
diveRsity v1.9.90 Help Manual

by Kevin Keenan

kkeenan02@qub.ac.uk

http://diversityinlife.weebly.com/

https://github.com/kkeenan02/diveRsity

March 17, 2017

http://diversityinlife.weebly.com/
https://github.com/kkeenan02/diveRsity

Contents

1 Introduction 4
1.1 About R . 4
1.2 About diveRsity . 4

1.2.1 How to cite . 5
1.2.2 What’s new? . 5

2 Setup 9
2.1 Installing R . 9
2.2 Installing diveRsity . 9
2.3 Installing optional enhancer packages 10
2.4 Loading diveRsity . 11

3 Function details 12
3.1 fastDivPart() . 12

3.1.1 Standard formulae . 12
3.1.2 Estimator formulae . 14
3.1.3 Bootstrapping . 15

3.2 inCalc() . 16
3.3 readGenepop() . 17
3.4 corPlot() . 18
3.5 difPlot() . 21
3.6 chiCalc . 23
3.7 divOnline . 23
3.8 fstOnly . 24
3.9 divRatio . 24
3.10 bigDivPart . 24
3.11 microPlexer . 25
3.12 arp2gen . 25
3.13 divMigrate . 25
3.14 haploDiv . 26

4 Function Usage 27
4.1 divPart() . 27

4.1.1 Arguments . 27
4.1.2 Returned values . 29

4.2 inCalc() . 42
4.2.1 Arguments . 42
4.2.2 Returned values . 44

4.3 readGenepop() . 49

1

4.3.1 Arguments . 49
4.3.2 Returned values . 49

4.4 corPlot() . 51
4.4.1 Arguments . 51
4.4.2 Returned values . 51

4.5 difPlot() . 53
4.5.1 Arguments . 53
4.5.2 Returned values . 53

4.6 chiCalc . 56
4.6.1 Arguments . 56
4.6.2 Returned values . 56

4.7 divOnline . 57
4.8 fstOnly . 57

4.8.1 Arguments . 57
4.8.2 Returned values . 58

4.9 divRatio . 59
4.9.1 Arguments . 59
4.9.2 Returned values . 60

4.10 bigDivPart() . 61
4.10.1 Arguments . 61
4.10.2 Returned values . 62

4.11 microPlexer . 62
4.12 arp2gen . 63
4.13 divMigrate . 64
4.14 haploDiv . 64

5 Examples 65
5.1 divPart . 65

5.1.1 Setting your working directory 65
5.1.2 Loading Test_data . 66
5.1.3 Running divPart . 67
5.1.4 Accessing your results within the R session 67

5.2 inCalc . 69
5.2.1 Setting your working directory 70
5.2.2 Loading Test_data . 70
5.2.3 Running inCalc . 70
5.2.4 Accessing your results within the R session 71

5.3 readGenepop . 73
5.3.1 Setting your working directory 73
5.3.2 Loading Test_data . 74
5.3.3 Running readGenepop 74

2

5.3.4 Accessing your results within the R session 74
5.3.5 Applications for readGenepop 75
5.3.6 A hypothetical example 78

5.4 Running divPart in batch (using parallel) 80

6 Reproducibility 86

7 Acknowledgements 87

3

1 Introduction

This manual has been written as a generic, user-friendly guide to using
diveRsity in the R environment. It will outline briefly how to get the latest
version of R, how to install the diveRsity package as well as how to install
suggested packages. Fully reproducible Worked examples for functions will
be provide as a guide to how the package should be implemented. Effort
has been made to keep R jargon to a minimum to ensure accessibility for R

beginners.

1.1 About R

R is an extremely powerful and popular software for statistical programming.
It is very well supported by a dedicated group of people known as the R core
development team (R Development Core Team, 2011a), as well as an active
community of developers and useRs. More information about R can be found
at http://www.r-project.org/about.html.

1.2 About diveRsity

diveRsity is a package containing multiple functions written in the statis-
tical programming environment R. It allows the calculation of both genetic
diversity partition statistics (e.g. GST & FST), genetic differentiation statis-
tics (e.g. G′

ST and DJost), and locus informativeness for ancestry assignment
(e.g. In), as well as basic population parameters such as allele frequencies,
observed/expected heterozygosity and Hardy-Weinberg tests. The package
also provides functions for the calculation of Weir & Cockerham’s 1984 F-
statistics and ‘Yardstick’ diversity ratios from Skrbinšek et al., (2012).
In addition to these features, diveRsity also provides users with various
options to calculate bootstrapped 95% ci’s both across loci and for pair-
wise population comparisons. All of these results are returned in convenient
formats and can be plotted interactively.
diveRsity was written to ensure that even R beginners can carry out genetic
analyses in R without major difficulties. By automatically writing analysis
results to file, useRs do not need to understand how to access variables in
the R environment, let alone know what a variable is. However, for more
experienced useRs, all analysis functions return results variables to the R

environment, details of which are provided in the Function usage section
below.

4

http://www.r-project.org/about.html

1.2.1 How to cite

Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W., & Prodöhl, P.
A. (2013). diveRsity: An R package for the estimation and exploration
of population genetics parameters and their associated errors. Methods in
Ecology and Evolution, 4: 782-788. doi:10.1111/2041-210X.12067

1.2.2 What’s new?

Versions 1.2.0 and up introduce a complete rewrite of diveRsity v1.0. All
subsequent versions have been vectorized in all but the least computationally
intensive pieces of code, resulting in much faster execution speed.

Parallel computations are also now available when using the inCalc and
divPart functions. These two major changes mostly affect the speed at
which the program executes. An additional results object, (i.e. pairwise) is
now also returned from the function divPart. This additional functionality
now allows useRs to calculate pairwise statistics without having to run the
computationally intensive bootstrap algorithm, thus saving time.

As of version 1.2.3, Weir and Cockerham’s (1984) F-statistics are also calcu-
lated for global estimates, locus estimates and pairwise population estimates
as well as 95% confidence intervals in the function divPart.

The calculation of Weir and Cockerham’s F-statistics increases analysis time
by around 0.3 seconds per bootstrap replicate, thus leading to significant
increases in overall execution time if a large number of bootstrap iterations
are used. For this reason, the calculation of F-statistics has been included as
an optional extra through the new argument WC_Fst.

Versions 1.3.0 an up includes additional plotting functions to aid in data vi-
sualisation. These new functions are;

corPlot - provides useRs with the ability to plot locus GST , θ, G′

ST and DJost

against the number of alleles at each locus. This method may be useful to
assess whether particular loci might be suitable for the inference of demo-
graphic processes (i.e. they are not unduly affected by mutation).

difPlot - is a function intended to be used as a data exploration tool. This
function plots pairwise estimated statistics, allowing useRs to easily visualise
pairwise comparisons of interest (e.g. highly differentiated population pairs).

5

Version 1.3.2 provides a more flexibility in reading genepop files. It also re-
turns more informative error when genepop files are in the wrong format.
This version also fixes a bug in writing results to disk. If outfile is set to
NULL in the functions divPart or inCalc, no directories will be created.

As of version 1.3.6, a web app version of diveRsity is packaged with the R
console version. This application can be launched simply by typing:

divOnline()

An online version of the app is also available at:
http://glimmer.rstudio.com/kkeenan/diveRsity-online/

This web app allows users to carry out most of the analyses provided by the
divPart function, with additional plotting options.
Version 1.3.6 also contains a new function allowing the calculation of genetic
heterogeneity, using X2 tests. This new function is named chiCalc.

Version 1.4.2 introduces a new function, divBasic. This function calculates
multiple population sample specific parameters including; allelic richness, ob-
served & expected heterozygosity and Hardy-Weinberg equilibrium χ2 tests.
See below for more details on its’ usage.

Version 1.4.4 represents a major update of diveRsity, introducing two new
functions, fstOnly and divRatio, as well as the deprecation of some old
function (div.part, in.calc & readGenepop.user). fstOnly calculates
only Weir and Cockerham’s 1984, θ and F for loci, global and pairwise lev-
els. Bootstrapped confidence intervals can also be calculated. The function is
intended for use by those with very large data sets as it should be more mem-
ory efficient than divPart which also calculates these statistics along with
a variety of other parameters. The function divRatio calculates the allelic
richness and expected heterozygosity standardised ratios originally presented
by (Skrbinšek et al., 2012).

6

http://glimmer.rstudio.com/kkeenan/diveRsity-online/

Version 1.4.6 is the first in a series of package releases with developments
focusing on the analysis of large SNP data sets. This release contains a new
function, bigDivPart, which allows users to calculates the same parameters
as divPart for large data sets containing thousands of marker loci. The
function only accepts genepop format files currently, but work is ongoing to
allow for additional formats. No bootstrapping procedures are yet available
for this function. These are also under development. In any case, given
the massive computational effort involved in bootstrapping large data sets
(e.g. 500 individuals across 10 population samples, genotyped for 100,000
SNP loci), these procedures may have to be restricted to High Performance
Computing (HPC) environments.

Version 1.5.0 now contains citation information for the diveRsity package
(Keenan et al., 2013). Users can extract bibtex information for diveRsity
by typing the following into the R console:

citation("diveRsity")

Version 1.5.0 also fixes a major bug on Mac systems. Due to unexpected
behaviour of the sprintf function, divPart, inCalc and readGenepop were
incorrectly coding alleles, thus leading to erroneous parameter calculations.

Version 1.5.3 introduces the new web app, microPlexer. This application
is intended to aid researchers wishing to develop microsatellite multiplex
system based on locus size ranges and fluorphore tags.

