer Mischung, die zu 90% aus einer
N(0, 1)- und zu 10% aus einer N(0, 10)-Verteilung stammt, mit
Stichprobenumfang n = 1, . . . , 10. Vergleichen Sie die Verteilungen
aus der Simulation mit der entsprechenden Normal-, χ2- bzw. t-
Verteilung.

Der t-Test hat eine gewisse Robustheit, die ihm eine approximative Gültigkeit ge-
ben kann. Man kann sich jedoch ganz von der Normalverteilungs-Voraussetzung befreien.
Wenn wir analog zum F -Test bzw. t-Test vorgehen, aber anstelle der Urdaten die Ränge
benutzen, gewinnen wir Testverfahren, die verteilungsunabhängig sind (zumindest, solan-
ge keine Bindungen auftreten können). Der Wilcoxon-Test ist eine verteilungsunabhängige
Variante des t-Tests. Theoretisch entspricht er genau dem t-Test, angewandt auf die (ge-
meinsam) rangtransformierten Daten. Wie der t-Test ist dieser Test nur darauf ausgelegt,
die Nullhypothese (kein Unterschied) gegen eine Shift-Alternative zu testen. Für die prak-
tische Anwendung können arithmetische Vereinfachungen ausgenutzt werden. Deshalb ist
die Beziehung zwischen den üblichen Formeln für den t-Test und für den Wilcoxon-Test
nicht einfach zu erkennen.

Um den Wilcoxon-Test anzuwenden, muss zum einen die Teststatistik berechnet wer-
den. Zur Bestimmung kritischer Werte, mit denen die Teststatistik zu vergleichen ist, muss
zum anderen die Verteilungsfunktion ausgewertet werden. Sind alle Beobachtungen paar-
weise verschieden, so hängt diese Funktion nur von n1 und n2 ab, und relativ einfache
Algorithmen stehen zur Verfügung. Diese sind in der Funktion R standardmäßig verfüg-
bar und werden von wilcox.test() benutzt. Gibt es Bindungen in den Daten, d.h. gibt
es übereinstimmende Werte, so hängt die Verteilung vom speziellen Muster dieser Bin-
dungen ab und die Berechnung ist aufwendiger. wilcox.test() greift in diesem Fall auf
Approximationen zurück. Zur exakten (im Gegensatz zur approximativen) Auswertung
stehen jedoch die entsprechenden Algorithmen ebenfalls zur Verfügung. Dazu benötigt
man libary(coin). Die exakte Variante des Wilcoxon-Tests findet sich dort etwa als wil-
cox_test() .

Auf den Rängen basierende verteilungsunabhängige Verfahren zu charakterisieren und
mit den früher vorgestellten verteilungsunabhängigen Monte-Carlo-Verfahren und deren
Varianten zu vergleichen ist ein klassischer Teil der Statistik. Literatur dazu findet man
unter den Schlagworten “Rangtests” oder “verteilungsfreie Verfahren”. Zusätzliche R-Funk-
tionen finden sich in libary(coin) sowie in einigen speziellen Paketen.

Natürlich stellt sich die Frage nach dem Informationsverlust. Wenn wir uns auf die Da-
ten beschränken und keine oder geringe Verteilungsannahmen machen, haben wir weniger
Information als in einem Modell mit expliziten Verteilungsannahmen. Wenn wir die Daten
auf die Ränge reduzieren, verschenken wir zusätzlich möglicherweise Information. Dieser
Informationsverlust kann z.B. durch die asymptotische relative Effizienz gemessen werden.
Dies ist (asymptotisch) der Stichprobenumfang eines optimalen Tests, der benötigt wird,
eine vergleichbare Güte wie ein konkurrierender Test zu erreichen. Beim Wilcoxon-Test

3-14 3. VERGLEICH VON VERTEILUNGEN

unter Normalverteilung hat dies einen Wert von 94%. Gilt also die Normalverteilungs-
annahme, so benötigt der (optimale) t-Test nur 94% des Stichprobenumfangs, die der
Wilcoxon-Test benötigt. 6% des Stichprobenumfangs sind die Kosten für die Reduzierung
auf Ränge. Gilt die Normalverteilungsannahme nicht, so kann der t-Test möglicherweise
zusammenbrechen. Der Wilcoxon-Test bleibt ein valider Test auf die Shift-Alternative.

help(wilcox.test)

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests

Description.

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also
known as ‘Mann-Whitney’ test.

Usage.

wilcox.test(x, ...)

Default S3 method:
wilcox.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula':
wilcox.test(formula, data, subset, na.action, ...)

Arguments.

x numeric vector of data values. Non-finite (e.g. infinite or missing)
values will be omitted.

y an optional numeric vector of data values.
alternative a character string specifying the alternative hypothesis, must be one

of "two.sided" (default), "greater" or "less". You can specify just
the initial letter.

mu a number specifying an optional location parameter.
paired a logical indicating whether you want a paired test.
exact a logical indicating whether an exact p-value should be computed.
correct a logical indicating whether to apply continuity correction in the nor-

mal approximation for the p-value.
conf.int a logical indicating whether a confidence interval should be computed.
conf.level confidence level of the interval.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable

giving the data values and rhs a factor with two levels giving the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) con-
taining the variables in the formula formula. By default the variables
are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain

NAs. Defaults to getOption("na.action").
... further arguments to be passed to or from methods.

3.3. TESTS AUF SHIFT 3-15

Details.

The formula interface is only applicable for the 2-sample tests.
If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon

signed rank test of the null that the distribution of x (in the one sample case) or of
x-y (in the paired two sample case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum
test (equivalent to the Mann-Whitney test: see the Note) is carried out. In this case,
the null hypothesis is that the distributions of x and y differ by a location shift of mu
and the alternative is that they differ by some other location shift.

By default (if exact is not specified), an exact p-value is computed if the sam-
ples contain less than 50 finite values and there are no ties. Otherwise, a normal
approximation is used.

Optionally (if argument conf.int is true), a nonparametric confidence interval
and an estimator for the pseudomedian (one-sample case) or for the difference of the
location parameters x-y is computed. (The pseudomedian of a distribution F is the
median of the distribution of (u + v)/2, where u and v are independent, each with
distribution F . If F is symmetric, then the pseudomedian and median coincide. See
Hollander & Wolfe (1973), page 34.) If exact p-values are available, an exact confidence
interval is obtained by the algorithm described in Bauer (1972), and the Hodges-
Lehmann estimator is employed. Otherwise, the returned confidence interval and point
estimate are based on normal approximations.

With small samples it may not be possible to achieve very high confidence interval
coverages. If this happens a warning will be given and an interval with lower coverage
will be substituted.

Value.

A list with class "htest" containing the following components:
statistic the value of the test statistic with a name describing it.
parameter the parameter(s) for the exact distribution of the test statistic.
p.value the p-value for the test.
null.value the location parameter mu.
alternative a character string describing the alternative hypothesis.
method the type of test applied.
data.name a character string giving the names of the data.
conf.int a confidence interval for the location parameter. (Only present if ar-

gument conf.int = TRUE.)
estimate an estimate of the location parameter. (Only present if argument

conf.int = TRUE.)

Warning.

This function can use large amounts of memory and stack (and even crash R if the
stack limit is exceeded) if exact = TRUE and one sample is large (several thousands
or more).

Note.

The literature is not unanimous about the definitions of the Wilcoxon rank sum and
Mann-Whitney tests. The two most common definitions correspond to the sum of the
ranks of the first sample with the minimum value subtracted or not: R subtracts and
S-PLUS does not, giving a value which is larger by m(m + 1)/2 for a first sample of

3-16 3. VERGLEICH VON VERTEILUNGEN

size m. (It seems Wilcoxon’s original paper used the unadjusted sum of the ranks but
subsequent tables subtracted the minimum.)

R’s value can also be computed as the number of all pairs (x[i], y[j]) for which
y[j] is not greater than x[i], the most common definition of the Mann-Whitney test.

References.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New
York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample).
Or second edition (1999).

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal
of the American Statistical Association 67, 687–690.

See Also.

psignrank, pwilcox.
wilcox.exact in exactRankTests covers much of the same ground, but also pro-

duces exact p-values in the presence of ties.
kruskal.test for testing homogeneity in location parameters in the case of two

or more samples; t.test for an alternative under normality assumptions [or large
samples]

Examples.

One-sample test.
Hollander & Wolfe (1973), 29f.
Hamilton depression scale factor measurements in 9 patients with
mixed anxiety and depression, taken at the first (x) and second
(y) visit after initiation of a therapy (administration of a
tranquilizer).
x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
wilcox.test(x, y, paired = TRUE, alternative = "greater")
wilcox.test(y - x, alternative = "less") # The same.
wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

Two-sample test.
Hollander & Wolfe (1973), 69f.
Permeability constants of the human chorioamnion (a placental
membrane) at term (x) and between 12 to 26 weeks gestational
age (y). The alternative of interest is greater permeability
of the human chorioamnion for the term pregnancy.
x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g") # greater
wilcox.test(x, y, alternative = "greater",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)

3.4. GüTE 3-17

Formula interface.
boxplot(Ozone ~ Month, data = airquality)
wilcox.test(Ozone ~ Month, data = airquality,

subset = Month %in% c(5, 8))

Aufgabe 3.13

Benutzen Sie den Wilcoxon-Test, um die Resultate des rechts/links
click -Experiments zu vergleichen.

Aufgabe 3.14

*** Beim rechts/links click -Experiment sind mehrere Effekte ver-
mischt. Einige Probleme:

• Die Antwortzeit beinhaltet Reaktionszeit, Zeit für die
Grob-Bewegung der Maus, Zeit für die Fein-Adjustierung
etc.
• Für rechts-links-Bewegungen reicht in der Regel ein

Schwenken der Hand aus. Für vorwärts-rückwärts-
Bewegungen ist in der Regel eine Arm-Bewegung nötig.
Es ist nicht zu erwarten, dass beide vergleichbares stati-
stisches Verhalten haben.
• Bei aufeinanderfolgenden Registrierungen kann es zum

einen Trainings- zum anderen Ermüdungseffekte geben.
Können Sie Experiment und Auswertung so modifizieren, dass Un-
terschiede in der Reaktionszeit untersucht werden können?
Können Sie Experiment und Auswertung so modifizieren, dass Un-
terschiede in der Genauigkeit der Endposition untersucht werden
können?

*** Untersuchen und dokumentieren Sie für sich rechts-links-
Unterschiede in der Reaktionszeit und in der Genauigkeit. Formu-
lieren Sie ihr Resultat als Bericht.

Aufgabe 3.15

Betrachten Sie als Verteilungsfamilien die Shift/Skalenfamilien von
N(0, 1) und t(3). Entwerfen Sie ein Szenario, um den Wilcoxon-Test
mit dem t-Test jeweils innerhalb dieser Familien zu vergleichen.

Führen Sie diesen Test in einer Simulation für Stichprobenumfän-
ge n1 = n2 = 10, 20, 50, 100 durch und fassen Sie die Resultate
zusammen.

Führen Sie eine analoge Simulation für die Lognormal-Verteilungen
durch.

3.4. Güte

3.4.1. Theoretische Güte. Am Beispiel des t-Tests können wir illustrieren, wie
ein Test aufgebaut ist. Der Test benutzt eine Teststatistik, hier die t-Test-Statistik zum

3-18 3. VERGLEICH VON VERTEILUNGEN

Vergleich zweier Gruppen (3.1). Wir kennen die Verteilung dieser Statistik: für den t-
Test ist bei unabhängigen normalverteilten Fehlern und gleicher Varianz die Teststatistik
t(n1 + n2 − 2) verteilt. Zu gewähltem Niveau α können wir aus der Verteilungsfunktion
können wir Grenzen ablesen, die bei dieser Verteilung nur mit einer Wahrscheinlichkeit
α unter- bzw. überschritten werden. Benutzen wir beide Grenzen, so erhalten wir einen
zweiseitigen Bereich mit der Irrtumswahrscheinlichkeit 2α.

Beispiel 3.4:
Eingabe

n1<- 6; n2 <- 6

df <- n1 + n2 -2

alpha <- 0.05

curve(pt(x,df=df),from=-5, to=5, ylab= expression(F[n]))

abline(h=1-alpha, col="red") # cut at upper quantile

abline(v=qt(1-alpha, df=df), lty=3, col="red") # get critical value

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n

Wollen wir z.B. die Hypothese mu1 = mu2 gegen die Alternative mu1 > mu2 testen, so
wählen wir als Verwerfungsbereich den Bereich über der oberen dieser Grenze. Wir wissen,
dass wir bei Gültigkeit der Hypothese höchstens mit Wahrscheinlichkeit α zufällig eine
Testgröße in diesem Bereich bekommen.

Für den t-Test wissen wir sogar mehr. Unter den Modellvoraussetzungen unabhängig
normalverteilter Fehler und gleicher Varianz ist die t-Test-Statistik immer t verteilt. Auf
der Hypothese ist sie t verteilt mit Nichzentralitätsparameter 0, folgt also der zentralen t-
Verteilung. Auf der Alternative haben wir eine t-Verteilung mit Nichzentralitätsparameter
(µ1−µ2)σ−1

√
n1n2/(n1 + n2). Damit kann für jede Alternative unter den Modellannahmen

die Stärke des Tests abgelesen werden, d.h. die Wahrscheinlichkeit bei Vorliegen dieser
Alternative die Hypothese zu verwerfen.

3.4. GüTE 3-19

Beispiel 3.5:
Eingabe

n1<- 6; n2 <- 6

df <- n1 + n2 -2

alpha <- 0.05

curve(pt(x,df=df),from=-5, to=5, ylab= expression(F[n]))

abline(h=1-alpha, col="red") # cut at upper quantile

abline(v=qt(1-alpha, df=df), lty=3, col="red") # get critical value

n1 <- 5

n2 <- 5

n <- n1+n2

theta <- 2

ncp <- theta * sqrt(n1 * n2/(n1+n2))

curve(pt(x,df=df, ncp=ncp),add=TRUE, col="blue")

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n

Die Güte des Tests können wir darstellen, indem wir die Verwerfungswahrscheinlichkeit
in Abängigkeit von (µ1 − µ2)σ−1 auftragen.2

2Konventionell wird er die Gütefunktion nur auf der Alternative, d.h z.B. für (µ1 − µ2) > 0
betrachtet. Wir setzen sie hier auch auf der Hypothese, d. h. für (µ1 − µ2) > 0 fort.

3-20 3. VERGLEICH VON VERTEILUNGEN

Beispiel 3.6:
Eingabe

tpower <- function(n1, n2, alpha,...){

df <- n1 + n2 -2

tlim <- qt(1-alpha,df=df)

prob <- function(theta){

pt(tlim, df = df,

ncp = theta * sqrt(n1 * n2/(n1+n2)),

lower.tail=FALSE)}

curve(prob, 0, 5, xlab=expression(theta==mu[1]-mu[2]), ...)

abline(h=alpha, col="red")

}

tpower(5, 5, 0.05)

tpower(10, 10, 0.05, add =TRUE, lty = 3)

tpower(100,100, 0.05, add =TRUE, lty = 4)

tpower(1000, 1000, 0.05, add =TRUE, lty = 5)

legend("bottomright",

lty=c(1,3,4,5),

legend=c("n1 = n2 =5", "n1 = n2 =10",

"n1 = n2 =100","n1 = n2 =1000"),

inset=0.1, bty="n")

0 1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

1.
0

θθ == µµ1 −− µµ2

pr
ob

 (
x)

n1 = n2 =5
n1 = n2 =10
n1 = n2 =100
n1 = n2 =1000

Der hier benutzte Zusammenhang kann auch benutzt werden, um zu bestimmen, wie
groß der Stichprobenumfang sein muss, um auf der Hypothese höchstens mit einer Wahr-
scheinlichkeit α fälschlich zu verwerfen, bei Vorliegen einer spezifizierten Alternative jedoch
mit einer gewählten Wahrscheinlichkeit die Hypothese richtigerweise zu verwerfen. Dazu
gibt es die vorbereitete Funktion power.t.test() .

3.4. GüTE 3-21

Beispiel 3.7:
Eingabe

power.t.test(delta=2,

power=0.8,

sig.level=0.01,

type="two.sample",

alternative="one.sided")

Ausgabe
Two-sample t test power calculation

n = 6.553292
delta = 2

sd = 1
sig.level = 0.01

power = 0.8
alternative = one.sided

NOTE: n is number in *each* group

3.4.2. Simulation der Güte. Sind die theoretischen Eigenschaften einer Test-Statistik
bekannt, so ist dies der beste Weg, die Güte zu analyisieren. In einer Umgebung wir R ha-
ben wir die Möglichkeit, die Güte auch dann zu untersuchen, wenn theoretische Resultate
nicht vorliegen oder nicht zugänglich sind. Zu festgelegten Alternativen können wir Zu-
fallsstichproben generieren, Tests durchführen und den relative Anteil der Verwerfungen
bestimmen. Generieren wir nsimul unabhängige Zufallsstichproben mit identischer Ver-
teilung, so ist die Anzahl der Verwerfungen binomialverteilt und

p̂ =
#V erwerfungen

nsimul
ein Schätzer für die Verwerfungswahrscheinlichkeit.

Als Beispiel untersuchen wir, wie sich der t-Test verhält, wenn die Daten lognormal
verteilt sind. Wir vergleichen zwei Gruppen jeweils mit Stichprobenumfang n1 = n2 = 10,
zunächst auf der Hypothese:

3-22 3. VERGLEICH VON VERTEILUNGEN

Beispiel (Fortsetzung):

Beispiel 3.8:
Eingabe

nsimul <- 300

n1<- 10; n2 <- 10

alpha <- 0.01

x <- 0

for (i in 1:nsimul) {

if (t.test(exp(rnorm(n1)),exp(rnorm(n2)),

alternative="less",

var.equal = TRUE)$p.value < alpha){

x <- x+1}

}

p <- x/nsimul

cat("estim p", p)

Ausgabe
estim p 0.006666667

Die Funktion prop.test() berechnet nicht nur diesen Schätzer, sondern auch einen
Konfidenzbereich.

Beispiel 3.9:
Eingabe

prop.test(n=nsimul, x=x)

Ausgabe
1-sample proportions test with continuity correction

data: x out of nsimul, null probability 0.5
X-squared = 290.0833, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.001155561 0.026512753
sample estimates:

p
0.006666667

Analog z. B. wenn für die Alternative log(x2) nach N(µ2, 1) mit µ2 = 1 verteilt ist:

3.4. GüTE 3-23

Beispiel 3.10:
Eingabe

nsimul <- 300

n1<- 10; n2 <-10

alpha <- 0.01

x<-0

for (i in 1:nsimul) {

if (t.test(exp(rnorm(n1)),exp(rnorm(n2, mean = 1)),

alternative="less",

var.equal = TRUE)$p.value < alpha){

x <- x+1}

}

p <- x/nsimul

cat("estim p", p)

Ausgabe
estim p 0.1866667

Eingabe
prop.test(n = nsimul, x = x)

Ausgabe
1-sample proportions test with continuity correction

data: x out of nsimul, null probability 0.5
X-squared = 116.5633, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.1451407 0.2364119
sample estimates:

p
0.1866667

In library(binom) finden sich eine Reihe von Werkzeugen für eine differenziertere
Analyse der Binomialverteilung.

Die Konfidenzintervalle in diesem Beispiel zeige, dass hier ein Simulationsumfang von
nsimul = 300 nur grobe Ergebnisse liefert. Für die Simulation wollen wir die Genauigkeit
besser kontrollieren. Den Simulationsumfang können wir so wählen, dass eine gewünschte
Genauigkeit erreicht werden kann. Eine genaue Planung können wir mit power.prop.test()
machen. Für Simulationszwecke reicht oft schon eine Abschätzung.

Mit p̂ := Z/n als Schätzer einer Wahrscheinlichkeit p haben wir E (p̂) = p und
V ar (p̂) = p(1−p)/n. Ist p tatsächlich der interessierende Parameter, so sind Fehler relativ
zum Zielparameter zu messen. Bei p = 50% ist ein Fehler von ±1% anders zu bewerten,
als bei p = 99%. Der relative Fehler, der Variationskoeffizient , ist√

V ar (p̂)
E (p̂)

=
√

1− p
np

.

Um einen Variationskoeffizienten von höchsten η zu erhalten, brauchen wir eine Stichpro-
benumfang

n ≥ 1− p
pη2

.

3-24 3. VERGLEICH VON VERTEILUNGEN

Sind n und p in einer Größenordnung, bei der eine Normalapproximation gilt, so haben
wir für ein Konfidenzniveau 1− α ein approximatives Konfidenzintervall mit Grenzen

p̂± φ1−α/2

√
p̂(1− p̂)

n
.

Soll das Konfidenzintervall eine Länge von ηp nicht überschreiten, so brauchen wir einen
Stichprobenumfang

n ≥
φ2

1−α/2(1− p)
pη2

.

Wie üblich ist eine Wahl von α zu treffen. Für z. B. α =1% mit φ1−α/2 = 2.575829
erhalten wir die Werte in Tabelle 3.26. Falls wir mit höheren Quantilen arbeiten, werden
wir versuchen, die Fehler relativ zu 1− p zu beschränken. Beispiele sind in Tabelle 3.26.

Tabelle 3.26. Erforderlicher Stichprobenumfang für zweiseitige
Konfidenzintervalle mit relativer Länge ≤ η

p 1− p n(α = 10%) n(α = 1%)

η = 0.1 η = 0.01 η = 0.1 η = 0.01

0.500 0.500 271 27 055 663 66 349

0.250 0.750 812 81 166 1990 199 047

0.100 0.900 2435 243 499 5971 597 141

0.010 0.990 26 785 2 678 488 65 685 6 568 547

0.001 0.999 270 283 27 028 379 662 826 662 822 617

Zu merken sind die groben Zahlen: um mit 90% Konfidenz eine Wahrscheinlichkeit im
Bereich von 50%± 5% zu schätzen, sind ca. 300 Simulationen notwendig. Um einen Wert
bei 99% bis auf ± 0.1% genau zu schätzen sind 30000 Simulationen nötig.

3.4.3. Quantilschätzung durch Simulation.

Die andere Seite des Problems ist es, ein Quantil anhand einer Stichprobe zu schätzen.
Wir wissen bereits, dass für eine Zufallsvariable X mit stetiger Verteilungsfunktion F die
Variable F (X) eine uniforme Verteilung auf [0, 1] hat. Für die Quantilschätzung benötigen
wir die Verteilungsfunktion, ausgewertet an den Ordnungsstatistiken. Diese haben wir
bereits in Kapitel ?? kennen gelernt. Dort hatten wir als Theorem ??.

Theorem 3.2. Sind Xi, i = 1, . . . , n unabhängige Beobachtungen aus einer Verteilung
mit stetiger Verteilungsfunktion F und ist X(k:n) die k. Ordnungsstatistik daraus, so ist

F (X(k:n)) ∼ Pbeta(· ; k, n− k + 1).

Wir wiederholen:

Bemerkung 3.3. Im allgemeinen ist die beta-Verteilung schief. Der Erwartungswert
der Beta(k, n−k+1)-Verteilung ist k/(n+1). Um eine unverzerrte Schätzung des Quantils
xp zu erhalten, benutzt man X(k:n) mit k/(n+1) = p. Die“plug in”-Approximation k/n = p
gibt eine verzerrte Schätzung.

3.4. GüTE 3-25

Das Theorem kann direkt angewendet werden, um eine obere oder untere Abschät-
zung für Quantile zu gewinnen. Insbesondere können wir versuchen, das Minimum der
beobachteten Wertes X(1:n) als untere Abschätzung für das p-Quantil. zu benutzen Das
Konfidenzniveau ist

P (X(1) ≤ Fp) = P (F (X(k)) ≤ p) = Ip(1, n),

wobei I das unvollständige Beta-Integral ist. Für die speziellen Parameter (1, n) vereinfacht
sich die Beta-Dichte zu n(1−p)n−1 und wir bekommen für das unvollständige Beta-Integral
Ip(1, n) = 1− (1− p)n. Daraus folgt

P (X(1) ≤ Fp) = 1− (1− p)n

und wir können ein Konfidenzniveau 1− α sicherstellen, wenn

n ≥ lnα
ln(1− p)

.

Der beobachtete Höchstwert kann als obere Abschätzung für das p-Quantil verwendet
werden. Aus Symmetriegründen erhalten wir einen Konfidenzniveau von 1− α, wenn

n ≥ lnα
ln p

.

Beispiele sind in Tabelle 3.27 angegeben.

Tabelle 3.27. Benötigter Stichprobenumfang zur Abschätzung eines
Quantils mit Konfidenzniveau ≥ 1− α

p n

X(1) ≤ Fp X(n) ≥ Fp α = 10% α = 5% α = 1% α = 0.5%

0.500 0.500 4 5 7 8

0.250 0.750 9 11 17 19

0.100 0.900 22 29 44 51

0.010 0.990 230 299 459 528

0.001 0.999 2302 2995 4603 5296

Zu merken sind wieder die groben Zahlen: um eine einseitige Abschätzung für ein 1%
(99%)-Quantil einer stetigen Verteilungsfunktion mit einer Konfidenz von 99% zu erhalten,
werden beinahe 500 Simulationen benötigt.

Wir können einseitige Schranken zu Intervallen verknüpfen. Das entsprechende Resul-
tat zur Berechnung der Wahrscheinlichkeit von Intervallen ist in Korollar ??:

Korollar 3.4. Mit der k1-ten und k1 + k2-ten Ordnungsstatistik ist das Intervall
(X(k1:n), X(k1+k2:n)) ein Konfidenzintervall für das p-Quantil mit der Überdeckungswahr-
scheinlichkeit

Ip(k1, n− k1 + 1)− Ip(k1 + k2, n− k1 − k2 + 1).

Die Simulationsumfänge zur Abschätzung von Quantilen sind drastisch geringer als
diejenigen, die zur vergleichbaren Schätzung von Wahrscheinlichkeiten benötigt werden.
Im Nachhinein ist dies nicht verwunderlich: die Frage, ob eine Beobachtung über einem
bestimmten Quantil liegt, ist einfacher, als die Aufgabe, den p-Wert zu schätzen. In Ab-
schnitt ?? werden wir sehen, dass der notwendige Stichprobenumfang noch einmal drastisch
verringert werden kann, wenn die Fragestellung auf ein Testproblem reduziert wird.

3-26 3. VERGLEICH VON VERTEILUNGEN

Ohne weitere Verteilungsannahmen gibt dies eine erste Möglichkeit, den Umfang ei-
ner Simulation festzulegen. In speziellen Situationen können geschickte Einfälle eine be-
deutende Reduzierung des Stichprobenumfangs erlauben. Zunächst aber sind die obigen
Abschätzungen die Grundlage für Simulationen.

