
Package ‘dials’
April 6, 2022

Title Tools for Creating Tuning Parameter Values

Version 0.1.1

Description Many models contain tuning parameters (i.e. parameters that
cannot be directly estimated from the data). These tools can be used
to define objects for creating, simulating, or validating values for
such parameters.

License MIT + file LICENSE

URL https://dials.tidymodels.org, https://github.com/tidymodels/dials

BugReports https://github.com/tidymodels/dials/issues

Depends R (>= 3.4), scales

Imports DiceDesign, dplyr (>= 0.8.5), glue, hardhat (>= 0.2.0),
lifecycle, purrr, rlang (>= 1.0.1), tibble, utils, vctrs (>=
0.3.8), withr

Suggests covr, kernlab, knitr, rmarkdown, rpart, testthat (>= 3.0.0),
xml2

VignetteBuilder knitr

ByteCompile true

Config/testthat/edition 3

Config/Needs/website tidyverse/tidytemplate

Encoding UTF-8

RoxygenNote 7.1.2.9000

NeedsCompilation no

Author Max Kuhn [aut],
Hannah Frick [aut, cre],
RStudio [cph, fnd]

Maintainer Hannah Frick <hannah@rstudio.com>

Repository CRAN

Date/Publication 2022-04-06 14:52:33 UTC

1

https://dials.tidymodels.org
https://github.com/tidymodels/dials
https://github.com/tidymodels/dials/issues

2 R topics documented:

R topics documented:
activation . 3
adjust_deg_free . 4
all_neighbors . 4
bart-param . 5
class_weights . 5
conditional_min_criterion . 6
confidence_factor . 7
cost . 8
degree . 8
deg_free . 9
dist_power . 10
dropout . 11
extrapolation . 12
finalize . 12
freq_cut . 15
grid_max_entropy . 16
grid_regular . 19
Laplace . 21
learn_rate . 22
max_nodes . 22
max_num_terms . 23
max_times . 24
max_tokens . 24
min_dist . 25
min_unique . 25
mixture . 26
momentum . 26
mtry . 27
neighbors . 28
new-param . 28
num_breaks . 30
num_comp . 31
num_hash . 31
num_knots . 32
num_tokens . 33
over_ratio . 33
parameters . 34
penalty . 34
predictor_prop . 35
prior_slab_dispersion . 36
prune_method . 36
range_validate . 37
rbf_sigma . 38
regularization_factor . 39
regularization_method . 40
scale_pos_weight . 41

activation 3

select_features . 41
shrinkage_correlation . 42
smoothness . 43
stop_iter . 43
summary_stat . 44
survival_link . 44
surv_dist . 45
threshold . 46
token . 46
trees . 47
unknown . 48
update.parameters . 49
value_validate . 50
vocabulary_size . 52
weight . 52
weight_func . 53
weight_scheme . 53
window_size . 54

Index 55

activation Activation functions between network layers

Description

Activation functions between network layers

Usage

activation(values = values_activation)

values_activation

Arguments

values A character string of possible values. See values_activation in examples
below.

Format

An object of class character of length 5.

Details

This parameter is used in parsnip models for neural networks such as parsnip:::mlp().

4 all_neighbors

Examples

values_activation
activation()

adjust_deg_free Parameters to adjust effective degrees of freedom

Description

This parameter can be used to moderate smoothness of spline or other terms used in generalized
additive models.

Usage

adjust_deg_free(range = c(0.25, 4), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

Used in parsnip::gen_additive_mod().

Examples

adjust_deg_free()

all_neighbors Parameter to determine which neighbors to use

Description

Used in themis::step_bsmote().

Usage

all_neighbors(values = c(TRUE, FALSE))

Arguments

values A vector of possible values (TRUE or FALSE).

bart-param 5

Examples

all_neighbors()

bart-param Parameters for BART models These parameters are used for construct-
ing Bayesian adaptive regression tree (BART) models.

Description

Parameters for BART models These parameters are used for constructing Bayesian adaptive regres-
sion tree (BART) models.

Usage

prior_terminal_node_coef(range = c(0, 1), trans = NULL)

prior_terminal_node_expo(range = c(0, 3), trans = NULL)

prior_outcome_range(range = c(0, 5), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

These parameters are often used with Bayesian adaptive regression trees (BART) via parsnip::bart().

class_weights Parameters for class weights for imbalanced problems

Description

This parameter can be used to moderate how much influence certain classes receive during training.

Usage

class_weights(range = c(1, 10), trans = NULL)

6 conditional_min_criterion

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

Used in brulee::brulee_logistic_reg() and brulee::brulee_mlp()

Examples

class_weights()

conditional_min_criterion

Parameters for possible engine parameters for party models

Description

Parameters for possible engine parameters for party models

Usage

conditional_min_criterion(
range = c(1.386294, 15),
trans = scales::logit_trans()

)

values_test_type

conditional_test_type(values = values_test_type)

values_test_statistic

conditional_test_statistic(values = values_test_statistic)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

values A character string of possible values.

confidence_factor 7

Format

An object of class character of length 5.

An object of class character of length 2.

Details

The range of conditional_min_criterion() corresponds to roughly 0.80 to 0.99997 in the natu-
ral units. For several test types, this parameter corresponds to 1 -{p-value}.

Value

For the functions, they return a function with classes "param" and either "quant_param" or "qual_param".

confidence_factor Parameters for possible engine parameters for C5.0

Description

These parameters are auxiliary to tree-based models that use the "C5.0" engine. They correspond
to tuning parameters that would be specified using set_engine("C5.0",...).

Usage

confidence_factor(range = c(-1, 0), trans = log10_trans())

no_global_pruning(values = c(TRUE, FALSE))

predictor_winnowing(values = c(TRUE, FALSE))

fuzzy_thresholding(values = c(TRUE, FALSE))

rule_bands(range = c(2L, 500L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

values For no_global_pruning(), predictor_winnowing(), and fuzzy_thresholding()
either TRUE or FALSE.

Details

To use these, check ?C50::C5.0Control to see how they are used.