Version 1.5.6 introduces a new function arp2gen, which allows users to
convert Arlequin genotype files to genepop files. The function is intended
to provide a more integrated experience to users by negating the need to
use separate software to carry out file conversions. Although this function
only allows .arp to .gen file conversions, other R packages provide additional
conversion facilities. Some such packages are; adegenet and PopGenKit.

Version 1.5.7 introduced a new experimental function, divMigrate. The
function is based on a new methods presented in (Sundqvist et al., 2013),

7

for detecting the direction of differentiation, and using this information to
infer the relative migration between pairs of populations. While the method
performs well for some simple migration scenarios, it is still not clear how
generally applicable it is under other scenarios (e.g. the effect of high muta-
tion rates, or recent divergence etc.). For this reason, we recommend caution
when applying the method to your own data.

Version 1.6.0 contains a new function, fastDivPart. This function is vir-
tually identical to divPart, with some slight changes to output structures
and formats. The key differences in these formats are:

1 $pairwise in fastDivPart only contains the unbiased estimators of
GST , G′

ST , DJost and θ.

2 The names of the output data structures in $pairwise, $bs_pairwise
and $meanPairwise are now gstEst, gstEstHed, djostEst and thetaWC,
rather than Gst_est, G_hed_st_est, D_Jost_est and Fst_WC, respec-
tively.

This new function is optimised to provide faster pairwise calculations, espe-
cially where the number of pairwise comparisons is much greater than the
number of loci. Some performance tests can be found at:
https://github.com/kkeenan02/diveRsity-dev/blob/master/fastDivPart-tests.md

IMPORTANT NOTE
Users are encouraged to use fastDivCalc rather than divPart, as the latter
function will eventually be removed from future releases of diveRsity.

Version 1.6.1 contains a new function, haploDiv, for calculating Weir &
Cockerham’s θ from haploid genotype data. The data should be in the two or
three digit genepop format. See below for further description of the function.

8

https://github.com/kkeenan02/diveRsity-dev/blob/master/fastDivPart-tests.md

2 Setup

2.1 Installing R

To use diveRsity you will need to download and install R.
It is available at:
http://cran.r-project.org/

Simply download the R distribution appropriate for your operating system
and install as normal.

2.2 Installing diveRsity

The package diveRsity is currently available on CRAN (The Comprehensive
R Archive Network), thus installation is simple. Launch R, and in the console
(you will see the > symbol when R is ready for you to type), use the following
command:

install.packages("diveRsity")

The package is updated regularly, both with added functionality and bug
fixes. The most up to version of diveRsity can be installed from github

using the devtools package:

install and load devtools

install.packages("devtools")

library("devtools")

download and install diveRsity

install_github(name = "diveRsity", subdir = "kkeenan02")

9

http://cran.r-project.org/

2.3 Installing optional enhancer packages

The dependencies plotrix (Lemon, 2006) and shiny (RStudio & Inc., 2012)
will download automatically if you install diveRsity from CRAN. Suggested/optional
packages should be installed manually (excluding parallel, which is dis-
tributed with R).

Optional packages are:

xlsx — writes results to .xlsx. (Dragulescu, 2012)

sendplot — Plots results to .html files with tool-tip information. (Gaile
et al., 2012)

doParallel — Used in parallel computations. (Revolution Analytics, 2012a)

parallel — Used in parallel computations. (R Development Core Team,
2011b)

foreach — Used in parallel computations. (Revolution Analytics, 2012b)

iterators — Used in parallel computations. (Revolution Analytics, 2012c)

Each of these packages can be installed using the below command;

install.packages("package_name")

Just replace ‘package_name’ with the name of the package you want to install.
See ?install.packages for details.

10

2.4 Loading diveRsity

To load diveRsity in the current R session, type the following into the con-
sole:

library("diveRsity")

You will not need to load any of the other dependencies or optional packages
as diveRsity will do this as and when it needs to use them. After loading
diveRsity into your current R session all of its functions are available for
you to use.

For convenient access to usage information on each function, type:

?divPart

?inCalc

?readGenepop

?corPlot

?difPlot

?chiCalc

?divOnline

?divBasic

?fstOnly

?divRatio

?microPlexer

?arp2gen

?divMigrate

?haploDiv

?fastDivPart

Each of these commands will provide information on function usage. The
help pages associated with each function describe in detail how each argument
should be passed to the function.

11

3 Function details

3.1 fastDivPart()

NOTE

This function was previously known as divPart. This name has since been
deprecated. Please use fastDivPart instead. Be aware that some of the
output structures are different. See below for details.

fastDivPart (diversity partition and differentiation), allows for the calcu-
lation of four main diversity partition/differentiation statistics and their re-
spective estimators. The function can be used to explore locus values for
the identification of ’outliers’ and also to visualise pairwise differentiation
between populations. Bootstrapped, bias corrected 95% confidence intervals
are calculated also. Results can be optionally plotted for data exploration
purposes. The statistics and their basic formulae are as follows:

3.1.1 Standard formulae

GST (Nei, 1973; Nei & Chesser, 1983)

GST =
DST

HT

(1)

Where DST = HT − HS , HT is the total heterozygosity and HS is intra-population

12

heterozygosity.

G′

ST (Hedrick, 2005)

G′

ST =
GST

GST (max)

(2)

Where GST is as above, GST (max) =
HT (max)−HS

HT (max)
and HT (max) calculated as HT (max) =

(k−1+HS)
k

and is the maximum possible HT value given the observed within sample het-

erozygosity.

DJost (Jost, 2008)

DJost =

[

(HT −HS)

(1−HS)

] [

n

(n− 1)

]

(3)

Where HT and HS are as defined above, and n is the number of population samples.

13

3.1.2 Estimator formulae

The estimators of both GST and G′

ST were calculated by simply substituting
the HS and HT components of each statistic with their estimators calcu-
lated using equations 4 and 5 respectively. DestChao was calculated using the
method described in (Chao et al., 2008) (eqn 6 below). The formulae are as
follows:

ĤS (Nei & Chesser, 1983)

ĤS = HS

[

2N̄

(2N̄ − 1)

]

(4)

Where HS is the inter-population heterozygosity and N̄ is the harmonic mean of sample

size across all samples.

ĤT (Nei & Chesser, 1983)

ĤT = HT +

[

ĤS

(2N̄n)

]

(5)

Where HT is the total heterozygosity, ĤS is as defined in equation (4), N̄ is the harmonic
mean of sample sizes and n is the number of population samples.

14

Dest(Chao) (Chao et al., 2008; Jost, 2008)

Dest(Chao) =
1

[(1
A
) + var(D)(1

A
)3]

(6)

Where A is the arithmetic mean of DJost across loci, and var(D) is the variance of DJost

across loci.

FST (i.e. θ̂) (Weir & Cockerham, 1984; ?)

θ̂ =
σ̂2
P

σ̂2
P + σ̂2

I + σ̂2
G

(7)

Where σ̂2
P is the sum of variance components for populations, σ̂2

I is the sum of variance

components for individuals within populations and σ̂2
G is the sum of variance components

for alleles within individuals.

3.1.3 Bootstrapping

The variance of each statistic can be assessed using the bootstrapping method
implemented in diveRsity. 95% confidence intervals are calculated by taking
the upper and lower 2.5% sample quantiles form the bootstrapped parameter
distribution.
For pairwise calculations carried out by the function, fastDivPart, a bias
corrected 95% confidence interval is also calculated. This method accounts
for the bias commonly associated with bootstrapping these types of statistics.

15

The method is basically a technique which re-centers the confidence interval
around the initial parameter estimate. Say θ is our parameter of interest, θ̂ is
out parameter estimate, and θ̂∗ is a vector of length, n, containing estimates
of θ̂ for resampled data. The correction is carried out as follows:

θ̂∗[BC] = θ̂∗ − z0

Where z0 =
∑

θ̂∗

n
− θ̂.

The 2.5% and 97.5% quantile are then taken from the re-centered vector,
θ̂∗[BC].

3.2 inCalc()

NOTE

This function was previously known as in.calc. This name has since been
deprecated. Please use inCalc instead. inCalc allows the calculation of

locus informativeness for the inference of ancestry both across all population
samples and pairwise comparisons. These parameters can be bootstrapped
using the same procedure as above to obtain 95% confidence intervals. The
basic equations for both the allele specific and locus specific calculation of In
are as follows:

In(alleles) (Rosenberg et al., 2003)

In(Q; J = j) = −pjlogepj +
K
∑

i=1

pij
K

logepij (8)

16

Where pj is the parametric mean frequency of the jth allele across populations, loge is the

natural logarithm, pij is the frequency of the jth allele in the ith population, and K is the

number of populations.

In(locus) (Rosenberg et al., 2003)

In(Q; J) =
N
∑

j=1

In(Q; J = j) (9)

Where N is the number of allele at the locus of interest and In(Q; J = j) is as in equation

7.

3.3 readGenepop()

NOTE

This function was previously known as readGenepop.user. This name has
been deprecated as of version 1.4.4.

Although the readGenepop function is used extensively in both divPart and
inCalc, its complexity is well hidden from general useRs. However, it has
been included in diveRsity as a usable function for more experienced useRs,
who may find it useful for data exploration and the development of analy-
sis methods. As of version 1.3.0, this function is also implemented for use
with the function corPlot. The function readGenepop returns up to 18 dis-
tinct variables (described in detail below), some of which have particularly

17

complex structures. Although this manual provides basic summaries of each
returned variable, for the function to be useful, useRs are advised to explore
the individual objects. This can be done using functions such as str, names
and typeof.

