
Package ‘diceR’
July 23, 2021

Type Package

Title Diverse Cluster Ensemble in R

Version 1.1.0

Description Performs cluster analysis using an ensemble
clustering framework, Chiu & Talhouk (2018)
<doi:10.1186/s12859-017-1996-y>. Results from a diverse set of
algorithms are pooled together using methods such as majority voting,
K-Modes, LinkCluE, and CSPA. There are options to compare cluster
assignments across algorithms using internal and external indices,
visualizations such as heatmaps, and significance testing for the
existence of clusters.

License MIT + file LICENSE

URL https://github.com/AlineTalhouk/diceR/,

https://alinetalhouk.github.io/diceR/

BugReports https://github.com/AlineTalhouk/diceR/issues

Depends R (>= 3.5)

Imports abind, assertthat, class, clue, clusterCrit, clValid, dplyr
(>= 0.7.5), ggplot2, infotheo, klaR, magrittr, mclust, methods,
NMF, purrr (>= 0.2.3), RankAggreg, Rcpp, stringr, tidyr,
yardstick

Suggests apcluster, blockcluster, cluster, covr, dbscan, e1071,
kernlab, knitr, kohonen, pander, poLCA, progress, RColorBrewer,
rmarkdown, Rtsne, sigclust, testthat

LinkingTo Rcpp

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation yes

1

https://doi.org/10.1186/s12859-017-1996-y
https://github.com/AlineTalhouk/diceR/
https://alinetalhouk.github.io/diceR/
https://github.com/AlineTalhouk/diceR/issues

2 compactness

Author Derek Chiu [aut, cre],
Aline Talhouk [aut],
Johnson Liu [ctb, com]

Maintainer Derek Chiu <dchiu@bccrc.ca>

Repository CRAN

Date/Publication 2021-07-23 19:30:01 UTC

R topics documented:
compactness . 2
consensus_cluster . 3
consensus_combine . 6
consensus_evaluate . 7
consensus_matrix . 9
CSPA . 10
dice . 11
external_validity . 13
graphs . 15
hgsc . 16
impute_knn . 17
impute_missing . 18
k_modes . 19
LCA . 20
LCE . 21
majority_voting . 22
min_fnorm . 23
PAC . 24
pcn . 25
prepare_data . 26
relabel_class . 27
sigclust . 28
similarity . 29

Index 31

compactness Compactness Measure

Description

Compute the compactness validity index for a clustering result.

Usage

compactness(data, labels)

consensus_cluster 3

Arguments

data a dataset with rows as observations, columns as variables

labels a vector of cluster labels from a clustering result

Details

This index is agnostic to any reference clustering results, calculating cluster performance on the
basis of compactness and separability. Smaller values indicate a better clustering structure.

Value

the compactness score

Author(s)

Derek Chiu

References

MATLAB function valid_compactness by Simon Garrett in LinkCluE

Examples

set.seed(1)
E <- matrix(rep(sample(1:4, 1000, replace = TRUE)), nrow = 100, byrow =

FALSE)
set.seed(1)
dat <- as.data.frame(matrix(runif(1000, -10, 10), nrow = 100, byrow = FALSE))
compactness(dat, E[, 1])

consensus_cluster Consensus clustering

Description

Runs consensus clustering across subsamples of the data, clustering algorithms, and cluster sizes.

Usage

consensus_cluster(
data,
nk = 2:4,
p.item = 0.8,
reps = 1000,
algorithms = NULL,
nmf.method = c("brunet", "lee"),
hc.method = "average",
xdim = NULL,

4 consensus_cluster

ydim = NULL,
rlen = 200,
alpha = c(0.05, 0.01),
minPts = 5,
distance = "euclidean",
prep.data = c("none", "full", "sampled"),
scale = TRUE,
type = c("conventional", "robust", "tsne"),
min.var = 1,
progress = TRUE,
seed.nmf = 123456,
seed.data = 1,
file.name = NULL,
time.saved = FALSE

)

Arguments

data data matrix with rows as samples and columns as variables
nk number of clusters (k) requested; can specify a single integer or a range of inte-

gers to compute multiple k
p.item proportion of items to be used in subsampling within an algorithm
reps number of subsamples
algorithms vector of clustering algorithms for performing consensus clustering. Must be

any number of the following: "nmf", "hc", "diana", "km", "pam", "ap", "sc",
"gmm", "block", "som", "cmeans", "hdbscan". A custom clustering algorithm
can be used.

nmf.method specify NMF-based algorithms to run. By default the "brunet" and "lee" algo-
rithms are called. See NMF::nmf() for details.

hc.method agglomeration method for hierarchical clustering. The the "average" method is
used by default. Seestats::hclust() for details.

xdim x dimension of the SOM grid
ydim y dimension of the SOM grid
rlen the number of times the complete data set will be presented to the SOM network.
alpha SOM learning rate, a vector of two numbers indicating the amount of change.

