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Abstract

The dirichletprocess package provides software for creating flexible Dirichlet processes
objects in R. Users can perform nonparametric Bayesian analysis using Dirichlet processes
without the need to program their own inference algorithms. Instead, the user can utilise
our pre-built models or specify their own models whilst allowing the dirichletprocess

package to handle the Markov chain Monte Carlo sampling. Our Dirichlet process objects
can act as building blocks for a variety of statistical models including and not limited to:
density estimation, clustering and prior distributions in hierarchical models.
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1. Introduction

Many applications of statistical models require parametric specifications of the probabil-
ity distributions of interest – that observations are generated by Normal distributions, that
group-level fixed effects can be modeled by Gamma distributions, and so on. However in some
situations there will be insufficient prior information and data to justify such parametric as-
sumptions. In this case, nonparametric methods allow a more flexible and robust specification
of distributions, so their essential features can be ‘learned from the data’ rather than specified
in advance.

While frequentist nonparametrics has a long history, Bayesian nonparametrics was a relatively
dormant field until the mid 1990s. Although much of the theory of nonparametric priors had
been worked out in previous decades (Ferguson 1973), computational issues prevented their
widespread adoption. This changed with the development of posterior simulation methods
such as Metropolis-Hastings (Hastings 1970) and the Gibbs sampler (Geman and Geman
1984) which were first applied to the task of nonparametric density estimation using Dirichlet
process (DP) mixtures in a seminal paper by Escobar and West (1995). This kick started
research into Bayesian nonparametrics, which has now become one of the most popular re-
search areas in the statistics and machine learning literature. While there are now several
widely used models within the field of Bayesian nonparametrics including the Gaussian pro-
cess, Beta process and Polya trees, the Dirichlet process mixture model (DPMM) has been
the most popular due to its wide applicability and elegant computational structure.

At the most basic level, the DPMM can be viewed as an infinite dimensional mixture model
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which represents an unknown density f(y) as:

f(y) =

∫

k(y | θ)p(θ | G)dθ, G ∼ DP(α, G0),

where k(· | θ) denotes the mixture kernel, and the mixing distribution G is assigned a non-
parametric Dirichlet process prior with a base measure G0 and concentration parameter α. In
the most widely used DPMM, the mixture kernel is taken to be Gaussian so that θ = (µ, σ2)
and k(y | θ) = N(y | µ, σ2) with a conjugate Normal Inverse-Gamma specification for G0. The
infinite dimensional nature of such a model makes it capable of approximating any continuous
distribution to an arbitrary degree of accuracy.

The use of DPMMs is not restricted to simply estimating the density of observed data.
Instead, the DPMM can be used at any level in a hierarchical model where it is considered
necessary to represent a density nonparametrically due to a lack of knowledge about its
parametric form. For example, consider a (multilevel) random effects model where there are
J groups of observations, with observations in each group j following a Gaussian distribution
with a group-specific mean µj and a common variance σ2. To share information across groups,
the means µj are assumed to be exchangeable and assigned a prior p(µj). If yi,j denotes the
ith observation in group j, then the model is:

yi,j ∼ N(yi,j | µj , σ2),

µj ∼ p(µj | γ),

where γ is the (hyper-)parameters of the prior. This model is an example of partial pooling,
where the inference for each mean µj is based on the means of each of the other J − 1
groups, allowing information to be shared across groups. As a biased estimation technique,
it is related to methods such as the Lasso estimator, and usually results in more accurate
estimation than estimating each group mean separately. However, completing the model
specification requires choosing a form for the prior distribution of group means p(µj | γ),
which is made more difficult since the group means may not be observable with a high
degree of accuracy, particularly when the number of observations is small. In this case,
using a nonparametric DPMM specification for p(µj | γ) would avoid the risks of potentially
specifying an inappropriate parametric form.

Typically when working with DPMMs, the posterior distributions are analytically intractable,
so inference instead usually involved computational simulation. A variety of simulation algo-
rithms based around Gibbs sampling and Metropolis-Hastings have been developed to draw
samples from DPMM posterior distributions, which can then be used for inference. As such,
the widespread adoption of DPMMs has to some extent been held back by the level of statis-
tical and programming literacy required to implement use them. The purpose of the dirich-

letprocess package is to provide a unified implementation of these simulation algorithms for
a very wide class of DP mixture models which makes it easy to incorporate DPMMs into
hierarchical models.

The design philosophy of the dirichletprocess package is the polar opposite of the existing
DPpackage R package which also provides an implementation of DPMMs. The purpose of
DPpackage is to give a fast implementation of several common tasks where DPs are used, such
as density estimation using Gaussian mixtures, and a variety of specific regression models.
While the DPpackage package is very useful in these situations, it cannot be used for any
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applications of DPs which do not fall into one of the pre-specified tasks incorporated in the
package, or use mixture kernels or base measures other than those provided.

In contrast, the purpose of the dirichletprocess package is not to automate a pre-specified
range of tasks, but instead to represent DPMMs as objects in R so that they can be used
as building blocks inside user-specified models. The target audience is hence users who
are working with (possibly hierarchical) models which uses a DPMM at some stage, and
who hence require a DPMM implementation which can be used as a part of a more general
model estimation scheme. As such, the number of tasks which can be achieved using the
dirichletprocess is quite large, although the trade-off is that the functions in this package will
be slower than those in DPpackage when it comes to the specific models which it implements.

Key features of the dirichletprocess package include:

• An implementation of DP mixture models for various types of mixture kernel including
the Gaussian, Beta, Multivariate Normal and Weibull.

• Implementation of DP posterior sampling algorithms in both the conjugate and non-
conjugate cases.

• A object-based interface which allows the user to work directly with DP objects in R so
that they can be incorporated into hierarchical models.

1.1. A Technical Note

The ultimate purpose of this package is to represent Dirichlet process mixture models as
objects in R, so that they can be manipulated and used as building blocks. At the time of
writing, R currently features three separate object systems (S3, S4 and RC) designed to allow
object-orientated programming. This package uses S3. There are two motivations for this
design choice which in our opinion outweigh any advantages that come from using any of
other of the R object systems.

1. Speed. While R is an excellent programming language which makes carrying out high
level statistical analysis easy, its slow speed remains a bottleneck particularly in tasks
such as Gibbs Sampling and Monte Carlo Markov Chain (MCMC) sampling which are
inherently sequential and cannot be vectorized. While the base R system is already
slow, the S4 and Reference Class (RC) object systems systems suffer from further per-
formance hits since they must search for the correct method for each function evaluation
(Wickham 2014). S3 suffers a similar slowdown but to a lesser extent. The price we
pay in speed we make up for in code comprehension and ease of development.

2. Ease-of-use. A key feature of this package is that users can themselves specify new
DP mixture types if the package does not implement the precise specification they
desire. The object systems S4 and RC are geared towards intermediary/advanced R

programmers and can be intimidating to novices. The design philosophy of this package
allows users to override the behaviour of DP objects and create new mixture types
without needing to learn the intricacies of any particular object system. The chosen
representation where DP objects are simple S3 structures does not require the user to
learn anything about the more obscure intricacies of R objects, and instead they can
focus purely on writing the R functions to implement the DP models.
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Current alternatives for nonparamteric inference include Stan, PyMC3 and Edward. However,
whilst all three packages are much more general than the dirichletprocess offerings, they do not
offer ease of customisation that dirichletprocess does. Firstly, Stan (Carpenter, Bob, Gelman,
Andrew, Hoffman, Matt, Lee, Daniel, Goodrich, Ben, Betancourt, Michael, Brubaker, Michael
A, Guo, Jiqiang, Li, Peter, and Riddell, Allen 2016), does not allow you to specify discrete
parameters in models. As Dirichlet process models require cluster labels which are inherently
discrete parameters you are unable to build Dirichlet process models directly in Stan. For
both the Python libraries Edward and PyMC3, examples exist of building Dirichlet process
models. However, these are built on top of TensorFlow and Theano (Tran, Kucukelbir,
Dieng, Rudolph, Liang, and Blei 2016; Salvatier, Wiecki, and Fonnesbeck 2016), therefore,
being able to build Dirichlet process objects into statistical work flows would require learning
these external libraries. Instead our package dirichletprocess is written natively in R and
abstracts the difficulties away, allowing users to write Dirichlet process models in R code and
not worry about computational details.

2. Background information

This section provides background information about the Dirichlet Process, and includes the
key mathematical properties around which the sampling algorithms in the dirichletprocess

package are based. It can be skipped by those who simply want to know how to use the
package, which is discussed in Section 3.

It is commonly required to learn the unknown probability distribution F which generated the
observations y1, . . . , yn. In parametric Bayesian inference, F is assumed to belong to a known
family of distributions (such as the Normal or Exponential) with an associated parameter
vector θ of finite length and which much be estimated. This leads to the model:

yi ∼ F (yi | θ),

θ ∼ p(θ | γ),

where p(θ | γ) denotes the prior distribution and γ are the prior parameters. The task of
inference then involves finding an appropriate value for θ, which is equivalent to choosing
which member of the specified family of distributions gives the best fit to the data.

In practice however, it may not be clear how to choose an appropriate parametric family of
distributions for F . If the wrong family is chosen, then conclusions based on the estimated
model may be highly misleading. For example, if it is assumed that F has a Normal distribu-
tion with unknown parameters θ = (µ, σ2) when in fact the true F is heavy-tailed, this can
lead to severe underestimation of the probability of extreme events occurring (Coles 2001).

