
Package ‘deTestSet’
October 6, 2021

Version 1.1.7.3

Title Test Set for Differential Equations

Maintainer Karline Soetaert <karline.soetaert@nioz.nl>

Author Karline Soetaert [aut, cre],
Jeff Cash [aut],
Francesca Mazzia [aut],
Ernst Hairer [ctb] (files dopri8.f, dopri6.f),
Gerard Wanner [ctb] (files dopri8.f, dopri6.f),
T. Abdulla [ctb] (file mebdfi.f),
Cecilia Magherini [ctb] (files bimd.f, bimda.f),
Luigi Brugnano [ctb] (files bimd.f, bimda.f),
Cleve Moler [ctb] (file bimda.f)

Depends R (>= 2.01), deSolve

Imports graphics, grDevices, stats

Description Solvers and test set for stiff and non-stiff differential equations, and
differential algebraic equations.
See Mazzia, F., Cash, J.R., and K. Soetaert (2012) <DOI:10.1016/j.cam.2012.03.014>.

License GPL

Copyright inst/COPYRIGHTS

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-10-06 09:30:08 UTC

R topics documented:
deTestSet-package . 2
andrews . 3
beam . 5
bimd . 6
caraxis . 13
crank . 15
dae . 16

1

https://doi.org/10.1016/j.cam.2012.03.014

2 deTestSet-package

dopri5 . 18
dopri853 . 23
E5 . 27
emep . 28
fekete . 30
gamd . 31
hires . 38
mebdfi . 40
nand . 49
orego . 51
pleiades . 52
pollution . 53
reference . 55
ring . 56
rober . 57
transistor . 59
tube . 60
twobit . 61
vdpol . 63
wheelset . 64

Index 66

deTestSet-package Solvers and Test Set for Initial Value Problems of Ordinary Differen-
tial Equations (ODE), Partial Differential Equations (PDE) and for
Differential Algebraic Equations (DAE)

Description

R package deTestSet contains the R-version of the ODE and DAE initial value problems test set
from the url: http://archimede.dm.uniba.it/~testset.

If the test model problem is small enough, then it is implemented in pure R. For larger models, the
problem is specified in FORTRAN code.

These implementations were compiled as DLLs, and included in the package. The code of these
models can be found in the packages inst/doc/examples/dynload subdirectory.

In addition to all solvers present in package deSolve, deTestSet contains the initial value problem
solvers gamd, and mebdfi, implementing a generalised adams method and a differential algebraic
equation solver of index up to three.

Details

Package: deTestSet
Type: Package
License: GNU Public License 2 or above

andrews 3

Author(s)

Karline Soetaert (Maintainer),

Jeff Cash,

Francesca Mazzia

References

Mazzia, F., Cash, J.R. and K. Soetaert, 2012. A Test Set for Stiff Initial Value Problem Solvers in the
open source software R: package deTestSet. Journal of Computational and Applied Mathematics
236: 4119-4131 DOI information: 10.1016/j.cam.2012.03.014.

See Also

ode for a general interface to most of the ODE solvers from package deSolve

ode.1D, ode.2D, ode.3D, for integrating 1-D, 2-D and 3-D models from package deSolve

dae, a general interface to the dae solvers, including mebdfi, gamd, and daspk and radau (deSolve)

Examples

Not run:
show examples (see respective help pages for details)
example(caraxis)
example(nand)
example(andrews)

open the directory with R sourcecode examples
browseURL(paste(system.file(package = "deTestSet"), "/doc/examples", sep = ""))
open the directory with C and FORTRAN sourcecode examples
browseURL(paste(system.file(package = "deTestSet"), "/doc/examples/dynload", sep = ""))

show package vignette with how to use the test set
+ source code of the vignette
vignette("deTestSet")
edit(vignette("deTestSet"))

End(Not run)

andrews Andrews Squeezing Mechanism, Index 3 DAE

Description

The andrews problem describes the motion of 7 rigid bodies connected by joints without friction

It is a non-stiff second order differential algebraic equation of index 3, consisting of 14 differential
and 13 algebraic equations

4 andrews

Usage

andrews (times = seq(0, 0.03, by = 0.03/100), yini = NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-7, rtol = 1e-7, maxsteps = 1e+05, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 0.03 are printed

method the solver to use

maxsteps maximal number of steps per output interval taken by the solver

... additional arguments passed to the solver .

Details

The default parameters are: parameter <- c(m1 = .04325, m2 = .00365, m3 = .02373, m4 = .00706 ,
m5 = .07050, m6 = .00706, m7 = .05498 , xa = -.06934, ya = -.00227 , xb = -0.03635, yb = .03273
, xc = .014 , yc = .072, c0 = 4530 , i1 = 2.194e-6, i2 = 4.410e-7, i3 = 5.255e-6, i4 = 5.667e-7, i5 =
1.169e-5, i6 = 5.667e-7, i7 = 1.912e-5, d = 28e-3, da = 115e-4,e=2e-2, ea = 1421e-5, rr = 7e-3, ra =
92e-5, l0 = 7785e-5, ss = 35e-3, sa = 1874e-5, sb = 1043e-5, sc = 18e-3, sd = 2e-2, ta = 2308e-5, tb
= 916e-5, u = 4e-2, ua = 1228e-5, ub = 449e-5, zf = 2e-2, zt = 4e-2,fa=1421e-5, mom = 33e-3)

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

https://archimede.dm.uniba.it/~testset/

beam 5

Examples

out <- andrews()
plot(out, lwd = 2, which = 1:9)

refsol <- reference("andrews")
max(abs(out[nrow(out),-1] - refsol)/refsol)

beam Motion of Inextensible Elastic Beam, ODE

Description

The beam modulator problem is a problem from mechanics, describing the motion of an elastic
beam, supposed inextensible, of length 1 and thin.

It is an ordinary differential equation of dimension 80.

Usage

beam (times=seq(0, 5, by = 0.05), yini = NULL,
printmescd = TRUE, method = gamd,
atol = 1e-6, rtol = 1e-6, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

method the solver to use

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 5 are printed

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

... additional arguments passed to the solver .

Details

There are no parameters

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

6 bimd

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- beam()
plot(out, col = "darkblue", lwd = 2, which = 1:16)
mtext(side = 3, line = -1.5, "beam", cex = 1.25, outer = TRUE)

image(out[,-1])

compare with reference solution
refsol <- reference("beam")
max(abs(out[nrow(out),-1] - refsol)/refsol)

bimd Blended Implicit Method for DAE

Description

Solves the initial value problem for stiff or nonstiff systems of either:

• a system of ordinary differential equations (ODE) of the form

y′ = f(t, y, ...)

or

• a system of linearly implicit DAES in the form

My′ = f(t, y)

The R function bimd provides an interface to the Fortran DAE solver bimd, written by Cecilia
Magherini and Luigi Bugnano.

It implements a Blended Implicit Methods of order 4-6-8-10-12 with step size control and continu-
ous output.

The system of DAE’s is written as an R function or can be defined in compiled code that has been
dynamically loaded.

https://archimede.dm.uniba.it/~testset/

bimd 7

Usage

bimd(y, times, func, parms, nind = c(length(y), 0, 0),
rtol = 1e-6, atol = 1e-6, jacfunc = NULL, jactype = "fullint",
mass = NULL, massup = NULL, massdown = NULL, verbose = FALSE,
hmax = NULL, hini = 0, ynames = TRUE, minord = NULL,
maxord = NULL, bandup = NULL, banddown = NULL,
maxsteps = 1e4, maxnewtit = c(10, 12, 14, 16, 18), wrkpars = NULL,
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout=0, outnames = NULL, forcings = NULL,
initforc = NULL, fcontrol = NULL, ...)

Arguments

y the initial (state) values for the DAE or ODE system. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the DAE or
ODE system (the model definition) at time t, or a character string giving the
name of a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <-function(t,y,parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives should be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before bimd() is called. See deSolve pack-
age vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

nind if a DAE system: a three-valued vector with the number of variables of index
1, 2, 3 respectively. The equations must be defined such that the index 1 vari-
ables precede the index 2 variables which in turn precede the index 3 variables.
The sum of the variables of different index should equal N, the total number of
variables.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.

jacfunc if not NULL, an R function that computes the Jacobian of the system of differ-
ential equations dydot(i)/dy(j), or a string giving the name of a function or sub-
routine in ‘dllname’ that computes the Jacobian (see vignette "compiledCode"
from package deSolve, for more about this option).

8 bimd

In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix dydot/dy, where
the ith row contains the derivative of dyi/dt with respect to yj , or a vector con-
taining the matrix elements by columns (the way R and FORTRAN store matri-
ces).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user.

mass the mass matrix. If not NULL, the problem is a linearly implicit DAE and defined
as M dy/dt = f(t, y). If the mass-matrix M is full, it should be of dimension
n2 where n is the number of y-values; if banded the number of rows should
be less than n, and the mass-matrix is stored diagonal-wise with element (i, j)
stored in mass(i -j + mumas + 1,j).
If mass = NULL then the model is an ODE (default)

massup number of non-zero bands above the diagonal of the mass matrix, in case it is
banded.

massdown number of non-zero bands below the diagonal of the mass matrix, in case it is
banded.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the inte-
gration - see details.

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is set equal to 1e-6.
Usually 1e-3 to 1e-5 is good for stiff equations

ynames logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for multi-D models.

minord the minimum order to be allowed, >= 3 and <= 9. NULL uses the default, 3.

maxord the maximum order to be allowed, >= minord and <= 9. NULL uses the default,
9.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.

maxsteps maximal number of steps taken by the solver, for the entire integration. This is
different from the settings of this argument in the solvers from package deSolve!

maxnewtit A five-valued integer vector, with the maximal number of splitting-Newton iter-
ations for the solution of the iplicit system in each step for order 4, 6, 8, 10 and
12 respectively. The default is c(10, 12, 14, 16, 18)

wrkpars A 12-valued real vector, with extra input parameters, put in the work vector
work, at position work[3:14] in the fortran code - see details in fortran code.
NULL uses the defaults

bimd 9

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See vignette "compiledCode" from package deSolve.

initfunc if not NULL, the name of the initialisation function (which initialises values of pa-
rameters), as provided in ‘dllname’. See vignette "compiledCode" from pack-
age deSolve.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculed in the dll - you have to perform this
check in the code - See vignette "compiledCode" from package deSolve.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN 77 subroutine bimd, whose documentation should be consulted
for details.

