Package 'dispRity'

January 24, 2022
Title Measuring Disparity
Author Thomas Guillerme [aut, cre, cph],
Mark N Puttick [aut, cph]
Maintainer Thomas Guillerme guillert@tcd.ie
Version 1.6.8
Date 2022-01-18
Description A modular package for measuring disparity (multidimensional space occupancy). Disparity can be calculated from any matrix defining a multidimensional space. The package provides a set of implemented metrics to measure properties of the space and allows users to provide and test their own metrics (Guillerme (2018) doi:10.1111/2041-210X.13022). The package also provides functions for looking at disparity in a serial way (e.g. disparity through time Guillerme and Cooper (2018) doi:10.1111/pala.12364) or per groups as well as visualising the results. Finally, this package provides several statistical tests for disparity analysis.
Depends R (>=3.6.0), ape, stats
Imports ade4, castor, Claddis, geiger, geometry, geoscale, graphics, grDevices, methods, mnormt, parallel, phangorn, phyclust, utils, vegan, scales
License GPL-3 I file LICENSE
Suggests testthat, knitr
RoxygenNote 7.1.2
URL https://github.com/TGuillerme/dispRity
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-01-24 17:02:42 UTC

R topics documented:

dispRity-package 3
add.tree 3
adonis.dispRity 4
apply.NA 6
BeckLee 8
BeckLee_disparity 8
bhatt.coeff 9
boot.matrix 10
char.diff 12
check.morpho 15
chrono.subsets 17
Claddis.ordination 19
clean.data 21
combine.subsets 22
crown.stem 23
custom.subsets 24
demo_data 25
disparity 27
dispRity 28
dispRity.metric 30
dispRity.per.group 38
dispRity.through.time 40
dtt.dispRity 41
extinction.subsets 42
extract.dispRity 43
fill.dispRity 44
geomorph.ordination 45
get.bin.ages 46
get.contrast.matrix 47
get.subsets 48
make.dispRity 49
make.metric 50
matrix.dispRity 51
model.test 52
model.test.sim 55
model.test.wrapper 58
multi.ace 61
n.subsets 65
null.test 66
pair.plot 67
plot.char.diff 69
plot.dispRity 71
print.dispRity 73
random.circle 74
randtest.dispRity 75
randtest.dist 77
reduce.matrix 78
reduce.space 79
remove.zero.brlen 81
rescale.dispRity 83
select.axes 84
sim.morpho 85
dispRity-package 3
size.subsets 87
slice.tree 88
slide.nodes 89
sort.dispRity 90
space.maker 91
summary.dispRity 93
test.dispRity 95
test.metric 97
tree.age 100
Index 102
dispRity-package \quad Measuring Disparity in R

Description

A modular package for measuring disparity from multidimensional matrices. Disparity can be calculated from any matrix defining a multidimensional space. The package provides a set of implemented metrics to measure properties of the space and allows users to provide and test their own metrics. The package also provides functions for looking at disparity in a serial way (e.g. disparity through time) or per groups as well as visualising the results. Finally, this package provides several basic statistical tests for disparity analysis.

Author(s)

Thomas Guillerme guillert@tcd.ie

```
add.tree Add, get or remove tree
```


Description

Adding, extracting or removing the tree component from a dispRity object

Usage

add.tree(data, tree)

Arguments

data	A dispRity object.
tree	A phylo or mutiPhylo object.

Author(s)

Thomas Guillerme

See Also

custom. subsets, chrono.subsets, boot.matrix, dispRity.

Examples

```
## Loading a dispRity object
data(disparity)
## Loading a tree
data(BeckLee_tree)
## Removing the tree from the dispRity object
(tree_data <- remove.tree(disparity))
## Extracting the tree
get.tree(tree_data) # is null
## Adding a tree to the disparity object
tree_data <- add.tree(tree_data, tree = BeckLee_tree)
## Extracting the tree
get.tree(tree_data) # is a "phylo" object
```

 adonis.dispRity adonis dispRity (from vegan::adonis)

Description

Passing dispRity objects to the adonis function from the vegan package.

Usage

```
adonis.dispRity(
        data,
        formula = matrix ~ group,
        method = "euclidean",
        ...,
        warn = TRUE,
        matrix = 1
    )
```


Arguments

data	A dispRity object with subsets
formula	The model formula (default is matrix \sim group, see details)
method	The distance method to be passed to adonis and eventually to vegdist (see
	details - default method ="euclidean")

\ldots.	Any optional arguments to be passed to adonis
warn	logical, whether to print internal warnings (TRUE; default - advised) or not (FALSE).
matrix	numeric, which matrix to use (default is 1).

Details

The first element of the formula (the response) must be called matrix and the predictors must be existing in the subsets of the dispRity object.

If data\$matrix[[1]] is not a distance matrix, distance is calculated using the dist function. The type of distance can be passed via the standard method argument that will be recycled by adonis.
If the dispRity data has custom subsets with a single group, the formula is set to matrix \sim group.
If the dispRity data has custom subsets with multiple group categories (separated by a dot, e.g. c("group1.cat1", "group1.cat2", "group2.catA", "group2.catB") being two groups with two categories each), the default formula is matrix \sim first_group but can be set to any combination (e.g. matrix ~first_group + second_group).

If the dispRity data has time subsets, the predictor is automatically set to time.

Author(s)

Thomas Guillerme

See Also

```
adonis, test.dispRity, custom. subsets, chrono. subsets.
```

test.dispRity, custom. subsets, chrono. subsets

Examples

```
## Adonis with one groups
## Generating a random character matrix
character_matrix <- sim.morpho(rtree(20), 50, rates = c(rnorm, 1, 0))
## Calculating the distance matrix
distance_matrix <- as.matrix(dist(character_matrix))
## Creating two groups
random_groups <- list("group1" = 1:10, "group2" = 11:20)
## Generating a dispRity object
random_disparity <- custom.subsets(distance_matrix, random_groups)
## Running a default NPMANOVA
adonis.dispRity(random_disparity)
## Adonis with multiple groups
## Creating a random matrix
random_matrix <- matrix(data = rnorm(90), nrow = 10,
    dimnames = list(letters[1:10]))
```

```
## Creating two groups with two states each
groups <- as.data.frame(matrix(data = c(rep (1,5), rep (2,5), rep(c(1,2), 5)),
    nrow = 10, ncol = 2, dimnames = list(letters[1:10], c("g1", "g2"))))
## Creating the dispRity object
multi_groups <- custom.subsets(random_matrix, groups)
## Running the NPMANOVA
adonis.dispRity(multi_groups, matrix ~ g1 + g2)
## Adonis with time
## Creating time series
data(BeckLee_mat50)
data(BeckLee_tree)
data(BeckLee_ages)
time_subsets <- chrono.subsets(BeckLee_mat50, BeckLee_tree,
    method = "discrete", inc.nodes = FALSE, time = c(100, 85, 65, 0),
    FADLAD = BeckLee_ages)
## Running the NPMANOVA with time as a predictor
adonis.dispRity(time_subsets, matrix ~ time)
## Running the NPMANOVA with each time bin as a predictor
adonis.dispRity(time_subsets, matrix ~ chrono.subsets)
```

apply.NA Apply inapplicable characters to a matrix.

Description

Apply inapplicable characters to discrete morphological matrix.

Usage

apply.NA(matrix, NAs, tree, invariant = FALSE, verbose = FALSE)

Arguments

matrix	A discrete morphological matrix.
NAs	Either a numeric value of how many characters to make inapplicable or vector of characters inapplicability source (either "character" or "clade"; see de- tails). The length of this vector must be at maximum half the total number of characters.
tree	If any inapplicable source is "clade", a tree from where to select the clades.
invariant	Whether to allow invariant sites among the characters with inapplicable data. If invariant = FALSE the algorithm will try to remove such characters (if possi- ble).

verbose Whether to be verbose or not.

Details

If the NAs argument is a numeric value n, generates n characters with inapplicable data based on the "clade" source.

The NAs argument intakes a vector of character inapplicability source rendering a number of characters inapplicable using the following sources:
"character" draws inapplicable characters directly from the character matrix, ignoring the phylogeny (i.e. for a random character X , an other random character Y will have inapplicable characters for each character states 0 for character X).
"clade" draws inapplicable characters from the phylogeny: it will randomly apply inapplicable characters states for some characters by randomly selecting clades from the provided tree. The algorithm randomly assigns an inapplicable token for this character for all taxa in this clade or all taxa outside this clade.

For example NAs = c(rep("character", 2), rep("clade", 2)) will generate 4 characters with inapplicable data, two using previous characters and two other using random clades.

Author(s)

Thomas Guillerme

See Also

sim.morpho

Examples

```
set.seed(4)
## A random tree with 15 tips
tree <- rcoal(15)
## setting up the parameters
my_rates = c(rgamma, rate = 10, shape = 5)
my_substitutions = c(runif, 2, 2)
## A Mk matrix (10*50)
matrixMk <- sim.morpho(tree, characters = 100, model = "ER",
        states = c(0.85, 0.15), rates = my_rates, invariant = FALSE)
## Setting the number and source of inapplicable characters
my_inapplicables <- c(rep("character", 5), rep("clade", 5))
## Apply some inapplicable characters to the matrix
matrix <- apply.NA(matrixMk, my_inapplicables, tree, verbose = TRUE)
```

```
    BeckLee Beck and Lee 2014 datasets
```


Description

Example datasets from Beck and Lee 2014.

Format

three matrices and one phylogenetic tree.

Details

- BeckLee_tree A phylogenetic tree with 50 living and fossil taxa
- BeckLee_mat50 The ordinated matrix based on the 50 taxa cladistic distances
- BeckLee_mat99 The ordinated matrix based on the 50 taxa +49 nodes cladistic distances
- BeckLee_ages A list of first and last occurrence data for fossil taxa
- BeckLee_disparity a dispRity object with estimated sum of variances in 120 time bins, boostrapped 100 times from the Beck and Lee data

Source

https://www.royalsocietypublishing.org/doi/abs/10.1098/rspb.2014.1278

References

Beck RMD \& Lee MSY. 2014. Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proc. R. Soc. B 2014281 20141278; DOI: 10.1098/rspb.2014.1278

See Also

BeckLee_disparity disparity

```
BeckLee_disparity BeckLee_disparity
```


Description

An example of a dispRity object.

Format

one dispRity object.

Details

This matrix is based on the BeckLee dataset and split into 120 continuous subsets (chrono. subsets). It was bootstrapped 100 times (boot.matrix) with four rarefaction levels. Disparity was calculated as the sum of the variances (dispRity).

See Also

BeckLee disparity

Examples

```
## Not run:
## Loading the data
data(BeckLee_mat99)
data(BeckLee_tree)
data(BeckLee_ages)
## Creating the 7 subsets
subsets <- chrono.subsets(BeckLee_mat99, BeckLee_tree,
                time = seq(from = 0, to = 120, by = 1),
                method = "continuous", model = "proximity",
                FADLAD = BeckLee_ages)
## Bootstrapping and rarefying
bootstraps <- boot.matrix(subsets, bootstraps = 100)
## Calculating disparity
BeckLee_disparity <- dispRity(bootstraps, metric = c(sum, variances))
## End(Not run)
```

bhatt.coeff
Bhattacharrya Coefficient

Description

Calculates the probability of overlap between two distributions.

Usage

bhatt. coeff(x, y, bw = bw.nrd0, ...)

Arguments

x, y	two distributions.
bw	the bandwidth size, either a numeric or a function (see bw. nrd0).
\ldots	optional arguments to be passed to the bw argument.

Author(s)

Thomas Guillerme

References

Bhattacharyya A. 1943. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc., 35, pp. 99-109

See Also

test. dispRity, null.test.

Examples

```
## Two dummy distributions
x <- rnorm(1000, 0, 1)
y <- rnorm(1000, 1, 2)
## What is the probability of overlap of these distributions?
bhatt.coeff(x, y)
```

boot.matrix Bootstraps and rarefies data.

Description

Bootstraps and rarefies either a matrix or a list of matrices.

Usage

```
    boot.matrix(
        data,
        bootstraps = 100,
        rarefaction = FALSE,
        dimensions,
        verbose = FALSE,
        boot.type = "full",
        prob
    )
```


Arguments

data A matrix or a list of matrices (typically output from chrono.subsets or custom.subsets - see details).
bootstraps \quad The number of bootstrap pseudoreplicates (default $=100$).
rarefaction Either a logical value whether to fully rarefy the data, a set of numeric values used to rarefy the data or "min" to rarefy at the minimum level (see details).
dimensions Optional, a vector of numeric value(s) or the proportion of the dimensions to keep.
verbose A logical value indicating whether to be verbose or not.
boot.type The bootstrap algorithm to use (default = "full"; see details).
prob Optional, a matrix or a vector of probabilities for each element to be selected during the bootstrap procedure. The matrix or the vector must have a row names or names attribute that corresponds to the elements in data.

Details

data: The data is considered as the multidimensional space and is not transformed (e.g. if ordinated with negative eigen values, no correction is applied to the matrix).
rarefaction: when the input is numeric, the number of elements is set to the value(s) for each bootstrap. If some subsets have fewer elements than the rarefaction value, the subsets is not rarefied. When the input is "min", the smallest number of elements is used (or 3 if some subsets have less than 3 elements).
boot. type: the different bootstrap algorithms are:

- "full": resamples all the rows of the matrix and replaces them with a new random sample of rows (with replace $=$ TRUE, meaning all the elements can be duplicated in each bootstrap).
- "single": resamples only one row of the matrix and replaces it with a new randomly sampled row (with replace $=$ FALSE, meaning that only one element can be duplicated in each bootstrap).
prob: This option allows to attribute specific probability to each element to be drawn. A probability of 0 will never sample the element, a probability of 1 will always allow it to be sampled. This can also be useful for weighting elements: an element with a weight of 10 will be sampled ten times more. If the argument is a matrix, it must have rownames attributes corresponding to the element names. If the argument is a vector, it must have names attributes corresponding to the element names.
Multiple trees: If the given data is a chrono. subsets based on multiple trees, the sampling is proportional to the presence of each element in each tree: $\sum(1 / n) / T$ (with n being the maximum number of elements among the trees and T being the total numbers of trees). For example, for a slice through two trees resulting in the selection of elements A and B in the first tree and A, B and C in the second tree, the "full" bootstrap algorithm will select three elements (with replacement) between A, B and C with a probability of respectively $p(A)=1 / 3(p(A)=(1 / 3+1 / 3) / 2), p(B)=1 / 3$ and $p(C)=1 / 6(p(C)=(0+1 / 3) / 2)$.

Value

This function outputs a dispRity object containing:

matrix	the multidimensional space (a matrix).
call	A list containing the called arguments.
subsets	A list containing matrices pointing to the elements present in each subsets.

Use summary.dispRity to summarise the dispRity object.

Author(s)

Thomas Guillerme

See Also

cust.subsets, chrono. subsets, dispRity.

Examples

```
## Load the Beck & Lee 2014 matrix
data(BeckLee_mat50)
## Bootstrapping a matrix
## Bootstrapping an ordinated matrix 20 times
boot.matrix(BeckLee_mat50, bootstraps = 20)
## Bootstrapping an ordinated matrix with rarefaction
boot.matrix(BeckLee_mat50, bootstraps = 20, rarefaction = TRUE)
## Bootstrapping an ordinated matrix with only elements 7, 10 and 11 sampled
boot.matrix(BeckLee_mat50, bootstraps = 20, rarefaction = c(7, 10, 11))
## Bootstrapping an ordinated matrix with only 3 dimensions
boot.matrix(BeckLee_mat50, bootstraps = 20, dimensions = 3)
## Bootstrapping an the matrix but without sampling Cimolestes and sampling Maelestes 10x more
boot.matrix(BeckLee_mat50, bootstraps = 20, prob = c("Cimolestes" = 0, "Maelestes" = 10))
## Bootstrapping a subsets of matrices
## Generating a dummy subsets of matrices
ordinated_matrix <- matrix(data = rnorm(90), nrow = 10, ncol = 9,
    dimnames = list(letters[1:10]))
matrix_list <- custom.subsets(ordinated_matrix, list(A = 1:5, B = 6:10))
## Bootstrapping the subsets of matrices 20 times (each)
boot.matrix(matrix_list, bootstraps = 20)
```

```
char.diff Character differences
```


Description

Calculates the character difference from a discrete matrix

Usage

```
char.diff(
    matrix,
    method = "hamming",
    translate = TRUE,
    special.tokens,
    special.behaviours,
    order = FALSE,
```

```
    by.col = TRUE,
    correction
)
```


Arguments

matrix A discrete matrix or a list containing discrete characters. The differences is calculated between the columns (usually characters). Use t (matrix) to calculate the differences between the rows.
method The method to measure difference: "hamming" (default; Hamming 1950), "manhattan",
"comparable", "euclidean", "maximum", "mord" (Lloyd 2016), "none" or "binary".
translate logical, whether to translate the characters following the xyz notation (TRUE default; see details - Felsenstein 2004) or not (FALSE). Translation works for up to 26 tokens per character.
special.tokens optional, a named vector of special tokens to be passed to grep (make sure to protect the character with " $\backslash \backslash "$). By default special.tokens <-c (missing = $" \backslash \backslash ? ", i n a p p l i c a b l e=" \backslash \backslash-"$, polymorphism = "
\&", uncertainty = "
/"). Note that NA values are not compared and that the symbol "@" is reserved and cannot be used.
special.behaviours
optional, a list of one or more functions for a special behaviour for special. tokens. See details.
order logical, whether the character should be treated as order (TRUE) or not (FALSE - default). This argument can be a logical vector equivalent to the number of rows or columns in matrix (depending on by.col) to specify ordering for each character.
by.col logical, whether to measure the distance by columns (TRUE - default) or by rows (FALSE).
correction optional, an eventual function to apply to the matrix after calculating the distance.

Details

Each method for calculating distance is expressed as a function of $d(x, y)$ where x and y are a pair of columns (if by.col = TRUE) or rows in the matrix and n is the number of comparable rows (if by. col $=$ TRUE) or columns between them and i is any specific pair of rows (if by.col $=$ TRUE) or columns. The different methods are:

- "hamming" The relative distance between characters. This is equal to the Gower distance for non-numeric comparisons (e.g. character tokens; Gower 1966). $d(x, y)=\operatorname{sum}[i, n](a b s(x[i]-$ $y[i]) / n$
- "manhattan" The "raw" distance between characters: $d(x, y)=\operatorname{sum}[i, n](a b s(x[i]-y[i])$
- "comparable" The number of comparable characters (i.e. the number of tokens that can be compared): $d(x, y)=\operatorname{sum}[i, n]((x[i]-y[i]) /(x[i]-y[i]))$
- "euclidean" The euclidean distance between characters: $d(x, y)=\operatorname{sqrt}(\operatorname{sum}[i, n]((x[i]-$ $\left.y[i])^{2}\right)$)
- "maximum" The maximum distance between characters: $d(x, y)=\max (a b s(x[i]-y[i]))$
- "mord" The maximum observable distance between characters (Lloyd 2016): $d(x, y)=$ $\operatorname{sum}[i, n](a b s(x[i]-y[i]) / \operatorname{sum}[i, n]((x[i]-y[i]) /(x[i]-y[i])$
- "none" Returns the matrix with eventual converted and/or translated tokens.
- "binary" Returns the matrix with the binary characters.

