A tutorial dbEmpLikeGOF R package

Jeffrey C. Miecznikowski^{*}, Albert Vexler[†], and Lori A. Shepherd[>]

August 23, 2013

Statistical Genetics and Genomics Research Group Department of Biostatistics, University at Buffalo New York State Center of Excellence in Bioinformatics and Life Sciences Roswell Park Cancer Institute

Contents

1	Introduction	2
2	Examples	2
3	References	4

1 Introduction

The dbEmplikeGOF package provides a function dbEmplikeGOF to be used for density based empirical likelihood (EL) goodness-of-fit tests based on sample entropy, as well as to perform the two sample EL ratio test for distribution equality. The function provides the test statistic and associated p-values. The p-value can be calculated by Monte-Carlo methods or estimated based on precalculated tables of selected sample sizes and alpha values. For details and algorithms:

Jeffrey C. Miecznikowski, Albert Vexler, Lori A. Shepherd (2013). dbEmpLikeGOF: An R Package for Nonparametric Likelihood Ratio Tests for Goodness-of-Fit and Two-Sample Comparisons Based on Sample Entropy. Journal of Statistical Software, 54(3), 1-19.

Vexler A, Gurevich G, Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy. Computational Statistics and Data Analysis 54(2010) 531-545.

Gurevich G, Vexler A, A two-sample empirical likelihood ratio test based on sample entropy. Statistics and Computing, 2011.

2 Examples

The following performs a density-based empirical likelihood based goodness-offit tests based on sample entropy and calculates the p-value based on Monte-Carlo methods. The examples examine three null hypothesis, 1) data follows a normal distribution with unknown mean and standard deviation, 2) data follows a uniform distribution on 0 to 1 and 3) data from two samples are from the same distribution. The example below tests the data (normData) against the normal distribution.

```
> library(dbEmpLikeGOF)
> normData = rnorm(25)
> dbEmpLikeGOF(x=normData, testcall="normal", pvl.Table=FALSE)
...Working on teststat
...Working on p-value
$teststat
[1] 3.746553
$pvalue
[1] 0.981
```

The p-value can be estimated based on precalulated tables rather than preforming Monte-Carlo methods. This is controlled by the argument pvl.Table. To estimate based on tables pvl.Table argument is TRUE, which is the default setting.

```
> dbEmpLikeGOF(x=normData, testcall="normal", pvl.Table=TRUE)
```

```
...Working on teststat
estimating pvalue based on table
$teststat
[1] 3.746553
```

\$pvalue [1] 0.9848558

>

Similar calculations can be made to test data against a uniform distribution on zero to one.

```
> unifData = runif(30)
> # calculates pvalue based on Monte-Carlo methods
> dbEmpLikeGOF(x=unifData, testcall="uniform", pvl.Table=FALSE)
...Working on teststat
...Working on p-value
$teststat
[1] 8.692456
$pvalue
[1] 0.064
> # estimates pvalue based on tables
> dbEmpLikeGOF(x=unifData, testcall="uniform", pvl.Table=TRUE)
...Working on teststat
estimating pvalue based on table
$teststat
[1] 8.692456
$pvalue
[1] 0.06285791
>
```

Notice the data in each of the above examples was designed to match the proposed distribution. Below is an example where the data does not follow the proposed distribution

```
> dbEmpLikeGOF(x=unifData, testcall="normal", pvl.Table=TRUE)
...Working on teststat
estimating pvalue based on table
$teststat
[1] 11.79232
```

\$pvalue
[1] 0.005150142

>

It is also possible to test for distribution equality between two samples. When specifying an x and y samples, the dbEmpLikeGOF function will test for distribution equality between the two samples.

```
> dbEmpLikeGOF(x=unifData, y=normData, pvl.Table=TRUE)
```

```
...Working on teststat
estimating pvalue based on table
$teststat
[1] 23.42204
$pvalue
[1] 0.001
> normDataSet2 = rnorm(40)
> dbEmpLikeGOF(x=normDataSet2, y=normData, pvl.Table=TRUE)
...Working on teststat
estimating pvalue based on table
$teststat
[1] 10.94152
$pvalue
[1] 0.4913884
```

>

Notice the sample vectors do not have to be of equal length.

3 References

For additional details and examples please see:

```
Jeffrey C. Miecznikowski, Albert Vexler, Lori A. Shepherd
(2013). dbEmpLikeGOF: An R Package for Nonparametric Likelihood
Ratio Tests for Goodness-of-Fit and Two-Sample Comparisons Based
on Sample Entropy. Journal of Statistical Software, 54(3), 1-19.
```

http://www.jstatsoft.org/v54/i03/