This problem can be avoided by using a nonparametric prior specification which puts positive
prior mass on the whole space of probability densities rather than on a subspace spanned by
the finite-length parameter vector θ. This allows the estimated F to adapt to the data, rather
than being restricted to a particular family of distributions such as the Normal or Exponential.
The Dirichlet process (DP) is one of the most widely used Bayesian nonparametric priors,
due to its flexibility and computational simplicity. Our aim in this section is not to give
a full treatment of the Dirichlet processes, and a reader unfamiliar with them should refer
to a standard reference such as Escobar and West (1995). Instead we will only focus on
describing the properties of the DP that are directly relevant to their implementation in the
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dirichletprocess package.

The basic DP model has the form:

yi ∼ F,

F ∼ DP(α, G0),

where G0 is known as the base measure and encapsulates any prior knowledge that might
be known about F . Specifically, it can be shown that E[F | G0, α] = G0. The concentration
parameter α specifies the prior variance and controls the relative contribution that the prior
and data make to the posterior, as the following result shows.

Key Property 1: The DP is a conjugate prior in the following sense: if y1, . . . , yn ∼ F
and F ∼ DP(α, G0), then:

F | y1, . . . , yn ∼ DP

(

α + n,
αG0 +

∑n
i=1 δyi

α + n

)

,

where δyi
denotes a point-mass at yi. In other words, the posterior distribution of F

is a weighted sum of the base measure G0 and the empirical distribution of the data,
with the weighting controlled by α.

The DP is a prior distribution over the space of probability distributions. As such, samples
from a DP are probability distributions. The stick-breaking representation first introduced
by Sethuraman (1994) shows what such samples look like:

Key Property 2: Suppose that F ∼ DP(α, H) is a random probability distribution
sampled from a DP prior. Then with probability 1, F can be written as:

F =
∞
∑

k=1

wkδφk
, φk ∼ G0

where

wk = zk

k−1
∏

i=1

(1 − zi), zi ∼ Beta(1, α).

In other words, random probability distributions can be sampled from a DP by first drawing
a collection of samples zi from a Beta distribution, transforming these to produce the weights
{wi}, and then drawing the associated atoms from G0. Note that in order for F to be a
true from a DP, an infinite number of such weights and atoms must be drawn. However in
practice, the above summation can be truncated with only a finite number N of draws, while
still providing a very good approximation.

By combining Key Properties 1 and 2, we can sample a DP from its posterior distribution
F | y1, . . . , yn as follows:
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Key Property 3: If y1, . . . , yn ∼ F and F ∼ DP(α, G0) then we can draw a (trun-
cated) sample probability distribution from the posterior F | y1, . . . , yn as follows:

F =
N
∑

k=1

wkδφk
, φk ∼ αG0 +

∑n
i=1 δyi

α + n
,

where

wk = zk

k−1
∏

i=1

(1 − zi), zi ∼ Beta(1, α + n).

and N is a truncation parameter.

2.1. Dirichlet Process Mixtures

The stick breaking representation in Key Property 2 above shows that probability distribu-
tions sampled from a DP are discrete with probability 1. As such, the DP is not an appro-
priate prior for F when F is continuous. Therefore, it is usual to adopt the following mixture
specification instead, which is known as the Dirichlet process mixture model (DPMM):

yi ∼ k(yi | θi),

θi ∼ F,

F ∼ DP(α, G0).

(1)

In other words, F has a DP prior as before, but rather than the data yi being drawn from
F , it is instead the mixture parameters θ which are draws from F. These θ values then act
as the parameters of a parametric kernel function k(·), which is usually continuous. The
most commonly used example is the Gaussian mixture model where θi = (µi, σ2

i ) so that
k(yi | θi) = N(yi | µi, σ2

i ).

The key point here is that since F is discrete, two independent draws θi and θj from F can
have identical values with a non-zero probability. As such, the DPMM can be seen as sorting
the data into clusters, corresponding to the mixture components. The above model can hence
be written equivalently as the following mixture model, which is infinite dimensional can hence
be viewed as a generalization of the finite mixture models commonly used in nonparametric
statistics:

yi ∼ G,

G =

∫

k(yi | θ)F (θ)dθ,

F ∼ DP(α, G0).

When the DPMM is used in practice, interest may focus on several different parameters of
the posterior distribution. In some cases, the primary object of interest will be all n of the θi

parameters from Equation 1 which are associated with the n observations. This is particularly
the case in clustering applications, where the goal is to assign similar observations to the same
cluster (i.e. to identical values of θ). However in other situations it will be the distribution
F which is of primary interest. The dirichletprocess package returns posterior samples of all
these quantities, so that the user can decide which are most relevant.
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Posterior inference in the dirichletprocess package is based around the Chinese Restaurant
Process sampler (Neal 2000). This is a Gibbs-style algorithm based on the DPMM repre-
sentation in Equation 1 above, and draws samples of θ1, . . . , θn from their posterior with the
distribution F integrated out.

Key Property 4: Let θ−i denote the set of θ values with θi excluded, i.e. θ−i =
(θ1, . . . , θi−1, θi+1, . . . , θn). Then the posterior distribution for θi conditional on the
other model parameters is:

p(θi | θ−i, y1:n, α, G0) =
∑

j 6=i

qi,jδ(θj) + riHi,

qi,j = bk(yi, θj), ri = bα

∫

k(yi, θ)dG0(θ)

where b is set such that
∑

j 6=i qi,j + ri = 1 and Hi is the posterior distribution of θ
based off of the prior base measure G0.

Based on this result, Gibbs sampling is used to repeatedly draw each value of θi in turn from
its posterior distribution, with all other variables held constant. An important distinction
needs to be made between the conjugate case where the G0 base measure is the conjugate
prior for θ with respect to the kernel k(·), and the non-conjugate case there is not a closed
form for the posterior distribution. In the conjugate case, the integral in Key Property 4 can
be computed analytically and the resulting distribution is simply the predictive distribution.
In this case, the θi values can be sampled directly from their true posterior distribution.

In the non-conjugate case things are slightly more difficult, and the integral in Key Property 4
cannot be evaluated. As such, numerical techniques must be used instead, which will typically
result in slower computation. The dirichletprocess package handles the non-conjugate case
by using “Algorithm 8” from (Neal 2000), which is one of the most widely used techniques
for performing this sampling.

In both the conjugate and non-conjugate cases, the Gibbs sampling is conceptually similar,
with the new values of θi being proposed sequentially from their respective posterior distri-
butions. However in practice, this can result in poor mixing of the Gibbs sampler. One
approach to speed up convergence is to add in additional update of the θi values at the end of
the sampling. For each cluster and its associated data points we update the cluster parameter
using the posterior distribution

p(θi | yj) =
∏

j=i

k(yj | θ)G0, (2)

for a conjugate base measure, this posterior distribution is tractable and thus can be sampled
directly. For a non-conjugate G0, a posterior sample is achieved using the Metropolis-Hastings
algorithm (Hastings 1970).

For simple density estimation and non-hierarchical predictive tasks, having a posterior sample
of θ1:n will be sufficient for inference, and the distribution F is not of any intrinsic interest.
However when the DP is used as part of a hierarchical model such as in the regression and
point process examples we discuss later, it is also necessary to have samples from the posterior
distribution of F . These can be obtained using the following property:
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Key Property 5: Given the model from Eq. (1) let θ1, . . . , θn be a sample from
the posterior p(θ1:n | y1:n, α, G0) drawn using the CRP sampler. Then, p(F |
θ1:n, y1:n, α, G0) = p(F | θ1:n, α, G0) is conditionally independent of y1:n. As such,
θ1:n can be considered as an i.i.d sample from F , and so F can be sampled from its
posterior distribution using Key Property 3 above:

F =
N
∑

i=1

wiδθi
, wi ∼ Beta(α + n, 1), θi ∼ αG0 +

∑n
i=1 δθi

α + n

where N is again a truncation parameter.

2.2. Hyperparameter Inference

In the above discussion, we assumed that the concentration parameter α and base measure
G0 were constant. However in practice, better results can often be obtained if they are also
learned from the data. This can all be easily performed using routines from this package.

Inferring the Concentration Parameter

Following West (1992) we use a Gamma(a, b) prior for α. The corresponding posterior dis-
tribution depends only on the number of unique values of θ1:n. More specifically, given the
model in Equation (1) let θ1, . . . , θn denote a sample from the posterior p(θ1:n | y1:n, α, G0).
Suppose that there are k unique values in this sample. Then a sample from p(α | θ1:n, y1:n, G0)
can be obtained as follows:

• Simulate a random number z from a Beta(α + 1, n) distribution

• Define π̃1 = a + k + 1 and π̃2 = n(b − log(z)), then define π = π̃1/(π̃1 + π̃2) ∈ [0, 1]

• With probability π, draw a value of α from a Gamma(a + k, b − log(z)) distribution,
and with probability (1 − π) draw it from a Gamma(a + k − 1, b − log(z)) distribution
instead.

When fitting a DP the value of α can be easily inferred and sampled by default in the
dirichletprocess package.

Inferring the Base Measure

The base measure G0 can be parameterised with values γ which themselves are also random
and from some distribution p(γ). By placing a prior distribution on the parameters of the base
measure this allows for the DP to adapt to the data and ensure that the fitting algorithms
converge to the stationary distributions quicker

φi | γ ∼ G0,

γ ∼ p(γ),

γ | φi ∼ H,
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where H is the posterior distribution. If we chose our p(γ) such that it is conjugate to the
posterior, we can directly sample form the posterior distribution, otherwise, a Metropolis-
Hastings step is include in the computation.