When using translate $=$ TRUE, the characters are translated following the $x y z$ notation where the first token is translated to 1 , the second to 2 , etc. For example, the character $0,2,1,0$ is translated to $1,2,3,1$. In other words when translate $=$ TRUE, the character tokens are not interpreted as numeric values. When using translate = TRUE, scaled metrics (i.e "hamming" and "gower") are divide by $n-1$ rather than n due to the first character always being equal to 1 .
special.behaviours allows to generate a special rule for the special.tokens. The functions should can take the arguments character, all_states with character being the character that contains the special token and all_states for the character (which is automatically detected by the function). By default, missing data returns and inapplicable returns NA, and polymorphisms and uncertainties return all present states.

- missing $=$ function (x, y) NA
- inapplicable = function (x, y) NA
- polymorphism = function (x, y) strsplit $(x, s p l i t=" \backslash \backslash \& ")[[1]]$
- uncertainty $=$ function (x, y) strsplit(x, split $=$ "
/" $)[[1]]$

Functions in the list must be named following the special token of concern (e.g. missing), have only x, y as inputs and a single output a single value (that gets coerced to integer automatically). For example, the special behaviour for the special token "?" can be coded as: special. behaviours = list (missing $=$ function (x, y) return (y) to make all comparisons containing the special token containing "?" return any character state y.

IMPORTANT: Note that for any distance method, NA values are skipped in the distance calculations (e.g. distance $(A=\{1, N A, 2\}, B=\{1,2,3\})$ is treated as distance $(A=\{1,2\}, B=\{1,3\})$).

IMPORTANT: Note that the number of symbols (tokens) per character is limited by your machine's word-size (32 or 64 bits). If you have more than 64 tokens per character, you might want to use continuous data.

Value

A character difference value or a matrix of class char.diff

Author(s)

Thomas Guillerme

References

Felsenstein, J. 2004. Inferring phylogenies vol. 2. Sinauer Associates Sunderland. Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325-338. Hamming, R.W. 1950. Error detecting and error correcting codes. The

Bell System Technical Journal. DOI: 10.1002/j.1538-7305.1950.tb00463.x. Lloyd, G.T. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society. DOI: 10.1111/bij. 12746.

See Also

plot.char.diff, vegdist, dist, calculate_morphological_distances, daisy

Examples

```
## Comparing two binary characters
char.diff(list(c(0, 1, 0, 1), c(0, 1, 1, 1)))
## Pairwise comparisons in a morphological matrix
morpho_matrix <- matrix(sample(c(0,1), 100, replace = TRUE), 10)
char.diff(morpho_matrix)
## Adding special tokens to the matrix
morpho_matrix[sample(1:100, 10)] <- c("?", "0&1", "-")
char.diff(morpho_matrix)
## Modifying special behaviours for tokens with "&" to be treated as NA
char.diff(morpho_matrix,
            special.behaviours = list(polymorphism = function(x,y) return(NA)))
## Adding a special character with a special behaviour (count "%" as "100")
morpho_matrix[sample(1:100, 5)] <- "%"
char.diff(morpho_matrix,
    special.tokens = c("paragraph" = "\\%"),
    special.behaviours = list(paragraph = function(x,y) as.integer(100)))
## Comparing characters with/without translation
char.diff(list(c(0, 1, 0, 1), c(1, 0, 1, 0)), method = "manhattan")
# no character difference
char.diff(list(c(0, 1, 0, 1), c(1, 0, 1, 0)), method = "manhattan",
    translate = FALSE)
# all four character states are different
```

 check.morpho Check a morphological matrix consistency levels.

Description

Performs a fast check of the phylogenetic signal in a morphological matrix using parsimony.

Usage

```
check.morpho(
        matrix,
        orig.tree,
        parsimony = "fitch",
        first.tree = c(phangorn::dist.hamming, phangorn::NJ),
        distance = phangorn::RF.dist,
        ...,
        contrast.matrix,
        verbose = FALSE
    )
```


Arguments

matrix	A discrete morphological matrix.
orig.tree	Optional, the input tree to measure the distance between the parsimony and the original tree.
parsimony	Either the parsimony algorithm to be passed to optim. parsimony or a parsimony function that can take a phyDat object as an input (default = "fitch").
first.tree	A list of functions to generate the first most parsimonious tree (default $=\mathrm{c}$ (dist. hamming, NJ); see details).
distance	Optional, if orig.tree is provided, the function to use for measuring distance between the trees (default = link[phangorn]\{RF.dist\}).
	Any additional arguments to be passed to the parsimony algorithm.
contrast.matrix	
	An optional contrast matrix. By default, the function recognises any character state token as different apart from ? that is treated as all characters.
verbose	Whether to be verbose or not (default = FALSE).

Details

- The first. tree argument must be a list of functions to be used in a cascade to transform the matrix (as a phyDat object) into a tree using the functions iteratively. For example the default c (dist. hamming, NJ) will apply the following to the matrix: NJ (dist. hamming (matrix))

Value

Returns the parsimony score (using parsimony), the consistency and retention indices (using CI and RI) from the most parsimonious tree obtained from the matrix. Can also return the topological distance from the original tree if provided.

Author(s)

Thomas Guillerme

See Also

```
sim.morpho, get.contrast.matrix, optim.parsimony
```


Examples

```
## Generating a random tree
random_tree <- rcoal(10)
## Generating a random matrix
random_matrix <- sim.morpho(random_tree, characters = 50, model = "ER",
        rates = c(rgamma, 1, 1))
## Checking the matrix scores
check.morpho(random_matrix, orig.tree = random_tree)
```

chrono.subsets Separating data in chronological subsets.

Description

Splits the data into a chronological (time) subsets list.

Usage

```
chrono.subsets(
    data,
    tree,
    method,
    time,
    model,
    inc.nodes = FALSE,
    FADLAD,
    verbose = FALSE,
    t0 = FALSE,
    bind.data = FALSE
)
```


Arguments

data	A matrix or a list of matrices.
tree	A phylo or a multiPhylo object matching the data and with a root. time el- ement. This argument can be left missing if method = "discrete" and all ele- ments are present in the optional FADLAD argument.
method	The time subsampling method: either "discrete" (or "d") or "continuous" (or "c").
time	Either a single integer for the number of discrete or continuous samples or a vector containing the age of each sample.
model	One of the following models: "acctran", "deltran", "random", "proximity", "equal. split" or "gradual. split". Is ignored if method = "discrete".

inc. nodes	A logical value indicating whether nodes should be included in the time sub- sets. Is ignored if method = "continuous".
FADLAD	An optional data. frame containing the first and last occurrence data.
verbose	A logical value indicating whether to be verbose or not. Is ignored if method $=$ t0 discrete".
bind. data	If time is a number of samples, whether to start the sampling from the tree\$root. time (TRUE), or from the first sample containing at least three elements (FALSE - de- fault) or from a fixed time point (if t0 is a single numeric value). If data contains multiple matrices and tree contains the same number of trees, whether to bind the pairs of matrices and the trees (TRUE) or not (FALSE - de- fault).

Details

The data is considered as the multidimensional space with rows as elements and columns as dimensions and is not transformed (e.g. if ordinated with negative eigen values, no correction is applied to the matrix).

If method = "continuous" and when the sampling is done along an edge of the tree, the data selected for the time subsets can be one of the following:

- Punctuated models:
- "acctran": always selecting the value from the ancestral node.
- "deltran": always selecting the value from the descendant node or tip.
- "random": randomly selecting between the ancestral node or the descendant node/tip.
_ "proximity": selecting the ancestral node or the descendant node/tip with a probability relative to branch length.
- Gradual models:
- "equal.split": randomly selecting from the ancestral node or the descendant node or tip with a 50% probability each.
- "gradual.split": selecting the ancestral node or the descendant with a probability relative to branch length.
N.B. "equal.split" and "gradual.split" differ from the punctuated models by outputting a node/tip probability table rather than simply the node and the tip selected. In other words, when bootstrapping using boot . matrix, the two former models will properly integrate the probability to the bootstrap procedure (i.e. different tips/nodes can be drawn) and the two latter models will only use the one node/tip determined by the model before the bootstrapping.

Author(s)

Thomas Guillerme

References

Guillerme T. \& Cooper N. 2018. Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology. DOI: 10.1111/pala. 12364.

See Also

tree.age, slice.tree, cust.subsets, boot.matrix, dispRity.

Examples

```
## Load the Beck & Lee 2014 data
data(BeckLee_tree) ; data(BeckLee_mat50)
data(BeckLee_mat99) ; data(BeckLee_ages)
## Time binning (discrete method)
## Generate two discrete time bins from 120 to 40 Ma every 40 Ma
chrono.subsets(data = BeckLee_mat50, tree = BeckLee_tree, method = "discrete",
    time = c(120, 80, 40), inc.nodes = FALSE, FADLAD = BeckLee_ages)
## Generate the same time bins but including nodes
chrono.subsets(data = BeckLee_mat99, tree = BeckLee_tree, method = "discrete",
        time = c(120, 80, 40), inc.nodes = TRUE, FADLAD = BeckLee_ages)
## Time slicing (continuous method)
## Generate five equidistant time slices in the dataset assuming a proximity
## evolutionary model
chrono.subsets(data = BeckLee_mat99, tree = BeckLee_tree,
    method = "continuous", model = "acctran", time = 5,
    FADLAD = BeckLee_ages)
```

Claddis.ordination Imports data from Claddis

Description

Takes Claddis data and computes both the distance and the ordination matrix

Usage

Claddis.ordination(data, distance $=$ "mord", ..., k, add $=$ TRUE, arg.cmdscale)

Arguments

data Data from read_nexus_matrix or the path to a file to be read by read. nexus.data (see details).
distance Distance type to be computed by calculate_morphological_distances. Can be either "gc", "ged", "red", "mord". distance can also be set to NULL to convert a matrix in read_nexus_matrix list type (see details).
... Any optional arguments to be passed to calculate_morphological_distances.
$k \quad$ The number of dimensions in the ordination. If left empty, the number of dimensions is set to number of rows -1 .
add whether to use the Cailliez correction for negative eigen values (add = TRUE; default - see cmdscale) or not (add = FALSE).
arg.cmdscale Any optional arguments to be passed to cmdscale (as a named list such as list $(x . r e t=T R U E)$).

Details

If data is a file path, the function will use a modified version of read.nexus.data (that handles polymorphic and ambiguous characters). The file content will then be converted into a read_nexus_matrix type list treating all characters as unordered. If the distance is set to NULL, data will be only converted into a read_nexus_matrix type list.

Author(s)

Thomas Guillerme

See Also

calculate_morphological_distances, read_nexus_matrix, build_cladistic_matrix, cmdscale, custom.subsets, chrono.subsets, boot.matrix, dispRity.

Examples

```
## Not run:
require(Claddis)
## Ordinating the distance matrix of Claddis example data
Claddis.ordination(Claddis::michaux_1989)
## Creating simple discrete morphological matrix (with polymorphisms)
cat(
"#NEXUS
BEGIN DATA;
DIMENSIONS NTAX=5 NCHAR=5;
FORMAT SYMBOLS= \" 0 1 2\" MISSING=? GAP=- ;
MATRIX
    t1 {01}1010
    t2 02120
    t3 1210(01)
    t4 01111
    t5 00101
;
END;", file = "morpho_matrix.nex")
## Ordinating the matrix (using a distance matrix)
Claddis.ordination("morpho_matrix.nex")
## Only converting the nexus matrix into a Claddis format
Claddis_data <- Claddis.ordination("morpho_matrix.nex", distance = NULL)
file.remove("morpho_matrix.nex")
```

```
## End(Not run)
```

clean.data Cleaning phylogenetic data

Description

Cleans a table/tree to match with a given table/tree

Usage

clean.data(data, tree, inc.nodes = FALSE)

Arguments

$$
\begin{array}{ll}
\text { data } & \text { A data.frame or matrix with the elements names as row names. } \\
\text { tree } & \text { A phylo or multiPhylo object. } \\
\text { inc.nodes } & \begin{array}{l}
\text { Logical, whether to check if the nodes in tree are also present in data (TRUE) } \\
\text { or not (FALSE; default). }
\end{array}
\end{array}
$$

Details

Note if inc. nodes is set to TRUE, the function outputs an error message if there is no matching.

Value

A list containing the cleaned data and tree(s) and information on the eventual dropped tips and rows.

Author(s)

Thomas Guillerme

See Also

tree.age.

Examples

```
##Creating a set of different trees
trees_list <- list(rtree(5, tip.label = LETTERS[1:5]), rtree(4,
    tip.label = LETTERS[1:4]), rtree(6, tip.label = LETTERS[1:6]))
class(trees_list) <- "multiPhylo"
##Creating a matrix
dummy_data <- matrix(c(rnorm(5), runif(5)), 5, 2,
```

```
        dimnames = list(LETTERS[1:5], c("var1", "var2")))
##Cleaning the trees and the data
cleaned <- clean.data(data = dummy_data, tree = trees_list)
##The taxa that where dropped (tips and rows):
c(cleaned$dropped_tips, cleaned$dropped_rows)
##The cleaned trees:
cleaned$tree
##The cleaned data set:
cleaned$data
```

combine. subsets Combines or cleans subsets.

Description

Combines multiple subsets together or cleans a subset series to contain at least n elements.

Usage

combine.subsets(data, subsets)

Arguments

data	A dispRity object.
subsets	Either a vector of the number or name of the subsets to merge or a single numeric value of the minimum of elements for each series (see details).

Details

If subset is a vector, the subsets are merged in the given input order. $c(1,3,4)$ will merge subsets 1 and 3 into 4 , while the opposite, $c(3,4,1)$ will merge subsets 3 and 4 into 1 . When a single numeric value is given, subsets are merged with the next subset until the correct number of elements for each subset is reached (apart from the last subset that gets merged with the previous one).

Value

A dispRity object containing the original matrix and subsets. NOTE: if the data are already bootstrapped/rarefied or/and disparity already calculated the operation will have to be performed again.

Author(s)

Thomas Guillerme

See Also

custom. subsets, chrono. subsets, boot.matrix, dispRity.

Examples

```
## Generate subsets from a dummy matrix
dummy_matrix <- matrix(rnorm(120), 40)
dummy_subsets <- custom.subsets(dummy_matrix,
    group = list("a" = c(1:5), "b" = c(6:10), "c" = c(11:20),
    "d" = c(21:24), "e" = c(25:30), "f" = c(31:40)))
## Merging the two first subsets
combine.subsets(dummy_subsets, c(1,2))
## Merging the three subsets by name
combine.subsets(dummy_subsets, c("d", "c", "e"))
## Merging the subsets to contain at least 20 taxa
combine.subsets(dummy_subsets, 10)
```

crown.stem Separates stem and crown species

Description

Selects the crown

Usage

crown.stem(tree, inc.nodes = TRUE, output.names = TRUE)

Arguments

$$
\begin{array}{ll}
\text { tree } & \text { a code"phylo" object } \\
\text { inc.nodes } & \text { whether to include the nodes (TRUE; default) or not (FALSE) in the output. } \\
\text { output.names } & \begin{array}{l}
\text { whether to output the taxa names (TRUE; default) or two phylogenetic trees } \\
\text { (FALSE). }
\end{array}
\end{array}
$$

Author(s)

Thomas Guillerme

See Also

custom. subsets, tree. age

Examples

```
## A tree with fossil taxa
data(BeckLee_tree)
## Getting both crown and stem taxa lists
crown.stem(BeckLee_tree)
## Splitting the tree into two subtrees
crown_stem_trees <- crown.stem(BeckLee_tree, output.names = FALSE)
## Graphical parameters
op <- par(mfrow = c(1,3))
## Plotting the trees
plot(BeckLee_tree, main = "Full tree")
plot(crown_stem_trees$crown, main = "Crown group")
plot(crown_stem_trees$stem, main = "Stem group")
```

custom. subsets Separating data into custom subsets.

Description

Splits the data into a customized subsets list.

Usage

custom. subsets(data, group, tree)

Arguments

$$
\begin{array}{ll}
\text { data } & \text { A matrix or a list of matrices. } \\
\text { group } & \begin{array}{l}
\text { Either a list of row numbers or names to be used as different groups or a } \\
\text { data.frame with the same } k \text { elements as in data as rownames. If group is a } \\
\text { phylo object matching data, groups are automatically generated as clades (and } \\
\text { the tree is attached to the resulting dispRity object). }
\end{array} \\
\text { tree } & \begin{array}{l}
\text { Optional, a phylo or multiPhylo object to attach to the resulting dispRity } \\
\text { data. }
\end{array}
\end{array}
$$

Details

Note that every element from the input data can be assigned to multiple groups!

Author(s)

Thomas Guillerme

See Also

chrono.subsets, boot.matrix, dispRity, crown.stem.

Examples

```
## Generating a dummy ordinated matrix
ordinated_matrix <- matrix(data = rnorm(90), nrow = 10)
## Splitting the ordinated matrix into two groups using row numbers
custom.subsets(ordinated_matrix, list(c(1:4), c(5:10)))
## Splitting the ordinated matrix into three groups using row names
ordinated_matrix <- matrix(data = rnorm(90), nrow = 10,
    dimnames = list(letters[1:10]))
custom.subsets(ordinated_matrix,
    list("A" = c("a", "b", "c", "d"), "B" = c("e", "f", "g", "h", "i", "j"),
            "C" = c("a", "c", "d", "f", "h")))
## Splitting the ordinated matrix into four groups using a dataframe
groups <- as.data.frame(matrix(data = c(rep (1,5), rep(2,5), rep(c(1, 2), 5)),
    nrow = 10, ncol = 2, dimnames = list(letters[1:10], c("g1", "g2"))))
custom.subsets(ordinated_matrix, groups)
## Splitting a matrix by clade
data(BeckLee_mat50)
data(BeckLee_tree)
custom.subsets(BeckLee_mat50, group = BeckLee_tree)
```

demo_data Demo datasets

Description

A set six trait spaces with different groups and different dimensions.

Details

The content of these datasets and the pipeline to build them is described in details in Guillerme et al 2020.

- beck A palaeobiology study of mammals. The data is a 105 dimensions ordination (PCO) of the distances between 106 mammals based on discrete morphological characters.
- wright A palaeobiology study of crinoids. The data is a 41 dimensions ordination (PCO) of the distances between 42 crinoids based on discrete morphological characters.
- marcy A geometric morphometric study of gophers (rodents). The data is a 134 dimensions ordination (PCA) the Procrustes superimposition of landmarks from 454 gopher skulls.
- hopkins A geometric morphometric study of trilobites. The data is a 134 dimensions ordination (PCA) the Procrustes superimposition of landmarks from 46 trilobites cephala.
- jones An ecological landscape study. The data is a 47 dimensions ordination (PCO) of the Jaccard distances between 48 field sites based on species composition.
- healy A life history analysis of the pace of life in animals. The data is a 6 dimensions ordination (PCA) of 6 life history traits from 285 animal species.