8 degree

Examples

confidence_factor()
no_global_pruning()
predictor_winnowing()
fuzzy_thresholding()
rule_bands()

cost Support vector machine parameters

Description

Parameters related to the SVM objective function(s).

Usage

cost(range = c(-10, 5), trans = log2_trans())

svm_margin(range = c(0, 0.2), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

cost()
svm_margin()

degree Parameters for exponents

Description

These parameters help model cases where an exponent is of interest (e.g. degree() or spline_degree())
or a product is used (e.g. prod_degree).

deg_free 9

Usage

degree(range = c(1, 3), trans = NULL)

degree_int(range = c(1L, 3L), trans = NULL)

spline_degree(range = c(1L, 10L), trans = NULL)

prod_degree(range = c(1L, 2L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

degree() is helpful for parameters that are real number exponents (e.g. x^degree) whereas degree_int()
is for cases where the exponent should be an integer.

The difference between degree_int() and spline_degree() is the default ranges (which is based
on the context of how/where they are used).

prod_degree() is used by parsnip::mars() for the number of terms in interactions (and generates
an integer).

Examples

degree()
degree_int()
spline_degree()
prod_degree()

deg_free Degrees of freedom (integer)

Description

The number of degrees of freedom used for model parameters.

Usage

deg_free(range = c(1L, 5L), trans = NULL)

10 dist_power

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

One context in which this parameter is used is spline basis functions.

Examples

deg_free()

dist_power Minkowski distance parameter

Description

Used in parsnip::nearest_neighbor().

Usage

dist_power(range = c(1, 2), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

This parameter controls how distances are calculated. For example, dist_power = 1 corresponds
to Manhattan distance while dist_power = 2 is Euclidean distance.

Examples

dist_power()

dropout 11

dropout Neural network parameters

Description

These functions generate parameters that are useful for neural network models.

Usage

dropout(range = c(0, 1), trans = NULL)

epochs(range = c(10L, 1000L), trans = NULL)

hidden_units(range = c(1L, 10L), trans = NULL)

batch_size(range = c(unknown(), unknown()), trans = log2_trans())

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

• dropout(): The parameter dropout rate. (See parsnip:::mlp()).

• epochs(): The number of iterations of training. (See parsnip:::mlp()).

• hidden_units(): The number of hidden units in a network layer. (See parsnip:::mlp()).

• batch_size(): The mini-batch size for neural networks.

Examples

dropout()

12 finalize

extrapolation Parameters for possible engine parameters for Cubist

Description

These parameters are auxiliary to models that use the "Cubist" engine. They correspond to tuning
parameters that would be specified using set_engine("Cubist0",...).

Usage

extrapolation(range = c(1, 110), trans = NULL)

unbiased_rules(values = c(TRUE, FALSE))

max_rules(range = c(1L, 100L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

values For unbiased_rules(), either TRUE or FALSE.

Details

To use these, check ?Cubist::cubistControl to see how they are used.

Examples

extrapolation()
unbiased_rules()
max_rules()

finalize Functions to finalize data-specific parameter ranges

Description

These functions take a parameter object and modify the unknown parts of ranges based on a data
set and simple heuristics.

finalize 13

Usage

finalize(object, ...)

S3 method for class 'list'
finalize(object, x, force = TRUE, ...)

S3 method for class 'param'
finalize(object, x, force = TRUE, ...)

S3 method for class 'parameters'
finalize(object, x, force = TRUE, ...)

S3 method for class 'logical'
finalize(object, x, force = TRUE, ...)

Default S3 method:
finalize(object, x, force = TRUE, ...)

get_p(object, x, log_vals = FALSE, ...)

get_log_p(object, x, ...)

get_n_frac(object, x, log_vals = FALSE, frac = 1/3, ...)

get_n_frac_range(object, x, log_vals = FALSE, frac = c(1/10, 5/10), ...)

get_n(object, x, log_vals = FALSE, ...)

get_rbf_range(object, x, seed = sample.int(10^5, 1), ...)

get_batch_sizes(object, x, frac = c(1/10, 1/3), ...)

Arguments

object A param object or a list of param objects.

... Other arguments to pass to the underlying parameter finalizer functions. For ex-
ample, for get_rbf_range(), the dots are passed along to kernlab::sigest().

x The predictor data. In some cases (see below) this should only include numeric
data.

force A single logical that indicates that even if the parameter object is complete,
should it update the ranges anyway?

log_vals A logical: should the ranges be set on the log10 scale?

frac A double for the fraction of the data to be used for the upper bound. For
get_n_frac_range() and get_batch_sizes(), a vector of two fractional val-
ues are required.

seed An integer to control the randomness of the calculations.

14 finalize

Details

finalize() runs the embedded finalizer function contained in the param object (object$finalize)
and returns the updated version. The finalization function is one of the get_*() helpers.

The get_*() helper functions are designed to be used with the pipe and update the parameter object
in-place.

get_p() and get_log_p() set the upper value of the range to be the number of columns in the data
(on the natural and log10 scale, respectively).

get_n() and get_n_frac() set the upper value to be the number of rows in the data or a fraction
of the total number of rows.

get_rbf_range() sets both bounds based on the heuristic defined in kernlab::sigest(). It re-
quires that all columns in x be numeric.

Value

An updated param object or a list of updated param objects depending on what is provided in
object.

Examples

library(dplyr)
car_pred <- select(mtcars, -mpg)

Needs an upper bound
mtry()
finalize(mtry(), car_pred)

Nothing to do here since no unknowns
penalty()
finalize(penalty(), car_pred)

library(kernlab)
library(tibble)
library(purrr)

params <-
tribble(
~parameter, ~object,
"mtry", mtry(),
"num_terms", num_terms(),
"rbf_sigma", rbf_sigma()

)
params

Note that `rbf_sigma()` has a default range that does not need to be
finalized but will be changed if used in the function:
complete_params <-

params %>%
mutate(object = map(object, finalize, car_pred))

complete_params

freq_cut 15

params %>%
dplyr::filter(parameter == "rbf_sigma") %>%
pull(object)

complete_params %>%
dplyr::filter(parameter == "rbf_sigma") %>%
pull(object)

freq_cut Near-zero variance parameters

Description

These parameters control the specificity of the filter for near-zero variance parameters in recipes::step_nzv().