Default is to decline linearly from 0.05 to 0.01 over rlen updates. Not used for
the batch algorithm.

minPts minimum size of clusters for HDBSCAN. Default is 5.
distance a vector of distance functions. Defaults to "euclidean". Other options are given

in stats::dist(). A custom distance function can be used.
prep.data Prepare the data on the "full" dataset, the "sampled" dataset, or "none" (default).
scale logical; should the data be centered and scaled?
type if we use "conventional" measures (default), then the mean and standard devi-

ation are used for centering and scaling, respectively. If "robust" measures are
specified, the median and median absolute deviation (MAD) are used. Alterna-
tively, we can apply "tsne" for dimension reduction.

consensus_cluster 5

min.var minimum variability measure threshold used to filter the feature space for only
highly variable features. Only features with a minimum variability measure
across all samples greater than min.var will be used. If type = "conventional",
the standard deviation is the measure used, and if type = "robust", the MAD
is the measure used.

progress logical; should a progress bar be displayed?

seed.nmf random seed to use for NMF-based algorithms

seed.data seed to use to ensure each algorithm operates on the same set of subsamples

file.name if not NULL, the returned array will be saved at each iteration as well as at the
end of the function call to an rds object with file.name as the file name.

time.saved logical; if TRUE, the date saved is appended to file.name. Only applicable when
file.name is not NULL.

Details

See examples for how to use custom algorithms and distance functions. The default clustering
algorithms provided are:

• "nmf": Nonnegative Matrix Factorization (using Kullback-Leibler Divergence or Euclidean
distance; See Note for specifications.)

• "hc": Hierarchical Clustering

• "diana": DIvisive ANAlysis Clustering

• "km": K-Means Clustering

• "pam": Partition Around Medoids

• "ap": Affinity Propagation

• "sc": Spectral Clustering using Radial-Basis kernel function

• "gmm": Gaussian Mixture Model using Bayesian Information Criterion on EM algorithm

• "block": Biclustering using a latent block model

• "som": Self-Organizing Map (SOM) with Hierarchical Clustering

• "cmeans": Fuzzy C-Means Clustering

• "hdbscan": Hierarchical Density-based Spatial Clustering of Applications with Noise (HDB-
SCAN)

The progress bar increments on every unit of reps.

Value

An array of dimension nrow(x) by reps by length(algorithms) by length(nk). Each cube of
the array represents a different k. Each slice of a cube is a matrix showing consensus clustering
results for algorithms. The matrices have a row for each sample, and a column for each subsample.
Each entry represents a class membership.

When "hdbscan" is part of algorithms, we do not include its clustering array in the consensus
result. Instead, we report two summary statistics as attributes: the proportion of outliers and the
number of clusters.

6 consensus_combine

Note

The nmf.method options are "brunet" (Kullback-Leibler Divergence) and "lee" (Euclidean dis-
tance). When "hdbscan" is chosen as an algorithm to use, its results are excluded from the rest
of the consensus clusters. This is because there is no guarantee that the cluster assignment will have
every sample clustered; more often than not there will be noise points or outliers. In addition, the
number of distinct clusters may not even be equal to nk.

Author(s)

Derek Chiu, Aline Talhouk

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]

Custom distance function
manh <- function(x) {

stats::dist(x, method = "manhattan")
}

Custom clustering algorithm
agnes <- function(d, k) {

return(as.integer(stats::cutree(cluster::agnes(d, diss = TRUE), k)))
}

assign("agnes", agnes, 1)

cc <- consensus_cluster(dat, reps = 6, algorithms = c("pam", "agnes"),
distance = c("euclidean", "manh"), progress = FALSE)
str(cc)

consensus_combine Combine algorithms

Description

Combines results for multiple objects from consensus_cluster() and outputs either the consensus
matrices or consensus classes for all algorithms.

Usage

consensus_combine(..., element = c("matrix", "class"))

Arguments

... any number of objects outputted from consensus_cluster()

element either "matrix" or "class" to extract the consensus matrix or consensus class,
respectively.

consensus_evaluate 7

Details

This function is useful for collecting summaries because the original results from consensus_cluster
were combined to a single object. For example, setting element = "class" returns a matrix of con-
sensus cluster assignments, which can be visualized as a consensus matrix heatmap.

Value

consensus_combine returns either a list of all consensus matrices or a data frame showing all the
consensus classes

Author(s)

Derek Chiu

Examples

Consensus clustering for multiple algorithms
set.seed(911)
x <- matrix(rnorm(500), ncol = 10)
CC1 <- consensus_cluster(x, nk = 3:4, reps = 10, algorithms = "ap",
progress = FALSE)
CC2 <- consensus_cluster(x, nk = 3:4, reps = 10, algorithms = "km",
progress = FALSE)

Combine and return either matrices or classes
y1 <- consensus_combine(CC1, CC2, element = "matrix")
str(y1)
y2 <- consensus_combine(CC1, CC2, element = "class")
str(y2)

consensus_evaluate Evaluate, trim, and reweigh algorithms

Description

Evaluates algorithms on internal/external validation indices. Poor performing algorithms can be
trimmed from the ensemble. The remaining algorithms can be given weights before use in consen-
sus functions.