There are four standard choices for the jacobian which can be specified with jactype.

The options for jactype are

jactype = "fullint" a full Jacobian, calculated internally by the solver.

jactype = "fullusr" a full Jacobian, specified by user function jacfunc.

jactype = "bandusr" a banded Jacobian, specified by user function jacfunc; the size of the bands
specified by bandup and banddown.

10 bimd

jactype = "bandint" a banded Jacobian, calculated by bimd; the size of the bands specified by
bandup and banddown.

Inspection of the example below shows how to specify both a banded and full Jacobian.

The input parameters rtol, and atol determine the error control performed by the solver, which
roughly keeps the local error of y(i) below rtol(i)*abs(y(i))+atol(i).

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") from the deSolve package for an explanation of each element in the vectors
containing the diagnostic properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" from package deSolve for details.

Information about linking forcing functions to compiled code is in forcings (from package deSolve).

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘bimd’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

L.BRUGNANO, C.MAGHERINI, F.MUGNAI. Blended Implicit Methods for the Numerical Solu-
tion of DAE problems. Jour. CAM 189 (2006) 34-50.

L.BRUGNANO, C.MAGHERINI The BiM code for the numerical solution of ODEs Jour. CAM
164-165 (2004) 145-158.

L.BRUGNANO, C.MAGHERINI Some Linear Algebra issues concerning the implementation of
Blended Implicit Methods Numer. Linear Alg. Appl. 12 (2005) 305-314.

L.BRUGNANO, C.MAGHERINI Economical Error Estimates for Block Implicit Methods for ODEs
via Deferred Correction. Appl. Numer. Math. 56 (2006) 608-617.

L.BRUGNANO, C.MAGHERINI Blended Implementation of Block Implicit Methods for ODEs
Appl. Numer. Math. 42 (2002) 29-45.

See Also

• gamd another DAE solver from package deTestSet,

• mebdfi another DAE solver from package deTestSet,

• daspk another DAE solver from package deSolve,

• ode for a general interface to most of the ODE solvers from package deSolve,

bimd 11

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• mebdfi for integrating DAE models,

• dopri853 for the Dormand-Prince Runge-Kutta method of order 8(53)

diagnostics to print diagnostic messages.

Examples

===
Example 1:
Various ways to solve the same model.
===

the model, 5 state variables
f1 <- function (t, y, parms)
{

ydot <- vector(len = 5)

ydot[1] <- 0.1*y[1] -0.2*y[2]
ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]
ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]
ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]
ydot[5] <- -0.3*y[4] +0.1*y[5]

return(list(ydot))
}

the Jacobian, written as a full matrix
fulljac <- function (t, y, parms)
{

jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,
data = c(0.1, -0.2, 0 , 0 , 0 ,

-0.3, 0.1, -0.2, 0 , 0 ,
0 , -0.3, 0.1, -0.2, 0 ,
0 , 0 , -0.3, 0.1, -0.2,
0 , 0 , 0 , -0.3, 0.1))

return(jac)
}

the Jacobian, written in banded form
bandjac <- function (t, y, parms)
{

jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
data = c(0 , -0.2, -0.2, -0.2, -0.2,

0.1, 0.1, 0.1, 0.1, 0.1,
-0.3, -0.3, -0.3, -0.3, 0))

return(jac)
}

initial conditions and output times

12 bimd

yini <- 1:5
times <- 1:20

default: stiff method, internally generated, full Jacobian
out <- bimd(yini, times, f1, parms = 0, jactype = "fullint")
plot(out)

stiff method, user-generated full Jacobian
out2 <- bimd(yini, times, f1, parms = 0, jactype = "fullusr",

jacfunc = fulljac)

stiff method, internally-generated banded Jacobian
one nonzero band above (up) and below(down) the diagonal
out3 <- bimd(yini, times, f1, parms = 0, jactype = "bandint",

bandup = 1, banddown = 1)

stiff method, user-generated banded Jacobian
out4 <- bimd(yini, times, f1, parms = 0, jactype = "bandusr",

jacfunc = bandjac, bandup = 1, banddown = 1)

===
Example 2:
stiff problem from chemical kinetics
===
Chemistry <- function (t, y, p) {

dy1 <- -.04*y[1] + 1.e4*y[2]*y[3]
dy2 <- .04*y[1] - 1.e4*y[2]*y[3] - 3.e7*y[2]^2
dy3 <- 3.e7*y[2]^2
list(c(dy1,dy2,dy3))

}

times <- 10^(seq(0, 10, by = 0.1))
yini <- c(y1 = 1.0, y2 = 0, y3 = 0)

out <- bimd(func = Chemistry, times = times, y = yini, parms = NULL)
plot(out, log = "x", type = "l", lwd = 2)

===
Example 3: DAE
Car axis problem, index 3 DAE, 8 differential, 2 algebraic equations
from
F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers,
release 2.4. Department
of Mathematics, University of Bari and INdAM, Research Unit of Bari,
February 2008.
Available at http://www.dm.uniba.it/~testset.
===

Problem is written as M*y = f(t,y,p).
caraxisfun implements the right-hand side:

caraxis 13

caraxisfun <- function(t, y, parms) {
with(as.list(y), {

yb <- r * sin(w * t)
xb <- sqrt(L * L - yb * yb)
Ll <- sqrt(xl^2 + yl^2)
Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)

dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr

dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g

dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g

c1 <- xb * xl + yb * yl
c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L

list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2))
})

}

eps <- 0.01; M <- 10; k <- M * eps^2/2;
L <- 1; L0 <- 0.5; r <- 0.1; w <- 10; g <- 1

yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
ul = -L0/L, vl = 0,
ur = -L0/L, vr = 0,
lam1 = 0, lam2 = 0)

the mass matrix
Mass <- diag(nrow = 10, 1)
Mass[5,5] <- Mass[6,6] <- Mass[7,7] <- Mass[8,8] <- M * eps * eps/2
Mass[9,9] <- Mass[10,10] <- 0
Mass

index of the variables: 4 of index 1, 4 of index 2, 2 of index 3
index <- c(4, 4, 2)

times <- seq(0, 3, by = 0.01)
out <- bimd(y = yini, mass = Mass, times = times, func = caraxisfun,

parms = NULL, nind = index)

plot(out, which = 1:4, type = "l", lwd = 2)

caraxis The Car Axis Mechanical Problem, Index 3 DAE

14 caraxis

Description

A rather simple multibody system, describing the behavior of a car axis on a bumpy road.

It is a differential algebraic equation of index 3

Usage

caraxis (times = seq(0, 3, by = 0.01), yini = NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol=1e-6, rtol=1e-6, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

times time sequence for which output is wanted; the first value of times must be the
initial time.

method the solver to use; only mebdfi available for now

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 3 are printed

parms list of parameters that overrule the default parameter values

... additional arguments passed to the solver .

Details

The default parameters are: eps = 1e-2, M = 10, L = 1, L0 = 0.5, r = 0.1, w = 10, g = 1

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

https://archimede.dm.uniba.it/~testset/

crank 15

Examples

out <- caraxis()
plot(out, lwd = 2, mfrow = c(3, 4))

compare with reference solution
out[nrow(out),2:11]-reference("caraxis")

crank Slider Crank Mechanical Problem, Index 2 DAE

Description

The crank problem is a constrained mechanical system including both rigid and elastic bodies

It is a differential algebraic equation of index 2, 24 equations.

Usage

crank (times=seq(0, 0.1, by = 0.001), yini = NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-6, rtol = 1e-6, maxsteps = 1e+06,
options = list(), ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.
times time sequence for which output is wanted; the first value of times must be the

initial time.
parms list of parameters that overrule the default parameter values
method the solver to use; only mebdfi available for now
maxsteps maximal number of steps per output interval taken by the solver
atol absolute error tolerance, either a scalar or a vector, one value for each y.
rtol relative error tolerance, either a scalar or a vector, one value for each y,
printmescd if TRUE the mixed error significant digits computed using the reference solution

at time 0.1 are printed
options a list which specifies the initial conditions used ini, whether the problem is stiff,

and the damping. The default is list(ini=1,stiff=0,damp=0)
... additional arguments passed to the solver .

Details

The default parameters are: M1 = 0.36, M2 = 0.151104, M3 = 0.075552, L1 = 0.15, L2 = 0.30, J1
= 0.002727, J2 = 0.0045339259, EE = 0.20e12, NUE = 0.30, BB = 0.0080, HH = 0.0080, RHO =
7870.0, GRAV = 0.0, OMEGA = 150.0

There are two default initial conditions - set with options(ini=x)

16 dae

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

Simeon, B.: Modelling a flexible slider crank mechanism by a mixed system of DAEs and PDEs,
Math. Modelling of Systems 2, 1-18 (1996);

Examples

out <- crank()
plot(out, lwd = 2, which = 1:9)

compare with reference solution (only the first seven components)
refsol <- reference("crank")
max(abs(out[nrow(out),2:8] - refsol[1:7])/refsol[1:7])

dae General Solver for Differential Algebraic Equations

Description

Solves a system of differential algebraic equations; a wrapper around the implemented DAE solvers

Usage

dae(y, times, parms, dy, res = NULL, func = NULL,
method = c("mebdfi", "daspk", "radau", "gamd", "bimd"), ...)