Usage

freq_cut(range = c(5, 25), trans = NULL)

unique_cut(range = c(0, 100), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

Smaller values of freq_cut() and unique_cut() make the filter less sensitive.

Examples

freq_cut()
unique_cut()

16 grid_max_entropy

grid_max_entropy Space-filling parameter grids

Description

Experimental designs for computer experiments are used to construct parameter grids that try to
cover the parameter space such that any portion of the space has an observed combination that is
not too far from it.

Usage

grid_max_entropy(
x,
...,
size = 3,
original = TRUE,
variogram_range = 0.5,
iter = 1000

)

S3 method for class 'parameters'
grid_max_entropy(
x,
...,
size = 3,
original = TRUE,
variogram_range = 0.5,
iter = 1000

)

S3 method for class 'list'
grid_max_entropy(
x,
...,
size = 3,
original = TRUE,
variogram_range = 0.5,
iter = 1000

)

S3 method for class 'param'
grid_max_entropy(
x,
...,
size = 3,
original = TRUE,
variogram_range = 0.5,

grid_max_entropy 17

iter = 1000
)

S3 method for class 'workflow'
grid_max_entropy(
x,
...,
size = 3,
original = TRUE,
variogram_range = 0.5,
iter = 1000

)

grid_latin_hypercube(x, ..., size = 3, original = TRUE)

S3 method for class 'parameters'
grid_latin_hypercube(x, ..., size = 3, original = TRUE)

S3 method for class 'list'
grid_latin_hypercube(x, ..., size = 3, original = TRUE)

S3 method for class 'param'
grid_latin_hypercube(x, ..., size = 3, original = TRUE)

S3 method for class 'workflow'
grid_latin_hypercube(x, ..., size = 3, original = TRUE)

Arguments

x A param object, list, or parameters.

... One or more param objects (such as mtry() or penalty()). None of the objects
can have unknown() values in the parameter ranges or values.

size A single integer for the total number of parameter value combinations returned.
If duplicate combinations are generated from this size, the smaller, unique set is
returned.

original A logical: should the parameters be in the original units or in the transformed
space (if any)?

variogram_range

A numeric value greater than zero. Larger values reduce the likelihood of empty
regions in the parameter space.

iter An integer for the maximum number of iterations used to find a good design.

Details

The types of designs supported here are latin hypercube designs and designs that attempt to maxi-
mize the determinant of the spatial correlation matrix between coordinates. Both designs use ran-
dom sampling of points in the parameter space.

18 grid_max_entropy

Note that there may a difference in grids depending on how the function is called. If the call uses
the parameter objects directly the possible ranges come from the objects in dials. For example:

mixture()

Proportion of Lasso Penalty (quantitative)
Range: [0, 1]

set.seed(283)
mix_grid_1 <- grid_latin_hypercube(mixture(), size = 1000)
range(mix_grid_1$mixture)

[1] 0.0001530482 0.9999530388

However, in some cases, the parsnip and recipe packages overrides the default ranges for specific
models and preprocessing steps. If the grid function uses a parameters object created from a model
or recipe, the ranges may have different defaults (specific to those models). Using the example
above, the mixture argument above is different for glmnet models:

library(parsnip)
library(tune)

When used with glmnet, the range is [0.05, 1.00]
glmn_mod <-
linear_reg(mixture = tune()) %>%
set_engine("glmnet")

set.seed(283)
mix_grid_2 <- grid_latin_hypercube(extract_parameter_set_dials(glmn_mod), size = 1000)
range(mix_grid_2$mixture)

[1] 0.0501454 0.9999554

References

Sacks, Jerome & Welch, William & J. Mitchell, Toby, and Wynn, Henry. (1989). Design and anal-
ysis of computer experiments. With comments and a rejoinder by the authors. Statistical Science.
4. 10.1214/ss/1177012413.

Santner, Thomas, Williams, Brian, and Notz, William. (2003). The Design and Analysis of Com-
puter Experiments. Springer.

Dupuy, D., Helbert, C., and Franco, J. (2015). DiceDesign and DiceEval: Two R packages for
design and analysis of computer experiments. Journal of Statistical Software, 65(11)

Examples

grid_max_entropy(
hidden_units(),
penalty(),

grid_regular 19

epochs(),
activation(),
learn_rate(c(0, 1), trans = scales::log_trans()),
size = 10,
original = FALSE

)

grid_latin_hypercube(penalty(), mixture(), original = TRUE)

grid_regular Create grids of tuning parameters

Description

Random and regular grids can be created for any number of parameter objects.

Usage

grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

S3 method for class 'parameters'
grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

S3 method for class 'list'
grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

S3 method for class 'param'
grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

S3 method for class 'workflow'
grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

S3 method for class 'parameters'
grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

S3 method for class 'list'
grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

S3 method for class 'param'
grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

S3 method for class 'workflow'
grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

20 grid_regular

Arguments

x A param object, list, or parameters.
... One or more param objects (such as mtry() or penalty()). None of the objects

can have unknown() values in the parameter ranges or values.
levels An integer for the number of values of each parameter to use to make the regular

grid. levels can be a single integer or a vector of integers that is the same length
as the number of parameters in levels can be a named integer vector, with
names that match the id values of parameters.

original A logical: should the parameters be in the original units or in the transformed
space (if any)?

filter A logical: should the parameters be filtered prior to generating the grid. Must
be a single expression referencing parameter names that evaluates to a logical
vector.

size A single integer for the total number of parameter value combinations returned
for the random grid. If duplicate combinations are generated from this size, the
smaller, unique set is returned.

