Package 'dissUtils'

August 29, 2016

Type Package
Title Utilities for making pairwise comparisons of multivariate data
Version 1.0
Date 2012-12-06
Author Benjamin N. Taft
Maintainer Benjamin N. Taft <ben.taft@landmarkacoustics.com></ben.taft@landmarkacoustics.com>
Depends R (>= 2.14)
Suggests MASS (>= 1.0)
SuggestsNote the examples use mvrnorm() from MASS
Description This package has extensible C++ code for computing dissimilarities between vectors. It also has a number of C++ functions for assembling collections of dissimilarities. In particular, it lets you find a matrix of dissimilarities between the rows of two input matrices. There are also functions for finding the nearest neighbors of each row of a matrix, either within the matrix itself or within another matrix.

License GPL (>= 2) | file LICENSE

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-06-02 14:50:54

R topics documented:

dissUtils-package	
diss	2
diss.index	3
groupwise.density	4
neighbor.density	5
neighbors	6
neighbors.identify	6
unit.hypersphere.volume	7

8

Index

dissUtils-package

Description

This package has extensible C++ code for computing dissimilarities between vectors. It also has a number of C++ functions for assembling collections of dissimilarities. In particular, it lets you find a matrix of dissimilarities between the rows of two input matrices. There are also functions for finding the nearest neighbors of each row of a matrix, either within the matrix itself or within another matrix.

Details

Package:	dissUtils
Type:	Package
Version:	0.1
Date:	2012-12-06
License:	GPL (>= 2)

diss	Dissimilarities Between Vectors
diss.index	Convert Indices from Distance Object to Matrix
groupwise.density	Compare Spatial Densities Between Groups
neighbors.identify	Find Neighbor Indices
neighbor.density	N-Dimensional Neighbor Density
neighbors	Find Nearest Neighbor Distances
unit.hypersphere.volume	Helps When Calculating Densities

diss

Many Different Ways to Quantify Dissimilarities Among Multivariate Data

Description

this function will create a distance object corresponding to the dissimilarities between rows in a matrix X, or a matrix of dissimilarities between the rows of matrices X and Y

Usage

diss(X, Y = NULL, method = "euclidean", init.info = NULL)