3.4 corPlot()

New to v1.3.0
This function allows useRs to graphically visualise the relationship between
locus polymorphism (i.e. Number of alleles) and corresponding GST , θ, G′

ST

and DJost values per locus. This information is plotted along with the re-
spective Pearson’s product-moment correlation coefficients for each compar-
ison. This information is intended to help useRs to decide whether it would
be appropriate to use their particular loci for the inference of demographic
processes (i.e.effective number of migrants per generation). Typically this
is done following the relationship between FST and Nm arising under the
finite-island model from the following formula:

FST ≈
1

4Nm+ 1
(10)

Where FST is the standardised measure of genetic variance among populations (i.e. GST

or θ in this package), N is the effective number of breeding individuals and m is the mi-
gration rate among populations.

The requirement to validate the use of certain marker types to infer demog-
raphy is particularly important given that such information is often used to
inform conservation and management strategies. It has been shown exten-
sively in the literature that the relationship between FST and Nm in equation
10 breaks down if other evolutionary forces are strong (e.g. (Whitlock & Mc-
Cauley, 1999)). For example if migration rate (m) is not ≫ than mutation

18

rate (µ), then FST 6= 1
4Nm+1

, and the quantity Nm cannot be accurately
derived.
For marker loci to be useful in the inference of demography, the the effects of
such demographic processes must be detectable independently of the affects
of processes such as mutation. As demographic processes are expected to
have similar effects at all neutral loci, it is reasonable to expect that where
mutation/selection/range constraints are having negligible effects on diver-
gence at a particular set of loci, FST should be more or less equal across these
loci. corPlot allows useRs to visualise if this is in fact the case. In general,
the function will allow useRs to determine if mutation (assumed to be a ma-
jor factor contributing to the the number of allele per locus), is having a
noticeable effect on FST thus rendering them unsuitable for the inference of
demography. As corPlot returns correlation plots of GST , θ, G′

ST and DJost

against the number of alleles per locus, useRs have the additional benefit of
assessing the effect of mutation on the differentiation statistics (e.g. DJost),
which are more sensitive to the effects of mutation.
There is both theoretical and empirical evidence for this approach to assess-
ing of the effects of processes other than migration and drift on divergence
at neutral loci. O’Reilly et al (2004) (O’Reilly et al., 2004), demonstrated
from empirical data that FST (i.e. θ, specifically) had an inverse relationship
with allelic richness in walleye pollock. Although the authors of this study
attributed this observation to homoplasious mutations, the general affect is
the same (i.e. mutational processes obscure divergence due to demographic
processes). The results from this study can also be interpreted in light of the
fact that FST has a theoretical maximum value defined as:

Fst(max) =
HT (max) −HS

HT (max)

(11)

Where HT (max) is the maximum possible total heterozygosity given the observed subpop-
ulation heterozygosity, HS .

Thus, because of the negative dependence of FST on heterozygosity, and the
positive dependence of heterozygosity on number of alleles, we can predict a

19

negative relationship between FST and number of alleles. The thrust of this
argument is depicted in the figure below, where we can see the response of
both GST and DJost to the number of unique alleles at a locus (Following
Jost 2008 (Jost, 2008)).

The relationship between the number of unique alleles
per subpopulation and GST and DJost

From this figure, it is clear that where the number of alleles at a locus is high
(thus heterozygosity is high), GST is expected to be low. It is important
to note that the negative relationship for GST and positive relationship for
DJost, are complex, with multiple contributing factors. Thus this method
should not be seen as definitive, but rather as a method to assess whether
caution must be exercised when applying a particular marker set to address
specific questions in populations of interest.

20

3.5 difPlot()

New to v1.3.0
difPlot is yet another plotting function introduced to help useRs easily vi-
sualise trends in their analysis results. Modern population genetic studies
typically involve large numbers of population samples. It is often useful
to know the pairwise relationships between each of these population sam-
ples. Due to the relationship between the number of sampled populations
and the maximum number of possible pairwise comparisons, shown below,
pin-pointing comparisons of interest can be very difficult.

21

The number of possible pairwise comparisons as a
function of the number of sampled populations

To overcome this problem, difPlot plots the pairwise values calculated by
the function divPart using a diagonal matrix coupled with a colour gradient
used to indicate the magnitude of a particular pairwise value. The function
plots the estimated pairwise values for GST , θ, G′

ST and DJost.

22

3.6 chiCalc

New to v1.3.6
chiCalc allows the calculation of X2 statistics for population genetic het-
erogeneity. The function contains a unique feature which allows users to
exclude particular alleles if they are not observed frequently enough to be
considered reliably. This feature allows a more conservative assessment of
population genetic structure, but may results in a loss of power to detect
actual differences.

3.7 divOnline

New to v1.3.6
divOnline is a simple function which allows users to launch a web app version
of the divPart function. This function provides a less flexible but much more
user friendly interface for the use of the diveRsity package. The web app
was built using the shiny package from RStudio and Inc (RStudio & Inc.,
2012).

23

3.8 fstOnly

New to v1.4.4

This function was written as a more RAM efficient way to calculate Weir
& Cockerham’s (1984) FST and FIT , than divPart. The function should be
particularly useful to users wishing to analyse large SNP data sets, where
negative dependence on heterozygosity is not a concern.

3.9 divRatio

New to v1.4.4

This function introduces a new implementation of the method presented in
Skrbinšek et al., (2012), whose paper proposes the use of a well-characterised,
‘yardstick’ population sample to calculate a standardised diversity ratio for
less well characterised population samples.

Interested users should see the original paper for a comprehensive description
and justification of the method.

3.10 bigDivPart

New to v1.4.6

This function is the first in a series focused in the analysis of data sets con-
taining large number of marker loci (e.g. RAD-seq derived SNPs). The
function implements a more memory efficient programming technique (i.e.

24

extensive use of array data structures) to overcome some of the limitations
associated with divPart. bigDivPart allows users to calculate all parame-
ters calculated by divPart except via bootstrapping (e.g. locus and global
Gst, G′

st, θ and DJost etc..).

3.11 microPlexer

New to v1.5.3
microPlexer is a simple function which allows users to launch a web applica-
tion designed to aid in the development of microsatellite multiplex systems.
The application allows users to flexibly organise microsatellite loci into PCR
groups based on two main algorithms. The first, the high-throughput algo-
rithm, aims to group as many loci into as few multiplex groups as possible,
while ensuring user defined locus separation limits are observed. The sec-
ond, the balanced throughput algorithm, organises loci into multiple multi-
plex groups with, roughly, the same number of loci. This algorithm is useful
for minimising the possible risk of primer interactions during PCR. The web
app was built using the shiny package from RStudio and Inc (RStudio &
Inc., 2012).

3.12 arp2gen

New to v1.5.6 arp2gen is a small function allowing the conversion of Ar-
lequin genotype files to genepop file format.

3.13 divMigrate

New to v1.5.7
divMigrate is an experimental function, allowing users to investigate and

25

plot migration pattern in microsatellite allele data. See ?divMigrate for
more details. The paper that the method is derived from is (Sundqvist et al.,
2013).

3.14 haploDiv

New to v1.6.1
haploDiv allows users to calculate Weir & Cockerham’s (1984) θ from haploid
genotype data. These data should be provided in the form of a two digit or
three digit genepop file. The function essentially reads the haploid genotypes,
diploidizes them (e.g. alleles coded as ’01’ will become ’0101’), then the
function fastDivPart is used to calculate FST estimates for various user
defined levels. The function provides the facility to write a pairwise FST

matrix to .txt file, as well as pairwise bootstrapped 95% confidence limits for
each pairwise comparison.

26

4 Function Usage

In this section the arguments and returned values for each function are ex-
plained.

4.1 divPart()

The general usage of this function is as follows:

divPart(infile = NULL, outfile = NULL, gp = 3, pairwise = FALSE,

WC_Fst = FALSE, bs_locus = FALSE, bs_pairwise = FALSE,

bootstraps = 0, plot = FALSE, parallel = FALSE)

4.1.1 Arguments

infile Specifies the name of the ‘genepop’ (?) file from which the
statistics are to be calculated. This file can be in either the
3 digit of 2 digit format. The name must be a character
string.

outfile Allows useRs to specify a prefix for an output folder. Name
must a character string enclosed in either “” or ‘’.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

pairwise A logical argument indicating whether pairwise matrices for
each relevant statistic should be calculated. This feature
can increase computation time for large number of popula-
tion samples. Calculations will be made in parallel if the
argument parallel = TRUE

27

WC_Fst A logical indication as to whether Weir and Cockerham’s,
1984 F-statistics should be calculated. This option will in-
crease analysis time.

bs_locus Gives useRs the option to bootstrap locus statistics. Results
will be written to .xlsx workbook by default if the package
xlsx is installed, and to a .html file if plot = TRUE. If xlsx
is not installed, results will be written to .txt files.

bs_pairwise Gives useRs the option to bootstrap statistics across all loci
for each pairwise population comparison. Results will be
written to a .xlsx file by default if the package xlsx is in-
stalled, and to a .html file if plot = TRUE. If xlsx is not
installed, results will be written to .txt files.

bootstraps Determines the number of bootstrap iterations to be carried
out. The default value is bootstraps = 0, this is only valid
when all bootstrap options are false. There is no upper limit
on the number of bootstrap iterations, however very large
numbers of bootstrap iterations for pairwise calculations (>
1000) may take a long time to run for large data sets and may
also lead to excessive RAM consumption. As an example,
a test data set containing over 4000 individuals across 97
population samples typed for 15 microsatellite loci, took 1.5
days to complete on a Windows 7 ultimate 64bit machine
with an Intel Core i5-2435M CPU @ 2.40GHz x 4.

plot Optional interactive .html image files of the plotted boot-
strap results for loci if bs_locus = TRUE and pairwise popu-
lation comparisons if bs_pairwise = TRUE and the package
sendplot is installed. The default option is plot = FALSE.

parallel A logical argument specifying if computations should be run
in parallel on all available CPU cores. If parallel = TRUE,
batches of jobs will be distributed to all cores resulting in
faster completion.

