
Bayesian inference for a population growth model of the chytrid

fungus

Philipp H Boersch-Supan, Sadie J Ryan, and Leah R Johnson

September 2016

1 Preliminaries

This vignette illustrates the steps needed to perform inference for a DDE model of population growth in a
fungal pathogen. A detailed description of the rationale behind the Bayesian inference approach for differential
equations can be found in the paper describing the deBInfer package (Boersch-Supan et al. 2017).

This example assumes that deBInfer is installed and loaded. If this is not the case it needs to be installed
from CRAN:

install.packages("deBInfer")

Development versions of deBInfer are available on github, and can be installed using the devtools package
(Wickham & Chang 2016).

if (require("devtools")){

#install deBInfer from github

devtools::install_github("pboesu/debinfer")

}

library(deBInfer)

2 The chytrid population growth model

Our example demonstrates parameter inference for a DDE model of population growth in the environmen-
tally sensitive fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the amphibian disease
chytridiomycosis (Rosenblum et al. 2010; Voyles et al. 2012). This model has been used to further our
understanding of pathogen responses to changing environmental conditions. Further details about the model
development, and the experimental procedures yielding the data used for parameter inference can be found
in (Voyles et al. 2012).

The model follows the dynamics of the concentration of an initial cohort of zoospores, C, the concentration
of zoospore-producing sporangia, S, and the concentration of zoospores in the next generation Z. The initial
cohort of zoospores, C, starts at a known concentration, and zoospores in this initial cohort settle and become
sporangia at rate sr, or die at rate µZ . fs is the fraction of sporangia that survive to the zoospore-producing
stage. We assume that it takes a minimum of Tmin days before the sporangia produce zoospores, after
which they produce zoospores at rate η. Zoospore-producing sporangia die at rate ds. The concentration of
zoospores, Z, is the only state variable measured in the experiments, and it is assumed that these zoospores
settle (sr) or die (µZ) at the same rates as the initial cohort of zoospores.

2.1 DDE model

The equations that describe the population dynamics are as follows:

1

dC

dt
= −(sr + µZ)C(t) (1)

dS

dt
= srfsC(t − Tmin) − dsS(t) (2)

dZ

dt
= ηS(t) − (sr + µZ)Z(t) (3)

We can implement this system of differential equations for the deSolve::dede solver as follows. More details
on how to specify differential equations for this solver can be found in the package documentation and
vignettes (Soetaert et al. 2010).

#dede version

CSZ.dede<-function(t,y,p){

sr <- p["sr"]

fs <- p["fs"]

ds <- p["ds"]

eta <- p["eta"]

Tmin <- p["Tmin"]

muz <- p["muz"]

Rs <- Ms <- 0

lag1 <- lag2 <- 0

if (t>Tmin) {

lag1 <- lagvalue(t - Tmin)

Rs <- sr * fs * lag1[1]

}

phiZ <- eta * y[2]

dy1 <- -(muz + sr) * y[1]

dy2 <- Rs - Ms - ds * y[2]

dy3 <- phiZ - (muz + sr) * y[3]

if(y[1]<0) dy1<-0

if (y[2] < 0) {

dy2 <- Rs - Ms

dy3 <- -(muz + sr) * y[3]

}

if (y[3] < 0) {

dy3 <- dy3 + (muz + sr) * y[3]

}

list(c(dy1,dy2,dy3))

}

2.2 Observation model

Even though the data used in this example come from an experimental study, the system is only partially
observed. We know the initial conditions for all states, but we only have observations for the second generation
of Zoospores Z. Because the observations are counts (i.e. discrete numbers), we assume that observations of
the system at a set of discrete times t′ are independent Poisson random variables with a mean given by the
solution of the DDE, at times t′.

2

The observations are provided with deBInfer. They can be loaded with the data() command.

#load chytrid data

data(chytrid)

#have a look at the variables

head(chytrid)

time count

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0

6 1 0

#plot the data

plot(chytrid, xlab = "Time (days)", ylab = "Zoospores x 10e4", xlim = c(0,10))

The log-likelihood of the data given the parameters, underlying model, and initial conditions is then a sum
over the n observations at each time point in t′

ℓ(Z|θ) =

n∑

t

Zt log λ − nλ (4)

This can be translated into an observation model function for deBInfer. The observation model function
must have three named arguments data, sim.data, and samp, as these are used by the MCMC procedure
to pass in the data (as a data.frame, i.e. indexed using the $ operator and the column names of the input

3

data), the current state of the Markov chain (as a named vector), and the associated DE model solution (as a
matrix-like object of class deSolve, i.e. indexed using the [] operator and the declared names of the state
variables). We can access these inputs to define the data likelihood. In this case we have repeat measurements
for each time point, so we iterate over the unique timepoints in data$time, and then calculate the sum
log-likelihood over all matching data$count observations using the current value of the state variable Z from
the DE model solution at this point in the Markov chain.

observation model

chytrid_obs_model <- function(data, sim.data, samp) {

ec <- 0.01

llik.Z <- 0

for(i in unique(data$time)){

try(llik.Z <- llik.Z + sum(dpois(data$count[data$time == i],

lambda = (sim.data[,"Z"][sim.data[,"time"] == i] + ec),

log = TRUE)))

}

llik <- llik.Z

return(llik)

}

Following Johnson et al. (2013) we employ a small correction ec that is needed because the DE solution can
equal zero, whereas the parameter lambda of the Poisson likelihood must be strictly positive.