2.3. Implemented Mixture Models

As we will discuss, one of the strengths of the dirichletprocess package is that it allows users
to specify DPMs using whichever choices of the kernel k and base measure G0 they please.
However for ease of use, we have implemented certain choices of k and G0 directly in the
package, which includes routines for resampling all hyperparameters.

Gaussian Mixture Model

The Gaussian distribution is the most commonly used mixture model. In this case, θ = (µ, σ2)
for the mean and variance. The kernel is:

k(y | θ) = N(yi | µ, σ2) =
1√

2πσ2
exp

(

−(y − µ)2

2σ2

)

.

The conjugate prior for θ is the Normal-Gamma distribution, with parameters γ = (µ0, k0, α0, β0)

G0(θ | γ) = N

(

µ | µ0,
σ2

k0

)

Inv-Gamma
(

σ2 | α0, β0

)

.

the default setting of the parameters is µ0 = 0, σ2
0 = 1, α0 = 1, β0 = 1. We recommenced

rescaling our data y such that its mean is 0 and standard deviation is 1. This leads to the
default parameterisation of G0 being uninformative.

Since this prior is conjugate, the predictive distribution for a new observation ỹ can be found
analytically, and is a location/scale Student-t distribution:

p(ỹ | γ) =

∫

k(ỹ | θ)p(θ | G0)dθ =
1

σ̃
Student-t

(

ỹ − µ̃

σ̃
| ṽ

)

,

where ṽ = 2α0, µ̃ = µ0, σ̃ =
√

β0(k0+1)
α0k0

.

Finally the posterior distribution is also a Normal Inverse Gamma distribution due to the
conjugacy of the prior

p(θ | y, γ) = N(µ | µn,
σ2

k0 + n
)Inv-Gamma(σ2 | αn, βn),

µn =
κ0µ0 + ny

k0 + n
,

αn = α0 +
n

2
,

βn = β0 +
1

2

n
∑

i=1

(yi − y)2 +
κ0n(y − µ0)2

2(κ0 + n)
.

Multivariate Gaussian Mixture Model - Conjugate

The multivariate Gaussian mixture model is the most widely used nonparametric modeling
approach for multivariate data. It is also heavily used in clustering applications (Maceachern
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and Müller 1998). For the unknown parameters we have θ = (µ, Λ) for d dimensional data µ

is a column vector of length d and Λ is a d × d dimensional matrix

k(yi | θ) =
| Λ | 1

2

2π− d
2

exp

(

−1

2
(yi − µ)⊤Λ(yi − µ)

)

.

For the prior choice we us a multivariate normal distribution for µ and Wishart distribution
for Λ

G0(µ, Λ | µ0, κ0, ν0, T0) = N(µ | µ0, (κ0Λ)−1)Wiν0
(Λ | T0),

where µ0 is the mean vector of the prior, κ0, ν0 are single values and T is a matrix. The
default prior parameters are set as µ = 0, T = I, κ0 = d, ν0 = d.

This prior choice is conjugate to the posterior, therefore the posterior distribution can be
expressed analytically

p(θ | yi) = N(µ | µn, (κnΛn)−1)Wi(Λ | νn, Tn),

µn =
κ0µ0 + ny

k + n
,

κn = κ0 + n,

νn = ν0 + n,

Tn = T0 +
n
∑

i=1

(yi − y)(yi − y)⊤ +
κ0n

κ0 + n
(µ0 − y)(µ0 − y)⊤.

Again, as this is a conjugate mixture we can write the predictive function for some new data
ỹ

p(ỹ | y) =
1

π
nd
2

Γd(νn

2 )

Γd(ν0

2 )

| T0 |
ν0
2

| Tn | νn
2

(

κ0

κn

)
d
2

.

Multivariate Gaussian Mixture Model - Semi-Conjugate

In the semi-conjugate case, the base measures for each parameter are specified independently

G0(µ, Σ) = N(µ | µ0, Σ0)Wi−1
nu0

(Φ0).

Therefore, sampling from the posterior is a two step process

Σ | µ, ν0, Φ0 ∼ Wi−1
νn

(Φn),

νn = ν0 + n,

Φn = Φ0 +
n
∑

i=1

(xi − µ)(xi − µ)T ,

µ | Σ, µ0, Σ0 ∼ N(µn, Σn),

Σn =
(

Σ−1
0 + nΣ−1

)−1

µn = Σn

(

Σ−1
0 µ0 + nΣ−1

y

)

using the conditional probabilities, each parameter can be sampled using the previous sample.
This allows us to use Algorithm 8 and treat the model as a non-conjugate mixture model.
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Beta Mixture Model

Dirichlet process mixtures of Beta distributions have been considered by Kottas (2006a) for the
nonparametric estimation of continuous distributions that are defined on a bounded interval,
[0, T ]. For ease of interpretation, we follow their parameterisation of the Beta distribution in
terms of its mean and standard deviation, In this case, θ = (µ, ν) with a known parameter
T . The mixture kernel is:

k(yi | θ) = Beta(yi | µ, ν, T ) =
y

µν

T
−1

i (T − yi)
ν(1− µ

T
)−1

B(µν
T

, ν(1 − µ
T

))T ν−1
.

There is no conjugate prior for the mixture kernel. Instead, the dirichletprocess package uses
the (non-conjugate) prior from Kottas (2006a) where

G0(µ, ν | T, α0, β0) = U(µ | [0, T ])Inv-Gamma(ν | α0, β0).

To sample from the posterior distribution we use the Metropolis-Hastings algorithm with the
parameters α0 = 2, β0 = 8 as the default. However, there is also the ability to place a prior
distribution on β0 and update the prior parameter with each iteration. For this we use a
default prior distribution of

β0 ∼ Gamma(a, b),

with a = 1, b = 0.125 by default.

Weibull Mixture Model

The Weibull distribution has strictly positive support it is mainly used for positive only data
modeling. Furthermore, it is ubiquitously used in survival analysis. Mixture of Weibull
distributions have been considered by Kottas (2006a) for a variety of survival applications.
The parameters of the Weibull distribution are the shape a and scale b

k(yi | θ) = Weibull(yi | a, b) =
a

b
ya−1

i exp

(

−ya
i

b

)

, (3)

where θ = (a, b).

We use a non-conjugate Uniform Inverse Gamma distribution for the unknown parameters

G0(a, b | φ, α, β) = U(a | 0, φ)Inv-Gamma(b | α, β), (4)

by default φ, α and β do not have assigned values. Instead, we place priors on φ and β and
update with each fitting procedure, α remains fixed. For φ we use a Pareto distribution as
our prior as this is conjugate to the Uniform distribution.

ai ∼ U(0, φ),

φ ∼ Pareto(xm, k),

φ | ai ∼ Pareto(max{ai, xm}, k + n),

by default xm = 6, k = 2 which is an infinite variance prior distribution.
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As b is from a Inverse Gamma distribution with fixed shape α it has a conjugate prior which
is the Gamma distribution.

bi ∼ Inv-Gamma(α, β),

β ∼ Gamma(α0, β0),

β | b ∼ Gamma

(

α0 + nα, β0 +
n
∑

i=1

1

bi

)

,

with α fixed by the user and α0 = 1, β0 = 0.5 by default. This prior on β with α0 = 1 is an
conventional distribution with mean 1

β0
which allows for the user to decide how disperse the

prior needs to be. As this is a non-conjugate model we must use a Metropolis-Hastings step
to sample from the posterior distribution.

3. Package Overview

The dirichletprocess package contains implementations of a variety of Dirichlet process mix-
ture models for nonparametric Bayesian analysis. Unlike several other R packages, the em-
phasis is less on providing a set of functions which completely automate routine tasks (e.g.
density estimation or linear regression) and more on providing an abstract data type repre-
sentation of Dirichlet process objects which allow them to be used as building blocks within
hierarchical models.

To illustrate how the package is meant to be used, and how it differs from other R packages,
consider the task of density estimation. Suppose we wish to estimate the density of some data
stored in the variable y using a Dirichlet process mixture of Gaussian distributions. This is
done as follows:

R> y <- rt(200, 3) + 2 #generate sample data

R> dp <- DirichletProcessGaussian(y)

R> dp <- Fit(dp, 1000)

The function DirichletProcessGaussian is the creator function for a mixture model of
univariate Gaussians. This creates the object dp. We then use the function Fit on this
object to infer the cluster parameters, which uses the Chinese Restaurant Sample algorithm
described in Section 2.1. With each iteration, the assigned cluster label to each datapoint
is updated, then the resulting cluster parameters are updated before finally updating the
concentration parameter α. Using the Fit function the details of the sampling are removed
from the user and this provides an ‘out-of-the-box’ method to easily fit a Dirichlet pro-
cess to data. Only a specification of the type of mixture model is needed - in this case a
Gaussian mixture. The returned object dp from the Fit function contains the following infor-
mation: dp$clusterParameterChains stores the MCMC samples of the cluster parameters,
dp$weightsChain stores the associate weights, and dp$alphaChain stores the samples of the
concentration parameter α. These posterior samples can then be used for inference based on
what the user is trying to accomplish.

The dirichletprocess package currently provides the following features:

• Implementations of Dirichlet process mixture models using Gaussian (both univariate
and multivariate), Beta, and Weibull mixture kernels.
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• Implementation of various schemes for re-sampling model parameters.

• Access to samples from the Dirichlet process in both marginal form, as well as in (trun-
cated) stick-breaking form

• A flexible way for the user to add new Dirichlet process models which are not currently
implemented in the package, and yet still use the re-sampling functions from the pack-
age. To illustrate this, Section 4.2 shows how simple it is to create a Dirichlet process
mixture model with Poisson and Gamma distribution kernels, even though this is not
implemented in the package.