Arguments

y the initial (state) values for the DAE system, a vector. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms vector or list of parameters used in res

dy the initial derivatives of the state variables of the DAE system.

https://archimede.dm.uniba.it/~testset/

dae 17

func to be used if the model is an ODE, or a DAE written in linearly implicit form
(M y’ = f(t, y)). func should be an R-function that computes the values of the
derivatives in the ODE system (the model definition) at time t.
func must be defined as: func <-function(t,y,parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func, unless ynames is FALSE. parms is a vector or list
of parameters. ... (optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives should be
specified in the same order as the specification of the state variables y.

res either an R-function that computes the residual function F(t,y,y’) of the DAE
system (the model defininition) at time t, or a character string giving the name
of a compiled function in a dynamically loaded shared library.
If res is a user-supplied R-function, it must be defined as: res <-function(t,y,dy,parms,...).
Here t is the current time point in the integration, y is the current estimate of the
variables in the DAE system, dy are the corresponding derivatives. If the initial
y or dy have a names attribute, the names will be available inside res, unless
ynames is FALSE. parms is a vector of parameters.
The return value of res should be a list, whose first element is a vector con-
taining the residuals of the DAE system, i.e. delta = F(t,y,y’), and whose next
elements contain output variables that are required at each point in times.
If res is a string, then dllname must give the name of the shared library (without
extension) which must be loaded before dae() is called (see deSolve package
vignette "compiledCode" for more information).

method the solver to use, either a string ("mebdfi", "daspk"), "radau", "gamd" or a
function that performs integration.

... additional arguments passed to the solvers.

Details

This is simply a wrapper around the various dae solvers.

See package vignette for information about specifying the model in compiled code.

See the selected integrator for the additional options.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the second element of the return from
res, plus an additional column (the first) for the time value. There will be one row for each element
in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will
be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

18 dopri5

See Also

• ode for a wrapper around the ode solvers,

• ode.band for solving models with a banded Jacobian,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• mebdfi, daspk,radau,gamd,bimd, for the dae solvers

diagnostics to print diagnostic messages.

Examples

===
Chemical problem
===

daefun <- function(t, y, dy, parms) {
with (as.list(c(y, dy, parms)), {

res1 <- dA + dAB + lambda * A
res2 <- dAB + dB
alg <- B * A - K * AB

list(c(res1, res2, alg), sumA = A + AB)
})

}

parms <- c(lambda = 0.1, K = 1e-4)

yini <- with(as.list(parms),
c(A = 1, AB = 1, B = K))

dyini <- c(dA = 0, dAB = 0, dB = 0)

times <- 0:100

print(system.time(
out <-dae (y=yini, dy = dyini, times = times, res = daefun,

parms = parms, method = "daspk")
))

plot(out, ylab = "conc.", xlab = "time", lwd = 2)
mtext("IVP DAE", side = 3, outer = TRUE, line = -1)

dopri5 Dormand-Prince or CashCarp Runge-Kutta of Order (4)5

dopri5 19

Description

Solves the initial value problem for systems of ordinary differential equations (ODE) in the form:

dy/dt = f(t, y)

The R function dopri5 provides an interface to the Fortran ODE solver DOPRI5, written by E.
Hairer and G. Wanner.

It implements the explicit Runge-Kutta method of order 4(5) due to Dormand & Prince with stepsize
control and dense output

The R function cashkarp provides an interface to the Fortran ODE solver CASHCARP, written by
J. Cash and F. Mazzia.

It implements the explicit Runge-Kutta method of order 4(5) due to Cash-Carp, with stepsize control
and dense output

The system of ODE’s is written as an R function or can be defined in compiled code that has been
dynamically loaded.

Usage

dopri5 (y, times, func, parms, rtol = 1e-6, atol = 1e-6,
verbose = FALSE, hmax = NULL, hini = hmax, ynames = TRUE,
maxsteps = 10000, dllname = NULL, initfunc = dllname,
initpar=parms, rpar = NULL, ipar = NULL, nout = 0,
outnames = NULL, forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

cashkarp (y, times, func, parms, rtol = 1e-6, atol = 1e-6,
verbose = FALSE, hmax = NULL, hini = hmax, ynames = TRUE,
maxsteps = 10000, dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
initforc = NULL, fcontrol = NULL, stiffness = 2, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <-function(t,y,parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are

20 dopri5

global values that are required at each point in times. The derivatives should be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before lsode() is called. See package
vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the inte-
gration - if the method becomes stiff it will rpint a message.

hmax an optional maximum value of the integration stepsize. If not specified, hmax is
set to the largest difference in times.

hini initial step size to be attempted.

ynames logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for multi-D models.

maxsteps maximal number of steps taken by the solver, for the entire integration. This is
different from the settings of this argument in the solvers from package deSolve!

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See vignette "compiledCode" from package deSolve.

initfunc if not NULL, the name of the initialisation function (which initialises values of pa-
rameters), as provided in ‘dllname’. See vignette "compiledCode" from pack-
age deSolve.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculed in the dll - you have to perform this
check in the code - See vignette "compiledCode" from package deSolve.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

dopri5 21

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

stiffness How the stiffness of the solution should be estimated. Default = stiffness based
on eigenvalue approximation; when = stiffness = 0: no stiffness estimate;
when = stiffness = 1 or -1: all stiffness estimates calculated ; when = stiffness
= 2 or -2: stiffness based on eigenvalue approximation; when = stiffness = 3
or -3: stiffness based on error estimate; when = stiffness = 4 or -4: stiffness
based on conditioning. Positive values of stiffness will cause the integration
to stop; negative values will continue anyway.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN subroutine dop853, whose documentation should be consulted
for details. The implementation is based on the Fortran 77 version fromOctober 11, 2009.

The input parameters rtol, and atol determine the error control performed by the solver, which
roughly keeps the local error of y(i) below rtol(i)*abs(y(i))+atol(i).

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") from the deSolve package for an explanation of each element in the vectors
containing the diagnostic properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" from package deSolve for details.

Information about linking forcing functions to compiled code is in forcings (from package deSolve).

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘lsoda’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

E. Hairer, S.P. Norsett AND G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Prob-
lems. 2nd Edition. Springer Series In Computational Mathematics, SPRINGER-VERLAG (1993)

22 dopri5

See Also

• ode for a general interface to most of the ODE solvers from package deSolve,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• mebdfi for integrating DAE models,

• bimd for blended implicit methods,

• gamd for the generalised adams method

diagnostics to print diagnostic messages.

Examples

===
Example :
The Arenstorff orbit model
===

Arenstorff <- function(t, y, parms) {

D1 <- ((y[1]+mu)^2+y[2]^2)^(3/2)
D2 <- ((y[1]-(1-mu))^2+y[2]^2)^(3/2)

dy1 <- y[3]
dy2 <- y[4]
dy3 <- y[1] + 2*y[4]-(1-mu)*(y[1]+mu)/D1 -mu*(y[1]-(1-mu))/D2
dy4 <- y[2] - 2*y[3]-(1-mu)*y[2]/D1 - mu*y[2]/D2

list(c(dy1,dy2,dy3,dy4))
}

#-----------------------------
parameters, initial values and times
#-----------------------------
mu <- 0.012277471
yini <- c(x = 0.994, y = 0, dx = 0,

dy = -2.00158510637908252240537862224)
times <- seq(0, 18, 0.01)

#-----------------------------
solve the model
#-----------------------------

#out <- dopri5 (times=times, y=yini, func = Arenstorff, parms=NULL)
out <- cashkarp (times = times, y = yini, func = Arenstorff, parms = NULL)
plot(out[,c("x", "y")], type = "l", lwd = 2, main = "Arenstorff")

#-----------------------------
First and last value should be the same

dopri853 23

#-----------------------------

times <- c(0, 17.0652165601579625588917206249)

Test <- dopri5 (times = times, y = yini, func = Arenstorff, parms = NULL)

diagnostics(Test)

dopri853 Dormand-Prince Runge-Kutta of Order 8(5,3)

Description

Solves the initial value problem for systems of ordinary differential equations (ODE) in the form:

dy/dt = f(t, y)

The R function dopri853 provides an interface to the Fortran ODE solver DOP853, written by
Hairer and Wanner.

It implements the explicit Runge-Kutta method of order 8(5,3) due to Dormand & Prince with
stepsize contral and dense output

The system of ODE’s is written as an R function or can be defined in compiled code that has been
dynamically loaded.

Usage

dopri853 (y, times, func, parms, rtol = 1e-6, atol = 1e-6,
verbose = FALSE, hmax = NULL, hini = hmax, ynames = TRUE,
maxsteps = 10000, dllname = NULL, initfunc = dllname,
initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
outnames = NULL, forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

Arguments

y the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the ODE
system (the model definition) at time t, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <-function(t,y,parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.

24 dopri853

The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives should be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before lsode() is called. See package
vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.
rtol relative error tolerance, either a scalar or an array as long as y. See details.
atol absolute error tolerance, either a scalar or an array as long as y. See details.
verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the inte-

gration - if the method becomes stiff it will rpint a message.
hmax an optional maximum value of the integration stepsize. If not specified, hmax is

set to the largest difference in times.
hini initial step size to be attempted.
ynames logical, if FALSE names of state variables are not passed to function func; this

may speed up the simulation especially for multi-D models.
maxsteps maximal number of steps taken by the solver, for the entire integration. This is

different from the settings of this argument in the solvers from package deSolve!
dllname a string giving the name of the shared library (without extension) that con-

tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See vignette "compiledCode" from package deSolve.

initfunc if not NULL, the name of the initialisation function (which initialises values of pa-
rameters), as provided in ‘dllname’. See vignette "compiledCode" from pack-
age deSolve.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculed in the dll - you have to perform this
check in the code - See vignette "compiledCode" from package deSolve.

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

dopri853 25

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN subroutine dop853, whose documentation should be consulted
for details. The implementation is based on the Fortran 77 version fromOctober 11, 2009.

The input parameters rtol, and atol determine the error control performed by the solver, which
roughly keeps the local error of y(i) below rtol(i)*abs(y(i))+atol(i).

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") from the deSolve package for an explanation of each element in the vectors
containing the diagnostic properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" from package deSolve for details.

Information about linking forcing functions to compiled code is in forcings (from package deSolve).

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘lsoda’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

E. Hairer, S.P. Norsett AND G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Prob-
lems. 2nd Edition. Springer Series In Computational Mathematics, SPRINGER-VERLAG (1993)

See Also

• ode for a general interface to most of the ODE solvers from package deSolve,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• mebdfi for integrating DAE models,

26 dopri853

• gamd for the generalised adams method

diagnostics to print diagnostic messages.