diss.index

Arguments

Ya second matrix of numeric data, which must have the same number of columns as Xmethoda character string that uniquely matches one of the following:braycurtisBray-Curtis difference, should use proportions CanberracanberraCanberra difference, should use proportions ChebyshevLargest difference in any one dimension, like in chess covarianceYou may want to transpose the data before using this euclidean multivariate 2-norm equalityequalitythe sum of exactly equal elements in each row hellinger jaccardhellingerHellinger difference jaccardmanhatanobisEuclidean distance after scaling and removing covariance, which you can supply with init.info manhattan The sum of each dimension, no diagonal movement allowed minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson Pearson product-moment correlation, you may want to transpose the data procrustesVDoesn't scale or rotate, just treats the vectors as matrices with init.info	Х	a matrix of numeric data
methoda character string that uniquely matches one of the following:braycurtisBray-Curtis difference, should use proportions canberracanberraCanberra difference, should use proportions chebyshevchebyshevLargest difference in any one dimension, like in chess covariancecovarianceYou may want to transpose the data before using this euclidean multivariate 2-norm equalityequalitythe sum of exactly equal elements in each row hellingerhellingerHellinger difference jaccardjaccardJaccard distancemahalanobisEuclidean distance after scaling and removing covariance, which you can supply with init.infominkowskiarbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data procrustespaces or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	Y	a second matrix of numeric data, which must have the same number of columns as X
braycurtisBray-Curtis difference, should use proportions canberracanberraCanberra difference, should use proportionschebyshevLargest difference in any one dimension, like in chesscovarianceYou may want to transpose the data before using thiseuclideanmultivariate 2-normequalitythe sum of exactly equal elements in each rowhellingerHellinger differencejaccardJaccard distancemahalanobisEuclidean distance after scaling and removing covariance, which you can supply with init.infomanhattanThe sum of each dimension, no diagonal movement allowedminkowskiarbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the dataprocrustesDoesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	method	a character string that uniquely matches one of the following:
 canberra difference, should use proportions chebyshev Largest difference in any one dimension, like in chess covariance You may want to transpose the data before using this euclidean multivariate 2-norm equality the sum of exactly equal elements in each row hellinger difference jaccard distance mahalanobis Euclidean distance after scaling and removing covariance, which you can supply with init.info manhattan The sum of each dimension, no diagonal movement allowed minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data 	braycurtis	Bray-Curtis difference, should use proportions
 chebyshev Largest difference in any one dimension, like in chess covariance You may want to transpose the data before using this euclidean multivariate 2-norm equality the sum of exactly equal elements in each row hellinger Hellinger difference jaccard distance mahalanobis Euclidean distance after scaling and removing covariance, which you can supply with init.info manhattan The sum of each dimension, no diagonal movement allowed minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data Doesn't scale or rotate, just treats the vectors as matrices with init.info 	canberra	Canberra difference, should use proportions
 covariance You may want to transpose the data before using this euclidean multivariate 2-norm equality the sum of exactly equal elements in each row hellinger Hellinger difference jaccard Jaccard distance mahalanobis Euclidean distance after scaling and removing covariance, which you can supply with init.info manhattan The sum of each dimension, no diagonal movement allowed minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data Doesn't scale or rotate, just treats the vectors as matrices with init.info 	chebyshev	Largest difference in any one dimension, like in chess
euclideanmultivariate 2-normequalitythe sum of exactly equal elements in each rowhellingerHellinger differencejaccardJaccard distancemahalanobisEuclidean distance after scaling and removing covariance, which you can supply with init.infomanhattanThe sum of each dimension, no diagonal movement allowedminkowskiarbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but donpearsonPearson product-moment correlation, you may want to transpose the dataprocrustesDoesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	covariance	You may want to transpose the data before using this
equalitythe sum of exactly equal elements in each rowhellingerHellinger differencejaccardJaccard distancemahalanobisEuclidean distance after scaling and removing covariance, which you can supply with init.infomanhattanThe sum of each dimension, no diagonal movement allowedminkowskiarbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but donpearsonprocrustesDoesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	euclidean	multivariate 2-norm
hellingerHellinger differencejaccardJaccard distancemahalanobisEuclidean distance after scaling and removing covariance, which you can supply with init.infomanhattanThe sum of each dimension, no diagonal movement allowedminkowskiarbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but donpearsonprocrustesDoesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	equality	the sum of exactly equal elements in each row
jaccard Jaccard distance mahalanobis Euclidean distance after scaling and removing covariance, which you can supply with init.info manhattan The sum of each dimension, no diagonal movement allowed minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data procrustes Doesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	hellinger	Hellinger difference
 mahalanobis Euclidean distance after scaling and removing covariance, which you can supply with init.info manhattan The sum of each dimension, no diagonal movement allowed arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data procrustes Doesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance 	jaccard	Jaccard distance
 manhattan minkowski minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data procrustes Doesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance 	mahalanobis	Euclidean distance after scaling and removing covariance, which you can supply with init.info
 minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don pearson product-moment correlation, you may want to transpose the data procrustes Doesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance 	manhattan	The sum of each dimension, no diagonal movement allowed
pearsonPearson product-moment correlation, you may want to transpose the dataprocrustesDoesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	minkowski	arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don
procrustes Doesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance	pearson	Pearson product-moment correlation, you may want to transpose the data
	procrustes	Doesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distance

init.info some methods require additional information. see above

Value

if is.null(Y), returns a distance object containing pairwise dissimilarities between the points in X.

if is.matrix(Y), returns a nrow(X) by nrow(Y) matrix containing pairwise dissimilarities between each point in X and each point in Y.

diss.index

Convert Indices from Distance Object to Matrix

Description

Given an index into a distance object of Size N, finds the coordinates of the same pairwise dissimilarity in an N by N matrix of dissimilarities

Usage

diss.index(index, N)

Arguments

index	the position of the item in the distance object
Ν	the Size of the distance object, the number of points it compares

See Also

dist

Examples

```
## The function is currently defined as
function (index, N)
{
    i <- floor(.raw.i(n, ix));
    return(c(i = i, j = .calc.j(i, n, ix)));
}
```

groupwise.density Searches Subsets for Nearest Neighbor Densities

Description

In order to compare the distributions of different groups within the same multivariate space, calculates the nearest-neighbor densities of each point in the whole data set according to the distribution of each subset.