Usage

consensus_evaluate(
data,
...,
cons.cl = NULL,
ref.cl = NULL,
k.method = NULL,
plot = FALSE,

8 consensus_evaluate

trim = FALSE,
reweigh = FALSE,
n = 5

)

Arguments

data data matrix with rows as samples and columns as variables

... any number of objects outputted from consensus_cluster()

cons.cl matrix of cluster assignments from consensus functions such as kmodes and
majority_voting

ref.cl reference class

k.method determines the method to choose k when no reference class is given. When
ref.cl is not NULL, k is the number of distinct classes of ref.cl. Otherwise the
input from k.method chooses k. The default is to use the PAC to choose the best
k(s). Specifying an integer as a user-desired k will override the best k chosen by
PAC. Finally, specifying "all" will produce consensus results for all k. The "all"
method is implicitly performed when there is only one k used.

plot logical; if TRUE, graph_all is called

trim logical; if TRUE, algorithms that score low on internal indices will be trimmed
out

reweigh logical; if TRUE, after trimming out poor performing algorithms, each algorithm
is reweighed depending on its internal indices.

n an integer specifying the top n algorithms to keep after trimming off the poor
performing ones using Rank Aggregation. If the total number of algorithms is
less than n no trimming is done.

Details

This function always returns internal indices. If ref.cl is not NULL, external indices are addition-
ally shown. Relevant graphical displays are also outputted. Algorithms are ranked across internal
indices using Rank Aggregation. Only the top n algorithms are kept, the rest are trimmed.

Value

consensus_evaluate returns a list with the following elements

• k: if ref.cl is not NULL, this is the number of distinct classes in the reference; otherwise the
chosen k is determined by the one giving the largest mean PAC across algorithms

• pac: a data frame showing the PAC for each combination of algorithm and cluster size

• ii: a list of data frames for all k showing internal evaluation indices

• ei: a data frame showing external evaluation indices for k

• trim.obj: A list with 4 elements

– alg.keep: algorithms kept
– alg.remove: algorithms removed

consensus_matrix 9

– rank.matrix: a matrix of ranked algorithms for every internal evaluation index
– top.list: final order of ranked algorithms
– E.new: A new version of a consensus_cluster data object

Examples

Consensus clustering for multiple algorithms
set.seed(911)
x <- matrix(rnorm(500), ncol = 10)
CC <- consensus_cluster(x, nk = 3:4, reps = 10, algorithms = c("ap", "km"),
progress = FALSE)

Evaluate algorithms on internal/external indices and trim algorithms:
remove those ranking low on internal indices
set.seed(1)
ref.cl <- sample(1:4, 50, replace = TRUE)
z <- consensus_evaluate(x, CC, ref.cl = ref.cl, n = 1, trim = TRUE)
str(z, max.level = 2)

consensus_matrix Consensus matrix

Description

Returns the (weighted) consensus matrix given a data matrix

Usage

consensus_matrix(data, weights = NULL)

Arguments

data data matrix has rows as samples, columns as replicates

weights a vector of weights for each algorithm used in meta-consensus clustering. Must
have length(weights) equal to ncol(data).

Details

Given a vector of cluster assignments, we first calculate the connectivity matrix and indicator ma-
trix. A connectivity matrix has a 1 if both samples are in the same cluster, and 0 otherwise. An
indicator matrix has a 1 if both samples were selected to be used in a subsample of a consensus
clustering algorithm, and 0 otherwise. Summation of connectivity matrices and indicator matrices
is performed over different subsamples of the data. The consensus matrix is calculated by dividing
the aggregated connectivity matrices by the aggregated indicator matrices.

If a meta-consensus matrix is desired, where consensus classes of different clustering algorithms
are aggregated, we can construct a weighted meta-consensus matrix using weights.

10 CSPA

Value

a consensus matrix

Note

When consensus is calculated over bootstrap samples, not every sample is used in each replication.
Thus, there will be scenarios where two samples are never chosen together in any bootstrap samples.
This typically happens when the number of replications is small. The coordinate in the consensus
matrix for such pairs of samples is NaN from a 0 / 0 computation. These entries are coerced to 0.

Author(s)

Derek Chiu

Examples

set.seed(2)
x <- replicate(100, rbinom(100, 4, 0.2))
w <- rexp(100)
w <- w / sum(w)
cm1 <- consensus_matrix(x)
cm2 <- consensus_matrix(x, weights = w)

CSPA Cluster-based Similarity Partitioning Algorithm (CSPA)

Description

Performs hierarchical clustering on a stack of consensus matrices to obtain consensus class labels.

Usage

CSPA(E, k)

Arguments

E is an array of clustering results.

k number of clusters

Value

cluster assignments for the consensus class

Author(s)

Derek Chiu

dice 11

See Also

Other consensus functions: LCA(), LCE(), k_modes(), majority_voting()

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
x <- consensus_cluster(dat, nk = 4, reps = 4, algorithms = c("hc", "diana"),
progress = FALSE)
CSPA(x, k = 4)

dice Diverse Clustering Ensemble

Description

Runs consensus clustering across subsamples, algorithms, and number of clusters (k).