28

4.1.2 Returned values

Results returned by divPart vary depending on the argument options chosen.
If the packages xlsx and sendplot are installed, results will be written to a
single .xlsx workbook and .png/.html files providing plot = TRUE.
Alternatively, if these packages are unavailable the plot option is no longer
available. Results will be written to multiple .txt files, the number of which
varies between three and five depending on the argument options chosen.
An example screenshot of the .xlsx output file is shown below:

29

Returned values cont.

Examples of the interactive plots written, if xlsx is available, are given
below. Error bars represent bootstrapped 95% confidence intervals, and the
red dotted lines represent the global statistic values.

Example of bootstrapped
locus results plot

Example of bootstrapped

30

pairwise results plot

31

Returned values cont.

For useRs wishing to carry out post analysis manipulations, all results from
divPart are returned to the R environment. Depending on the bootstrap
options chosen these results include between three to five of the variables

below:

$standard A matrix containing identical data to the Standard_stats
worksheet in the .xlsx workbook or the Standard-stats[divPart].txt
text file. The last row in this matrix represents statistics
calculate across all population samples and loci.

H_st D_st G_st G_hed_st D_jost

Locus1 0.0659 0.0224 0.0328 0.1093 0.0791

Locus2 0.0058 0.0029 0.0058 0.0127 0.0070

Locus3 0.3887 0.0647 0.0721 0.5049 0.4664

Locus4 0.0882 0.0290 0.0415 0.1429 0.1058

Locus5 0.2683 0.0266 0.0287 0.3414 0.3219

Locus6 0.1536 0.0306 0.0368 0.2143 0.1843

Locus7 0.0533 0.0202 0.0315 0.0935 0.0640

Locus8 0.0255 0.0192 0.0724 0.1008 0.0306

Locus9 0.3616 0.0244 0.0255 0.4484 0.4340

Locus10 0.3585 0.0522 0.0576 0.4630 0.4302

Global NA NA 0.0493 0.2163 0.1757

32

loci
A list of locus names
H_st
Between subpopulation heterozygsity per locus
D_st
Absolute differentiation per locus (Nei, 1973)
G_st
F_st analogue for multiple alleles per locus (Nei, 1973)
G_hed_st
Hedrick’s standardized “differentiation” per locus (Hedrick, 2005)
D_jost
Jost’s true allelic differentiation per locus (Jost, 2008)

33

Returned values cont.

$estimate A matrix containing identical data to the Estimated_stats
worksheet in the .xlsx workbook or the Estimated-stats[divPart].txt
text file. The last row in this matrix represents statistics
calculate across all population samples and loci.

Harmonic_N H_st_est D_st_est G_st_est

Locus1 43.1218 0.0482 0.0160 0.0234

Locus2 43.5209 -0.0038 -0.0019 -0.0038

Locus3 43.6403 0.3610 0.0566 0.0629

Locus4 43.4476 0.0700 0.0225 0.0321

Locus5 42.7674 0.1998 0.0177 0.0191

Locus6 43.4476 0.1201 0.0228 0.0274

Locus7 43.4476 0.0382 0.0142 0.0221

Locus8 43.2566 0.0224 0.0168 0.0632

Locus9 43.0673 0.2703 0.0153 0.0160

Locus10 43.2469 0.3237 0.0439 0.0483

Global NA NA NA 0.0397

G_hed_st_est D_Jost_est Fst_WC Fit_WC

Locus1 0.0799 0.0578 0.0257 0.0610

Locus2 -0.0084 -0.0046 -0.0042 -0.0518

Locus3 0.4688 0.4332 0.0745 0.0991

Locus4 0.1134 0.0840 0.0357 0.0555

Locus5 0.2542 0.2397 0.0222 0.0749

Locus6 0.1675 0.1441 0.0300 0.2250

Locus7 0.0670 0.0459 0.0258 0.0427

Locus8 0.0884 0.0268 0.0689 0.2529

Locus9 0.3352 0.3244 0.0189 0.0588

Locus10 0.4181 0.3885 0.0564 0.0986

Global 0.1806 0.1462 0.0456 0.1081

loci
A list of locus names

34

Harmonic_N
Harmonic mean number of individuals typed per locus
H_st_est
Estimator of between subpopulation heterozygosity (Nei & Chesser, 1983)
D_st_est
Estimator of absolute differentiation (Nei & Chesser, 1983)
G_st_est
Nearly unbiased estimator of G_st (Nei & Chesser, 1983)
G_hed_st_est
Estimator of Hedrick’s G’_st (Hedrick, 2005)
D_Jost_est
Estimator of Jost’s D (Jost, 2008)
Fis_WC
Weir and Cockerham’s inbreeding coefficient estimator (Weir & Cockerham,
1984)
Fst_WC
Weir and Cockerham’s fixation index estimator (Weir & Cockerham, 1984)
Fit_WC
Weir and Cockerham’s overall fixation index estimator (Weir & Cockerham,
1984)

35

Returned values cont.

$pairwise A list of six (WC_Fst = FALSE) nine (WC_Fst = TRUE) ma-
trices containing pairwise diversity statistics without boot-
strapped confidence intervals.

[1] Gst

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0077 NA NA NA

pop3, 0.0401 0.0351 NA NA

pop4, 0.0349 0.0307 0.009 NA

[1] G_hed_st

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0486 NA NA NA

pop3, 0.2562 0.2293 NA NA

pop4, 0.2271 0.2041 0.0606 NA

[1] D_Jost

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0409 NA NA NA

pop3, 0.2254 0.2011 NA NA

pop4, 0.1989 0.1790 0.0519 NA

[1] Gst_est

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0019 NA NA NA

pop3, 0.0341 0.0287 NA NA

pop4, 0.0296 0.0251 0.0032 NA

[1] G_hed_st_est

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0124 NA NA NA

pop3, 0.2264 0.1954 NA NA

pop4, 0.1992 0.1732 0.0224 NA

[1] D_Jost_est

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0027 NA NA NA

pop3, 0.1803 0.1579 NA NA

36

pop4, 0.1484 0.1325 0.0102 NA

[1] Fst_WC

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0027 NA NA NA

pop3, 0.0647 0.0543 NA NA

pop4, 0.0563 0.0478 0.0057 NA

[1] Fit_WC

pop1, pop2, pop3, pop4,

pop1, NA NA NA NA

pop2, 0.0933 NA NA NA

pop3, 0.1323 0.1331 NA NA

pop4, 0.1233 0.1245 0.0689 NA

37

Returned values cont.

$bs_locus A list containing six (WC_Fst = FALSE) - nine (WC_Fst =

TRUE) matrices of locus values for each estimated statistic,
along with their respective 95% confidence interval.

[1] Gst

Mean Lower_CI Upper_CI

Locus1 0.0342 0.0237 0.0464

Locus2 0.0153 0.0067 0.0282

Locus3 0.0824 0.0726 0.0925

global 0.0587 0.0579 0.0602

[1] G_hed_st

Mean Lower_CI Upper_CI

Locus1 0.1156 0.0837 0.1559

Locus2 0.0330 0.0146 0.0601

Locus3 0.5472 0.5006 0.5756

global 0.2501 0.2468 0.2537

[1] D_Jost

Mean Lower_CI Upper_CI

Locus1 0.0844 0.0614 0.1147

Locus2 0.0182 0.0080 0.0330

Locus3 0.5068 0.4615 0.5324

global 0.2033 0.2005 0.2059

[1] Gst_est

Mean Lower_CI Upper_CI

Locus1 0.0248 0.0142 0.0371

Locus2 0.0057 -0.0030 0.0186

Locus3 0.0735 0.0636 0.0835

global 0.0492 0.0484 0.0507

[1] G_hed_st_est

Mean Lower_CI Upper_CI

Locus1 0.0856 0.0513 0.1276

Locus2 0.0123 -0.0067 0.0402

Locus3 0.5163 0.4656 0.5486

global 0.2170 0.2139 0.2211

[1] D_Jost_est

Mean Lower_CI Upper_CI

Locus1 0.0626 0.0377 0.0940

Locus2 0.0068 -0.0037 0.0221

Locus3 0.4783 0.4294 0.5074

38

global 0.1778 0.1746 0.1835

[1] Fst_WC

Mean Lower_CI Upper_CI

Locus1 0.0277 0.0159 0.0418

Locus2 0.0076 -0.0023 0.0230

Locus3 0.0863 0.0754 0.0971

global 0.0569 0.0559 0.0587

[1] Fit_WC

Mean Lower_CI Upper_CI

Locus1 0.0588 0.0395 0.0790

Locus2 -0.1175 -0.1617 -0.0771

Locus3 0.0990 0.0597 0.1610

global 0.1042 0.1020 0.1078

39

Returned values cont.

$bs_pairwise A list containing six (WC_Fst = FALSE) - nine (WC_Fst =

TRUE) matrices of pairwise values for each estimated statis-
tic, along with their respective 95% confidence interval.