Source

https://onlinelibrary.wiley.com/doi/full/10.1002/ece3. 6452

References

Guillerme T, Puttick MN, Marcy AE, Weisbecker V. 2020 Shifting spaces: Which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces?. Ecol Evol. 2020;00:1-16. (doi:10.1002/ece3.6452)

Beck, R. M., \& Lee, M. S. (2014). Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141278.
Wright, D. F. (2017). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91(4), 799-814.
Marcy, A. E., Hadly, E. A., Sherratt, E., Garland, K., \& Weisbecker, V. (2016). Getting a head in hard soils: convergent skull evolution and divergent allometric patterns explain shape variation in a highly diverse genus of pocket gophers (Thomomys). BMC evolutionary biology, 16(1), 207.
Hopkins, M.J. and Pearson, J.K., 2016. Non-linear ontogenetic shape change in Cryptolithus tesselatus (Trilobita) using three-dimensional geometric morphometrics. Palaeontologia Electronica, 19(3), pp.1-54.
Jones, N. T., Germain, R. M., Grainger, T. N., Hall, A. M., Baldwin, L., \& Gilbert, B. (2015). Dispersal mode mediates the effect of patch size and patch connectivity on metacommunity diversity. Journal of Ecology, 103(4), 935-944.
Healy, K., Ezard, T.H., Jones, O.R., Salguero-Gomez, R. and Buckley, Y.M., 2019. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nature ecology \& evolution, p.1.

Examples

```
data(demo_data)
## Loading the Beck and Lee 2014 demo data
demo_data$beck
## Loading the Wright }2017\mathrm{ demo data
demo_data$wright
## Loading the Marcy et al. 2015 demo data
demo_data$marcy
## Loading the Hopkins and Pearson 2016 demo data
demo_data$hopkins
## Loading the Jones et al. 2015 demo data
demo_data$jones
```

```
## Loading the Healy et al. 2019 demo data
```

demo_data\$healy
disparity disparity

Description

An example of a dispRity object.

Format

one dispRity object.

Details

This matrix is based on the BeckLee dataset and split into seven continuous subsets (chrono. subsets). It was bootstrapped 100 times (boot . matrix) with four rarefaction levels. Disparity was calculated as the median of the centroids (dispRity).

See Also

BeckLee_disparity BeckLee

Examples

```
## Not run:
## Loading the data
data(BeckLee_mat99)
data(BeckLee_tree)
data(BeckLee_ages)
## Creating the 7 subsets
subsets <- chrono.subsets(BeckLee_mat99, BeckLee_tree,
    time = seq(from = 30, to = 90, by = 10),
    method = "continuous", model = "ACCTRAN",
    FADLAD = BeckLee_ages)
## Bootstrapping and rarefying
bootstraps <- boot.matrix(subsets, bootstraps = 100,
    rarefaction = c(20, 15, 10, 5))
## Calculating disparity
disparity <- dispRity(bootstraps, metric = c(median, centroids))
## End(Not run)
```

dispRity \quad Calculates disparity from a matrix.

Description

Calculates disparity from a matrix, a list of matrices or subsets of a matrix, where the disparity metric can be user specified.

Usage

dispRity(
data,
metric,
dimensions,
...,
between.groups = FALSE,
verbose = FALSE,
tree $=$ NULL
)

Arguments

data A matrix or a dispRity object (see details).
metric A vector containing one to three functions. At least of must be a dimension-level 1 or 2 function (see details).
dimensions Optional, a vector of numeric value(s) or the proportion of the dimensions to keep.
... Optional arguments to be passed to the metric.
between.groups A logical value indicating whether to run the calculations between groups (TRUE) or not (FALSE - default) or a numeric list of pairs of groups to run (see details).
verbose A logical value indicating whether to be verbose or not.
tree NULL (default) or an optional phylo or multiPhylo object to be attached to the data. If this argument is not null, it will be recycled by metric when possible.

Details

The dispRity object given to the data argument can be: a list of matrices (typically output from the functions chrono. subsets or custom. subsets), a bootstrapped matrix output from boot.matrix, a list of disparity measurements calculated from the dispRity function or a matrix object with rows as elements and columns as dimensions. In any of these cases, the data is considered as the multidimensional space and is not transformed (e.g. if ordinated with negative eigen values, no correction is applied to the matrix).
metric should be input as a vector of functions. The functions are sorted and used by dimensionlevel from 3 to 1 (see dispRity.metric and make.metric). Typically dimension-level 3 functions
take a matrix and output a matrix; dimension-level 2 functions take a matrix and output a vector and dimension-level 1 functions take a matrix or a vector and output a single value. When more than one function is input, they are treated first by dimension-level (i.e. 3, 2 and finally 1). Note that the functions can only take one metric of each dimension-level and thus can only take a maximum of three arguments!
Some metric functions are built into the dispRity package: see dispRity.metric For user specified metrics, please use make.metric to ensure that the metric will work.

HINT: if using more than three functions you can always create your own function that uses more than one function (e.g. my_function <-function(matrix) cor(var(matrix)) is perfectly valid and allows one to use two dimension-level 3 functions - the correlation of the variance-covariance matrix in this case).

The between. groups argument runs the disparity between groups rather within groups. If between. groups $=$ TRUE, the disparity will be calculated using the following inputs:

- if the input is an output from custom. subsets, the series are run in a pairwise manner using metric (matrix, matrix2). For example for a custom. subset contains 3 subsets m1, m2 and m 3 , the code loops through: metric (m1, m2), metric (m2,m3) and metric (m1, m3) (looping through list $(c(1,2), c(2,3), c(3,1)))$.
- if the input is an output from chrono. subsets, the series are run in a paired series manner using metric (matrix, matrix2). For example for a chrono.subsets contains 3 subsets $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ and m 4 , the code loops through: metric ($\mathrm{m} 1, \mathrm{~m} 2$) and metric (m2,m3) (looping through list $(c(1,2), c(2,3), c(3,4)))$.

In both cases it is also possible to specify the input directly by providing the list to loop through. For example using between.groups $=\operatorname{list}(c(1,2), c(2,1), c(4,8))$ will apply the metric to the 1 st and 2 nd subsets, the 2 nd and first and the 4 th and 8 th (in that specific order).

Value

This function outputs a dispRity object containing:

$$
\begin{array}{ll}
\text { matrix } & \text { the multidimensional space (a matrix). } \\
\text { call } & \text { A list containing the called arguments. } \\
\text { subsets } & \text { A list containing matrices pointing to the elements present in each subsets. } \\
\text { disparity } & \text { A list containing the disparity in each subsets. }
\end{array}
$$

Use summary.dispRity to summarise the dispRity object.

Author(s)

Thomas Guillerme

See Also

custom. subsets, chrono. subsets, boot.matrix, dispRity.metric, summary.dispRity, plot.dispRity.

Examples

```
## Load the Beck & Lee 2014 data
data(BeckLee_mat50)
## Calculating the disparity as the sum of variances from a single matrix
sum_of_variances <- dispRity(BeckLee_mat50, metric = c(sum, variances))
summary(sum_of_variances)
## Bootstrapping this value
bootstrapped_data <- boot.matrix(BeckLee_mat50, bootstraps = 100)
dispRity(bootstrapped_data, metric = c(sum, variances))
## Calculating the disparity from a customised subset
## Generating the subsets
customised_subsets <- custom.subsets(BeckLee_mat50,
    list(group1 = 1:(nrow(BeckLee_mat50)/2),
        group2 = (nrow(BeckLee_mat50)/2):nrow(BeckLee_mat50)))
## Bootstrapping the data
bootstrapped_data <- boot.matrix(customised_subsets, bootstraps = 100)
## Calculating the sum of variances
sum_of_variances <- dispRity(bootstrapped_data, metric = c(sum, variances))
summary(sum_of_variances)
## Calculating disparity with different metrics of different dimension-levels
## Disparity is calculated as the distribution of the variances in each
## dimension (output are distributions)
disparity_level2 <- dispRity(BeckLee_mat50, metric = variances)
## Disparity is calculated as the mean of the variances in each dimension
## (output are single values)
disparity_level1 <- dispRity(disparity_level2, metric = mean)
## Both disparities have the same means but dimension-level }1\mathrm{ has no quantiles
summary(disparity_level2)
summary(disparity_level1)
```

dispRity.metric Disparity metrics

Description

Different implemented disparity metrics.

Usage

dimension.level3.fun(matrix, ...)
dimension.level2.fun(matrix, ...)
dimension.level1.fun(matrix, ...)
between.groups.fun(matrix, matrix2, ...)

Arguments

matrix
...
.
.

A matrix.
Optional arguments to be passed to the function. Usual optional arguments are method for specifying the method for calculating distance passed to vegdist (e.g. method = "euclidean" - default - or method = "manhattan") or k.root to scale the result using the eqnkth root. See details below for available optional arguments for each function.
matrix2 Optional, a second matrix for metrics between groups.

Details

These are inbuilt functions for calculating disparity. See make.metric for details on dimension.level3.fun, dimension.level2.fun, dimension.level1.fun and between.groups.fun. The dimensions levels (1,2 and 3) can be seen as similar to ranks in linear algebra.
The currently implemented dimension-level 1 metrics are:

- convhull. volume: calculates the convex hull hypervolume of a matrix (calls convhulln(x, options = "FA")\$vol).
- Both convhull functions call the convhulln function with the "FA" option (computes total area and volume).
- WARNING: both convhull functions can be computationally intensive above 10 dimensions!
- convhull. surface: calculates the convex hull hypersurface of a matrix (calls convhulln(x, options = "FA")\$area).
- diagonal: calculates the longest distance in the ordinated space.
- WARNING: This function is the generalisation of Pythagoras' theorem and thus works only if each dimensions are orthogonal to each other.
- ellipse.volume: calculates the ellipsoid volume of a matrix.
- WARNING: this function assumes that the input matrix is ordinated and calculates the matrix' eigen values from the matrix as abs(apply (var (matrix), 2 , sum)) (which is
 eigen values for any matrix but differ from the ones output from cmdscale and pcoa because these later have their eigen values multiplied by the number of elements - 1 (i.e. $\operatorname{abs}(\operatorname{apply}(\operatorname{var}($ matrix $), 2$, sum) $) *$ nrow(matrix) -1). Specific eigen values can always be provided manually through ellipse.volume (matrix, eigen.value = my_val) (or dispRity (matrix, metric = ellipse.volume, eigen.value = my_val)).
- func.div: The functional divergence (Vill'eger et al. 2008): the ratio of deviation from the centroid (this is similar to FD: : dbFD () \$FDiv).
- func.eve: The functional evenness (Vill'eger et al. 2008): the minimal spanning tree distances evenness (this is similar to FD: : dbFD()\$FEve). If the matrix used is not a distance matrix, the distance method can be passed using, for example method = "euclidean" (default).
- mode. val: calculates the modal value of a vector.
- n.ball.volume: calculate the volume of the minimum n-ball (if sphere $=$ TRUE) or of the ellipsoid (if sphere = FALSE).

See also mean, median, sum or prod for commonly used summary metrics.
The currently implemented dimension-level 2 metrics are:

- ancestral.dist: calculates the distance between each elements coordinates in the matrix and their ancestors' coordinates (if to. root = FALSE; default) or to the root coordinates (if to. root $=$ TRUE) for a given tree. The distance is calculate as Euclidean by default but can be changed through the methods argument (method = "euclidean"; default). Note that the matrix must contain data for both tips and nodes in the tree, otherwise you must provide a matrix to the argument reference.data that contains them. Note that if the function is used in dispRity, both the tree and reference.data can be automatically recycled from the dispRity object (if present).
- angles: calculates the angles of the main axis of variation per dimension in a matrix. The angles are calculated using the least square algorithm from the lm function. The unit of the angle can be changed through the unit argument (either "degree" (default), radian or slope) and a base angle to measure the angle from can be passed through the base argument (by default base $=0$, measuring the angle from the horizontal line (note that the base argument has to be passed in the same unit as unit). When estimating the slope through lm, you can use the option significant to only consider significant slopes (TRUE) or not (FALSE - default).
- centroids: calculates the distance between each row and the centroid of the matrix (Lalibert'e 2010). This function can take an optional arguments centroid for defining the centroid (if missing (default), the centroid of the matrix is used). This argument can be either a subset of coordinates matching the matrix's dimensions (e.g. c($0,1,2$) for a matrix with three columns) or a single value to be the coordinates of the centroid (e.g. centroid $=0$ will set the centroid coordinates to $c(0,0,0)$ for a three dimensional matrix). NOTE: distance is calculated as "euclidean" by default, this can be changed using the method argument.
- deviations: calculates the minimal Euclidean distance between each element in and the hyperplane (or line if 2 D , or a plane if 3D). You can specify equation of hyperplane of d dimensions in the intercept $+a x+b y+\ldots+n d=0$ format. For example the line $y=3 x+1$ should be entered as $c(1,3,-1)$ or the plane $x+2 y-3 z=44$ as $c(44,1,2,-3)$. If missing the hyperplane (default) is calculated using a least square regression using a gaussian glm. Extra arguments can be passed to glm through When estimating the hyperplane, you can use the option significant to only consider significant slopes (TRUE) or not (FALSE default).
- displacements: calculates the ratio between the distance to the centroid (see centroids above) and the distance from a reference (by default the origin of the space). The reference can be changed through the reference argument. NOTE: distance is calculated as "euclidean" by default, this can be changed using the method argument.
- edge.length.tree: calculates the edge length from a given tree for each elements present in the matrix. Each edge length is either measured between the element and the root of the tree (to. root $=$ TRUE ; default) or between the element and its last ancestor (to. root = FALSE))
- neighbours: calculates the distance to a neighbour (Foote 1990). By default this is the distance to the nearest neighbour (which $=\mathrm{min}$) but can be set to any dimension level -1 function (e.g. which = mean gives the distance to the most average neighbour). NOTE: distance is calculated as "euclidean" by default, this can be changed using the method argument.
- pairwise. dist: calculates the pairwise distance between elements - calls vegdist (matrix, method $=$ method, diag $=$ FALSE, upper $=$ FALSE,\ldots. . The distance type can be changed via the
method argument (see vegdist - default: method = "euclidean"). This function outputs a vector of pairwise comparisons in the following order: $d(A, B), d(A, C), d(B, C)$ for three elements A, B and C. NOTE: distance is calculated as "euclidean" by default, this can be changed using the method argument.
- projections: projects each element on a vector defined as (point1, point2) and measures some aspect of this projection. The different aspects that can be measured are:
- measure = "position" (default), the distance of each element on the vector (point1, point2). Negative values means the element projects on the opposite direction of the vector (point1, point2).
- measure = "distance", the euclidean distance of each element from the vector (point1, point2).
- measure = "degree", the angle between the vector (point1, point2) and any vector (point1, element) in degrees.
- measure = "radian", the angle between the vector (point1, point2) and any vector (point1, element) in radians.
By default, point1 is the centre of the space (coordinates $0,0,0, \ldots$) and point2 is the centroid of the space (coordinates colMeans(matrix)). Coordinates for point1 and point2 can be given as a single value to be repeated (e.g. point1 $=1$ is translated into point1 $=$ $c(1,1, \ldots)$) or a specific set of coordinates. Furtheremore, by default, the space is scaled so that the vector (point1, point2) becomes the unit vector (distance (point1, point2) is set to 1 ; option scale = TRUE; default). You can use the unit vector of the space using the option scale = FALSE.
- projections.tree: calculates the projections metric but drawing the vectors from a phylogenetic tree. This metric can intake any argument from projections (see above) but for point1 and point2 that are replaced by the argument type. type is a vector or a list of two elements that designates which vector to draw and can be any pair of the following options (the first element being the origin of the vector and the second where the vector points to):
- "root": the root of the tree (the first element in tree\$node.label);
- "ancestor": the element's most recent ancestor;
- "tips": the centroid of the tips;
- "nodes": the centroid of all the nodes;
- "livings": the centroid of the tips the furthest from the root;
- "fossils": the centroid of all the tips that are not the furthest from the root;
- any numeric values that can be interpreted as point1 and point2 in projections;
- or a user defined function that with the inputs matrix and tree and row (the element's ID, i.e. the row number in matrix).
NOTE: the elements to calculate the origin and end points of the vector are calculated by default on the provided input matrix which can be missing data from the tree if used with custom. subsets or chrono. subsets. You can always provide the full matrix using the option reference. data = my_matrix.
- quantiles: calculates the quantile range of each axis of the matrix. The quantile can be changed using the quantile argument (default is quantile $=95$, i.e. calculating the range on each axis that includes 95% of the data). An optional argument, k. root, can be set to TRUE to scale the ranges by using its $k t h$ root (where k are the number of dimensions). By default, k. root $=$ FALSE.
- radius: calculates a distance from the centre of each axis. The type argument is the function to select which distance to calculate. By default type = max calculates the maximum distance between the elements and the centre for each axis (i.e. the radius for each dimensions)
- ranges: calculates the range of each axis of the matrix (Wills 2001). An optional argument, k . root, can be set to TRUE to scale the ranges by using its k th root (where k are the number of dimensions). By default, k. root = FALSE.
- variances: calculates the variance of each axis of the matrix (Wills 2001). This function can also take the k. root optional argument described above.
- span. tree. length: calculates the length of the minimum spanning tree (see spantree). This function can get slow with big matrices. To speed it up, one can directly use distance matrices as the multidimensional space.

The currently implemented between.groups metrics are:

- group.dist: calculates the distance between two groups (by default, this is the minimum euclidean vector norm distance between groups). Negative distances are considered as 0 . This function must intake two matrices (matrix and matrix2) and the quantiles to consider. For the minimum distance between two groups, the 100th quantiles are considered (default: probs = $c(0,1))$ but this can be changed to any values (e.g. distance between the two groups accounting based on the 95 th CI: probs $=c(0.025,0.975)$; distance between centroids: probs $=$ $c(0.5)$, etc...). This function is the linear algebra equivalent of the hypervolume_distance function.
- point.dist: calculates the distance between matrix and a point calculated from matrix2. By default, this point is the centroid of matrix2. This can be changed by passing a function to be applied to matrix2 through the point argument (for example, for the centroid: point.dist(..., point = colMeans)). NOTE: distance is calculated as "euclidean" by default, this can be changed using the method argument.

When used in the dispRity function, optional arguments are declared after the metric argument: for example dispRity(data, metric = centroids, centroid=0, method = "manhattan")

Author(s)

Thomas Guillerme

References

Donohue I, Petchey OL, Montoya JM, Jackson AL, McNally L, Viana M, Healy K, Lurgi M, O'Connor NE, Emmerson MC. 2013. On the dimensionality of ecological stability. Ecology letters. 16(4):421-9.
Lalibert'e E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), pp.299-305.

Vill'eger S, Mason NW, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 89(8):2290-301.
Wills MA. 2001. Morphological disparity: a primer. In Fossils, phylogeny, and form (pp. 55-144). Springer, Boston, MA.
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology, 39(4), pp.371-382.

See Also

dispRity and make.metric.

