
Bayesian inference for the logistic growth model

Philipp H Boersch-Supan, Sadie J Ryan, and Leah R Johnson

September 2016

1 Preliminaries

This vignette illustrates the steps needed to perform inference for an ODE model, the logistic growth model.
A detailed description of the rationale behind the Bayesian inference approach for differential equations can
be found in the paper describing the deBInfer package (Boersch-Supan et al. 2017). The vignette also
illustrates how to simulate noisy observations from an existing DE model. Conducting inference on a model
with known parameters is good practice, when developing models for actual data, as it provides validation of
the inference procedure.

This example assumes that deBInfer is installed and loaded. If this is not the case it needs to be installed
from CRAN:

install.packages("deBInfer")

Development versions of deBInfer are available on github, and can be installed using the devtools package
(Wickham & Chang 2016).

if (require("devtools")){

#install deBInfer from github

devtools::install_github("pboesu/debinfer")

}

library(deBInfer)

2 Defining the DE model

We define a logistic growth model

dN

dt
= rN

(

1 − N

K

)

. (1)

and implement it for deSolve::ode (Soetaert et al. 2010):

library(deSolve)

logistic_model <- function (time, y, parms) {

with(as.list(c(y, parms)), {

dN <- r * N * (1 - N / K)

list(dN)

})

}

We then pick a set of parameter values (r = 0.1, K = 10) and an initial condition (N = 0.1) and solve the
model for these values.

1

y <- c(N = 0.1)

parms <- c(r = 0.1, K = 10)

times <- seq(0, 120, 1)

out <- ode(y, times, logistic_model, parms, method="lsoda")

We can plot this numerical solution.

3 Simulating observations

Next we simulate a noisy dataset from this equation. We do this by sampling a random subset from the
integration output

set.seed(143)

#force include the first time-point (t=0)

N_obs <- as.data.frame(out[c(1,runif(35, 0, nrow(out))),])

and we “add” lognormal noise with a known “observation” standard deviation σ2
obs

= 0.05.

add lognormal noise

parms["sdlog.N"] <- 0.05

N_obs$N_noisy <- rlnorm(nrow(N_obs), log(N_obs$N),parms["sdlog.N"])

#observations must be ordered for solver to work

N_obs <- N_obs[order(N_obs$time),]

#Plot true and noisy observations

plot(N_obs$time, N_obs$N, ylim=c(0, max(N_obsN,N_obsN_noisy)))

points(N_obs$time, N_obs$N_noisy, col="red")

2

4 Defining an observation model and parameters for inference

The appropriate log-likelihood for these data takes the form

ℓ(Y|θ) =
∑

t

ln

(

1

Ñtσobs

√
2π

exp

(

− (ln Ñt − ln(Nt + ε))2

2σ2
obs

))

(2)

where Ñt are the observations, and Nt are the predictions of the DE model given the current MCMC sample
of the parameters θ. Further, ε is a small correction needed, because the DE solution can equal zero (or
less, depending on numerical precision) (Johnson et al. 2013). ε should therefore be at least as large as the
expected numerical precision of the solver. We chose ε = 10−6, which is on the same order as the default
numerical precision of the default solver (deSolve::ode with method = "lsoda"), but we found that the
inference results were insensitive to this choice as long as ε ≤ 0.01 . A sensitivity analysis for ε can be found
at the end of this document.

This can be translated into an observation model function for deBInfer. The observation model function
must have three named arguments data, sim.data, and samp, as these are used by the MCMC procedure
to pass in the data (as a data.frame, i.e. indexed using the $ operator and the column names of the input
data), the current state of the Markov chain (as a named vector), and the associated DE model solution (as a
matrix-like object of class deSolve, i.e. indexed using the [] operator and the declared names of the state
variables). We can access these inputs to define the data likelihood.

The user specifies the observation model such that it returns the summed log-likelihoods of the data. In this
example the observations are in the data.frame column N_noisy, and the corresponding predicted states are
in the column N of the matrix-like objectsim.data

3

the observation model

logistic_obs_model <- function(data, sim.data, samp){

llik.N <- sum(dlnorm(data$N_noisy, meanlog = log(sim.data[,"N"] + 1e-6),

sdlog = samp[["sdlog.N"]], log = TRUE))

return(llik.N)

}

All parameters that are used in the DE model and the observation model need to be declared for the inference
procedure using the debinfer_par() function. The declaration describes the variable name, whether it is a
DE or observation parameter and whether or not it is to be estimated. If the parameter is to be estimated,
the user also needs to specify a prior distribution and a number of additional parameters for the MCMC
procedure. deBInfer currently supports priors from all probability distributions implemented in base R, as
well as their truncated variants, as implemented in the truncdist package (Novomestky & Nadarajah 2012).