• An ability to plot the likelihood, posterior and credible intervals of a Dirichlet process
using plot.

All of the above features will be demonstrated in the following examples.

Nonparametric Density Estimation

The most simple application of DPMMs is to nonparametrically estimate the distribution of
independent and identically distributed observations y1, . . . , yn, where:

yi ∼ F,

F =
n
∑

i=1

πik(yi | θi),

where k is some density function parameterised by θi and n is some unknown amount of
clusters (i.e. F has been specifically nonparametrically as a mixture model). The most widely
used specification is the Gaussian mixture kernel with a Normal-Inverse Gamma base measure
G0, which is described more fully in Section 2.3.

As an example we use the waiting times between eruptions of the Old Faithful volcano. This
dataset is available within R and called faithful. We transform the waiting times to be
be zero mean and and unit standard deviation and proceed to fit a DPMM with the default
settings. We then model the waiting times as a mixture of Normal distributions

yi ∼ F,

F =
n
∑

i=1

πik(yi | θi) θi =
{

µi, σ2
i

}

,

θi ∼ G,

G ∼ DP(α, G0),

where k(yi | θ) is the standard normal probability density and G0 is the base measure as in
Section 2.3.
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ted with the DPMM posterior mean and cred-
ible intervals overlaid in red.

0.0

0.2

0.4

0.6

−2 −1 0 1 2

(b) Instead of a density estimate, a histogram
is plotted for the data.

Figure 1: Old Faithful waiting times density estimation with a DPMM of Gaussians.

R> its <- 500

R> faithfulTransformed <- scale(faithful$waiting)

R> dp <- DirichletProcessGaussian(faithfulTransformed)

R> dp <- Fit(dp, its)

R> plot(dp)

R> plot(dp, data_method="hist")

The resulting fit from the model is show in Figure 1. The multi-modal nature has been
successfully captured a property that a singular distribution would not find.

When plotting the resulting object, the plot function has the argument data_method which
controls how the data is represented in the plot. In the default case it is a density estimation.
For cases where the amount of data is limited, a density estimation may not be suitable, in
which case, data_method should be set to "hist" for a histogram.

For most users the Fit function is sufficient for practical purposes. However, for the more
advanced users who wish to alter how they fit the dirichletprocess object there are a number
of functions available to help.

By default, the Fit function updates the cluster allocation, the cluster parameters and then
the α parameter. In some rare cases, updating α every iteration can delay convergence.
Instead, the user can instead choose to update α every 10 iterations.
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R> dp <- DirichletProcessGaussian(y)

R> samples <- list()

R> for(s in seq_len(1000)){

+ dp <- ClusterComponentUpdate(dp)

+ dp <- ClusterParameterUpdate(dp)

+

+ if(s %% 10 == 0) {

+ dp <- UpdateAlpha(dp)

+ }

+ samples[[s]] <- list()

+ samples[[s]]$phi <- dp$clusterParameters

+ samples[[s]]$weights <- dp$weights

+ }

The function ClusterComponentUpdate iterates through all the data points, yi for i =
1, . . . , n, updating its cluster assignment sequentially via the Chinese Restaurant Process
sampling algorithm, using Key Property 4 in Section 2.1. For each data point, it can either
be assigned to an existing cluster, or form a new cluster. The probability it is assigned to
an existing cluster is proportional to nik(yj | θi), where ni is the number of points already
assigned to the cluster θi and k is the likelihood of the data point point evaluated with the
cluster parameter θi. The probability is forms a new cluster is proportional to α, the concen-
tration parameter. If the datapoint is selected to form a new cluster, then this new cluster
parameter θnew is drawn from G0 and added to the cluster pool. Subsequent points can now
also be added to this cluster. Note that when a conjugate base measure is used in the DP, this
function samples directly from the conditional posteriors, while if a non-conjugate sampler is
used then the sampling is carried out using Algorithm 8 from Neal (2000).

After each data point has its cluster allocation updated the function ClusterParameterUpdate

is called and resamples each of the unique θj parameters (i.e. if there are m unique values/-
clusters in θ1, . . . , θm then all m are resampled). The new values of θj are sampled from the
posterior distribution of the parameter using all the data associated to that cluster parameter
as per Equation (2).

Finally, UpdateAlpha samples a new value of α from its posterior distribution using the
method outlined in Section 2.2. By manually calling these functions the user has control over
the MCMC routine without having to have specific knowledge of the required algorithms.

The key point of the dirichletprocess package which the above code highlights is that a) the
user controls when to re-sample the DP parameters, and b) the current sample is contained
in the DP object and ready for inspection at any point in the code. This allows DP objects
to be used as building blocks within hierarchical models.

3.1. Density Estimation on Bounded Intervals

In some situations it will be necessary to estimate densities on bounded intervals. For ex-
ample, it might be known that the observations yi are restricted to lie within the interval
[0, 1]. In this case, a mixture of Gaussian distributions is inappropriate, since this will assign
positive probability to the whole real line. An alternative specification is a mixture of Beta
distributions, since the Beta distribution only has positive mass in [0, 1]. The full model is
the same as in the previous example but replacing k with the Beta distribution.



16 The dirichletprocess Package

R> y <- c(rbeta(150, 1, 3), rbeta(150, 7, 3)) #generate sample data

R> dp <- DirichletProcessBeta(y, 1)

R> dp <- Fit(dp, 1000)

As we want to compare the resulting posterior distribution to a known distribution we must
manually draw posterior samples, calculate the credible intervals and plot the results.
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Figure 2: Estimated generating density using a Beta Dirichlet process mixture model.

R> posteriorFrame <- PosteriorFrame(dp, ppoints(100), ci_size = 0.05)

R> trueFrame <- data.frame(x=ppoints(100),

+ y=0.5*dbeta(ppoints(100), 1, 3)+

+ 0.5*dbeta(ppoints(100), 7, 3))

R> ggplot() +

+ geom_ribbon(data=posteriorFrame,

+ aes(x=x, ymin=X2.5., ymax=X97.5.),

+ alpha=0.2,

+ colour=NA,

+ fill="red") +

+ geom_line(data=posteriorFrame, aes(x=x, y=Mean), colour="red") +

+ geom_line(data=trueFrame, aes(x=x, y=y))

Figure 2 shows the resulting posterior distribution and true density.

3.2. Cluster Analysis (Multivariate)

For any Dirichlet model, each data point yi is assigned a cluster parameter θi. The collection of
unique values of cluster parameters θ∗

i allows for a natural way of grouping the data and hence
the Dirichlet process is an effective way of performing cluster analysis. For multidimensional
data it is most common to use a mixture of multivariate normal distributions to cluster the
observations into appropriate groups. In the dirichletprocess package, the clustering labels is
available at each fitting iteration and available to the user as dp$clusterLabels. Examples
of the use of Dirichlet processes in clustering can be found in Teh, Jordan, Beal, and Blei
(2005) and Kim, Tadesse, and Vannucci (2006).

To demonstrate this we return to the faithful dataset which consists of two-dimensional
data. In this example we also consider the length of the eruption as well as the amount of
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Figure 3: The colours of the points indicates that there are groups in the faithful dataset.

time between eruptions. The full model can be written as

yi ∼ N(y | θi),

θi = {µi, Σi} ,

θi ∼ G,

G ∼ DP(α, G0),

where the prior parameters of G0 take on their default value as shown in Section 2.3. We will
be using the cluster labels to indicate which group each data point belongs to.

We transform the data so that each variable is zero mean and unit standard deviation.

R> faithfulTrans <- scale(faithful)

We form the dirichletprocess object and perform 1000 MCMC samples.

R> dp <- DirichletProcessMvnormal(faithfulTrans)

R> dp <- Fit(dp, 1000)

R> plot(dp)

When analysing the results of the fit we are interested in the final Gibbs sample of the cluster
labels. Using the cluster label to assign a colour to each datapoint we can easily see the
distinct clusters that form.

Here Figure 3 shows the last iteration of the cluster labels and the colours indicate the found
clusters. Whilst this example only shows two dimensions, the code is generalised to work with
as many dimensions as necessary.

3.3. Modifying the Observations

In some applications of Dirichlet processes the data being used can change from iteration to
iteration of the sampling algorithm. This could be because the values of the data change, or
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Figure 4: Rat tumour risk empirical density and fitted prior distribution.

because for a full data set y = y1, . . . , yn, only subsets of the data are used at each iteration.
When fitting a DP object we provide the appropriate function ChangeObservations to change
the observations between iterations.

This function takes the new data, predicts what clusters from the previous fitting the new
data belongs to and updates the clustering labels and parameters accordingly. A modified
object with the new data associated to clusters and the function Fit is ready to be used to
sample the cluster parameters and weights again.

Example: Priors in Hierarchical Models

One application of observations changing with each iteration is using a Dirichlet process as
a prior for a parameter in a hierarchical model. An example of hierarchical modelling comes
from Gelman, Carlin, Stern, and Rubin (2014) involving tumour risk in rats. In this example,
there are 71 different experiments, and during each experiment a number of rats are inspected
for tumours, with the number of tumours in each experiment being the observed data. This
data is included in our packages in the rats variable, with the first column being the number
of tumours in each experiment, and the second being the number of rats.

A naive approach would model each experiment as a Binomial draw with unknown θi and
known Ni. A Beta distribution is the conjugate prior for the Binomial distribution and would
be used as the prior on θ:

yi | θi, Ni ∼Binomial(Ni, θi),

θi ∼Beta(α, β).