Usage

```
groupwise.density(X, groups, method = "euclidean", p.neighbors = 0.01, init.info = NULL)
```

Arguments

Х	a matrix of numeric data
groups	a factor or vector that can be coerced into a factor, specifying which group each row of X belongs to.
method	see diss
p.neighbors	the proportion of each groups neighbors that should be visited. Proportions are necessary when groups have different sizes because otherwise the densities aren't as comparable.
init.info	see diss

Value

an nrow(X) by nlevels(as.factor(groups)) matrix of nearest-neighbor density estimates.

4

neighbor.density

Description

neighbor.density estimates the density around a point by accounting for the dimensionality of the space the neighbors are in, the total number of points in the space, and how many neighbors are found at least as close to the point as the density given.

Usage

```
neighbor.density(neigh.dists, D, k, N)
```

Arguments

neigh.dists	a vector of distances between members of a multivariate data set and their kth- nearest neighbor
D	the number of dimensions of the multivariate space
k	the number of neighbors found around each point within the hyperspheres with radii given in <code>neigh.dists</code>
Ν	the total number of points in the data set from which the neighbors are drawn. This may not be equal to length(neigh.dists) if the neighbors are in a separate data set from the points of interest.

Value

a numeric vector of densities

References

http://en.wikipedia.org/wiki/N-sphere

Examples

```
## The function is currently defined as
function (neigh.dists, D, k, N)
{
    radius <- unit.hypersphere.volume(D)
    return(k/(N * radius * neigh.dists))
  }
```

neighbors

Description

Given one (or two) multivariate data sets, a difference method, and k neighbors to search for, neighbors finds the k points in the data set (or the second data set) that are closest to each point in the data set (or the first data set)

Usage

```
neighbors(X, Y = NULL, method = "euclidean", n.neighbors = 1, init.info = NULL)
```

Arguments

Х	a matrix of numeric values
Y	an optional second matrix that must have the same number of columns as \boldsymbol{X}
method	one of the method choices from diss
n.neighbors	an integer between 1 and nrow(X) (or nrow(Y), if it is not null)
init.info	some difference methods require additional information. see diss

Value

returns an nrow(X) by n.neighbors matrix of distances

neighbors.identify Find Neighbor Indices

Description

Uses a distance object and a vector of known distances to identify the neighbors that correspond to those distances.

Usage

```
neighbors.identify(neighbor.matrix, all.dists)
```

Arguments

neighbor.matrix	
	a matrix of distances to neighbors
all.dists	either a distance object or a matrix of distances such as is produced by diss

unit.hypersphere.volume

Value

a dim(neighbor.matrix) matrix of integer indices between 1 and all.dists\$Size or ncol(all.dists)

See Also

diss, dist

unit.hypersphere.volume

Helps When Calculating Densities

Description

Finds the volume of a hypersphere in R^D with radius one.

Usage

unit.hypersphere.volume(D)

Arguments

D

the number of dimensions that the hypersphere extends into

Value

the volume of the unit hypersphere

References

http://en.wikipedia.org/wiki/N-sphere

Index

*Topic multivariate diss, 2 diss.index, 3 dissUtils-package, 2 groupwise.density, 4 neighbor.density, 5 neighbors.identify, 6 unit.hypersphere.volume, 7 *Topic package dissUtils-package, 2

diss, 2, 4, 6, 7 diss.index, 3 dissUtils(dissUtils-package), 2 dissUtils-package, 2 dist, 4, 7

groupwise.density,4

neighbor.density,5
neighbors,6
neighbors.identify,6

unit.hypersphere.volume,7