Examples

===
Example :
The Arenstorff orbit model
===

Arenstorff <- function(t, y, parms) {

D1 <- ((y[1]+mu)^2+y[2]^2)^(3/2)
D2 <- ((y[1]-(1-mu))^2+y[2]^2)^(3/2)

dy1 <- y[3]
dy2 <- y[4]
dy3 <- y[1] + 2*y[4]-(1-mu)*(y[1]+mu)/D1 -mu*(y[1]-(1-mu))/D2
dy4 <- y[2] - 2*y[3]-(1-mu)*y[2]/D1 - mu*y[2]/D2

list(c(dy1, dy2, dy3, dy4))
}

#-----------------------------
parameters, initial values and times
#-----------------------------
mu <- 0.012277471

yini <- c(x = 0.994, y = 0, dx = 0, dy = -2.00158510637908252240537862224)

times <- seq(0, 18, 0.01)

#-----------------------------
solve the model
#-----------------------------

out <- dopri853 (times = times, y = yini, func = Arenstorff, parms = NULL,
rtol = 1e-17, atol = 1e-17)

plot(out[,c("x", "y")], type = "l", lwd = 2, main = "Arenstorff")

#-----------------------------
First and last value should be the same
#-----------------------------

times <- c(0, 17.0652165601579625588917206249)

Test <- dopri853 (times = times, y = yini, func = Arenstorff, parms = NULL)

diagnostics(Test)

E5 27

E5 E5 Model for Chemical Pyrolysis, ODE

Description

It is an ODE, 4 equations

Usage

E5 (times = c(0, 10^(seq(-5, 13, by = 0.1))), yini = NULL,
parms = list(), printmescd = TRUE,
atol = 1.11e-24, rtol = 1e-6, maxsteps = 1e5, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

maxsteps maximal number of steps per output interval taken by the solver

... additional arguments passed to the solver .

Details

The default parameters are: A = 7.89e-10, B = 1.1e7, C = 1.13e3, M = 1e6

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in R

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

28 emep

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- E5()
plot(out, lwd = 2, log = "xy")
compare with reference solution
out[nrow(out),-1] - reference("E5")

emep Emep MSC-W Ozone Chemistry Problem, ODE

Description

The problem is a stiff system of 66 ordinary differential equations. The ’Mathematics and the
Environment’ project group at CWI contributed this problem to the test set. The software part of
the problem is in the file emep.f available at [MM08].

Usage

emep (times = seq(14400, 417600, by = 400), yini = NULL,
parms = list(), printmescd = TRUE, method = bimd,
atol = 0.1, rtol = 1e-5, maxsteps = 1e5, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values
rtol relative error tolerance, either a scalar or a vector, one value for each y,
atol absolute error tolerance, either a scalar or a vector, one value for each y.
method the solver to use
printmescd if TRUE the mixed error significant digits computed using the reference solution

at time 417600 are printed
maxsteps maximal number of steps per output interval taken by the solver
... additional arguments passed to the solver .

Details

The default parameters are:

c = 1.6e-8 , cs = 2e-12 , cp = 1e-8 , r = 25e3 , rp = 50, lh = 4.45 , ls1 = 2e-3 , ls2 = 5e-4 , ls3 =
5e-4, rg1 = 36.3 , rg2 = 17.3 , rg3 = 17.3 , ri = 50 , rc = 600, gamma = 40.67286402e-9 , delta =
17.7493332

https://archimede.dm.uniba.it/~testset/

emep 29

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

[MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4.
Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008.

[SASJ93] D. Simpson, Y. Andersson-Skold, and M.E. Jenkin. Updating the chemical scheme for
the EMEP MSC-W model: Current status. Report EMEP MSC-W Note 2/93, The Norwegian
Meteorological Institute, Oslo, 1993.

[Sim93] D. Simpson. Photochemical model calculations over Europe for two extended summer
periods: 1985 and 1989. model results and comparisons with observations. Atmospheric Environ-
ment, 27A:921-943, 1993.

[VS94] J.G. Verwer and D. Simpson. Explicit methods for stiff ODEs from atmospheric chemistry.
Report NM-R9409, CWI, Amsterdam, 1994.

Examples

out <- emep()
plot(out, lwd = 2, col = "darkblue",

which = c("NO", "NO2", "SO2", "CH4", "O3", "N2O5"))

plot(out, col = "darkblue", lwd = 2, which = 1:16)
mtext(side = 3,line = -1.5, "emep", cex = 1.25, outer = TRUE)

compare with reference solution (component 36 and 38 not included)
refsol <- reference("emep")
inderr <- c(1:35,37,39:66)
max(abs(out[nrow(out),inderr+1] - refsol[inderr])/refsol[inderr])

https://archimede.dm.uniba.it/~testset/

30 fekete

fekete Elliptic Fekete Points, Mechanical Problem, Index 2 DAE

Description

The fekete problem computes the elliptic Fekete points.

Usage

fekete (times = seq(0, 1e3, by = 10), yini = NULL, dyini = NULL,
parms=list(), printmescd = TRUE, method = mebdfi,
atol = 1e-6, rtol = 1e-6, maxsteps = 1e+05, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

method the solver to use

rtol relative error tolerance, either a scalar or a vector, one value for each y,

atol absolute error tolerance, either a scalar or a vector, one value for each y.

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 0.1 are printed

maxsteps maximal number of steps per output interval taken by the solver

... additional arguments passed to the solver .

Details

There are no parameters

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

gamd 31

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- fekete()
plot(out, lwd = 2, which = 1:20)

reference run compared with output at end of interval for first 7 components
out1 <- fekete(times = c(0, 1000))
max(abs(out1[nrow(out1),-1] - reference("fekete")))

gamd Generalised Adams IVP Method for DAE

Description

Solves the initial value problem for stiff or nonstiff systems of either:

• a system of ordinary differential equations (ODE) of the form

y′ = f(t, y, ...)

or

• a system of linearly implicit DAES in the form

My′ = f(t, y)

The R function gamd provides an interface to the Fortran DAE solver gamd, written by Felice
Iavernaro and Francesca Mazzia.

It implements the generalized adams methods of order 3-5-7-9 with step size control and continuous
output.

The system of DAE’s is written as an R function or can be defined in compiled code that has been
dynamically loaded.

Usage

gamd(y, times, func, parms, nind = c(length(y), 0, 0),
rtol = 1e-6, atol = 1e-6, jacfunc = NULL, jactype = "fullint",
mass = NULL, massup = NULL, massdown = NULL, verbose = FALSE,
hmax = NULL, hini = 0, ynames = TRUE, minord = NULL,
maxord = NULL, bandup = NULL, banddown = NULL,
maxsteps = 1e4, maxnewtit = c(12, 18, 26, 36),
dllname = NULL, initfunc = dllname, initpar = parms,
rpar = NULL, ipar = NULL, nout=0, outnames = NULL, forcings = NULL,
initforc = NULL, fcontrol = NULL, ...)

https://archimede.dm.uniba.it/~testset/

32 gamd

Arguments

y the initial (state) values for the DAE or ODE system. If y has a name attribute,
the names will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func either an R-function that computes the values of the derivatives in the DAE or
ODE system (the model definition) at time t, or a character string giving the
name of a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: func <-function(t,y,parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func. parms is a vector or list of parameters; ... (op-
tional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives should be
specified in the same order as the state variables y.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before gamd() is called. See deSolve pack-
age vignette "compiledCode" for more details.

parms vector or list of parameters used in func or jacfunc.

nind if a DAE system: a three-valued vector with the number of variables of index
1, 2, 3 respectively. The equations must be defined such that the index 1 vari-
ables precede the index 2 variables which in turn precede the index 3 variables.
The sum of the variables of different index should equal N, the total number of
variables.

rtol relative error tolerance, either a scalar or an array as long as y. See details.

atol absolute error tolerance, either a scalar or an array as long as y. See details.

jacfunc if not NULL, an R function that computes the Jacobian of the system of differ-
ential equations dydot(i)/dy(j), or a string giving the name of a function or sub-
routine in ‘dllname’ that computes the Jacobian (see vignette "compiledCode"
from package deSolve, for more about this option).
In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The R calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix dydot/dy, where
the ith row contains the derivative of dyi/dt with respect to yj , or a vector con-
taining the matrix elements by columns (the way R and FORTRAN store matri-
ces).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user.

mass the mass matrix. If not NULL, the problem is a linearly implicit DAE and defined
as M dy/dt = f(t, y). If the mass-matrix M is full, it should be of dimension

gamd 33

n2 where n is the number of y-values; if banded the number of rows should
be less than n, and the mass-matrix is stored diagonal-wise with element (i, j)
stored in mass(i -j + mumas + 1,j).
If mass = NULL then the model is an ODE (default)

massup number of non-zero bands above the diagonal of the mass matrix, in case it is
banded.

massdown number of non-zero bands below the diagonal of the mass matrix, in case it is
banded.

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the inte-
gration - see details.

hmax an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini initial step size to be attempted; if 0, the initial step size is set equal to 1e-6.
Usually 1e-3 to 1e-5 is good for stiff equations

ynames logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for multi-D models.

minord the minimum order to be allowed, >= 3 and <= 9. NULL uses the default, 3.
maxord the maximum order to be allowed, >= minord and <= 9. NULL uses the default,

9.
bandup number of non-zero bands above the diagonal, in case the Jacobian is banded.
banddown number of non-zero bands below the diagonal, in case the Jacobian is banded.
maxsteps maximal number of steps taken by the solver, for the entire integration. This is

different from the settings of this argument in the solvers from package deSolve!
maxnewtit A four-valued vector, with the maximal number of splitting-Newton iterations

for the solution of the iplicit system in each step for order 3, 5, 7 and 9 respec-
tively. The default is c(10,18,26,36).

dllname a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions refered to in func and
jacfunc. See vignette "compiledCode" from package deSolve.

initfunc if not NULL, the name of the initialisation function (which initialises values of pa-
rameters), as provided in ‘dllname’. See vignette "compiledCode" from pack-
age deSolve.