However, Figure 4a shows the empirical distribution of θ̂i = yi

Ni
. This distribution shows hints

of bimodality, something that a single Beta distribution cannot capture and hence the prior
choice of p(θi) is dubious. An alternative procedure is to instead use a nonparametric prior
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on the θ′
is. Since these parameters are constrained to lie between 0 and 1, one choice might

be a Dirichlet process mixture of Beta distributions. This leads to the following model

yi | θi, Ni ∼Binomial(Ni, θi),

θi ∼Beta(αi, βj),

αi, βi ∼F,

F ∼DP (α, G0),

where α and G0 follow the default implementations of the dirichletprocess package. We then
implement this model using the dirichletprocess functions as follows:



Gordon J. Ross, Dean Markwick 21

R> numSamples = 200

R> thetaDirichlet <- matrix(nrow=numSamples, ncol=nrow(rats))

R> dpobj <- DirichletProcessBeta(rats$y/rats$N,

+ maxY=1,

+ g0Priors = c(2, 150),

+ mhStep=c(0.25, 0.25),

+ hyperPriorParameters = c(1, 1/150))

R> dpobj <- Fit(dpobj, 10)

R> clusters <- dpobj$clusterParameters

R> a <- clusters[[1]] * clusters[[2]]

R> b <- (1 - clusters[[1]]) * clusters[[2]]

R> for(i in seq_len(numSamples)){

+

+ posteriorA <- a[dpobj$clusterLabels] + rats$y

+ posteriorB <- b[dpobj$clusterLabels] + rats$N - rats$y

+ thetaDirichlet[i, ] <- rbeta(nrow(rats), posteriorA, posteriorB)

+

+ dpobj <- ChangeObservations(dpobj, thetaDirichlet[i, ])

+ dpobj <- Fit(dpobj, 5)

+ clusters <- dpobj$clusterParameters

+

+ a <- clusters[[1]] * clusters[[2]]

+ b <- (1 - clusters[[1]]) * clusters[[2]]

+ }

Note the reason why the observations are changing is because the DP mixture model is
applied to the θi parameters, which are resampled (and hence have different values) during
each MCMC iteration.

R> ggplot(rats, aes(x=y/N)) +

+ geom_density(fill="black") #Plot the emperical distribution

R> posteriorFrame <- PosteriorFrame(dpobj, ppoints(1000))

R> ggplot() +

+ geom_ribbon(data=posteriorFrame,

+ aes(x=x, ymin=X5.,ymax=X95.),

+ alpha=0.2) +

+ geom_line(data=posteriorFrame, aes(x=x, y=Mean)) +

+ xlim(c(0, 0.35)) #Plot the resulting prior distribution

R>

Plotting the resulting estimation in Figure 4b reveals that the DP is a more suitable prior
than the Beta distribution. This confirms what we saw from the empirical distribution that
the data is bi-modal.

3.4. Hierarchical Dirichlet process

A hierarchical Dirichlet process Teh et al. (2005) can be used for grouped data. Each individ-
ual dataset is modeled using a separate Dirichlet process but where the base measure itself is
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also a Dirichlet process. Mathematically this can be expressed as

yij ∼F (θij),

θij ∼Gj ,

Gj ∼DP(αj , G0),

G0 ∼DP(γ, H),

for each dataset j = 1, . . . , n with data y1j , . . . yNj there is a separate Dirichlet process
generating the required parameters θij . Using the stick breaking construction, we can express
G0 as an infinite sum (Key Property 2), the same procedure can be applied to the Gj measures

Gj =
∞
∑

i=1

πjkδφk
, φk ∼ H,

π′
jk = Beta

(

αjβk, α

(

1 −
k
∑

l=1

βl

))

, πjk = π′
jk

k−1
∏

l=1

(1 − π′
jl),

β′
k ∼ Beta (1, γ) , βk = β′

k

k−1
∏

l=1

(1 − β′
l),

(5)

we call H the global distribution and each Gj the local distribution. For further details see
Teh et al. (2005).

To fit a hierarchical Dirichlet process, Algorithm 8 from Neal is used as detailed in Section
2.1. Each datapoint yij is further assigned as label kij which indicates which global parameter
φk it is assigned. Then for each global parameter, we can update its value by drawing from
its posterior distribution, using all the data available across the data sets

φk | xij = h(φk)
∏

kij=k

f(xij | φk), (6)

where h is the density of the global distribution H and f is the density of the mixing distri-
bution F . From these updated parameters a new Gj can be drawn using for each j using Key
Property 5.

For a hierarchical DP model each individual concentration parameter αj can be inferred using
the usual algorithm as per Section 2.2.1 without modification for each individual dataset. For
the top level concentration parameter γ, the number of unique cluster parameters across all
the individual Gj ’s is used for n in the sampling of γ.

In this example we create two synthetic data sets and fit a Hierarchical Dirichlet process to
demonstrate the use of such a tool. In this case we are fitting a Beta Dirichlet mixture model
and therefore simulate from two Beta distributions

y1 ∼Beta(0.25, 5) + Beta(0.75, 6),

y2 ∼Beta(0.25, 5) + Beta(0.4, 10),

where there is a common group of parameters between the two datasets. First we simulate
the two data sets.
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R> mu <- c(0.25, 0.75, 0.4)

R> tau <- c(5, 6, 10)

R> a <- mu * tau

R> b <- (1 - mu) * tau

R> y1 <- c(rbeta(500, a[1], b[1]), rbeta(500, a[2], b[2]))

R> y2 <- c(rbeta(500, a[1], b[1]), rbeta(500, a[3], b[3]))

We then use the appropriate constructor functions to build a hierarchical Dirichlet object
with uninformative priors for the global base distribution and fit for 5000 iterations.

R> dplist <- DirichletProcessHierarchicalBeta(list(y1, y2),

+ maxY=1,

+ hyperPriorParameters = c(1, 0.01),

+ mhStepSize = c(0.1, 0.1),

+ gammaPriors = c(2, 4),

+ alphaPriors = c(2, 4))

R> dplist <- Fit(dplist, 500)

The creator function DirichletProcessHierarchicalBeta returns a list of dirichletprocess

objects for each dataset (in this case two objects), a vector containing the global stick breaking
weights, a list of the global parameters and the variable containing the global concentration pa-
rameter γ. The function Fit updates the cluster allocations locally of each dirichletprocess

object using Algorithm 8 from Neal (2000), then the local concentration parameter αj is up-
dated. The global cluster parameters are then updated using all the data pooled from the
individual datasets by drawing from Eq. (6). Using these parameters, a new sample of G0 is
taken from which the individual Gj ’s are also drawn using the above procedure in Equation
5.
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R> xGrid <- ppoints(100)

R> postDraws <- lapply(dplist$indDP,

+ function(x) {

+ replicate(1000, PosteriorFunction(x)(xGrid))

+ }

+ )

R> postMeans <- lapply(postDraws, rowMeans)

R> postQuantiles <- lapply(postDraws,

+ function(x) {

+ apply(x, 1, quantile, probs=c(0.025, 0.975))

+ }

+ )

R> postFrame <- do.call(rbind,

+ lapply(seq_along(postMeans),

+ function(i) data.frame(Mean=postMeans[[i]],

+ t(postQuantiles[[i]]),

+ x=xGrid, ID=i)

+ )

+ )

R> trueFrame1 <- data.frame(y=0.5*dbeta(xGrid, a[1], b[1]) +

+ 0.5*dbeta(xGrid, a[2], b[2]),

+ x=ppoints(100), ID=1)

R> trueFrame2 <- data.frame(y=0.5*dbeta(xGrid, a[1], b[1]) +

+ 0.5*dbeta(xGrid, a[3], b[3]),

+ x=xGrid, ID=2)

R> trueFrame <- rbind(trueFrame1, trueFrame2)

R> ggplot() +

+ geom_ribbon(data=postFrame, aes(x=x, ymin=X2.5., ymax=X97.5.),

+ alpha=0.2, colour=NA, fill="red") + #credible interval

+ geom_line(data=postFrame, aes(x=x, y=Mean), colour="red") + #mean

+ geom_line(data=trueFrame, aes(x=x, y=y)) + #true density

+ facet_grid(~ID)

The resulting Gj ’s from the above example are plotted in Figure 5.

Hierarchical Multivariate Normal Distribution

Implemented by Giovanni Sighinolfi

If the hierarchical data is not distributed across a bounded distribution or there are more
than one dimension then the multivariate normal distribution might be more suited.

R> N <- 300

R> #Sample N random uniform U

R> U <- runif(N)

R> group1 <- matrix(nrow=N, ncol=2)

R> group2 <- matrix(nrow=N, ncol=2)

R> #Sampling from the mixture
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Figure 5: Hierarchical Beta Dirichlet process mixture results. The red lines indicate the true
generating distributions. The black and shaded area are the posterior mean and credible
intervals.

R> for(i in 1:N){

+ if(U[i]<.3){

+ group1[i,] <- rmvnorm(1,c(-2,-2))

+ group2[i,] <- rmvnorm(1,c(-2,-2))

+ }else if(U[i]<0.7){

+ group1[i,] <- rmvnorm(1,c(2,2))

+ group2[i,] <- rmvnorm(1,c(-2,-2))

+ }else {

+ group1[i,] <- rmvnorm(1,c(2,2))

+ group2[i,] <- rmvnorm(1,c(2,2))

+ }

+ }

R> hdp_mvnorm <- DirichletProcessHierarchicalMvnormal2(list(group1,group2))

R> hdp_mvnorm <- Fit(hdp_mvnorm, 500)

After generating the synthetic data we fit a hierarchical multivariate normal Dirichlet process.
The resulting clusters in Figure 6 are common across both datasets.