Usage

dice(
data,
nk,
reps = 10,
algorithms = NULL,
k.method = NULL,
nmf.method = c("brunet", "lee"),
hc.method = "average",
distance = "euclidean",
cons.funs = c("kmodes", "majority", "CSPA", "LCE", "LCA"),
sim.mat = c("cts", "srs", "asrs"),
prep.data = c("none", "full", "sampled"),
min.var = 1,
seed = 1,
trim = FALSE,
reweigh = FALSE,
n = 5,
evaluate = TRUE,
plot = FALSE,
ref.cl = NULL,
progress = TRUE

)

Arguments

data data matrix with rows as samples and columns as variables

12 dice

nk number of clusters (k) requested; can specify a single integer or a range of inte-
gers to compute multiple k

reps number of subsamples

algorithms vector of clustering algorithms for performing consensus clustering. Must be
any number of the following: "nmf", "hc", "diana", "km", "pam", "ap", "sc",
"gmm", "block", "som", "cmeans", "hdbscan". A custom clustering algorithm
can be used.

k.method determines the method to choose k when no reference class is given. When
ref.cl is not NULL, k is the number of distinct classes of ref.cl. Otherwise the
input from k.method chooses k. The default is to use the PAC to choose the best
k(s). Specifying an integer as a user-desired k will override the best k chosen by
PAC. Finally, specifying "all" will produce consensus results for all k. The "all"
method is implicitly performed when there is only one k used.

nmf.method specify NMF-based algorithms to run. By default the "brunet" and "lee" algo-
rithms are called. See NMF::nmf() for details.

hc.method agglomeration method for hierarchical clustering. The the "average" method is
used by default. Seestats::hclust() for details.

distance a vector of distance functions. Defaults to "euclidean". Other options are given
in stats::dist(). A custom distance function can be used.

cons.funs consensus functions to use. Current options are "kmodes" (k-modes), "majority"
(majority voting), "CSPA" (Cluster-based Similarity Partitioning Algorithm),
"LCE" (linkage clustering ensemble), "LCA" (latent class analysis)

sim.mat similarity matrix; choices are "cts", "srs", "asrs".

prep.data Prepare the data on the "full" dataset, the "sampled" dataset, or "none" (default).

min.var minimum variability measure threshold used to filter the feature space for only
highly variable features. Only features with a minimum variability measure
across all samples greater than min.var will be used. If type = "conventional",
the standard deviation is the measure used, and if type = "robust", the MAD
is the measure used.

seed random seed for knn imputation reproducibility

trim logical; if TRUE, algorithms that score low on internal indices will be trimmed
out

reweigh logical; if TRUE, after trimming out poor performing algorithms, each algorithm
is reweighed depending on its internal indices.

n an integer specifying the top n algorithms to keep after trimming off the poor
performing ones using Rank Aggregation. If the total number of algorithms is
less than n no trimming is done.

evaluate logical; if TRUE (default), validity indices are returned. Internal validity indices
are always computed. If ref.cl is not NULL, then external validity indices will
also be computed.

plot logical; if TRUE, graph_all is called and a summary evaluation heatmap of
ranked algorithms vs. internal validity indices is plotted as well.

ref.cl reference class

progress logical; should a progress bar be displayed?

external_validity 13

Details

There are three ways to handle the input data before clustering via argument prep.data. The
default is to use the raw data as-is ("none"). Or, we can enact prepare_data() on the full dataset
("full"), or the bootstrap sampled datasets ("sampled").

Value

A list with the following elements

E raw clustering ensemble object

Eknn clustering ensemble object with knn imputation used on E

Ecomp flattened ensemble object with remaining missing entries imputed by majority
voting

clusters final clustering assignment from the diverse clustering ensemble method

indices if evaluate = TRUE, shows cluster evaluation indices; otherwise NULL

Author(s)

Aline Talhouk, Derek Chiu

Examples

library(dplyr)
data(hgsc)
dat <- hgsc[1:100, 1:50]
ref.cl <- strsplit(rownames(dat), "_") %>%

purrr::map_chr(2) %>%
factor() %>%
as.integer()

dice.obj <- dice(dat, nk = 4, reps = 5, algorithms = "hc", cons.funs =
"kmodes", ref.cl = ref.cl, progress = FALSE)
str(dice.obj, max.level = 2)

external_validity External validity indices

Description

External validity indices compare a predicted clustering result with a reference class or gold stan-
dard.

Usage

ev_nmi(pred.lab, ref.lab, method = "emp")

ev_confmat(pred.lab, ref.lab)

14 external_validity

Arguments

pred.lab predicted labels generated by classifier

ref.lab reference labels for the observations

method method of computing the entropy. Can be any one of "emp", "mm", "shrink", or
"sg".

Details

ev_nmi calculates the normalized mutual information

ev_confmat calculates a variety of statistics associated with confusion matrices. Accuracy, Cohen’s
kappa, and Matthews correlation coefficient have direct multiclass definitions, whereas all other
metrics use macro-averaging.