2.3 Parameter declaration

We continue by defining the parameters for inference

sr <- debinfer_par(name = "sr", var.type = "de", fixed = FALSE,

value = 2, prior = "gamma", hypers = list(shape = 5, rate = 1),

prop.var = c(3,4), samp.type = "rw-unif")

fs <- debinfer_par(name = "fs", var.type = "de", fixed = FALSE,

value = 0.5, prior = "beta", hypers = list(shape1 = 1, shape2 = 1),

prop.var = 0.01, samp.type = "ind")

ds <- debinfer_par(name = "ds", var.type = "de", fixed = FALSE,

value = 2, prior = "gamma", hypers = list(shape = 1, rate = 1),

prop.var = 0.1, samp.type = "rw")

muz <- debinfer_par(name = "muz", var.type = "de", fixed = FALSE,

value = 1, prior = "gamma", hypers = list(shape = 5, rate = 1),

prop.var = c(4,5), samp.type = "rw-unif")

eta <- debinfer_par(name = "eta", var.type = "de", fixed = FALSE,

value = 10, prior = "gamma", hypers = list(shape = 1, rate = 0.25),

prop.var = 5, samp.type = "rw")

Tmin <- debinfer_par(name = "Tmin", var.type = "de", fixed = FALSE,

value = 3, prior = "unif", hypers = list(min = 2, max = 6),

prop.var = 0.05, samp.type = "rw")

----inits---

C <- debinfer_par(name = "C", var.type = "init", fixed = TRUE, value = 120)

4

S <- debinfer_par(name = "S", var.type = "init", fixed = TRUE, value = 0)

Z <- debinfer_par(name = "Z", var.type = "init", fixed = TRUE, value = 0)

2.4 MCMC Inference

The declared parameters are then collated using the setup_debinfer function. Note that the initial values

must be entered in the same order, as they are specified in the DE model function, as the solver
matches these values by position, rather than by name. More details can be found in ?deSolve::dede. The
remaining parameters can be entered in any order.

----setup---

mcmc.pars <- setup_debinfer(sr, fs, ds, muz, eta, Tmin, C, S, Z)

de_mcmc is the workhorse of the package and runs the MCMC estimation. The progress of the MCMC
procedure can be monitored using the cnt, plot and verbose options: Every cnt iterations the function will
print out information about the current state, and, if plot=TRUE, traceplots of the chains will be plotted.
Setting verbose=TRUE will print additional information. Note that frequent plotting will substantially slow
down the MCMC sampler, and should be used only on short runs when tuning the sampler.

do inference with deBInfer

MCMC iterations

iter <- 300

inference call

dede_rev <- de_mcmc(N = iter, data = chytrid, de.model = CSZ.dede,

obs.model = chytrid_obs_model, all.params = mcmc.pars,

Tmax = max(chytrid$time), data.times = c(0,chytrid$time), cnt = 50,

plot = FALSE, sizestep = 0.1, solver = "dede", verbose.mcmc = FALSE)

Note that the number of iterations was set to 300 to keep the build time of the vignette within acceptable
limits. For the inference results reported in Boersch-Supan and Johnson (2017) the MCMC procedure was run
for 100000 iterations, which took about 4 hours on a 2014 Apple Mac mini with a 2.6 GHz Intel i5 processor.

2.5 MCMC diagnostics

We plot and summarize the MCMC chains

par(mfrow = c(3,4))

plot(dede_rev, ask = FALSE, auto.layout = FALSE)

5

From the traceplot we can see that with only 300 iterations the chains have neither mixed well, nor reached
stationarity. For demonstration purposes we remove a burnin period of 100 samples and have a look at
parameter correlations, and the overlap between the posterior and prior densities.

burnin <- 100

pairs(dede_rev, burnin = burnin, scatter = TRUE, trend = TRUE)

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : pseudoinverse used at 0.8982

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : neighborhood radius 0.022895

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : reciprocal condition number 7.345e-17

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

6

parametric, : There are other near singularities as well. 0.0005156

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : pseudoinverse used at 2.6299

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : neighborhood radius 0.068393

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : reciprocal condition number 1.2365e-17

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : There are other near singularities as well. 0.0019716

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : pseudoinverse used at 2.6299

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : neighborhood radius 0.068393

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : reciprocal condition number 5.7111e-17

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : There are other near singularities as well. 0.0014287

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : pseudoinverse used at 2.7126

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : neighborhood radius 0.044403

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : reciprocal condition number 0

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : There are other near singularities as well. 0.00091114

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : pseudoinverse used at 2.6299

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : neighborhood radius 0.068393