3.5. Qualitative Eigenschaften von Verteilungen

3.6. ERGÄNZUNGEN 3-27

3.6. Ergänzungen

3.8. LITERATUR UND WEITERE HINWEISE: 3-29

3.7. Statistische Zusammenfassung

Als Leitbeispiel diente in diesem Kapitel der Vergleich von Stichproben. In einfachen
Fällen unterscheiden sich Stichproben nur um eine Verschiebung des Mittelwerts. In die-
sem Fall können die Probleme auf die Ansätze aus Kapitel 2 reduziert werden. In diesem
reduzierten Fall stimmen die um den Mittelwert zentrierten Verteilungen überein. Für
den allgemeineren Fall, den wir jetzt untersucht haben, gilt diese Vereinfachung nicht. Ein
wichtiges Beispiel ist etwa die Untersuchung von Therapie-Studien. Hat eine Behandlung
einen homogenen Effekt, so können wir diesen mit den Mitteln von Kapitel 2 untersu-
chen. Häufig aber gibt es unter einer Behandlung eine Aufspaltung in “Responder” und
“Nicht-Responder”. Dies geht über die in Kapitel 2 skizzierten Modelle hinaus, und die
allgemeineren Ansätze aus diesem Kapitel 3 werden nötig.

Wir haben uns hier auf den Vergleich von zwei Stichproben beschränkt. Die Praxis
führt oft auf andere Probleme. So ist ein typischer Fall, dass eine neue Behandlung mit ei-
ner bekannten Referenz-Behandlung verglichen werden soll, wobei für die neue Behandlung
nur eine Stichprobeninformation, für die Referenz-Behandlung aber umfassendere Vorin-
formation bereit steht. Oder eine Referenz-Behandlung soll mit einer Serie von Alternativ-
Behandlungen verglichen werden. Diese Probleme gehen über den Rahmen unserer Einfüh-
rung hinaus. Hier kann nur auf weiterführende Literatur, z.B [Mil81] verwiesen werden.

3.8. Literatur und weitere Hinweise:

[VR02] Venables, W.N.; Ripley, B.D. (2002): Modern Applied Statistics with S. Hei-
delberg: Springer

[VR00] Venables, W.N.; Ripley, B.D. (2000): S Programming. Heidelberg: Springer

[Mil81] Miller, R. G. (1981): Simultaneous Statistical Inference. Heidelberg: Springer

KAPITEL 4

Dimensionen 1, 2, 3, . . . , ∞

4.1. Ergänzungen

In diesem Kapitel beginnen wir Ergänzungen zu R, um uns dann auf statistische Fra-
gen zu konzentrieren. Für werfen einen Blick auf die graphischen Möglichkeiten, die uns
zur Verfügung stehen. Die Basis-Graphik von R ist an einem Plotter-Modell orientiert. Die
Graphik folgt den Möglichkeiten, die das Zeichnen mit einem Stift bietet. Neben den ein-
und zweidimensionalen Möglichkeiten, die wir bis jetzt kennengelernt haben, gibt es Mög-
lichkeiten, eine Funktion darzustellen, die über einem Raster definiert sind. Dazu stehen
im wesentlichen drei Funktionen zur Verfügung.

3d-Graphik

image() Gibt die Werte einer Variablen z in Graustufen oder Farbcodierung
wieder.

contour() Gibt die Kontouren einer Variablen z.

persp() Gibt einen perspektivischen Plot einer Variablen z.

image() und contour() können auch benutzt werden, um andere Plots zu überlagern.

4-1

4-2 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Beispiel 4.1:

Eingabe
#oldpar <- par(mfrow=c(1,3))

x <- 10*(1:nrow(volcano))

y <- 10*(1:ncol(volcano))

image(x, y, volcano, col = terrain.colors(100), axes = FALSE)

axis(1, at = seq(100, 800, by = 100))

axis(2, at = seq(100, 600, by = 100))

box()

title(main = "Maunga Whau Volcano", font.main = 4)

contour(x, y, volcano, levels = seq(90, 200, by = 5),

col = "peru", main = "Maunga Whau Volcano", font.main = 4)

z <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)

y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

Don't draw the grid lines : border = NA

#par(bg = "slategray")

persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)

x

y

100 200 300 400 500 600 700 800

10
0

20
0

30
0

40
0

50
0

60
0

Maunga Whau Volcano

0 200 400 600 800

0
10

0
20

0
30

0
40

0
50

0
60

0

image() contour() persp()

Die Basis-Graphik ist einfach zu handhaben, aber limitiert. Ein neues Grafiksystem
arbeitet konzeptuell mit Objekten und einem Kamera-Modell. Die Grafik-Objekte können
kombiniert und bearbeitet werden. Die Darstellung erfolgt in einem getrennten Schritt.
Einfache 2d-Grafiken können hier nachbearbeitet werden. Für eine 3d-Darstellung können
wie bei einer Kamera Abstand, Betrachtungsebene und Brennweite bestimmt werden. Das
objektorientierte Graphiksystem besteht aus einer Bibliothek grid mit den notwendigen
elementaren Operationen, und einer darauf aufbauende Bibliothek lattice, die die aus
der Basis-Graphik bekannten Darstellungen neu implementiert und durch weitere ergänzt.

Lattice-Objekte werden mit print() ausgegeben.

4.1. ERGÄNZUNGEN 4-3

Beispiel 4.2:
Eingabe

library(lattice)

volcano ## 87 x 61 matrix

print(wireframe(volcano, shade = TRUE,

aspect = c(61/87, 0.4),

light.source = c(10,0,10)))

row
column

volcano

Basis-Graphik und Lattice-Graphik sind getrennte Graphik-Systeme. Leider benutzen
sie auch für vergleichbare Funktionen unterschiedliche Bezeichnungen, und vergleichbare
Displays haben unterschiedliche Darstellungen. Eine kleine Übersetzungshilfe ist in Tabelle
4.4 angegeben. Einige Hilfsfunktionen, um beide Graphik-Systeme in Kombination zu nut-
zen, werden durch die Bibliothek gridBase bereitgestellt. Eine ausführliche Einführung in
beide Graphik-System ist [Mur06].

Für Visualisierungen im weiten Spektrum von wissenschaftlichen Visualisierungen bis
hin zu aufwendigen Spielen wird verbreitet OpenGL benutzt. Dessen Funktionen stehen
auch in R durch die Bibliothek rgl zur Verfügung. Es gibt jedoch einen deutlichen Unter-
schied zwischen den üblichen Anforderungen an Graphik, und den speziellen Erfordernissen
statistischer Graphik. Wenn es um die Darstellungen von Funktionen geht, ist statistische
Graphik noch vergleichbar mit den Anforderungen der üblichen Analysis. Der kleine Unter-
schied ist, dass Funktionen in der Statistik häufig stückweise konstant oder nur stückweise
stetig sind, während z.B. in der Analysis stetige oder sogar in differenzierbare Funktionen
die Regel sind. Bei der Darstellung von Daten ändert sich die Situation drastisch. Sta-
tistische Daten sind üblicherweise diskret. Glattheitseigenschaften, die die Visualisierung
analytischer Daten einfacher machen, fehlen bei statistischen Daten. Deshalb sind spezielle
angepasste Visualisierungen nötig.

4-4 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Basis-Graphik Lattice

barplot() bar chart barchart()

boxplot() box and whisker plot bwplot()

3 dimensional scatter plot cloud()

contour contour plot contourplot()

coplot conditional scatter plots contourplot()

curve(density()) density estimator densityplot()

dotchartt() dot plot dotplot()

hist() dot plot histogram()

image() colour map plots splom()

parallel coordinate plots parallel()

pairs() scatter plot matrices wireframe()

persp() three dimensional surface wireframe()

plot() scatter plot xyplot()

qqnorm() theoretical Q−Q-plot qqmath()

qqplot() empirical Q−Q-plot qq()

stripchart() one dimensional scatterplot stripplot()

Tabelle 4.4. Basis-Graphik und Lattice

4.2. Dimensionen

Wenn wir von einer Dimension zu höheren Dimensionen gehen, gibt es sowohl für die
theoretische Untersuchung als auch für die grafische Darstellung neue Herausforderungen.
Die linearen Modelle können wieder als leitendes oder warnendes Beispiel dienen.

Die Herausforderungen können von ernsthaften Problemen stammen. So können Ver-
teilungen auf höherdimensionalen Räumen selbst unter Regularitätsvoraussetzungen un-
überschaubar komplex sein. Die Klassifikations- und Identifikationsprobleme für Funktio-
nen und Räume aus Analysis und Geometrie geben einen Vorgeschmack davon, was bei
der Untersuchung von Wahrscheinlichkeitsverteilungen zu bewältigen ist.

Daneben gibt es hausgemachte Probleme: Eigentore, die durch selbstgetroffene Wahlen
erst erzeugt werden.

Ein Beispiel für hausgemachte Probleme kann an linearen Modellen illustriert werden.
Die Interpretation des Gauß-Markoff-Schätzers als lineare Projektion zeigt, dass nur schein-
bar Koeffizienten für einzelne Regressoren geschätzt werden. Eigentlich wird ein Vektor im
von den Regressoren aufgespannten Raum geschätzt; die Zuordnung zu den einzelnen Re-
gressoren ist dann nur lineare Algebra. Diese hängt nicht von dem Einfluss des einzelnen
Regressors ab, sondern von der gemeinsamen Geometrie der Regressoren. Nur wenn die
Regressoren eine Orthogonalbasis bilden, gibt es eine direkte Interpretation der Koeffizi-
enten. Wird im linearen Modell die Liste der Regressoren z.B. dupliziert, so ändert sich
der Raum nicht. Die Rechnungen in Koordinaten werden etwas komplizierter, weil die Re-
gressoren nun auf keinen Fall eine Basis bilden, aber von einem abstrakten Standpunkt
bleibt die Situation unverändert. Gibt es aber kein echtes Duplikat, sondern geringfügige
Abweichungen (durch minimale “Fehler”, Rundungen, Transformationen), so ändert sich

4.3. SELEKTIONEN 4-5

die Situation drastisch. Für den Gauß-Markoff-Schätzer ist nur der von den Regressoren
aufgespannte Raum relevant, und selbst durch minimale Änderungen im Duplikat kann
sich dessen Dimension verdoppeln. Dies ist ein Beispiel für ein hausgemachtes Problem.

Dies und andere Beispiele sind ein Grund, die Beziehungen zwischen den Variablen
genauer zu untersuchen. Bei der Regression etwa betrifft dies nicht nur die Beziehung
zwischen Respons und Regressor, sondern, wie durch das letzte Beispiel illustriert, auch
die Beziehungen zwischen den Regressoren.

Um die Verbindung zu den Regressionsproblemen zu halten und auf die Erfahrungen
in diesem Bereich zurückzugreifen, betten wir formal die Regressionsprobleme in einen
allgemeineren Rahmen ein. Bei der Regression hatten wir eine herausgehobene Variable,
die Respons Y , deren Verteilung in Abhängigkeit von den Werten der übrigen Variablen,
der Regressoren X, modelliert werden sollte. Wir fassen jetzt Respons und Regressor zu
einem Datenvektor Z = (Y ;X) zusammen und werden auch die gemeinsame Verteilung von
Z diskutieren. Wir finden das Regressionsproblem in diesem allgemeineren Rahmen wieder:
beim Regressionsproblem suchten wir nach einem Schätzer für die Mittelwertsfunktion m
im Modell

Y = m(X) + ε.

Im allgemeineren Rahmen berücksichtigen wir eine gemeinsame Verteilung von X und Y .
Das Regressionsmodell wird damit zum Modell

Y = E(Y |X) + ε

und wir haben zunächst die Identifizierung m(X) = E(Y |X).

Wenn wir tatsächlich am ursprünglichen Regressionsmodell interessiert sind, müssen
wir weitere Arbeit leisten. Eine Schätzung des bedingten Erwartungswerts E(Y |X) ist nicht
dasselbe wie die Schätzung einer Regressionsfunktion m(X). Bei dem Regressionsproblem
haben wir keine Annahmen über die Verteilung von X gemacht. Um von E(Y |X) (oder
einem Schätzer dafür) auf m(X) zurück zu schließen, müssen wir überprüfen, dass die
Schätzung von Verteilungsannahmen über X unabhängig ist. Für unsere augenblicklichen
Zwecke ist diese Unterscheidung aber nicht relevant. Wir können uns eine Ignoranz auf
Zeit erlauben.

Der allgemeine Rahmen in diesem Kapitel ist also:
wir untersuchen Daten (Zi)i=1,...,n, wobei die einzelnen Beobachtungen Werte in Rq an-
nehmen.

Haben wir im wesentlichen lineare Strukturen, so können wir oft auch höher–dimen-
sionale Strukturen mit Methoden analysieren, die für eindimensionale Modelle entwickelt
sind. Wir müssen die Methoden evtl. modifizieren oder iteriert anwenden. Sie helfen uns
jedoch, die wesentlichen Merkmale zu erkennen. Sie versagen jedoch, wenn sich höhere
Dimensionalität mit Nichtlinearität verbindet. Dann sind speziellere Methoden gefragt.

4.3. Selektionen

Ursprünglich bedeutet eine Selektion eine Auswahl von Beobachtungen. Für die gra-
fische Darstellung wird die Selektion mit einer Ausprägung von Attributen (z.B. Farbe,
Plot-Zeichen, Dicke) assoziiert. Alle Variablenwerte, die zu Beobachtungen in der Selektion
gehören, werden mit diesen Attributen in dieser Ausprägung dargestellt. Dies ermöglicht
es, die Verbindung (“linking”) der Selektion in verschiedenen Plots zu verfolgen. So können
Selektionen helfen, Strukturen in verbundenen Plots, zu erkennen.

In der praktischen Datenanalyse werden die Selektionen variiert (“brushing”), um
Beobachtungen zu zusammengehörigen Beobachtungsgruppen zusammen zu fassen. Dies

4-6 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Name Variable Einheit, Bem.

rw relatives Gewicht

fpg Plasma-Glukose
(nach Fasten)

[mg/100 ml]

ga Glukosespiegel
integriert über 3 Stunden Toleranztest

[mg/100 ml × h]

ina Insulinspiegel
integriert über 3 Stunden Toleranztest

[µU/100 ml × h]

sspg Plasma-Glukose
(steady state)

[mg/100 ml]

cc Klassifikation chemische, normale, offene Diabetes
Tabelle 4.5. Diabetes-Datensatz: Variable

ist ein wichtiges Werkzeug der interaktiven Datenanalyse. Selektionen werden, statistisch
gesprochen, zur Modellwahl benutzt. Ihnen entspricht das Konzept der lokalen Modelle:
anstelle ein für die Daten globales, möglicherweise sehr komplexes Modell zu benutzen,
werden für jede Selektion möglicherweise einfachere Modelle bestimmt, die jeweils nur für
die Beobachtungen aus dieser Selektion gelten.

Das Linking wird leider von R nicht direkt unterstützt. Wir müssen also jeweils selbst
sicher stellen, dass Selektionen mit den entsprechenden Attributen dargestellt werden.
Auch die Repräsentation von Selektionen ist in R nicht einheitlich. Bei Funktionsaufrufen
können diese durch selection -Parameter realisiert sein, oder durch group -Variable, oder
als Bedingung in einem Formelausdruck. Deshalb müssen wir uns in jedem Fall mit ad-
hoc-Lösungen begnügen.

R bleibt weitgehend auf statische Selektionen beschränkt, so dass Brushing nur rudi-
mentär möglich ist.

Selektionen werden im Zusammenhang bei den nachfolgenden Beispielen illustriert.

4.4. Projektionen

Als erstes Beispiel betrachten wir einen Datensatz aus einer Arbeit ([RM79]), in der
unterschiedliche Diabetes-Arten untersucht worden. Der Datensatz ist zum Beispiel in li-

brary(locfit) verfügbar. Die Variablen umfassen Laborwerte zum Glukose-Stoffwechsel
und sind in Tabelle 4.5 erklärt.

Eingabe
library(locfit)

data(chemdiab)

Eine erste Übersicht erhalten wir mit

Eingabe
summary(chemdiab)

Ausgabe
rw fpg ga ina

Min. :0.7100 Min. : 70.0 Min. : 269.0 Min. : 10.0
1st Qu.:0.8800 1st Qu.: 90.0 1st Qu.: 352.0 1st Qu.:118.0

4.4. PROJEKTIONEN 4-7

Median :0.9800 Median : 97.0 Median : 413.0 Median :156.0
Mean :0.9773 Mean :122.0 Mean : 543.6 Mean :186.1
3rd Qu.:1.0800 3rd Qu.:112.0 3rd Qu.: 558.0 3rd Qu.:221.0
Max. :1.2000 Max. :353.0 Max. :1568.0 Max. :748.0

sspg cc
Min. : 29.0 Chemical_Diabetic:36
1st Qu.:100.0 Normal :76
Median :159.0 Overt_Diabetic :33
Mean :184.2
3rd Qu.:257.0
Max. :480.0

Wie in der Originalarbeit lassen wir das relative Gewicht außer Betracht. Die chemi-
sche Klassifikation cc ist aus den Stoffwechseldaten abgeleitet. Sie beinhaltet also keine
eigene Information. Zur Orientierung benutzen wir sie dennoch als Markierung, d.h. wir
benutzen die Selektion cc = Chemical_Diabetic, Normal, Overt_Diabetic. Der Kern
des Datensatzes ist vierdimensional mit den Variablen fpg, ga, ina, sspg.

4.4.1. Randverteilungen und Scatterplot-Matrix. Wir können versuchen, die
mehrdimensionale Verteilung zu untersuchen, indem wir uns die zweidimensionalen Mar-
ginalverteilungen (Randverteilungen) für alle Variablenpaare ansehen. Die grafische
Darstellung dazu heißt Scatterplot-Matrix , in R als Funktion pairs() implementiert.

help(pairs)

pairs Scatterplot Matrices

Description.

A matrix of scatterplots is produced.

Usage.

pairs(x, ...)

S3 method for class 'formula':
pairs(formula, data = NULL, ..., subset,

na.action = stats::na.pass)

Default S3 method:
pairs(x, labels, panel = points, ...,

lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
row1attop = TRUE, gap = 1)

4-8 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Arguments.

x the coordinates of points given as numeric columns of a matrix or
dataframe. Logical and factor columns are converted to numeric in
the same way that data.matrix does.

formula a formula, such as ~ x + y + z. Each term will give a separate vari-
able in the pairs plot, so terms should be numeric vectors. (A response
will be interpreted as another variable, but not treated specially, so it
is confusing to use one.)

data a data.frame (or list) from which the variables in formula should be
taken.

subset an optional vector specifying a subset of observations to be used for
plotting.

na.action a function which indicates what should happen when the data contain
NAs. The default is to pass missing values on to the panel functions,
but na.action = na.omit will cause cases with missing values in any
of the variables to be omitted entirely.

labels the names of the variables.
panel function(x,y,...) which is used to plot the contents of each panel

of the display.
... arguments to be passed to or from methods.

Also, graphical parameters can be given as can arguments to plot such
as main. par("oma") will be set appropriately unless specified.

lower.panel, upper.panel
separate panel functions to be used below and above the diagonal
respectively.

diag.panel optional function(x, ...) to be applied on the diagonals.
text.panel optional function(x, y, labels, cex, font, ...) to be applied

on the diagonals.
label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.
row1attop logical. Should the layout be matrix-like with row 1 at the top, or

graph-like with row 1 at the bottom?
gap Distance between subplots, in margin lines.

Details.

The ijth scatterplot contains x[,i] plotted against x[,j]. The “scatterplot” can be
customised by setting panel functions to appear as something completely different.
The off-diagonal panel functions are passed the appropriate columns of x as x and y:
the diagonal panel function (if any) is passed a single column, and the text.panel
function is passed a single (x, y) location and the column name.

The graphical parameters pch and col can be used to specify a vector of plotting
symbols and colors to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an
argument.

A panel function should not attempt to start a new plot, but just plot within a
given coordinate system: thus plot and boxplot are not panel functions.

By default, missing values are passed to the panel functions and will often be
ignored within a panel. However, for the formula method and na.action = na.omit,
all cases which contain a missing values for any of the variables are omitted completely

4.4. PROJEKTIONEN 4-9

(including when the scales are selected). (The latter was the default behaviour prior
to R 2.0.0.)

Author(s).

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core
members.

References.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

Examples.

pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

formula method
pairs(~ Fertility + Education + Catholic, data = swiss,

subset = Education < 20, main = "Swiss data, Education < 20")

pairs(USJudgeRatings)

put histograms on the diagonal
panel.hist <- function(x, ...)
{

usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}
pairs(USJudgeRatings[1:5], panel=panel.smooth,

cex = 1.5, pch = 24, bg="light blue",
diag.panel=panel.hist, cex.labels = 2, font.labels=2)

put (absolute) correlations on the upper panels,
with size proportional to the correlations.
panel.cor <- function(x, y, digits=2, prefix="", cex.cor)
{

usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep="")
if(missing(cex.cor)) cex <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex * r)

}
pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

Wir benutzen die chemischen Diabetes-Klassen cc als Selektionen. Jeder dieser Selek-
tionen wird ein Farbwert zugeordnet; dies ist das verbindende Attribut, das ermöglicht,

4-10 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Verbindungen zwischen den Plots zu verfolgen. Um diese Verbindung zu dokumentieren,
müssen wir in die Grafiksteuerung eingreifen und die Plots modifizieren. Wir erzeugen mit
dem Parameter oma einen äusseren Rand, in dem wir eine Legende platzieren.

Beispiel 4.3:
Eingabe

pairs(~fpg + ga + ina + sspg, data = chemdiab, pch = 21,

main = "Diabetes-Daten",

bg = c("magenta", "green3", "cyan")[unclass(chemdiab$cc)],

oma = c(8, 8, 8, 8))

mtext(c("Colour codes:", levels(chemdiab$cc)),

col = c("black", "magenta", "green3", "cyan"),

at = c(0.1, 0.4, 0.6, 0.8), side = 1, line = 2)

fpg

400 1000 1600

●
●●●●●
●

●
●●●●●●●●●
●

●●●●●●●
●
●●●●
●
●
●
●●
●●

●
●●●

●●
●
●●●●●●●●●●●●●●

●●●
●
●

● ●●●●●●●
●
●●
●●
●●●●●●●● ●

●●●●●●●●● ●●●●●
●●
●●
●
●●●●

●
●

●●

●●

●

●

●
●

●

●

●
●●

● ●

●
●

●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●
●

●
●●●●●

●
●

●● ●●● ●●●●●
●●●●●● ●

●
●●●●
●
●
●

●●
●●

●
● ●●

●●
●

●●●●● ●●●●●●●●●
●●●

●
●

●●●●● ●● ●●
● ●

●●
●● ●●● ●●● ●

●●●
●●● ● ●●●● ●● ●

●●
●●

●
● ●● ●
●

●
●●

●●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●
●

100 300

10
0

25
0

●
●●

●●●
●

●
●●●● ●●●●●●

●●●● ●●●
●

●●
●●

●
●

●
●●

●●
●

● ●●
●●

●
●● ●● ●● ●●●●●●●●

● ●●
●

●
● ●●● ●

●● ●●
●●

●●
●●●● ● ●●●●

● ●●
●● ●●●● ●● ●●●

●●
●●
●

● ●● ●
●

●
●●

●●

●

●

●
●

●

●

●
●●

● ●

●
●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●
●

40
0

10
00

16
00

●
●●

●●
●●●
●
●
●●●
●
●
●●●
●●
●
●●●
●● ●●●●● ●●●●●●●

●
●
●●

●●●●●●
●
●●●●●●●●●
●
●●●●

●

●●●●●●●●●●●●●
●●●●●

●
●

●
●●●●●
●●●

●
●
●●●

●●●●●●●
●●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●
●

●

●

ga

●
●●

●●
● ●●
●
●

●●●
●
●
●●●

●●
●
●●●

●●●●●●●●● ●●●●●
●

●
● ●

●●●●●●●
●●●●●●●●●

●
●● ●●
●

●●●● ●● ●●● ● ●●●
● ●●● ●●

●

●
●●●

●●
● ● ●

●
●

● ●●
●●● ●● ●●

●●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●
●●●●

●●●
●
●

●● ●
●

●
●●●

●●
●
● ●●

● ●●●●●●●● ●●●● ●
●

●
● ●

●●●
● ●●

●
● ●●●●●●●●
●

●● ●●
●

●●● ●●● ●●●● ●● ●
●●● ● ●●

●

●
● ●●

●●
●●●

●
●

● ●●
● ●●●●●●

●●
●
●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●●●
●
●

●
●

●
●●

●
●

●
●●●
●
●

●●●●
●●

●
●

●●
●
●

● ●●

●

●
●
●

●

●

●
●

●

●●
●

●●●
●

●

●●
●
●
●●

●●
●●●

●●
●●●●●

●

●

●

●
●

●
●●

●
●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●●●
●

●
●●●●

●
●

●

●●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●
●

●
●●

●
●
●

●●●
●
●

●●●●
●●

●
●

●●
●
●

●●
●

●

●
●
●

●

●

●
●

●

●●●
●●●

●

●

●●
●
●
●●

●●
●●●

●●
● ●●●●

●

●

●

●
●

●
●●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●●●
●

●
●●● ●

●
●

●

●●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

ina

0
40

0

●●●
●

●

●
●

●
●●

●
●

●
●●●

●
●

●●●●
●●

●
●

●●●
●

●●
●

●

●
●

●
●

●

●
●

●

●●
●
● ●●

●

●

●●
●

●
●●

●●
● ●●

●●
● ●●● ●

●

●

●

●
●

●
●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●
●●

●
●

●●● ●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

100 250

10
0

30
0

●
●
●●

●
●

●●●●
●●

●

●
●
●
●
●

●●●●
●
●

●

●

●●●
●● ●

●

●

●●
●

●

●

●

●
●

●
●●●

●

●

●●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●●

●
●

●

●

●
●
●
●
●

●

●
●
●

●●

●●●

●

●

●
●●
●

●
●

●

●

●

●●●

●

●
●

●●

●

●
●●●

●

●●
● ●

●●

●●

●

●
●

●

●

●

●

●

●
●
●●
●
●
●●●●
●●

●

●
●

●
●
●

●●●●
●
●

●

●

●●●
●●●

●

●

●●
●

●

●

●

●
●

●
●●●

●

●

●●

●

●●

●
●●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●●

●
●

●

●

●
●
●

●
●

●

●
●
●

●●

●●●

●

●

●
●●

●

●
●

●

●

●

●●●

●

●
●

●●

●

●
●●●

●

●●
● ●

● ●

●●

●

●
●

●

●

●

●

●

0 400

●
●
●●

●
●

●●●●
●●

●

●
●
●

●
●

●●●●
●
●

●

●

●●●
●●●

●

●

●●
●

●

●

●

●
●

●
●●●

●

●

● ●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●● ●

●

●

●
●●

●

●
●

●

●

●

●●●

●

●
●
●●

●

●
● ●●

●

● ●
●●

●●

●●

●

●
●

●

●

●

●

● sspg

Diabetes−Daten

Colour codes: Chemical_Diabetic Normal Overt_Diabetic

Die Funktion pairs() kontrolliert nur das “Layout” der Matrix, die Auswahl und
Anordnung der Projektionen. Die Darstellung in den Plot-Feldern kann durch den Aufruf
gesteuert werden. Die Default-Belegungen führen dazu, dass in der Diagonale die Namen
der Variablen und außerhalb der Diagonalen die paarweisen Scatterplots gezeigt werden.