Examples

```
## A random matrix
dummy_matrix <- matrix(rnorm(90), 9, 10)
## ancestral.dist
## A random tree with node labels
rand_tree <- rtree(5) ; rand_tree$node.label <- paste0("n", 1:4)
## Adding the tip and node names to the matris
rownames(dummy_matrix) <- c(rand_tree$tip.label, rand_tree$node.label)
## Calculating the distances to the ancestors
ancestral.dist(dummy_matrix, tree = rand_tree)
## Calculating the manhattan distances to the root
ancestral.dist(dummy_matrix, tree = rand_tree,
        to.root = TRUE, method = "manhattan")
## angles
## The angles in degrees of each axis
angles(dummy_matrix)
## The angles in slope from the 1:1 slope (Beta = 1)
angles(dummy_matrix, unit = "slope", base = 1)
## centroids
## Distances between each row and centroid of the matrix
centroids(dummy_matrix)
## Distances between each row and an arbitrary point
centroids(dummy_matrix, centroid = c(1,2,3,4,5,6,7,8,9,10))
## Distances between each row and the origin
centroids(dummy_matrix, centroid = 0)
## convhull.surface
## Making a matrix with more elements than dimensions (for convhull)
thinner_matrix <- matrix(rnorm(90), 18, 5)
## Convex hull hypersurface of a matrix
convhull.surface(thinner_matrix)
## convhull.volume
## Convex hull volume of a matrix
convhull.volume(thinner_matrix)
## deviations
## The deviations from the least square hyperplane
deviations(dummy_matrix)
## The deviations from the plane between the x and y axis
deviations(dummy_matrix, hyperplane = c(0,1,1,0,0,0,0,0,0,0,0))
## diagonal
## Matrix diagonal
diagonal(dummy_matrix) # WARNING: only valid if the dimensions are orthogonal
```

```
## displacements
## displacement ratios (from the centre)
displacements(dummy_matrix)
## displacement ratios (from an arbitrary point)
displacements(dummy_matrix, reference = c(1,2,3,4,5,6,7,8,9,10))
## displacement ratios from the centre (manhattan distance)
displacements(dummy_matrix, method = "manhattan")
## edge.length.tree
## Making a dummy tree with node labels
dummy_tree <- makeNodeLabel(rtree((nrow(dummy_matrix)/2)+1))
## Naming the elements in the matrix
named_matrix <- dummy_matrix
rownames(named_matrix) <- c(dummy_tree$tip.label,
    dummy_tree$node.label)
## The total edge length of each element in the matrix (to the root)
edge.length.tree(named_matrix, tree = dummy_tree)
## The edge lengths for each edge leading to the elements in the matrix
edge.length.tree(named_matrix, tree = dummy_tree, to.root = FALSE)
## ellipse.volume
## Ellipsoid volume of a matrix
ellipse.volume(dummy_matrix)
## Calculating the same volume with provided eigen values
ordination <- prcomp(dummy_matrix)
## Calculating the ellipsoid volume
ellipse.volume(ordination$x, eigen.value = ordination$sdev^2)
## func.div
## Functional divergence
func.div(dummy_matrix)
## func.eve
## Functional evenness
func.eve(dummy_matrix)
## Functional evenness (based on manhattan distances)
func.eve(dummy_matrix, method = "manhattan")
## group.dist
## The distance between groups
dummy_matrix2 <- matrix(runif(40, min = 2, max = 4), 4, 10)
## The minimum distance between both groups
group.dist(dummy_matrix, dummy_matrix2)
## The distance between both groups' centroids
group.dist(dummy_matrix, dummy_matrix2, probs = 0.5)
## The minimum distance between the 50% CI of each group
group.dist(dummy_matrix, dummy_matrix2, probs = c(0.25, 0.75))
## mode.val
## Modal value of a vector
mode.val(dummy_matrix)
```

```
## neighbours
## The nearest neighbour euclidean distances
neighbours(dummy_matrix)
## The furthest neighbour manhattan distances
neighbours(dummy_matrix, which = max, method = "manhattan")
## pairwise.dist
## The pairwise distance
pairwise.dist(dummy_matrix)
## The average squared pairwise distance
mean(pairwise.dist(dummy_matrix)^2)
## equal to:
geiger::disparity(data = dummy_matrix)
## point.dist
## The distances from the rows dummy_matrix
## to the centroids of dummy_matrix2
point.dist(dummy_matrix, dummy_matrix2)
## The average distances from dummy_matrix
## to the centroids of dummy_matrix2
mean(point.dist(dummy_matrix, dummy_matrix2))
## The manhattan distance from the rows dummy_matrix
## to the standard deviation of dummy_matrix2
point.dist(dummy_matrix, dummy_matrix2, point = sd, method = "manhattan")
## projections
## The distances on the vector defined from the centre of
## the matrix to its centroid (default)
projections(dummy_matrix)
## The distances from the vector defined from the third
## element of the matrix to the point of coordinated
## c(1,1,1, ...) the matrix to its centroid (default)
projections(dummy_matrix, measure = "distance",
    point1 = dummy_matrix[3, ],
    point2 = 1)
## projections.tree
## Making a dummy tree with node labels
dummy_tree <- makeNodeLabel(rtree((nrow(dummy_matrix)/2)+1))
## Naming the elements in the matrix
named_matrix <- dummy_matrix
rownames(named_matrix) <- c(dummy_tree$tip.label,
                                    dummy_tree$node.label)
## The projection on the vector defined from the root of
## the tree to the ancestor of each element in the matrix
projections.tree(named_matrix, dummy_tree,
    type = c("root", "ancestor"))
## The rejection from the vector defined from the centroid
## of the nodes to the centroids of the tips
projections.tree(named_matrix, dummy_tree,
    type = c("nodes", "tips"),
    measure = "distance")
```

```
## A user function that define coordinates based on the
## centroid of the three first nodes
user.fun <- function(matrix, tree, row = NULL) {
        return(colMeans(matrix[tree$node.label[1:3], ]))
}
## The projection on the vector defined by the coordinates
## 0,0,0 and a user defined function
projections.tree(named_matrix, dummy_tree,
                    type = c(0, user.fun))
## quantiles
## The 95 quantiles
quantiles(dummy_matrix)
## The 100 quantiles (which are equal to the ranges)
quantiles(dummy_matrix, quantile = 100) == ranges(dummy_matrix) # All TRUE
## radius
## The maximal radius of each axis (maximum distance from centre of each axis)
radius(dummy_matrix)
## ranges
## ranges of each column in a matrix
ranges(dummy_matrix)
## ranges of each column in the matrix corrected using the kth root
ranges(dummy_matrix, k.root = TRUE)
## span.tree.length
## Minimum spanning tree length (default)
span.tree.length(dummy_matrix)
## Minimum spanning tree length from a distance matrix (faster)
distance <- as.matrix(dist(dummy_matrix))
span.tree.length(distance)
## Minimum spanning tree length based on Manhattan distance
span.tree.length(dummy_matrix, method = "manhattan")
span.tree.length(as.matrix(dist(dummy_matrix, method = "manhattan"))) # Same
## variances
## variances of a each column in the matrix
variances(dummy_matrix)
## variances of a each column in the matrix corrected using the kth root
variances(dummy_matrix, k.root = TRUE)
```


Description

Performs a disparity analysis between groups.

Usage

dispRity.per.group(data, group, metric = c(median, centroids), ...)

Arguments

data An ordinated matrix.
group A list of row numbers for each group.
metric A vector containing one to three functions (default $=c$ (median, centroids)) (see dispRity for details).
... Optional arguments to be passed to custom. subsets, boot.matrix and dispRity.

Details

Note that this is a wrapper function that allows users to run a basic disparity among groups analysis without too much effort. As such it has a lot of defaults described in the functions that make up the analysis. See custom.subsets, boot.matrix, dispRity.metric, summary.dispRity, plot.dispRity for more details of the defaults used in each of these functions. Note that any of these defaults can be changed within the disparity. through. time function.

Value

A dispRity object that can be passed to summary or plot.

Author(s)

Thomas Guillerme

See Also

custom. subsets, boot.matrix, dispRity.metric, summary.dispRity, plot.dispRity.

Examples

```
## Load the Beck & Lee 2014 data
data(BeckLee_mat50)
## Run a simple disparity per group analysis comparing stem and crown mammals
result <- dispRity.per.group(BeckLee_mat50, list(crown = c(16, 19:41, 45:50),
    stem = c(1:15, 17:18, 42:44)))
summary(result) ; plot(result)
## This is equivalent to run the following decomposed code
dispRity(boot.matrix(custom.subsets(BeckLee_mat50, list(crown = c(16, 19:41, 45:50),
                                    stem = c(1:15, 17:18, 42:44))),
        bootstraps = 100),
        metric = c(median, centroids))
```

dispRity.through.time Disparity through time.

Description

Performs a disparity through time analysis.

Usage

dispRity.through.time(data, tree, time, metric = c(median, centroids), ...)

Arguments

data An ordinated matrix.
tree A phylo object.
time A numeric value for the number of subsets to create.
metric A vector containing one to three functions (default $=c($ median, centroids $)$) (see dispRity for details).
... Optional arguments to be passed to chrono. subsets, boot.matrix and dispRity.

Details

By default the time subsets use method = "discrete", the matrix is bootstrapped 100 times.
Note that this is a wrapper function that allows users to run a basic disparity-through-time analysis without too much effort. As such it has a lot of defaults described in the functions that make up the analysis. See chrono.subsets, boot.matrix, dispRity.metric, summary.dispRity, plot.dispRity for more details of the defaults used in each of these functions. Note that any of these defaults can be changed within the disparity. through. time function.

Value

A dispRity object that can be passed to summary or plot.

Author(s)

Thomas Guillerme

See Also

chrono. subsets, boot.matrix, dispRity.metric, summary.dispRity, plot.dispRity.

Examples

```
## Load the Beck & Lee 2014 data
data(BeckLee_mat50) ; data(BeckLee_tree)
## Run a simple disparity through time analysis (with three time bins)
result <- dispRity.through.time(BeckLee_mat50, BeckLee_tree, 3)
summary(result) ; plot(result)
## This is equivalent to run the following decomposed code
dispRity(boot.matrix(chrono.subsets(BeckLee_mat50, BeckLee_tree, time = 3, method = "discrete"),
        bootstraps = 100),
        metric = c(median, centroids))
```

```
dtt.dispRity dtt dispRity (from geiger::dtt)
```


Description

A wrapper for the dtt function working with any disparity metric.

Usage

```
dtt.dispRity(
    data,
    metric,
    tree,
    nsim = 0,
    model = "BM",
    alternative = "two-sided",
    scale.time = TRUE,
    )
```


Arguments

data	A dispRity object or a matrix
metric	The disparity metric to be passed to dispRity.
tree	A phylo object matching the data and with a root. time element. Can be miss- ing if data has a tree component.
nsim	The number of simulations to calculate null disparity-through-time.
model	A evolutionary model for the simulations (see sim.char - default is "BM").
alternative	The H1 alternative (for calculating the p-value). Can be "two-sided" (default), "greater" or "lesser"; see details.
scale.time	Optional, whether to scale the time (between 0 and $1 ;$ TRUE, default) or not (FALSE).

.. Any other arguments to be passed to dtt .

Details

See dtt for details. Note that for calculating the default metrics implemented in dtt (i.e c("avg. sq" , "avg. manhattan", "nu this implementation in dispRity is much slower!

Author(s)

Thomas Guillerme

See Also

$d t t$, test.dispRity, custom. subsets, chrono. subsets, plot.dispRity.

Examples

```
## Loading geiger's example data set
require(geiger)
geiger_data <- get(data(geospiza))
## Calculate the disparity of the dataset using dtt::geiger
geiger_dtt <- dtt(phy = geiger_data$phy, data = geiger_data$dat, nsim = 100)
## The average squared pairwise distance metric (used in geiger::dtt)
average.sq <- function(X) mean(pairwise.dist(X)^2)
## Calculate the disparity of the dataset using dtt.dispRity
dispRity_dtt <- dtt.dispRity(data = geiger_data$dat, metric = average.sq,
    tree = geiger_data$phy, nsim = 100)
## Plotting the results
plot(dispRity_dtt)
## Disparity values are identical up to the 9th digit!
round(geiger_dtt$dtt, 9) == round(dispRity_dtt$dtt, 9)
## Calculate disparity with a different metric using dtt.dispRity
dispRity_dtt2 <- dtt.dispRity(data = geiger_data$dat, tree = geiger_data$phy,
                                    metric = c(median, centroids), nsim = 50)
plot(dispRity_dtt2)
```

extinction.subsets

Getting the time subsets from at and after an extinction event

Description

Getting the reference (pre-extinction) and the comparison (post-extinction) time subsets

Usage

extinction.subsets(data, extinction, lag = 1, names = FALSE, as.list = FALSE)
extract.dispRity

Arguments

data	a dispRity object.
extinction	numerical, the time at the extinction event. numerical, the lag effect (i.e. how many subsets after the extinction to consider - default $=1$).
names	logical, whether to display the bins names (TRUE) or not (FALSE - default). as.list
logical, whether to output the results as a list for test.dispRity (TRUE) or not (FALSE - default).	

Author(s)

Thomas Guillerme

See Also

chrono.subsets, test.dispRity

Examples

```
## Loading some disparity data
data(disparity)
## Time subsets for the K-Pg extinction (66 Mya)
extinction.subsets(disparity, 66, names = TRUE)
## Extinction with a lag effect of 3 slices
extinction_time <- extinction.subsets(disparity, 66, lag = 3, as.list = TRUE)
## Testing the extinction effect with a lag
test.dispRity(disparity, wilcox.test, comparisons = extinction_time,
            correction = "bonferroni")
```

extract.dispRity Extracting disparity values.

Description

Extracts the disparity from a dispRity object.

Usage

extract.dispRity(data, subsets, observed = TRUE, rarefaction = FALSE, concatenate $=$ TRUE
)

Arguments

data	A dispRity object containing disparity results. subsets
Optional, a numeric or character for which subsets to get (if missing, the value for all subsets are given).	
observed	A logical value indicating whether to output the observed (TRUE (default)) or the bootstrapped values (FALSE).
rarefaction	Optional, a single numeric value corresponding to the rarefaction level (as the number of elements; if missing, the non-rarefied values are output).
concatenate	When the disparity metric is a distribution, whether to concatenate it (TRUE; default) or to return each individual metric.

Author(s)

Thomas Guillerme

See Also

dispRity, get.subsets.

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## Extracting the observed disparity
extract.dispRity(disparity)
## Extracting the bootstrapped disparity
boot_disp <- extract.dispRity(disparity, observed = FALSE)
str(boot_disp)
## Or only the rarefied (5) data
boot_disp_rare <- extract.dispRity(disparity, observed = FALSE,
    rarefaction = 5)
```

fill.dispRity Fills a dispRity object.

Description

Fills a dispRity object using the data from its matrix

Usage

fill.dispRity(data, tree $=$ NULL)

Arguments

data	A dispRity object.
tree	A phylo or multiPhylo object or NULL (default)

Author(s)

Thomas Guillerme

Examples

```
## An empty dispRity object (with a matrix)
empty <- make.dispRity(data = matrix(rnorm(12), ncol = 3))
## A dispRity object with a matrix of 4*3
fill.dispRity(empty)
## A dispRity object with a tree
my_tree <- rtree(4, tip.label = c(1:4))
fill.dispRity(empty, tree = my_tree)
```

geomorph.ordination Imports data from geomorph

Description

Takes geomorph Procrustes object or a geomorph.data.frame object and ordinates it.

Usage

geomorph.ordination(data, ordinate = TRUE, ...)

Arguments

data An array (pxkxn) typically obtained from a Procrustes superimposition gpagen or a geomorph. data. frame object.
ordinate Logical, whether to ordinate the data using prcomp (TRUE; default) or not (FALSE; the code then returns the raw coordinates matrix).
$\ldots \quad$ Any optional arguments to be passed to prcomp (is ignored if ordinate $=$ FALSE).

Details

If data is a geomorph. data.frame object containing factors, directly performs a custom. subsets using these factors.

Value

A matrix or a dispRity object.

See Also

gpagen, morphol.disparity, prcomp, custom. subsets, chrono. subsets, boot.matrix, dispRity.

Examples

```
## Not run:
require(geomorph)
## Loading the plethodon dataset
data(plethodon)
## Performing a Procrustes transform
procrustes <- geomorph::gpagen(plethodon$land, PrinAxes = FALSE)
## Obtaining the ordination matrix
geomorph.ordination(procrustes)
## Using a geomorph.data.frame
geomorph_df <- geomorph.data.frame(procrustes, species = plethodon$species)
geomorph.ordination(geomorph_df)
## Calculating disparity from dispRity or geomorph::morphol.disparity
geomorph_disparity <- geomorph::morphol.disparity(coords ~ 1,
    groups= ~ species, data = geomorph_df)
dispRity_disparity <- dispRity(geomorph.ordination(geomorph_df),
                    metric = function(X) return(sum(X^2)/nrow(X)))
## Extracting the raw disparity values
geomorph_val <- round(as.numeric(geomorph_disparity$Procrustes.var), 15)
dispRity_val <- as.vector(summary(dispRity_disparity, digits = 15)$obs)
## Comparing the values (to the 15th decimal!)
geomorph_val == dispRity_val # all TRUE
## End(Not run)
```

get.bin.ages
Get time bins ages

Description

Gets time bins for a specific tree using stratigraphy

Usage

get.bin.ages(tree, what = "End", type = "Age", ICS = 2015)

Arguments

tree	A phylo object with a \$root.time component
what	Which data to output. Can be "Start", "End" (default), "Range" or "Midpoint".
type	The type of stratigraphic frame. Can be "Age" (default), "Eon", "Epoch", "Era" or "Period".
ICS	The reference year of the International Commission on Stratigraphy (default = $2015)$.

Author(s)

Thomas Guillerme

See Also

chrono.subsets

Examples

```
## Loading the data
data(BeckLee_tree)
data(BeckLee_mat50)
## Getting the stratigraphic data
stratigraphy <- get.bin.ages(BeckLee_tree)
## Making stratigraphic time subsets
chrono.subsets(BeckLee_mat50, tree = BeckLee_tree, method = "discrete",
    time = stratigraphy)
```

 get.contrast.matrix Generates a contrast matrix.

Description

Creates a contrast matrix using the observed character states in an input matrix.

Usage

get. contrast.matrix(matrix)

Arguments

matrix a discrete morphological character matrix.

Author(s)

Thomas Guillerme

See Also

check.morpho

Examples

```
## A random multistate matrix
random_matrix <- matrix(sample(c(0,1,2), 100, TRUE), 10, 10)
## Get the contrast matrix
get.contrast.matrix(random_matrix)
## Adding inapplicable and missing data to the matrix
random_matrix[sample(1:100, 10)] <- "?"
random_matrix[sample(1:100, 10)] <- "-"
## Get the contrast matrix
get.contrast.matrix(random_matrix)
```

 get.subsets Extracts subsets from a dispRity object.

Description

Extracting some subsets and data from a dispRity object.

Usage

get. subsets(data, subsets)

Arguments

data	A dispRity object.
subsets	A list of subset names or subset numbers to be extracted.

Value

This function outputs a dispRity object.

Author(s)

Thomas Guillerme

See Also

dispRity, extract.dispRity.

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## Get one subset
get.subsets(disparity, "60")
## Get two subsets
get.subsets(disparity, c(1,5))
```

make.dispRity
Creates a dispRity object.

Description

Creating an empty dispRity object from a matrix

Usage

make.dispRity(data, tree, call, subsets)

Arguments

data	A matrix.
tree	Optional, a phylo or multiPhylo object.
call	Optional, a list to be a dispRity call.
subsets	Optional, a list to be a dispRity subsets list.

Author(s)

Thomas Guillerme

Examples

```
## An empty dispRity object
make.dispRity()
## Still an empty dispRity object (with a matrix)
make.dispRity(data = matrix(rnorm(12), ncol = 3))
```

```
make.metric Creating disparity metrics
```


Description

Testing the dimension-level of disparity metrics

Usage

```
    make.metric(
        fun,
        ...,
        silent = FALSE,
        check.between.groups = FALSE,
        data.dim,
        tree \(=\) NULL
    )
```


Arguments

fun A function.
... Some arguments to be passed to fun.
silent logical; if FALSE (default), the function will be verbose and give no output; if TRUE, the function will only output the function's dimension-level.
check.between.groups
logical; if TRUE, the function will output a named list containing the metric level and a logical indicating whether the metric can be used between groups or not. If FALSE (default) the function only outputs the metric level.
data.dim optional, two numeric values for the dimensions of the matrix to run the test function testing. If missing, a default 5 rows by 4 columns matrix is used.
tree optional, a phylo object.