[1] Gst

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.0138 0.0121 0.0163

pop1, vs. pop3, 0.0414 0.0388 0.0434

pop1, vs. pop4, 0.0407 0.0390 0.0421

pop5, vs. pop6, 0.0339 0.0325 0.0360

[1] G_hed_st

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.0834 0.0733 0.0967

pop1, vs. pop3, 0.2570 0.2408 0.2722

pop1, vs. pop4, 0.2567 0.2500 0.2653

pop5, vs. pop6, 0.2257 0.2145 0.2391

[1] D_Jost

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.0705 0.0620 0.0816

pop1, vs. pop3, 0.2250 0.2100 0.2394

pop1, vs. pop4, 0.2253 0.2198 0.2331

pop5, vs. pop6, 0.1984 0.1878 0.2105

[1] Gst_est

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.0079 0.0061 0.0104

pop1, vs. pop3, 0.0354 0.0327 0.0375

pop1, vs. pop4, 0.0354 0.0336 0.0369

pop5, vs. pop6, 0.0276 0.0264 0.0297

[1] G_hed_st_est

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.0495 0.0383 0.0639

pop1, vs. pop3, 0.2282 0.2107 0.2442

pop1, vs. pop4, 0.2308 0.2229 0.2404

pop5, vs. pop6, 0.1916 0.1812 0.2056

[1] D_Jost_est

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.0301 0.0186 0.0489

pop1, vs. pop3, 0.1902 0.1835 0.2004

pop1, vs. pop4, 0.1815 0.1800 0.1837

40

pop5, vs. pop6, 0.1517 0.1325 0.1695

[1] Fst_WC

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.0147 0.0111 0.0194

pop1, vs. pop3, 0.0673 0.0623 0.0712

pop1, vs. pop4, 0.0674 0.0643 0.0703

pop5, vs. pop6, 0.0529 0.0506 0.0571

[1] Fit_WC

Mean Lower_CI Upper_CI

pop1, vs. pop2, 0.1039 0.0919 0.1189

pop1, vs. pop3, 0.1205 0.1109 0.1258

pop1, vs. pop4, 0.1104 0.1050 0.1203

pop5, vs. pop6, 0.0751 0.0664 0.0863

41

4.2 inCalc()

The general usage of this function is as follows:

inCalc(infile, outfile = NULL, gp = 3, bs_locus = FALSE,

bs_pairwise = FALSE, bootstraps = 0, plot = FALSE,

parallel = FALSE)

4.2.1 Arguments

infile Specifying the name of the ‘genepop’ (?) file from which
the statistics are to be calculated This file can be in either
the 3 digit of 2 digit format. The name must be a character
string.

outfile Allows useRs to specify a suffix for output folder and files.
Name must a character string enclosed in either “" or ‘’.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

bs_locus Gives useRs the option to bootstrap locus statistics. Results
will be written to .xlsx file by default if the package xlsx

is installed, and to a .png file if plot=TRUE. If xlsx is not
installed, results will be written to .txt files.

bs_pairwise Gives useRs the option to bootstrap statistics across all loci
for each pairwise population comparison. Results will be
written to a .xlsx file by default if the package xlsx is in-
stalled. If xlsx is not installed, results will be written to
.txt files.

42

Arguments cont.

bootstraps Determines the number of bootstrap iterations to be carried
out. The default value is bootstraps = 0, this is only valid
when all bootstrap options are false. There is no upper limit
on the number of bootstrap iterations, however very large
numbers of bootstrap iterations for pairwise calculations (>
1000) may take a long time to run for large data sets.

plot Optional .png image file of the plotted bootstrap results for
locus In if bs_locus = TRUE. The default option is plot =

FALSE.

parallel A logical argument specifying if computations should be run
in parallel on all available CPU cores. If parallel = TRUE,
batches of jobs will be distributed to all cores resulting in
faster completion.

43

4.2.2 Returned values

Values returned from inCalc are a single .xlsx workbook (if the package
xlsx is installed), containing between one to three worksheets, (In_allele_stats
by default or separate .txt files (if xlsx is unavailable). If plot = TRUE an
additional .png plot file will be written. An example of a .xlsx workbook and
a .png plot are given below:

Example of bootstrapped locus In results

44

Example of bootstrapped locus In results plot

45

Returned values cont.

For useRs wishing to carry out post analysis manipulations, all results from
inCalc are returned to the R environment. Depending on the bootstrap
options chosen these results include between one to three of the variables

below:

Allele_In A character matrix of allelic In values per locus along with
locus sums.

Allele.1 Allele.2 Allele.3 Allele.4

Locus1 0.0036 0.0036 0.0144 0.004

Locus2 0.0095 0.0015 0.0013

Locus3 0.0473 0.004 0.0098 0.0234

Locus4 0.0032 0.0029 0.0053 0.0135

Locus5 0.0111 0.0029 0.0042 0.0045

Locus6 0.0394 0.0379 0.0181 0.005

Locus7 0.0077 0.0131 0.0046 0.0087

Locus8 0.0157 0.0469 0.0054 0.0048

Locus9 0.0107 0.0075 0.0069 0.0054

Locus10 0.0038 0.0232 0.0091 0.0326

Allele.5 Sum

Locus1 0.0178 0.0581

Locus2 0.0123

Locus3 0.027 0.4482

Locus4 0.0109 0.08

Locus5 0.0044 0.3983

Locus6 0.0352 0.2839

Locus7 0.0166 0.1068

Locus8 0.0728

Locus9 0.0081 0.4571

Locus10 0.0295 0.4799

46

Each row of this results matrix represents each locus in the infile. Each
column represents the allele specific In per locus except the last column,
which contains the sum of allele In for each locus.

l_bootstrap A character matrix of locus In values as well as 95% con-
fidence intervals, calculated from bootstraps (Manly, 1997).
Returned when bs_locus = TRUE.

In Lower_95CI Upper_95CI

Locus1 0.0627 0.0434 0.0764

Locus2 0.0176 0.0092 0.0294

Locus3 0.4878 0.4797 0.4964

Locus4 0.0870 0.0675 0.1180

Locus5 0.4702 0.4545 0.4816

Locus6 0.3215 0.2931 0.3404

Locus7 0.1148 0.1033 0.1211

Locus8 0.0891 0.0706 0.1019

Locus9 0.5489 0.5307 0.5743

Locus10 0.5286 0.5136 0.5512

Each row in this matrix represents each locus. The first column is the locus
sum In as in the final column in Allele_In. The second and third columns
represent the lower and upper confidence intervals per locus respectively.

47

PW_bootstrap A list of matrices for each pairwise population comparison
of bootstrapped pairwise locus In values.

[1] pop1, vs. pop2,

In Lower_95CI Upper_95CI

Locus1 0.0337 0.0292 0.0381

Locus2 0.0210 0.0118 0.0314

Locus3 0.1081 0.1017 0.1131

Locus4 0.0600 0.0330 0.0832

Locus5 0.1298 0.1182 0.1449

[1] pop1, vs. pop3,

In Lower_95CI Upper_95CI

Locus1 0.0340 0.0261 0.0408

Locus2 0.0156 0.0014 0.0330

Locus3 0.3344 0.3188 0.3437

Locus4 0.1161 0.0741 0.1617

Locus5 0.2973 0.2762 0.3292

[1] pop1, vs. pop4,

In Lower_95CI Upper_95CI

Locus1 0.0277 0.0189 0.0380

Locus2 0.0084 0.0049 0.0122

Locus3 0.3277 0.3251 0.3316

Locus4 0.0500 0.0309 0.0816

Locus5 0.3122 0.2835 0.3289

[1] pop1, vs. pop5,

In Lower_95CI Upper_95CI

Locus1 0.0697 0.0683 0.0715

Locus2 0.0117 0.0096 0.0133

Locus3 0.4010 0.3857 0.4228

Locus4 0.0731 0.0381 0.1109

Locus5 0.2869 0.2185 0.3562

[1] pop1, vs. pop6,

In Lower_95CI Upper_95CI

Locus1 0.0286 0.0197 0.0422

Locus2 0.0163 0.0010 0.0280

Locus3 0.3524 0.3353 0.3747

Locus4 0.0380 0.0287 0.0446

Locus5 0.2543 0.2244 0.2764

48

4.3 readGenepop()

The general usage of readGenepop is:

readGenepop(infile = NULL, gp = 3, bootstrap = FALSE)

4.3.1 Arguments

infile Specifying the name of the ‘genepop’ (?) file from which
the statistics are to be calculated This file can be in either
the 3 digit of 2 digit format. The name must be a character
string.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

bootstrap A logical argument indicating whether the infile should
be sampled with replacement and all returned parameters
calculated from this bootstrapped data.

4.3.2 Returned values

npops The number of population samples in infile.

nloci The number of loci in infile.

pop_alleles A list of two matrices per population. Each matrix per
population contains haploid allele designations.

pop_list A list of matrices (n = npops) containing the diploid geno-
types of individuals per locus.

loci_names A character vector containing the names of loci from infile.

49

pop_pos A numeric vector or the row index locations of the first in-
dividual per population in infile.

pop_sizes A numeric vector of length npops containing the number of
individuals per population sample in infile.

allele_names A list of npops lists containing nloci character vectors of
alleles names per locus. Useful for identifying unique alleles.

all_alleles A list of nloci character vectors of all alleles observed across
all population samples in infile.

allele_freq A list containing nloci matrices containing allele frequen-
cies per alleles per population sample.

raw_data An unaltered data frame of infile.

loci_harm_N A numeric vector of length nloci, containing the harmonic
mean number of individuals genotyped per locus.

n_harmonic A numeric value representing the harmonic mean of npops.

pop_names A character vector containing a six character population
sample name for each population in infile (the first six
characters of the first individual).

indtyp A list of length nloci containing character vectors of length
npops, indicating the number of individuals per population
sample typed at each locus.

nalleles A vector of the total number of alleles observed at each
locus.

bs_file A dataframe/genpop object of bootstrapped data. Returned
if bootstrap = TRUE.

obs_all... A list of matrices of the observed number of allele occur-
rences per population.

50

4.4 corPlot()

The general usage of corPlot is:

corPlot(x,y)

4.4.1 Arguments

x The object returned by the function readGenepop.

y The object returned by the function divPart.