Details

Note that there may a difference in grids depending on how the function is called. If the call uses
the parameter objects directly the possible ranges come from the objects in dials. For example:

mixture()

Proportion of Lasso Penalty (quantitative)
Range: [0, 1]

set.seed(283)
mix_grid_1 <- grid_random(mixture(), size = 1000)
range(mix_grid_1$mixture)

[1] 0.001490161 0.999741096

However, in some cases, the parsnip and recipe packages overrides the default ranges for specific
models and preprocessing steps. If the grid function uses a parameters object created from a model
or recipe, the ranges may have different defaults (specific to those models). Using the example
above, the mixture argument above is different for glmnet models:

library(parsnip)
library(tune)

When used with glmnet, the range is [0.05, 1.00]
glmn_mod <-
linear_reg(mixture = tune()) %>%
set_engine("glmnet")

set.seed(283)
mix_grid_2 <- grid_random(extract_parameter_set_dials(glmn_mod), size = 1000)
range(mix_grid_2$mixture)

Laplace 21

[1] 0.05141565 0.99975404

Value

A tibble. There are columns for each parameter and a row for every parameter combination.

Examples

filter arg will allow you to filter subsequent grid data frame based on some condition.
p <- parameters(penalty(), mixture())
grid_regular(p)
grid_regular(p, filter = penalty <= .01)

Will fail due to unknowns:
grid_regular(mtry(), min_n())

grid_regular(penalty(), mixture())
grid_regular(penalty(), mixture(), levels = 3:4)
grid_regular(penalty(), mixture(), levels = c(mixture = 4, penalty = 3))
grid_random(penalty(), mixture())

Laplace Laplace correction parameter

Description

Laplace correction for smoothing low-frequency counts.

Usage

Laplace(range = c(0, 3), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

This parameter is often used to correct for zero-count data in tables or proportions.

Value

A function with classes "quant_param" and "param"

22 max_nodes

Examples

Laplace()

learn_rate Learning rate

Description

The parameter is used in boosting methods (parsnip::boost_tree()) or some types of neural
network optimization methods.

Usage

learn_rate(range = c(-10, -1), trans = log10_trans())

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

The parameter is used on the log10 scale. The units for the range function are on this scale.

learn_rate() corresponds to eta in xgboost.

Examples

learn_rate()

max_nodes Parameters for possible engine parameters for randomForest

Description

These parameters are auxiliary to random forest models that use the "randomForest" engine. They
correspond to tuning parameters that would be specified using set_engine("randomForest",...).

Usage

max_nodes(range = c(100L, 10000L), trans = NULL)

max_num_terms 23

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

max_nodes()

max_num_terms Parameters for possible engine parameters for earth models

Description

These parameters are auxiliary to models that use the "earth" engine. They correspond to tuning
parameters that would be specified using set_engine("earth",...).

Usage

max_num_terms(range = c(20L, 200L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

To use these, check ?earth::earth to see how they are used.

Examples

max_num_terms()

24 max_tokens

max_times Word frequencies for removal

Description

Used in textrecipes::step_tokenfilter().

Usage

max_times(range = c(1L, as.integer(10^5)), trans = NULL)

min_times(range = c(0L, 1000L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

max_times()
min_times()

max_tokens Maximum number of retained tokens

Description

Used in textrecipes::step_tokenfilter().

Usage

max_tokens(range = c(0L, as.integer(10^3)), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

max_tokens()

min_dist 25

min_dist Parameter for the effective minimum distance between embedded
points

Description

Used in embed::step_umap().

Usage

min_dist(range = c(-4, 0), trans = log10_trans())

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

min_dist()

min_unique Number of unique values for pre-processing

Description

Some pre-processing parameters require a minimum number of unique data points to proceed.

Usage

min_unique(range = c(5L, 15L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

min_unique()

26 momentum

mixture Mixture of penalization terms

Description

A numeric parameter function representing the relative amount of penalties (e.g. L1, L2, etc) in
regularized models.

Usage

mixture(range = c(0, 1), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

This parameter is used for regularized or penalized models such as parsnip::linear_reg(),
parsnip::logistic_reg(), and others. It is formulated as the proportion of L1 regularization
(i.e. lasso) in the model. In the glmnet model, mixture = 1 is a pure lasso model while mixture =
0 indicates that ridge regression is being used.

Examples

mixture()

momentum Gradient descent momentum parameter

Description

A useful parameter for neural network models using gradient descent

Usage

momentum(range = c(0, 1), trans = NULL)

mtry 27

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

momentum()

mtry Number of randomly sampled predictors

Description

The number of predictors that will be randomly sampled at each split when creating tree models.

Usage

mtry(range = c(1L, unknown()), trans = NULL)

mtry_long(range = c(0L, unknown()), trans = log10_trans())

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

This parameter is used for regularized or penalized models such as parsnip::rand_forest() and
others. mtry_long() has the values on the log10 scale and is helpful when the data contain a large
number of predictors.

Since the scale of the parameter depends on the number of columns in the data set, the upper bound
is set to unknown but can be filled in via the finalize() method.

Examples

mtry(c(1L, 10L)) # in original units
mtry_long(c(0, 5)) # in log10 units

28 new-param

neighbors Number of neighbors

Description

The number of neighbors is used for models (parsnip::nearest_neighbor()), imputation (recipes::step_impute_knn()),
and dimension reduction (recipes::step_isomap()).

Usage

neighbors(range = c(1L, 10L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

A static range is used but a broader range should be used if the data set is large or more neighbors
are required.

Examples

neighbors()

new-param Tools for creating new parameter objects

Description

These functions are used to construct new parameter objects. Generally, these functions are called
from higher level parameter generating functions like mtry().

Usage

new_quant_param(
type = c("double", "integer"),
range,
inclusive,
default = unknown(),
trans = NULL,
values = NULL,

new-param 29

label = NULL,
finalize = NULL

)

new_qual_param(
type = c("character", "logical"),
values,
default = unknown(),
label = NULL,
finalize = NULL

)

Arguments

type A single character value. For quantitative parameters, valid choices are "double"
and "integer" while for qualitative factors they are "character" and "logical".

range A two-element vector with the smallest or largest possible values, respectively.
If these cannot be set when the parameter is defined, the unknown() function
can be used. If a transformation is specified, these values should be in the trans-
formed units.

inclusive A two-element logical vector for whether the range values should be inclusive
or exclusive.

default A single value with the same class as type for the default parameter value.
unknown() can also be used here.

trans A trans object from the scales package, such as scales::log10_trans() or
scales::reciprocal_trans(). Create custom transforms with scales::trans_new().

values A vector of possible values that is required when type is "character" or "logical"
but optional otherwise. For quantitative parameters, these override the range
when generating sequences if set.

label An optional named character string that can be used for printing and plotting.
The name should match the object name (e.g. "mtry", "neighbors", etc.)

finalize A function that can be used to set the data-specific values of a parameter (such
as the range).