Details

This function tests:

- 1: if your function can deal with a matrix as an input.
- 2: which dimension-level is your function (1, 2 or 3 , see dispRity.metric).
- 3: whether the function can properly be implemented in the dispRity function.

The three different metric levels correspond to the dimensions of the output and are:

- "dimension-level 1": for functions that decompose a matrix into a single value.
- "dimension-level 2": for functions that decompose a matrix into a vector.
- "dimension-level 3": for functions that transform the matrix into another matrix.

For example, the disparity metric sum of variances is composed of two metric dimension-levels:

- The variances (dimension-level 2) that calculates the variances for each column in a matrix (aggregates a matrix into a vector).
- The sum (dimension-level 1) that transforms the vector of variances into a single value.

See function example for a concrete illustration (three different dimension-levels of the function sum).
HINT: it is better practice to name the first argument of fun matrix to avoid potential argument conflicts down the line (the dispRity function assumes the matrix argument for the parsing the metrics).
The input fun can be a "normal" metric function (i.e. that takes a matrix as first argument) or a "between.groups" metric (i.e. that takes two matrix as arguments). If the arguments are named matrix and matrix2, the metric will be assumed to be "between.groups" and be run in a for loop rather than a apply loop in dispRity.

Author(s)

Thomas Guillerme

See Also

dispRity, dispRity.metric.

Examples

```
## A dimension-level 1 function
my_fun <- function(matrix) sum(matrix)
make.metric(my_fun)
## A dimension-level 2 function
my_fun <- function(matrix) apply(matrix, 2, sum)
make.metric(my_fun)
## A dimension-level 3 function
my_fun <- function(matrix) (matrix + sum(matrix))
make.metric(my_fun)
```

```
matrix.dispRity
```

Fetching a matrix from a dispRity object.

Description

Fetching a specific matrix from a dispRity object.

Usage

matrix.dispRity(data, subsets, rarefaction, bootstrap, matrix = 1)

Arguments

data
subsets Optional, a numeric value to select subsets.
rarefaction Optional, a numeric value to select the rarefaction level (0 is no rarefaction).
bootstrap Optional, a numeric value to select a specific bootstrap draw (0 is no bootstrap).
matrix A numeric value of which matrix to select (default is 1).

Author(s)

Thomas Guillerme

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## To get the original matrix
matrix.dispRity(disparity)
## To get the un-bootstrapped matrix from the subset called "80"
matrix.dispRity(disparity, subsets = "80")
## To get the 52nd bootstrap draw of the second rarefaction level (15) of the
## same subset
matrix.dispRity(disparity, subsets = 2, rarefaction = 2, bootstrap = 52)
```

```
model.test Model Test
```


Description

Fit models of disparity change through time

```
Usage
    model.test(
        data,
        model,
        pool.variance = NULL,
        time.split = NULL,
        fixed.optima = FALSE,
        control.list = list(fnscale = -1),
        verbose = TRUE
)
```


Arguments

data	A dispRity object used to test models of evolution through time. model The model(s) of evolution to allow for changes in disparity-through-time using a homogenous or hetergenous model, either using a single input or a list contain- ing different models (See Details). If a vector with multiple modes is supplied then the model will test for shifts in modes at the time supplied by time.split.
pool.variance	If NULL (default) the difference in variances will be calculated using bartlett. test of equal variances. If there is no significant difference among variances, then variance in samples will be pooled and the same variance will be used for all samples. A significance difference will not pool variances and the original variance will be used for model-testing. If argument TRUE or FALSE are used, Bartlett's test will be ignored and the analyses will use the user-set pooling of variances.
time.split \quadThe age of the change in mode (numeric). The age is measured in positive units as the time before the most recent sample, and multiple ages can be supplied in a vector. If no age is supplied for models then all possible time shifts are fit in the model, and the highest likelihood model is returned. Note this only applies to heterogenous models (See Details).	
fixed.optimaA logical value, whether to use an estimated optimum value in OU models (FALSE - default), or whether to set the OU optimum to the ancestral value (TRUE).	
control.listA list of fine-tune control inputs for the optim function.	
verboselogical, whether to display the model results while they are computed (TRUE - default).	

Details

DISCLAIMER: this function is working properly (i.e. it does what it is supposed to do), however, the interpretation of the results has not yet been thought through, discussed and peer-reviewed (what does a Brownian motion like disparity curve means biologically?).
The models are fit using maximum likelihood optimisation using the function optim. Fine-tuning of the search algorithms can be applied using the control. list argument. Models can be fit using a homogenous model with the same process applied to the entire sequence or models with time splits that represent a change in parameters or a shift in mode. When a heterogeneous and/or a time-shift model is specified with a specified time.split then the shift is tested at that value only. If no time shift is supplied then multiple shift times are tested, with all bins that allow for at least 10 bins either side of the split. If the entire sample is fewer than 30 samples long then no time splits are searched for (unless a time split is supplied by the user). Parameters are shared across different modes. For example, c("BM", "OU") would fit a model in which the process starts with a BM model and shifts to an OU process. The ancestral value at the start of the sequence and sigma squared value are shared across the models. Any combination of the following homogenous models (with the exception of "multi.OU") can be fit to the data:

- BM Fits a unbiased random walk model of Brownian motion evolution (Felsenstein 1973; 1985; Hunt 2006). The model optimises the ancestral state and the 'step-variance' (sigmasquared)
- OU The Ornstein-Uhlenbeck model of evolution in which the change in variance is constrained to an optimum value (Hansen 1997). In this model there are three parameters: optima, alpha, and ancestral state. The strength of attraction based on the parameter alpha and the ancestral state is estimated from the data. The optima value is estimated from the data, and this can lead to optima being found outside the known data values, and thus the model can resemble a trend. If the argument fixed.optima = TRUE, the model will not estimate optima but constrain it to the first (ancestral) value in the sequence as is done in phylogenetic OU models
- Trend Fits a Brownian motion model with a directional component. This model is also known as the General Random Walk (Hunt 2006). This model has three parameters: the ancestral state, the 'step-variance' (sigma-squared), and the positive or negative trend.
- Stasis Fits a model in which traits evolve with variance (omega) around a mean (theta). This model is time-independent in that the model is guided only by the variance and attraction to the mean (Hunt 2006)
- EB Early-Burst. Trait variance accumulates early in the evolution of a trait and decreases exponentially through time (Blomberg et al. 2003; Harmon et al. 2010). This model has three parameters: ancestral state, sigma-squared, and the exponential rate of decrease. Note this model expects the mean to remain unchanged through the model, so does not explicitly model a rapid change to a new mean or optimum value.
- multi.OU Fits a model in which the value of the optima shifts at one or more time splits. The values of the 'step-variance' (sigma squared) and attraction to the optima (alpha) are shared across all the samples. This model can not be fit with other models - the multi.OU system can be fit to the model only

Value

A list of class dispRity and model. test that can be plotted and summarised via summary. dispRity and plot.dispRity. The list is composed of:

- \$aic.models summary for each model's small sample Akaike Information Criterion (AICc), delta AICc, and AICc weight
- \$full.models the list of the full models outputs from optim with the estimated parameters, log-likelihood, convergence statistics, and the split.time if applicable
- \$call the model input
- \$models.data input data used by the model(s)
- \$fixed.optima Logical indicating whether a fixed optima was assumed for OU model(s)

Author(s)

Mark N Puttick and Thomas Guillerme

References

Blomberg SP, Garland T Jr, \& Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 57, 717-745.

Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution. 51, 1341-1351.

Harmon LJ, et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. 64, 2385-2396.

Hunt G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology. 32, 578-601. DOI: 10.1666/05070.1.
Hunt G, Hopkins MJ \& Lidgard S. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences. 112, 4885-4890. DOI: 10.1073/pnas. 1403662111

Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics. 25, 471-492.
Felsenstein J. 1985. Phylogenies and the comparative method. The American Naturalist. 51, 1-15.
Murrell DJ. 2018. A global envelope test to detect non-random bursts of trait evolution. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X. 13006

See Also

model.test.wrapper, model.test.sim, summary.dispRity and plot.dispRity

Examples

```
## Not run:
## Mammal disparity through time
data(BeckLee_disparity)
## The four models to fit
models <- list("BM", "OU", "multi.OU", c("BM", "OU"))
## Fitting the four models to the disparity data
tests <- model.test(BeckLee_disparity, models, time.split = 66)
## Summarising the models
summary(tests)
## Plotting only the models support
plot(tests)
## End(Not run)
```


Description

Simulate models of disparity change through time

```
Usage
    model.test.sim(
        sim = 1,
        model,
        model.rank = 1 ,
        alternative = "two-sided",
        time.split = NULL,
        time.span = 100,
        variance \(=1\),
        sample.size = 100,
        parameters = list(),
        fixed.optima \(=\) FALSE
    )
```


Arguments

sim	The number of separate simulations to run. Either (i) the named model of evolution to simulate for changes in disparity- through-time using a homogenous or hetergenous model (see list in model. test) or (ii) an object of class dispRity returned from model. test function. If a dispRity object is supplied, all remaining arguments apart from sim and model.rank and alternative are ignored as the model specified by the input model is used.
If a dispRity object is supplied, which model is used for simulation. The rank	
refers to the order of models as specified by AICc, so if model.rank = 1 (de-	
fault) the best-fitting model is used for simulation.	

Details

DISCLAIMER: this function is working properly (i.e. it does what it is supposed to do), however, the interpretation of the results has not yet been thought through, discussed and peer-reviewed (what does a Brownian motion like disparity curve means biologically?).
The parameters is a list of arguments to be passed to the models. These arguments can be:

- ancestral.state, ancestral value of the disparity applicable to all models (default $=0.01$).
- sigma. squared, rate of step variance to all models except Stasis $($ default $=1)$.
- alpha, strength of attraction to the optimum in OU models (default $=1$).
- optima.1, the value of the optimum in a OU model, or the first bin optimum in a multi-OU model $($ default $=0.15)$.
- optima. 2, the second bin optimum in a multi-OU model (default $=0.15$).
- optima. 3 , the third bin optimum in a multi-OU model (default $=0.15$).
- theta. 1 , the mean in a Stasis model, or the first bin mean in a multi-Stasis model (default $=$ 1).
- theta. 2 , the second bin optimum in a multi-OU model (default $=1$).
- theta. 3 , the third bin optimum in a multi-OU model (default $=1$).
- omega, the variance in a Stasis model $($ default $=1)$.
- trend, the trend parameter in the Trend model (default $=0.5)$.
- eb. rate, the rate of exponential rate decrease in the EB model $($ default $=-0.1)$.

Value

A list of class dispRity and model.sim. Each list element contains the simulated central tendency, as well as the variance, sample size, and subsets used to simulate the data.

Author(s)

Mark N Puttick and Thomas Guillerme

References

Blomberg SP, Garland T Jr, \& Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 57, 717-745.
Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution. 51, 1341-1351.
Harmon LJ, et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. 64, 2385-2396.
Hunt G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology. 32, 578-601. DOI: 10.1666/05070.1.
Hunt G, Hopkins MJ \& Lidgard S. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences. 112, 4885-4890. DOI: 10.1073/pnas. 1403662111

Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics. 25, 471-492.
Felsenstein J. 1985. Phylogenies and the comparative method. The American Naturalist. 51, 1-15.
Murrell DJ. 2018. A global envelope test to detect non-random bursts of trait evolution. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X. 13006

Citation for the envelope code:

See Also

model.test, model.test.wrapper, summary.dispRity and plot.dispRity

Examples

```
## Disparity through time data
data(BeckLee_disparity)
## List of models to test
models <- list("Trend", "BM")
## Testing the models on the observed disparity
model_test_output <- model.test(BeckLee_disparity, models, time.split = 66)
## simulations using the output from model.test
model_test_sim_output <- model.test.sim(sim = 1000, model= model_test_output)
## Plot the simulated best model
plot(model_test_sim_output)
## Add the observed data
plot(BeckLee_disparity, add = TRUE, col = c("pink", "#ff000050", "#ff000050"))
## Simulating a specific model with specific parameters parameters
model_simulation <- model.test.sim(sim = 1000, model = "BM", time.span = 120, variance = 0.1,
sample.size = 100, parameters = list(ancestral.state = 0,
                    sigma.squared = 0.1))
```

\#\# Summarising the results
plot(model_simulation, main = "A simple Brownian motion")

```
model.test.wrapper
Model test wrapper
```


Description

A wrapper function for model. test to perform a model fitting analysis on disparity through time data.

Usage

```
model.test.wrapper(
        data,
        model,
        pool.variance \(=\) NULL,
        time.split = NULL,
        fixed.optima = FALSE,
        control.list \(=\) list(fnscale \(=-1\) ),
        verbose = TRUE,
        sim \(=1000\),
        plot.sim = TRUE,
        col.sim,
        col.obs = "hotpink",
        lwd.obs = 2,
        show.p = FALSE,
        cex.p,
        legend \(=\) FALSE,
)
```


Arguments

data	A dispRity object used to test models of evolution through time. model The model(s) of evolution to allow for changes in disparity-through-time using a homogenous or hetergenous model, either using a single input or a list contain- ing different models (see list in model. test). If a vector with multiple modes is supplied then the model will test for shifts in modes at the time supplied by time.split.
pool.variance	If NULL (default) the difference in variances will be calculated using bartlett. test of equal variances. If there is no significant difference among variances, then variance in samples will be pooled and the same variance will be used for all samples. A significance difference will not pool variances and the original variance will be used for model-testing. If argument TRUE or FALSE are used, Bartlett's test will be ignored and the analyses will use the user-set pooling of variances.
time.split \quadThe age of the change in mode (numeric). The age is measured in positive units as the time before the most recent sample, and multiple ages can be supplied in a vector. If no age is supplied for models then all possible time shifts are fit in the model, and the highest likelihood model is returned. Note this only applies to heterogenous models (See Details).	
fixed.optimaA logical value, whether to use an estimated optimum value in OU models (FALSE - default), or whether to set the OU optimum to the ancestral value	
(TRUE).	

plot.sim	Logical. If TRUE (default) the plots of the simulated and observed disparity are returned for all models. col.sim Colour options used for the plotting of simulated values. See plot. dispRity for more details. If missing, the default colours c ("black", "lightgrey", "grey") are used.
col.obs	Colour of the observed data on the plot. Default colour is "hotpink"
lwd.obs	Line width of the observed value.
show.p	Logical, when plot.sim = TRUE, whether to display the p-value of rank enve- lope tests (TRUE) or not (FALSE - default).
cex.p	A numerical value for the the font size of the displayed p-value (if show.p = TRUE). If missing, the value is set to 1.
legend	Logical, when plot.sim = TRUE, whether to display the legend in the first panel (TRUE) or not (FALSE - default).
\ldots	Any additional arguments to be passed to plot. dispRity or summary.dispRity.

Details

This function gives the relative fit of model.test output using log-likelihood and AICc values, as well as the Rank Envelope Test significance to elucidate if empirical data is significantly different to simulated data modelled using the estimated model parameters from model.test.sim. This is equivalent to running test <-model.test. $\operatorname{sim}(\operatorname{sim}=1000$, model $=$ model.test(data, model)); summary (test) ; plot(test) ; plot (data, add = TRUE).
DISCLAIMER: this function is working properly (i.e. it does what it is supposed to do), however, the interpretation of the results has not yet been thought through, discussed and peer-reviewed (what does a Brownian motion like disparity curve means biologically?).

Value

A matrix with the relative fit, parameter values, and Rank Envelope test p values for each model, and a plot of simulated data from each model alongside observed data for each model if plot.sim is TRUE

Author(s)

Mark N Puttick and Thomas Guillerme

References

Blomberg SP, Garland T Jr, \& Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 57, 717-745.

Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution. 51, 1341-1351.
Harmon LJ, et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. 64, 2385-2396.
Hunt G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology. 32, 578-601. DOI: 10.1666/05070.1.

Hunt G, Hopkins MJ \& Lidgard S. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences. 112, 4885-4890. DOI: 10.1073/pnas. 1403662111
Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics. 25, 471-492.

Felsenstein J. 1985. Phylogenies and the comparative method. The American Naturalist. 51, 1-15.
Murrell DJ. 2018. A global envelope test to detect non-random bursts of trait evolution. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X. 13006

See Also

```
model.test, model.test.sim, summary.dispRity and plot.dispRity
```


Examples

```
## Not run:
## Mammal disparity through time
data(BeckLee_disparity)
## The models to be fit to disparity data
models <- list("BM", "OU", "multi.OU", "Trend")
## test all models, and assess the significance of simulated data
## against the empirical distribution for each
model.test.wrapper(data = BeckLee_disparity, model = models, fixed.optima = TRUE,
    time.split = 66, show.p = TRUE)
## End(Not run)
```

multi.ace Ancestral states estimations with multiple trees

Description

Fast ancestral states estimations run on multiple trees using the Mk model from castor::asr_mk_model.

Usage

multi.ace(
data,
tree,
models = "ER",
threshold = TRUE,
special.tokens, special.behaviours, brlen.multiplier,

```
    verbose = FALSE,
    parallel = FALSE,
    output,
    castor.options,
    estimation.details = NULL
)
```


Arguments

data A matrix or list with the characters for each taxa.
tree A phylo or mutiPhylo object (if the tree argument contains node labels, they will be used to name the output).
models A vector of models to be passed to asr_mk_model.
threshold either logical for applying a relative threshold (TRUE - default) or no threshold (FALSE) or a numeric value of the threshold (e.g. 0.95). See details.
special.tokens optional, a named vector of special tokens to be passed to grep (make sure to protect the character with " $\backslash \backslash$ "). By default special.tokens $<-c(m i s s i n g=$ "
?", inapplicable = "
-", polymorphism = "
\&", uncertainty = "
/"). Note that NA values are not compared and that the symbol "@" is reserved and cannot be used.
special.behaviours
optional, a list of one or more functions for a special behaviour for special. tokens. See details.
brlen.multiplier
optional, a vector of branch length modifiers (e.g. to convert time branch length in changes branch length) or a list of vectors (the same length as tree).
verbose logical, whether to be verbose (TRUE) or not (FALSE - default).
parallel logical, whether to use parallel algorithm (TRUE) or not (FALSE - default).
output optional, see Return section below.
castor. options optional, a named list of options to be passed to function called by asr_mk_model. estimation.details
optional, whether to also return the details for each estimation as returned by asr_mk_model. This argument can be left NULL (default) or be any combination of the elements returned by asr_mk_model (e.g. c("loglikelihood", "transition_matrix")).

Details

The models argument can be a single or a list of transition matrix, a single or a vector of built-in model(s) (see below) or a list of both matrices and built-in models: The available built-in models in asr_mk_model are:

- "ER" for all equal rates
- "SYM" for symmetric rates
- "ARD" all rates are different
- "SUEDE" equal stepwise transitions (e.g. for meristic/counting characters)
- "SRD" different stepwise transitions

See directly asr_mk_model for more models.
The threshold option allows to convert ancestral states likelihoods into discrete states. When threshold = FALSE, the ancestral state estimated is the one with the highest likelihood (or at random if likelihoods are equal). When threshold = TRUE, the ancestral state estimated are all the ones that are have a scaled likelihood greater than the maximum observed scaled likelihood minus the inverse number of possible states (i.e. select_state >=(max(likelihood) $-1 / n _$states $)$). This option makes the threshold selection depend on the number of states (i.e. if there are more possible states, a lower scaled likelihood for the best state is expected). Finally using a numerical value for the threshold option (e.g. threshold $=0.95$) will simply select only the ancestral states estimates with a scaled likelihood equal or greater than the designated value. This option makes the threshold selection absolute. Regardless, if more than one value is select, the uncertainty token (special.tokens["uncertainty"]) will be used to separate the states. If no value is selected, the uncertainty token will be use between all observed characters (special.tokens["uncertainty"]).
special.behaviours allows to generate a special rule for the special.tokens. The functions should can take the arguments character, all_states with character being the character that contains the special token and all_states for the character (which is automatically detected by the function). By default, missing data returns and inapplicable returns all states, and polymorphisms and uncertainties return all present states.

- missing $=$ function $(x, y) y$
- inapplicable $=$ function $(x, y) y$
- polymorphism = function (x, y) strsplit $(x, s p l i t=" \backslash \backslash \& ")$ [[1]]
- uncertainty $=$ function (x, y) strsplit $(x$, split $=$ "
/" $)[[1]]$

Functions in the list must be named following the special token of concern (e.g. missing), have only x, y as inputs and a single output a single value (that gets coerced to integer automatically). For example, the special behaviour for the special token "?" can be coded as: special. behaviours $=$ list(missing $=$ function (x, y) return(NA) to make ignore the character for taxa containing "?".

When using the parallel option (either through using parallel = TRUE by using the number of available cores minus on or manually setting the number of cores - e.g. parallel $=5$), the asr_mk_model function will use the designated number of cores (using the option Nthreads = <requested_number_of_cores>). Additionally, if the input tree is a "multiPhylo" object, the trees will be run in parallel for each number of cores, thus decreasing computation time accordingly (e.g. if 3 cores are requested and tree contains 12 "phylo" objects, 4 different "phylo" objects will be run in parallel on the 3 cores making the calculation around 3 times faster).

Value

Returns a "matrix" or "list" of ancestral states. By default, the function returns the ancestral states in the same format as the input matrix. This can be changed using the option output $=$ "matrix" or "list" to force the class of the output. To output the combined ancestral states and input, you can use "combined" (using the input format) or "combined.matrix" or "combined.list".

Author(s)

Thomas Guillerme

See Also