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.

nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculed in the dll - you have to perform this
check in the code - See vignette "compiledCode" from package deSolve.

34 gamd

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.

See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN 90 subroutine gamd, whose documentation should be consulted
for details. The implementation is based on the Fortran 90 version from 2007/24/05.

There are four standard choices for the jacobian which can be specified with jactype.

The options for jactype are

jactype = "fullint" a full Jacobian, calculated internally by the solver.

jactype = "fullusr" a full Jacobian, specified by user function jacfunc.

jactype = "bandusr" a banded Jacobian, specified by user function jacfunc; the size of the bands
specified by bandup and banddown.

jactype = "bandint" a banded Jacobian, calculated by gamd; the size of the bands specified by
bandup and banddown.

Inspection of the example below shows how to specify both a banded and full Jacobian.

The input parameters rtol, and atol determine the error control performed by the solver, which
roughly keeps the local error of y(i) below rtol(i)*abs(y(i))+atol(i).

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") from the deSolve package for an explanation of each element in the vectors
containing the diagnostic properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package
vignette "compiledCode" from package deSolve for details.

Information about linking forcing functions to compiled code is in forcings (from package deSolve).

gamd 35

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘gamd’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

L.Brugnano, D.Trigiante, Solving Differential Problems by Multistep Initial and Boundary Value
Methods, Gordon & Breach, Amsterdam, 1998.

F.Iavernaro, F.Mazzia, Block-Boundary Value Methods for the solution of Ordinary Differential
Equation. Siam J. Sci. Comput. 21 (1) (1999) 323–339.

F.Iavernaro, F.Mazzia, Solving Ordinary Differential Equations by Generalized Adams Methods:
properties and implementation techniques, proceedings of NUMDIFF8, Appl. Num. Math. 28
(2-4) (1998) 107-126.

See Also

• bimd another DAE solver from package deTestSet,

• mebdfi another DAE solver from package deTestSet,

• daspk another DAE solver from package deSolve,

• ode for a general interface to most of the ODE solvers from package deSolve,

• ode.1D for integrating 1-D models,

• ode.2D for integrating 2-D models,

• ode.3D for integrating 3-D models,

• mebdfi for integrating DAE models,

• dopri853 for the Dormand-Prince Runge-Kutta method of order 8(53)

diagnostics to print diagnostic messages.

Examples

===
Example 1:
Various ways to solve the same model.
===

the model, 5 state variables
f1 <- function (t, y, parms)
{

ydot <- vector(len = 5)

36 gamd

ydot[1] <- 0.1*y[1] -0.2*y[2]
ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]
ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]
ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]
ydot[5] <- -0.3*y[4] +0.1*y[5]

return(list(ydot))
}

the Jacobian, written as a full matrix
fulljac <- function (t, y, parms)
{

jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,
data = c(0.1, -0.2, 0 , 0 , 0 ,

-0.3, 0.1, -0.2, 0 , 0 ,
0 , -0.3, 0.1, -0.2, 0 ,
0 , 0 , -0.3, 0.1, -0.2,
0 , 0 , 0 , -0.3, 0.1))

return(jac)
}

the Jacobian, written in banded form
bandjac <- function (t, y, parms)
{

jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
data = c(0 , -0.2, -0.2, -0.2, -0.2,

0.1, 0.1, 0.1, 0.1, 0.1,
-0.3, -0.3, -0.3, -0.3, 0))

return(jac)
}

initial conditions and output times
yini <- 1:5
times <- 1:20

default: stiff method, internally generated, full Jacobian
out <- gamd(yini, times, f1, parms = 0, jactype = "fullint")
plot(out)

stiff method, user-generated full Jacobian
out2 <- gamd(yini, times, f1, parms = 0, jactype = "fullusr",

jacfunc = fulljac)

stiff method, internally-generated banded Jacobian
one nonzero band above (up) and below(down) the diagonal
out3 <- gamd(yini, times, f1, parms = 0, jactype = "bandint",

bandup = 1, banddown = 1)

stiff method, user-generated banded Jacobian
out4 <- gamd(yini, times, f1, parms = 0, jactype = "bandusr",

jacfunc = bandjac, bandup = 1, banddown = 1)

gamd 37

===
Example 2:
stiff problem from chemical kinetics
===
Chemistry <- function (t, y, p) {

dy1 <- -.04*y[1] + 1.e4*y[2]*y[3]
dy2 <- .04*y[1] - 1.e4*y[2]*y[3] - 3.e7*y[2]^2
dy3 <- 3.e7*y[2]^2
list(c(dy1,dy2,dy3))

}

times <- 10^(seq(0, 10, by = 0.1))
yini <- c(y1 = 1.0, y2 = 0, y3 = 0)

out <- gamd(func = Chemistry, times = times, y = yini, parms = NULL)
plot(out, log = "x", type = "l", lwd = 2)

===
Example 3: DAE
Car axis problem, index 3 DAE, 8 differential, 2 algebraic equations
from
F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers,
release 2.4. Department
of Mathematics, University of Bari and INdAM, Research Unit of Bari,
February 2008.
Available at http://www.dm.uniba.it/~testset.
===

Problem is written as M*y = f(t,y,p).
caraxisfun implements the right-hand side:

caraxisfun <- function(t, y, parms) {
with(as.list(y), {

yb <- r * sin(w * t)
xb <- sqrt(L * L - yb * yb)
Ll <- sqrt(xl^2 + yl^2)
Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)

dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr

dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g

dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g

c1 <- xb * xl + yb * yl
c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L

list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2))

38 hires

})
}

eps <- 0.01; M <- 10; k <- M * eps^2/2;
L <- 1; L0 <- 0.5; r <- 0.1; w <- 10; g <- 1

yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
ul = -L0/L, vl = 0,
ur = -L0/L, vr = 0,
lam1 = 0, lam2 = 0)

the mass matrix
Mass <- diag(nrow = 10, 1)
Mass[5,5] <- Mass[6,6] <- Mass[7,7] <- Mass[8,8] <- M * eps * eps/2
Mass[9,9] <- Mass[10,10] <- 0
Mass

index of the variables: 4 of index 1, 4 of index 2, 2 of index 3
index <- c(4, 4, 2)

times <- seq(0, 3, by = 0.01)
out <- gamd(y = yini, mass = Mass, times = times, func = caraxisfun,

parms = NULL, nind = index)

plot(out, which = 1:4, type = "l", lwd = 2)

hires High Irradiance Response model, from Plant Physiology, ODE

Description

This IVP is a stiff system of 8 non-linear Ordinary Differential Equations.

It was proposed by Schafer in 1975 [Sch75].

The name HIRES was given by Hairer & Wanner [HW96]. It refers to ’High Irradiance RESponse’,
which is described by this ODE.

The parallel-IVP-algorithm group of CWI contributed this problem to the test set. The software part
of the problem is in the file hires.f available at [MM08].

Usage

hires (yini = NULL, times = seq(0, 321.8122, by = 321.8122/500),
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-6, rtol = 1e-6, ...)

hires 39

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

method the solver to use

parms list of parameters that overrule the default parameter values

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 321.8122 are printed

... additional arguments passed to the solver .

Details

The default parameters are: k1 = 1.71, k2 = 0.43, k3 = 8.32, k4 = 0.69, k5 = 0.035, k6 = 8.32, k7 =
280, k8 = 0.69, k9 = 0.69, Oks = 0.0007

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in R

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

[Got77] B.A. Gottwald. MISS - ein einfaches Simulations-System fur biologische und chemische
Prozesse. EDV in Medizin und Biologie, 3:85-90, 1977.

[HW96] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-
algebraic Problems. Springer-Verlag, second revised edition, 1996.

[MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4.
Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008.
Available at http://www.dm.uniba.it/testset.

https://archimede.dm.uniba.it/~testset/

40 mebdfi

[Sch75] E. Schafer. A new approach to explain the ’high irradiance responses’ of photomorphogen-
esis on the basis of phytochrome. J. of Math. Biology, 2:41 - 56, 1975.

[SL98] J.J.B. de Swart and W.M. Lioen. Collecting real-life problems to test solvers for implicit
differential equations. CWI Quarterly, 11(1):83 - 100, 1998.

Examples

out <- hires()
plot(out, lwd = 2)

compare with reference solution
out1 <- hires(times = c(0, 321.8122))

max(abs(out1[nrow(out1),-1] - reference("hires")))

mebdfi Solver for Differential Algebraic Equations (DAE) up to index 3

Description

Solves either:

• a system of ordinary differential equations (ODE) of the form

y′ = f(t, y, ...)

or

• a system of differential algebraic equations (DAE) of the form

F (t, y, y′) = 0

or

• a system of linearly implicit DAES in the form

My′ = f(t, y)

using the Modified Extended Backward Differentiation formulas for stiff fully implicit inital value
problems

These formulas increase the absolute stability regions of the classical BDFs.

The orders of the implemented formulae range from 1 to 8.

The R function mebdfi provides an interface to the Fortran DAE solver of the same name, written
by T.J. Abdulla and J.R. Cash.

The system of DE’s is written as an R function or can be defined in compiled code that has been
dynamically loaded.

mebdfi 41

Usage

mebdfi(y, times, func = NULL, parms, dy = NULL, res = NULL,
nind=c(length(y),0,0), rtol = 1e-6, atol = 1e-6, jacfunc = NULL,
jacres = NULL, jactype = "fullint", mass = NULL, verbose = FALSE,
tcrit = NULL, hini = 0, ynames = TRUE, maxord = 7, bandup = NULL,
banddown = NULL, maxsteps = 5000, dllname = NULL,
initfunc = dllname, initpar = parms, rpar = NULL,
ipar = NULL, nout = 0, outnames = NULL,
forcings=NULL, initforc = NULL, fcontrol=NULL, ...)