Value

An object of class "param" with the primary class being either "quant_param" or "qual_param".
The range element of the object is always converted to a list with elements "lower" and "upper".

Examples

Create a function that generates a quantitative parameter
corresponding to the number of subgroups.
num_subgroups <- function(range = c(1L, 20L), trans = NULL) {

new_quant_param(
type = "integer",
range = range,
inclusive = c(TRUE, TRUE),

30 num_breaks

trans = trans,
label = c(num_subgroups = "# Subgroups"),
finalize = NULL

)
}

num_subgroups()

num_subgroups(range = c(3L, 5L))

Custom parameters instantly have access
to sequence generating functions
value_seq(num_subgroups(), 5)

num_breaks Number of cut-points for binning

Description

This parameter controls how many bins are used when discretizing predictors.

Usage

num_breaks(range = c(2L, 10L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

num_breaks()

num_comp 31

num_comp Number of new features

Description

The number of derived predictors from models or feature engineering methods.

Usage

num_comp(range = c(1L, unknown()), trans = NULL)

num_terms(range = c(1L, unknown()), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

Since the scale of these parameters often depends on the number of columns in the data set, the
upper bound is set to unknown. For example, the number of PCA components is limited by the
number of columns and so on.

The difference between num_comp() and num_terms() is semantics.

Examples

num_terms()
num_terms(c(2L, 10L))

num_hash Text hashing parameters

Description

Used in textrecipes::step_texthash().

Usage

num_hash(range = c(8L, 12L), trans = log2_trans())

signed_hash(values = c(TRUE, FALSE))

32 num_knots

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

values A vector of possible values (TRUE or FALSE).

Examples

num_hash()
signed_hash()

num_knots Number of knots (integer)

Description

The number of knots used for spline model parameters.

Usage

num_knots(range = c(0L, 5L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

One context in which this parameter is used is spline basis functions.

Examples

num_knots()

num_tokens 33

num_tokens Parameter to determine number of tokens in ngram

Description

Used in textrecipes::step_ngram().

Usage

num_tokens(range = c(1, 3), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

num_tokens()

over_ratio Parameters for class-imbalance sampling

Description

For up- and down-sampling methods, these parameters control how much data are added or removed
from the training set.

Usage

over_ratio(range = c(0.8, 1.2), trans = NULL)

under_ratio(range = c(0.8, 1.2), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

34 penalty

Details

See recipes::step_upsample() and recipes::step_downsample() for the interpretation of
these parameters.

Examples

under_ratio()
over_ratio()

parameters Information on tuning parameters within an object

Description

Information on tuning parameters within an object

Usage

parameters(x, ...)

Default S3 method:
parameters(x, ...)

S3 method for class 'param'
parameters(x, ...)

S3 method for class 'list'
parameters(x, ...)

Arguments

x An object, such as a list of param objects or an actual param object.

... Only used for the param method so that multiple param objects can be passed to
the function.

penalty Amount of regularization/penalization

Description

A numeric parameter function representing the amount of penalties (e.g. L1, L2, etc) in regularized
models.

Usage

penalty(range = c(-10, 0), trans = log10_trans())

predictor_prop 35

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. Note that these are in transformed units.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

This parameter is used for regularized or penalized models such as parsnip::linear_reg(),
parsnip::logistic_reg(), and others.

Examples

penalty()

predictor_prop Proportion of predictors

Description

The parameter is used in models where a parameter is the proportion of predictor variables.

Usage

predictor_prop(range = c(0, 1), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

predictor_prop() is used in step_pls().

Examples

predictor_prop()

36 prune_method

prior_slab_dispersion Bayesian PCA parameters

Description

A numeric parameter function representing parameters for the spike-and-slab prior used by embed::step_pca_sparse_bayes().

Usage

prior_slab_dispersion(range = c(-1/2, log10(3)), trans = log10_trans())

prior_mixture_threshold(range = c(0, 1), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

prior_slab_dispersion() is related to the prior for the case where a PCA loading is selected (i.e.
non-zero). Smaller values result in an increase in zero coefficients.

prior_mixture_threshold() is used to threshold the prior to determine which parameters are
non-zero or zero. Increasing this parameter increases the number of zero coefficients.

Examples

mixture()

prune_method MARS pruning methods

Description

MARS pruning methods

Usage

prune_method(values = values_prune_method)

values_prune_method

range_validate 37

Arguments

values A character string of possible values. See values_prune_method in examples
below.

Format

An object of class character of length 6.

Details

This parameter is used in parsnip:::mars().

Examples

values_prune_method
prune_method()

range_validate Tools for working with parameter ranges

Description

Setters, getters, and validators for parameter ranges.

Usage

range_validate(object, range, ukn_ok = TRUE)

range_get(object, original = TRUE)

range_set(object, range)

Arguments

object An object with class quant_param.

range A two-element numeric vector or list (including Inf). Values can include unknown()
when ukn_ok = TRUE.

ukn_ok A single logical for whether unknown() is an acceptable value.

original A single logical. Should the range values be in the natural units (TRUE) or in the
transformed space (FALSE, if applicable)?

Value

range_validate() returns the new range if it passes the validation process (and throws an error
otherwise).

range_get() returns the current range of the object.

range_set() returns an updated version of the parameter object with a new range.

38 rbf_sigma

Examples

library(dplyr)

my_lambda <- penalty() %>%
value_set(-4:-1)

try(
range_validate(my_lambda, c(-10, NA)),
silent = TRUE

) %>%
print()

range_get(my_lambda)

my_lambda %>%
range_set(c(-10, 2)) %>%
range_get()

rbf_sigma Kernel parameters

Description

Parameters related to the radial basis or other kernel functions.