```
asr_mk_model, char.diff
```


Examples

```
set.seed(42)
## A simple example:
## A random tree with 10 tips
tree <- rcoal(10)
## Setting up the parameters
my_rates = c(rgamma, rate = 10, shape = 5)
## A random Mk matrix (10*50)
matrix_simple <- sim.morpho(tree, characters = 50, model = "ER", rates = my_rates,
                                    invariant = FALSE)
## Run a basic ancestral states estimations
ancestral_states <- multi.ace(matrix_simple, tree)
ancestral_states[1:5, 1:5]
## A more complex example
## Create a multiple list of 5 trees
multiple_trees <- rmtree(5, 10)
## Modify the matrix to contain missing and special data
matrix_complex <- matrix_simple
matrix_complex[sample(1:length(matrix_complex), 50)] <- "-"
matrix_complex[sample(1:length(matrix_complex), 50)] <- "0%2"
matrix_complex[sample(1:length(matrix_complex), 50)] <- "?"
matrix_complex[1:5,1:5]
## Set a list of extra special tokens
my_spec_tokens <- c("weirdtoken" = "%")
## Set some special behaviours for the "weirdtoken" and for "-" and "?"
my_spec_behaviours <- list()
## Inapplicable tokens "-" are ignored
my_spec_behaviours$inapplicable <- function(x,y) return(NA)
## Missing tokens "?" are considered as all states
my_spec_behaviours$missing <- function(x,y) return(y)
## Weird tokens are considered as state 0 and 3
my_spec_behaviours$weirdtoken <- function(x,y) return(c(1, 2))
## Create a random branch length modifier to apply to each tree
branch_lengths <- rnorm(18)^2
## Setting a list of model ("ER" for the 25 first characters and then "SYM")
my_models <- c(rep("ER", 25), rep("SYM", 25))
## Run the ancestral states on all the tree with multiple options
ancestral_states <- multi.ace(matrix_complex, multiple_trees,
    verbose = TRUE,
```

```
    models = my_models,
    threshold = 0.95,
    special.tokens = my_spec_tokens,
    special.behaviours = my_spec_behaviours,
    brlen.multiplier = branch_lengths,
    output = "combined.matrix")
    ## The results for the the two first characters for the first tree
    ancestral_states[[1]][, 1:2]
    ## Not run:
    ## The same example but running in parallel
    ancestral_states <- multi.ace(matrix_complex, multiple_trees,
    verbose = TRUE,
    models = my_models,
    threshold = 0.95,
    special.tokens = my_spec_tokens,
    special.behaviours = my_spec_behaviours,
    brlen.multiplier = branch_lengths,
    output = "combined.matrix",
    parallel = TRUE)
    ## End(Not run)
```

 n. subsets Number of subsets.

Description

Getting the number of subsets from a dispRity object.

Usage

n. subsets(data)

Arguments

data A dispRity object.

Author(s)

Thomas Guillerme

See Also

custom. subsets, chrono. subsets, boot.matrix, dispRity.

Examples

```
## Loading a dispRity object
data(disparity)
## What are the number of elements per subsets?
n.subsets(disparity)
```

 null.test Testing a null hypothesis on multidimensional data.

Description

Testing the difference between the observed disparity and disparity under a null model.

Usage

null.test(data, replicates $=100$, null.distrib, null.args $=$ NULL, null.cor = NULL, null.scree $=$ NULL, alter = "two-sided", scale = FALSE,
)

Arguments

data replicates null.distrib	a dispRity object. the number of replicates for the test (default = 100). one or more distribution functions to generate the null model to be passed to space.maker.
null.args	any additional distribution arguments to be passed to space.maker (see arguments within; default = NULL).
null.cor	an additional correlation matrix to be passed to space. maker (see cor.matrix within; default = NULL).
null.scree	an additional vector of variance per axis (equivalent to screeplot output); default = NULL).
alter	the type of alternative hypothesis (H1) as used in randtest (default = "two-sided"). scale
whether to scale the simulated and the observed data.	

Author(s)

Thomas Guillerme

References

Diaz, S., Kattge, J., Cornelissen, J.H., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I.C. and Garnier, E., 2016. The global spectrum of plant form and function. Nature, 529(7585), pp.167-171.

See Also

space.maker, test.dispRity

Examples

```
## Load the Beck & Lee 2014 data
data(BeckLee_mat50)
## Calculating the disparity as the ellipsoid volume
obs_disparity <- dispRity(BeckLee_mat50, metric = ellipse.volume)
## Testing against normal distribution
results <- null.test(obs_disparity, replicates = 100, null.distrib = rnorm)
results ; plot(results)
## Running the test on multiple subsets (may take some time!)
## Generating the subsets
groups <- as.data.frame(matrix(data = c(rep(1, 12), rep(2, 13), rep(3, 12),
    rep(4, 13)), dimnames = list(rownames(BeckLee_mat50))), ncol = 1)
customised_subsets <- custom.subsets(BeckLee_mat50, groups)
## Bootstrapping the data
bootstrapped_data <- boot.matrix(customised_subsets, bootstraps = 100)
## Calculating variances of each dimension
sum_variances <- dispRity(bootstrapped_data, metric = c(sum, variances))
## Testing against normal distribution
results <- null.test(sum_variances, replicates = 100, null.distrib = rnorm)
summary(results) ; plot(results)
```

pair.plot
Plots pairwise comparisons

Description

Plots pairwise comparisons from a data frame (typically output from test. dispRity).

Usage

```
    pair.plot(
        data,
        what,
        col = c("black", "white"),
        legend = FALSE,
        binary,
        diag,
        add,
        lower = TRUE,
    )
```


Arguments

data A matrix or a data. frame object with comparisons' pair names as row names. The number of rows must be equal to a pairwise combination of n elements (see details).
what A numeric or character value designating which column to plot.
col The two extremes of a color gradient (default = c ("black", "white")).
legend Logical, whether to plot the legend or not.
binary Optional, if the results must be binary, a numeric value for the threshold of acceptance (values greater will be 1 , lower will be 0).
diag Optional, can be "max" or "min" or a single numeric value.
add Optional, whether to add significance tokens can be numeric for a point type to print (pch) or "character" to print (e.g. "*").
lower Optional, logical, whether to add tokens for values lower than binary (default is TRUE; FALSE will add tokens for values bigger than binary).
.. Any other options to be passed to plot.

Details

The number of rows (i.e. comparisons) in matrix must be equal to the results of a pairwise combination. In general, the number of rows x must satisfy the equation: $x=n^{2} / 2-n / 2$ where n must be an integer greater or equal than 2.

Author(s)

Thomas Guillerme

See Also

```
test.dispRity.
```


Examples

```
## A small matrix of two pairwise comparisons of seven elements (2*21 comparisons)
data <- matrix(data = runif(42), ncol = 2)
## Plotting the first column as a pairwise comparisons
pair.plot(data, what = 1, col = c("orange", "blue"), legend = TRUE, diag = 1)
## Adding some tokens for each value below 0.2 in the second column
pair.plot(data, what = 2, binary = 0.2, add = "*", cex = 2)
## Loading disparity data
data(disparity)
## Testing the pairwise difference between slices
tests <- test.dispRity(disparity, test = wilcox.test, correction = "bonferroni")
## Plotting the significance
pair.plot(as.data.frame(tests), what = "p.value", binary = 0.05)
```

plot.char.diff Plots character differences

Description

Plots a character difference matrix from a discrete character matrix or its character differences density profile.

Usage

```
## S3 method for class 'char.diff'
plot(
    x,
    ...,
    type = "matrix",
    legend = TRUE,
    legend.title = "Difference",
    legend.pos = "topleft",
    legend.round = 0,
    axis = TRUE,
    xlim,
    ylim,
    xlab,
    ylab,
    col,
    main
)
```


Arguments

x
A discrete matrix or an already computed character difference matrix of class char.diff.

	Any additional graphical arguments to be passed to image.
type	Either "matrix" (or "m") or "density" (or "d") for respectively plotting the matrix of character differences or its character differences density profile.
legend	A logical value stating whether to print the legend or not (default = TRUE) .
legend.title	A character string to be displayed as the title of the legend (default = Difference)
legend.pos	The position of the legend. Can be two numeric. Default is "topleft".
legend.round	A numeric value for digits up legend values. Default is 0 .
axis	A logical value stating whether to print the axis or not (default = TRUE).
$x \mathrm{lim}$	Two numeric values to determine the x axis limits. If missing (default), the limits are calculated automatically to fit the plot window.
ylim	Two numeric values to determine the y axis limits. If missing (default), the limits are calculated automatically to fit the plot window.
xlab	A character string for the the x axis. Can be missing.
ylab	A character string for the the y axis. Can be missing.
col	Two colors for forming the gradient if type = "correlation" or for the density lines colors if type = "density".
main	An overall title for the plot.

Author(s)

Thomas Guillerme

See Also

char.diff

Examples

```
## Comparing two characters
char.diff(list(c(0, 1, 0, 1), c(0, 1, 1, 1)))
## Pairwise comparisons in a morphological matrix
morpho_matrix <- matrix(sample(c(0,1), 100, replace = TRUE), 10)
## Plotting a matrix
plot.char.diff(morpho_matrix)
## Plotting the density profile of a char.diff object
char.diff_matrix <- char.diff(morpho_matrix)
plot(char.diff_matrix, type = "density")
```

```
plot.dispRity dispRity object plotting
```


Description

Plots a dispRity object.

Usage

```
## S3 method for class 'dispRity'
plot(
    x,
    ..,
    type,
    quantiles = c(50, 95),
    cent.tend = median,
    rarefaction = NULL,
    elements = FALSE,
    observed = FALSE,
    add = FALSE,
    density = NULL,
    specific.args
)
```


Arguments

x	A dispRity object.
	Any optional arguments to be passed to plot.
type	Either "continuous", "box", "line", "polygon" or "space". When unspecified, if no disparity was calculated, "preview" is used. If disparity was calculated, "continuous" is used for chrono. subsets and "box" for custom. subsets. See details.
quantiles	The quantiles to display (default is quantiles $=c(50,95)$; is ignored if the dispRity object is not bootstrapped).
cent.tend	A function for summarising the bootstrapped disparity values (default is median).
rarefaction	Either NULL (default) or FALSE for not using the rarefaction scores; a numeric value of the level of rarefaction to plot; or TRUE for plotting the rarefaction curves.
elements	logical whether to plot the number of elements per subsets (default is FALSE) or a list of any of the graphical arguments "col", "pch" and/or "cex".
observed	logical whether to add the observed values on the plot as crosses (default is FALSE) or a list of any of the graphical arguments "col", "pch" and/or "cex".
add	logical whether to add the new plot an existing one (default is FALSE).
density	the density of shading lines to be passed to polygon. Is ignored if type = "box" or type = "line".

specific.args optional, a named list of arguments to be passed for some specific plot types. See details.

Details

The different type arguments are:

- "continuous": plots the results as a continuous line.
- "box": plots the results as discrete box plots (note that this option ignores the user set quantiles and central tendency).
- "line": plots the results as discrete vertical lines with the user's set quantiles and central tendency.
- "polygon": identical as "line" but using polygons rather than vertical lines.
- "preview": plots two dimensional preview of the space (default is $c(1,2)$). WARNING: the plotted dimensions might not be representative of the full multi-dimensional space!

The different specific.args arguments for the following options are:

- if type = "preview", the specific arguments can be:
- dimensions: two specific dimensions to plot (default is specific.args = list(dimensions $=c(1,2)$);
- matrix: which specific matrix to plot the data from (by default, all the matrices are used).
- tree: whether to plot the underlying tree(s) or not. Can be either logical, whether to plot no tree (default is specific.args = list(tree = FALSE)), all trees (specific.args $=$ list (tree $=$ TRUE)) or a specific set of trees (e.g. specific.args = list (tree = c (1,2)))
- for plots with legends (if type = "preview"; if data is "randtest" or "test.metric") you can pass any non ambiguous arguments for legend such as specific.args = list(legend $=$ list $(x=1, y=2, b g=$ "blue" $)$). When the plot generates two legends (e.g. when the data is "test.metric"), these arguments can be a list (e.g. specific.args = list(legend= list(list($x=$ "bottomright"), list($x=$ "topright"))). HINT: to remove the legends all together you can use specific.args = list(legend = FALSE).
- if data is a "test.metric" result that was obtained with the option save.steps = TRUE (see test.metric), it is possible to specify which steps to by specifying the following specific argument: specific.args = list(visualise.steps $=c(1,4,5)$) for visualising steps 1,4 and 5 of the different shifts. By default, if the "test.metric" was obtained with the option save. steps $=$ TRUE, four steps are displayed.

Author(s)

Thomas Guillerme

See Also

dispRity, summary.dispRity, null.test, dtt.dispRity, model.test, model.test.sim, test.metric

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## Discrete plotting
plot(disparity, type = "box")
## Using polygons rather than boxes (quantiles and central tendency can be
## set by the user)
plot(disparity, type = "polygon", quantiles = c(10, 50, 95),
    cent.tend = mean)
## Using different options
plot(disparity, type = "line", elements = TRUE, ylim = c(0, 3),
        xlab = ("Time (Ma)"), ylab = "disparity")
## Continuous plotting (all default options)
plot(disparity, type = "continuous")
## Rarefactions plots
plot(disparity, rarefaction = TRUE)
## Observed data
plot(disparity, observed = TRUE)
## Observed data with graphical details
plot(disparity, observed = list("pch" = 19, col = "blue", cex = 4))
## For plotting dispRity objects with the dual classes "randtest", "dtt",
## "model.test", "model.sim" and "test.metric" see the examples
## in the specific function manuals from the "See also" section above
```

print.dispRity Prints a dispRity object.

Description

Summarises the content of a dispRity object.

Usage

\#\# S3 method for class 'dispRity'
print(x, all = FALSE, ...)

Arguments

all logical; whether to display the entire object (TRUE) or just summarise its contents (FALSE - default).
further arguments to be passed to print or to print. dispRity.

Author(s)

Thomas Guillerme

See Also

custom. subsets, chrono. subsets, boot.matrix, dispRity.

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## Displaying the summary of the object content
disparity
print(disparity) # the same
print.dispRity(disparity) # the same
## Displaying the full object
print.dispRity(disparity, all = TRUE)
```

```
random.circle Random circle
```


Description

Creates coordinates for a random circle

Usage

random.circle(n, distribution, inner = 0, outer = Inf, ...)

Arguments

$\mathrm{n} \quad$ The number of pairs x, y of coordinates.
distribution The distribution from which the coordinates are sampled.
inner Optional, the radius for an empty inner circle.
outer Optional, the maximum radius for the circle.
... Any additional argument to be passed to distribution.

Author(s)

Thomas Guillerme

See Also

space.maker

Examples

```
## A simple uniform circle
plot(random.circle(1000, runif), pch = 20)
## A normal ring with inner and outer boundaries
plot(random.circle(1000, rnorm, inner = 0.5, outer = 5), pch = 20)
```

```
    randtest.dispRity Random(permutation) test
```


Description

Performs a random test (aka permutation test) on a matrix or a dispRity object.

Usage

```
## S3 method for class 'dispRity'
randtest(
    data,
    subsets,
    metric,
    replicates = 100,
    resample = TRUE,
    alter = "two-sided",
    )
```


Arguments

data

subsets
metric
replicates
resample logical whether to resample the full distribution (TRUE) or the distribution without the subset (FALSE).
alter The alternative hypothesis. Can be "two-sided" (default), "greater" or "lesser". optional arguments to be passed to metric.

Details

This test checks whether the metric calculated on a given subset of the data is significantly different from the metric calculated on any random subset of the same size. In other words: does the given subset have a clearly different disparity value than the rest of the data?
First, the metric (statistic) is applied to the subset sampled from the data (population). Second, the metric is applied to random equally sized subsets from the data. If the observed difference falls out of the random differences distribution, the differences are significant. This algorithm is based on a similar procedure than in link[ade4]\{rantest\}.

If data is a dispRity object, the subsets, metric and replicates can be left missing and are automatically inherited from the dispRity if it contains respectively subsets (from chrono. subsets or custom. subsets) a metric (from dispRity) and bootstrap draws (from boot.matrix).

Value

This function returns a "randtest" object that can be passed to the generic S 3 functions print. randtest or plot. randtest. The output also contains to extra elements output\$observed and output\$random containing the raw results of respectively the observed and random tests.

Author(s)

Thomas Guillerme

See Also

randtest

Examples

```
## Simple example
dummy_matrix <- matrix(rnorm(500), 100, 5)
## Testing whether the mean of a random subset
## is different than the means of 100 subsets
dummy_test <- randtest.dispRity(dummy_matrix,
                subset = sample(1:100, 20),
                metric = mean)
dummy_test ; plot(dummy_test)
## Applying this on dispRity objects
data(disparity)
test_disparity <- test.dispRity(disparity,
                                    test = randtest.dispRity)
## The summarised results
summary(test_disparity)
## Plotting the results
plot(test_disparity)
```

