Package 'dissUtils'

August 29, 2016
Type Package
Title Utilities for making pairwise comparisons of multivariate data
Version 1.0
Date 2012-12-06
Author Benjamin N. Taft
Maintainer Benjamin N. Taft ben.taft@landmarkacoustics.com
Depends R (>=2.14)
Suggests MASS (>= 1.0)
SuggestsNote the examples use mvrnorm() from MASS
Description This package has extensible C++ code for computing dissimilarities between vectors. It also has a number of $\mathrm{C}++$ functions for assembling collections of dissimilarities. In particular, it lets you find a matrix of dissimilarities between the rows of two input matrices. There are also functions for finding the nearest neighbors of each row of a matrix, either within the matrix itself or within another matrix.

License GPL (>= 2) | file LICENSE

NeedsCompilation yes
Repository CRAN
Date/Publication 2014-06-02 14:50:54

R topics documented:

dissUtils-package 2
diss 2
diss.index 3
groupwise.density 4
neighbor.density 5
neighbors 6
neighbors.identify 6
unit.hypersphere.volume 7
Index 8

Description

This package has extensible C++ code for computing dissimilarities between vectors. It also has a number of C++ functions for assembling collections of dissimilarities. In particular, it lets you find a matrix of dissimilarities between the rows of two input matrices. There are also functions for finding the nearest neighbors of each row of a matrix, either within the matrix itself or within another matrix.

Details

Package: dissUtils
Type: Package
Version: 0.1
Date: 2012-12-06
License: GPL (>=2)

diss	Dissimilarities Between Vectors
diss.index	Convert Indices from Distance Object to Matrix
groupwise.density	Compare Spatial Densities Between Groups
neighbors.identify	Find Neighbor Indices
neighbor.density	N-Dimensional Neighbor Density
neighbors	Find Nearest Neighbor Distances
unit.hypersphere.volume	Helps When Calculating Densities

diss Many Different Ways to Quantify Dissimilarities Among Multivariate Data

Description

this function will create a distance object corresponding to the dissimilarities between rows in a matrix X, or a matrix of dissimilarities between the rows of matrices X and Y

Usage

diss(X, Y $=$ NULL, method $=$ "euclidean", init.info = NULL)

Arguments

```
    X
    Y
    method
    braycurtis Bray-Curtis difference, should use proportions
        canberra Canberra difference, should use proportions
    chebyshev Largest difference in any one dimension, like in chess
    covariance You may want to transpose the data before using this
    euclidean multivariate 2-norm
        equality the sum of exactly equal elements in each row
        hellinger Hellinger difference
            jaccard Jaccard distance
mahalanobis Euclidean distance after scaling and removing covariance, which you can supply with init.info
    manhattan The sum of each dimension, no diagonal movement allowed
    minkowski arbitrary n-norm, so that init.info=2 yields "euclidean" and init.info = Inf yields "chebyshev" (but don'
        pearson Pearson product-moment correlation, you may want to transpose the data
    procrustes Doesn't scale or rotate, just treats the vectors as matrices with init.info columns and calculates total distanc
```

 init.info some methods require additional information. see above

Value

if is null (Y), returns a distance object containing pairwise dissimilarities between the points in X.
if is.matrix (Y), returns a nrow (X) by $\operatorname{nrow}(Y)$ matrix containing pairwise dissimilarities between each point in X and each point in Y.

```
diss.index Convert Indices from Distance Object to Matrix
```


Description

Given an index into a distance object of Size N, finds the coordinates of the same pairwise dissimilarity in an N by N matrix of dissimilarities

Usage

diss.index(index, N)

Arguments

index the position of the item in the distance object
N
the Size of the distance object, the number of points it compares

See Also

dist

Examples

```
## The function is currently defined as
function (index, N)
{
    i <- floor(.raw.i(n, ix));
    return(c(i = i, j = .calc.j(i, n, ix)));
}
```

groupwise.density Searches Subsets for Nearest Neighbor Densities

Description

In order to compare the distributions of different groups within the same multivariate space, calculates the nearest-neighbor densities of each point in the whole data set according to the distribution of each subset.

Usage

groupwise.density (X, groups, method = "euclidean", p.neighbors = 0.01, init.info = NULL)

Arguments

X
groups a factor or vector that can be coerced into a factor, specifying which group each row of X belongs to.
method
p.neighbors
see diss
the proportion of each groups neighbors that should be visited. Proportions are necessary when groups have different sizes because otherwise the densities aren't as comparable.
init.info see diss

Value

an $\operatorname{nrow}(X)$ by nlevels(as.factor (groups)) matrix of nearest-neighbor density estimates.

Description

neighbor. density estimates the density around a point by accounting for the dimensionality of the space the neighbors are in, the total number of points in the space, and how many neighbors are found at least as close to the point as the density given.

Usage

neighbor.density(neigh.dists, D, k, N)

Arguments

neigh.dists a vector of distances between members of a multivariate data set and their kthnearest neighbor

D the number of dimensions of the multivariate space
k the number of neighbors found around each point within the hyperspheres with radii given in neigh. dists
$N \quad$ the total number of points in the data set from which the neighbors are drawn. This may not be equal to length(neigh.dists) if the neighbors are in a separate data set from the points of interest.

Value

a numeric vector of densities

References

http://en.wikipedia.org/wiki/N-sphere

Examples

```
## The function is currently defined as
function (neigh.dists, D, k, N)
{
    radius <- unit.hypersphere.volume(D)
    return(k/(N * radius * neigh.dists))
    }
```


Description

Given one (or two) multivariate data sets, a difference method, and k neighbors to search for, neighbors finds the k points in the data set (or the second data set) that are closest to each point in the data set (or the first data set)

Usage

neighbors(X, Y = NULL, method = "euclidean", n.neighbors = 1, init.info = NULL)

Arguments

X
Y an optional second matrix that must have the same number of columns as X
method one of the method choices from diss
n. neighbors an integer between 1 and $\operatorname{nrow}(\mathrm{X})$ (or nrow(Y), if it is not null)
init.info some difference methods require additional information. see diss

Value

returns an $\operatorname{nrow}(X)$ by n. neighbors matrix of distances

```
neighbors.identify Find Neighbor Indices
```


Description

Uses a distance object and a vector of known distances to identify the neighbors that correspond to those distances.

Usage

neighbors.identify(neighbor.matrix, all.dists)

Arguments

neighbor.matrix a matrix of distances to neighbors
all.dists either a distance object or a matrix of distances such as is produced by diss
unit.hypersphere.volume

Value

a dim(neighbor.matrix) matrix of integer indices between 1 and all.dists\$Size or ncol(all.dists)

See Also

```
    diss, dist
```

unit.hypersphere.volume
Helps When Calculating Densities

Description

Finds the volume of a hypersphere in $\mathrm{R}^{\wedge} \mathrm{D}$ with radius one.

Usage

unit.hypersphere.volume(D)

Arguments

D the number of dimensions that the hypersphere extends into

Value

the volume of the unit hypersphere

References

http://en.wikipedia.org/wiki/N-sphere

Index

*Topic multivariate

diss, 2

diss.index, 3
dissUtils-package, 2
groupwise.density, 4
neighbor.density, 5
neighbors, 6
neighbors.identify, 6
unit.hypersphere.volume, 7
*Topic package
dissUtils-package, 2
diss, 2, 4, 6, 7
diss.index, 3
dissUtils(dissUtils-package), 2
dissUtils-package, 2
dist, 4, 7
groupwise.density, 4
neighbor.density, 5
neighbors, 6
neighbors.identify, 6
unit.hypersphere.volume, 7