We declare the DE model parameter r, assign a prior r ∼ N (0, 1) and a random walk sampler with a
Normal kernel (samp.type="rw") and proposal variance of 0.005. Similarly, we declare K ∼ ln N (1, 1) and
ln(σ2

obs
) ∼ N (0, 1). Note that we are using the asymmetric uniform proposal distribution U(a

b
θ(k), b

a
θ(k)) for

the variance parameter (samp.type="rw-unif"), as this ensures strictly positive proposals.

library(deBInfer)

r <- debinfer_par(name = "r", var.type = "de", fixed = FALSE,

value = 0.5, prior = "norm", hypers = list(mean = 0, sd = 1),

prop.var = 0.0001, samp.type="rw")

K <- debinfer_par(name = "K", var.type = "de", fixed = FALSE,

value = 5, prior = "lnorm", hypers = list(meanlog = 1, sdlog = 1),

prop.var = 0.1, samp.type = "rw")

sdlog.N <- debinfer_par(name = "sdlog.N", var.type = "obs", fixed = FALSE,

value = 0.05, prior = "lnorm", hypers = list(meanlog = 0, sdlog = 1),

prop.var = c(3,4), samp.type = "rw-unif")

Lastly, we provide an initial value N0 = 0.1 for the DE:

N <- debinfer_par(name = "N", var.type = "init", fixed = TRUE, value = 0.1)

The declared parameters are then collated using the setup_debinfer function. Note that for models with
more than one state variable, the initial values must be entered in the same order, as they are

specified in the DE model function, as the solver matches these values by position, rather than by name.
More details can be found in ?deSolve::ode. The remaining parameters can be entered in any order.

mcmc.pars <- setup_debinfer(r, K, sdlog.N, N)

5 Conduct inference

Finally we use deBInfer to estimate the parameters of the original model. de_mcmc is the workhorse of the
package and runs the MCMC estimation. The progress of the MCMC procedure can be monitored using
the cnt, plot and verbose options: Every cnt iterations the function will print out information about the
current state, and, if plot=TRUE, traceplots of the chains will be plotted. Setting verbose=TRUE will print
additional information. Note that frequent plotting will substantially slow down the MCMC sampler, and
should be used only on short runs when tuning the sampler.

do inference with deBInfer

MCMC iterations

iter <- 5000

4

inference call

mcmc_samples <- de_mcmc(N = iter, data = N_obs, de.model = logistic_model,

obs.model = logistic_obs_model, all.params = mcmc.pars,

Tmax = max(N_obs$time), data.times = N_obs$time, cnt = 500,

plot = FALSE, verbose.mcmc = FALSE, solver = "ode")

We plot and summarize the MCMC chains

plot(mcmc_samples)

From the traceplot we can see that the burnin period extends through about 250 iterations. We can remove
the burnin and have a look at parameter correlations using pairs.debinfer_result.

burnin <- 250

pairs(mcmc_samples, burnin = burnin, scatter=TRUE, trend=TRUE)

5

And we can look at the overlap between the posterior and prior densities using post_prior_densplot.

par(mfrow = c(1,3))

post_prior_densplot(mcmc_samples, burnin = burnin, param = "r")

abline(v = 0.1, col = "red", lty = 2)

post_prior_densplot(mcmc_samples, burnin = burnin, param = "K")

abline(v = 10, col = "red", lty = 2)

post_prior_densplot(mcmc_samples, burnin = burnin, param = "sdlog.N")

abline(v = 0.05, col = "red", lty = 2)

6

Overlay the true underlying parameter values as vertical dashed lines shows that our estimation is recovering
the true parameters.

6 Posterior simulations

We then simulate DE model trajectories from the posterior and calculate the 95% highest posterior density
interval for the deterministic part of the model.

post_traj <- post_sim(mcmc_samples, n=500, times=0:100, burnin=burnin, output = "all", prob = 0.95)

We can visualise the median posterior trajectory and the associated highest posterior density interval using
plot.type="medianHDI". The panel.first option can be used to add the trajectory of the true model,
which is stored in out.

#median and HDI

plot(post_traj, plot.type = "medianHDI", lty = c(2,1), lwd = 3, col = c("red","grey20"),

panel.first = lines(out, col = "darkblue", lwd = 2)

)

legend("topleft", legend = c("posterior median", "95% HDI", "true model"),

lty = c(2,1,1), lwd = c(3,2,2), col = c("red","grey20","darkblue"),

bty = "n")

7

Again, this confirms that the inference procedure does indeed recover the true model.