```
randtest.dist
```

Randtest distance

Description

Measures the distance between the observed statistic from a "randtest" object and some specific quantile of the simulated data.

Usage

\#\# S3 method for class 'dist'
randtest(randtest, quantile $=c(0.025,0.975)$, abs $=$ FALSE)

Arguments

randtest an object of class "randtest"
quantile a numeric value for the quantile edges to compare the observed data to on either sides (by default quantile $=c(0.025 .0 .975)$).
abs logical, whether to calculate the distance as an absolute value (TRUE) or not (FALSE - default).

Details

To compare the observed value to the simulated median value, you can use quantile $=0.5$. Also note that when using abs = FALSE (default), a negative value means that the observed statistic is within the request quantiles.

Author(s)

Thomas Guillerme

See Also

randtest randtest.dispRity

Examples

```
## Simple example
dummy_matrix <- matrix(rnorm(500), 100, 5)
## Testing whether the mean of a random subset
## is different than the means of 100 subsets
dummy_test <- randtest.dispRity(dummy_matrix,
        subset = sample(1:100, 20),
        metric = mean)
dummy_test ; plot(dummy_test)
## The distance between the observed data and the 95% quantile
```

randtest.dist(dummy_test)
\#\# The absolute distance from the median
randtest.dist(dummy_test, quantile $=0.5$, abs $=$ TRUE)

```
reduce.matrix Reduce a matrix
```


Description

Reduce the number of rows/columns in a matrix to optimise overlap

Usage

reduce.matrix(matrix, distance = "gower", by.row = TRUE, verbose = FALSE)

Arguments

matrix	A matrix
distance	which distance to consider (passed to vegdist, default = "gower")
by.row	Whether to do it by rows (TRUE - default), or by columns (FALSE)
verbose	Whether to do be verbose (TRUE) or not (FALSE - default)

Author(s)

Thomas Guillerme

Examples

```
set.seed(1)
## A 10*5 matrix
na_matrix <- matrix(rnorm(50), 10, 5)
## Making sure some rows don't overlap
na_matrix[1, 1:2] <- NA
na_matrix[2, 3:5] <- NA
## Adding 50% NAs
na_matrix[sample(1:50, 25)] <- NA
## Illustrating the gappy matrix
image(t(na_matrix), col = "black")
## Reducing the matrix by row
(reduction <- reduce.matrix(na_matrix))
## Illustrating the overlapping matrix
image(t(na_matrix[-as.numeric(reduction$rows.to.remove), ]), col = "black")
## Reducing the matrix by columns (and being verbose)
reduce.matrix(na_matrix, by.row = FALSE, verbose = TRUE)
```


Description

Remove elements from a multidimensional space

Usage

```
reduce.space(
        space,
        type,
        remove,
        parameters,
        tuning,
        verbose = FALSE,
        return.optim = FALSE
    )
```


Arguments

space type	the trait space how to reduce the space (either "random", "size", "density", "evenness" or "position")
remove	the proportion of elements to be removed (in probability) the parameter(s) for removal selection (see details). If left empty, the parameters is estimated to reach the amount set by remove.
tuning	Optinal parameters for tuning the parameter estimations (if remove is required and parameters is missing) a list of three parameters: "max" for the maximum of operations, "tol" for the tuning (e.g. 0.1 close), "inc.steps" for the initial in- crement value during optimisation (default = 2 - the bigger the value, the slower the increment).
verbose	wether to be verbose or not
return.optim	logical, whether to also return the optimal value.

Details

The type of reductions algorithms select the proportion of elements to remove (from the remove parameter). The different algorithms are:

- "random" for randomly selecting a proportion of data points (using sample(... , replace = FALSE)).
- "size" for selecting the proportion of data points closer to the centre.
- "density" for selecting the proportion of data points with the lower nearest neigbhour distances.
- "evenness" for randomly selecting the proportion of data points from the regions with most density.

The parameters for each reduction type algorithms are:

- "size" parameters: a list of parameters\$centre, the centre from which to count the radius (if missing, is set to 0); and parameters $\$$ radius, the radius for removal.
- "density" parameters: a list of parameters\$what "close" (default) for close neighbours or "distant" for distant ones; parameters\$diameter the diameter for considering closeness or distance; parameters\$output either "singles" or "pairs" to return the pairs of neighbours or one of them only (the first).
- "position" parameters: a list of parameters\$value, value the threshold value from which to remove elements.
- "evenness" parameters: a list of parameters\$bw, a bandwith selector function (bw.nrd0 by default); and parameters\$power a scaling factor for exaggerating the flatting/narrowing of the curve (the counts are set to this parameter exponent: default is 1).

See Guillerme et al. 2020 and https://github.com/TGuillerme/moms for details.

Value

A vector of logical values of the rows to remove selected by the function. TRUE corresponds to the following (and FALSE to the opposite):

- "random": the randomly selected points.
- "size": the points closer to the centre of the space.
- "density": the points closer to each other.
- "position": the points on the "positive" side of the space (typically upper right corner in 2D).
- "evenness": the randomly select points from the higher density regions.

Author(s)

Thomas Guillerme

References

Guillerme T, Puttick MN, Marcy AE, Weisbecker V. 2020 Shifting spaces: Which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces?. Ecol Evol. 2020;00:1-16. (doi:10.1002/ece3.6452)

See Also

```
test.metric dispRity
```


Examples

```
set.seed(1)
## Creating a two dimensional space
space <- space.maker(100, 2, distribution = stats::rnorm)
## Generating the four types of reductions
random <- reduce.space(space, "random", remove = 0.5)
size <- reduce.space(space, "size", remove = 0.5)
density <- reduce.space(space, "density", remove = 0.5)
position <- reduce.space(space, "position", remove = 0.5)
evenness <- reduce.space(space, "evenness", remove = 0.5)
## Plotting the four different results
par(mfrow = c(3,2))
plot(space, pch = 19, col = c("grey", "black")[as.factor(random)],
    main = "Random removal")
plot(space, pch = 19, col = c("grey", "black")[as.factor(size)],
    main = "Size removal")
plot(space, pch = 19, col = c("grey", "black")[as.factor(density)],
    main = "Density removal")
plot(space, pch = 19, col = c("grey", "black")[as.factor(position)],
    main = "Position removal")
plot(space, pch = 19, col = c("grey", "black")[as.factor(evenness)],
    main = "Evenness removal")
## The space reduction with specific parameters:
# Using the point with coordinates (2,2) as the centre
# Running over a maximum of 300 iterations
# With a tolerance of 0.05 (5%)
reduce.space(space, "size", remove = 0.2,
    parameters = list("centre" = c(2,2)),
    tuning = list("max" = 300, "tol" = 0.05))
## Remove a specific amount to match a specific parameter
reduce.space(space, type = "size", parameters = list("radius" = 1.206866))
```


Description

Remove zero branch lengths on trees by sliding nodes randomly in a postorder traversal based on slide.nodes.

Usage

remove.zero.brlen(tree, slide, verbose = FALSE)

Arguments

tree	A "phylo" object with edge lengths
slide	An optional sliding numeric values. If left empty, 1% of the shortest branch length is used.
verbose	A logical value indicating whether to be verbose or not.

Details

The sliding value will be used to slide the nodes up and down to remove zero branch lengths by minimising the amount of branch changes. The algorithm slides the nodes up and down (when possible) on each node in a recursive way while there is still zero branch lengths. If two recursions produce the same series of zero branches (e.g. by sliding node A towards node B equally so that the distance $A: B$ becomes 0), the sliding value is divided by two until the next slide.

Value

A "phylo" object with a postorder edge table and no zero branch lengths.

Author(s)

Thomas Guillerme

See Also

slide.nodes

Examples

```
set.seed(42)
## Generating a tree
tree <- rtree(20)
## Adding some zero branch lengths (5)
tree$edge.length[sample(1:Nedge(tree), 5)] <- 0
any(tree$edge.length == 0) # TRUE
## And now removing these zero branch lengths!
tree_no_zero <- remove.zero.brlen(tree)
any(tree_no_zero$edge.length == 0) # FALSE
## Exaggerating the removal (to make it visible)
tree_exaggerated <- remove.zero.brlen(tree, slide = 1)
## Plot the differences
par(mfrow = c(3,1))
plot(tree, main = "zero branch length")
plot(tree_no_zero, main = "no zero branch length")
plot(tree_exaggerated, main = "exaggerated slidding")
```

```
rescale.dispRity Rescaling and centering disparity results.
```


Description

Scales or/and centers the disparity measurements.

Usage

```
## S3 method for class 'dispRity'
rescale(data, center = FALSE, scale = TRUE, use.all = TRUE, ...)
```


Arguments

data	a dispRity object.
center	either a logical value or a numeric vector of length equal to the number of elements of data (default is FALSE).
scale	either a logical value or a numeric vector of length equal to the number of elements of data (default is TRUE).
use.all	logical, whether to scale/center using the full distribution (i.e. all the dispar- ity values) or only the distribution within each subsets of bootstraps (default is TRUE).
\ldots	optional arguments to be passed to scale.

Author(s)

Thomas Guillerme

See Also

dispRity, test.dispRity, scale.

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## Scaling the data
summary(rescale.dispRity(disparity, scale = TRUE)) # Dividing by the maximum
## Multiplying by 10 (dividing by 0.1)
summary(rescale.dispRity(disparity, scale = 0.1))
```


Description

Selects the axes required to explain a cumulative threshold amount of variance in an ordination (e.g. $>95 \%$).

Usage

select.axes(data, group, threshold = 0.95, inc.threshold = TRUE)

Arguments

data The trait space to analyse. This can be either a "matrix", "prcomp", "princomp" or a "dispRity" object.
group Optional, either a list of row numbers or names to be used as different groups or a data. frame with the same k elements as in data as rownames. If data is a "dispRity" object that already contains groups, the group argument is recycled.
threshold The arbitrary threshold amount of variance (by default this is 0.95).
inc. threshold Logical, whether to output the axes that contain the threshold value (TRUE; default) or not (FALSE). See details.
, i.e. the axes necessary to include at least the threshold value

Details

If inc. threshold $=$ TRUE, the returned axes are the ones that contains at least the threshold value (e.g. if the threshold is 0.95 , all the returned axes contain at least 0.95 of the variance, potentially more). If inc. threshold $=$ FALSE, the returned axes are the ones before reaching this threshold (e.g. the cumulative variance returned is strictly less or equal to 0.95).

Value

A "dispRity", "axes" object that can be printed, summarised and plot through generic print, summary and plot functions. The object is a list containing:

- \$dimensions: the maximum number of dimensions selected across all groups;
- \$dim. list: the selected dimensions per group;
- \$var: the variance per axes per group;
- \$scaled.var: the variance scaled variance per axes per group;
- \$cumsum. var: the cumulative scaled variance per axes per group;
- \$call: a list containing the \$threshold value and the \$inc. threshold option used.

Author(s)

Thomas Guillerme

See Also

custom. subsets

Examples

```
## Ordinating the USArrests dataset
ordination <- princomp(USArrests, cor = TRUE)
## Which dimensions to select?
(selected <- select.axes(ordination))
## The selected dimensions
selected$dimensions
## Visualising the results
plot(selected)
## Same but by grouping the data into three groups
states_groups <- list("Group1" = c("Mississippi","North Carolina",
                                    "South Carolina", "Georgia", "Alabama",
                            "Alaska", "Tennessee", "Louisiana"),
    "Group2" = c("Florida", "New Mexico", "Michigan",
                            "Indiana", "Virginia", "Wyoming", "Montana",
                            "Maine", "Idaho", "New Hampshire", "Iowa"),
"Group3" = c("Rhode Island", "New Jersey", "Hawaii",
            "Massachusetts"))
(selected <- select.axes(ordination, group = states_groups))
## Note that the required number of axes is now 4 (instead of 3)
plot(selected)
## Loading some example dispRity data
data(demo_data)
## How many axes are required to explain 99% of the variance
## for each group in the Healy et al 2019 data?
(how_many <- select.axes(demo_data$healy, threshold = 0.99))
summary(how_many)
plot(how_many)
```


Description

Generates a morphological matrix using rTraitDisc or gen. seq. HKY functions.

Usage

```
sim.morpho(
    tree,
    characters,
    states = 1,
    model = "ER",
    rates,
    substitution = c(stats::runif, 2, 2),
    invariant = TRUE,
    verbose = FALSE
)
```


Arguments

tree

characters

> states
model Either an implemented ("ER", "HKY" or "MIXED") or user defined model (see details).
rates A function an its parameters for the rates distribution (see details).
substitution A function an its parameters for the substitutions distribution (see details; default $=c($ runif $, 2,2)$).
invariant logical, whether to allow any invariant sites (default = TRUE).
verbose \quad Whether to be verbose or not (default $=$ FALSE).

Details

- The model arguments must be either a user's defined function for generating the discrete morphological characters (that takes the states, rates and substitution arguments) or one of the two following:
- "ER" uses the ape: :rTraitDisc function with the "ER" model argument (= Mk model).
_ "HKY" uses the phyclust::gen. seq. HKY function with kappa sampled from the substitution argument, pi = runif(4) (divided by sum(runif(4))), rate. scale sampled from the rates distribution and L being the number of characters and transforms the purines (A , G) into 0 and the pyrimidines (C, T) into 1 .
_ "MIXED" randomly uses "ER" or "HKY" for binary characters and "ER" for any character with more than two states.
- the user defined model must be a function that generates a single discrete morphological character and takes one element from at least the following arguments: tree, states, rates, substitution.
- The states argument attributes a number of states to each character by using the given probability vector for each number of states starting from two. For example states $=c(0.7,0.2,0.1)$ will generate 70% of characters with two states, 20% of characters with three states and 10% of characters with four states.
- The rates and substitution arguments require a function that outputs a distribution and its optional parameters. For example rates $=c($ runif, 1,10$)$ creates a uniform distribution between 1 and 10 for the rates distribution.

Author(s)

Thomas Guillerme

See Also

check.morpho, apply.NA, rTraitDisc, gen.seq.HKY

Examples

```
set.seed(4)
## A random tree with 15 tips
tree <- rcoal(15)
## Setting up the parameters
my_rates = c(rgamma, rate = 10, shape = 5)
my_substitutions = c(runif, 2, 2)
## HKY binary (15*50)
matrixHKY <- sim.morpho(tree, characters = 50, model = "HKY",
    rates = my_rates, substitution = my_substitutions)
## Mk matrix (15*50) (for Mkv models)
matrixMk <- sim.morpho(tree, characters = 50, model = "ER", rates = my_rates)
## Mk invariant matrix (15*50) (for Mk models)
matrixMk <- sim.morpho(tree, characters = 50, model = "ER", rates = my_rates,
    invariant = FALSE)
## MIXED model invariant matrix (15*50)
matrixMixed <- sim.morpho(tree, characters = 50, model = "MIXED",
    rates = my_rates, substitution = my_substitutions, invariant = FALSE,
    verbose = TRUE)
```

size.subsets Size subsets.

Description

Getting the size (number of elements) from each subsets of a dispRity object.

Usage

size.subsets(data)

Arguments

data A dispRity object.

Author(s)

Thomas Guillerme

See Also

custom.subsets, chrono.subsets, boot.matrix, dispRity.

Examples

```
## Loading a dispRity object
data(disparity)
## What are the number of elements per subsets?
size.subsets(disparity)
```

```
slice.tree Time slicing a tree.
```


Description

Time slicing through a phylogenetic tree.

Usage

slice.tree(tree, age, model, FAD, LAD)

Arguments

tree	A phylo object with a root.time element.
age	A single numeric value indicating where to perform the slice.
model	One of the following models: "acctran", "deltran", "random", "proximity", "equal.split" or "gradual.split". Is ignored if method = "discrete". See chrono.subsets for the models description.
	The first and last occurrence data.

Author(s)

Thomas Guillerme

References

Guillerme T. \& Cooper N. 2018. Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology. DOI: 10.1111/pala. 12364.

See Also

paleotree: :timeSliceTree, chrono. subsets.

Examples

```
set.seed(1)
## Generate a random ultrametric tree
tree <- rcoal(20)
## Add some node labels
tree$node.label <- letters[1:19]
## Add its root time
tree$root.time <- max(tree.age(tree)$ages)
## Slice the tree at age 0.75
tree_75 <- slice.tree(tree, age = 0.75, "deltran")
```

slide.nodes

Stretching a tree

Description

Stretches a phylogenetic tree at a particular node

Usage

slide.nodes(nodes, tree, slide)

Arguments

nodes A list of the ID nodes to slide ("integer"). The first node is ape: :Ntip(tree) +1 , etc.
tree a "phylo" object.
slide the sliding value.

Details

The sliding works by subtracting the slide value to the branch leading to the node and adding it to the descendant branches. Note that the slide value can be negative to slide nodes the other way (up); the only requirement is that the slide does not lead to negative branch length values.

Value

A "phylo" object.

Author(s)

Thomas Guillerme

See Also

remove.zero.brlen

Examples

```
set.seed(42)
## Generating a coalescent tree
tree <- rcoal(5)
## Stretching node 8 up and down
tree_slide_up <- slide.nodes(8, tree, slide = 0.075)
tree_slide_down <- slide.nodes(8, tree, slide = -0.075)
## Display the results
par(mfrow = c(3,1))
plot(tree) ; axisPhylo() ; nodelabels()
plot(tree_slide_up) ; axisPhylo() ; nodelabels()
plot(tree_slide_down) ; axisPhylo() ; nodelabels()
## Stretching many nodes
set.seed(42)
tree <- rtree(50)
move_nodes <- c(99, 93, 53, 86, 58, 63, 60, 84)
tree_slided <- slide.nodes(move_nodes, tree, slide = 0.07)
## Display the results
par(mfrow = c(2, 1))
node_colors <- c("lightblue", "orange")[((1:Nnode(tree))+Ntip(tree)) %in% move_nodes + 1]
plot(tree, show.tip.label = FALSE) ; axisPhylo()
nodelabels(bg = node_colors, cex = 0.5)
plot(tree_slided, show.tip.label = FALSE) ; axisPhylo()
nodelabels(bg = node_colors, cex = 0.5)
```

```
sort.dispRity Sorting or ordering a dispRity object.
```


Description

Sort (or order) the subsets of a dispRity object.

Usage

\#\# S3 method for class 'dispRity'
sort(x, decreasing = FALSE, sort, ...)

Arguments

x	A dispRity object.
decreasing	logical. Should the sort be in ascending or descending order? Is ignored if sort is used.
sort	An optional vector of numeric values corresponding to the order in which to return the subsets.
\ldots	optional arguments to be passed to sort.

Author(s)

Thomas Guillerme

See Also

dispRity, test.dispRity, plot.dispRity, get.subsets, extract.dispRity.