Usage

rbf_sigma(range = c(-10, 0), trans = log10_trans())

scale_factor(range = c(-10, -1), trans = log10_trans())

kernel_offset(range = c(0, 2), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

degree() can also be used in kernel functions.

regularization_factor 39

Examples

rbf_sigma()
scale_factor()
kernel_offset()

regularization_factor Parameters for possible engine parameters for ranger

Description

These parameters are auxiliary to random forest models that use the "ranger" engine. They corre-
spond to tuning parameters that would be specified using set_engine("ranger",...).

Usage

regularization_factor(range = c(0, 1), trans = NULL)

regularize_depth(values = c(TRUE, FALSE))

significance_threshold(range = c(-10, 0), trans = log10_trans())

lower_quantile(range = c(0, 1), trans = NULL)

splitting_rule(values = ranger_split_rules)

ranger_class_rules

ranger_reg_rules

ranger_split_rules

num_random_splits(range = c(1L, 15L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

values For splitting_rule(), a character string of possible values. See ranger_split_rules,
ranger_class_rules, and ranger_reg_rules for appropriate values. For regularize_depth(),
either TRUE or FALSE.

40 regularization_method

Format

An object of class character of length 4.

An object of class character of length 3.

An object of class character of length 7.

Details

To use these, check ?ranger::ranger to see how they are used. Some are conditional on oth-
ers. For example, significance_threshold(), num_random_splits(), and others are only used
when splitting_rule = "extratrees".

Examples

regularization_factor()
regularize_depth()

regularization_method Estimation methods for regularized models

Description

Estimation methods for regularized models

Usage

regularization_method(values = values_regularization_method)

values_regularization_method

Arguments

values A character string of possible values. See values_regularization_method in
examples below.

Format

An object of class character of length 4.

Details

This parameter is used in parsnip::discrim_linear().

Examples

values_regularization_method
regularization_method()

scale_pos_weight 41

scale_pos_weight Parameters for possible engine parameters for xgboost

Description

These parameters are auxiliary to tree-based models that use the "xgboost" engine. They correspond
to tuning parameters that would be specified using set_engine("xgboost",...).

Usage

scale_pos_weight(range = c(0.8, 1.2), trans = NULL)

penalty_L2(range = c(-10, 1), trans = log10_trans())

penalty_L1(range = c(-10, 1), trans = log10_trans())

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

For more information, see the xgboost webpage.

Examples

scale_pos_weight()
penalty_L2()
penalty_L1()

select_features Parameter to enable feature selection

Description

Used in parsnip::gen_additive_mod().

Usage

select_features(values = c(TRUE, FALSE))

https://xgboost.readthedocs.io/en/latest/parameter.html

42 shrinkage_correlation

Arguments

values A vector of possible values (TRUE or FALSE).

Examples

select_features()

shrinkage_correlation Parameters for possible engine parameters for sda models

Description

These functions can be used to optimize engine-specific parameters of sda::sda() via parsnip::discrim_linear().

Usage

shrinkage_correlation(range = c(0, 1), trans = NULL)

shrinkage_variance(range = c(0, 1), trans = NULL)

shrinkage_frequencies(range = c(0, 1), trans = NULL)

diagonal_covariance(values = c(TRUE, FALSE))

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

values A vector of possible values (TRUE or FALSE).

Details

These functions map to sda::sda() arguments via:

• shrinkage_correlation() to lambda

• shrinkage_variance() to lambda.var

• shrinkage_frequencies() to lambda.freqs

• diagonal_covariance() to diagonal

Value

For the functions, they return a function with classes "param" and either "quant_param" or "qual_param".

smoothness 43

smoothness Kernel Smoothness

Description

Used in discrim::naive_Bayes().

Usage

smoothness(range = c(0.5, 1.5), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

smoothness()

stop_iter Early stopping parameter

Description

For some models, the effectiveness of the model can decrease as training iterations continue. stop_iter()
can be used to tune how many iterations without an improvement in the objective function occur
before training should be halted.

Usage

stop_iter(range = c(3L, 20L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

stop_iter()

44 survival_link

summary_stat Rolling summary statistic for moving windows

Description

This parameter is used in recipes::step_window().

Usage

summary_stat(values = values_summary_stat)

values_summary_stat

Arguments

values A character string of possible values. See values_summary_stat in examples
below.

Format

An object of class character of length 8.

Examples

values_summary_stat
summary_stat()

survival_link Survival Model Link Function

Description

Survival Model Link Function

Usage

survival_link(values = values_survival_link)

values_survival_link

Arguments

values A character string of possible values. See values_survival_link in examples
below.

surv_dist 45

Format

An object of class character of length 3.

Details

This parameter is used in parsnip::set_engine('flexsurvspline').

Examples

values_survival_link
survival_link()

surv_dist Parametric distributions for censored data

Description

Parametric distributions for censored data

Usage

surv_dist(values = values_surv_dist)

values_surv_dist

Arguments

values A character string of possible values. See values_surv_dist in examples be-
low.

Format

An object of class character of length 6.

Details

This parameter is used in parsnip::survival_reg().

Examples

values_surv_dist
surv_dist()

46 token

threshold General thresholding parameter

Description

In a number of cases, there are arguments that are threshold values for data falling between zero
and one. For example, recipes::step_other() and so on.

Usage

threshold(range = c(0, 1), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

threshold()

token Token types

Description

Token types

Usage

token(values = values_token)

values_token

Arguments

values A character string of possible values. See values_token in examples below.

Format

An object of class character of length 12.

trees 47

Details

This parameter is used in textrecipes::step_tokenize().

Examples

values_token
token()

trees Parameter functions related to tree- and rule-based models.

Description

These are parameter generating functions that can be used for modeling, especially in conjunction
with the parsnip package.

Usage

trees(range = c(1L, 2000L), trans = NULL)

min_n(range = c(2L, 40L), trans = NULL)

sample_size(range = c(unknown(), unknown()), trans = NULL)

sample_prop(range = c(1/10, 1), trans = NULL)

loss_reduction(range = c(-10, 1.5), trans = log10_trans())

tree_depth(range = c(1L, 15L), trans = NULL)

prune(values = c(TRUE, FALSE))

cost_complexity(range = c(-10, -1), trans = log10_trans())

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

values A vector of possible values (TRUE or FALSE).