Value

ev_nmi returns the normalized mutual information.

ev_confmat returns a tibble of the following summary statistics using yardstick::summary.conf_mat():

• accuracy: Accuracy

• kap: Cohen’s kappa

• sens: Sensitivity

• spec: Specificity

• ppv: Positive predictive value

• npv: Negative predictive value

• mcc: Matthews correlation coefficient

• j_index: Youden’s J statistic

• bal_accuracy: Balanced accuracy

• detection_prevalence: Detection prevalence

• precision: alias for ppv

• recall: alias for sens

• f_meas: F Measure

Note

ev_nmi is adapted from infotheo::mutinformation()

Author(s)

Johnson Liu, Derek Chiu

References

Strehl A, Ghosh J. Cluster ensembles: a knowledge reuse framework for combining multiple parti-
tions. J. Mach. Learn. Res. 2002;3:583-617.

graphs 15

Examples

set.seed(1)
E <- matrix(rep(sample(1:4, 1000, replace = TRUE)), nrow = 100, byrow =

FALSE)
x <- sample(1:4, 100, replace = TRUE)
y <- sample(1:4, 100, replace = TRUE)
ev_nmi(x, y)
ev_confmat(x, y)

graphs Graphical Displays

Description

Graph cumulative distribution function (CDF) graphs, relative change in area under CDF curves,
heatmaps, and cluster assignment tracking plots.

Usage

graph_cdf(mat)

graph_delta_area(mat)

graph_heatmap(mat, main = NULL)

graph_tracking(cl)

graph_all(x)

Arguments

mat same as x, or a list of consensus matrices computed from x for faster results
main heatmap title. If NULL (default), the titles will be taken from names in mat

cl same as x, or a matrix of consensus classes computed from x for faster results
x an object from consensus_cluster()

Details

graph_cdf plots the CDF for consensus matrices from different algorithms. graph_delta_area
calculates the relative change in area under CDF curve between algorithms. graph_heatmap gen-
erates consensus matrix heatmaps for each algorithm in x. graph_tracking tracks how cluster
assignments change between algorithms. graph_all is a wrapper that runs all graphing functions.

Value

Various plots from graph_*{} functions. All plots are generated using ggplot, except for graph_heatmap,
which uses NMF::aheatmap(). Colours used in graph_heatmap and graph_tracking utilize
RColorBrewer::brewer.pal() palettes.

16 hgsc

Author(s)

Derek Chiu

References

https://stackoverflow.com/questions/4954507/calculate-the-area-under-a-curve

Examples

Consensus clustering for 3 algorithms
library(ggplot2)
set.seed(911)
x <- matrix(rnorm(80), ncol = 10)
CC1 <- consensus_cluster(x, nk = 2:4, reps = 3,
algorithms = c("hc", "pam", "km"), progress = FALSE)

Plot CDF
p <- graph_cdf(CC1)

Change y label and add colours
p + labs(y = "Probability") + stat_ecdf(aes(colour = k)) +
scale_color_brewer(palette = "Set2")

Delta Area
p <- graph_delta_area(CC1)

Heatmaps with column side colours corresponding to clusters
CC2 <- consensus_cluster(x, nk = 3, reps = 3, algorithms = "hc", progress =
FALSE)
graph_heatmap(CC2)

Track how cluster assignments change between algorithms
p <- graph_tracking(CC1)

hgsc Gene expression data for High Grade Serous Carcinoma from TCGA

Description

There are 489 samples measured on 321 genes. Sample IDs are in the row names and gene names
are in the column names. This data set is used for clustering HGSC into subtypes with prognostic
significance. The cluster assignments obtained by TCGA are indicated by the last six characters of
each row name in hgsc: MES.C1, IMM.C2, DIF.C4, and PRO.C5

Usage

hgsc

impute_knn 17

Format

A data frame with 489 rows and 321 columns.

impute_knn K-Nearest Neighbours imputation

Description

The non-missing cases indicate the training set, and missing cases indicate the test set.

Usage

impute_knn(x, data, seed = 123456)

Arguments

x clustering object

data data matrix

seed random seed for knn imputation reproducibility

Value

An object with (potentially not all) missing values imputed with K-Nearest Neighbours.

Note

We consider 5 nearest neighbours and the minimum vote for definite decision is 3.

Author(s)

Aline Talhouk

See Also

Other imputation functions: impute_missing()

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
x <- consensus_cluster(dat, nk = 4, reps = 4, algorithms = c("km", "hc",
"diana"), progress = FALSE)
x <- apply(x, 2:4, impute_knn, data = dat, seed = 1)

18 impute_missing

impute_missing Impute missing values

Description

Impute missing values from bootstrapped subsampling

Usage

impute_missing(E, data, nk)

Arguments

E 4D array of clusterings from consensus_cluster. The number of rows is equal
to the number of cases to be clustered, number of columns is equal to the clus-
terings obtained by different resamplings of the data, the third dimension are the
different algorithms and the fourth dimension are cluster sizes.

data data matrix with samples as rows and genes/features as columns

nk cluster size to extract data for (single value)

Details

The default output from consensus_cluster will undoubtedly contain NA entries because each
replicate chooses a random subset (with replacement) of all samples. Missing values should first be
imputed using impute_knn(). Not all missing values are guaranteed to be imputed by KNN. See
class::knn() for details. Thus, any remaining missing values are imputed using majority voting.