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## Sorting the data
summary(disparity)
summary(sort(disparity, decreasing = TRUE))
summary(sort(disparity, sort = c(7,1,3,4,5,2,6)))
```

```
space.maker Creating multidimensional spaces
```


Description

Creates a multidimensional space with a given number of elements and dimensions

Usage

```
space.maker(
    elements,
    dimensions,
    distribution,
    arguments = NULL,
    cor.matrix = NULL,
    scree = NULL
)
```


Arguments

elements	An numeric value.
dimensions	An numeric value smaller than elements.
distribution	One or more functions to determine the distribution of the elements along each dimension. The function must have a single input: elements.
arguments	Optional list of arguments to be passed to the distributions functions in the order they appear (default = NULL, see details).
cor.matrix	An optional correlation matrix of size dimensions * dimensions (default = NULL, see details).
scree	An optional proportional numeric vector for approximating the dimensions variance (default = NULL, see details).

Details

When passing additional arguments to different distributions, these must be given as a list to each function in the order they appear. For example if distribution $=c$ (runif, rnorm, rgamma) and one wants the distributions to be runif(elements, $\min =1$, $\max =10$), rnorm(elements, mean $=$ 8) and rgamma (elements, shape $=1, \log =$ TRUE $)$, the additional arguments should be passed as $c(\operatorname{list}(\min =1, \max =10)$, list (mean $=8)$, list (shape $=1, l o g=$ TRUE). If no arguments have to be passed to a certain function, it can be left as NULL (e.g. c (list (min $=1$, $\max =10$), list(NULL), list (shape $=1$, log = TRUE)).

The cor.matrix argument should be a correlation matrix between the dimensions. If not NULL, the multidimensional space is multiplied by the the Choleski decomposition (chol) of the correlation matrix. The scree argument is simply a value multiplier for each dimension to adjust their variance to approximate the scree one.

Author(s)

Thomas Guillerme

See Also

null.test, test.dispRity.

Examples

```
## A square space
plot(space.maker(5000, 2, runif), pch = 20)
## A circular space
plot(space.maker(5000, 2, rnorm), pch = 20)
## A 2-dimensional cylindrical space
plot(space.maker(5000, 2, c(rnorm, runif)), pch = 20)
## A 4-dimensional space with different distributions
space.maker(5, 4, c(runif, runif, rnorm, rgamma),
    arguments = list(list(min = 1, max = 10), list(min = 1, max = 2),
```

```
list(mean = 8), list(shape = 1)))
## A 3-dimensional correlated space
cor_matrix <- matrix(cbind(1, 0.8 ,0.2, 0.8, 1, 0.7, 0.2, 0.7, 1), nrow = 3)
space <- space.maker(10000, 3, rnorm, cor.matrix = cor_matrix)
round(cor(space), 1) ; cor_matrix ## Both should be really similar matrices
## A 3-dimensional space with a priori approximated variance for each dimension
space <- space.maker(10000, 3, rnorm, scree = c(0.6, 0.3, 0.1))
## The resulting screeplot
barplot(apply(space, 2, var))
## Not run:
require(scatterplot3d)
## A cube space
scatterplot3d(space.maker(5000, 3, runif), pch = 20)
## A plane space
scatterplot3d(space.maker(5000, 3, c(runif, runif, runif),
    arguments = list(list(min = 0, max = 0), NULL, NULL)), pch = 20)
## A sphere space
scatterplot3d(space.maker(5000, 3, rnorm), pch = 20)
## A 3D cylindrical space
scatterplot3d(space.maker(5000, 3, c(rnorm, rnorm, runif)), pch = 20)
## Generating a doughnut space
doughnut <- space.maker(5000, 3, c(rnorm, random.circle),
    arguments = list(list(mean = 0), list(runif, inner = 0.5, outer = 1)))
## Reodering the axis for projecting the dougnut in 2D
scatterplot3d(doughnut[,c(2,1,3)], pch = 20)
## End(Not run)
```

summary.dispRity dispRity object summary

Description

Creates a summary of a dispRity object.

Usage

\#\# S3 method for class 'dispRity'
summary(
object,
...,
quantiles $=c(50,95)$,

```
    cent.tend = median,
    recall = FALSE,
    digits
)
```


Arguments

object	A dispRity object.
\ldots	Additional arguments to be passed to summary or cent. tend.
quantiles	The quantiles to display (default is quantiles $=c(50,95) ;$ is ignored if the dispRity object is not bootstrapped).
cent.tend	A function for summarising the bootstrapped disparity values (default is median). recall
logical value specifying whether to recall the dispRity parameters input (de- fault = FALSE).	
digits	Optional, a value for digits the values in the output table (default $=2)$.

Details

If the dispRity object to summarise comes from a chrono. subsets using a "multiPhylo" object, the displayed number of observations (n) corresponds to the maximum number of observation at the specific time slice (some slices through some trees might have less observations).

Value

A data. frame with:
subsets the subset names.
$\mathrm{n} \quad$ the maximum number of elements in each subset (see details).
observed the observed disparity or the the observed central tendency (<cent_tend>) of disparity (obs.<cent_tend>).
bootstraps... if data is bootstrapped, the bootstrapped disparity's central tendency (bs .<cent_tend>) and the quantiles of the bootstrapped disparities (or, if data is not bootstrapped but disparity is calculated as a distribution - see dispRity) - the quantiles of the observed disparity are displayed).

Author(s)

Thomas Guillerme

See Also

dispRity, plot.dispRity.

Examples

```
## Load the disparity data based on Beck & Lee 2014
data(disparity)
## Summarising the results
summary(disparity) # default
## Using different options
summary(disparity, quantiles = 75, cent.tend = mean, digits = 8,
    recall = TRUE)
```

test.dispRity Testing disparity hypotheses

Description

Applying statistical tests to dispRity objects

Usage

```
test.dispRity(
    data,
    test,
    comparisons = "pairwise",
    rarefaction = NULL,
    correction = "none",
    concatenate = TRUE,
    conc.quantiles = c(mean, c(95, 50)),
    details = FALSE,
)
```


Arguments

data	A dispRity object.
test	A test function to apply to the data.
comparisons	If data contains more than two subsets, the type of comparisons to apply: either "pairwise" (default), "referential", "sequential", "all" or a list of pairs of subset names/number to compare (see details).
rarefaction	A numeric value indicating whether to use a specific rarefaction level (default $=$ NULL).
correction	Which p-value correction to apply to htest category test (see p.adjust; default $=$ "none").
concatenate	Logical, whether to concatenate bootstrapped disparity values (TRUE; default) or to apply the test to each bootstrapped value individually (FALSE).

conc. quantiles If concatenate $=$ TRUE, must be a central tendency function and a vector of quantiles $($ default $=c($ mean,$c(95,50)))$.
details Whether to output the details of each test (non-formatted; default = FALSE).
... Additional options to pass to the test function.

Details

The comparison argument can be:

- "pairwise": pairwise comparisons of all the subsets (default).
- "referential": compares the first subset to all the others.
- "sequential": compares each subset sequentially (e.g. first against second, second against third, etc.).
- "all": compares all the subsets simultaneously to the data (i.e. bootstrapped disparity ~ subsets names). This argument is used for lm or glm type tests.
- A list of pairs of number of subsets to compare. Each element of the list must contain two elements (e.g. list(c("a", "b"), ("b", "a")) to compare "a" to "b" and then "b" to "a").
- If the called test is null. test, the comparison argument is ignored.

IMPORTANT: if you are performing multiple comparisons (e.g. when using "pairwise", "referential" or "sequential"), don't forget about the Type I error rate inflation. You might want to use a p-value correction (see p.adjust).

Author(s)

Thomas Guillerme

See Also

dispRity, null.test, bhatt.coeff, pair.plot, adonis.dispRity, randtest.dispRity

Examples

```
## Load the Beck & Lee 2014 data
data(BeckLee_mat50)
data(BeckLee_tree)
## Calculating the disparity from customised subsets
## Generating the subsets
groups <- crown.stem(BeckLee_tree, inc.nodes = FALSE)
customised_subsets <- custom.subsets(BeckLee_mat50, groups)
## Bootstrapping the data
bootstrapped_data <- boot.matrix(customised_subsets, bootstraps = 100)
## Calculating the sum of variances
sum_of_variances <- dispRity(bootstrapped_data, metric = c(sum, variances))
## Measuring the subset overlap
test.dispRity(sum_of_variances, bhatt.coeff, "pairwise")
```

```
## Measuring differences from a reference subset
test.dispRity(sum_of_variances, wilcox.test, "referential")
## Measuring disparity as a distribution
disparity_var <- dispRity(bootstrapped_data, metric = variances)
## Differences between the concatenated bootstrapped values of the subsets
test.dispRity(disparity_var, test = t.test, comparisons = "pairwise",
    concatenate = TRUE, correction = "bonferroni")
## Differences between the subsets bootstrapped
test.dispRity(disparity_var, test = t.test, comparisons = "pairwise",
    concatenate = FALSE, correction = "bonferroni",
    conc.quantiles = c(mean, c(95, 5)))
```

```
test.metric Test disparity metric
```


Description

Test whether a metric captures changes trait space size, density and position.

Usage

```
test.metric(
    data,
    metric,
    ...,
    shifts,
    shift.options,
    model,
    replicates = 3,
    steps = 10,
    dimensions,
    verbose = FALSE,
    save.steps = FALSE
)
```


Arguments

$$
\begin{array}{ll}
\text { data } & \text { A matrix or a dispRity object (see details). } \\
\text { metric } & \begin{array}{l}
\text { A vector containing one to three functions. At least of must be a dimension-level } \\
1 \text { or } 2 \text { function (see details). If data is a dispRity object with disparity already } \\
\text { calculated, this argument can be left empty (and the one from data is recycled) }
\end{array} \\
\ldots & \begin{array}{l}
\text { Optional arguments to be passed to the metric. }
\end{array} \\
\text { shifts } & \begin{array}{l}
\text { The types of shits to test, can be "random", "size", "density", "evenness" } \\
\text { and "position". See details. }
\end{array} \\
\text { shift.options } & \text { Optional, a list of named arguments to be passed to reduce.space }
\end{array}
$$

model	Optional, which model to fit for testing the metric. See details.
replicates	A numeric number of replicates to increase variance. By default replicates = 3. If replicates = 1, the model is not run.
steps	The number of steps in the space reduction to output between 10% and 100% By default steps = 10.
dimensions	Optional, a numeric value or proportion of the dimensions to keep.
verbose	A logical value indicating whether to be verbose (TRUE) or not (FALSE; de- fault).
save.steps	A logical value indicating whether to save the data for visualising the the shift steps if plotting the results (TRUE) or not (FALSE; default).

Details

For the three non-random shifts: "size", "density", "evenness" and "position", the function returns both of shifts as:

- "size.inner" and "size.outer" removing data from the edges or the centre respectively (contracting the size and "hollowing" it respectively).
- "density.higher" and "density.lower" removing data to increase or decrease density respectively (increasing/decreasing nearest neighbour distance).
- "evenness.flattened" and "evenness.compacted" removing data to from the centre of the distribution or from the edges to resepectively "flatten" or "condense" the distribution.
- "position.top" and "position.bottom" removing data from one side or the other of the space (the sides are selected from the point with lowest/highest scores on each dimensions respectively).

See figure 2 in Guillerme et al. 2020 for more details.
The default model is a linear model using the following function: model = function(data) lm(disparity \sim reduction, data) You can provide your own as long as it is a single function with data as a single argument. The two terms from data should be called reduction for the variable on the x axis and disparity for the variable on the y axis. For example: model = function(data) nls(disparity ~ a*reduction/(b+reduction), data) Note that models (like this example) should be specific to the dataset. Any type of model can be fitted but only the ones with an associated summary function will be correctly displayed by summary. dispRity. To not run any model, use model = NULL.

Value

This function outputs a dispRity object containing a list of simulated reductions in trait space. The results can be accessed through the usual S3 methods (print, summary, plot) or accessed directly through $x \$<$ name_of_the_shift> (e.g. $\times \$$ random for the random shift results).

Author(s)

Thomas Guillerme

References

Guillerme T, Puttick MN, Marcy AE, Weisbecker V. 2020 Shifting spaces: Which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces?. Ecol Evol. 2020;00:1-16. (doi:10.1002/ece3.6452)

See Also

reduce.space dispRity plot.dispRity

Examples

```
## Creating a 2D uniform space
space <- space.maker(300, 2, runif)
## A simple test with only 1 replicate for two shifts (random and size):
simple_test <- test.metric(space, metric = c(prod, ranges),
    replicates = 1, shifts = c("random", "size"))
## Summarising the tests
summary(simple_test)
## Visualising the test
plot(simple_test)
## Applying the test directly on a disparity object
data(disparity)
median_centroid_test <- test.metric(disparity, shifts = "size")
## Summarising the tests
summary(median_centroid_test)
## Visualising the test
plot(median_centroid_test)
## Not run:
## Note that the tests can take several minutes to run.
## Testing the sum of variance on all shifts
sum_var_test <- test.metric(space, metric = c(sum, variances),
    shifts = c("random", "size", "density", "position"))
## Summarising the tests
summary(sum_var_test)
## Visualising the test
plot(sum_var_test)
## Creating a 2D uniform space
space <- space.maker(300, 2, runif)
## Re-running the test on two shifts with data saving for visualisation
median_centroid_test <- test.metric(space,
```

```
metric = c(median, centroids),
shifts = c("random", "size"),
save.steps = TRUE)
```

\#\# Visualising the tests results and display the shifts visualisation
plot(median_centroid_test)
\#\# End(Not run)
tree. age \quad Calculating the age of nodes and tips in a tree.

Description

Calculates the age of each node and tip in a tree give the height of the tree or some specified age.

Usage

tree.age(tree, age, order = "past", fossil = TRUE, digits = 3)

Arguments

tree	A phylo object.
age	The age of the tree. If missing the age is set to be the tree height.
order	Either "past" if the units express time since the present (e.g. million years ago), or "present" if the unit is expressed in time since the root.
fossil	logical, whether to always consider the tree as containing at least one living taxa (TRUE) or allowing only fossil taxa (FALSE - default), see details.
digits	A numeric value or integer for the precision of the output.

Details

When fossil = TRUE, if the tree contains a tree\$root. time element (for tree's root age), and that order is set to "past", the output ages are adjusted to be starting from the root.time. Else, if no tree $\$$ root. time exists or fossil = FALSE, tips and nodes age is relative from the tip furthest away from the root.

Author(s)

Thomas Guillerme

See Also

slice.tree, chrono. subsets.

Examples

\#\# A dated random phylogeny with a root 50 units of time old.
tree. age (rtree (10), age $=50$)
\#\# A random tree with the distance since the root.
tree.age(rtree(10), order = 'present')

Index

* disparity ordination phylogeny cladistic morphometric ecology

dispRity-package, 3
add. tree, 3
adonis, 4, 5
adonis.dispRity, 4, 96
ancestral.dist (dispRity.metric), 30
angles (dispRity.metric), 30
apply.NA, 6, 87
as.randtest, 66
asr_mk_model, 62-64
bartlett.test, 53, 59
BeckLee, 8, 9, 27
BeckLee_ages (BeckLee), 8
BeckLee_disparity, 8
BeckLee_mat50 (BeckLee), 8
BeckLee_mat99 (BeckLee), 8
BeckLee_tree (BeckLee), 8
between.groups.fun (dispRity.metric), 30
bhatt.coeff, 9, 96
boot.matrix, 4, 9, 10, 18-20, 22, 24, 27-29, 39, 40, 46, 65, 74, 88
build_cladistic_matrix, 20
bw.nrd0, 9, 80
calculate_morphological_distances, 15, 19, 20
centroids, 27
centroids (dispRity.metric), 30
char.diff, 12, 70
check.morpho, 15, 48, 87
chol, 92
chrono. subsets, $4,5,9-12,17,20,22,24$, 27-29, 33, 40, 42, 43, 46, 47, 65, 71, 74, 76, 88, 89, 94, 100
CI, 16
Claddis.ordination, 19
clean.data, 21
cmdscale, 20, 31
combine.subsets, 22
convhull.surface (dispRity.metric), 30
convhull.volume (dispRity.metric), 30
convhulln, 31
crown.stem, 23, 24
cust.series (custom.subsets), 24
cust.subsets, 12, 19
cust.subsets (custom.subsets), 24
custom.series (custom. subsets), 24
custom. subsets, $4,5,10,20,22,23,24,28$, $29,33,39,42,45,46,65,71,74,76$, 85, 88
daisy, 15
demo_data, 25
deviations (dispRity.metric), 30
diagonal (dispRity.metric), 30
dimension.level1.fun(dispRity.metric), 30
dimension.level2.fun(dispRity.metric), 30
dimension.level3.fun(dispRity.metric), 30
disparity, 27
displacements (dispRity.metric), 30
dispRity, 4, 9, 12, 19, 20, 22, 24, 27, 28, 32, 34, 35, 39-41, 44, 46, 48, 51, 65, 72, $74,76,80,83,88,91,94,96,99$
dispRity-package, 3
dispRity.metric, 28, 29, 30, 39, 40, 50, 51
dispRity.per.group, 38
dispRity.through.time, 40
dist, 5, 15
dist. hamming, 16
dtt, 41, 42
dtt.dispRity, 41, 72
edge.length.tree (dispRity.metric), 30
ellipse.volume (dispRity.metric), 30
extinction.subsets, 42
extract.dispRity, 43, 48, 91
fetch.matrix (matrix.dispRity), 51
fill.dispRity, 44
func.div(dispRity.metric), 30
func.eve (dispRity.metric), 30
gen.seq.HKY, 85, 87
geomorph.data.frame, 45
geomorph.ordination, 45
get.bin.ages, 46
get. contrast.matrix, 16, 47
get. dispRity, (get. subsets), 48
get.subsets, 44, 48, 91
get. tree (add. tree), 3
glm, 32, 96
gpagen, 45, 46
grep, 13, 62
group.dist (dispRity.metric), 30
hypervolume_distance, 34
lm, 32, 96
make.dispRity, 49
make.metric, 28, 29, 31, 35, 50
matrix.dispRity, 51
mean, 32
median, 27, 32, 71, 94
mode.val (dispRity.metric), 30
model.test, 52, 56, 58, 59, 61, 72
model.test.sim, 55, 55, 60, 61, 72
model.test.wrapper, 55, 58, 58
morphol.disparity, 46
multi.ace, 61
n.ball.volume (dispRity.metric), 30
n. subsets, 65
neighbours (dispRity.metric), 30
NJ, 16
null.test, 10, 66, 72, 92, 96
optim, 53, 54
optim. parsimony, 16
p.adjust, 95, 96
pair.plot, 67, 96
pairwise.dist(dispRity.metric), 30
parsimony, 16
pcoa, 31
phyDat, 16
plot, 68, 71
plot.char.diff, 15, 69
plot.dispRity, 29, 39, 40, 42, 54, 55, 58, 60, 61, 71, 91, 94, 99
plot. randtest, 76
point.dist (dispRity.metric), 30
polygon, 71
prcomp, 45, 46
print.dispRity, 73
print.randtest, 76
prod, 32
projections, 33
projections(dispRity.metric), 30
quantiles (dispRity.metric), 30
radius (dispRity.metric), 30
random.circle, 74
randtest, 66, 76, 77
randtest.dispRity, 75, 77, 96
randtest.dist, 77
ranges (dispRity.metric), 30
read.nexus.data, 19, 20
read_nexus_matrix, 19, 20
reduce.matrix, 78
reduce.space, 79, 97, 99
remove. tree (add. tree), 3
remove.zero.brlen, 81,90
rescale.dispRity, 83
RI, 16
rTraitDisc, 85, 87
scale, 83
screeplot, 66
select.axes, 84
sim. char, 41
sim.morpho, 7, 16, 85
size.subsets, 87
slice.tree, $19,88,100$
slide.nodes, $81,82,89$
sort.dispRity, 90
space.maker, 66, 67, 75, 91
span.tree.length (dispRity.metric), 30
spantree, 34
sum, 9, 32, 51
summary, 94
summary.dispRity, 11, 29, 39, 40, 54, 55, 58, 60, 61, 72, 93, 98
test.dispRity, 5, 10, 42, 43, 67, 68, 83, 91, 92, 95
test.metric, $72,80,97$
time.series (chrono.subsets), 17
time. subsets (chrono. subsets), 17
tree. age, 19, 21, 23, 100
variances, 9, 51
variances (dispRity.metric), 30
vegdist, 4, 15, 31, 33, 78