Arguments

y the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.

func cannot be used if the model is a DAE system. If an ODE system, func should
be an R-function that computes the values of the derivatives in the ODE system
(the model definition) at time t.
func must be defined as: func <-function(t,y,parms,...).
t is the current time point in the integration, y is the current estimate of the
variables in the ODE or DAE system. If the initial values y has a names attribute,
the names will be available inside func, unless ynames is FALSE. parms is a
vector or list of parameters. ... (optional) are any other arguments passed to
the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives should be
specified in the same order as the specification of the state variables y.
Note that it is not possible to define func as a compiled function in a dynamically
loaded shared library. Use res instead.

parms vector or list of parameters used in func, jacfunc, or res

dy the initial derivatives of the state variables of the DE system. Ignored if an ODE.

res if a DAE system: either an R-function that computes the residual function
F(t,y,y’) of the DAE system (the model defininition) at time t, or a character
string giving the name of a compiled function in a dynamically loaded shared
library.
If res is a user-supplied R-function, it must be defined as: res <-function(t,y,dy,parms,...).
Here t is the current time point in the integration, y is the current estimate of the
variables in the DAE system, dy are the corresponding derivatives. If the initial
y or dy have a names attribute, the names will be available inside res, unless
ynames is FALSE. parms is a vector of parameters.
The return value of res should be a list, whose first element is a vector con-
taining the residuals of the DAE system, i.e. delta = F(t,y,y’), and whose next
elements contain output variables that are required at each point in times.

42 mebdfi

If res is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before mebdfi() is called (see package
vignette "compiledCode" for more information).

nind if a DAE system: a three-valued vector with the number of variables of index
1, 2, 3 respectively. The equations must be defined such that the index 1 vari-
ables precede the index 2 variables which in turn precede the index 3 variables.
The sum of the variables of different index should equal N, the total number of
variables.

rtol relative error tolerance, either a scalar or a vector, one value for each y,
atol absolute error tolerance, either a scalar or a vector, one value for each y.
jacfunc if not NULL, an R function that computes the Jacobian of the system of differen-

tial equations. Only used in case the system is an ODE (y’ = f(t,y)), specified by
func. The R calling sequence for jacfunc is identical to that of func.
If the Jacobian is a full matrix, jacfunc should return a matrix dydot/dy, where
the ith row contains the derivative of dyi/dt with respect to yj , or a vector con-
taining the matrix elements by columns (the way R and Fortran store matrices).
If the Jacobian is banded, jacfunc should return a matrix containing only the
nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jacres jacres and not jacfunc should be used if the system is specified by the residual
function F(t,y,y’), i.e. jacres is used in conjunction with res.
If jacres is an R-function, the calling sequence for jacres is identical to that
of res, but with extra parameter cj. Thus it should be defined as: jacres
<-function(t,y,dy,parms,cj,...). Here t is the current time point in the
integration, y is the current estimate of the variables in the ODE system, y′ are
the corresponding derivatives and cj is a scalar, which is normally proportional
to the inverse of the stepsize. If the initial y or dy have a names attribute, the
names will be available inside jacres, unless ynames is FALSE. parms is a vector
of parameters (which may have a names attribute).
If the Jacobian is a full matrix, jacres should return the matrix dG/dy + cj*dG/dyprime,
where the ith row is the sum of the derivatives of Gi with respect to yj and the
scaled derivatives of Gi with respect to dyj .
If the Jacobian is banded, jacres should return only the nonzero bands of the
Jacobian, rotated rowwise. See details for the calling sequence when jacres is
a string.

jactype the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by the user.

mass the mass matrix. If not NULL, the problem is a linearly implicit DAE and defined
as massdy/dt = f(t, y). The mass-matrix should be of dimension n*n where
n is the number of y-values.
If mass=NULL then the model is either an ODE or a DAE, specified with res

verbose if TRUE: full output to the screen, e.g. will print the diagnostiscs of the
integration - see details.

tcrit the Fortran routine mebdfi overshoots its targets (times points in the vector
times), and interpolates values for the desired time points. If there is a time
beyond which integration should not proceed (perhaps because of a singularity),
that should be provided in tcrit.

mebdfi 43

hini initial step size to be attempted; if 0, the initial step size is set to 1e-6, but it may
be better to set it equal to rtol. The solver is quite sensitive to values of hini;
sometimes if it fails, it helps to decrease/increase hini

ynames logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for large models.

maxord the maximum order to be allowed, an integer between 2 and 7. The default is
maxord = 7, but values of 4-5 may be better for difficult problems; hihger order
methods are more efficient but less stable.

bandup number of non-zero bands above the diagonal, in case the Jacobian is banded
(and jactype one of "bandint","bandusr")

banddown number of non-zero bands below the diagonal, in case the Jacobian is banded
(and jactype one of "bandint","bandusr")

maxsteps maximal number of steps per output interval taken by the solver.
dllname a string giving the name of the shared library (without extension) that contains

all the compiled function or subroutine definitions referred to in res and jacres.
See package vignette "compiledCode".

initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(fortran) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by res and jacres.

ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by res and jacres.

nout only used if ‘dllname’ is specified and the model is defined in compiled code:
the number of output variables calculated in the compiled function res, present
in the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculed in the dll - you have to perform this
check in the code - See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function res, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. vignette compiledCode
from package deSolve.

... additional arguments passed to func, jacfunc, res and jacres, allowing this
to be a generic function.

44 mebdfi

Details

The mebdfi solver uses modified extended backward differentiation formulas of orders one through
eight (specified with maxord) to solve either:

• an ODE system of the form
y′ = f(t, y, ...)

for y = Y, or

• a DAE system of the form
F (t, y, y′) = 0

for y = Y and y’ = YPRIME.

The recommended value of maxord is eight, unless it is believed that there are severe stability
problems in which case maxord = 4 or 5 should be tried instead.

ODEs are specified in func, DAEs are specified in res.

If a DAE system, Values for Y and YPRIME at the initial time must be given as input. Ideally,these
values should be consistent, that is, if T, Y, YPRIME are the given initial values, they should satisfy
F(T,Y,YPRIME) = 0.

The form of the Jacobian can be specified by jactype. This is one of:

jactype = "fullint": a full Jacobian, calculated internally by mebdfi, the default,

jactype = "fullusr": a full Jacobian, specified by user function jacfunc or jacres,

jactype = "bandusr": a banded Jacobian, specified by user function jacfunc or jacres; the size
of the bands specified by bandup and banddown,

jactype = "bandint": a banded Jacobian, calculated by mebdfi; the size of the bands specified by
bandup and banddown.

If jactype = "fullusr" or "bandusr" then the user must supply a subroutine jacfunc.

If jactype = "fullusr" or "bandusr" then the user must supply a subroutine jacfunc or jacres.

The input parameters rtol, and atol determine the error control performed by the solver. If the
request for precision exceeds the capabilities of the machine, mebdfi will return an error code.

res and jacres may be defined in compiled C or Fortran code, as well as in an R-function. See deS-
olve’s vignette "compiledCode" for details. Examples in Fortran are in the ‘dynload’ subdirectory
of the deSolve package directory.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose =
TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic
properties and how to directly access them.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of "global" values returned in the next elements of the return from
func or res, plus an additional column (the first) for the time value. There will be one row for each
element in times unless the Fortran routine ‘mebdfi’ returns with an unrecoverable error. If y has a
names attribute, it will be used to label the columns of the output value.

mebdfi 45

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Jeff Cash

References

J. R. Cash, The integration of stiff initial value problems in O.D.E.S using modified extended back-
ward differentiation formulae, Comp. and Maths. with applics., 9, 645-657, (1983).

J.R. Cash and S. Considine, an MEBDF code for stiff initial value problems, ACM Trans Math
Software, 142-158, (1992).

J.R. Cash, Stable recursions with applications to the numerical solution of stiff systems, Academic
Press,(1979).

See Also

• gamd and bimd two other DAE solvers,

• daspk another DAE solver from package deSolve,

diagnostics to print diagnostic messages.

Examples

===
Coupled chemical reactions including an equilibrium
modeled as (1) an ODE and (2) as a DAE
##
The model describes three chemical species A,B,D:
subjected to equilibrium reaction D <- > A + B
D is produced at a constant rate, prod
B is consumed at 1s-t order rate, r
Chemical problem formulation 1: ODE
===

Dissociation constant
K <- 1

parameters
pars <- c(

ka = 1e6, # forward rate
r = 1,
prod = 0.1)

Fun_ODE <- function (t, y, pars)
{

with (as.list(c(y, pars)), {
ra <- ka*D # forward rate
rb <- ka/K *A*B # backward rate

rates of changes

46 mebdfi

dD <- -ra + rb + prod
dA <- ra - rb
dB <- ra - rb - r*B
return(list(dy = c(dA, dB, dD),

CONC = A+B+D))
})

}

===
Chemical problem formulation 2: DAE
1. get rid of the fast reactions ra and rb by taking
linear combinations : dD+dA = prod (res1) and
dB-dA = -r*B (res2)
2. In addition, the equilibrium condition (eq) reads:
as ra = rb : ka*D = ka/K*A*B = > K*D = A*B
===

Res_DAE <- function (t, y, yprime, pars)
{

with (as.list(c(y, yprime, pars)), {
residuals of lumped rates of changes
res1 <- -dD - dA + prod
res2 <- -dB + dA - r*B

and the equilibrium equation
eq <- K*D - A*B

return(list(c(res1, res2, eq),
CONC = A+B+D))

})
}

times <- seq(0, 100, by = 1)

Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = 2*3/K)

ODE model solved with mebdfi
ODE <- as.data.frame(mebdfi(y = y, times = times, func = Fun_ODE,

parms = pars, atol = 1e-8, rtol = 1e-8))

Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)
DAE model solved with mebdfi
DAE <- as.data.frame(mebdfi(y = y, dy = dy, times = times,

res = Res_DAE, parms = pars, atol = 1e-8, rtol = 1e-8))

===
Chemical problem formulation 3: Mass * Func
Based on the DAE formulation
===

mebdfi 47

Mass_FUN <- function (t, y, pars)
{

with (as.list(c(y, pars)), {

as above, but without the
f1 <- prod
f2 <- - r*B

and the equilibrium equation
f3 <- K*D - A*B

return(list(c(f1, f2, f3),
CONC = A+B+D))