48 unknown

Details

These functions generate parameters that are useful when the model is based on trees or rules.

• trees(): The number of trees contained in a random forest or boosted ensemble. In the latter
case, this is equal to the number of boosting iterations. (See parsnip::rand_forest() and
parsnip::boost_tree()).

• min_n(): The minimum number of data points in a node that is required for the node to be
split further. (See parsnip::rand_forest() and parsnip::boost_tree()).

• sample_size(): The size of the data set used for modeling within an iteration of the modeling
algorithm, such as stochastic gradient boosting. (See parsnip::boost_tree()).

• sample_prop(): The same as sample_size() but as a proportion of the total sample.

• loss_reduction(): The reduction in the loss function required to split further. (See parsnip::boost_tree()).
This corresponds to gamma in xgboost.

• tree_depth(): The maximum depth of the tree (i.e. number of splits). (See parsnip::boost_tree()).

• prune(): A logical for whether a tree or set of rules should be pruned.

• cost_complexity(): The cost-complexity parameter in classical CART models.

Examples

trees()
min_n()
sample_size()
loss_reduction()
tree_depth()
prune()
cost_complexity()

unknown Placeholder for unknown parameter values

Description

unknown() creates an expression used to signify that the value will be specified at a later time.

Usage

unknown()

is_unknown(x)

has_unknowns(object)

Arguments

x An object or vector or objects to test for unknown-ness.

object An object of class param.

update.parameters 49

Value

unknown() returns expression value for unknown().

is_unknown() returns a vector of logicals as long as x that are TRUE is the element of x is unknown,
and FALSE otherwise.

has_unknowns() returns a single logical indicating if the range of a param object has any unknown
values.

Examples

Just returns an expression
unknown()

Of course, true!
is_unknown(unknown())

Create a range with a minimum of 1
and an unknown maximum
range <- c(1, unknown())

range

The first value is known, the
second is not
is_unknown(range)

mtry()'s maximum value is not known at
creation time
has_unknowns(mtry())

update.parameters Update a single parameter in a parameter set

Description

Update a single parameter in a parameter set

Usage

S3 method for class 'parameters'
update(object, ...)

Arguments

object A parameter set.
... One or more unquoted named values separated by commas. The names should

correspond to the id values in the parameter set. The values should be parameter
objects or NA values.

50 value_validate

Value

The modified parameter set.

Examples

params <- list(lambda = penalty(), alpha = mixture(), `rand forest` = mtry())
pset <- parameters(params)
pset

update(pset, `rand forest` = finalize(mtry(), mtcars), alpha = mixture(c(.1, .2)))

value_validate Tools for working with parameter values

Description

Setters and validators for parameter values. Additionally, tools for creating sequences of parameter
values and for transforming parameter values are provided.

Usage

value_validate(object, values)

value_seq(object, n, original = TRUE)

value_sample(object, n, original = TRUE)

value_transform(object, values)

value_inverse(object, values)

value_set(object, values)

Arguments

object An object with class quant_param.

values A numeric vector or list (including Inf). Values cannot include unknown(). For
value_validate(), the units should be consistent with the parameter object’s
definition.

n An integer for the (maximum) number of values to return. In some cases where
a sequence is requested, the result might have less than n values. See Details.

original A single logical. Should the range values be in the natural units (TRUE) or in the
transformed space (FALSE, if applicable)?

value_validate 51

Details

For sequences of integers, the code uses unique(floor(seq(min,max,length.out = n))) and
this may generate an uneven set of values shorter than n. This also means that if n is larger than the
range of the integers, a smaller set will be generated. For qualitative parameters, the first n values
are returned.

If a single value sequence is requested, the default value is returned (if any). If no default is speci-
fied, the regular algorithm is used.

For quantitative parameters, any values contained in the object are sampled with replacement.
Otherwise, a sequence of values between the range values is returned. It is possible that less than n
values are returned.

For qualitative parameters, sampling of the values is conducted with replacement. For qualitative
values, a random uniform distribution is used.

Value

value_validate() throws an error or silently returns values if they are contained in the values of
the object.

value_transform() and value_inverse() return a vector of numeric values.

value_seq() and value_sample() return a vector of values consistent with the type field of
object.

Examples

library(dplyr)

penalty() %>% value_set(-4:-1)

Is a specific value valid?
penalty()
penalty() %>% range_get()
value_validate(penalty(), 17)

get a sequence of values
cost_complexity()
cost_complexity() %>% value_seq(4)
cost_complexity() %>% value_seq(4, original = FALSE)

on_log_scale <- cost_complexity() %>% value_seq(4, original = FALSE)
nat_units <- value_inverse(cost_complexity(), on_log_scale)
nat_units
value_transform(cost_complexity(), nat_units)

random values in the range
set.seed(3666)
cost_complexity() %>% value_sample(2)

52 weight

vocabulary_size Number of tokens in vocabulary

Description

Used in textrecipes::step_tokenize_sentencepiece() and textrecipes::step_tokenize_bpe().

Usage

vocabulary_size(range = c(1000L, 32000L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

vocabulary_size()

weight Parameter for "double normalization" when creating token counts

Description

Used in textrecipes::step_tf().

Usage

weight(range = c(-10, 0), trans = log10_trans())

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

weight()

weight_func 53

weight_func Kernel functions for distance weighting

Description

Kernel functions for distance weighting

Usage

weight_func(values = values_weight_func)

values_weight_func

Arguments

values A character string of possible values. See values_weight_func in examples
below.

Format

An object of class character of length 10.

Details

This parameter is used in parsnip:::nearest_neighbors().

Examples

values_weight_func
weight_func()

weight_scheme Term frequency weighting methods

Description

Term frequency weighting methods

Usage

weight_scheme(values = values_weight_scheme)

values_weight_scheme

54 window_size

Arguments

values A character string of possible values. See values_weight_scheme in examples
below.

Format

An object of class character of length 5.

Details

This parameter is used in textrecipes::step_tf().

Examples

values_weight_scheme
weight_scheme()

window_size Parameter for the moving window size

Description

Used in recipes::step_window().