4.4. PROJEKTIONEN 4-11

Aufgabe 4.1

Generieren Sie eine Scatterplot-Matrix für den Diabetes-Datensatz,
die in der Diagonale die Histogramme der jeweiligen Variablen
zeigt.

Hinweis: Siehe help(pairs).

Bestimmte Aspekte der Verteilung können aus den Randverteilungen einfach abgelesen
werden. Andere geometrische Strukturen sind aus Randverteilungen gar nicht oder nur
schwer zu rekonstruieren.

Zwischen dem Glukose-Spiegel bei Fasten fpg und dem integrierten Glukose- Spiegel
bei Belastung ga besteht z.B. ein deutlicher linearer Zusammenhang. Dieser ist in den
zweidimensionalen Marginalverteilungen erkennbar und kann mit den Methoden für lineare
Modelle untersucht werden.

Diese deutliche Beziehung pflanzt sich auf die Beziehungen zu den anderen Variablen
ina, sspg fort. In der Originalarbeit wird deshalb fpg nicht weiter berücksichtigt. Zu
untersuchen sind noch die Variablen ga, ina, sspg. Die dreidimensionale Struktur dieses
Teils des Datensatzes ist aus den Marginalverteilungen nicht einfach abzulesen.

4.4.2. Projection Pursuit. Geometrische Beziehungen oder stochastische Abhän-
gigkeiten, die nicht parallel zu den Koordinaten-Achsen ausgerichtet sind, werden durch
die Randverteilungen nicht ausgedrückt. Wir können die Idee verallgemeinern und anstelle
von zweidimensionale Marginalverteilungen beliebige Projektionen benützen. Dazu greifen
wir auf library(lattice) zu. Darin ist ein an einer Kamera orientiertes Grafik-Modell
implementiert.

Die grid -Grafik liefert mit dem Paket lattice eine weitgehende Unterstützung für
multivariate Darstellungen. grid ist dabei die Basis. Das ursprüngliche Grafiksystem von R
implementiert ein Modell, dass an der Vorstellung von Stift und Papier orientiert ist. Ein
Grafik-Port (Papier) wird eröffnet und darauf werden Linien, Punkte/Symbole gezeich-
net. grid ist ein zweites Grafiksystem, das an einem Kamera/Objekt-Modell orientiert
ist. Grafische Objekte in unterschiedlicher Lage und Richtung werden in einem visuellen
Raum abgebildet. Auf der grid baut lattice auf. In <http://cm.bell-labs.com/cm/
ms/departments/sia/project/trellis/> sind die Grundideen zur Visualisierung multi-
dimensionaler Daten dokumentiert, die in lattice implementiert sind.

Die erzeugte Grafik wird mit print() ausgegeben. Mit dem Parameter split können
wir den Ausgabebereich aufteilen. Leider ist das Linking hier gebrochen: cloud() kann
zwar eine Legende erzeugen, diese zeigt jedoch die Farbskala bei Beginn der Grafik, nicht die
bei der Ausgabe benutzte. Wir müssen deshalb wieder ins System eingreifen und diesmal
die Farbtabellen ändern. Eingabe
library("lattice")

diabcloud <- function(y, where, more = TRUE, ...) {

print(cloud(ga ~ ina + sspg, data = chemdiab, groups = cc,

screen = list(x = -90, y = y), distance = .4, zoom = .6,

auto.key = TRUE, ...),

split = c(where, 3, 2), more = more)

}

supsym <- trellis.par.get("superpose.symbol")

supsymold <- supsym

supsym$col = c("magenta", "green3", "cyan")

4-12 4. DIMENSIONEN 1, 2, 3, . . . , ∞

trellis.par.set("superpose.symbol" = supsym)

diabcloud(y = 70, where = c(1, 1))

diabcloud(y = 40, where = c(2, 1))

diabcloud(y = 10, where = c(3, 1))

diabcloud(y = -20, where = c(1, 2))

diabcloud(y = -50, where = c(2, 2))

diabcloud(y = -80, where = c(3, 2), more = FALSE)

trellis.par.set("superpose.symbol" = supsymold)

rm(diabcloud, supsymold, supsym)

●●
● ●●

●
●● ●

●
●●

●●●●●

●

●
●

●
●

●

●

●

●

●

●

●● ●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●
●

●●●

●

●●● ●●
● ●

●

●
● ●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●

●● ●●●●

●
●

●●
●

●

● ●●
●

●
●●

●

●

● ●
●●

●

● ●●

●

●
●

●

●
●

●●
●●●

ina
sspg

ga

Chemical_Diabetic
Normal
Overt_Diabetic

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

● ●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●● ●

●

●

●
● ●

●

●
●

●

●
●●

●

●
● ●●

●

●

●
●

●

●●
●

●●●
●●●●●

●
●

●
●

●

●

●

●●●

●

●●
●

● ●
●● ●
●

●●
●

●
●● ●● ●●

●
●

●●

●

●● ●
●●●●●

●
●●●

inasspg

ga

Chemical_Diabetic
Normal
Overt_Diabetic

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

● ●
●

●
● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●● ●●●●

● ●
●●

●
●

●

●●

●

● ●●

●

● ●●●
●

●

●●
●

● ●
●

●
●

●●●
●●

●
●●●

●

● ●●
●●

●
● ●● ●
●

●●●●
●● ●

●
●

●●●

●

●
●●●
●●● ●● ●●
●

ina

sspg

ga

Chemical_Diabetic
Normal
Overt_Diabetic

●

●

●

●●
●

●
●●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

●●
●

● ●●
●●

●
●

●
●

●
●

●
●

●●

●

●●● ●
●

●●

●

● ●
●

●
●

●

●

●●

●
●

●

●
●

●
●

● ●●●● ●●
●●

●

●

● ●●

●

●
●●● ●●

●

●
●
●

●●
●●●●

●
● ●●●●

●
●

● ●
●●

●
●●●●●

●

●
●●●● ●●

● ●● ●●
●

●●

●

ina
sspg

ga

Chemical_Diabetic
Normal
Overt_Diabetic

●

●

●

●
●
●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

● ●

●
●

●
●

●

●
●

●●

●
●

●●●

●

●

●
●

● ●●

●

●
●

●

●
●●

●

●

●●
●

●

●●
●

●
●●

●

●

●

●

●

●
●●

●●
●

●●● ●

●
●●●●

●

●●

●

●
●

●

●● ●
●●●

●
●●

●

● ●●● ●●● ●●
●

● ●
●

●● ●●
●

●

●●
●
● ●

●
●

●
●● ●●

●

●
●
●●●

ina sspg

ga

Chemical_Diabetic
Normal
Overt_Diabetic

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●
●
●

●

●

●
● ●

●

●

●

● ●

●

●
●

●

●

●
● ●●

●

●
●

● ●

●
● ●

●
●

●●
●

●
●● ●●●●

●
●

● ●
●

●
●●● ●●●

●

● ●●
●

●

●● ●
●●

●
●

●●
●● ●●

●
●●●

●

●

●●●

●

●● ●
●●●

●
●

●
●●●

●● ●●

●

●
●
●

●
●

●
● ●

●●●●

●

●●
●

●

●

●●
● ●●

●●
●

●●

●
●

●
●●

ina

sspg

ga

Chemical_Diabetic
Normal
Overt_Diabetic

●

●

●

Aufgabe 4.2

Modifizieren Sie dieses Beispiel so, dass Sie einen Eindruck der
dreidimensionalen Struktur bekommen.

Wie unterscheidet sich offene Diabetes von chemischer Diabetes?

Wie verhält sich die Normal-Gruppe zu den beiden Diabetes-
Gruppen?

Auch mit Serien von Projektionen ist es oft nicht einfach, eine dreidimensionale Struk-
tur zu identifizieren. Mit animierten Folgen kann dies einfacher sein. Unterstützung dazu
findet sich in library(rggobi), die allerdings ggobi, zu finden in <http://www.ggobi.
org/>, als zusätzliche Software voraussetzt.

Was hier ad-hoc gemacht wird, kann auch systematisch durchgeführt werden und für
beliebige Dimensionen verallgemeinert werden: man sucht für einen Datensatz im Rq nach
“interessanten” Projektionen. Dazu definiert man einen Index, der messen soll, wie interes-
sant eine Projektion ist, und lässt dann eine Suche laufen, die diesen Index maximiert. Die
auf dieser Idee basierende Familie statistischer Verfahren findet man unter dem Stichwort
projection pursuit . Das System ggobi beinhaltet Implementierungen von projection

4.4. PROJEKTIONEN 4-13

pursuit für eine Reihe von Indizes, die über die Funktionen in library(rggobi) von R
aus angesprochen werden können.

4.4.3. Projektionen für dim 1, 2, 3, . . . 7. Projektionsmethoden versuchen, in
einem höherdimensionalen Datensatz Strukturen niedrigerer Dimension zu identifizieren.
Die identifizierbare Dimension ist dabei beschränkt. Projezieren wir Struktur mit einer
Dimension, die größer ist als das Projektionsziel, so überdeckt die typische Projektion
alles, gibt also keine Information mehr.

Wieviele Dimension können wir erfassen? Die grafische Darstellung in der Ebene gibt
zunächst eine niedrig angesetzte Grenze von zwei Dimensionen, d.h. zweidimensionale
Strukturen können wir direkt mit cartesischen Koordinaten in der xy-Ebene darstellen. Die
Wahrnehmung kann dreidimensionale Strukturen anhand von Hinweisen auf die Raumtiefe
(etwa durch Schatten) oder aus Folgen von 2d-Bildern rekonstruieren. Mit Animationen
erhalten wir einen Eindruck von veränderlichen 3d-Folgen und sind damit bei vier Dimen-
sionen.

Mit zusätzlichen Informationskanälen wie z.B. mit Farbcodierungen können wir dies
leicht erhöhen, bleiben aber effektiv bei vier bis sieben Dimensionen für ein Display.

Die Kombination mehrerer Displays hilft kaum über diese Grenze hinaus. Stellen wir
mehrere Displays z.B. in einer Scatterplot-Matrix dar, so verlieren wir die Fähigkeit, für die
einzelnen Szenen durch die Wahrnehmung komplexere Strukturen zu generieren. Anstelle
dessen müssen wir aktiv durch Vergleichen die komplexeren Strukturen aus den zweidi-
mensionalen Displays erarbeiten. Die Fähigkeit, simultane Vergleiche durchzuführen, ist
dabei beschränkt. Ebenso die Anzahl von Displays, die simultan auf einem Seiten-Medium
wie Bildschirm oder Papier dargestellt werden kann.

4.4.4. Parallel-Koordinaten. Die grafische Darstellung (in kartesischen Koordina-
ten) sind zunächst auf ein- und zweidimensionale Projektionen beschränkt. Aber selbst
bei Darstellungen in der Ebene ist die Beschränkung auf zwei Dimensionen nicht vorge-
geben, sondern ist eine Folge unserer Wahl der Darstellung in kartesischen Koordinaten.
Plot-Matrizen durchbrechen diese Dimensionsschranke durch Kombination von kartesi-
schen Koordinatensystemen.

Parallel-Koordinaten orientieren die Achsen für die Variablen parallel zueinander. Für
Häufigkeiten bei kategorialen Variablen ist dies eine übliche Darstellung: (evtl. überlager-
te) Balkendiagramme benutzen Parallel-Koordinaten. Die Prozedur parallel() in li-

brary(lattice) unterstützt Parallel-Koordinaten auch für quantitative Variable. Die zu
einem Fall gehörenden Markierungen auf diesen Achsen werden durch einen Linienzug
verbunden. Diese Form der Parallel-Koordinaten stammt von A. Inselberg ([ICR87]).

Eingabe
library("lattice")

print(parallel(chemdiab[2:5], groups = chemdiab$cc))

4-14 4. DIMENSIONEN 1, 2, 3, . . . , ∞

fpg

ga

ina

sspg

Min Max

Die Information ist dieselbe wie in den vorausgehenden Grafiken. Durch die veränderte
Darstellung werden die Zusammenhänge auf neue Weise zugänglich.

Aufgabe 4.3

Notieren Sie für den chemdiab -Datensatz (schriftlich!) die
Beziehungen zwischen den Variablen, die Sie im Parallel-
Koordinatenplot erkennen können.

Anstelle von chemdiab[2:5] können Sie die Variablen auch explizit
als chemdiab[c(2, 3, 4, 5)] angeben. Durch dieser Form erhal-
ten Sie Kontrolle über die Reihenfolge der Variablen. Vergleichen
Sie zwei unterschiedliche Anordnungen der Variablen und notieren
Sie (schriftlich!) ihre Beobachtungen.
Welche Variablen-Anordnung gibt die einfachere Darstellung?
Welche Beziehungen zwischen den Variablen sind in beiden ables-
bar?
Welche nur in einer der Anordnungen?

4.5. Schnitte, bedingte Verteilungen und Coplots

Schnitte sind, abstrakt gesehen, bedingte Verteilungen des Typs P (· | X = x). Sie
sind nur dort zuverlässig, wo der Schnitt eine Bedingung definiert, die ein positives Maß
hat. Um die Idee der Reduktion auf bedingte Verteilungen auch auf Daten anwenden zu

4.5. SCHNITTE, BEDINGTE VERTEILUNGEN UND COPLOTS 4-15

können, dicken wir die Schnitte auf. Anstelle bedingter Verteilungen des Typs P (· | X = x)
zu untersuchen, betrachten wir P (· | ‖X − x‖ < ε), wobei ε auch mit x variieren kann.
In grafischen Darstellungen von Daten verlangt dies eine Serie von Plots, die jeweils nur
den durch die Bedingung eingeschränkten Teildatensatz zeigen.

Statistisch führen Projektionen zu Marginalverteilungen und Schnitte zu bedingten
Verteilungen. Schnitte und Projektionen sind in gewissem Sinne komplementär: Projektio-
nen zeigen Strukturmerkmale niedriger Dimension. Schnitte sind geeignet, Strukturmerk-
male niedriger Co-Dimension zu entdecken. Beide können zur Datenanalyse kombiniert
werden. Das Wechselspiel von Projektionen und Schnitten ist in [FB94] untersucht.

Wie die Dimensionsgrenzen bei der Projektion gibt es Grenzen für die Co-Dimension
bei den Schnitten. Wir können nur Strukturen kleiner Co-Dimension erfassen. Ist die Co-
Dimension zu groß, so ist ein typischer Schnitt leer, gibt also keine Information.

Als erstes Hilfsmittel stellt R die Möglichkeit bereit, zwei Variablen bedingt auf eine
oder mehre weitere Variable zu analysieren. Als grafische Darstellung dient dazu der Co-
plot . Er ist eine Variante der Plot-Matrix und zeigt in jedem Feld den Scatterplot zweier
Variabler, gegeben die Bedingung.

Der Coplot kann nun auf bestimmte Muster untersucht werden. Sind die dargestellten
Variablen stochastisch unabhängig von den bedingenden Variablen, so zeigen alle Plot-
Elemente dieselbe Gestalt. Dargestellte Variable und bedingende Variable können dann
entkoppelt werden.

Stimmt die Gestalt überein, aber Ort und Größe variieren, so weist dies auf eine (nicht
notwendig lineare) Shift/Skalenbeziehung hin. Additive Modelle oder Varianten davon kön-
nen benutzt werden, um die Beziehung zwischen dargestellten Variablen und bedingenden
Variablen zu modellieren.

Verändert sich bei Variation der Bedingung die Gestalt, so liegt eine wesentliche Ab-
hängigkeitsstruktur oder Interaktion vor, die genauerer Modellierung bedarf.

help(coplot)

coplot Conditioning Plots

Description.

This function produces two variants of the conditioning plots discussed in the
reference below.

Usage.

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, xlim, ylim, ...)

co.intervals(x, number = 6, overlap = 0.5)

4-16 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Arguments.

formula a formula describing the form of conditioning plot. A formula of the
form y ~ x | a indicates that plots of y versus x should be produced
conditional on the variable a. A formula of the form y ~ x| a * b
indicates that plots of y versus x should be produced conditional on
the two variables a and b.
All three or four variables may be either numeric or factors. When
x or y are factors, the result is almost as if as.numeric() was ap-
plied, whereas for factor a or b, the conditioning (and its graphics if
show.given is true) are adapted.

data a data frame containing values for any variables in the formula. By
default the environment where coplot was called from is used.

given.values a value or list of two values which determine how the conditioning on
a and b is to take place.
When there is no b (i.e., conditioning only on a), usually this is a
matrix with two columns each row of which gives an interval, to be
conditioned on, but is can also be a single vector of numbers or a set
of factor levels (if the variable being conditioned on is a factor). In
this case (no b), the result of co.intervals can be used directly as
given.values argument.

panel a function(x, y, col, pch, ...) which gives the action to be car-
ried out in each panel of the display. The default is points.

rows the panels of the plot are laid out in a rows by columns array. rows
gives the number of rows in the array.

columns the number of columns in the panel layout array.
show.given logical (possibly of length 2 for 2 conditioning variables): should con-

ditioning plots be shown for the corresponding conditioning variables
(default TRUE)

col a vector of colors to be used to plot the points. If too short, the values
are recycled.

pch a vector of plotting symbols or characters. If too short, the values are
recycled.

bar.bg a named vector with components "num" and "fac" giving the back-
ground colors for the (shingle) bars, for numeric and factor condi-
tioning variables respectively.

xlab character; labels to use for the x axis and the first condition-
ing variable. If only one label is given, it is used for the x axis
and the default label is used for the conditioning variable.

ylab character; labels to use for the y axis and any second condi-
tioning variable.

subscripts logical: if true the panel function is given an additional (third)
argument subscripts giving the subscripts of the data passed
to that panel.

axlabels function for creating axis (tick) labels when x or y are factors.
number integer; the number of conditioning intervals, for a and b,

possibly of length 2. It is only used if the corresponding
conditioning variable is not a factor.

overlap numeric < 1; the fraction of overlap of the conditioning vari-
ables, possibly of length 2 for x and y direction. When overlap
< 0, there will be gaps between the data slices.

4.5. SCHNITTE, BEDINGTE VERTEILUNGEN UND COPLOTS 4-17

xlim the range for the x axis.
ylim the range for the y axis.
... additional arguments to the panel function.
x a numeric vector.

Details.

In the case of a single conditioning variable a, when both rows and columns are
unspecified, a “close to square” layout is chosen with columns >= rows.

In the case of multiple rows, the order of the panel plots is from the bottom and
from the left (corresponding to increasing a, typically).

A panel function should not attempt to start a new plot, but just plot within a
given coordinate system: thus plot and boxplot are not panel functions.

As from R 2.0.0 the rendering of arguments xlab and ylab is not controlled by par
arguments cex.lab and font.lab even though they are plotted by mtext rather than
title.

Value.

co.intervals(., number, .) returns a (number × 2) matrix, say ci, where ci[k,]
is the range of x values for the k-th interval.

References.

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J.
M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also.

pairs, panel.smooth, points.

Examples.

Tonga Trench Earthquakes
coplot(lat ~ long | depth, data = quakes)
given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)
coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

Conditioning on 2 variables:
ll.dm <- lat ~ long | depth * mag
coplot(ll.dm, data = quakes)
coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))
coplot(ll.dm, data = quakes, number=c(3,7),

overlap=c(-.5,.1)) # negative overlap DROPS values

given two factors
Index <- seq(length=nrow(warpbreaks)) # to get nicer default labels
coplot(breaks ~ Index | wool * tension, data = warpbreaks, show.given = 0:1)
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21, bar.bg = c(fac = "light blue"))

Example with empty panels:
with(data.frame(state.x77), {
coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

4-18 4. DIMENSIONEN 1, 2, 3, . . . , ∞

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))
y ~ factor -- not really sensical, but 'show off':
coplot(Life.Exp ~ state.region | Income * state.division,

panel = panel.smooth)
})

Wir illustrieren die Coplots mit dem “Quakes”-Datensatz. Dieser Datensatz gibt die
geografische Länge und Breite einer Reihe von Erdbeben in der Nähe der Fiji-Inseln, zu-
sammen mit der Tiefe des Erdbebenherdes. Wir benutzen die geografische Länge und Breite
als Variablen, auf die wir projizieren, und die Tiefe als Covariable, nach der wir Schnitte
bilden.

Die Tiefen codieren wir um, damit bei grafischen Darstellungen große Tiefen nach
unten zeigen.

Eingabe
quakes$depth <- -quakes$depth

given.depth <- co.intervals(quakes$depth, number = 4, overlap = .1)

coplot(lat ~ long | depth, data = quakes, given.values = given.depth, columns = 1)

4.5. SCHNITTE, BEDINGTE VERTEILUNGEN UND COPLOTS 4-19

●

●
●

● ●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●
●

●

●

● ●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●

● ●

●

●

●

●

●●

●

●●
●
●●●●●●●●●●●

●

●
●

●

●
●● ●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●

●

●●

●●●

●

●●●●●●●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

● ●
●
●

●●

●

●
●

●

●
●● ●

●

●
●

●

●●
●

●

●

●

●

●

●
●●●

●

●

●●
●●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●●

●

●
●

●●

●●●●

●

●●

●●

●

●

●●

−
35

−
20

●

●●

●

●

●

●

●

●●● ●●
●

●

●●●
●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●●
●

●
●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●●●●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

−
35

−
20

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●●
●●

●

●●
●

●●●●

●●

●

●

●

●
●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●●

●●●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●
●

●
●

●●

●

●●●

●●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●●

●

●

●●
●

●
●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●●

●

●

●●●

●
●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●●

●●●●
●

●
●

●

●

●

●

−
35

−
20

●●
●
●

●

●
●

●

●

●●
●
●
●

●

●

●● ●
●

●
●

●
●

●

●●
●

●

●

●

●
●

●●

●●●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●●
●
●

●

●●
●

●

●
●

●
●

●

●
●

●●

●

●
●●

●

●●●●
●

●
● ●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●
●
●

●

●●
●

●●

●

●

●

●
●

● ●

●

●
●

●

●

●●●●
●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●●

●●●●
●●●●●

●
●●●

● ●
●

●
●●●●●

●●

●

●●●●

●

●●●●●●

●
●
●●
●

●●
●

●

●●● ●

●

●

●

●●
●

●

●

●●
●

●
●●●●●●

●

●

●

●

●●
●

●

●●●
●

●

●●●

●●

●

●
●

●●

●
●●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●
●

●
●

●
● ●

●

●
●
●

●
●

●
●
●
●

165 170 175 180 185

−
35

−
20

long

la
t

100 300 500

Given : depth

Analog für zwei Covariable, die Tiefe und die Stärke des Erdbebens.

Eingabe
coplot(lat ~ long | mag* depth , data = quakes, number = c(5, 4))

4-20 4. DIMENSIONEN 1, 2, 3, . . . , ∞

●

●

●

●

●

●●
●

●

● ●
●

●●

●

●

●

●
●

●

●

●

●● ●

●
●

●
●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●
●

●

●

●
●

●
●

●

●●

●●
●●

●

●

●

●
●●

●

●

●●●

●

●
●●

●

●●●●●●
●

●

●

●

●

●

●

●

●●

●

−
35

−
25

−
15 ●

●●●

●

●

●●

●

●●

●

● ●● ●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●
●●●●●●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●●●

●
●

●

●●●●●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

165 175 185

●

●
● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●
●●●●●●
●
●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●●

●

●●●●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

● ●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●●●
●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●
●
●

●

●●●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●
● ●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●● ●

●

●

●●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●
●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●●
●●

●

●

●

165 175 185

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

● ●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●●●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●
● ●

●

●●

●

●
●

●

●

●

●●
●
●
●

●

●
●

●
●
●
●

● ●

●

●

● ●● ●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●
●

●

●

●

●

●●

●●
●

●●●
●
●●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●●
●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

● ●

●

● ●

●
●●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●● ●●●●●●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●
●

●

●

●

●

●

● ●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●● ●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

−
35

−
25

−
15

●

●

●
●

●

●

●
●

●

●

●●

● ●●●
●

●

●

●
●

●
●

●
●

●

●●
●
●●

●

●●
●

●

●

●

●●

●

●
●●

●
●●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●●●
●

●

●●
●

●
●●

●

●

●
●

●
●●

●●●
●

●

●

●● ●

●

●

●

●
●

●

●
●

●

● ●
●

●●●

●

●●●

●

●

●

●

●

●
●
●

●● ●

●

●

●

●●●

●

● ●

●

●

●●●

●
●

●

●

●

−
35

−
25

−
15

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●●

● ●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●

●
● ●

●

●

●

●

●

●

●
●●

●
●

●●

●

●●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
● ●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

● ●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●●●
●

●

●
●

● ●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●
●

●●

●

● ●
●

●
● ●

●●
●

●

●

●

●

●

●

●● ●

●
●
●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●●

●
●

●
●

●
●

●

●
●
●

●

●

●
●

●●●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●
●

●●

●
●

●●

●

●

●

●●
●

●

●
●

●

●●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●●
●

●

●●

●

●
●●

●

●

●

●
●

●
●●

●
●

●

●

●

●●●

●●

●
●
●

●●
●

●

●

●●

●
●
●

●

●●
●

●●●●●
●●
●

●
●

●

●

●

●

●●●

●

●●●●

●●
●●
●

●

●
●●●

●

●

●

●

●

●
●
●

●

●
●●●

●●

●

●

●●●

●

●
●●

●

●
●●
●

●●●

●

●
●●

●

●
●

●

165 175 185

●

●

●

●
●

●

●●
●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●

●●●

●
●

●●●

●

●

●
●

●

●●●

●

●
●

●
●
●●●

●
●●

●●●

●

●●●●
●
●

●
●

●●
●

●●●
●

●●●●●
●●
●●

●
●
●
●

●
●

●

●

●

●●
●

●

●

●●●●
●
●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●●

●

●

●

●
●
●
●
●

●●

●
●

●
●

●
●●

●●●●
●

●

●●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●
●

●

●●

●

●

●●
●

●

●
●●

●●●

●

●●●

●

●
●

●●
●

●

●●
●

●
●

●
●
●
●
●

●

●
●

●
●●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●
●
●

●

●●

●

●
●

●

●

●

165 175 185

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●●
●

●

●
●

●
●
●

●

●
●
●●

●

●

●●●

●

●

●
●●

●

●

●
●
●

●

●●
●

●

●●
●●●●●

●

●

●●
●

●

●

●

●

●

●●
●●

●●

●
●●

●●

●

●
●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●

● ●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●●
●

●

●

●
●

●
●
●

●●

●

●

●●

●
●

●

●
●●●

●●

●

●

●
●

●

●

●●
●

●●

●

●●

●●●●
●

●
●

●
●

●●

●●●

●

●●

●

●●

●●●
●●

●●● ●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●●

●

●●

●●

●

●

165 175 185

−
35

−
25

−
15

long

la
t

4.0 4.5 5.0 5.5 6.0

Given : mag

10
0

20
0

30
0

40
0

50
0

60
0

G
iv

en
 :

de
pt

h
Aufgabe 4.4

Analysieren Sie den “quakes”-Datensatz.
Fassen Sie Ihre Ergebnisse zusammen.
Versuchen Sie, ein formales Modell zu formulieren.