4.4.2 Returned values

plot A console plot is automatically created using this functions.
As the plot is intended for exploratory purposes, it is not
written to file. UseRs can save the lot manually if required.
below is an example of the returned plot.

51

Returned plot from the function corPlot

The plot depicts the relationship between the estimated statistics calculated
by divPart and the number of alleles per locus. Lines represents the line of
best fit. Pearson’s product-moment correlation coefficient is also provided.

52

4.5 difPlot()

The general usage of difPlot is:

difPlot(x, outfile = NULL, interactive = FALSE)

4.5.1 Arguments

x The object returned by the function divPart.

outfile A folder name or directory indicating where interactive plots
should be written. It is advisable, though not essential that
this argument be set to the same outfile argument as for
divPart. This argument is only valid when interactive =

TRUE. If no argument is given for outfile, while interactive
= TRUE, plot files will be written to the working directory.
Folder name should be given as a character string.

interactive A logical argument indicating whether useRs would like to
plot their results to interactive .html files produced by sendplot.
TRUE indicates that results should be written to file, whereas
FALSE indicates that results should be plotted to the R
graphics device.

4.5.2 Returned values

Plot Depending on the argument given for interactive, either a
single plot will be passed to the R graphic device (i.e. when
interactive = FALSE) or 3-4 .html files will be written to
a user defined location.

53

Returned plot from the function difPlot when
interactive = FALSE

54

One of the returned plots from the function difPlot
when interactive=TRUE

As can be seen, the plots produced when interactive = TRUE are much
more useful than when interactive = FALSE, due to useRs ability to identify
population comparisons of interest. These plots contain tool-tip information,
courtesy of the sendplot package.

55

4.6 chiCalc

The general usage of chiCalc is:

chiCalc(infile = NULL, outfile = NULL, gp = 3, minFreq = NULL)

4.6.1 Arguments

infile Specifying the name of the ‘genepop’ (?) file from which
the statistics are to be calculated This file can be in either
the 3 digit of 2 digit format. The name must be a character
string.

outfile A character string specifying the name given to an output
file, containing analysis results. If this argument is passed
as NULL, no file will be written.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

minFreq A threshold minimum value or vector of values, below which
alleles are not included in the analysis.

4.6.2 Returned values

chi table A character matrix containing locus chi-square values, de-
grees of freedom, p.values and significance indicators, as well
as overall values.

56

4.7 divOnline

The general usage of divOnline is:

divOnline()

By executing the above command, a web browser (system default) will open
with the divOnline application running. Users can read file from their system
into the app and choose many of the analysis options. Most analysis results
can be downloaded to .txt files.

4.8 fstOnly

The general usage of fstOnly is:

fstOnly(infile = NULL, outfile = NULL, gp = 3, bs_locus = FALSE,

bs_pairwise = FALSE, bootstraps = 0, parallel = FALSE)

4.8.1 Arguments

infile Specifying the name of the ‘genepop’ (?) file from which
the statistics are to be calculated This file can be in either
the 3 digit of 2 digit format. The name must be a character
string.

outfile Allows useRs to specify a suffix for output folder and files.
Name must a character string enclosed in either “" or ‘’.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

57

bs_locus Gives useRs the option to bootstrap locus statistics. Results
will be written to .xlsx file by default if the package xlsx

is installed, and to a .png file if plot=TRUE. If xlsx is not
installed, results will be written to .txt files.

bs_pairwise Gives useRs the option to bootstrap statistics across all loci
for each pairwise population comparison. Results will be
written to a .xlsx file by default if the package xlsx is in-
stalled. If xlsx is not installed, results will be written to
.txt files.

bootstraps Determines the number of bootstrap iterations to be carried
out. The default value is bootstraps = 0, this is only valid
when all bootstrap options are false. There is no upper limit
on the number of bootstrap iterations, however very large
numbers of bootstrap iterations for pairwise calculations (>
1000) may take a long time to run for large data sets.

parallel A logical argument specifying if computations should be run
in parallel on all available CPU cores. If parallel = TRUE,
batches of jobs will be distributed to all cores resulting in
faster completion.

4.8.2 Returned values

locus A list contain two matrices, FST and FIT . Each matrix con-
tains the actual calculated statistic along with their respec-
tive 95% confidence intervals per locus, as well as a global
estimate across all population samples and loci. This result
is only returned if bs_locus = TRUE.

pairwise A list contain two matrices, FST and FIT . Each matrix
contain the actual and respective 95% confidence intervals
across loci for each pairwise population comparison. This
result is only returned when bs_pairwise = TRUE.

58

4.9 divRatio

The general usage of divRatio is:

divRatio(infile = NULL, outfile = NULL, gp = 3, pop_stats = NULL,

refPos = NULL, bootstraps = 1000, parallel = FALSE)

4.9.1 Arguments

infile A character string argument specifying the name of either a
3 digit or 2 digit genepop file containing the raw genotypes
of at least the reference population sample.

outfile A character string specifying a prefix name for an automat-
ically generated results folder, to which results file will be
written.

gp Specifies the digit format of the infile. Either 3 (default)
or 2.

pop_stats A character string indicating the name of the population
statistics data frame file. This argument is required if only
raw data for the reference population are give in infile.
The data frame should be structured in a specific way. An
example can be seen by typing data(pop_stats) into the
console. The validloci column is only required if mean al-
lelic richness and expected heterozygosity for populations of
interest have been calculated from loci for which data is not
present in the reference population. This column should
contain a single character string of common loci between
each population sample and the reference population sam-
ple.

refPos A numeric argument specifying the position of the refer-
ence population in infile. The argument is only valid
when raw genotype data has been provided for the refer-
ence population sample and all other populations of interest
and pop_stats is NULL.

59

bootstraps Specifies the number of times the reference population should
be resampled when calculating the sample size standardised
allelic richness and expected heterozygosity for calculating
the diversity ratios. The larger the number of bootstraps
the longer the analysis will take to run. As an indication of
runtime, running divRatio on the Big_data data set (type
?Big_data for details), takes 10min 42s on a Toshiba Satel-
lite R830 with 6GB RAM, and an Intel Core i5 - 2435M
CPU running Linux.

parallel A logical argument indicating whether the analysis should
make use of all available cores on the users system.

4.9.2 Returned values

All results will be written to a user defined folder, providing an argument is
passed for ’outfile’. Results will be written to .xlsx files if the package xlsx

and its dependencies are installed, or a .txt file otherwise.

A data frame containing the following variables is also returned to the R

console:

pop The names of each population of interest, including the ref-
erence population.

n The sample size of each population

alr Mean allelic richness across loci

alrSE The standard error of the allelic richness across loci

He Mean expected heterozygosity across loci

HeSE Standard error of expected heterozygosity across loci

alrRatio The ratio of the allelic richness of the subject population
sample and the sample size standardised reference popula-
tion allelic richness

60

alrSERation The standard error of divisions for the allelic richness ratio

heRatio The ratio of expected heterozygosity between the standard-
ised reference population sample and subject population
samples

heSEratio The standard error of divisions for the expected heterozy-
gosity ratio

4.10 bigDivPart()

The general usage of this function is as follows:

bigDivPart(infile = NULL, outfile = NULL, WC_Fst = FALSE,

format = NULL)

4.10.1 Arguments

infile Specifies the name of the ‘genepop’ (?) file from which the
statistics are to be calculated. This file can be in either the
3 digit of 2 digit format. The name must be a character
string.

outfile Allows useRs to specify a prefix for an output folder. Name
must a character string enclosed in either “” or ‘’.

WC_Fst A logical indication as to whether Weir and Cockerham’s,
1984 F-statistics should be calculated. This option will in-
crease analysis time.

format A character string specifying the preferred output format
for calculated results. The arguments txt or xlsx are valid
when outfile is not NULL.

61

4.10.2 Returned values

standard See divPart description for details.

estimates See divPart description for details.

4.11 microPlexer

The general usage of this function is as follows:

microPlexer()

By typing the above command into the R console, a web application will be
launched in the system’s default internet browser. At initiation, the applica-
tion appears as the figure below:

62

After uploading input data and making the desired parameter selections, mul-
tiplex group plots will be displayed as below. These plots can be downloaded
to a single .PDF workbook for further inspection.

4.12 arp2gen

The general usage of this function is as follows:

arp2gen(infile)

Where infile is a character string pointing to an Arlequin genotype file.
The infile argument can simply be the file name if the file is located in the
current working directory, otherwise an absolute/relative path must be given.

63

4.13 divMigrate

The general usage of this function is as follows:

divMigrate(infile = NULL, stat = c("gst", "d_jost"))

Where infile is either an file name or a path to a file. The file should be
in either the Arlequin genotype file format (.arp) or the genepop file format
used in other diveRsity functions. The argument stat determines which
statistic (GST or DJost) should be used to calculate the relative migration
matrix.

4.14 haploDiv

The general usage of this function is as follows:

haploDiv(infile = NULL, outfile = NULL, pairwise = FALSE,

bootstraps = 0)

Where infile is the file name or directory location of a haploid genotype
genepop file, outfile is the prefix name to be used for output .txt files,
pairwise indicates whether a pairwise matrix of Weir & Cockerham’s θ
should be calculated, and bootstraps indicates whether bootstrapped 95%
confidence limits should be estimated for each pairwise comparison.

Details
If the outfile argument is NULL, no results will be written to file. All
results are returned to the R workspace. To calculate 95% confidence limits,
bootstraps must be > 0, and pairwise must be TRUE.

64

5 Examples

In this section worked examples of each of the three functions documented
above are given. The examples will employ the test data set distributed with
diveRsity, Test_data. Care has been take to ensure that examples can
be used independently, thus some processes are repeated for each function
examples, such as loading Test_data into the R session.
N.B. All examples assume that you have already downloaded, installed and
loaded diveRsity.