Usage

window_size(range = c(3L, 11L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Examples

window_size()

Index

∗ datasets
activation, 3
conditional_min_criterion, 6
prune_method, 36
regularization_factor, 39
regularization_method, 40
summary_stat, 44
surv_dist, 45
survival_link, 44
token, 46
weight_func, 53
weight_scheme, 53

activation, 3
adjust_deg_free, 4
all_neighbors, 4

bart-param, 5
batch_size (dropout), 11

class_weights, 5
conditional_min_criterion, 6
conditional_test_statistic

(conditional_min_criterion), 6
conditional_test_type

(conditional_min_criterion), 6
confidence_factor, 7
cost, 8
cost_complexity (trees), 47

deg_free, 9
degree, 8
degree_int (degree), 8
diagonal_covariance

(shrinkage_correlation), 42
dist_power, 10
dropout, 11

epochs (dropout), 11
extrapolation, 12

finalize, 12
freq_cut, 15
fuzzy_thresholding (confidence_factor),

7

get_batch_sizes (finalize), 12
get_log_p (finalize), 12
get_n (finalize), 12
get_n_frac (finalize), 12
get_n_frac_range (finalize), 12
get_p (finalize), 12
get_rbf_range (finalize), 12
grid_latin_hypercube

(grid_max_entropy), 16
grid_max_entropy, 16
grid_random (grid_regular), 19
grid_regular, 19

has_unknowns (unknown), 48
hidden_units (dropout), 11

is_unknown (unknown), 48

kernel_offset (rbf_sigma), 38
kernlab::sigest(), 13, 14

Laplace, 21
learn_rate, 22
loss_reduction (trees), 47
lower_quantile (regularization_factor),

39

max_nodes, 22
max_num_terms, 23
max_rules (extrapolation), 12
max_times, 24
max_tokens, 24
min_dist, 25
min_n (trees), 47
min_times (max_times), 24
min_unique, 25

55

56 INDEX

mixture, 26
momentum, 26
mtry, 27
mtry(), 17, 20, 28
mtry_long (mtry), 27

neighbors, 28
new-param, 28
new_qual_param (new-param), 28
new_quant_param (new-param), 28
no_global_pruning (confidence_factor), 7
num_breaks, 30
num_comp, 31
num_hash, 31
num_knots, 32
num_random_splits

(regularization_factor), 39
num_terms (num_comp), 31
num_tokens, 33

over_ratio, 33

parameters, 34
penalty, 34
penalty(), 17, 20
penalty_L1 (scale_pos_weight), 41
penalty_L2 (scale_pos_weight), 41
predictor_prop, 35
predictor_winnowing

(confidence_factor), 7
prior_mixture_threshold

(prior_slab_dispersion), 36
prior_outcome_range (bart-param), 5
prior_slab_dispersion, 36
prior_terminal_node_coef (bart-param), 5
prior_terminal_node_expo (bart-param), 5
prod_degree (degree), 8
prune (trees), 47
prune_method, 36

range_get (range_validate), 37
range_set (range_validate), 37
range_validate, 37
ranger_class_rules

(regularization_factor), 39
ranger_reg_rules

(regularization_factor), 39
ranger_split_rules

(regularization_factor), 39

rbf_sigma, 38
regularization_factor, 39
regularization_method, 40
regularize_depth

(regularization_factor), 39
rule_bands (confidence_factor), 7

sample_prop (trees), 47
sample_size (trees), 47
scale_factor (rbf_sigma), 38
scale_pos_weight, 41
scales::log10_trans(), 29
scales::reciprocal_trans(), 29
scales::trans_new(), 29
select_features, 41
shrinkage_correlation, 42
shrinkage_frequencies

(shrinkage_correlation), 42
shrinkage_variance

(shrinkage_correlation), 42
signed_hash (num_hash), 31
significance_threshold

(regularization_factor), 39
smoothness, 43
spline_degree (degree), 8
splitting_rule (regularization_factor),

39
stop_iter, 43
summary_stat, 44
surv_dist, 45
survival_link, 44
svm_margin (cost), 8

threshold, 46
token, 46
tree_depth (trees), 47
trees, 47

unbiased_rules (extrapolation), 12
under_ratio (over_ratio), 33
unique_cut (freq_cut), 15
unknown, 48
update.parameters, 49

value_inverse (value_validate), 50
value_sample (value_validate), 50
value_seq (value_validate), 50
value_set (value_validate), 50
value_transform (value_validate), 50

INDEX 57

value_validate, 50
values_activation (activation), 3
values_prune_method (prune_method), 36
values_regularization_method

(regularization_method), 40
values_summary_stat (summary_stat), 44
values_surv_dist (surv_dist), 45
values_survival_link (survival_link), 44
values_test_statistic

(conditional_min_criterion), 6
values_test_type

(conditional_min_criterion), 6
values_token (token), 46
values_weight_func (weight_func), 53
values_weight_scheme (weight_scheme), 53
vocabulary_size, 52

weight, 52
weight_func, 53
weight_scheme, 53
window_size, 54

	activation
	adjust_deg_free
	all_neighbors
	bart-param
	class_weights
	conditional_min_criterion
	confidence_factor
	cost
	degree
	deg_free
	dist_power
	dropout
	extrapolation
	finalize
	freq_cut
	grid_max_entropy
	grid_regular
	Laplace
	learn_rate
	max_nodes
	max_num_terms
	max_times
	max_tokens
	min_dist
	min_unique
	mixture
	momentum
	mtry
	neighbors
	new-param
	num_breaks
	num_comp
	num_hash
	num_knots
	num_tokens
	over_ratio
	parameters
	penalty
	predictor_prop
	prior_slab_dispersion
	prune_method
	range_validate
	rbf_sigma
	regularization_factor
	regularization_method
	scale_pos_weight
	select_features
	shrinkage_correlation
	smoothness
	stop_iter
	summary_stat
	survival_link
	surv_dist
	threshold
	token
	trees
	unknown
	update.parameters
	value_validate
	vocabulary_size
	weight
	weight_func
	weight_scheme
	window_size
	Index