})
}
Mass <- matrix(nr=3, nc=3, byrow = TRUE,

data=c(1, 0, 1, # dA + 0 + dB
-1, 1, 0, # -dA + dB +0
0, 0, 0)) # algebraic

times <- seq(0, 100, by = 2)

Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = 2*3/K)

ODE model solved with daspk
ODE <- as.data.frame(daspk(y = y, times = times, func = Fun_ODE,

parms = pars, atol = 1e-10, rtol = 1e-10))

Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)

DAE model solved with daspk
DAE <- as.data.frame(daspk(y = y, dy = dy, times = times,

res = Res_DAE, parms = pars, atol = 1e-10, rtol = 1e-10))

MASS<- mebdfi(y = y, times = times, func = Mass_FUN,
parms = pars, mass = Mass)

================
plotting output
================
opa <- par(mfrow = c(2, 2))

for (i in 2:5)
{
plot(ODE$time, ODE[, i], xlab = "time",

ylab = "conc", main = names(ODE)[i], type = "l")
points(DAE$time, DAE[,i], col = "red")
}
legend("bottomright",lty = c(1,NA),pch = c(NA,1),

col = c("black","red"),legend = c("ODE","DAE"))

48 mebdfi

difference between both implementations:
max(abs(ODE-DAE))

par(mfrow = opa)

===
##
Example 3: higher index DAE
##
Car axis problem, index 3 DAE, 8 differential, 2 algebraic equations
from
F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers,
release 2.4. Department
of Mathematics, University of Bari and INdAM, Research Unit of Bari,
February 2008.
Available at http://www.dm.uniba.it/~testset.
===

car returns the residuals of the implicit DAE
car <- function(t, y, dy, pars){

with(as.list(c(pars, y)), {
f <- rep(0, 10)

yb <- r*sin(w*t)
xb <- sqrt(L*L - yb*yb)
Ll <- sqrt(xl^2 + yl^2)
Lr <- sqrt((xr-xb)^2 + (yr-yb)^2)

f[1:4] <- y[5:8]
k <- M*eps*eps/2

f[5] <- (L0-Ll)*xl/Ll + lam1*xb+2*lam2*(xl-xr)
f[6] <- (L0-Ll)*yl/Ll + lam1*yb+2*lam2*(yl-yr)-k*g
f[7] <- (L0-Lr)*(xr-xb)/Lr - 2*lam2*(xl-xr)
f[8] <- (L0-Lr)*(yr-yb)/Lr - 2*lam2*(yl-yr)-k*g

f[9] <- xb*xl+yb*yl
f[10] <- (xl-xr)^2+(yl-yr)^2-L*L

delt <- dy-f
delt[5:8] <- k*dy[5:8]-f[5:8]
delt[9:10] <- -f[9:10]

list(delt=delt,f=f)
})

}

parameters
pars <- c(eps = 1e-2, M = 10, L = 1, L0 = 0.5,

r = 0.1, w = 10, g = 1)

initial conditions: state variables

nand 49

yini <- with (as.list(pars),
c(xl = 0, yl = L0, xr = L, yr = L0, xla = -L0/L,

yla = 0, xra = -L0/L, yra = 0, lam1 = 0, lam2 = 0)
)

initial conditions: derivates
dyini <- rep(0, 10)
FF <- car(0, yini, dyini, pars)
dyini[1:4] <- yini[5:8]
dyini[5:8] <- 2/pars["M"]/(pars["eps"])^2*FF$f[5:8]

check consistency of initial condition: delt should be = 0.
car(0, yini, dyini, pars)

running the model
times <- seq(0, 3, by = 0.01)
nind <- c(4, 4, 2) # index 1, 2 and 3 variables
out <- mebdfi(y = yini, dy = dyini, times, res = car, parms = pars,

nind = nind, rtol = 1e-5, atol = 1e-5)

plot(out, which = 1:4, type = "l", lwd=2)

mtext(outer = TRUE, side = 3, line = -0.5, cex = 1.5, "car axis")

nand Nand Gate, Index 1 IDE

Description

It is an index 1 IDE, 14 equations

Usage

nand (times = 0:80, yini =NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-6, rtol = 1e-6, maxsteps = 1e5, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

method the solver to use; only mebdfi available for now

maxsteps maximal number of steps per output interval taken by the solver

50 nand

rtol relative error tolerance, either a scalar or a vector, one value for each y,

atol absolute error tolerance, either a scalar or a vector, one value for each y.

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 417600 are printed

... additional arguments passed to the solver .

Details

The default parameters are: RGS = 4, RGD = 4, RBS = 10, RBD = 10, CGS = 0.6e-4, CGD = 0.6e-
4, CBD = 2.4e-5, CBS = 2.4e-5, C9 = 0.5e-4, DELTA = 0.2e-1, CURIS = 1.e-14, VTH = 25.85,
VDD = 5., VBB = -2.5

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in FORTRAN

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- nand(method = "daspk")
plot(out, lwd = 2, which = 1:9)

compare with reference solution
max(abs(out[nrow(out),-1] - reference("nand")))

https://archimede.dm.uniba.it/~testset/

orego 51

orego The Oregonator Chemistry Model, ODE

Description

Chemical model implementing the Belousov-Zhabotinskii reaction.

It is an ODE, 3 equations

Usage

orego (times = 0:360, yini = NULL,
parms = list(), printmescd = TRUE,
atol = 1e-6, rtol = 1e-6, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

The default parameters are: k1 = 77.27, k2 = 8.375e-6, k3 = 77.27, k4 = 0.161

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in R

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

52 pleiades

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- orego()
plot(out, lwd = 2, log = "y")

compare with exact solution
out[nrow(out),-1] - reference("orego")

pleiades Motion of Inextensible Elastic Beam, ODE

Description

The pleiades problem is a problem from celestial mechanics, describing the motion of seven stars
in the plane of coordinates xi, yi and masses mi = i (i = 1, ... 7).

It is a set of nonstiff ordinary differential equations of dimension 28.

Usage

pleiades (times = seq(0, 3.0, by = 0.01), yini = NULL,
printmescd = TRUE, method = lsoda,
atol = 1e-6, rtol = 1e-6, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

method the solver to use

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

There are no parameters

https://archimede.dm.uniba.it/~testset/

pollution 53

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- pleiades()
par(mfrow = c(3,3))
for (i in 1:7) plot(out[,i+1], out[,i+8], type = "l", main = paste("body ",i),

xlab = "x", ylab = "y")

plot(0, 0 , type = "n", main = "ALL",
xlab = "x", ylab = "y", xlim = c(-3, 4), ylim = c(-4, 5))

for (i in 1:7) lines(out[,i+1], out[,i+8], col = i, lwd = 2)

compare with reference solution
max(abs(out[nrow(out),-1]- reference("pleiades")))

pollution Pollution Problem, from Chemistry, ODE

Description

This IVP is a stiff system of 20 non-linear Ordinary Differential Equations.

It is the chemical reaction part of the air pollution model developed at The Dutch National Institute
of Public Health and Environmental Protection (RIVM) and it is described by Verwer in [Ver94].

The parallel-IVP-algorithm group of CWI contributed this problem to the test set. The software part
of the problem is in the file pollu.f available at [MM08].

Usage

pollution (times = seq(0, 60, 1), yini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-6, rtol = 1e-6, ...)

https://archimede.dm.uniba.it/~testset/

54 pollution

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

method the solver to use

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

The default parameters are: k1 = .35, k2 = .266e2, k3 = .123e5, k4 = .86e-3, k5 = .82e-3, k6 =
.15e5, k7 = .13e-3, k8 = .24e5,k9 = .165e5, k10 = .9e4, k11 = .22e-1, k12 = .12e5, k13 = .188e1,
k14 = .163e5, k15 = .48e7, k16 = .35e-3, k17 = .175e-1, k18 = .1e9, k19 = .444e12, k20 = .124e4,
k21 = .21e1, k22 = .578e1, k23 = .474e-1, k24 = .178e4, k25 = .312e1

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in R

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

[MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4.
Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008.

[Ver94] J.G. Verwer. Gauss-Seidel iteration for stiff ODEs from chemical kinetics. SIAM J.
Sci.bComput., 15(5):1243 – 1259,

https://archimede.dm.uniba.it/~testset/

reference 55

Examples

out <- pollution()
plot(out, lwd = 2, which = 1:9)

out1 <- pollution(times = 0:60)

compare with reference solution
max(abs(out1[nrow(out1),-1] - reference("pollution")))

reference Reference Value of Test Set Problems

Description

Estimates the reference solution of the problem

Usage

reference (name = c("andrews", "beam", "caraxis", "crank", "E5",
"emep", "fekete", "vdpol", "hires", "nand", "orego",
"pleiades", "pollution", "ring", "rober", "transistor",
"tube", "twobit", "wheelset"))

Arguments

name the name of the problem whose reference solution is to be estimated

Value

A vector with the reference solution

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

Examples

reference("ring")

https://archimede.dm.uniba.it/~testset/

56 ring

ring The Ring Modulator Problem, Electrical Circuit Analysis, ODE

Description

The probelm describes the behavior of the ring modulator, an electrical circuit.

The type of the problem depends on the parameter Cs. If Cs is not equal 0, then it is a stiff system
of 15 non-linear ordinary differential equations.

For Cs = 0 we have a DAE of index 2, consisting of 11 differential equations and 4 algebraic
equations. The numerical results presented here refer to Cs = 2 e-12. The problem has been taken
from [KRS92], where the approach of Horneber [Hor76] is followed. The parallel-IVP-algorithm
group of CWI contributed this problem to the test set. The software part of the problem is in the file
ringmod.f available at [MM08].

Usage

ring (times = seq(0, 0.001, by = 5e-06), yini = NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-8, rtol = 1e-8, maxsteps = 1e+06, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

method the solver to use

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

maxsteps maximal number of steps per output interval taken by the solver

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

The default parameters are: M1 = 0.36, M2 = 0.151104, M3 = 0.075552, L1 = 0.15, L2 = 0.30, J1
= 0.002727, J2 = 0.0045339259, EE = 0.20e12, NUE= 0.30, BB = 0.0080, HH = 0.0080, RHO=
7870.0, GRAV= 0.0, OMEGA = 150.0

There are two default initial conditions - set with options(ini=x)

rober 57

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

[Hor76] E.H. Horneber. Analyse nichtlinearer RLCU-Netzwerke mit Hilfe der gemischten Poten-
tialfunktion mit einer systematischen Darstellung der Analyse nichtlinearer dynamischer Netzw-
erke. PhD thesis, Universitat Kaiserslautern, 1976.