Value

If flattened matrix consists of more than one repetition, i.e. it isn’t a column vector, then the function
returns a matrix of clusterings with complete cases imputed using majority voting, and relabelled,
for chosen k.

Author(s)

Aline Talhouk

See Also

Other imputation functions: impute_knn()

k_modes 19

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
E <- consensus_cluster(dat, nk = 3:4, reps = 10, algorithms = c("hc", "km",
"sc"), progress = FALSE)
sum(is.na(E))
E_imputed <- impute_missing(E, dat, 4)
sum(is.na(E_imputed))

k_modes K-modes

Description

Combine clustering results using K-modes.

Usage

k_modes(E, is.relabelled = TRUE, seed = 1)

Arguments

E a matrix of clusterings with number of rows equal to the number of cases to
be clustered, number of columns equal to the clustering obtained by different
resampling of the data, and the third dimension are the different algorithms.
Matrix may already be two-dimensional.

is.relabelled logical; if FALSE the data will be relabelled using the first clustering as the ref-
erence.

seed random seed for reproducibility

Details

Combine clustering results generated using different algorithms and different data perturbations by
k-modes. This method is the categorical data analog of k-means clustering. Complete cases are
needed: i.e. no NAs. If the matrix contains NAs those are imputed by majority voting (after class
relabeling).

Value

a vector of cluster assignments based on k-modes

Author(s)

Aline Talhouk

See Also

Other consensus functions: CSPA(), LCA(), LCE(), majority_voting()

20 LCA

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
cc <- consensus_cluster(dat, nk = 4, reps = 6, algorithms = "pam", progress =
FALSE)
table(k_modes(cc[, , 1, 1, drop = FALSE], is.relabelled = FALSE))

LCA Latent Class Analysis

Description

Combine clustering results using latent class analysis.

Usage

LCA(E, is.relabelled = TRUE, seed = 1)

Arguments

E a matrix of clusterings with number of rows equal to the number of cases to
be clustered, number of columns equal to the clustering obtained by different
resampling of the data, and the third dimension are the different algorithms.
Matrix may already be two-dimensional.

is.relabelled logical; if FALSE the data will be relabelled using the first clustering as the ref-
erence.

seed random seed for reproducibility

Value

a vector of cluster assignments based on LCA

Author(s)

Derek Chiu

See Also

Other consensus functions: CSPA(), LCE(), k_modes(), majority_voting()

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
cc <- consensus_cluster(dat, nk = 4, reps = 6, algorithms = "pam", progress =
FALSE)
table(LCA(cc[, , 1, 1, drop = FALSE], is.relabelled = FALSE))

LCE 21

LCE Linkage Clustering Ensemble

Description

Generate a cluster assignment from a CTS, SRS, or ASRS similarity matrix.

Usage

LCE(E, k, dc = 0.8, R = 10, sim.mat = c("cts", "srs", "asrs"))

Arguments

E is an array of clustering results. An error is thrown if there are missing values.
impute_missing() can be used beforehand.

k requested number of clusters

dc decay constant for CTS, SRS, or ASRS matrix

R number of repetitions for SRS matrix

sim.mat similarity matrix; choices are "cts", "srs", "asrs".

Value

a vector containing the cluster assignment from either the CTS, SRS, or ASRS similarity matrices

Author(s)

Johnson Liu

See Also

Other consensus functions: CSPA(), LCA(), k_modes(), majority_voting()

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
x <- consensus_cluster(dat, nk = 4, reps = 4, algorithms = c("km", "hc"),
progress = FALSE)
Not run:
LCE(E = x, k = 4, sim.mat = "asrs")

End(Not run)

x <- apply(x, 2:4, impute_knn, data = dat, seed = 1)
x_imputed <- impute_missing(x, dat, nk = 4)
LCE(E = x_imputed, k = 4, sim.mat = "cts")

22 majority_voting

majority_voting Majority voting

Description

Combine clustering results using majority voting.

Usage

majority_voting(E, is.relabelled = TRUE)

Arguments

E a matrix of clusterings with number of rows equal to the number of cases to
be clustered, number of columns equal to the clustering obtained by different
resampling of the data, and the third dimension are the different algorithms.
Matrix may already be two-dimensional.

is.relabelled logical; if FALSE the data will be relabelled using the first clustering as the ref-
erence.

Details

Combine clustering results generated using different algorithms and different data perturbations by
majority voting. The class of a sample is the cluster label which was selected most often across
algorithms and subsamples.

Value

a vector of cluster assignments based on majority voting

Author(s)

Aline Talhouk

See Also

Other consensus functions: CSPA(), LCA(), LCE(), k_modes()

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
cc <- consensus_cluster(dat, nk = 4, reps = 6, algorithms = "pam", progress =
FALSE)
table(majority_voting(cc[, , 1, 1, drop = FALSE], is.relabelled = FALSE))

min_fnorm 23

min_fnorm Minimize Frobenius norm for between two matrices

Description

Finds a permutation of a matrix such that its Frobenius norm with another matrix is minimized.

Usage

min_fnorm(A, B = diag(nrow(A)))

Arguments

A data matrix we want to permute

B matrix whose distance with the permuted A we want to minimize. By default, B
<-diag(nrow(A)), so the permutation maximizes the trace of A.