5.1 divPart

This example is specific to the function divPart. It has been written to
demonstrate way in the which the function may be used. It has not been
written as an exhaustive demonstration.

5.1.1 Setting your working directory

In any R session it is sensible to have a folder on your system where any output
files etc. are to be written. When using diveRsity, it is recommended that
you set your working directory to the location of your input file.

To set your working directory, use:

setwd("mypath")

Simply replace ‘mypath’ with your actual file path. Make sure to use ‘/’
or ‘\\’ to separate directory levels (e.g. c:/Users/Kevin/etc., or c:\\Users
\\Kevin \\etc.). R does not recognise the ‘\’ symbol for pathways.

65

5.1.2 Loading Test_data

Test_data is only required for these examples. UseRs should replace the ar-
gument ‘infile = Test_data’ with ‘infile = "myfilename"’ when wish-
ing to analyse their own data set.

data(Test_data, package = "diveRsity")

This command loads Test_data into the current R session.

66

5.1.3 Running divPart

To run divPart, where locus bootstrap and pairwise bootstrap results are
returned without plotting, use the following:

div_results <- divPart(infile = Test_data, outfile = "Test",

gp = 3, pairwise = TRUE,

WC_Fst = TRUE, bs_locus = TRUE,

bs_pairwise = TRUE, bootstraps = 100,

plot = FALSE, parallel = TRUE)

N.B. in this example bootstraps = 100 to reduce the time taken to run the
example.
When the analysis has finished a folder named Test-[diveRsity] should
be written to your working directory. This folder will contain either a
single .xlsx workbook named ‘[divPart].xlsx ’ (if xlsx is installed), or four
.txt files named, ‘Standard-stats[divPart].txt ’, ‘Estimated-stats[divPart].txt ’,
‘Locus-bootstrap[divPart].txt ’ and ‘Pairwise-bootstrap[divPart].txt ’ if it is not.

5.1.4 Accessing your results within the R session

All of the results written to file are also assigned to the variable test_results.
To access these results it is useful to understand the structure of the objects
test_results contains. Although the objects have been described in the
Returned values section for divPart, a further visual description will be
provided here.
Using the following will show you the names of all objects within test_results:

names(div_results)

[1] "standard" "estimate" "pairwise"

[4] "meanPairwise" "bs_locus" "bs_pairwise"

67

To access an object within test_results you can use the extract operator
‘$’. For example, if you want to know what type of object bs_locus is, use:

typeof(div_results$bs_locus)

[1] "list"

From the Returned values section for divPart, it is known that bs_locus
is indeed a list containing six matrices. This object can be explored further
using:

names(div_results$bs_locus)

[1] "Gst" "G_hed_st" "D_Jost"

[4] "Gst_est" "G_hed_st_est" "D_Jost_est"

[7] "Fst_WC" "Fit_WC"

Each of the named objects within test_results$bs_locus are known to be
matrices from above. This means that we can use matrix indexing to access
any of the information within any of the matrices. In R, to access a specific
value within a matrix, we only need to know the row and column that the
value is in. If we wanted to access a value that lies in the 5th row and the 1st

column the following command could be used:

mymatrix[5, 1]

The first digit within the ‘[]’ (i.e. before the ‘,’) in R always refers to the
row location of a value and the second to the column location.
It is possible to access more than one value in a matrix using indexing. If
we wanted to look at the first 10 rows of test_resultsbs_locusGst, we
would use the following code.

68

div_resultsbs_locusGst[1:10,]

Mean Lower_CI Upper_CI

Locus1 0.0342 0.0237 0.0464

Locus2 0.0153 0.0067 0.0282

Locus3 0.0824 0.0726 0.0925

Locus4 0.0479 0.0438 0.0506

Locus5 0.0408 0.0368 0.0458

Locus6 0.0475 0.0365 0.0537

Locus7 0.0408 0.0304 0.0501

Locus8 0.0941 0.0502 0.1249

Locus9 0.0321 0.0302 0.0353

Locus10 0.0705 0.0667 0.0738

By leaving the column index blank (i.e. no numbers after the ‘,’), all columns
are returned. Similarly, if we wanted to view all values in the first column of
test_resultsbs_locusGst, we would use:

div_resultsbs_locusGst[,1]

The other values returned by divPart can be accessed in a similar fashion.
When you understand how to access the results within R, many post-analysis
processes can be used such as correlations, regressions and plotting.

5.2 inCalc

This example is specific to the function inCalc. It has been written to
demonstrate way in the which the function may be used. It has not been
written as an exhaustive demonstration.

69

5.2.1 Setting your working directory

In any R session it is sensible to have a folder on your system where any output
files etc. are to be written. When using diveRsity, it is recommended that
you set your working directory to the location of your input file.

To set your working directory, use:

setwd("mypath")

Simply replace ‘mypath’ with your actual file path. Make sure to use ‘/’ or
‘\\’ to separate directory levels (e.g. c:/Users/Kevin/etc., or c:\\Users\\Kevin
\\etc.). R does not recognise the ‘\’ symbol for pathways.

5.2.2 Loading Test_data

Test_data is only required for these examples. UseRs should replace the ar-
gument ‘infile = Test_data’ with ‘infile = "myfilename"’ when wish-
ing to analyse their own data set.

data(Test_data, package = "diveRsity")

This command loads Test_data into the current R session.

5.2.3 Running inCalc

To run inCalc, where locus bootstrap and pairwise bootstrap results are
returned without plotting, use the following:

70

in_results <- inCalc (infile = Test_data, outfile = "Test",

gp = 3, bs_locus = TRUE,

bs_pairwise = TRUE, bootstraps = 100,

plot = FALSE, parallel = TRUE)

N.B. in this example bootstraps = 100 to reduce the time taken to run the
example.
When the analysis has finished a folder named Test-[diveRsity] should
be written to your working directory. This folder will contain either a sin-
gle .xlsx workbook named ‘[].xlsx ’ (if xlsx is installed), or three .txt files
named, ‘Allele-In[inCalc].txt ’, ‘Overall-bootstrap[inCalc].txt ’ and ‘Pairwise-
bootstrap[inCalc].txt ’ if it is not.

5.2.4 Accessing your results within the R session

All of the results written to file are also assigned to the variable test_results.
To access these results it is useful to understand the structure of the objects
test_results contains. Although the objects have been described in the
Returned values section for inCalc, a further visual description will be
provided here.

Using the following will show you the names of all objects within
test_results:

names(in_results)

[1] "Allele_In" "l_bootstrap" "PW_bootstrap"

To access an object within test_results you can use the extract operator
‘$’. For example, if you want to know what type of object PW_bootstrap is,
use:

71

typeof(in_results$PW_bootstrap)

[1] "list"

From the Returned values section for inCalc, it is known that PW_bootstrap
is indeed a list of matrices of bootstrapped locus results for each pairwise
comparison. To find the names of the matrices within PW_bootstraps, use:

names(in_results$PW_bootstrap)

[1] "pop1, vs. pop2," "pop1, vs. pop3,"

[3] "pop1, vs. pop4," "pop1, vs. pop5,"

[5] "pop1, vs. pop6," "pop2, vs. pop3,"

[7] "pop2, vs. pop4," "pop2, vs. pop5,"

[9] "pop2, vs. pop6," "pop3, vs. pop4,"

[11] "pop3, vs. pop5," "pop3, vs. pop6,"

[13] "pop4, vs. pop5," "pop4, vs. pop6,"

[15] "pop5, vs. pop6,"

From this we see that PW_bootstrap contains 15 matrices for each of the 15
possible pairwise comparisons from the six population samples in Test_data.
We can explore any of these matrices using matrix indexing. In R, to access
a specific value within a matrix, we only need to know the row and column
that the value is in (i.e. its index). If we wanted to access a value that lies
in the 5th row and the 1st column the following command could be used:

mymatrix[5, 1]

The first digit within the ‘[]’ (i.e. before the ‘,’) in R always refers to the
row location of a value and the second to the column location.
To look at the first 3 rows of the comparison between pop1 and pop2 in
PW_bootstrap, we would use the following code.

72

in_results$PW_bootstrap[["pop1, vs. pop2,"]][1:3,]

In Lower_95CI Upper_95CI

Locus1 0.0337 0.0292 0.0381

Locus2 0.0210 0.0118 0.0314

Locus3 0.1081 0.1017 0.1131

By leaving the column index blank (i.e. no numbers after the ‘,’), all columns
are returned. Similarly, if we wanted to view all values in the first column of
test_results$PW_bootstrap[["pop1, vs. pop2,"]], we would use:

in_results$PW_bootstrap[["pop1, vs. pop2,"]][,1]

The other values returned by inCalc can be accessed in a similar fashion.
When you understand how to access the results within R, many post-analysis
processes can be used such as correlations, regressions and plotting.

5.3 readGenepop

This example is specific to the function readGenepop. It has been written
to demonstrate way in the which the function may be used. It has not been
written as an exhaustive demonstration.

5.3.1 Setting your working directory

In any R session it is sensible to have a folder on your system where any output
files etc. are to be written. When using diveRsity, it is recommended that
you set your working directory to the location of your input file.
To set your working directory, use:

73

setwd("mypath")

Simply replace ‘mypath’ with your actual file path. Make sure to use ‘/’ or
‘\\’ to separate directory levels (e.g. c:/Users/Kevin/etc., or c:\\Users\\Kevin
\\etc.). R does not recognise the ‘\’ symbol for pathways.

5.3.2 Loading Test_data

Test_data is only required for these examples. UseRs should replace the ar-
gument ‘infile = Test_data’ with ‘infile = "myfilename"’ when wish-
ing to analyse their own data set.

data(Test_data, package = "diveRsity")

This command loads Test_data into the current R session.