Wie hängt die geographische Position mit der Tiefe zusammen?

Ist ein Zusammenhang von Tiefe und Stärke des Erdbebens erkenn-
bar? (Evtl. müssen Sie bei coplot() eine andere Formel wählen.)

Die Idee der Coplots wird generalisiert in den Trellis-Displays (siehe [Cle93]). Trellis-
Displays sind in R in library(lattice") implementiert.

Eingabe
library("lattice")

Depth <- equal.count(quakes$depth, number = 4, overlap = .1)

print(xyplot(lat ~ long | Depth , data = quakes, columns = 1, layout = c(1, 4)))

4.6. TRANSFORMATIONEN UND DIMENSIONSREDUKTION 4-21

long

la
t

−35
−30
−25
−20
−15
−10

165 170 175 180 185

●

●
●

● ●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●
●

●

●
● ●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●●
●

●●

●

●

● ●

●

●

●

●

●●

●

●●●●●●●● ●●●●●●

●

●
●

●

●
●● ●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●●

●

●●

●●●

●

●●●●●●●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

● ●
●

●

●●

●●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

● ●
●
●

●●

●

●
●

●

● ●● ●

●

●
● ●

●●
●

●

●

●

●

●

●● ●●

●
●

●●
●●●

●

●

●

●

●● ●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●●
●

●
●

●●

●●●●

●

●●

●●

●

●

●●

Depth

−35
−30
−25
−20
−15
−10

●

●●

●

●

●

●

●

●●● ●●
●

●

●●●
●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●●
●

●
●

●
● ●

●

●●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●●●●
●

●

●

●

●

●

●

●●

●

●

● ●

●●

●●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●

●●
●

●●● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●
●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

Depth

−35
−30
−25
−20
−15
−10

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●●
●●

●

●●
●

●●●●

●●

●

●

●

●
●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●●

●

●
●

● ●

●●●
●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●●
●

●●

●

●
●

●

●
●

●
● ●●

●

●●●

●●●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

● ● ●
●

●●
●
●

●
●

●

●●

●

●

●●●

●
●● ●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●●

●

●

●●●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●●

●●●●
●

●
●

●

●

●

●

Depth

−35
−30
−25
−20
−15
−10

●●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●● ●
●

●
●

●
●

●

●●●

●

●

●

●
●

●●

●●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●
●
●

●

● ●
●

●

●
●

●
●●

●
●

●●

●

●
● ●

●
●●●●

●
●
● ●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●
●

●
●

●●
●

●●

●

●

●

●
●

● ●

●

●
●

●

●

●●●●
●

●

●
●●

●

●

●

●

●

● ●
●

●●
●

●●

●● ●●
●● ●●●

●
●●●● ●

●

●
●●●●●

●●

●
●●●●

●

●●●●● ●

●
●
●●

●
●●
●

●

●●● ●

●

●

●

●●
●

●

●

●●
●

●
●●●● ●●

●

●

●

●

●●
●

●

●●●
●

●

●●●

●●

●

●
●

●●
●

●●
●

●●

●
●

●
●

●

●

●
●

●

●
●
●●●

●
●

●
●

●
● ●

●

●
●

●
●

●
●

●
●
●

Depth

4.6. Transformationen und Dimensionsreduktion

Variable liegen oft in der Form vor, die von den Messprozessen oder fachlichen Kon-
ventionen vorgegeben sind. Sie entspricht nicht unbedingt der Form, die von der Sache
her vorgegeben ist, oder die für die statistische Modellierung am besten geeignet ist. Diese
Form enthält eine gewisse Beliebigkeit:

• Bei einer akustischen Reizbestimmung kann die Stärke der Reizes zum Beispiel
durch die Energie beschrieben werden, oder durch den Schalldruck [Phon]. Von
der einen zur anderen Skala führt die Logarithmus- Transformation. Das Weber-
Fechnersche Gesetz der Psychologie sagt, dass für die menschliche Wahrnehmung
die (logarithmische) Phon-Skala die richtige ist.
• Benzinverbrauch wird in den USA als Miles per Gallon angegeben, in Europa

als Liter auf 100 km. Bis auf eine Umrechnungskonstante ist die eine Variable
das inverse der anderen. Die Angabe in Liter auf 100 km scheint zu einfacheren
statistischen Modellen zu führen; Analysen in Miles per Gallon können beliebig
kompliziert sein.

4-22 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Die Wahl der richtigen Variablen kann ein entscheidender Schritt in der Analyse sein.
Dabei kann es hilfreich sein, zunächst Transformationen und zusätzliche konstruierte Va-
riablen einzuführen, und dann in einem zweiten Schritt die Dimension wieder zu reduzieren
und die effektiven Variablen zu bestimmen.

Koordinatensysteme sind nicht kanonisch vorgegeben. Dies trifft schon auf univaria-
te Probleme zu. Bei univariaten Problemen können wir Koordinatensysteme noch relativ
einfach transformieren. Die Modellierung der Fehlerverteilung einerseits und die Trans-
formation der Daten auf eine Standard-Verteilung sind in gewisser Weise austauschbar.
In mehrdimensionalen Situationen sind geeignete Transformationsfamilien bisweilen nicht
verfügbar oder nicht zugänglich, und die Struktur des Problems kann kritisch von der Wahl
geeigneter Koordinaten abhängig sein. Hier hat eine sachorientierte Wahl der Koordina-
tendarstellung oft den Vorzug vor automatischen Selektionen.

Dieses kann an Anderson’s Iris-Datensatz illustriert werden. Der Datensatz hat fünf
Dimensionen: vier quantitative Variable (Länge und Breite von Blütenblatt (engl. petal)
und Kelchblatt (engl. sepal) von Iris-Blüten) und eine kategoriale Variable (die Spezies: iris
setosa canadensis, iris versicolor, iris virginica)1. Gesucht ist eine Klassifikation der Spezies
anhand der vier quantitativen Variablen.

Tabelle 4.11. Iris Spezies.

Iris setosa Iris versicolor Iris virginica

Die Struktur ist ähnlich der des Diabetes-Datensatzes chemdiab. Die Klassifikation
nach iris$Species ist hier jedoch eine (extern) gegebene Klassifikation, im Gegensatz
zur anhand der anderen Variablen definierten Klassifikation chemdiab$cc. Gesucht ist hier
nicht eine allgemeine Beschreibung wie bei chemdiab, sondern eine Klassifikationsregel, die
iris$Species aus den anderen Variablen ableitet.

Die Spezies definieren die Selektionen, die in diesem Beispiel von Interesse sind.

Um eine erste Übersicht zu bekommen ist es naheliegend, die vier Variablen getrennt
nach Spezies zu betrachten. Die Standard-Konventionen von R machen dies umständlich.
Die Spezies ist eine kategoriale Variable. Dies veranlasst R, bei der plot() -Funktion von
einer Punkt-Darstellung zu Box&Whisker-Plots überzugehen.Eingabe
oldpar <- par(mfrow = c(2, 2))

plot(iris$Species, iris$Petal.Length,

ylab = '', main = 'Petal Length', col = c("magenta", "green3", "yellow"))

plot(iris$Species, iris$Petal.Width,

ylab = '', main = 'Petal Width', col = c("magenta", "green3", "yellow"))

plot(iris$Species, iris$Sepal.Length,

1Photos: The Species Iris Group of North America. Mit freundlicher Genehmigung

4.6. TRANSFORMATIONEN UND DIMENSIONSREDUKTION 4-23

ylab = '', main = 'Sepal Length', col = c("magenta", "green3", "yellow"))

plot(iris$Species, iris$Sepal.Width,

ylab = '', main = 'Sepal Width', col = c("magenta", "green3", "yellow"))

par(oldpar)

●

●

setosa virginica

1
2

3
4

5
6

7

Petal Length

●
●

setosa virginica

0.
5

1.
5

2.
5

Petal Width

●

setosa virginica

4.
5

5.
5

6.
5

7.
5

Sepal Length

●

setosa virginica

2.
0

3.
0

4.
0

Sepal Width

Wir könnten die R-Funktionen modifizieren, um einen Scatterplot der einzelnen Varia-
blen nach Gruppen zu erhalten. Anstelle dessen greifen wir wieder auf grid und lattice

zurück und benutzen die Funktion stripplot() . Weil bei der gegebenen Messgenauigkeit
Werte vielfach auftreten, benutzen wir ein ‘jitter’: wir ‘verwackeln’ vielfache Werte, um sie
getrennt darzustellen.

Eingabe
library("lattice")

print(stripplot(Petal.Length ~ Species, data = iris,

jitter = TRUE, ylab = '', main = 'Petal Length'), split = c(1, 1, 2, 2), more = TRUE)

print(stripplot(Petal.Width ~ Species, data = iris,

jitter = TRUE, ylab = '', main = 'Petal Width'), split = c(2, 1, 2, 2), more = TRUE)

print(stripplot(Sepal.Length ~ Species, data = iris,

jitter = TRUE, ylab = '', main = 'Sepal Length'), split = c(1, 2, 2, 2), more = TRUE)

print(stripplot(Sepal.Width ~ Species, data = iris,

jitter = TRUE, ylab = '', main = 'Sepal Width'), split = c(2, 2, 2, 2))

4-24 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Petal Length

1

2

3

4

5

6

7

setosa versicolor virginica

●●●
●●

●
●●●●●

●
●
●●

●
●●

●
●

●
●

●

●
●

●●●●
●●● ●●●
●●

●●
●

●●●
●

●

●
●
● ●●

●
●
●

●

●●
●

●

●

●
●

●
●

●

●

●●
●
●

●

●

●

●
●
●●

●
●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●● ●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

Petal Width

0.0

0.5

1.0

1.5

2.0

2.5

setosa versicolorvirginica

●●●●●

●
●
●●

●
●●
●●
●

●●
●●●
●

●

●

●

●●

●

● ●●●

●

●
●●●●

●
●●

●●
●

●

●
●
●●●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●
●
●
●

●●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

● ●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

Sepal Length

5

6

7

8

setosa versicolor virginica

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

● ●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

Sepal Width

2.0

2.5

3.0

3.5

4.0

4.5

setosa versicolorvirginica

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

Die eindimensionalen Randverteilungen geben noch wenig Hinweis darauf, wie die drei
Gruppen zu trennen sind. Auch die zweidimensionale Darstellung hilft wenig weiter.

Aufgabe 4.5

Benutzen Sie die Methoden aus Abschnitt 4.4 und 4.5, um den Da-
tensatz zu untersuchen. Können Sie Klassifikationsregeln erkennen,
die die drei Spezies weitgehend richtig klassifizieren?

Mit formalen Methoden wie der Diskriminanzanalyse (z. B. lda() in library (MASS))
kann die Klassifikation anhand der ursprünglichen Variablen gefunden werden. Die Tren-
nung der Spezies ist nicht trivial.

Die ursprünglichen Variablen repräsentieren jedoch nur den Aspekt der Daten, der
technisch am einfachsten erhebbar ist. Biologisch gesehen würde man jedoch anders para-
metrisieren: die Variablen spiegeln Größe und Form der Blätter wieder. Eine erste Appro-
ximation wäre

area = length · width(4.1)

aspectratio = length/width.(4.2)

Damit erhält man die Darstellung

4.6. TRANSFORMATIONEN UND DIMENSIONSREDUKTION 4-25

Eingabe
iris$Sepal.Area <- iris$Sepal.Length*iris$Sepal.Width

iris$Petal.Area <- iris$Petal.Length*iris$Petal.Width

iris$Sepal.Ratio <- iris$Sepal.Length/iris$Sepal.Width

iris$Petal.Ratio <- iris$Petal.Length/iris$Petal.Width

pairs(iris[6:9], main = "Anderson's Iris Data -- 3 species",

pch = 21,

bg = c("magenta", "green3", "yellow")[unclass(iris$Species)],

oma = c(8, 8, 8, 8))

mtext(c("Colour codes:", levels(iris$Species)),

col = c("black", "magenta", "green3", "yellow"),

at = c(0.1, 0.4, 0.6, 0.8),

side = 1, line = 2)

Sepal.Area

0 5 10 15

●

●●●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●
●●

●●●
●
●
●●

●●

●

●
●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●
●
●●

●

●

●
●●

● ●●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●●
●

●
●

●
●

● ●●

●

●●
●

●

●
●

● ●

●●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

● ●●
●

●
●●

●●

●

●
●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●
●
● ●
●

●

●
●●

●●●

● ●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●●
●

●
●

●
●

●●●

●

●●
●

●

●
●

●

2 6 10 14

10
20

30

●

●●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●● ●
●

●
●●

●●

●

●
●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●
●

●
●
●●
●

●

●
●●

●●●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●●
●

●
●

●
●

●●●

●

●●
●

●

●
●

●

0
5

10
15

●●●● ● ●●●● ● ●●●● ● ●●● ●●●●●●●● ●●●●● ● ● ●●● ●●● ●●● ●
● ●● ●● ●●

●●●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●●

●

●

●
●●

●

●
● ●●

● ●●●
●

●
●

● ●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●●

●●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

Petal.Area

● ●●●●●●●●●●● ●●●●●●●● ●●● ●● ●●●●●●●●● ●●●●●●● ●●
●● ●●●●●

●● ●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●

●
●● ●

●● ●●
●

●
●

●●● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●
●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●●●●●● ●● ●●● ●●●●● ●●● ●● ●● ●●● ●●●●● ●●●●● ●●●●● ●
● ●● ●●●●

●●
●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●
●

●

●

●
●●
●

●
●●●
●●●●
●
●
●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●
●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●●

●●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●
●●

● ●●
●● ●

●●

●
● ●

●
●

● ●
●

●

●
●

●
●

●

●●●●
● ●

● ●

●● ●

●
● ●●

●

● ●
●

●

●
● ●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●●

●
●

● ●

●

●

●

●
●

●

●●
●

●●
●

● ●
●

●

●

●●

●

●

●
●

●●

●
●●

● ●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●●

●●●● ●
●

●

●

●

●
●

●
●
●●
●●●
●●
●
●●

●
●●
●
●
●●
●

●

●
●

●
●

●

●●●●
●●

●●

●●●

●
●●●

●

●●
●

●

●
●●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●●
●

●

●●

●

●

●

●
●

●

●●
●

●●
●

● ●
●

●

●

● ●

●

●

●
●

●●

●
●●

●●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●●

● ●●
● ●

●

●

●

●

●
●

Sepal.Ratio

1.
5

2.
5

●
●

●●
●●●
●● ●
●●

●
●●

●
●

●●
●

●

●
●

●
●

●

● ●●●
●●

●●

●●●

●
●●●

●

●●
●

●

●
●●
●

●

●

●
●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●
●
●●
●
●

●●

●

●

●

●
●

●

●●
●
●●
●

●●
●

●

●

●●

●

●

●
●

●●

●
●●

●●
●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●●

●●●●●
●

●

●

●

●
●

10 20 30

2
6

10
14

●●●
● ●

●●

●●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●
●●

●

●

●●

● ●

●

●
●

●●

●

●

●●

●
● ●●

●●●● ●● ●● ●
●

●
●

●
●

● ●●
●

●● ●●●
●

●●●●●●●● ●●● ●●
● ●●
● ●●● ● ●●●

● ●
●● ●●● ●●
●●

●●● ●● ● ●
● ●●●

●●
●

● ●
●

●●●
●● ●

●
●

●
●●

●● ●●●● ●●●● ●●●

●●●
●●

●●

●●

●

●●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●●
●●

●

●

●●

●●

●

●
●

●●

●

●

●●

●
●●●

●●●● ●● ●● ●
●

●
●

●
●

● ●●
●

●●
●● ●

●
●●● ●●●●●● ●●●●
●●●

●●●● ●●●●● ●
●● ●● ●●●

●●
●●● ●● ●●

● ●●●
●●
●

● ●
●

●● ●
● ●●

●
●
●

●●
●● ● ●●● ●●●●● ●●

1.5 2.5

● ●●
●●

●●

●●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●
●●

●

●

● ●

●●

●

●
●

● ●

●

●

● ●

●
●●●

●● ● ●●●●● ●
●

●
●

●
●

● ●●
●

●●
● ● ●

●
●● ●●●●●●●●●● ● ●● ●

●● ●●●●● ●
●●● ● ●●● ●●

● ●
●● ●●●●●

●● ●●
●●

●
●●

●
●● ●

● ●●
●
●

●
●●

●● ●●●●●● ● ●●● ●

Petal.Ratio

Anderson's Iris Data −− 3 species

Colour codes: setosa versicolor virginica

In der Marginalverteilung sind die Spezies fast vollständig getrennt - mit zwei Grenzfällen.
In diesen mehr biologischen Koordinaten sieht man, dass zur Klassifikation Fläche und
Längenverhältnis des Blütenblatts allein ausreichen. Jedes kompliziertere formale Verfah-
ren muss sich mit dieser trivialen Klassifikationsregel erst einmal messen.

Selbst eine umfassende Suche, z.B. mit projection pursuit, erfasst nur die Projektio-
nen, also nur spezielle Linearkombinationen der Variablen. Bei den Iris-Daten haben wir

4-26 4. DIMENSIONEN 1, 2, 3, . . . , ∞

zunächst neue Variablen, die Flächen und Seitenverhältnisse, eingeführt. Dies sind nicht-
lineare Transformationen. Erst in einem weiteren Schritt sind dann die klassifizierenden
Variablen identifiziert worden, und dabei ist die Dimension drastisch reduziert. Bei echten
multivariaten Problemen ist es ganz typisch, dass zunächst eine Dimensionserweiterung
notwendig ist, um das Problem zu lösen. Dimensionsreduktion ist erst dann sinnvoll, wenn
die beschreibenden Variablen hinreichend komplex sind, um zu einer Lösung zu führen.

4.7. Höhere Dimensionen

4.7.1. Linearer Fall. Haben wir im wesentlichen lineare Strukturen, so können wir
oft auch höher–dimensionale Strukturen mit Methoden analysieren, die für eindimensio-
nale Modelle entwickelt sind. Wir müssen die Methoden evtl. modifizieren oder iteriert
anwenden. Sie helfen uns jedoch, die wesentlichen Merkmale zu erkennen.

In Kapitel 2 haben wir lineare Modelle bereits allgemein für beliebige Dimension p
der Regressoren eingeführt und damit bereits den mehrdimensionalen Fall eingeschlossen.
Kapitel 2 setzt voraus, dass das Modell der statistischen Analyse vorab fest steht, d.h. das
Information aus dem Datenmaterial die Wahl des Modells nicht beeinflusst, sondern nur
die Entscheidung im Rahmen des Modells.

Insbesondere bei höherdimensionalen Problemen ist es jedoch so, dass das Modell erst
zu bestimmen ist. Ein wichtiger Spezialfall ist die Auswahl von Regressoren: die Variablen
sind Kandidaten, aus denen eine (möglichst kleine) Anzahl von Regressoren zu wählen ist.

Bringen kompliziertere Modelle eine wesentliche Verbesserung gegenüber dem einfa-
chen Modell? Welche Parameter bzw. welche abgeleitete Variable sollten in das Modell
einbezogen werden? Die Lehre aus den linearen Modellen ist, dass nicht der Wert des ein-
zelnen Parameters den Beitrag im Modell bestimmt, sondern dass die durch die Parameter
bestimmten Räume die wesentlichen Faktoren sind. An dieser Stelle sind angepasste Stra-
tegien gefragt. Wir können mit einfachen Modellen beginnen und fragen, ob zusätzliche
Parameter einen weiteren Beitrag liefern. Dadurch erreichen wir einen besseren Fit, aber
erhöhen die Varianz unserer Schätzungen. Oder wir können mit einem relativ komplexen
Modell beginnen, und fragen, ob wir Parameter fortlassen können. Dadurch wird zwar der
Restfehler erhöht, wir gewinnen aber an Verlässlichkeit der Schätzungen.

Beide Strategien führen im abstrakten linearen Regressionsmodell zu einem Vergleich
von zwei Modellräumen MX′ ⊂ MX . Die entsprechenden Schätzer sind πMX′

(Y) und
πMX

(Y). Die Beziehung zwischen beiden wird klar, wenn wir die orthogonale Zerlegung
MX = MX′ ⊕ LX := M0, LX := MX 	MX′ von MX wählen. Dann ist πMX

(Y) =
πMX′

(Y) + πLX (Y).

4.7.1.1. Partielle Residuen und Added-Variable-Plots. In der Regression sind MX′ und
MX Räume, die von den Regressor-Variablenvektoren aufgespannt werden. In unserer
Situation interessiert uns der Spezialfall

X ′ = span(X1′ , . . . , Xp′);X = span(X1, . . . , Xp)

mit p > p′. Dann wird aber LX aufgespannt von den Vektoren

Rp′+1 = Xp′+1 − πM ′
X

(Xp′+1), . . . , Rp = Xp − πMX′
(Xp).

Wenn wir also (formal) eine lineare Regression der zusätzlichen Regressoren nach den
bereits in X ′ enthaltenen durchführen, sind die dabei entstehenden Residuen ein Erzeu-
gendensystem für LX . Eine weitere Regression von Y nach diesen Residuen liefert uns den
Term πLX′ (Y), der den Unterschied zwischen den Modellen beschreibt. Nach Konstruktion
wissen wir, dass πMX′

(Y) orthogonal zu LX ist. Bei dieser zweiten Regression wird deshalb

4.7. HÖHERE DIMENSIONEN 4-27

dieser Anteil auf null abgebildet. Wir können diesen Anteil gleich eliminieren und uns auf
die Regression von Y ′ = Y − πMX′

(Y) nach Rp′+1, . . . , Rp beschränken.

Die Strategiewahl ist einfach: wir untersuchen, ob zusätzliche Parameter in das Modell
aufgenommen werden sollten. Anstelle der Scatterplot-Matrix der ursprünglichen Daten
betrachten wir die Scatterplots der (formalen) Residuen aus diesem einfachen Modell.
Diese Scatterplots werden Added-Variable-Plots genannt.

Um den Unterschied zur Scatterplot-Matrix der Ausgangsdaten zu betonen: lineare
Strukturen im Scatterplot der Ausgangsdaten sind ein klarer Hinweis auf lineare Abhän-
gigkeiten. Nichtlineare Strukturen, wie z.B. die Dreiecksgestalt in einigen der Scatterplots
können eine entsprechende Abhängigkeit widerspiegeln; sie können aber auch Artefakte
sein, die als Folge der Verteilungs- und Korrelationsstruktur der Regressoren auftreten. Sie
haben in der Regel keine einfache Deutung. Im Gegensatz dazu sind die Darstellungen in
der Matrix der Added-Variable-Plots für lineare Effekte der vorausgehenden Variablen ad-
justiert. Dadurch hängen sie von der Wahl der Reihenfolge ab, in der Variable einbezogen
werden. Sie korrigieren aber für lineare Effekte, die aus den Korrelationen zu vorausgehen-
den Variablen kommen. Dadurch wird eine ganze Reihe von Artefakten vermieden und sie
können unter Berücksichtigung des Zusammenhangs unmittelbar interpretiert werden.

Aufgabe 4.6

Modifizieren Sie die nachfolgende Prozedur pairslm() so, dass sie
für alle Variablen in der ursprünglichen Matrix x die Residuen der
Regression nach der neuen Variablen x$fit berechnet und eine
Scatterplot-Matrix dieser Residuen zeigt.

pairslm <- function(model, x, ...)

{ x$fit <- lm(model, x)$fit; pairs(x, ...)}

Fügen Sie auch Titel, Legenden etc. hinzu.

Benutzen Sie den ”trees”-Datensatz als Beispiel.

Wir haben den Übergang von p′ zu p′+1 Variablen untersucht. Die Scatterplot-Matrix
erlaubt uns einen schnellen Überblick über eine (nicht zu) große Zahl von Kandidaten (bei
uns drei mögliche zusätzliche Regressoren). Der Übergang von p zu p− 1, zur Elimination
einer Variablen, ist in gewisser Weise dual dazu. Dies entspricht der zweiten Strategie, der
schrittweisen Elimination.

Statt eine einzelne Variable als Leitvariable auszuwählen ist es effizienter, Kombina-
tionen von Variablen als synthetische Leitvariablen zu benutzen. Entsprechende Methoden
werden in der Theorie als Hauptkomponentenanalyse behandelt und durch die Funktion
prcomp() in der library(mva) bereitgestellt. Wir kommen daraus in einem späteren
Beispiel (Seite 4-40) zurück.

Das Beispiel der linearen Modelle lehrt uns, dass die marginalen Beziehungen nur die
halbe Wahrheit sind. Anstelle die einzelnen Regressoren zu betrachten, müssen wir im
linearen Modell schrittweise orthogonalisieren. Komponentenweise Interpretationen sind
damit fragwürdig - sie sind weitgehend von der Reihenfolge abhängig, in der Variablen
einbezogen werden.

In komplexeren Situtationen führen formale Methoden oft nur in die Irre. Handwerkli-
ches Geschick ist hier notwendig. Leider sind die Kennntnisse darüber, wie handwerkliche
Eingriffe die Gültigkeit formaler Methoden beeinflussen, noch sehr beschränkt. Deshalb ist
es gerade hier wichtig, gewählte Strategien anhand von Simulationen kritisch zu beurteilen.