Details

Finds the permutation P of A such that ||PA - B|| is minimum in Frobenius norm. Uses the linear-
sum assignment problem (LSAP) solver in the package clue. The default B is the identity matrix
of same dimension, so that the permutation of A maximizes its trace. This procedure is useful for
constructing a confusion matrix when we don’t know the true class labels of a predicted class and
want to compare to a reference class.

Value

Permuted matrix such that it is the permutation of A closest to B

Author(s)

Ravi Varadhan: https://stat.ethz.ch/pipermail/r-help/2010-April/236664.html

Examples

set.seed(1)
A <- matrix(sample(1:25, size = 25, rep = FALSE), 5, 5)
min_fnorm(A)

24 PAC

PAC Proportion of Ambiguous Clustering

Description

Given a consensus matrix, returns the proportion of ambiguous clusters (PAC). This is a robust way
to assess clustering performance.

Usage

PAC(cm, lower = 0, upper = 1)

Arguments

cm consensus matrix. Should be symmetric and values between 0 and 1.
lower the lower bound that determines what is ambiguous
upper the upper bound that determines what is ambiguous

Details

Since a consensus matrix is symmetric, we only look at its lower (or upper) triangular matrix. The
proportion of entries strictly between lower and upper is the PAC. In a perfect clustering, the
consensus matrix would consist of only 0s and 1s, and the PAC assessed on the (0, 1) interval would
have a perfect score of 0. Using a (0.1, 0.9) interval for defining ambiguity is common as well.

The PAC is not, strictly speaking, an internal validity index. Originally used to choose the optimal
number of clusters, here we use it to assess cluster stability. However, PAC is still agnostic any gold
standard clustering result so we use it like an internal validity index.

Value

the PAC is a score used in clustering performance. The lower it is the better, because we want
minimal ambiguity amongst the consensus.

Author(s)

Derek Chiu

References

Senbabaoglu, Y., Michailidis, G., & Li, J. Z. (2014). Critical limitations of consensus clustering in
class discovery. Scientific reports, 4.

Examples

set.seed(1)
x <- replicate(100, rbinom(100, 4, 0.2))
y <- consensus_matrix(x)
PAC(y, lower = 0.05, upper = 0.95)

pcn 25

pcn Simulate and select null distributions on empirical gene-gene correla-
tions

Description

Using a principal component constructed from the sample space, we simulate null distributions with
univariate Normal distributions using pcn_simulate. Then a subset of these distributions is chosen
using pcn_select.

Usage

pcn_simulate(data, n.sim = 50)

pcn_select(data.sim, cl, type = c("rep", "range"), int = 5)

Arguments

data data matrix with rows as samples, columns as features

n.sim The number of simulated datasets to simulate

data.sim an object from pcn_simulate

cl vector of cluster memberships

type select either the representative dataset ("rep") or a range of datasets ("range")

int every int data sets from median-ranked data.sim are taken. Defaults to 5.

Value

pcn_simulate returns a list of length n.sim. Each element is a simulated matrix using this "Prin-
cipal Component Normal" (pcn) procedure.

pcn_select returns a list with elements

• ranks: When type = "range", ranks of each extracted dataset shown

• ind: index of representative simulation

• dat: simulation data representation of all in pcNormal

Author(s)

Derek Chiu

Examples

set.seed(9)
A <- matrix(rnorm(300), nrow = 20)
pc.dat <- pcn_simulate(A, n.sim = 50)
cl <- sample(1:4, 20, replace = TRUE)
pc.select <- pcn_select(pc.dat, cl, "rep")

26 prepare_data

prepare_data Prepare data for consensus clustering

Description

Perform feature selection or dimension reduction to remove noise variables.

Usage

prepare_data(
data,
scale = TRUE,
type = c("conventional", "robust", "tsne"),
min.var = 1

)

Arguments

data data matrix with rows as samples and columns as variables

scale logical; should the data be centered and scaled?

type if we use "conventional" measures (default), then the mean and standard devi-
ation are used for centering and scaling, respectively. If "robust" measures are
specified, the median and median absolute deviation (MAD) are used. Alterna-
tively, we can apply "tsne" for dimension reduction.

min.var minimum variability measure threshold used to filter the feature space for only
highly variable features. Only features with a minimum variability measure
across all samples greater than min.var will be used. If type = "conventional",
the standard deviation is the measure used, and if type = "robust", the MAD
is the measure used.

Details

We can apply a basic filtering method of feature selection that removes variables with low signal
and (optionally) scales before consensus clustering. Or, we can use t-SNE dimension reduction to
transform the data to just two variables. This lower-dimensional embedding allows algorithms such
as hierarchical clustering to achieve greater performance.

Value

dataset prepared for usage in consensus_cluster

Author(s)

Derek Chiu

relabel_class 27

Examples

set.seed(2)
x <- replicate(10, rnorm(100))
x.prep <- prepare_data(x)
dim(x)
dim(x.prep)

relabel_class Relabel classes to a standard

Description

Relabel clustering categories to match to a standard by minimizing the Frobenius norm between the
two labels.