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : reciprocal condition number 3.5386e-17

Warning in simpleLoess(y, x, w, span, degree = degree, parametric =

parametric, : There are other near singularities as well. 0.0022514

7

post_prior_densplot(dede_rev, burnin = burnin)

8

More control over the post_prior_densplot can be achieved by plotting the parameters individually, using
the param option. This way the x and y limits of the plots can be adjusted to show a larger portion of the
prior support, and fancy labels can be added.

par(mfrow = c(2,3), mgp = c(2.2, 0.8, 0))

#define a fancy y axis label

ylabel = expression(paste(Pr,"(", theta,"|", "Y", ")"))

#plot the individual parameters

post_prior_densplot(dede_rev, param = "sr",xlab = expression(theta),

ylab = ylabel, show.obs = FALSE, xlim = c(0,8),

main = expression(paste("s",phantom()[{paste("r")}])))

legend("topright", legend = c("Posterior","Prior"), lty = 1, col = c("black", "red"))

post_prior_densplot(dede_rev, param = "fs",xlab = expression(theta),

ylab = ylabel, show.obs = FALSE, xlim = c(-0.1,1.1),

main = expression(paste("f",phantom()[{paste("s")}])))

9

post_prior_densplot(dede_rev, param = "ds",xlab = expression(theta),

ylab = ylabel, show.obs = FALSE, xlim = c(0,3),

main = expression(paste("d",phantom()[{paste("s")}])))

post_prior_densplot(dede_rev, param = "muz",xlab = expression(theta),

ylab = ylabel, show.obs = FALSE, xlim = c(0,6),

main = expression(paste(mu,phantom()[{paste("Z")}])))

post_prior_densplot(dede_rev, param = "eta",xlab = expression(theta),

ylab = ylabel, show.obs = FALSE, xlim = c(0,50), ylim = c(0,0.2),

main = expression(eta))

post_prior_densplot(dede_rev, param = "Tmin",xlab = expression(theta),

ylab = ylabel, show.obs = FALSE, xlim = c(1.5,6.5),

main = expression(paste("T",phantom()[{paste("min")}])))

2.6 Simulating posterior trajectories

We simulate 100 DE model trajectories from the posterior and calculate the 95% highest posterior density
interval for the deterministic part of the model.

post_traj <- post_sim(dede_rev, n = 100, times = seq(0,10,by = 0.1), burnin = burnin,

output = "all", prob = 0.95)

We can visualise the median posterior trajectory and the highest posterior density interval using

#median and HDI

par(mfrow = c(1,3))

plot(post_traj, plot.type = "medianHDI", auto.layout = FALSE)

legend("topright", legend = c("posterior median", "95% HDI"), lty = 1,

10

col = c("red","grey"), bty = "n")

Alternatively we can plot an ensemble of posterior trajectories using

plot(post_traj, plot.type = "ensemble", col = "#FF000040")

Lastly, it is straightforward to create customized plots by accessing the simulated trajectories inside the
post_traj object (as the class post_sim_list is simply a nested list). For example we can recreate Figure
5 in Boersch-Supan et al. (2017), which shows the trajectories of all three state variables in a single plot,

11

with the following code:

plot(chytrid, xlab = "Time (days)", ylab = "Zoospores x 10e4", xlim = c(0,10))

for(i in seq_along(post_traj$sims)) {

DATA1 <- as.data.frame(post_traj$sims[i])

lines(DATA1[,2] ~ DATA1[,1])

lines(DATA1[,3] ~ DATA1[,1],col = "red")

lines(DATA1[,4] ~ DATA1[,1],col = "blue")

}

References

Boersch-Supan, P.H., Ryan, S.J. & Johnson, L.R. (2017). deBInfer: Bayesian inference for dynamical models
of biological systems. Methods in Ecology and Evolution, 8, 511–518.

Johnson, L.R., Pecquerie, L. & Nisbet, R.M. (2013). Bayesian inference for bioenergetic models. Ecology, 94,
882–894.

Rosenblum, E.B., Voyles, J., Poorten, T.J. & Stajich, J.E. (2010). The deadly chytrid fungus: A story of an
emerging pathogen. PLoS Pathogens, 6, 1–3.

Soetaert, K., Petzoldt, T. & Setzer, R.W. (2010). Solving differential equations in R: Package deSolve.
Journal of Statistical Software, 33, 1–25.

Voyles, J., Johnson, L.R., Briggs, C.J., Cashins, S.D., Alford, R.A., Berger, L., Skerratt, L.F., Speare,
R. & Rosenblum, E.B. (2012). Temperature alters reproductive life history patterns in batrachochytrium

12

dendrobatidis, a lethal pathogen associated with the global loss of amphibians. Ecology and Evolution, 2,
2241–2249.

Wickham, H. & Chang, W. (2016). Devtools: Tools to make developing R packages easier.

13

	Preliminaries
	The chytrid population growth model
	DDE model
	Observation model
	Parameter declaration
	MCMC Inference
	MCMC diagnostics
	Simulating posterior trajectories

	References