Lastly, we can plot an ensemble of posterior trajectories using plot.type="ensemble"

plot(post_traj, plot.type = "ensemble", col = "#FF000040")

8

7 Sensitivity analysis for ε

Below is code to conduct a sensitivity analysis for the influence of the value of the correction factor ε in
the observation model on the posterior parameter estimates. (The vignette makes use of a precompiled
figure instead of evaluating the following code, as the execution takes about 10 minutes on a modern desktop
computer).

For this purpose we modify the observation model slightly, so that ε can be passed in as an observation
parameter, and we declare a corresponding debinfer_par with the name epsilon and add it to the parameter
list.

#reformulate the observation model such that epsilon is an observation parameter

logistic_obs_model_eps <- function(data, sim.data, samp){

llik.N <- sum(dlnorm(data$N_noisy, meanlog = log(sim.data[,"N"] + samp[["epsilon"]]),

sdlog = samp[["sdlog.N"]], log = TRUE))

return(llik.N)

}

#declare epsilon

epsilon <- debinfer_par(name = "epsilon", var.type = "obs", fixed = TRUE,

value = 1e-6)

#set up MCMC parameters

mcmc.pars <- setup_debinfer(r, K, sdlog.N, epsilon, N)

9

We can then manipulate the value of epsilon in list object mcmc.pars within an lapply call and conduct
the inference for each value of eps_range.

define a range of epsilon values

eps_range <- c(1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1)

conduct inference for each value of eps_range

eps_sims <- lapply(eps_range, function(x){

#reassign value of epsilon

mcmc.pars$epsilon$value <- x

eps_samples <- de_mcmc(N = 10000, data = N_obs, de.model = logistic_model,

obs.model = logistic_obs_model_eps, all.params = mcmc.pars,

Tmax = max(N_obs$time), data.times = N_obs$time, cnt = 500,

plot = FALSE, solver = "ode")

return(eps_samples)

})

add names to the inference runs

names(eps_sims) <- as.character(eps_range)

collate the samples in a data.frame for easy plotting while omitting

a burnin of 1000 samples

eps_samps <- plyr::ldply(eps_sims, function(x)(x$samples[1000:10000,]), .id = "epsilon")

plot sensitivity analysis

par(mfrow = c(1,3), mar = c(3,3,2,2), mgp = c(1.7,0.5,0))

beanplot::beanplot(eps_samps$r ~ eps_samps$epsilon, log = "", what = c(0,1,1,0),

col = "darkgrey", bw = 2e-4, maxwidth = 0.6, xlab = "epsilon",

ylab = "r")

legend("bottomleft", legend = c("posterior mean", "true value"), lty = c(1,3),

col = c("black", "red"), lwd = 2, bty = "n")

abline(h = 0.1, col = "red", lwd = 2, lty = 3)

beanplot::beanplot(eps_samps$K ~ eps_samps$epsilon, log = "", what = c(0,1,1,0),

col = "darkgrey", bw = 2e-2, maxwidth = 0.6, xlab = "epsilon"

, ylab = "K")

abline(h = 10, col = "red", lwd = 2, lty = 3)

beanplot::beanplot(eps_samps$sdlog.N ~ eps_samps$epsilon, log="", what=c(0,1,1,0),

col = "darkgrey", bw = 2e-3, maxwidth = 0.6, xlab = "epsilon",

ylab = "sdlog.N")

abline(h = 0.05, col = "red", lwd = 2, lty = 3)

References

Boersch-Supan, P.H., Ryan, S.J. & Johnson, L.R. (2017). deBInfer: Bayesian inference for dynamical models
of biological systems. Methods in Ecology and Evolution, 8, 511–518.

Johnson, L.R., Pecquerie, L. & Nisbet, R.M. (2013). Bayesian inference for bioenergetic models. Ecology, 94,
882–894.

Novomestky, F. & Nadarajah, S. (2012). Truncdist: Truncated random variables.

Soetaert, K., Petzoldt, T. & Setzer, R.W. (2010). Solving differential equations in R: Package deSolve.
Journal of Statistical Software, 33, 1–25.

Wickham, H. & Chang, W. (2016). Devtools: Tools to make developing R packages easier.

10

0
.0

9
0

0
.0

9
5

0
.1

0
0

0
.1

0
5

1e−06 1e−04 0.01 0.1

epsilon

r

posterior mean

true value

9
1
0

1
1

1
2

1e−06 1e−04 0.01 0.1

epsilon

K

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

1e−06 1e−04 0.01 0.1

epsilon

s
d
lo

g
.N

Figure 1: Influence of ε on the posterior parameter estimates

11

	Preliminaries
	Defining the DE model
	Simulating observations
	Defining an observation model and parameters for inference
	Conduct inference
	Posterior simulations
	Sensitivity analysis for \varepsilon
	References