Usage

relabel_class(pred.cl, ref.cl)

Arguments

pred.cl vector of predicted cluster assignments

ref.cl vector of reference labels to match to

Value

A vector of relabeled cluster assignments

Author(s)

Aline Talhouk

Examples

set.seed(2)
pred <- sample(1:4, 100, replace = TRUE)
true <- sample(1:4, 100, replace = TRUE)
relabel_class(pred, true)

28 sigclust

sigclust Significant Testing of Clustering Results

Description

Uses the SigClust K-Means algorithm to assess significance of clustering results.

Usage

sigclust(x, k, nsim, nrep = 1, labflag = 0, label = 0, icovest = 2)

Arguments

x data matrix, samples are rows and features are columns

k cluster size to test against

nsim number of simulations

nrep See sigclust::sigclust() for details.

labflag See sigclust::sigclust() for details.

label true class label. See sigclust::sigclust() for details.

icovest type of covariance matrix estimation

Details

This function is a wrapper for the original sigclust::sigclust(), except that an additional pa-
rameter k is allows testing against any number of clusters. In addition, the default type of covariance
estimation is also different.

Value

An object of class sigclust. See sigclust::sigclust() for details.

Author(s)

Hanwen Huang: <hanwenh@email.unc.edu>; Yufeng Liu: <yfliu@email.unc.edu>; J. S. Mar-
ron: <marron@email.unc.edu>

References

Liu, Yufeng, Hayes, David Neil, Nobel, Andrew and Marron, J. S, 2008, Statistical Significance of
Clustering for High-Dimension, Low-Sample Size Data, Journal of the American Statistical Asso-
ciation 103(483) 1281–1293.

similarity 29

Examples

data(hgsc)
dat <- hgsc[1:100, 1:50]
nk <- 4
cc <- consensus_cluster(dat, nk = nk, reps = 5, algorithms = "pam",
progress = FALSE)
cl.mat <- consensus_combine(cc, element = "class")
lab <- cl.mat$`4`[, 1]
set.seed(1)
str(sigclust(x = dat, k = nk, nsim = 50, labflag = 1, label = lab))

similarity Similarity Matrices

Description

cts computes the connected triple based similarity matrix, srs computes the simrank based simi-
larity matrix, and asrs computes the approximated simrank based similarity matrix.

Usage

cts(E, dc)

srs(E, dc, R)

asrs(E, dc)

Arguments

E an N by M matrix of cluster ensembles

dc decay factor, ranges from 0 to 1 inclusive

R number of iterations for srs

Value

an N by N CTS, SRS, or ASRS matrix

Author(s)

Johnson Liu, Derek Chiu

References

MATLAB functions cts, srs, asrs in package LinkCluE by Simon Garrett

30 similarity

Examples

set.seed(1)
E <- matrix(rep(sample(1:4, 800, replace = TRUE)), nrow = 100)
CTS <- cts(E = E, dc = 0.8)
SRS <- srs(E = E, dc = 0.8, R = 3)
ASRS <- asrs(E = E, dc = 0.8)
purrr::walk(list(CTS, SRS, ASRS), str)

Index

∗ consensus functions
CSPA, 10
k_modes, 19
LCA, 20
LCE, 21
majority_voting, 22

∗ datasets
hgsc, 16

∗ imputation functions
impute_knn, 17
impute_missing, 18

asrs (similarity), 29

class::knn(), 18
compactness, 2
consensus_cluster, 3
consensus_cluster(), 6, 8, 15
consensus_combine, 6
consensus_evaluate, 7
consensus_matrix, 9
CSPA, 10, 19–22
cts (similarity), 29

dice, 11

ev_confmat (external_validity), 13
ev_nmi (external_validity), 13
external_validity, 13

graph_all (graphs), 15
graph_cdf (graphs), 15
graph_delta_area (graphs), 15
graph_heatmap (graphs), 15
graph_tracking (graphs), 15
graphs, 15

hgsc, 16

impute_knn, 17, 18
impute_knn(), 18

impute_missing, 17, 18
impute_missing(), 21
infotheo::mutinformation(), 14

k_modes, 11, 19, 20–22

LCA, 11, 19, 20, 21, 22
LCE, 11, 19, 20, 21, 22

majority_voting, 11, 19–21, 22
min_fnorm, 23

NMF::aheatmap(), 15
NMF::nmf(), 4, 12

PAC, 24
pcn, 25
pcn_select (pcn), 25
pcn_simulate (pcn), 25
prepare_data, 26
prepare_data(), 13

RColorBrewer::brewer.pal(), 15
relabel_class, 27

sigclust, 28
sigclust::sigclust(), 28
similarity, 29
srs (similarity), 29
stats::dist(), 4, 12
stats::hclust(), 4, 12

yardstick::summary.conf_mat(), 14

31

	compactness
	consensus_cluster
	consensus_combine
	consensus_evaluate
	consensus_matrix
	CSPA
	dice
	external_validity
	graphs
	hgsc
	impute_knn
	impute_missing
	k_modes
	LCA
	LCE
	majority_voting
	min_fnorm
	PAC
	pcn
	prepare_data
	relabel_class
	sigclust
	similarity
	Index