4-28 4. DIMENSIONEN 1, 2, 3, . . . , ∞

4.7.2. Nichtlinearer Fall. Nichtlineare Beziehungen in höheren Dimension stellen
eine Herausforderung dar. Neben den Methoden brauchen wir auch ein Repertoire an Bei-
spielen, die uns zeigen, welche Strukturen auftreten können und worauf wir achten müssen.
Das folgende Beispiel, Cusp(Spitzen)-Singularität gehört dazu: es ist mit die einfachste
Struktur, die in höheren Dimensionen auftreten kann. Die Basis ist hier ein zweidimensio-
nale Struktur, eine Fläche, die nicht trivial in einem dreidimensionale Raum eingebettet ist.
Das interessante Merkmal ist hier die Aufspaltung von einer unimodalen in eine bimodale
Situation.

4.7.2.1. Beispiel: Spitzen-Nichtlinearität. Das einfachste Beispiel kann im Hinblick auf
physikalische Anwendungen illustriert werden. In physikalischen Systemen hängen Wahr-
scheinlichkeitsverteilungen oft mit Energiezuständen zusammen; (lokale) Minima der Ener-
gie entsprechen dabei den Moden der Verteilung. Ein typischer Zusammenhang ist: verhält
sich die Energie wie ϕ(y), so verhält sich die Verteilung nach Standardisierung wie e−ϕ(y).
Ist ϕ(y) in der Nähe des Minimums quadratisch, so erhalten wir (bis auf Skalentransfor-
mation) Verteilungen aus der Familie der Normalverteilungen.

Die Differentialtopologie lehrt uns, dass auch bei kleinen Störungen oder Variationen
dieses qualitative Bild erhalten bleibt. Die Energie bleibt zumindest lokal approximativ
quadratisch, und die Normalverteilungen bleiben zumindest approximativ eine geeignete
Verteilungsfamilie.

Das Verhalten ändert sich drastisch, wenn das Potential sich lokal wie y4 verhält. Schon
geringe Variationen können dazu führen, dass das Potential lokal quadratisch ist. Aber sie
können auch dazu führen, dass das lokale Minimum aufbricht und zu zwei Minima führt.
Das typische Bild ist von der Gestalt

(4.3) ϕ(y;u, v) = y4 + u · y2 + v · y.

Dabei sind die Variationen durch die Parameter u, v repräsentiert. Am einfachsten lässt
sich die Situation dynamisch interpretieren: wir stellen uns vor, dass u, v äußere Parameter
sind, die sich verändern können. Dieses Bild kennen wir von der magnetischen Hystere-
se: y gibt die Magnetisierung in einer Richtung an, u spielt die Rolle der Temperatur; v
die eines äußeren Magnetfelds. Bei hoher Temperatur folgt die Magnetisierung direkt dem
äußeren Magnetfeld. Sinkt die Temperatur, so zeigt das Material Gedächtnis: die Magneti-
sierung hängt nicht nur vom äußeren Magnetfeld ab, sondern auch von der vorhergehenden
Magnetisierung.

Ähnliche “Gedächtniseffekte” kennen wir auch in anderen Bereichen. Man stelle sich
einen Markt vor mit Preisen y, Kosten v und einem “Konkurrenzdruck” u. Bei ausrei-
chender Konkurrenz folgen die Preise (mehr oder weniger) den Kosten bei sonst gleichen
Bedingungen. Bei Monopol-Situationen scheinen die Preise ein Gedächtnis zu haben: sind
sie einmal gestiegen, so sinken sie erst, wenn die Kosten drastisch reduziert sind.

Die in Formel 4.3 angegebenen “Entfaltung” des Potentials y4 hat eine typische Form.
Aus

(4.4) ϕ′(y;u, v) = 4y3 + 2u · y + v = 0

erhält man die kritischen Punkte (siehe Abb. 4.2). Siehe Abbildung 4.2 auf Seite 4-30.

Projeziert auf die u, v-Ebene gibt dies eine Spitze (engl.: “cusp”, Abb. 4.3). Bei Para-
metern im inneren dieser Spitze gibt es zwei lokale Minima; außerhalb der Spitze gibt es
nur einen Extremalwert.

4.7. HÖHERE DIMENSIONEN 4-29

−2 −1 0 1 2

−
5

0
5

u = −4 v = −3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
6

−
2

0
2

u = −4 v = −1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0

u = −4 v = 0

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
6

−
2

0
2

u = −4 v = 1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
5

0
5

u = −4 v = 3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
5

0
5

10

u = −2 v = −3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
2

2
6

10

u = −2 v = −1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
2

4
6

8

u = −2 v = 0

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
2

2
6

10

u = −2 v = 1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

−
5

0
5

10

u = −2 v = 3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

10
20

u = 0 v = −3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

10
15

u = 0 v = −1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

10
15

u = 0 v = 0

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

10
15

u = 0 v = 1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

10
20

u = 0 v = 3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
10

20
30

u = 2 v = −3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

15
25

u = 2 v = −1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

10
20

u = 2 v = 0

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
5

15
25

u = 2 v = 1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
10

20
30

u = 2 v = 3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
10

20
30

u = 4 v = −3

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
10

20
30

u = 4 v = −1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
10

20
30

u = 4 v = 0

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
10

20
30

u = 4 v = 1.5

y^
4

+
 u

y^
2

+
 v

y

−2 −1 0 1 2

0
10

20
30

u = 4 v = 3

y^
4

+
 u

y^
2

+
 v

y

Abbildung 4.1. Entfaltung von y4: ϕ(y;u, v) = y4 + u · y2 + v · y

Die diesen Potentialen entsprechenden Verteilungen sind – bis auf Skalentransformation
zur Normalisierung –

(4.5) p(y;u, v) ∝ e−(y4+u·y2+v·y).

Die Struktur der Potentiale spiegelt sich auch in den entsprechenden Verteilungen wieder;
der exponentielle Abfall macht allerdings die kritische Grenze etwas komplizierter.

Die Situation erscheint hier noch harmlos: der Parameterraum (der Raum der Regres-
soren) x = (u, v) hat nur zwei Dimensionen. Die Verteilung ist eindimensional mit einer
glatten Dichte. Aber die Situation kann mit linearen Methoden nur unzureichend erfasst
werden. Der typische nichtlineare Effekt wird nicht erkannt, wenn man darauf nicht vorbe-
reitet ist. Erst das Gesamtbild im Dreidimensionalen vermittelt die eigentliche Struktur.

Dieses einfache Beispiel ist eine Herausforderung. Wie kann eine derartige Struktur
diagnostiziert werden?

4-30 4. DIMENSIONEN 1, 2, 3, . . . , ∞

u

y

v

Abbildung 4.2. Kritische Punkte ϕ′(y;u, v) = 4y3 + 2u · y + v = 0

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

cu
sp

 (
x)

Abbildung 4.3. Grenze zwischen Uni– und Bimodalität im (u, v)–Raum

4.7. HÖHERE DIMENSIONEN 4-31

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = −2 v = −1

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

0.
4

0.
8

u = −2 v = −0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

u = −2 v = 0

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

0.
4

0.
8

u = −2 v = 0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = −2 v = 1

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = −1 v = −1

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

u = −1 v = −0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

0.
4

0.
8

u = −1 v = 0

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

u = −1 v = 0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = −1 v = 1

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = 0 v = −1

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = 0 v = −0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

u = 0 v = 0

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = 0 v = 0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

u = 0 v = 1

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

3.
0

u = 1 v = −1

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

3.
0

u = 1 v = −0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
5

1.
5

2.
5

u = 1 v = 0

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

3.
0

u = 1 v = 0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

0.
0

1.
0

2.
0

3.
0

u = 1 v = 1

x

d4
uv

 (
x)

−4 −2 0 2 4

1
2

3
4

5

u = 2 v = −1

x

d4
uv

 (
x)

−4 −2 0 2 4

1
2

3
4

5

u = 2 v = −0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

1
2

3
4

5

u = 2 v = 0

x

d4
uv

 (
x)

−4 −2 0 2 4

1
2

3
4

5

u = 2 v = 0.5

x

d4
uv

 (
x)

−4 −2 0 2 4

1
2

3
4

5

u = 2 v = 1

x

d4
uv

 (
x)

Abbildung 4.4. p(y;u, v) ∝ e−(y4+u·y2+v·y)

Aufgabe 4.7

Schreiben Sie eine Funktion dx4exp(x, u, v), die die zentrier-
te Wahrscheinlichkeitsdichte zu (4.5) berechnet. Dazu müssen Sie
die Dichte aus (4.5) integrieren, um die Normierungskonstante zu
bestimmen, und den Erwartungswert berechnen, um die Dichte zu
zentrieren. Benutzen Sie für beides eine numerische Integration mit
integrate() .

*** Simulieren Sie zu Werten u, v auf einem Gitter in u = −2 . . . 2 und
v = −1 . . . 1 je 100 Zufallszahlen aus dx4exp(x, u, v). Untersu-
chen Sie diese mit den Methoden aus Kapitel 2.
Können Sie Hinweise auf nicht–lineare Abhängigkeit erkennen?
Ist die Bimodalität erkennbar?
Wie weit können Sie die Struktur identifizieren?

Bei nichtlinearen Beziehungen können gemeinsame Abhängigkeiten eine große Bedeu-
tung haben. Im allgemeinen erfordert dies Umsicht bei der Modellbildung. Nichtlineare
Beziehungen können in Projektionen versteckt sein. Artefakte der (linearen) Projektion
können ein Bild vermitteln, das nicht den ursprünglichen Beziehungen entspricht.

4-32 4. DIMENSIONEN 1, 2, 3, . . . , ∞

4.7.3. “Curse of Dimension”. Ohne angepasste Koordinatensysteme ist eine umfas-
sende Suche nach interessanten Projektionen und Schnitten nötig. Die Anzahl der Möglich-
keiten steigt rasch mit der Dimension. Zur Illustration: Um einen Kubus zu identifizieren
müssen zumindest die Eckpunkte erkannt werden. In d Dimensionen sind dies 2d Eckpunk-
te. Die Anzahl steigt exponentiell mit der Dimension. Dies ist ein Aspekt des als curse of
dimension bekannten Problems.

Anders betrachtet: bezeichnen wir die Datenpunkte, die in mindestens einer Variablen-
dimension extrem sind, so sind dies im eindimensionalen Fall zwei Punkte. in d Dimensio-
nen sind dies typischerweise 2d Punkte. Betrachten wir nicht nur Koordinatenrichtungen,
sondern beliebige Richtungen, so ist typisch jeder Punkt extremal, wenn d sehr groß wird.

Ein dritter Aspekt: im d-dimensionalen Raum ist fast jeder Punkt isoliert. Lokalisie-
rungen, wie wir sie in Abschnitt 2.5 kennengelernt haben, brechen zusammen. Wählen wir
um einen Punkt eine Umgebung, die einen Anteil p, z.B. p = 10% der Variablenspannweite
umfasst, so haben wir in einer Dimension typischerweise der Größenordnung nach auch
einen Anteil p der Datenpunkte erfasst. In d Dimensionen ist dies nur noch ein Anteil der
Größenordnung pd. Bei zum Beispiel 6 Dimensionen brauchen wir also mehrere Millionen
Datenpunkte, damit wir nicht mit leeren Umgebungen arbeiten.

4.7.4. Fallstudie. Als fortlaufendes Beispiel benutzen wir nun den Fat-Datensatz.
Dieser Datensatz ist in der Literatur wiederholt veröffentlicht und in R unter anderem im
Paket UsingR zugänglich.

Ziel der Untersuchung hinter diesem Datensatz ist die Bestimmung des Körperfettan-
teils. Die verlässlichste Methode ist es, in einem Wasserbad die mittlere Dichte des Gewebes
zu bestimmen und daraus auf den Körperfettanteil zurück zu schliessen. Diese Bestimmung
ist sehr aufwendig. Kann sich durch einfacher zu messende Körperparameter ersetzt wer-
den? Die zur Verfügung stehenden Parameter sind in Tabelle 4.15 zusammengefasst.

Anhand der Übersicht in Tabelle 4.15 sehen wir gleich, dass metrische Angaben und
US-Maße gemischt sind. Damit für uns die Interpretation einfacher ist, stellen wir alle
Angaben auf metrische Werte um.

Eingabe
library("UsingR")

data(fat)

fat$weightkg <- fat$weight*0.453

fat$heightcm <- fat$height * 2.54

fat$ffweightkg <- fat$ffweight*0.453

Die Variablen body.fat und body.fat.siri sind aus dem gemessenen Wert density
abgeleitet. Hinter den Formeln stecken Annahmen über die mittlere Dichte von Fett und
von fettfreiem Gewebe. Mit diesen Annahmen kann aus density der Fettanteil errechnet
(oder besser: geschätzt) werden. In beiden Formeln ist der dichtabhängige Faktor 1/den-

sity. Bis auf (gegebene oder angenommene) Konstanten ist dies also der für uns relevante
Term (und nicht density).

Der erste Schritt ist eine kritische Inspektion und Bereinigung des Datensatzes. Dies ist
fast immer nötig, nicht nur bei höherdimensionalen Datensätzen. Bei höherdimensionalen
Datensätzen haben wir allerdings oft Redundanzen, die Konsistenzprüfungen und evtl.
Korrekturen ermöglichen. In unserem Fall sind body.fat, body.fat.siri, ffweight und
BMI abgeleitete Größen, die zu anderen Variablen in deterministischer Beziehung stehen.

4.7. HÖHERE DIMENSIONEN 4-33

Name Variable Einheit, Bem.

case Case Number

body.fat Percent body fat using Brozek’s equation,
457/Density − 414.2

body.fat.siri Percent body fat using Siri’s equation,
495/Density − 450

density Density [g/cm2]

age Age [yrs]

weight Weight [lbs]

height Height [inches]

BMI Adiposity index = Weight/Height2 [kg/m2]

ffweight Fat Free Weight = (1−fractionofbodyfat)∗
Weight, using Brozek’s formula

[lbs]

neck Neck circumference [cm]

chest Chest circumference [cm]

abdomen Abdomen circumference “at the umbilicus
and level with the iliac crest”

[cm]

hip Hip circumference [cm]

thigh Thigh circumference [cm]

knee Knee circumference [cm]

ankle Ankle circumference [cm]

bicep Extended biceps circumference [cm]

forearm Forearm circumference [cm]

wrist Wrist circumference“distal to the styloid pro-
cesses”

[cm]

Tabelle 4.15. Fat data set: variables

Wir betrachten zunächst die Gruppe body.fat, body.fat.siri, 1/density. Die
paarweisen Scatterplots sollten Geraden zeigen. pairs() leistet gute Dienste. Wir be-
nutzen es hier in der Formel-Variante. Um zu signalisieren, dass 1/density berechnet
werden soll, und die Division nicht als Formel-Operator zu verstehen ist, markieren wir
den Term entsprechend.

Eingabe
pairs(~body.fat + body.fat.siri + I(1/density), data = fat)

4-34 4. DIMENSIONEN 1, 2, 3, . . . , ∞

body.fat

0 10 20 30 40

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●●
●

●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0
10

20
30

40

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●●
●

●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0
10

20
30

40

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●
●

●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

body.fat.siri
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●
●

●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 10 20 30 40

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●
●

●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●
●

●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.90 0.94 0.98

0.
90

0.
94

0.
98

I(1/density)

Die inkonsistenten Werte und Ausreißer sind deutlich. Leider ist es in R nicht einfach
möglich, Werte in der Scatterplot-Matrix zu markieren.

4.7. HÖHERE DIMENSIONEN 4-35

Aufgabe 4.8

Benutzen Sie plot() und identify() , um die folgenden Ausga-
ben zu erzeugen:

●

●

●

●

●

●
●

●

●

●

●●

●●●●

●

●

●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●
●●
●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●●
●

●

●●●●

●
●

●

●●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

0.90 0.94 0.98

0
10

20
30

40

1/density

bo
dy

 fa
t

33

48

7696

182

216

●

●

●

●

●

●
●

●

●

●

●●

●●●●

●

●

●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●
●●
●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●
●

●

●●●●

●
●

●

●●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

0.90 0.94 0.98

0
10

20
30

40

1/density

bo
dy

 fa
t s

iri

48

7696

169

182

216

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●●●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●●●
●

●

●
●

●
●●
●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●
●●
●

●●●

●

●

●

●●

●●
●

●●
●

●

●

●●
●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●●
●●

50 60 70 80 90 110

50
70

90
11

0

(1−body.fat/100)*weightkg

ffw
ei

gh
tk

g

33

39

221

●●
●●●
●●

●
●
●

●

●●
●
●
●
●
●
●●●
●

●●
●
●
●

●●
●●
●
●

●
●●

●●

●

●

●

●
●

●

●
●●●●●
●●●●
●

●●
●●●●

●●
●
●
●

●●
●
●
●
●
●●
●●●

●

●
●●
●
●●●
●
●
●

●●
●●

●

●

●

●
●
●

●

●●
●●
●●●
●●

●●
●●●

●●●●
●●
●●●
●●
●●●

●
●
●●●
●
●●
●

●●●

●
●●
●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●●●
●

●
●
●
●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●●
●●●
●
●
●●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

50 100 150

20
30

40
50

weightkg/(fat$heightcm/100)^2

B
M

I

39

42

163221

Wenn eine klare Korrektur vorgenommen werden kann, so sollte es hier getan und im
Auswertungsbericht notiert werden. Fall 42 ist einfach: eine Größe von 0.73m bei einem
Gewicht von 63.5kg ist unplausibel und inkonsistent zu BMI 29.9. Aus dem BMI lässt sich
die Größe rückrechnen. Der eingetragene Wert von 29.5 Zoll sollte wohl 69.5 Zoll sein.

Eingabe
fat$height [42] <- 69.5

fat$heightcm[42] <- fat$height[42] * 2.54

Fall 216 ist eine Ermessenssache. Die Dichte ist extrem niedrig, der BMI extrem hoch.
Andererseits passen die Körpermaße zu diesen Extremen. Diese Fall kann ein Ausreisser
sein, der die Auswertungen verzerren kann. Es kann aber auch eine besonders informative
Beobachtung sein. Wir notieren ihn als Besonderheit.

Nach dieser Voruntersuchung bereinigen wir den Datensatz. Die Variablen, die keine
Information mehr enthalten oder die wir ersetzt haben, löschen wir. Als Zielvariable be-
nutzen wir body.fat. Wir behalten jedoch noch die Variable density für spätere Zwecke.

Eingabe
fat$weight <- NULL

fat$height <- NULL

4-36 4. DIMENSIONEN 1, 2, 3, . . . , ∞

fat$ffweight <- NULL

fat$ffweightkg <- NULL

fat$body.fat.siri <- NULL

Es gibt eine Reihe von gängigen Indizes (siehe Abb. 4.5). Früher war die Faustformel
‘Idealgewicht = Körpergröße -100’ gängig. Heute ist der “body mass index” BMI = Ge-
wicht/ Körpergröße2 gängig. (Handelsübliche Körperfettwaagen bestimmen die elektrische
Impedanz. Diese Variable ist im Fat-Datensatz nicht enthalten.)

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 0 20 40 60 80

0
10

20
30

40

weight−(height−100)

bo
dy

.fa
t

3941

216

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 25 30 35 40 45 50

0
10

20
30

40

BMI

bo
dy

.fa
t

3941

216

Abbildung 4.5. Fettanteil gegen konventionelle Indizes

Wir können mit den konventionelle Indizes im linearen Modell schätzen. Dabei las-
sen wir die offensichtlichen Ausreisser und möglichen Hebelpunkte unberücksichtigt. Dazu
benutzen wir den subset -Parameter der Funktion lm() .

Für die Faustformel ‘Idealgewicht = Körpergröße -100’ erhalten wir:

Eingabe
lm.height <- lm(body.fat~I(weightkg-(heightcm-100)),

data = fat,

subset = -c(39, 41, 216))

summary(lm.height)

Ausgabe
Call:
lm(formula = body.fat ~ I(weightkg - (heightcm - 100)), data = fat,

subset = -c(39, 41, 216))

Residuals:
Min 1Q Median 3Q Max

-11.90734 -3.68697 -0.05303 3.65458 12.28000

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.70722 0.33296 53.18 <2e-16
I(weightkg - (heightcm - 100)) 0.54557 0.03283 16.62 <2e-16

(Intercept) ***
I(weightkg - (heightcm - 100)) ***

4.7. HÖHERE DIMENSIONEN 4-37

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.166 on 247 degrees of freedom
Multiple R-squared: 0.5279, Adjusted R-squared: 0.526
F-statistic: 276.2 on 1 and 247 DF, p-value: < 2.2e-16

Die Regression von body.fat nach BMI ergibt:

Eingabe
lm.BMI <- lm(body.fat~BMI,

data = fat,

subset = -c(39, 41, 216))

summary(lm.BMI)

Ausgabe
Call:
lm(formula = body.fat ~ BMI, data = fat, subset = -c(39, 41,

216))

Residuals:
Min 1Q Median 3Q Max

-12.49460 -3.53561 -0.05228 3.69129 11.72720

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.6130 2.6212 -9.772 <2e-16 ***
BMI 1.7564 0.1031 17.042 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.097 on 247 degrees of freedom
Multiple R-squared: 0.5404, Adjusted R-squared: 0.5385
F-statistic: 290.4 on 1 and 247 DF, p-value: < 2.2e-16

Der Fit ist jedoch mit R2 = 0.53 bzw. R2 = 0.54 in beiden Fällen nur mäßig.

Selbst mit allen Datenpunkten und allen Regressoren wird maximal R2 = 0.75 erreicht:

Eingabe
lm.fullres <- lm(body.fat ~ age + BMI + neck + chest +

abdomen + hip + thigh + knee + ankle +

bicep + forearm + wrist + weightkg + heightcm,

data = fat)

summary(lm.fullres)

Ausgabe
Call:
lm(formula = body.fat ~ age + BMI + neck + chest + abdomen +

hip + thigh + knee + ankle + bicep + forearm + wrist + weightkg +
heightcm, data = fat)

Residuals:
Min 1Q Median 3Q Max

-10.0761 -2.6118 -0.1055 2.8993 9.2691

4-38 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -50.804727 36.489198 -1.392 0.16513
age 0.061005 0.029862 2.043 0.04217 *
BMI 0.782993 0.733562 1.067 0.28688
neck -0.439082 0.218157 -2.013 0.04528 *
chest -0.040915 0.098266 -0.416 0.67751
abdomen 0.866361 0.085550 10.127 < 2e-16 ***
hip -0.206231 0.136298 -1.513 0.13159
thigh 0.246127 0.135373 1.818 0.07031 .
knee -0.005706 0.229564 -0.025 0.98019
ankle 0.135779 0.208314 0.652 0.51516
bicep 0.149100 0.159807 0.933 0.35177
forearm 0.409032 0.186022 2.199 0.02886 *
wrist -1.514111 0.493759 -3.066 0.00242 **
weightkg -0.389753 0.221592 -1.759 0.07989 .
heightcm 0.187196 0.199854 0.937 0.34989

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.991 on 237 degrees of freedom
Multiple R-squared: 0.7497, Adjusted R-squared: 0.7349
F-statistic: 50.7 on 14 and 237 DF, p-value: < 2.2e-16

Dies ist ein Modell mit 15 Koeffizienten. Das Modell ist so komplex, das es kaum zu inter-
pretieren ist, und man wird versuchen, das Modell zu reduzieren. Anstelle “von Hand”nach
einfacheren Modellen zu suchen, kann dieser Prozess automatisiert werden. Dazu dient die
Funktion regsubsets() in library(leaps). Der quadratische Fehler (bzw. das Bestimmt-
heitsmaß R2) muss dabei modifiziert werden: der quadratische Fehler wird minimiert, wenn
wir alle Regressoren ins Modell aufnehmen, also immer im vollen Modell. Zur Modellwahl
benutzt man Varianten des quadratischen Fehlers (bzw. des Bestimmtheitsmaßes R2), die
für die Anzahl der Parameter adjustiert sind.

Aufgabe 4.9

* Benutzen Sie library(leaps)

lm.reg <- regsubsets(body.fat age + BMI + neck +

chest + abdomen + hip + thigh + knee + ankle + bicep +

forearm + wrist + weightkg + heightcm, data = fat)

und inspizieren Sie das Resultat mit
summary(lm.reg)

plot(lm.reg, scale = r2")

plot(lm.reg, scale = "bic")

plot(lm.reg, scale = Cp")

Hinweis: siehe help(plot.regsubsets)

* Benutzen Sie die Funktion leaps() zur Modellselektion.

Allerdings sind nun die Werkzeuge, die wir in Kapitel 2 kennengelernt haben, un-
brauchbar geworden. Die statistischen Aussagen in der Zusammenfassung sind nur gültig,

4.7. HÖHERE DIMENSIONEN 4-39

wenn Modell bzw. Hypothesen unabhängig vom Datenmaterial festgelegt sind. Wenn an-
hand des Datenmaterials das Modell erst bestimmt wird, ist unklar, wie die geschätzten
Koeffizienten verteilt, d.h. wie Konfidenzintervalle zu bestimmen sind bzw. wie zu testen
ist. Die Software hat keine Information darüber, dass wir uns in einem Modellwahlprozess
befinden und gibt die Wahrscheinlichkeiten aus, die bei festem Modell unter Normalver-
teilungsannahme gelten würden.

Auch die Diagnostik wird unbrauchbar: der zentrale Grenzwertsatz sorgt dafür, dass
unter schwachen Unabhängigkeitsannahmen die Residuen bei der großen Anzahl von Ter-
men approximativ normalverteilt sind, selbst wenn dies für die Fehler nicht zutrifft.

Wir sind in einer Sackgasse.

Wir illustrieren nun einen anderen Zugang, der etwas weiter führt. Dazu versetzen wir
uns an den Anfang der Analyse, nach der ersten Inspektion und Datenkorrektur. Damit
wir nicht in das oben gesehen Problem laufen, dass die statistischen Verteilungen durch
vorhergehende Modellwahlschritte beeinflusst werden, teilen wir den Datensatz auf. Einen
Teil benutzen wir als Trainingsteil, an dem wir das Modell wählen und verschieden Al-
ternativmöglichkeiten durchspielen können. Der Rest wird als Auswertungsteil reserviert.
Dessen Information wird erst nach Modellwahl für die statistische Analyse benutzt.

Bei genauerer Überlegung zeigt sich, dass der Modellwahlschritt nur für die Abschät-
zung der Fehler kritisch ist, nicht für die Parameter-Schätzung. Wird der Fehler anhand
der Daten geschätzt, die zur Modellwahl benutzt sind, so unterschätzen wir tendenziell
die Fehler. Der Auswertungsteil dient der verlässlichen Fehlerabschätzung und Residuen-
diagnostik. Dies ist eine eingeschränkte Aufgabe. Deshalb reservieren wir dafür nur einen
kleineren Teil.