3.5. Stick Breaking Representation

The stick breaking representation of a Dirichlet process allows for easy posterior inference
using Key Property 3 and 5 (Section 2). In the dirichletprocess package drawing from the
posterior is easily achieved using both PosteriorClusters and PosteriorFunction depend-
ing on users need.

• PosteriorClusters: Returns the posterior clusters φk and weights wk as a list for the
user.

• PosteriorFunction: Draws the posterior clusters and uses the likelihood function of
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Figure 6: Hierarchical multivariate normal Dirichlet results where the correct common clusters
between the two datasets have been found.

the mixing distribution to return a function with appropriate posterior weights and
parameters. This is a sample of the measure F for models of the form in Eq. (1).

Example: Point Process Intensity Estimation

One practical application of Beta mixture models is the estimation of an inhomogeneous
Poisson process intensity function, previous work has been done in this area at Taddy and
Kottas (2012). A Poisson process is a collection of points in space distributed with rate λ. In
the inhomogeneous case, the intensity is dependent on time and as such the number of events
in some window [0, T ] can be written as

N ∼ Poisson(λ(t)).

In parametric estimation, a functional form of λ(t) would be constructed i.e. α0 + αt and
the parameters {α0, α} would be estimated. However, the accuracy of such a method would
be dependent on correctly identifying the parametric form of λ(t). With the nonparametric
methods that a DPMM provides, such assumptions can be ignored and an intensity function
can be built without the need to specify a parametric form. Firstly, we assume that λ(t) =
λ0h(t) where

∫ T
0 h(t)dt = 1, i.e. the intensity rate can be decomposed into an amplitude λ0

controlling the number of events and a density h(t) controlling the distribution of the events
over the window of observation [0, T ]. To infer the value of λ0 a conjugate Gamma prior can
be used and thus the posterior distribution can be directly sampled.

In this example, we will instead be estimating an intensity rate λ(t) with each iteration and
using it to update the data. The full model can be written as

N ∼ Poisson(λ(t)),

λ(t) = λ0h(t),

h(t) =

∫

k(t | θ)dF,

F ∼ DP(α, G0),
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where k and G0 are as per Section 2.3 for the Beta distribution mixture models. We sample
the posterior distribution of G using Key Property 5 (Section 2) which states that a sample
of G can be drawn independently of the data using the stick breaking representation of the
data and the model parameters θ.

In this toy model we simulate 500 event times using the intensity function λ(t) = sin2 t
50 .

Instead of passing the full data set into the Dirichlet process object, we just use a random
sample of 100 of these event times.

R> y <- cumsum(runif(1000))

R> pdf <- function(x) sin(x/50)^2

R> accept_prob <- pdf(y)

R> pts <- sample(y, 500, prob=accept_prob)

We then fit the Dirichlet process, draw a posterior sample of the intensity function λ̂(t) and
sample 150 new points from the full data set with probabilities proportional to λ̂(t). The
Dirichlet process object is then modified with the new data and the process is repeated.

R> dp <- DirichletProcessBeta(sample(pts, 100), maxY = max(pts)*1.01,

+ alphaPrior = c(2, 0.01))

R> dp <- Fit(dp, 100, TRUE)

R> for(i in seq_len(2000)){

+ lambdaHat <- PosteriorFunction(dp)

+ newPts <- sample(pts, 150, prob=lambdaHat(pts))

+ newPts[is.infinite(newPts)] <- 1

+ newPts[is.na(newPts)] <- 0

+ dp <- ChangeObservations(dp, newPts)

+ dp <- Fit(dp, 2, TRUE)

+ }

After the fitting process has finished, we want to draw from the resulting posterior distribution
again and comparing it to the true intensity function.

R> posteriorFrame <- PosteriorFrame(dp, seq(0, max(pts)*1.01, by=0.1))

R> trueFrame <- data.frame(y=pdf(seq(0, max(pts)*1.01, by=0.1))/238,

+ x=seq(0, max(pts)*1.01, by=0.1))

R> ggplot() +

+ geom_ribbon(data=posteriorFrame, aes(x=x, ymin=X5., ymax=X95.),

+ alpha=0.2, fill="red", colour=NA) + #credible interval

+ geom_line(data=posteriorFrame, aes(x=x, y=Mean), colour="red") + #mean

+ geom_line(data=trueFrame, aes(x=x, y=y)) #true intensity

Figure 7 shows the true intensity function is being recovered even though the full dataset is
never observed.

4. Advanced Features

The material in this section can largely be skipped as long as the user is getting good results
from the dirichletprocess package using the default functions and specifications. However
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Figure 7: Estimation of the inhomogeneous Poisson process using stick breaking.

some users will require more control over the DP implementation – perhaps the default base
measure hyper parameters are inadequate for a particular data set, or the sampler seeming
not to converge due to bad initial default parameter values. Alternatively, the user may wish
to use a mixture kernel other than the ones we have included in the package (Normal, Beta,
Weibull, etc). In this case, the user will need to know what is going on under the hood so
that they can change the default settings to better suited values, or otherwise modify the
internal sampling procedure. We have done our best to ensure that this will usually only
require changing a small number of the parameters which control the sampling behaviour,
but understanding what needs to be changed (and why) requires some understanding of how
the objects are constructed. Note that parts of this section do require an intermediate level
of R programming knowledge.

4.1. Structure of a DP Object: The Gory Details

This package implements Dirichlet Processes as S3 object in R. All DPs have the following
fields and available which are defined upon construction and do not ever change. When using
the DP objects implemented in this package, these will be set by the constructor functions
and so can largely be ignored for the default mixture models.

A DP object is defined by its kernel mixing distribution k(y | θ). Each mixing distribution
has the following functions and variables associated with its class

• Likelihood(...): a function which specifies the density of the mixture kernel k(y | θ).

• PriorDraw(...): a function which returns a random sample of size n from the DP base
measure G0. This is used to define G0.

• g0Priors: a list of parameters for the base measure G0. Again, this is used to define
G0.

For a conjugate mixing distribution the posterior distribution of θ is tractable and can be
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sampled from directly and the marginal distribution of the data can also be evaluated. There-
fore two more functions are needed to complete the specification of a conjugate DP mixture
model:

• PosteriorDraw(...): a function that returns a sample of size n given data y from the
posterior distribution of θ, i.e. a sample from the distribution of p(θ | y).

• Predictive(...): a function that returns the value of the marginal distribution of the
data f(y) =

∫

k(y, θ)dG(θ).

With these specified, the Fit function can be used to fit the DP, which carries out the Chinese
Restaurant Sampling can be performed using the conjugate Algorithm 4 from (Neal 2000).

For a non-conjugate mixing distribution we can no longer directly sample from the posterior
distribution p(θ | y) or calculate the marginal distribution of the data. Instead the Metropolis-
Hastings algorithm is used to sample from the distribution p(θ | y). The Metropolis-Hastings
algorithm works by generating a candidate parameter θi+1 and accepting this candidate value

as a sample from the posterior with probability proportional to k(y|θi+1)p(θi+1)
k(y|θi)p(θi)

. Typically, the

candidate parameter is distributed as θi+1 ∼ N(θi, h2). From this, the non-conjugate mixture
model requires 2 additional functions and an extra parameter to be defined.

• PriorDensity(...): a function which evaluates p(θ) which is the DP base measure G0

for a given θ.

• mhParameterProposal(...): a function that returns a candidate parameter to be eval-
uated for the Metropolis-Hastings algorithm.

• mhStepSize: h, the size of the step to make when proposing a new parameter for the
Metropolis-Hastings algorithm.

With these specified, the Fit function can again be used to fit the DP, which carries out the
Chinese Restaurant Sampling can be performed using ‘Algorithm 8‘ (Neal 2000).

Once the appropriate mixing distribution is defined we can create a dirichletprocess object
which contains the data, the mixing distribution object and the parameter α. Then the rest
of dirichletprocess class functions are available.

By using the default constructor functions DirichletProcessBeta/Gaussian/Mvnormal/Weibull

the base measure prior parameters are chosen to be non-informative, see Section for 2.3 for
the specific values of the prior parameters.

4.2. Creating New Dirichlet process Mixture Types

The dirichletprocess package currently implements Dirichlet process mixture models using
Gaussian, Beta and Weibull kernels. While these kernels should be appropriate for most
applications, there will inevitably be times when a user wants to fit a DP model for a kernel
which has not been implemented, or otherwise wants to do something complex with a DP
which goes beyond the scope of this package. To anticipate this, we have tried to make it
easy for users to construct their own mixture models, which can then automatically use the
implemented algorithms for fitting a Dirichlet process.
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The functions in the package are designed to work on S3 R objects, where each object repre-
sents a type of Dirichlet process mixture (e.g Gaussian or Beta). In order to create new types
of Dirichlet process mixtures, the user must create a new S3 object type which encapsulates
his model and ensure that its specifications correspond to those of the package. If this is
done, then all the package functions for re-sampling/prediction/etc should continue work on
the new DP type. This means that the package can hopefully be used for DP applications
that we did not consider when writing it, while saving the user from having to write their
own functions for re-sampling and fitting.

To illustrate how this works, this section will work through an extended example of how to
create a new S3 type which represents a DP mixture model not implemented in the dirich-

letprocess package. We will explain how the S3 objects are constructed in detail so that the
user will be able to create their own.

Conjugate Mixture

Suppose we have a particular scenario that requires a Dirichlet process mixture of Poisson
distributions. The conjugate prior for the Poisson distribution is the Gamma distribution.

First, we start with the likelihood of the Poisson distribution

k(x | θ) =
θx exp(−θ)

x!
,

as there is only one parameter in the Poisson distribution the parameter list θ if of length 1.