[KRS92] W. Kampowski, P. Rentrop, and W. Schmidt. Classiffcation and numerical simulation of
electric circuits. Surveys on Mathematics for Industry, 2(1):23–65, 1992.

[MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4.
Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008

Examples

out <- ring()
plot(out, col = "darkblue", lwd = 2)
mtext(side = 3, line = -1.5, "RING modulator",cex = 1.25, outer = TRUE)

compare with reference solution
max(abs(out[nrow(out),-1]- reference("ring")))

rober Autocatalytic Chemical Reaction of Robertson, ODE

Description

Describes the kinetics of an autocatalytic reation.

It is an ODE, 3 equations

Usage

rober (times = 10^(seq(-5, 11, by = 0.1)), yini = NULL,
parms = list(), printmescd = TRUE,
atol = 1e-14, rtol = 1e-10, maxsteps = 1e5, ...)

https://archimede.dm.uniba.it/~testset/

58 rober

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

maxsteps maximal number of steps per output interval taken by the solver

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

The default parameters are: k1 = 0.04, k2 = 3e7, k3 = 1e4

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in R

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- rober()
plot(out, lwd = 2, log = "x")

compare to reference solution
out[nrow(out),-1] - reference("rober")

https://archimede.dm.uniba.it/~testset/

transistor 59

transistor The Transistor Amplifier, Index 1 DAE

Description

Electrical circuit model for the transistor amplifier.

It is an index 1 DAE, 8 equations

Usage

transistor (times = seq(0, 0.2, 0.001), yini = NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-6, rtol = 1e-6, maxsteps = 1e5, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

method the solver to use

maxsteps maximal number of steps per output interval taken by the solver

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

The default parameters are: ub=6, uf=0.026, alpha=0.99, beta=1e-6, r0=1000, r1=9000, r2=9000,
r3=9000, r4 = 9000, r5=9000, r6=9000, r7=9000, r8 = 9000, r9 = 9000, c1=1e-6, c2=2e-6, c3=3e-6,
c4=4e-6, c5=5e-6

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

60 tube

Note

This model is implemented in FORTRAN

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- transistor()
plot(out, lwd = 2)

out[nrow(out),-1]-reference("transistor")

tube Water Tube System, Mechanics problem, DAE of Index 2

Description

The tube problem describes the water flow through a tube system, taking into account turbulence
and the roughness of the tube walls.

It is an index 2 system of 49 non-linear Differential-Algebraic Equations.

Usage

tube (times = seq(0, 17.0*3600, by = 100), yini = NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = radau,
atol = 1e-6, rtol = 1e-6, maxsteps = 1e+05, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

method the solver to use; only mebdfi available for now

maxsteps maximal number of steps per output interval taken by the solver

atol absolute error tolerance, either a scalar or a vector, one value for each y.

https://archimede.dm.uniba.it/~testset/

twobit 61

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

parameter <- c(nu = 1.31e-6, g = 9.8, rho = 1.0e3, rcrit = 2.3e3, length= 1.0e3, k = 2.0e-4, d= 1.0e0,
b = 2.0e2)

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- tube()
plot(out, lwd = 2, which = 1:9)
plot(out, which = "phi3.4", lwd = 2, xlim = c(10000, 60000),
ylim = c(0.000145, 0.000185))

compare with reference solution
max(abs(out[nrow(out),-1]- reference("tube")))

twobit The Two Bit Adding Unit, Index 1 DAE

Description

Computes the sum of two base-2 numbers, each two digits long, and a carry bit. These numbers are
fed into the circuit in the form of input signals.

Index 1 DAE of dimension 350

https://archimede.dm.uniba.it/~testset/

62 twobit

Usage

twobit (times = seq(0, 320, by = 0.5), yini = NULL, dyini = NULL,
printmescd = TRUE, method = radau,
atol = 1e-4, rtol = 1e-4, maxsteps = 1e5, hmax = 0.1, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.

times time sequence for which output is wanted; the first value of times must be the
initial time.

method the solver to use

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

maxsteps maximal number of steps per output interval taken by the solver

hmax maximal size of step; if too large: will fail.

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 1e13 are printed

... additional arguments passed to the solver .

Details

This model has no parameters

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in FORTRAN

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

https://archimede.dm.uniba.it/~testset/

vdpol 63

Examples

out <- twobit(times = seq(0, 100, by = 0.5))
plot(out, lwd = 2, which = c("x49", "x130", "x148"), mfrow = c(3, 1))

Not run:
out <- twobit()

compare with reference solution
max(abs(out[nrow(out),-1] - reference("twobit")))

End(Not run)

vdpol van der Pol Equation, Nonlinear Vacuum Tube Circuit, ODE

Description

Problem originating from electronics, describing the behavior of nonlinear vacuum tube circuots.

It is an ODE, 2 equations.

Usage

vdpol (times = 0:2000, yini = NULL,
parms = list(), printmescd = TRUE,
atol = 1e-6, rtol = 1e-6, ...)

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

times time sequence for which output is wanted; the first value of times must be the
initial time.

parms list of parameters that overrule the default parameter values

atol absolute error tolerance, either a scalar or a vector, one value for each y.

rtol relative error tolerance, either a scalar or a vector, one value for each y,

printmescd if TRUE the mixed error significant digits computed using the reference solution
at time 5 are printed

... additional arguments passed to the solver .

Details

The default parameters are: mu=1000

The default initial conditions are: y1 = 2, y2 = 0

64 wheelset

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in R

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia <mazzia@dm.uniba.it>

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- vdpol()
plot(out, lwd = 2, which = 1)

compare to reference solution
out[nrow(out),-1] - reference("vdpol")

wheelset Wheel Set problem, mechanics, Index 2 IDE

Description

Describes the motion of a simple wheelset on a rail track.

It is a differential algebraic equation of index 2, 17 equations.

Usage

wheelset (times = seq(0, 10, by = 0.01), yini = NULL, dyini = NULL,
parms = list(), printmescd = TRUE, method = mebdfi,
atol = 1e-6, rtol = 1e-6, maxsteps = 1e5, ...)

https://archimede.dm.uniba.it/~testset/

wheelset 65

Arguments

yini the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.

dyini the initial derivatives of the state variables of the DE system.
times time sequence for which output is wanted; the first value of times must be the

initial time.
parms list of parameters that overrule the default parameter values
method the solver to use
maxsteps maximal number of steps per output interval taken by the solver
atol absolute error tolerance, either a scalar or a vector, one value for each y.
rtol relative error tolerance, either a scalar or a vector, one value for each y,
printmescd if TRUE the mixed error significant digits computed using the reference solution

at time 0.1 are printed
... additional arguments passed to the solver .

Details

The default parameters are: MR = 16.08, G = 9.81, V = 30., RN0 = 0.1, LI1 = 0.0605, LI2 =
0.366, MA = 0.0, HA = 0.2, MU = 0.12 , XL = 0.19, CX = 6400., CZ = 6400. , E = 1.3537956,
GG = 0.7115218, SIGMA = 0.28, GM = 7.92e10, C11 = 4.72772197, C22 = 4.27526987, C23 =
1.97203505, DELTA0 = 0.0262, AR = 0.1506, RS = 0.06, EPS = 0.00001, B1 = 0.0, B2 = 4.0

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in yini, plus an additional column (the first) for the time value.

There will be one row for each element in times unless the solver returns with an unrecoverable
error. If yini has a names attribute, it will be used to label the columns of the output value.

Note

This model is implemented in R.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

Francesca Mazzia

References

https://archimede.dm.uniba.it/~testset/

Examples

out <- wheelset()
plot(out, which = 1:9, lwd = 2)
max(abs(out[nrow(out), -1] - reference("wheelset")))

https://archimede.dm.uniba.it/~testset/

Index

∗ math
bimd, 6
dae, 16
dopri5, 18
dopri853, 23
gamd, 31
mebdfi, 40

∗ utilities
andrews, 3
beam, 5
caraxis, 13
crank, 15
E5, 27
emep, 28
fekete, 30
hires, 38
nand, 49
orego, 51
pleiades, 52
pollution, 53
reference, 55
ring, 56
rober, 57
transistor, 59
tube, 60
twobit, 61
vdpol, 63
wheelset, 64

andrews, 3

beam, 5
bimd, 6, 18, 22, 35, 45

caraxis, 13
cashkarp (dopri5), 18
crank, 15

dae, 3, 16
daspk, 10, 18, 35, 45

deTestSet (deTestSet-package), 2
deTestSet-package, 2
diagnostics, 10, 11, 18, 21, 22, 25, 26, 34,

35, 44, 45
dopri5, 18
dopri853, 11, 23, 35

E5, 27
emep, 28

fekete, 30
forcings, 9, 10, 20, 21, 24, 25, 34

gamd, 10, 18, 22, 26, 31, 45

hires, 38

mebdfi, 10, 11, 18, 22, 25, 35, 40

nand, 49

ode, 3, 10, 18, 22, 25, 35
ode.1D, 3, 11, 18, 22, 25, 35
ode.2D, 3, 11, 18, 22, 25, 35
ode.3D, 3, 11, 18, 22, 25, 35
ode.band, 18
orego, 51

pleiades, 52
pollution, 53

radau, 18
reference, 55
ring, 56
rober, 57

transistor, 59
tube, 60
twobit, 61

vdpol, 63

wheelset, 64

66

	deTestSet-package
	andrews
	beam
	bimd
	caraxis
	crank
	dae
	dopri5
	dopri853
	E5
	emep
	fekete
	gamd
	hires
	mebdfi
	nand
	orego
	pleiades
	pollution
	reference
	ring
	rober
	transistor
	tube
	twobit
	vdpol
	wheelset
	Index