Eingabe
sel <- runif(dim(fat)[1])

fat$train <- sel < 2/3

rm(sel)

Die Ausreisser eliminieren wir aus dem Trainingsteil

Eingabe
fat$train[c(39, 41, 216)] <- FALSE

summary(fat$train)

Ausgabe
Mode FALSE TRUE

logical 93 159

Unsere Zielvariable ist body.fat, oder, proportional dazu, 1/density.

Wir versuchen zunächst, die Variablen inhaltlich zu sortieren. Für die Dichte habe wir
eine physikalische Definition

Dichte =
Gewicht

V olumen
.

Unter den Variablen, die als Regressoren in Betracht kommen, haben wir eine Variable,
die direkt das Gewicht angibt (weight bzw. weightkg), eine ganze Reihe von Variablen,
die Körpermaße widerspiegeln, sowie das Alter age.

Aus der gemessenen Dichte und dem gemessenen Gewicht lässt sich das Volumen er-
rechnen. Wir erweitern dadurch die Variablen. Da wir hier nur eine Gewichtsmessung pro
Person haben, bleibt kein Platz für personenbezogene Statistik.

4-40 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Eingabe
fat$vol <- fat$weightkg/fat$density

Wir versuchen nun, das Volumen fat$vol zu schätzen Die Körpermaße sind lineare Wer-
te. In einer groben Approximation können wir daraus Volumen-Werte ableiten. Die einzige
Längeninformation, die wir haben, steckt in height. Mangels besserer Information neh-
men wir an, dass alle Körperteile eine Länge haben, die proportional zur Körpergröße ist.
Wir zielen auf ein lineares Modell. Deshalb können wir lineare Faktoren vernachlässigen.
Approximieren wir die Körperteile durch Zylinder, so erhalten wir, bis auf lineare Faktoren

Eingabe
fat$neckvol <- fat$neck^2 * fat$heightcm

fat$chestvol <- fat$chest^2 * fat$heightcm

fat$abdomenvol <- fat$abdomen^2 * fat$heightcm

fat$hipvol <- fat$hip^2 * fat$heightcm

fat$thighvol <- fat$thigh^2 * fat$heightcm

fat$kneevol <- fat$knee^2 * fat$heightcm

fat$anklevol <- fat$ankle^2 * fat$heightcm

fat$bicepvol <- fat$bicep^2 * fat$heightcm

fat$forearmvol <- fat$forearm^2 * fat$heightcm

fat$wristvol <- fat$wrist^2 * fat$heightcm

Als nächstes untersuchen wir die interne Struktur der Regressor-Kandidaten im Trainings-
teil. Wir tun dies getrennt für die linearen Variablen und für die Volumen- Variablen. Dazu
benutzen wir die Funktion prcomp() , die zu gegebenen Variablen schrittweise beste lineare
Prediktoren liefert.

Für die approximativen Körperteil-Volumen sind die Hauptkomponenten:

Eingabe
pcfatvol <- prcomp(fat[, 20:29], subset = fat$train)

round(pcfatvol$rotation, 3)

Ausgabe
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

neckvol 0.054 -0.017 0.063 -0.070 0.570 0.045 0.787 -0.169
chestvol 0.548 0.457 0.691 0.012 -0.113 -0.004 -0.003 -0.012
abdomenvol 0.650 0.290 -0.697 -0.059 0.049 -0.011 -0.017 0.016
hipvol 0.483 -0.748 0.099 0.437 -0.031 0.069 0.003 0.018
thighvol 0.185 -0.370 0.074 -0.870 -0.244 -0.017 0.079 0.012
kneevol 0.056 -0.082 0.055 -0.061 0.336 -0.822 -0.278 -0.159
anklevol 0.016 -0.032 0.034 -0.005 0.140 -0.236 -0.047 -0.120
bicepvol 0.051 -0.047 0.079 -0.180 0.552 0.508 -0.531 -0.333
forearmvol 0.024 -0.019 0.074 -0.086 0.388 0.019 -0.104 0.906
wristvol 0.009 -0.005 0.017 0.002 0.110 -0.053 0.044 0.003

PC9 PC10
neckvol 0.067 0.093
chestvol 0.005 0.002
abdomenvol -0.015 -0.002
hipvol 0.011 0.004
thighvol -0.015 -0.019
kneevol 0.299 0.056
anklevol -0.949 0.073
bicepvol 0.030 0.010

4.7. HÖHERE DIMENSIONEN 4-41

forearmvol -0.049 0.044
wristvol -0.048 -0.990

Das Muster der Vorzeichen bei den Ladungen gibt Hinweise auf die interne Struktur.
Die erste Hauptkomponente PC1 ist eine Linearkombination von Variablen, die im wesent-
lichen den Torso beschreiben. Die zweite Hauptkomponente kontrastiert den Oberkörper
bis zum Bauch mit den unteren Teil des Torsos. Die dritte unterscheidet das Bauchvolumen
vom Rest des Torsos.

Aufgabe 4.10

Skizzieren Sie für die nachfolgenden Komponenten PC4, . . . , PC10,
welche Körpergeometrie durch sie beschrieben wird.

Der Versuch, das errechnete Volumen durch die approximativen Körperteil-Volumen
darzustellen, ergibt für den Trainingsteil ein hohes Bestimmtheitsmaß.

Eingabe
lm.vol <- lm(vol ~ neckvol + chestvol + abdomenvol +

hipvol + thighvol + kneevol +

anklevol + bicepvol + forearmvol +

wristvol,

data = fat, subset = fat$train)

summary(lm.vol)

Ausgabe
Call:
lm(formula = vol ~ neckvol + chestvol + abdomenvol + hipvol +

thighvol + kneevol + anklevol + bicepvol + forearmvol + wristvol,
data = fat, subset = fat$train)

Residuals:
Min 1Q Median 3Q Max

-5.7799 -1.1548 0.1726 1.1230 4.4839

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.869e-01 1.519e+00 0.386 0.699789
neckvol 1.450e-05 8.860e-06 1.637 0.103805
chestvol 9.449e-06 1.320e-06 7.156 3.58e-11 ***
abdomenvol 1.213e-05 1.154e-06 10.514 < 2e-16 ***
hipvol 7.830e-06 2.009e-06 3.897 0.000147 ***
thighvol 1.497e-05 3.425e-06 4.373 2.30e-05 ***
kneevol -5.814e-06 9.550e-06 -0.609 0.543548
anklevol 5.387e-05 1.405e-05 3.834 0.000186 ***
bicepvol 2.246e-05 8.691e-06 2.584 0.010744 *
forearmvol 3.047e-05 9.577e-06 3.182 0.001783 **
wristvol 9.623e-06 4.106e-05 0.234 0.815029

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.867 on 148 degrees of freedom

4-42 4. DIMENSIONEN 1, 2, 3, . . . , ∞

Multiple R-squared: 0.9777, Adjusted R-squared: 0.9762
F-statistic: 649.4 on 10 and 148 DF, p-value: < 2.2e-16

Bei Einbeziehung auch der linearen Variablen können wir im Trainingsteil des Be-
stimmtheitsmaß nur geringfügig erhöhen.

Mit den Funktionen aus library(leap) kann wieder automatisch nach “optimalen”
Modellen gesucht werden.

Eingabe
library(leaps)

l1 <- leaps(x = fat[, c(6:15, 20:29)], y = fat$vol)

Wenn wir versuchen wollen, nicht das Volumen zu schätzen, sondern den Fettanteil
als Linearkombination der entsprechenden Komponenten darzustellen, können wir die ent-
sprechenden Hilfsvariablen konstruieren.

Eingabe
fat$neckvolf <- fat$neckvol / fat$weightkg

fat$chestvolf <- fat$chestvol / fat$weightkg

fat$abdomenvolf <- fat$abdomenvol / fat$weightkg

fat$hipvolf <- fat$hipvol / fat$weightkg

fat$thighvolf <- fat$thighvol / fat$weightkg

fat$kneevolf <- fat$kneevol / fat$weightkg

fat$anklevolf <- fat$anklevol / fat$weightkg

fat$bicepvolf <- fat$bicepvol / fat$weightkg

fat$forearmvolf <- fat$forearmvol / fat$weightkg

fat$wristvolf <- fat$wristvol / fat$weightkg

Wir beginnen mit einem einfachen Modell. Wir benutzen nur eine Variable (abdomen-
volf) aus der Gruppe der Variablen, die den Torso beschreibt, und eine der Variablen
(wristvolf) aus den höheren Hauptkomponenten. Damit erreichen wir fast die Genauig-
keit des ersten Modells mit dem vollen Variablensatz.

Eingabe
lm.volf <- lm(body.fat ~ abdomenvolf + wristvolf, data = fat, subset = fat$train)

summary(lm.volf)

Ausgabe
Call:
lm(formula = body.fat ~ abdomenvolf + wristvolf, data = fat,

subset = fat$train)

Residuals:
Min 1Q Median 3Q Max

-10.4925 -2.8068 0.2003 3.3089 8.5725

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.1738092 6.4631443 -0.646 0.519
abdomenvolf 0.0024661 0.0001843 13.378 < 2e-16 ***
wristvolf -0.0313941 0.0055045 -5.703 5.73e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

4.8. HOHE DIMENSIONEN 4-43

Residual standard error: 4.282 on 156 degrees of freedom
Multiple R-squared: 0.6888, Adjusted R-squared: 0.6848
F-statistic: 172.7 on 2 and 156 DF, p-value: < 2.2e-16

Aufgabe 4.11

* Ergänzen Sie die Variablen durch andere volumenbezogene Variable
in dem obigen Modell. gewinnen Sie an Schätzgenauigkeit?

** Versuchen Sie, die Variable age in die Modellierung mit einzube-
ziehen. Wie berücksichtigen Sie age im Modell?

** Die Funktion mvr() in library(pls) steht bereit, um Regressio-
nen auf der Basis der Hauptkomponenten durchzuführen. Benutzen
Sie die Funktion zur Regression. Wie unterscheidet sie sich von der
gewöhnlichen Kleinste-Quadrate-Regression?

Zur Konstruktion des Modells haben wir den Trainingsteil benutzt. Die Genauigkeit
des so gewonnenen Modells überprüfen wir nun am Auswertungsteil. Dazu benutzen wir
die Funktion predict.lm() , die ein mit lm() geschätztes lineares Modell auf einen neuen
Datensatz anwendet. Z.B.

Eingabe
fat.eval <- fat[fat$train == FALSE,]

pred <- predict.lm(lm.volf, fat.eval, se.fit = TRUE)

Aufgabe 4.12

* Schätzen Sie die Genauigkeit des Modells durch die Daten des Aus-
wertungsteils.

* Führen Sie die eine Diagnostik des gewonnen Modells anhand der
Daten des Auswertungsteils durch.

4.8. Hohe Dimensionen

Probleme in kleinen Dimensionen können wir umfassend darstellen und analysieren.
Höhere Dimensionen erfordern es oft, eine spezielle Analyse-Strategie zu entwerfen. Die
formale Anwendung von Standard-Methoden kommt hier schnell an ihre Grenzen.

Höhere Dimensionen, etwa von 10 bis 100, sind in vielen Anwendungsbereichen üblich.
Aber auch Probleme in großen Dimensionen sind alltäglich. Wir müssen uns darüber im
Klaren sein, dass die Dimension eine Frage der Modellierung ist, nicht nur eine Frage des
Problems. Digitales Video (DV PAL) zum Beispiel zeichnet Bilder im Format 720 × 576
auf. Ein einzelnes Bild mit drei Farben gibt also einen Vektor im 720× 576× 3 = 1244160-
dimensionalen Raum, jede Sekunde Video das 25-fache. Haben wir Bilddaten zu bearbeiten,
so ist es unsere Wahl, ob wir die Bildbearbeitung als Problem mit Dimension d = 1244160,
betrachten, oder als Folge von 1244160 (nicht unabhängigen!) Beobachtungen mit d = 1.

Beim Übergang von d = 1244160 zu d = 1 verlagern wir Information, die implizit in
den Dimensionen steckt, in Strukturinformation, die folglich modelliert werden muss.

Als Anmerkung: in der Praxis geht man einen Mittelweg. Man zerlegt das Bild in
Blöcke, z.B. der Größe 64× 64. Pixel innerhalb eines Blockes werden simultan behandelt.
Die Blöcke werden sequentiell behandelt - sichtbar bei der nächsten Störung im Fernsehen.

4-44 4. DIMENSIONEN 1, 2, 3, . . . , ∞

10 30 50

12
0

10
0

80
60

40
20

rk(fg.green)
l34−u09632vene.txt

10 30 50

12
0

10
0

80
60

40
20

rk(bg.green)
l34−u09632vene.txt

100 1000 20000

10
0

10
00

20
00

0

fg < bg: 191
bg.green

fg
.g

re
en

10 30 50

12
0

10
0

80
60

40
20

rk(fg.red)
l34−u09632vene.txt

10 30 50

12
0

10
0

80
60

40
20

rk(bg.red)
l34−u09632vene.txt

100 1000 20000

10
0

10
00

20
00

0
fg < bg: 171

bg.red

fg
.r

ed

100 1000 20000

0.
00

0
0.

00
2

0.
00

4

fg gamma ratio: 1.052
log intensities

D
en

si
ty

l34−u09632vene.txt

100 1000 20000

10
0

10
00

20
00

0

bg.green

bg
.r

ed

100 1000 20000

10
0

10
00

20
00

0

fg.green TC

fg
.r

ed
 T

V

l34−u09632vene.txt

Abbildung 4.6. Ein 4227× 4 Datum aus einem Microarray-Experiment

Bei hochdimensionalen Problem ist die Statistik oft gar nicht sichtbar - sie ist versteckt
in der Hardware als “imbedded system”.

Die Abbildung 4.6 ist ein Beispiel aus einer Analyse mit R für einen hochdimensiona-
len Datensatz vom Mikroarray-cDNA-Daten ([Saw02]). Ein einzelnes Datum in diesem
Datensatz besteht aus Messungen an 4227 Proben mit jeweils 4 Teilmessungen (fg.green,
fg.red, bg.green, bg.red). Die wesentliche Funktion, die hier zur Visualisierung benutzt
wird, ist image() , mit der eine Variable z anhand eine Farbtabelle gegen zwei Koordina-
ten x, y dargestellt werden kann. Dargestellt ist eine Beobachtung. Die vier Kanäle der
Teilmessungen sind nebeneinander gestellt.

4.10. LITERATUR UND WEITERE HINWEISE: 4-45

Die Farben codieren das Ergebnis einer Voranalyse - die roten Punkte signalisieren
Problemzonen auf dem cDNA-Chip. In diesem Fall kann aus dem Muster der Selektion ein
spezifisches Problem in der Fertigung identifiziert werden.

Themenorientierte Übersichten über R-Pakete, insbesondere auch zu multivariaten Pro-
blemen, sind in <http://cran.at.r-project.org/src/contrib/Views/> zu finden.

4.9. Statistische Zusammenfassung

Die Analyse multivariater Daten konnte in diesem Zusammenhang nur gestreift werden.
Multivariate Probleme tauchen implizit schon bei Regressionsproblemen auf (siehe Kapitel
2). Bei den einfachen Regressionsproblemen bezogen sich die multivariaten Aspekte aber
nur auf deterministische Parameter. Im allgemeinen Fall haben wir aber eine multivariate
statistische Verteilung zu analysieren. An dieser Stelle muss die Einführung abbrechen,
und weiteres bleibt weiterführenden Vorlesungen vorbehalten.

4.10. Literatur und weitere Hinweise:

R als Programmiersprache: Übersicht

R ist eine interpretierte Ausdruckssprache. Ausdrücke sind zusammengesetzt aus Objekten
und Operatoren.

A.1. Hilfe und Information

R Hilfe

help() Information über ein Objekt/eine Funktion

Beispiel: help(help)

args() Zeigt Argumente einer Funktion

example() Führt evtl. vorhandene Beispiele aus

Beispiel: example(plot)

help.search() Sucht Information über ein Objekt/eine Funktion

apropos() Lokalisiert nach Stichwort

demo() Führt Demos zu einem Themenbereich aus

Beispiel: demo(graphics)

demo() listet die zur Verfügung stehenden Themenbereiche

A.2. Namen und Suchpfade

Objekte werden durch Namen identifiziert. Anhand des Namens werden Objekte in einer
Kette von Suchbereichen identifiziert. Die aktuellen Suchbereiche können mit search()

inspiziert werden.

R Suchpfade

search() Liste der aktuellen Suchbereiche, beginnend mit .GlobalEnv bis
hinab zum Basis-Paket package:base.

Beispiel: search()

searchpaths() Liste der Zugriffspfade zu aktuellen Suchbereichen

Beispiel: searchpaths()

objects() Liste der Objekte in einem Suchbereich

Beispiele: objects()

objects("package:base")

(Fortsetzung)→

A-1

A-2 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

R Suchpfade

(Fortsetzung)

ls() Liste der Objekte in einem Suchbereich

Beispiele: ls()

ls("package:base")

ls.str() Liste der Objekte und ihrer Struktur in einem Suchbereich

Beispiele: ls.str()

lsf.str("package:base")

find() Lokalisiert nach Stichwort. Findet auch überlagerte Einträge

Aufruf: find(what, mode = "any", numeric = FALSE, sim-

ple.words = TRUE)

apropos() Lokalisiert nach Stichwort. Findet auch überlagerte Einträge

Aufruf: apropos(what, where = FALSE, ignore.case =

TRUE, mode = "any")

Funktionen können sowohl bei Definition als auch bei Aufruf geschachtelt sein. Dies macht
eine Erweiterung der Suchpfade nötig. Die dynamische Identifikation von Objekten benutzt
Umgebungen (environments), um in Funktionen lokale Variable oder globale Variablen
aufzulösen.

R Suchpfade
(Fortsetzung)

environment() Aktuelle Auswertungsumgebung

Beispiel: environment()

sys.parent() Vorausgehende Auswertungsumgebungen

Beispiel: sys.parent(1)

Objekte haben zwei implizite Attribute, die erfragt werden mit mode() und length() .
Die Funktion typeof() gibt den (internen) Speichermodus eines Objektes an.

Ein class -Attribut benennt die Klasse eines Objektes.

A.3. Anpassung

R bietet eine Reihe von Möglichkeiten, das System zu konfigurieren, so dass beim Start
und beim Ende bestimmte Kommandos ausgeführt werden. Falls vorhanden, werden beim
Start die Dateien .Rprofile und .RData eingelesen und ausgewertet. Details können
system-spezifisch sein. Die jeweils spezifische Information erhält man mit help(Startup).

A.4. BASIS-DATENTYPEN A-3

A.4. Basis-Datentypen

R Basis-Daten-
typen

numeric real oder integer. In R: real ist stets doppelt-genau. Einfache Ge-
nauigkeit wird für externe Aufrufe zu anderen Sprachen mit .C oder
.FORTRAN unterstützt. Funktionen wie mode() und typedef()

können je nach Implementierung auch den Speicherungsmodus (sin-
gle, double . . .) melden.

Beispiele: 1.0

2

3.14E0

complex komplex, in cartesischen Koordinaten

Beispiel: 1.0+0i

logical TRUE, FALSE.
In R: auch vordefinierte Variable T, F. In S-Plus sind T und F Basis-
Objekte.

character Zeichenketten. Delimiter sind alternativ " oder '.
Beispiel: T", 'klm '

list Allgemeine Liste.
Die Listenelemente können auch von unterschiedlichem Typ sein.

Beispiel: list(1:10, "Hello")

function R-Funktion

Beispiel: sin

NULL Spezialfall: leeres Objekt

Beispiel: NULL

Zusätzlich zu den Konstanten TRUE und FALSE gibt es drei spezielle Werte für Ausnah-
mesituationen:

spezielle Kon-
stanten

TRUE Alternativ: T. Typ: logical.

FALSE Alternativ: F. Typ: logical.

NA “not available”. Typ: logical.
NA ist von TRUE und FALSE verschieden

NaN ”not a valid numeric value”. Implementationsabhängig.
Sollte dem IEEE Standard 754 entsprechen. Typ: numeric.

Beispiel: 0/0

(Fortsetzung)→

A-4 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

spezielle Kon-
stanten

(Fortsetzung)

Inf unendlich. Implementationsabhängig.
Sollte dem IEEE Standard 754 entsprechen. Typ: numeric.

Beispiel: 1/0

A.5. AUSGABE VON OBJEKTEN A-5

A.5. Ausgabe von Objekten

Die Objekt-Attribute und weitere Eigenschaften können abgefragt oder mit Ausgaberou-
tinen angefordert werden. Die Ausgaberoutinen sind in der Regel polymorph , d.h. sie
erscheinen in Varianten, die den jeweiligen Objekten angepasst werden.

R Inspektion

print() Standard-Ausgabe

structure() Ausgabe, optional mit Attributen

summary() Standard-Ausgabe als Übersicht, insbesondere für Modellanpassun-
gen

plot() Standard-Grafikausgabe

A.6. INSPEKTION VON OBJEKTEN A-7

A.6. Inspektion von Objekten

Die folgende Tabelle fasst die wichtigsten Informationsmöglichkeiten über Objekte zusam-
men.

Inspektion von
Objekten

str() Stellt die interne Struktur eines Objekts in kompakter Form dar.

Aufruf: str(〈object〉)

structure() Stellt die interne Struktur eines Objekts dar. Dabei können Attri-
bute für die Darstellung als Parameter übergeben werden.

Beispiel: structure(1:6, dim = 2:3)

Aufruf: structure(〈object〉, . . .)

class() Objekt-Klasse. Bei neueren Objekten ist die Klasse als Attribut ge-
speichert. In älteren S oder R-Versionen ist sie durch Typ und andere
Attribute implizit bestimmt.

mode() Modus (Typ) eines Objekts.

storage.mode() Speichermodus eines Objekts.

typeof() Modus eines Objekts. Kann vom Speichermodus abweichen. Je nach
Implementierung kann etwa eine numerische Variable standardmä-
ßig doppelt- oder einfach genau abgespeichert werden.

length() Länge = Anzahl der Elemente

attributes() Liest/setzt Attribute eines Objekts, wie z.B. Namen, Dimensionen,
Klassen.

names() Namen-Attribut für Elemente eines Objekts, z.B. eines Vektors.

Aufruf: names(〈obj〉) gibt das Namen-Attribut von 〈obj〉.
names(〈obj〉)<-〈charvec〉 setzt es.

Beispiel: x<-values

names(x)<- 〈charvec〉

A.7. INSPEKTION DES SYSTEMS A-9

A.7. Inspektion des Systems

Die folgende Tabelle fasst die wichtigsten Informationsmöglichkeiten über die allgemeine
Systemumgebung zusammen.

System-
Inspektion

search() aktueller Suchpfad

ls() aktuelle Objekte

methods() generische Methoden

Aufruf: methods(〈fun〉)
zeigt spezialisierte Funktionen zu 〈fun〉,
methods(class = 〈c〉) die klassenspezifischen Funktio-
nen zu class 〈c〉.

Beispiele: methods(plot)

methods(class = lm)

data() zugreifbare Daten

library() zugreifbare Bibliotheken

help() allgemeines
Hilfe-System

options() globale Optionen

par() Parameter-Einstellungen des Grafik-Systems

Die Optionen des lattice -Systems können mit trellis.par.set() bzw. latti-

ce.options() kontrolliert werden.

R ist im umgebenden Betriebssystem verankert. Einige Variable, wie z.B. Zugriffpfade,
Zeichencodierung etc. werden von dort übernommen.

System-
Umgebung

getwd() aktuelles Arbeitsverzeichnis

getwd() setzt aktuelles Arbeitsverzeichnis

dir() listet Dateien im aktuellen Arbeitsverzeichnis

system() ruft System-Funktionen auf

A.8. KOMPLEXE DATENTYPEN A-11

A.8. Komplexe Datentypen

Die Interpretation von Basistypen oder abgeleiteten Typen kann durch ein oder meh-
rere class -Attribute spezifiziert werden. Polymorphe Funktionen wie print oder plot

werten dieses Attribut aus und rufen nach Möglichkeit entsprechend der Klasse speziali-
sierte Varianten auf (Siehe 2.6.5Seite 2-39).

Zur Speicherung von Datumsangaben und Zeiten stehen entsprechende Klassen bereit.
Nähere Information zu diesen Datentypen erhält man mit

help(DateTimeClasses).

R ist vektor-basiert. Einzelne Konstanten oder Werte sind nur Vektoren der speziellen
Länge 1. Sie genießen keine Sonderbehandlung.

Zusammengesetzte
Objekttypen

Vektoren R Basis-Datentypen

Matrizen Vektoren mit zwei-dimensionalem Layout

Arrays Vektoren mit höherdimensionalem Layout

dim() definiert Dimensionsvektor

Beispiel: x < -runif(100)

dim(x) < - c(5, 5, 4)

array() konstruiert neuen Vektor mit gegebener Dimensions-
struktur

Beispiel: z < - array(0, c(4, 3, 2))

rbind() kettet Reihen an

cbind() kettet Spalten an

Faktoren Sonderfall für kategorielle Daten

factor() wandelt Vektor in Faktor um

Siehe auch Abschnitt 2.2.1

ordered() wandelt Vektor im Faktor mit geordneten Stufen um.
Dies ist eine Abkürzung für factor(x, ..., ordered

= TRUE)

levels() gibt die Stufen eines Faktors an

Beispiel: x <- c("a", "b", "a", "c", "a")

xf <- factor(x)

levels(xf)

ergibt
[1] "abc"

tapply() wendet eine Funktion getrennt für alle Stufen von Fak-
toren einer Faktorliste an

Listen Analog Vektoren, mit Elementen auch unterschiedlichen Typs

(Fortsetzung)→

A-12 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

Zusammengesetzte
Objekttypen

(Fortsetzung)

list() erzeugt Liste

Aufruf: list(〈Komponenten〉)

[[]] Indexweiser Zugriff auf Komponenten

Liste$Komponente

Zugriff nach Namen

Beispiel: l <- list(name = "xyz", age = 22, fak = math")

> l[[2]]
22

>l$age

22

Datenrahmen data frames Analog Arrays bzw. Listen, mit spaltenweise einheit-
lichem Typ und einheitlicher Spaltenlänge

data.frame()

analog list(), aber Restriktionen müssen erfüllt sein

attach() fügt Datenrahmen in die aktuelle Suchliste ein, d.h. für
Komponenten reicht der Komponentenname.

detach()

A.9. ZUGRIFF AUF KOMPONENTEN A-13

A.9. Zugriff auf Komponenten

Die Länge von Vektoren ist ein dynamisches Attribut. Sie wird bei Bedarf erweitert und
gekürzt. Insbesondere gilt implizit eine “Recycling-Regel”: Hat ein Vektor nicht die er-
forderliche Länge für eine Operation, so wird er periodisch bis zur erforderlichen Länge
wiederholt.