Likelihood.poisson <- function(mdobj, x, theta){

return(as.numeric(dpois(x, theta[[1]])))

}

Note that the [[1]] part is essential, since parameters are internally represented as lists even
when they only have one element.

We then write the random prior draw function which draws a value of θ from the base measure
G0. The conjugate prior to the Poisson distribution is the Gamma distribution

G0 ∼ Gamma(α0, β0).

PriorDraw.poisson <- function(mdobj, n){

draws <- rgamma(n, mdobj$priorParameters[1], mdobj$priorParameters[2])

theta <- list(array(draws, dim=c(1,1,n)))

return(theta)

}

The prior parameters α0, β0 are stored in the mixing distribution object mdobj.

We then write the PosteriorDraw function to sample from the posterior distribution of
θ. Again, as the base measure G0 is conjugate this is a direct sample from the posterior
distribution

θ | x ∼ Gamma(α0 +
n
∑

i=1

xi, β0 + n),

using the inbuilt rgamma function this is trivial.
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PosteriorDraw.poisson <- function(mdobj, x, n=1){

priorParameters <- mdobj$priorParameters

lambda <- rgamma(n, priorParameters[1] + sum(x), priorParameters[2] + nrow(x))

return(list(array(lambda, dim=c(1,1,n))))

}

Finally the marginal distribution of the data f(y) can be evaluated as it is a conjugate mixture
model and translated into the appropriate R function:

Predictive.poisson <- function(mdobj, x){

priorParameters <- mdobj$priorParameters

pred <- numeric(length(x))

for(i in seq_along(x)){

alphaPost <- priorParameters[1] + x[i]

betaPost <- priorParameters[2] + 1

pred[i] <- (priorParameters[2] ^ priorParameters[1]) / gamma(priorParameters[1])

pred[i] <- pred[i] * gamma(alphaPost) / (betaPost^alphaPost)

pred[i] <- pred[i] * (1 / prod(factorial(x[i])))

}

return(pred)

}

With these functions written for the Poisson mixture model we now need to use the MixingDistribution

constructor function to create a new object that can be used by the Dirichlet process con-
structor function, DirichletProcessCreate.

The constructor function MixingDistribution creates an object of class distribution, in
this case ’poisson’, with prior parameters α0, β0 = 1 and that it is conjugate.

R> poisMd <- MixingDistribution(distribution="poisson",

+ priorParameters = c(1, 1),

+ conjugate="conjugate")

This object is now ready to be used in a dirichletprocess object and the appropriate sampling
tasks can be carried out. To demonstrate we simulate some test data and fit a Dirichlet
process with our new mixing distribution.
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Figure 8: The true and estimated distributions from the Poisson mixture model.

R> y <- c(rpois(150, 3), rpois(150, 10)) #generate sample data

R> dp <- DirichletProcessCreate(y, poisMd)

R> dp <- Initialise(dp)

R> dp <- Fit(dp, 1000)

R> pf <- PosteriorFrame(dp, 0:20, 1000)

R> trueFrame <- data.frame(x= 0:20,

+ y= 0.5*dpois(0:20, 3) + 0.5*dpois(0:20, 10))

R> ggplot() +

+ geom_ribbon(data=pf,

+ aes(x=x, ymin=X5., ymax=X95.),

+ colour=NA,

+ fill="red",

+ alpha=0.2) + #credible intervals

+ geom_line(data=pf, aes(x=x, y=Mean), colour="red") + #mean

+ geom_line(data=trueFrame, aes(x=x, y=y)) #true

R>

R>

As Figure 8 shows, the true generating function has been recovered. This shows how easy it
is for the user to create their own mixture models using the dirichletprocess package.

Nonconjugate Mixture

Suppose that a particular application requires a Dirichlet process mixture of Gamma distri-
butions. As the Gamma distribution does not have a conjugate prior distribution additional
steps must be taken when creating the necessary functions.

Firstly we must write the likelihood function, as the Gamma distribution has two parameters
α, β the list θ will also have two components. The density of the Gamma distribution can be
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written as

k(y | α, β) =
βα

Γ(α)
yα−1e−βy,

which can be easily translated using dgamma in R.

Likelihood.gamma <- function(mdobj, x, theta){

return(as.numeric(dgamma(x, theta[[1]], theta[[2]])))

}

We now need the function to draw random parameters from the base measure G0. For the
parameters of the Gamma distribution we will be using a prior distribution of an Exponential
distribution

α ∼ Exp(α0),

β ∼ Exp(β0).

PriorDraw.gamma <- function(mdobj, n=1){

theta <- list()

theta[[1]] = array(rexp(n, mdobj$priorParameters[1]), dim=c(1,1, n))

theta[[2]] = array(rexp(n, mdobj$priorParameters[2]), dim=c(1,1, n))

return(theta)

}

Now as we are drawing from the posterior distribution using the Metropolis-Hastings algo-
rithm, we also need a function that calculates the prior density for a given α, β.

PriorDensity.gamma <- function(mdobj, theta){

priorParameters <- mdobj$priorParameters

thetaDensity <- dexp(theta[[1]], priorParameters[1])

thetaDensity <- thetaDensity * dexp(theta[[2]], priorParameters[2])

return(as.numeric(thetaDensity))

}

Finally, the Metropolis-Hastings algorithm also needs a function that perturbs the parameters
to explore the posterior distribution. As for the Gamma distribution the parameters α, β > 0
we must constrain our proposals. This is achieved by taking the absolute value of a standard
normal perturbation.

αi+1 = |αi + h · η|,
η ∼ N(0, 1),

βi+1 = |βi + h · ζ|,
ζ ∼ N(0, 1).

Again this is easy to translate into R:
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MhParameterProposal.gamma <- function(mdobj, oldParams){

mhStepSize <- mdobj$mhStepSize

newParams <- oldParams

newParams[[1]] <- abs(oldParams[[1]] + mhStepSize[1]*rnorm(1))

newParams[[2]] <- abs(oldParams[[2]] + mhStepSize[2]*rnorm(1))

return(newParams)

}

We can now construct our mixing distribution object using the constructor function MixingDistribution.
The arguments of this function specify the prior parameters α0, β0 and set the scale h at which
the new parameter proposals are made using the parameter mhStepSize.

gammaMd <- MixingDistribution(distribution = "gamma",

priorParameters = c(0.1, 0.1),

conjugate = "nonconjugate",

mhStepSize = c(0.1, 0.1))

The dirichletprocess object can now be created and fit to some test data. As it is a new type
of mixture, it must be initialised.

R> y <- c(rgamma(100, 2, 4), rgamma(100, 6, 3)) #generate sample data

R> dp <- DirichletProcessCreate(y, gammaMd)

R> dp <- Initialise(dp)

R> dp <- Fit(dp, 1000)

R> pf <- PosteriorFrame(dp, ppoints(100)*6, 1000)

R> trueFrame <- data.frame(x=ppoints(100)*6,

+ y= 0.5*dgamma(ppoints(100)*6, 2, 4) +

+ 0.5*dgamma(ppoints(100)*6, 6, 3))

R> ggplot() +

+ geom_ribbon(data=pf,

+ aes(x=x,ymin=X5.,ymax=X95.),

+ colour=NA, fill="red", alpha=0.2) +

+ geom_line(data=pf, aes(x=x, y=Mean), colour="red") +

+ geom_line(data=trueFrame, aes(x=x, y=y))

From Figure 9 we can see that the true distribution has been correctly identified.

4.3. Resampling the Base Measure, G0

It is helpful that the user knows how to best set the parameters of the base measure to
correctly represent the underlying data. However, whilst desirable this is not always practical.
In which case dirichletprocess offers functionality to use hyper-prior parameters on G0 and
update them with each iteration.

For the mixing distributions that allow for re-sampling of the base measure, it is simple to
include the flag Fit(dp,...,updatePrior=TRUE). At each fitting iteration the base measure
with variable parameters will be updated based on the current cluster parameters. For details
on the exact specification of the hyper-prior distributions for each implemented mixture kernel
see Section 2.3. If a user wishes to change the default prior on the hyper parameters then



Gordon J. Ross, Dean Markwick 35

0.0

0.2

0.4

0.6

0.8

0 2 4 6

x

M
ea

n

Figure 9: The results of implementing the new Gamma mixture model.

it is as simple as changing the PriorParametersUpdate function for the mixing distribution
object.

4.4. Extended Example - Working with Censored Observations

The following example is intended to illustrate how simple the dirichletprocess package makes
it for the user to extend Dirichlet process mixture modeling to situations which are not directly
supported by the package, in a less trivial context than the above density estimation examples.

Survival analysis is an area of statistics concerned with analysing the duration of time before
an event happens such as a failure in a mechanical system or a death in a biological context.
We are concerned with constructing a survival function which as the name indicates shows
how the probability of not experiencing the event changes with time. Survival data is often
generated by observational studies which result in censoring. In the context of medical statis-
tics, censoring occurs due to finite time periods of the studies. When analysing the effects of
medical treatments patients events can be censored for a variety of reasons. This is a missing
data problem as we no longer know the exact time at which an event occurred, just that it
occurred before of after a specific time. Right censoring is when a patient is yet to be effected
by the event after a study ends. Left censoring is when it is not known exactly when the
event occurred, just that it occurred before the study started. To deal with this censored
information we must adapt our likelihoods.

One approach for modeling such data non parametrically is a Dirichlet process mixture of
Weibull distributions. The dirichletprocess package does not directly support the analysis of
censored data – as stated throughout, the purpose of the package is not to provide the user
with a small number of functions for solving predefined problems, but instead to make it easy
to use Dirichlet process mixtures in a wide variety of contexts. As such, it is very simple for
the user to extend the functionality of the package to allow for censoring.