Auf Vektor-Komponenten kann über Indizes zugegriffen werden. Die Indizes können expli-
zit oder als Regel-Ausdruck angegeben werden.

R Index-Zugriff

x[〈indices〉] Indizierte Komponenten von x

Beispiel: x[1:3]

x[-〈indices〉] x ohne indizierte Komponenten

Beispiel: x[-3] x ohne 3. Komponente

x[〈condition〉] Komponenten von x, für die 〈condition〉 gilt.

Beispiel: x[x<0.5]

Vektoren (und andere Objekte) können auf höherdimensionale Konstrukte abgebildet wer-
den. Die Abbildung wird durch zusätzliche Dimensions-Attribute beschrieben. Nach Kon-
vention erfolgt eine spaltenweise Einbettung, d.h. der erste Index variiert zuerst (FORTRAN-
Konvention). Operatoren und Funktionen können die Dimensions-Attribute auswerten.

R Index-Zugriff

dim() Setzt oder liest die Dimensionen eines Objekts

Beispiel: x <- 1:12 ; dim (x) <- c(3, 4)

dimnames() Setzt oder liest Namen für die Dimensionen eines Objekts

nrow() Gibt die Anzahl der Zeilen = Dimension 1

ncol() Gibt die Anzahl der Spalten = Dimension 2

matrix() Erzeugt eine Matrix mit vorgegebenen Spezifikationen

Aufruf: matrix(data = NA, nrow = 1, ncol = 1, byrow

= FALSE, dimnames = NULL)

Siehe auch Beispiel 1.8 (Seite 1-21)

array() Erzeugt eine evtl. höherdimensionale Matrix

Beispiel: array(x, dim = length(x), dimnames = NULL)

R
Array-Zugriffe

cbind()

rbind()

Verkettet Zeilen bzw. Spalten

(Fortsetzung)→

A-14 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

R
Array-Zugriffe

(Fortsetzung)

split() Teilt einen Vektor nach Faktoren auf

table() Erzeugt eine Tabelle von Besetzungszahlen

R Iteratoren

apply() wendet eine Funktion auf die Zeilen oder Spalten einer Matrix an

Aufruf: apply(x, MARGIN, FUNCTION, ...)

Margin = 1: Zeilen, Margin = 2: Spalten.

Siehe auch Beispiel 1.8 (Seite 1-21)

lapply() wendet eine Funktion auf die Elemente einer Liste an

Aufruf: lapply(X, FUN, ...)

sapply() wendet eine Funktion auf die Elemente einer Liste, eines Vektors
oder einer Matrix an. Falls mögliche werden Dimensionsnamen über-
nommen.

Aufruf: sapply(X, FUN, ..., simplify = TRUE, USE.NAMES

= TRUE)

tapply() wendet eine Funktion auf Komponenten eines Objekts in Abhängig-
keit von einer Liste von kontrollierenden Faktoren an.

by() Objekt-orientierte Variante von tapply

Aufruf: by(data, INDICES, FUN, ...)

aggregate() Berechnet Statistiken für Teilmengen

Aufruf: aggregate(x, ...)

replicate() Wertet eine Ausdruck wiederholt aus (z. Bsp. mit Erzeugung von
Zufallszahlen zur Simulation).

Aufruf: replicate(n, expr, simplify = TRUE)

outer() erzeugt eine Matrix mit allen Paar-Kombinationen aus zwei Vekto-
ren, und wendet eine Funktion auf jedes Paar an.

Aufruf: outer(vec1, vec2, FUNCTION, ...)

A.10. TABELLEN-TRANSFORMATIONEN A-15

A.10. Tabellen-Transformationen

Transformationen

seq() Erzeugt eine Sequenz

abbreviate()

Transformationen

duplicated() Prüft auf mehrfach auftretende Werte

unique() Erzeugt Vektor ohne mehrfach auftretende Werte

match() Gibt Position eines Werts in einem Vektor

pmatch() Partielles Matching

Zeichenketten-
Transformationen

casefold() Wandelt in Klein- oder Großbuchstaben um

tolower() Wandelt in Kleinbuchstaben um

toupper() Wandelt in Großbuchstaben um

chartr() Übersetzt Zeichen in einem Zeichen-Vektor

substring()

Transformationen

table() Erzeugt eine Kreuztabelle

expand.grid() Erzeugt einen Datenrahmen mit allen Kombinationen gegebener
Faktoren

reshape() Wandelt zwischen einer Kreuztabelle (Spalte pro Variable) und ei-
ner langen Tabelle (Variablen in Zeilen, mit zusätzlicher Indikator-
Spalte) um

merge() Kombiniert Datenrahmen

Transformationen

Transformationen

t() Transponiert Zeilen und Spalten

Aufruf: t(x)

(Fortsetzung)→

A-16 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

Transformationen

(Fortsetzung)

aperm() Generalisierte Permutation

Aufruf: aperm(x, perm)

Dabei ist perm eine Permutation der Indizes von x.

split() Teilt einen Vektor nach einem Faktor auf

unsplit() Kombiniert Komponenten zu einem Vektor

A.11. OPERATOREN A-17

A.11. Operatoren

Ausdrücke in R können aus Objekten und Operatoren zusammengesetzt sein. Die fol-
gende Tabelle ist nach Vorrang geordnet (höchster Rang oben).

R Basisoperato-
ren

$ Komponenten-Selektion

Beispiel: list$item

[[[Indizierung, Elementzugriff

Beispiel: x[i]

^ Potenzierung

Beispiel: x^3

- unitäres Minus

: Folge-Generierung

Beispiele: 1:5

5:1

%〈name〉% spezielle Operatoren. Können auch benutzer-definiert sein.

Beispiele: "%deg2%"<-function(a, b) a + b^2

2 %deg2% 4

* / Multiplikation, Division

+ - Addition, Subtraktion

< > < = > = ==

! =

Vergleichsoperatoren

! Negation

& | && || und, oder
&& , || sind “Shortcut”-Operatoren

<- -> Zuweisung

Haben die Operanden nicht die gleiche Länge, so wird der kürzere Operand zyklisch
wiederholt.

Operatoren der Form %〈name〉% können vom Benutzer definiert werden. Die Definition
folgt den Regeln für Funktionen.

Ausdrücke können als Folge mit trennendem Semikolon geschrieben werden. Aus-
drucksgruppen können durch {. . .} zusammengefasst werden.

A.12. FUNKTIONEN A-19

A.12. Funktionen

Funktionen sind spezielle Objekte. Funktionen können Resultat-Objekte übergeben.

R Funktions-
deklarationen

Deklaration function (〈formale Parameterliste〉)
〈Ausdruck〉
Beispiel: fak <- function(n) prod(1:n)

Formale
Parameter

〈Parametername〉
〈Parametername〉 = 〈Default-Wert〉

Formale
Parameterliste

Liste von formalen Parametern, durch Komma getrennt

Beispiele: n, mean = 0, sd = 1

. . . Variable Parameterliste. Variable Parameterlisten können innerhalb
von Prozeduren weitergegeben werden.

Beispiel: mean.of.all <- function (...)mean(c(...))

Funktions-
Resultate

return 〈Wert〉 bricht Funktionsauswertung ab und übergibt Wert

〈Wert〉 als letzter Ausdruck in einer Funktionsdeklaration: übergibt
Wert

Funktions-
Resultate

〈Variable〉<<-〈Wert〉 übergibt Wert. Normalerweise wirken Zuwei-
sungen nur auf lokale Kopien der Variablen. Die Zuweisung mit <<-
jedoch sucht die Zielvariable in der gesamten Umgebungshierachie.

R Funktions-
aufruf

Funktionsaufruf 〈Name〉(〈Aktuelle Parameterliste〉)
Beispiel: fak(3)

Aktuelle
Parameterliste

Werte werden zunächst der Position nach zugeordnet. Abweichend
davon können Namen benutzt werden, um Werte gezielt zuzuord-
nen.
Dabei reichen die Anfangsteile der Namen (Ausnahme: nach einer
variablen Parameterliste müssen die Namen vollständig angegeben
werden).
Mit der Funktion missing() kann überprüft werden, ob für einen
formalen Parameter ein entsprechender aktueller Parameter fehlt.

Aufruf: 〈Werteliste〉
〈Parametername〉 = 〈Werte〉

Beispiel: rnorm(10, sd = 2)

A-20 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

Parameter bei Funktionen werden dem Wert nach übergeben. Soll der damit verbun-
dene Aufwand vermieden werden, so kann mit Hilfe der environment -Information direkt
auf Variable zugegriffen werden. Entsprechende Techniken sind in [GI00] beschrieben.

Spezialfall: Funktionen mit Namen der Form xxx<- erweitern die Zuweisungsfunktion.
Beispiel:

"inc<-" <-function (x, value) x+value

x <- 10

inc(x)<- 3

x

In R-Zuweisungsfunktionen muss das Wert-Argument “value” heißen.

A.13. DEBUGGING UND PROFILING A-21

A.13. Debugging und Profiling

R bietet eine Reihe von Werkzeugen zur Identifizierung von Fehlern. Diese sind beson-
ders im Zusammenhang mit Funktionen hilfreich. Mit browser() kann in einen Browser-
Modus geschaltet werden. In diesem Modus sind die üblichen R-Anweisungen möglich.
Daneben gibt es eine kleine Zahl von speziellen Anweisungen. Der Browser-Modus kann
mit debug() automatisch bei Eintritt in eine Funktion aktiviert werden. Durch den spe-
ziellen Prompt Browse[xx]> ist der Browser-Modus erkennbar.

〈return〉: geht zur nächsten Anweisung, falls die Funktion unter debug -Kontrolle
steht. Fährt mit der Anweisungsausführung fort, falls browser direkt aufgerufen
wurde.

n: geht zur nächsten Anweisung (auch falls browser direkt aufgerufen wurde).

cont: Fährt mit der Anweisungsausführung fort.

c: Kurzform für cont. Fährt mit der Anweisungsausführung fort.

where: Zeigt Aufrufverschachtelung.

Q: Stoppt Ausführung und springt in Grundzustand zurück.

Debug-Hilfen

browser() Hält die Ausführung an und geht in den Browser-Modus.

Aufruf: browser()

recover() recover() zeigt eine Liste der aktuellen Aufrufe, aus der einer zur
browser() -Inspektion gewählt werden kann. Mit c kehrt man aus
dem browser zu recover zurück. Mit 0 verlässt man recover()

Aufruf: recover()

Hinweis: Mit options(error = recover) kann die Fehlerbe-
handlung so konfiguriert werden, dass im Fehlerfalle au-
tomatisch browser() aufgerufen wird.

debug() Markiert eine Funktion zur Debugger-Kontrolle. Bei nachfolgenden
Aufrufen der Funktion wird der Debugger aktiviert und schaltet in
den Browser-Modus.

Aufruf: debug(〈Funktion〉)

undebug() Löscht Debugger-Kontrolle für eine Funktion.

Aufruf: undebug(〈Funktion〉)

trace() Markiert eine Funktion zur Trace-Kontrolle. Bei nachfolgenden Auf-
rufen der Funktion wird der Aufruf mit seinen Argumenten ange-
zeigt.

Aufruf: trace(〈Funktion〉)

(Fortsetzung)→

A-22 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

Debug-Hilfen

(Fortsetzung)

untrace() Löscht Trace-Kontrolle für eine Funktion.

Aufruf: untrace(〈Funktion〉)

traceback() Im Fehlerfall innerhalb einer Funktion wird die aktuelle Aufruf-
verschachtelung in einer Variablen .Traceback gespeichert. tra-

ceback() wertet diese Variable aus und zeigt den Inhalt an.

Aufruf: traceback()

try() Erlaubt benutzer-definierte Fehlerbehandlung.

Aufruf: traceback(〈Ausdruck〉)

Um die Laufzeit in einzelnen Bereichen zu messen, bietet R ein “profiling”, das jedoch
nur verfügbar ist, wenn R mit den entsprechenden Optionen compiliert worden ist. Die
beim Compilieren benutzten Informationen können mit capabilities() erfragt werden.

Profiling-Hilfen

system.time() Misst die Ausführungszeit einer Anweisung. Diese Funktion ist stets
verfügbar.

Aufruf: system.time(〈expr〉, 〈gcFirst〉)

Rprof() Registriert periodisch die jeweils aktiven Funktionen. Diese Funkti-
on ist nur verfügbar, wenn R für “profiling” compiliert ist.
Mit memory.profiling = TRUE wird außer der Zeit auch periodisch
die Speicherplatznutzung protokolliert. Diese Option ist nur verfüg-
bar, wenn R entsprechend compiliert ist.

Aufruf: Rprof(filename = Rprof.out", append = FALSE,

interval = 0.02, memory.profiling = FALSE)

Rprofmem() Registriert Speicherplatz-Anforderungen im Anforderungsfall.
Diese Funktion ist nur verfügbar, wenn R für “memory profiling”
compiliert ist.

Aufruf: Rprofmem(filename = Rprofmem.out", append =

FALSE, threshold = 0)

summaryRprof() Fasst die Ausgabe von Rprof() zusammen und berichtet den Zeit-
bedarf je Funktion.

Aufruf: summaryRprof(filename = Rprof.out", chunksize

= 5000, memory = c(none", "both", tseries",

ßtats"), index = 2, diff = TRUE, exclude =

NULL)

A.14. KONTROLLSTRUKTUREN A-23

A.14. Kontrollstrukturen

R Kontrollstruk-
turen

if Bedingte Ausführung

Aufruf: if (〈log. Ausdruck 1〉) 〈Ausdruck2〉
Der logische Ausdruck 1 darf nur einen logischen Wert
ergeben. Für vektorisierten Zugriff benutze man ifelse.

Aufruf: if (〈log. Ausdruck1〉) 〈Ausdruck2〉 else 〈Ausdruck3〉

ifelse Elementweise bedingte Ausführung

Aufruf: ifelse(〈log. Ausdruck1〉, 〈Ausdruck2〉, 〈Ausdruck3〉)
Wertet den logischen Ausdruck 1 elementweise auf einen
Vektor an, und übergibt bei wahrem Resultat den ele-
mentweisen Wert von Ausdruck2, sonst von Ausdruck3)

Beispiel: trimmedX <- ifelse (abs(x)<2, X, 2)

switch Auswahl aus einer Liste von Alternativen

Aufruf: switch(〈Ausdruck1〉, . . .)
Ausdruck1 muss einen numerischen Wert oder eine Zei-
chenkette ergeben. . . . ist eine explizite Liste der Alter-
nativen.

Beispiel: centre <- function (x , type) { switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1)}

for Iteration (Schleife)

Aufruf: for (〈name〉 in 〈Ausdruck1〉) 〈Ausdruck2〉

repeat Wiederholung. Muss z.B. mit break verlassen werden.

Aufruf: repeat 〈Ausdruck〉

Beispiel: pars<-init

repeat { res<- get.resid (data, pars)

if (converged(res)) break

pars<-new.fit (data, pars)}

while Bedingte Wiederholung

Aufruf: while (〈log. Ausdruck〉) 〈Ausdruck〉

Beispiel: pars<-init; res <- get.resid (data, pars) while

(!converged(res)) { pars<-
new.fit(data, pars) res<- get.resid}

break verlässt die aktuelle Schleife

next verlässt einen Schleifenzyklus und springt zum nächsten

A.15. VERWALTUNG UND ANPASSUNG A-25

A.15. Verwaltung und Anpassung

objects()

ls()

Liste der aktuellen Objekte

rm() Löscht die angegebenen Objekte

Aufruf: rm(〈Objektliste〉)

A.16. EIN- UND AUSGABE IN AUSGABESTRöME A-27

A.16. Ein- und Ausgabe in Ausgabeströme

R Ein/Ausgabe

write() Schreibt Daten in eine Datei.

Aufruf: write(val, file)

Beispiel: write(x, file = "data")

source() Führt die R-Anweisungen aus der angegebenen Datei aus.

Aufruf: source("〈Dateiname〉 ")

Beispiel: source(cmnds.R")

sink() Lenkt Ausgaben in die angegebene Datei.

Aufruf: sink(”〈Dateiname〉”)

Beispiel: sink() lenkt die Ausgabe wieder auf die Konsole.

dump() Schreibt für ein Objekt die definierenden Kommandos. Mit sour-

ce() kann aus der Ausgabe das Objekt regeneriert werden

Aufruf: dump(list, file = "〈dumpdata.R〉", append =

FALSE)

A.17. EXTERNE DATEN A-29

A.17. Externe Daten

Zum Editieren und für die Eingabe nach Spreadsheet-Art innerhalb von R gibt es
edit() (früherer Name: data.entry()).

Für den Austausch müssen die Datenformate zwischen allen Beteiligten abgestimmt
sein. Zum Import aus Datenbanken und anderen Paketen steht eine Reihe von Bibliotheken
zur Verfügung, z.B. stataread für Stata, foreign für SAS, Minitab und SPSS, RODBC für
SQL. Weitere Information findet sich im Manual “Data Import/Export” ([R D07b]).

Innerhalb von R werden vorbereitete Daten üblicherweise als data frames bereitge-
stellt. Sind zusätzliche Objekte wie Funktionen oder Parameter nötig, so können sie ge-
bündelt als Paket bereit gestellt werden (siehe Aufgabe A.18 (Seite A-31)).

Für den Austausch zu R kann ein spezielles Austauschformat benutzt werden. Datei-
en in diesem Format können mit save() generiert werden und haben konventionell die
Namensendung .Rda. Diese Dateien werden mit load() wieder geladen.

Daten werden allgemeiner mit der Funktion data() geladen. Abhängig von der Endung
des Dateinamens der Eingabedatei verzweigt data() in mehreren Spezialfällen. Neben den
.Rda sind übliche Endungen für reine Daten-Eingabedateien .tab oder .txt. Die online-
help-Funktion help(data) gibt weitere Auskunft.

Ein- Ausgabe von
Daten für R

save() Speichert Daten in externe Datei.

Aufruf: save(〈Namen der zu speichernden Objekte〉, file

= 〈Dateiname〉, ...)

load() Lädt Daten aus exterener Datei.

Aufruf: load(file = 〈Dateiname〉, ...)

data() Lädt Daten. data() kann unterschiedliche Formate verarbeiten,
wenn die Zugriffspfade und Datei-Namen den R-Konventionen fol-
gen.

Aufruf: data(... , list = character(0),

package = c(.packages(), .Autoloaded),

lib.loc = .lib.loc)

Beispiel: data(crimes) # lädt den Datensatz ’crimes’

Für den flexiblen Austausch mit anderen Programmen werden Daten in der Regel als
Text-Dateien bereitgestellt, nach Möglichkeit

• in Tabellenform,
• nur ASCII-Zeichen (z.B. keine Umlaute!)
• Variablen spaltenweise angeordnet
• Spalten durch Tabulator-Sprünge getrennt.
• evtl. Spaltenüberschriften in Zeile 1
• evtl. Zeilennr. in Spalte 1.

A-30 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

Dafür wird zum Lesen die Funktion read.table() und zum Schreiben die Funktion wri-

te.table() bereitgestellt. Neben read.table() gibt es eine Reihe von Varianten, die auf
andere gebräuchliche Datenformate abgestimmt sind. Diese sind unter help(read.table)
aufgeführt.

Ein- Ausgabe von
Daten zum Aus-
tausch

read.table() Liest Daten-Tabelle

Aufruf: read.table(file, header = FALSE,

sep = "\t", ...)

Beispiele: read.table(〈Dateiname〉,
header = TRUE, sep = ’\t’)
Überschriften in Zeile 1, Zeilennr. in Spalte 1
read.table(〈Dateiname〉
, header = TRUE, sep = ’\t’)
keine Zeilennr., Überschriften in Zeile 1,

write.table() Schreibt Daten-Tabelle

Aufruf: write.table(file, header = FALSE, sep = ’\t’,
...)

Beispiele: write.table(〈data frame〉, 〈Dateiname〉,
header = TRUE, sep = ’\t’)
Überschriften in Zeile 1, Zeilennr. in Spalte 1
write.table(〈data frame〉, 〈Dateiname〉,
header = TRUE, sep = ’\t’)
keine Zeilennr., Überschriften in Zeile 1,

Defaultmäßig konvertiert read.table() Daten in factor -Variable, falls möglich. Die-
ses Verhalten kann mit dem Parameter as.is beim Aufruf von read.table() modifiziert
werden. Diese Modifikation ist z. B. nötig, um Datums- und Zeitangaben einzulesen, wie
in dem folgen Beispiel aus [GP04]:

date col in all numeric format yyyymmdd

df <- read.table("laketemp.txt", header = TRUE)

as.Date(as.character(df$date), "%Y-%m-%d")

first two cols in format mm/dd/yy hh:mm:ss

Note as.is = in read.table to force character

library("chron")

df <- read.table("oxygen.txt", header = TRUE,

as.is = 1:2)

chron(df$date, df$time)

Für sequentielles Lesen steht scan() zur Verfügung. Dateien mit stellengenau fest
vorgegebenenem Format können mit read.fwf() gelesen werden.

A.18. LIBRARIES, PAKETE A-31

A.18. Libraries, Pakete

Externe Information kann in (Text)-Dateien und Paketen(Packages) gespeichert sein.
Bibliotheken und Pakete sind dabei nach speziellen R-Konventionen strukturiert. “Biblio-
theken” sind Sammlungen von “Paketen”.

Zusätzliche Funktionen werden in der Regel als Pakete bereitgestellt. Pakete werden mit
library()

geladen. Im Paket enthaltene Datensätze sind dann direkt auffindbar und werden mit
data()

(ohne Argument) aufgelistet.
Beispiel:

library(nls)

data()

data(Puromycin)

Pakete

library() Lädt Zusatzpaket

Aufruf: library(package, ...)

Siehe auch Abschnitt 1.5.6

require() Lädt Zusatzpaket; gibt Warnung bei Fehler.

Aufruf: require(package, ...)

detach() Gibt Zusatzpaket frei und entfernt es aus dem Suchpfad.

Aufruf: detach(〈name〉)

install.packages() Installiert Pakete in 〈lib〉, lädt sie bei Bedarf aus dem Archiv CRAN

Aufruf: install.packages(pkgs, lib, CRAN = getOpti-

on(CRAN"), ...)

package.manager() Falls implementiert: Interface zur Verwaltung installierter Pakete.

Aufruf: package.manager()

package.skeleton() Erstellt das Gerüst für ein neues Paket.

Aufruf: package.skeleton(name = "〈anRpackage〉", list,

...)

Detailinformation zur Erstellung von R-Paketen findet man in “Writing R Extensions”
([R D08]).

A.19. LINEARE ALGEBRAOPERATOREN A-33

A.19. Lineare Algebraoperatoren

Für die lineare Algebra sind die wichtigsten Funktionen weitgehend standardisiert und
in C-Bibliotheken wie BLAS/ATLAS und Lapack verfügbar. R benutzt diese Bibliotheken
und bietet für die wichtigsten Funktionen einen direkten Zugang.

Lineare Algebra

eigen() Berechnet Eigenwerte und Eigenvektoren von rellen oder komplexen
Matrizen

svd() Eigenwertzerlegung einer Matrix

qr() QR-Zerlegung einer Matrix

determinant() Determinante einer Matrix

solve() Löst lineare Gleichung

Falls möglich sollten jedoch statistische Funktioen benutzt und der direkte Zugriffe auf
Funktionen der linearen Algebra vermieden werden.

A.20. MODELL-BESCHREIBUNGEN A-35

A.20. Modell-Beschreibungen

Lineare statistische Modelle können durch Angabe einer Design-Matrix X spezifiziert
werden und in der allgemeinen Form

Y = Xβ + ε
dargestellt werden, wobei die Matrix X jeweils genauer bestimmt werden muß.

R erlaubt es, Modelle auch dadurch zu spezifizieren, dass die Regeln angegeben werden,
nach denen die Design-Matrix gebildet wird.

Operator Syntax Bedeutung Beispiel

∼ Y ∼M Y hängt von M ab Y ∼ X ergibt
E(Y) = a+ bX

+ M1 +M2 M1 und M2

einschliessen
Y ∼ X + Z
E(Y) =
a+ bX + cZ

− M1 −M2 M1 einschliessen,
aber M2 ausschlies-
sen

Y ∼ X − 1
E(Y) = bX

: M1 : M2 Tensorprodukt, d.h.
alle Kombinationen
von Stufen von M1

und M2

% in % M1% in %M2 modifiziertes Tensor-
produkt

a + b%in%a en-
spricht a+ a : b

∗ M1 ∗M2 “gekreuzt” M1 + M2

entspricht
M1 +M2 +M1 :
M2

/ M1/M2 “geschachtelt”: M1 +
M2 %in%M1

ˆ Mˆn M mit allen ”Inter-
aktionen” bis Stufe n

I() I(M) Interpretiere M . Ter-
me in M behalten
ihre ursprüngliche
Bedeutung; das
Resultat bestimmt
das Modell.

Y ∼ (1 +

I(X^2))

entspricht
E(Y) = a+ bX2

Tabelle A.53. Wilkinson-Rogers-Notation für lineare Modelle

Die Modell-Spezifikation ist auch für allgemeinere, nicht lineare Modelle möglich.

Beispiele

y ∼ 1 + x entspricht yi = (1 xi)(β1 β2)
> + ε

y ∼ x Kurzschreibweise für y ∼1 + x

(Konstanter Term wird implizit angenommen)

A-36 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

y ∼ 0 + x entspricht yi = xi · β + ε

log(y) ∼ x1 + x2 entspricht log(yi) = (1 xi1 xi2)(β1 β2 β3)
> + ε

(Konstanter Term wird implizit angenommen)

y ∼ A Einweg-Varianzanalyse mit Faktor A

y ∼ A + x Covarianzanalyse mit Faktor A und Covariable x

y ∼ A * B Zwei-Faktor-Kreuz-Layout
mit Faktoren A und B

y ∼ A/B Zwei-Faktor hierarchisches Layout
mit Faktor A und Subfaktor B

Um zwischen verschiedenen Modellen ökonomisch wechseln zu können, steht die Funktion
update() zur Verfügung.

Modell-
Verwaltung

formula() extrahiert Modellformel aus einem Objekt

terms() extrahiert Terme der Modell-Formal aus einem Objekt

contrasts() spezifiziert Kontraste

update() Wechsel zwischen Modellen

model.matrix() Generiert die Design-Matrix zu einem Modell

Anwendungsbeispiel:

lm(y ∼poly(x, 4), data = experiment)

analysiert den Datensatz “experiment” mit einem linearen Modell für polynomiale Regres-
sion vom Grade 4.