For the data we replicate the work of Kottas (2006b) and use leukaemia remission times taken
from Lawless (2011). This dataset contains two groups of censored observations and we wish
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to investigate the impact two different treatments have on leukaemia remission times. We fit
a censored Weibull DP model to each of the data sets and compare the survival functions.
The full model can be written as

yi ∼ Weibull(yi | ai, bi),

ai, bi ∼ G,

G ∼ DP(α, G0),

where the Weibull density and G0 follow the form shown in Section 2.3.

Censored data can come in the form of two columns - the time it takes for the event to occur
and an indicator variable; 1 for a right censored observation, 0 otherwise. Therefore the
density of the Weibull distribution can be written as

k(y | a, b) =
a

b
ya−1 exp

(

−ya

b

)

for uncensored,

k(y | a, b) = 1 − exp

(

−ya

b

)

for censored.

Therefore we must translate this likelihood into the appropriate function for the dirichletpro-

cess package.

Likelihood.weibullcens <- function(mdobj, x, theta){

a = theta[[1]][,,,drop=TRUE]

b = theta[[2]][,,,drop=TRUE]

y <- as.numeric(

b^(-1) * a * x[,1]^(a-1) * exp(-b^(-1) * x[, 1]^a)

)

y_cens <- as.numeric(1 - exp(-x[,1]^a / b))

if(nrow(x) == 1){

if(x[,2] == 0) return(y)

if(x[,2] == 1) return(y_cens)

}

else{

y_ret <- y

y_ret[x[, 2] == 1] <- y_cens[x[, 2]==1]

return(y_ret)

}

}

We now wish to create two different mixingDistribution objects for each of the data sets.
Again we use the MixingDistribution constructor function and provide the resulting object
with a custom class using the class function.

R> mdobjA <- MixingDistribution("weibullcens",

+ c(1,2,0.5), "nonconjugate",
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Figure 10: Point estimates for the survival and density functions of the two treatments.

+ mhStepSize=c(0.11,0.11),

+ hyperPriorParameters=c(2.222, 2, 1, 0.05))

R> mdobjB <- MixingDistribution("weibullcens",

+ c(1,2,0.5), "nonconjugate",

+ mhStepSize=c(0.11,0.11),

+ hyperPriorParameters=c(2.069, 2, 1, 0.08))

R> class(mdobjA) <- c("list", "weibullcens", "weibull", "nonconjugate")

R> class(mdobjB) <- c("list", "weibullcens", "weibull", "nonconjugate")

We can easily use this modified mixture model for our censored data. The sampling is then
carried out as normal with no other changes needed. The default functions available for the
Weibull mixture model are applied to our custom dirichletprocess object.

R> dpA <- DirichletProcessCreate(data_a, mdobjA, c(2, 0.9))

R> dpA <- Initialise(dpA)

R> dpB <- DirichletProcessCreate(data_b, mdobjB, c(2, 0.9))

R> dpB <- Initialise(dpB)

R> dpA <- Fit(dpA, 500, TRUE)

R> dpB <- Fit(dpB, 500, TRUE)

Using the fitted values we can easily extract the estimate density of the survival times using the
weights and cluster parameters. The survival function is calculated as S(y) = 1 − exp(−ya

b
).

The resulting density and survival estimate is shown in Figure 10 which correctly replicate
the findings of Kottas (2006b).

To fully understand what has happened here, it is vital to understand that the DP is defined
by its base likelihood and G0 distribution. In creating a new mixing distribution of class
weibullcens and weibull we are able to include the new likelihood but retain all the previous
functions of a Weibull DP mixture. This makes it trivial to define your own likelihoods based
off the foundations laid in the different classes available.
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4.5. Resampling Component Indexes and Parameters

When calling the Fit function on a DP object the component indexes and parameters are
resampled following Algorithm 4 for the conjugate case and Algorithm 8 for the non-conjugate
case from Neal (2000). For both types of DP mixture the two functions that do the majority
of the work are ClusterComponentUpdate and ClusterParameterUpdate.

In a conjugate DPMM new component indexes and new cluster parameters are drawn di-
rectly from the predictive and posterior distributions making the algorithm very efficient. In
such case, the only option available to users is to change the prior parameters of the base
distribution G0. Ensuring that the base distribution is correctly parameterised with sensible
values for the underlying data will provide optimal performance for the fitting algorithm.

However, in a non-conjugate case new cluster components are proposed from the chosen
prior distribution and new cluster parameters are sampled using the Metropolis-Hastings
algorithm to obtain a posterior sample. By using the Metropolis-Hastings algorithm, the
parameters in question are proposed using a random walk but constrained to the particular
support of the parameter. For example, the parameters in a Weibull distribution are strictly
positive, therefore the random walk is restricted to fall on the positive real line. An ill
proposed prior distribution can severely effect the convergence of the fitting process. The
parameter mhStepSize in the constructor function for a non-conjugate mixture controls the
scale of new parameter proposals for the random walk. When creating a new DP object,
the constructor function has a flag verbose that outputs an estimated acceptance ratio, for
optimal performance of the Metropolis-Hastings algorithm this value should be around 0.234
(Gelman, Roberts, Gilks, and others 1996). Therefore the user should adjust mhStepSize

to reach this value. As with the conjugate case, care must be taken to ensure that the base
measure is well suited for the data.

Overriding Default Behaviour

For both conjugate and non-conjugate mixture models, the user can write their own
ClusterComponentUpdate and ClusterParameterUpdate functions to override the default
behaviour. The user can still benefit from the other S3 methods and structures implemented
in dirichletprocess but with their custom sampling schemes.

For the non-conjugate mixture models there is a further option available to change the com-
ponent index and parameter re-sampling. In Algorithm 8 of Neal (2000) each datapoint can
form a new cluster with parameter drawn from the base measure, these proposals are called
‘auxiliary’ variables and m are drawn for each data point. By default m = 3. However this can
be changed in the Initialise(dp, ...,m=m) function. Using more auxiliary variables can
lead to more changes in the component indexes and greater exploration of the base measure
but at the cost of computational time.

4.6. Resampling the Base Measure, G0

It is helpful that the user knows how to best set the parameters of the base measure to
correctly represent the underlying data. However, whilst desirable this is not always practical.
In which case dirichletprocess offers functionality to use hyper-prior parameters on G0 and
update them with each iteration.

For the mixing distributions that allow for re-sampling of the base measure, it is simple to
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include the flag Fit(dp,...,updatePrior=TRUE). At each fitting iteration the base measure
with variable parameters will be updated based on the current cluster parameters. For details
on the exact specification of the hyper-prior distributions for each implemented mixture kernel
see Section 2.3. If a user wishes to change the default prior on the hyper parameters then
it is as simple as changing the PriorParametersUpdate function for the mixing distribution
object.

4.7. Component Prediction

Given a fitted DP object and some new data ŷ to predict the cluster labels of the new data we
use the command ClusterLabelPredict. Using the appropriate algorithm for a conjugate
or non-conjugate mixture model the cluster label probabilities are calculated from the new
data ŷ, these probabilities are then sampled once to obtain a cluster label. It is these cluster
labels that are returned with the appropriate cluster parameters.

We refer back to our example in Section 3.2 where we used a Dirichlet process to cluster the
faithful dataset. In this example, we will withhold the last five entries of the data as the
prediction set and use ClusterLabelPredict to estimate their cluster allocation.

R> faithfulTrans <- scale(faithful)

R> trainIndex <- 1:(nrow(faithfulTrans)-5)

R> dp <- DirichletProcessMvnormal(faithfulTrans[trainIndex, ])

R> dp <- Fit(dp, 1000)

R> labelPred <- ClusterLabelPredict(dp, faithfulTrans[-trainIndex, ])

The function ClusterLabelPredict works by calculating and sampling the clustering label
from the probability that each test point ŷj belongs to each cluster θi or should form its own
cluster proportional to α

p(i) ∝ nik(ŷj | θi),

p(i = new) ∝ α

∫

k(ŷj , θi)dG0.

The function returns a list with multiple entries:

• The predicted cluster labels for the data under labelPred$componentIndexes.

• The cluster parameters assigned to the predicted data points in case a new cluster is
predicted labelPred$clusterParameters.

• The new number of data points per cluster labelPred$pointsPerCluster.

• The total number of clusters are also returned labelPred$numLabels as this can change
with each prediction.

We can then use the results of this function to form a dataframe and plot the results.

R> faithfulTrainPlot <- data.frame(faithful[trainIndex, ],

+ Label=dp$clusterLabels)
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Figure 11: The predicted labels of the last 5 entries of the faithful dataset against the
training data. The predicted values are indicated by a solid colour and triangle shapes.

R> faithfulTestPlot <- data.frame(faithful[-trainIndex, ],

+ Label=labelPred$componentIndexes)

R> ggplot() +

+ geom_point(data=faithfulTrainPlot,

+ aes(x=eruptions,

+ y=waiting,

+ colour=as.factor(Label)),

+ size=1) +

+ geom_point(data=faithfulTestPlot,

+ aes(x=eruptions,

+ y=waiting,

+ colour=as.factor(Label)),

+ shape=17, size=5) +

+ guides(colour=FALSE)

Figure 11 shows the test data being correctly identified with the appropriate cluster.

Computational details

The results in this paper were obtained using R 3.5.0 with the dirichletprocess 0.4.0 package.
R itself and all packages used are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/.

https://CRAN.R-project.org/
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