Standard-
Analysen

lm() lineares Modell

Siehe auch Kapitel 2

glm() generalisiertes lineares Modell

nls() nicht-lineare kleinste Quadrate

nlm() allgemeine nicht-lineare Minimierung

update() Wechsel zwischen Modellen

anova() Varianz-Analyse

A.21. GRAFIK-FUNKTIONEN A-37

A.21. Grafik-Funktionen

R bietet zwei Grafik-Systeme: Das Basis-Grafiksystem von R implementiert ein Modell,
dass an der Vorstellung von Stift und Papier orientiert ist. Das Lattice-Grafiksystem ist
ein zusätzliches zweites Grafiksystem, dass an einem Kamera/Objekt-Modell orientiert ist.
Information über Lattice erhält man mit help(lattice), eine Übersicht über die Funktio-
nen in Lattice mit library(help = lattice). Informationen über das Basis-Grafiksystem
folgen hier.

Grafik-Funktionen fallen im wesentlichen in drei Gruppen:
“high level”-Funktionen. Diese definieren eine neue Ausgabe.

“low level”-Funktionen. Diese modifizieren eine vorhandene Ausgabe.

Parametrisierungen. Diese modifizieren die Voreinstellungen des Grafik-Systems.

A.21.1. high level Grafik.

“high level”

plot() Generische Grafikfunktion

pairs() paarweise Scatterplots

coplot() Scatterplots, bedingt auf Covariable

qqplot() Quantil-Quantil-Plot

qqnorm() Gauß-Quantil-Quantil-Plot

qqline() fügt eine Linie zu einem Gauß-Quantil-Quantil-Plot hinzu, die durch
das erste und dritte Quantil verläuft.

hist() Histogramm

Siehe auch Abschnitt 1.3.2, Seite 1-27

boxplot() Box&Whisker-Plot

dotplot()

curve() Wertet eine Funktion oder einen Ausdruck nach Bedarf aus und
zeichnet eine Kurve.

Beispiel: curve(dnorm, from = -3, to = 3)

image() farbcodiertes z gegen x, y

contour() Contourplot von z gegen x, y

persp() 3D-Fläche

A.21.2. low level Grafik. Die high-level-Funktionen haben in der Regel einen Pa-
rameter add. Wird beim Aufruf add = FALSE gesetzt, so können sie auch benutzt werden,
um zu einem vorhandenen Plot Elemente hinzu zu fügen. Daneben gibt es eine Reihe von
low-level-Funktionen, die voraussetzen, dass bereits eine Plot-Umgebung geschaffen ist.

“low level”

(Fortsetzung)→

A-38 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

“low level”

(Fortsetzung)

points() Generische Funktion. Markiert Punkte an angegebenen Koordina-
ten.

Aufruf: points(x, ...)

lines() Generische Funktion. Verbindet Punkte an angegebenen Koordina-
ten.

Aufruf: lines(x, ...)

abline Fügt Linie (in mehreren Darstellungen) zum Plot hinzu.

Aufruf: abline(a, b, ...)

polygon() Fügt Polygon mit spezifizierten Ecken hinzu.

axis() Fügt Achsen hinzu.

Daneben hat R rudimentäre Möglichkeiten für Interaktion mit Grafik.

Interaktionen

locator() bestimmt die Position von Mausklicks. Eine aktuelle Grafik muss
definiert sein, bevor locator() benutzt wird.

Beispiel: plot(runif(19))

locator(n = 3, type = "l")

A.21.3. Annotationen und Legenden. Die high-level-Funktion bieten in der Regel
die Möglichkeiten, Standard-Beschriftungen durch geeignete Parameter zu kontrollieren.

main = Haupt-Überschrift, über dem Plot

sub = Plot-Unterschrift

xlab = Beschriftung der x-Achse

ylab = Beschriftung der y-Achse

Beschreibungen erhält man mit help(plot.default).

Zur Ergänzung stehen low-level-Funktionen bereit.

“low level”

title() Setzt Überschrift, analog high-level-Parametern.

Aufruf: title(main = NULL, sub = NULL, xlab = NULL,

ylab = NULL, ...)

text Fügt Text an spezifizierten Koordinaten hinzu.

Aufruf: text(x, y = NULL, text, ...)

legend() Fügt einen Block mit einer Legende hinzu.

Aufruf: legend(x, y = NULL, text, ...)

(Fortsetzung)→

A.21. GRAFIK-FUNKTIONEN A-39

“low level”

(Fortsetzung)

mtext() Fügt Randbeschriftung hinzu.

Aufruf: mtext(text, side = 3, ...). Die Ränder werden be-
zeichnet durch 1 = unten, 2 = links, 3 = oben, 4 = rechts)

R gibt auch (eingeschränkte) Möglichkeiten zum Formelsatz. Ist der Text-Parameter ei-
ne Zeichenkette, so wird sie direkt übernommen. Ist der Text-Parameter ein (unausge-
werteter) R-Ausdruck, so wird versucht, die mathematisch übliche Darstellung zu geben.
R-Ausdrücke können mit den Funktionen expression() oder bquote() erzeugt werden.

Beispiel:
text(x, y, expression(paste(bquote("(", atop(n, x), ")"),

.(p)^x, .(q)^{ n-x})))

Ausgabe-Beispiele erhält man mit demo(plotmath).

A.21.4. Grafik-Parameter und Layout.

Parametrisierun-
gen

par() Setzt Parameter des Basis-Grafiksystems

Aufruf: siehe help(par)

Beispiel: par(mfrow = c(m, n)) unterteilt den Grafikbereich in
m Zeilen und n Spalten, die Zeile für Zeile gefüllte wer-
den. par(mfcol = c(m, n)) füllt den Bereich Spalte für
Spalte.

split.screen() Teilt den Grafik-Bereich in Teile

Aufruf: split.screen(figs, screen, erase = TRUE). Hat
figs zwei Einträge, so werden damit die Anzahl der
Zeilen und Spalten festgelegt. Ist figs eine Matrix, so
gibt jede Zeile die Koordinaten eines Grafikbereichs in
relativen Koordinaten [0 . . . 1] an. split.screen() kann
auch geschachtelt werden.

screen() Wählt Grafik-Bereich für die nächste Ausgabe.

Aufruf: screen(n = cur.screen , new = TRUE).

layout() Unterteilt den Grafik-Bereich. Diese Funktion ist mit anderen
Layout-Funktionen nicht verträglich.

A.22. EINFACHE STATISTISCHE FUNKTIONEN A-41

A.22. Einfache Statistische Funktionen

Statistik-
Funktionen

sum() summiert Komponenten eines Vektors

cumsum() bildet kumulierte Summen

prod() multipliziert Komponenten eines Vektors

cumprod() bildet kumulierte Produkte

length() Länge eines Objekts, z.B. Vektors

max()

min()

Maximum, Minimum.
Siehe auch pmax, pmin

range() Minimum und Maximum

cummax()

cummin()

Kumulatives Maximum, Minimum

quantile() Stichprobenquantile.
Für theoretische Verteilungen: qxxxx, z.B. qnorm

median() Median

mean() Mittelwert
auch getrimmte Mittel

var() Varianz, Varianz / Covarianzmatrix

sort()

rev()

Sortierung

order() Sortierung nach Leit-Element, auch für mehrere Variable

rev() Umgekehrte Sortierung

rank() Stichprobenränge

A.23. VERTEILUNGEN, ZUFALLSZAHLEN, DICHTEN. . . A-43

A.23. Verteilungen, Zufallszahlen, Dichten. . .

Der Basis-Generator für uniforme Zufallszahlen wird von Random verwaltet. Verschiede-
ne mögliche Basis-Generatoren stehen zur Verfügung. Für ernsthafte Simulation wird
eine Lektüre der Empfehlungen von Marsaglia et al. dringend empfohlen. (Siehe
help(.Random.seed)). Alle nicht-uniformen Zufallszahlengeneratoren sind vom aktuellen
Basisgenerator abgleitet. Eine Übersicht über die wichtigsten nicht-uniformen Zufallszah-
lengeneratoren, ihre Verteilungsfunktionen und ihre Quantile findet sich am Ende dieses
Abschnitts.

R Zufallszahlen

.Random.seed .Random.seed ist eine globale Variable, die den augenblicklichen
Zustand des Zufallszahlengenerators speichert. Diese Variable kann
gesichtert und mit set.seed() wieder restauriert werden.

set.seed() initialisiert den Zufallszahlengenerator

Aufruf: set.seed(seed, kind = NULL)

RngKind() RngKind() gibt den Namen des aktuellen Basisgenerators.
RngKind (〈name〉) setzt einen Basisgenerator.

Aufruf: RngKind()

RngKind(〈name〉)
Beispiel: RngKind("Wichmann-Hill")

RngKind("Marsaglia-Multicarry")

RngKind("Super-Duper")

sample() sample() zieht eine Zufallsstichprobe aus den im Vektor x ange-
gebenen Werten, mit oder ohne Zurücklegen (je nach Wert von
replace).

Size ist defaultmäßig die Länge von x.

Optional kann prob ein Vektor von Wahrscheinlichkeiten für
die Werte von x sein.

Aufruf: sample(x, size, replace = FALSE, prob)

Beispiel: Zufällige Permutation:
sample(x)

val<-c("H", T)

prob<-c(0.3, 0.7)

sample(val, 10,

replace = T, prob)

Sollen Simulationen reproduzierbar sein, so muss der Zufallszahlengenerator in einen
kontrollierten Zustand gesetzt sein. Ein Beispiel dafür ist die folgende Anweisungsfolge:
save.seed <- .Random.seed

save.kind <- RNGkind()

Mit set.seed(save.seed, save.kind) wird dann der Zustand des Genarators bei Bedarf
restauriert.

A-44 R ALS PROGRAMMIERSPRACHE: ÜBERSICHT

Die einzelnen Funktionsnamen für die wichtigsten nicht-uniformen Generatoren und Funk-
tionen setzen sich aus einem Präfix und dem Kurznamen zusammen. Allgemeiner Schlüssel:
xxxx ist der Kurzname

rxxxx erzeugt Zufallszahlen

dxxxx Dichte oder Wahrscheinlichkeit

pxxxx Verteilungsfunktion

qxxxx Quantile
Beispiel:

x<-runif(100) erzeugt 100 U(0, 1)-verteilte Zufallsvariable

qf(0.95, 10, 2) berechnet das 95%-Quantil der F(10, 2)-Verteilung.

Verteilungen Kurzname Parameter und Default-Werte

Beta beta shape1, shape2, ncp = 0

Binomial binom size, prob

Cauchy cauchy location = 0, scale = 1

χ2 chisq df, ncp = 0

Exponential exp rate = 1

F f df1, df2 (ncp = 0)

Gamma gamma shape, scale = 1

Gauß norm mean = 0, sd = 1

Geometrisch geom prob

Hypergeometrisch hyper m, n, k

Lognormal lnorm meanlog = 0, sdlog = 1

Logistisch logis location = 0, scale = 1

Negativ-Binomial nbinom size, prob

Poisson pois lambda

Student’s t t df

Tukey Studentised Range tukey

Uniform unif min = 0, max = 1

Wilcoxon Signed Rank signrank n

Wilcoxon Rank Sum wilcox m, n

Weibull weibull shape, scale = 1

A.24. VERARBEITUNG VON AUSDRüCKEN A-45

A.24. Verarbeitung von Ausdrücken

Die Sprachausdrücke von R sind genau so Objekte wie Daten oder Funktionen. Wie
diese können sie gelesen oder verändert werden.

Umwandlungen

parse() Wandelt Eingabe in eine Liste von R-Ausdrücken um. parse führt
den Parse-Schritt durch, wertet die Ausdrücke aber nicht aus.

deparse() Wandelt einen R-Ausdruck in interner Darstellung in eine Zeichen-
darstellung um.

expression() erzeugt einen R-Ausdruck in interner Darstellung.

Beispiel: integrate <- expression(integral(fun, lims))

Siehe auch 1.3.1: Mathematischer Formelsatz in Plot-Beschriftungen

substitute() R-Ausdrücke mit Auswertung aller definierten Terme.

bquote() R-Ausdrücke mit selektiver Auswertung. Terme in .() werden aus-
gewertet.

Beispiele: n<-10; bquote(n^2 == .(n*n))

Auswertung

eval() wertet einen Ausdruck aus.

Literaturverzeichnis

[BCW88] Becker, Richard A. ; Chambers, John M. ; Wilks, Allan R.: The New S Language.
London : Chapman & Hall, 1988

[CH92] Chambers, John M. ; Hastie, Trevor J.: Statistical Models in S. London : Chapman &
Hall, 1992

[Cha98] Chambers, John M.: Programming with Data. New York : Springer, 1998. – ISBN 0-
387-98503-4

[Cle93] Cleveland, William S.: Visualizing Data. Murray Hill : AT&T Bell Laboratories, 1993
[FB94] Furnas, George W. ; Buja, Andreas: Prosection views: dimensional inference through

sections and projections. In: J. Comput. Graph. Statist. 3 (1994), Nr. 4, S. 323–385. –
ISSN 1061–8600

[GI00] Gentleman, Robert ; Ihaka, Ross: Lexical Scope and Statistical Computing. In: Jour-
nal of Computational and Graphical Statistics 9 (2000), S. 491–508

[GP04] Grothendieck, Gabor ; Petzoldt, Thomas: R Help Desk: Date and Time Classes in
R. In: R News 4 (2004), June, Nr. 1, S. 29–32

[GS77] Gänßler, Peter ; Stute, Winfried: Wahrscheinlichkeitstheorie. Springer, 1977
[ICR87] Inselberg, Alfred ; Chomut, Tuval ; Reif, Mordechai: Convexity algorithms in parallel

coordinates. In: J. Assoc. Comput. Mach. 34 (1987), Nr. 4, S. 765–801. – ISSN 0004–5411
[JK70] Johnson, N.L. ; Kotz, S.: Discrete Distributions. New York : Wiley, 1970. – ISBN

0–471–44360–3
[Jør93] Jørgensen, Bent: The Theory of Linear Models. New York-London : Chapman & Hall,

1993. – ISBN 0–412–04261–1
[Mil81] Miller, R. G.: Simultaneous Statistical Inference. New York : Springer, 1981. – ISBN

0–387–90584–0
[Mur06] Murrell, Paul: R Graphics. Boca Raton, Fla. [u.a.] : Chapman & Hall/CRC, 2006. –

XIX, 301 S. S. – ISBN 1–58488–486–X
[R D07a] R Development Core Team: An Introduction to R / R Project. 2007. – Forschungs-

bericht
[R D07b] R Development Core Team: R Data Import/Export / R Project. 2007. – Forschungs-

bericht
[R D07c] R Development Core Team: The R language definition / R Project. 2007. – For-

schungsbericht
[R D07d] R Development Core Team: The R Reference Index / R Project. 2007. – Forschungs-

bericht
[R D08] R Development Core Team: Writing R Extensions / R Project. 2008. – Forschungs-

bericht
[Rao73] Rao, C. R.: Linear Statistical Inference and Its Applications. 2. Wiley, 1973
[RM79] Reaven, G. M. ; Miller, R. G.: An Attempt to Define the Nature of Chemical Diabetes

Using a Multidimensional Analysis. In: Diabetologia 16 (1979), S. 17–24
[Saw94a] Sawitzki, Günther: Numerical Reliability of Data Analaysis Systems. In: Computational

Statistics & Data Analysis 18 (1994), Nr. 2, S. 269–286
[Saw94b] Sawitzki, Günther: Report on the Numerical Reliability of Data Analysis Systems. In:

Computational Statistics & Data Analysis 18 (1994), Nr. 2, S. 289 – 301
[Saw02] Sawitzki, Günther: Quality Control and Early Diagnostics for cDNA Microarrays. In:

R News 2 (2002), March, Nr. 1, S. 6–10
[VR00] Venables, William N. ; Ripley, Brian D.: S Programming. Springer, 2000. – ISBN

0-387-98966-8

Literatur-1

Literatur-2 LITERATURVERZEICHNIS

[VR02] Venables, William N. ; Ripley, Brian D.: Modern Applied Statistics with S. 4. Heidel-
berg : Springer, 2002. – ISBN 0–387–95457–0

Index

∗Topic aplot
coplot, 4-15

∗Topic debugging
browser, A-21
debug, A-21
recover, A-21
traceback, A-21

∗Topic distribution
qqnorm, 3-6
Uniform, 1-4

∗Topic hplot
coplot, 4-15
pairs, 4-7
qqnorm, 3-6

∗Topic htest
t.test, 3-11
wilcox.test, 3-14

∗Topic loess
loess, 2-34

∗Topic models
anova, 2-20

∗Topic regression
anova, 2-20
lm, 2-11

∗Topic smooth
loess, 2-34

PP -Plot, 1-38
QQ-Plot, 1-38
.Random.seed, 1-5

abbreviate, A-15
abline, 1-12
add1, 2-21
Added-Variable-Plots, 4-27
aggregate, A-14
Annotation, A-38
anova, 2-12, 2-20, 2-29, A-36
anova.lm, 2-13
aov, 2-11–2-13, 2-21
aperm, A-16
apply, 1-23, A-14
apropos, A-1, A-2
args, A-1

array, A-11, A-13
as.data.frame, 2-11, 2-35
attach, A-12
attr, 2-39
attributes, A-7
axis, A-38

Bandbreite, 1-10
barchart, 4-4
barplot, 4-4
bedingt, 4-15
Beschriftung, A-38
Bindung, 3-13
Bootstrap, 3-9
Box-Cox-Transformation, 2-33
boxcox, 2-33
boxplot, 1-35, 4-4, A-37
bquote, 1-24, A-39, A-45
browser, A-21
brushing, 4-5
bwplot, 4-4
by, A-14

c, 1-8
casefold, A-15
cbind, A-11, A-13
chartr, A-15
chisq.test, 1-28
citation, 1-49
class, 2-12, 2-39, A-7
cloud, 4-4, 4-11
co.intervals (coplot), 4-15
coef, 2-13, 2-40
coefficients, 2-21
confint, 2-13, 2-41
contour, 4-1, 4-2, A-37
contourplot, 4-4
contrasts, A-36
Coplot, 4-15
coplot, 4-15, A-37
cummax, A-41
cummin, A-41
cumprod, A-41
cumsum, A-41

Index-1

Index-2 INDEX

curse of dimension, 4-32
curve, 1-21, A-37

data, 1-48, 2-38, A-9, A-29, A-31
data.entry, A-29
data.frame, A-12
data.matrix, 4-8
Datenstrukturen, 1-17, A-11
DateTimeClasses, A-30
Datum

see DateTimeClasses, A-30
debug, A-21
Debugging, 1-46, A-21
demo, A-1
density, 1-15
densityplot, 4-4
deparse, A-45
Design-Matrix, 2-2, 2-14
detach, A-12, A-31
determinant, A-33
dim, A-11, A-13
dimnames, A-13
dir, A-9
dotchartt, 4-4
dotplot, 4-4, A-37
drop1, 2-21
dump, A-27
dunif (Uniform), 1-4
duplicated, A-15

edit, A-29
effects, 2-13, 2-21, 2-40
eigen, A-33
environment, 1-47, A-2
Erwartungswert, 1-33
eval, 1-46, A-45
exakter Test, 3-13
example, A-1
expand.grid, A-15
expression, 1-13, A-39, A-45

factor, 2-4, 4-16, A-11
Faktor, 2-4

Stufen, 2-5
find, A-2
Fit, 2-6
fitted, 2-13, 2-41
fitted.values, 2-21
formula, 2-12, A-36
function, 1-43, A-19–A-23
function, 4-16
Funktion

polymorph, siehe polymorph

Güte, 1-31
Gauß-Markov-Schätzer, 2-5

getwd, A-9
glht, 2-29
glm, 2-13, A-36

help, A-1, A-9
help.search, A-1
hist, 1-15, 1-18, 4-4, A-37
histogram, 4-4
Hut-Matrix, 2-7

identify, 4-35
image, 4-1, 4-2, 4-4, 4-44, A-37
influence, 2-41
inherits, 2-39
install.packages, 1-47, A-31
integrate, 4-31

Kern, 1-10
Kleinste-Quadrate-Schätzer, 2-5
Kontrast, 2-21, 2-27
kruskal.test, 3-16
ks.test, 1-27

lapply, A-14
lattice.options, A-9
lda, 4-24
leaps, 4-38
legend, 1-42, A-38
Legende, A-38
length, 1-12, A-2, A-7, A-41
levels, A-11
library, A-9, A-31
lines, A-38
linking, 4-5
list, A-12
lm, 2-5, 2-11, 2-21, 2-40, 4-36, 4-43, A-36
lm.fit, 2-12, 2-13
lm.influence, 2-13
lm.wfit, 2-13
load, 2-37, 2-38, A-29
locator, A-38
locfit, 4-6
loess, 2-34
loess.control, 2-35, 2-36
loglin, 1-29
lowess, 2-36
ls, 1-47, A-2, A-9, A-25
ls.str, A-2

Marginalverteilung, 4-7
MASS, 2-41
match, A-15
matrix, 4-17, A-13
max, A-41
mean, 1-33, A-41
median, A-41
merge, A-15

INDEX Index-3

methods, 2-40, A-9
min, A-41
missing, A-19
mode, 2-39, A-2, A-3, A-7
model.frame, 3-11, 3-14
model.matrix, 2-12, 2-16, 2-41, A-36
model.matrix.default, 2-12
model.offset, 2-12
Modell

einfaches lineares, 2-8
lineares, 2-2

Modellfunktion, 2-1
mtext, 1-44, 4-17, A-39
mva, 4-27
mvr, 4-43

NA, 3-6
na.exclude, 2-11
na.fail, 2-11
na.omit, 2-11
names, A-7
ncol, A-13
nlm, A-36
nls, A-36
nrow, A-13

objects, A-1, A-25
offset, 2-12
options, 2-11, A-9
order, A-41
ordered, A-11
outer, 1-23, A-14

package.manager, A-31
package.skeleton, 1-48, 1-49, A-31
pairs, 4-4, 4-7, 4-7, 4-10, 4-17, 4-33, A-37
panel.smooth, 4-17
par, 4-17, A-9
parallel, 4-4
Parameter

default, 1-3
parse, 1-46, A-45
persp, 4-1, 4-2, 4-4, A-37
plot, 1-5
plot, 1-12, 1-13, 2-30, 2-40, 4-4, 4-22, 4-35,

A-5, A-37
plotmath, 1-13
pmatch, A-15
points, 4-17, A-38
polygon, A-38
polymorph, 1-3, 1-47, 2-39, 2-40, A-5
power.prop.test, 3-23
power.t.test, 3-20
ppoints, 3-7
prcomp, 4-27, 4-40
predict, 2-13, 2-25, 2-41

predict.lm, 2-13, 2-25, 4-43
predict.loess, 2-36
print, 1-46, 1-47, 2-40, 4-2, 4-11, A-5
print.anova (anova), 2-20
print.lm (lm), 2-11
probability plot, 1-38
prod, A-41
Profiling, A-21
projection pursuit, 4-12
prop.test, 3-12, 3-22
psignrank, 3-16
punif (Uniform), 1-4
pwilcox, 3-16

q, 1-3
qq, 4-4
qqline (qqnorm), 3-6, A-37
qqmath, 4-4
qqnorm, 3-5, 3-6, 4-4, A-37
qqplot, 3-5, 4-4, A-37
qqplot (qqnorm), 3-6
qr, A-33
quantile, 1-34, A-41
Quantilplot, 1-38
qunif (Uniform), 1-4

range, 4-17, A-41
rank, A-41
rbind, A-11, A-13
read.fwf, A-30
read.table, A-30
recover, A-21
Regression

lineare, 2-2
Regressor, 2-1
regsubsets, 4-38
rep, 1-8
replicate, A-14
require, A-31
reshape, A-15
residuals, 2-13, 2-21, 2-41
Residuum, 2-8
Respons, 2-1
rev, A-41
rm, A-25
RngKind, A-43
rnorm, 1-5
Rprof, A-22
Rprofmem, A-22
rug, 1-15
runif, 1-4
runif (Uniform), 1-4

sample, A-43
sapply, A-14
save, 1-48, 2-37, A-29

Index-4 INDEX

scan, A-30
Scatterplot-Matrix, 4-7
screen, A-39
sd, 1-34
search, 1-47, A-1, A-9
searchpaths, A-1
seq, 1-8, A-15
Serienplot, 1-5
set.seed, A-43
Shift-Familie, 3-3
sink, A-27
Skala

kategorial, 2-4
ordinal, 2-4

Skalen-Shiftfamile, 3-4
smoothing, 1-10
solve, A-33
sort, 1-12, A-41
source, 1-47, 1-48, A-27
split, A-14, A-16
split.screen, A-39
splom, 4-4
stack, 2-38
Standardabweichung, 1-33
stdres, 2-41
Stichproben

wiederholte, 1-30
Stichprobenvarianz, 1-33
stochastisch kleiner, 3-3
storage.mode, 2-39, A-7
str, A-7
Streuungszerlegung, 2-19
stripchart, 4-4
stripplot, 4-4, 4-23
structure, A-5, A-7
studres, 2-41
substitute, A-45
substring, A-15
sum, A-41
summary, 1-34, 2-21, A-5
summary.lm, 2-13
summaryRprof, A-22
svd, A-33
Sweave, 1-47
sys.parent, A-2
system, A-9
system.time, A-22

t, A-15
t.test, 3-11, 3-16
table, 1-18, A-14, A-15
tapply, A-11, A-14
terms, 2-12, A-36
Test
χ2, 1-28

exakt, 3-13
Kolmogorov-Smirnov, 1-27
Median-, 1-27
Monte-Carlo, 1-23
t, 3-11
Wilcoxon, 3-13

title, 4-17, A-38
tolower, A-15
toupper, A-15
trace, A-21
traceback, A-22
trellis.par.set, A-9
try, A-22
ts.intersect, 2-13
typedef, A-3
typeof, 2-39, A-2, A-7

unclass, 2-39
undebug, A-21
Uniform, 1-4
unique, A-15
unsplit, A-16
untrace, A-22
update, A-36
update.packages, 1-47
UseMethod, 2-40

var, 1-33, A-41
Varianz, 1-33

residuelle, 2-8
Varianzanalyse, 2-19
Variationskoeffizient, 3-23
vcov, 2-13, 2-41

wilcox.exact, 3-16
wilcox.test, 3-13, 3-14
wilcox_test, 3-13
Wilkinson-Rogers-Notation, 2-3
wireframe, 4-4
write, A-27
write.table, A-30

xyplot, 4-4

Zeit
see DateTimeClasses, A-30

Zufallszahlen, 1-4
Pseudo-, 1-7
reproduzierbare, A-43