5.3.3 Running readGenepop

To run readGenepop without producing a bootstrap file, use:

gp_res <- readGenepop(infile = Test_data, gp = 3,

bootstrap = FALSE)

5.3.4 Accessing your results within the R session

The readGenepop function does not write anything to file. Instead results
are only returned to the R environment.

74

To explore what these results are, use:

names(gp_res)

[1] "npops" "nloci"

[3] "pop_alleles" "pop_list"

[5] "loci_names" "pop_pos"

[7] "pop_sizes" "allele_names"

[9] "all_alleles" "allele_freq"

[11] "raw_data" "loci_harm_N"

[13] "n_harmonic" "pop_names"

[15] "indtyp" "nalleles"

[17] "obs_allele_num"

For a description of each of these objects see section 4.3.2.

5.3.5 Applications for readGenepop

readGenepop is not like the other two function in that the results returned
have no particularly informative format. Instead the results are the building
blocks to developing other analysis methods for useRs who may not have the
necessary programming skills to extract such information from genetic data.
In this section two examples of applications of readGenepop are provided.
UseRs are encouraged to use the function to develop their own methods.

‘Ad hoc’ investigation of locus mutation model

Understanding the likely mutation model a particular microsatellite locus
follows is important for a range of analyses which make explicit assumptions.
One way to ensure your data does not violate these assumption is to visualise

75

the allele distribution at loci and assess whether the pattern fits the expec-
tation of a given model.
readGenepop returns an object pop_alleles which contains npops x 2 ma-
trices. Each matrix contains a haploid genotype per individual per locus, and
every two matrices correspond to a single population sample. For example
matrices 1 and 2 correspond to population sample 1, matrices 3 and 4 corre-
spond to population sample 2 and so on. Using this object, it is possible to
plot the allele size distribution to assess it allele fragments fit say the single
step mutation model (SSM).

locus18_pop1 <- c(gp_res$pop_alleles[[1]][[1]][,18],

gp_res$pop_alleles[[2]][[1]][,18])

sort alleles by size

allele_sort <- order(locus18_pop1, decreasing = FALSE)

#plot

plot(locus18_pop1[allele_sort], ylab = "allele size", col="blue",

pch = 16)

76

0 20 40 60 80

24
0

26
0

28
0

30
0

32
0

Index

al
le

le
 s

iz
e

From this figure we could conclude that locus 18 in population 1 is likely to
follow SSM given that allele size increases in a generally regular fashion. Any
gaps are also a multiple of the repeat motif length.
Although this example is basic and does not have a rigorous statistical ba-
sis, the value of such data exploration is clear. Indeed, useRs with suitable
know-how could likely easily develop statistically valid model tests for this
particular example.

77

5.3.6 A hypothetical example

This example is for illustrative purposes.
Say for some reason, we were interested in assessing the sampling properties
of the number of alleles at a particular locus, readGenepop is ideal to do
this. We will use Test_data for this example and the number of bootstrap
iterations will be 1000. We know that Test_data contains 37 loci so we
will have to be able to count the number of alleles for each of these in each
bootstrap iteration.

The code

Define a results matrix with 37 columns (loci) and

1000 rows (bootstraps)to record allele number per locus

num_all <- matrix(rep(0,(37*10)), ncol = 37)

Now using readGenepop we can fill the matrix

bs<-10

for(i in 1:bs){

first produce a bootstrap file

x <- readGenepop(infile = Test_data, gp = 3,

bootstrap = TRUE)

Now record the number of alleles at each locus

num_all[i,] <- x$nalleles

}

Now we can use this data to calculate the mean

number of alleles per locus as well at their

95% confidence intervals

mean_num <- colMeans(num_all)

lower<-vector()

upper<-vector()

for(i in 1:ncol(num_all)){

78

lower[i] <- mean_num[i] - (1.96 * sd(num_all[,i]))

upper[i] <- mean_num[i] + (1.96 * sd(num_all[,i]))

}

Now we can create a data frame of these results

bs_res <- data.frame(mean_num, lower, upper)

bs_res[1:10,]

mean_num lower upper

1 6.0 4.693333 7.306667

2 3.0 3.000000 3.000000

3 17.9 17.280194 18.519806

4 7.5 5.382958 9.617042

5 35.0 32.933979 37.066021

6 14.0 14.000000 14.000000

7 8.6 7.587860 9.612140

8 4.0 4.000000 4.000000

9 41.3 39.440581 43.159419

10 32.8 30.998884 34.601116

This is perhaps not the most efficient way to do this kind of analysis but it
does make it more accessible to non-programmers.

79

5.4 Running divPart in batch (using parallel)

Application of batch analyses

Often, for a number of reasons, it may be necessary to analyse many separate
genepop file. Simulation studies and Approximate Bayesian Computation
(ABC) are two examples of where this is commonly done. Below is a hypo-
thetical example, demonstrating how this could be done using diveRsity

The hypothetical experiment

Imagine that we are interested in measuring some group of parameters for a
group of populations simulated under various evolutionary models. In this
example we would like to estimate global Gst, θ, G′

st and DJost for a group
of population samples evolved under 10 distinct models. However, because
we are interested in comparing the distributions of each of these parameters
under each of the 10 models, we have replicated each simulation 1000 times
(giving a total of 10,000 genepop files to be analysed). Helpfully, our 1000
genepop files per evolutionary model have been organised into 10 separate
folders (1 per model). The directory tree might look something like this:

80

The workflow to analyse these files in parallel (say on 10 CPUs) is as follows:

• Determine the names and locations of all files to be analysed

• Set up the CPU cluster for all R processes (using the doParallel &
parallel packages).

• Pipe these file names to the divPart function and return the parame-
ters required (i.e. global Gst, θ, G′

st & DJost).

• Return the results in a convenient format to allow for down stream
investigations.

The annotated code is below:

81

load the diveRsity package

library("diveRsity")

We can specify the names of our simulation folders in two ways

manually

fold_names <- paste("sim", 1:10, sep = "")

or

automatically (when there is only a single level below the

top directory)

fold_names <- list.dirs(full.names = TRUE, recursive = FALSE)

Now we can determine the names of all genepop files in each folder

file_names <- lapply(fold_names, function(x){

files <- dir(path = paste(x, "/", sep = ""), pattern = "*.gen",

full.names = TRUE)

return(files) })

file_names will be a list of length 10. Each element will contain

the names of all .gen files within the respective simulation folder

Before we are ready to run the main analyses, we should set up

the parallel environment

load the doParallel package

library("doParallel")

set up a cluster of 10 CPUs (one for each batch of files)

cl <- makeCluster(10)

Export the 'divPart' function to the cluster cores

clusterExport(cl, "divPart", envir = environment())

Now we can run the main analyses

results <- parLapply(cl, file_names, function(x){

sim_res <- sapply(x, function(y){

out <- divPart(infile = y, gp = 3, WC_Fst = TRUE)

return(out$estimate[nrow(out$estimate), 4:7])

})

return(t(sim_res)) # transpose sim_res

})

82

This will generate a list (of length 10), with each element

containing a matrix of 1000 rows (1 per file) and 4 columns

(1 for each diversity statistic)

Example of output for simulation 1

G_st_est G_hed_st_est D_Jost_est Fst_WC

0.3905 0.8938 0.8256 0.4010

0.5519 0.8719 0.6986 0.6031

0.5924 0.8880 0.7092 0.6096

...

...

these results could then be piped to further analyses or

visualisation tools

83

References

Chao, A., Jost, L., Chiang, S., Jiang, Y.H. & Chazdon, R.L. (2008) A two-
stage probabilistic approach to multiple-community similarity indices. Bio-
metrics, 64, 1178–1186.

Dragulescu, A.A. (2012) xlsx: Read, write, format Excel 2007 and Excel
97/2000/XP/2003 files. R package version 0.4.2.

Gaile, D.P., Shepherd, L.A., Sucheston, L., Bruno, A. & Manly, K.F. (2012)
sendplot: Tool for sending interactive plots with tool-tip content. R package
version 3.8.10.

Hedrick, P. (2005) A standardized genetic differentiation measure. Evolution,
59, 1633–1638.

Jost, L. (2008) GST and its relatives do not measure differentiation. Molecular
Ecology, 17, 4015–4026.

Keenan, K., McGinnity, P., Cross, T.F., Crozier, W.W. & ProdÃűhl, P.A.
(2013) diveRsity: An R package for the estimation and exploration of
population genetics parameters and their associated errors. Methods in
Ecology and Evolution, pp. n/a–n/a.

Lemon, J. (2006) Plotrix: a package in the red light district of r. R News, 6,
8–12.

Nei, M. (1973) Analysis of gene diversity in subdivided populations. Pro-
ceedings of the National Academy of Sciences, 70, 3321–3323.

Nei, M. & Chesser, R. (1983) Estimation of fixation indices and gene diver-
sities. Annals of Human Genetics, 47, 253–259.

O’Reilly, P.T., Canino, M.F., Bailey, K.M. & Bentzen, P. (2004) Inverse
relationship between F and microsatellite polymorphism in the marine fish,
walleye pollock (Theragra chalcogramma): implications for resolving weak
population structure. Molecular ecology, 13, 1799–814.

R Development Core Team (2011a) R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0.

84

R Development Core Team (2011b) R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0.

Revolution Analytics (2012a) doParallel: Foreach parallel adaptor for the
parallel package. R package version 1.0.1.

Revolution Analytics (2012b) foreach: Foreach looping construct for R. R
package version 1.4.0.

Revolution Analytics (2012c) iterators: Iterator construct for R. R package
version 1.0.6.

Rosenberg, N.A., Li, L.M., Ward, R. & Pritchard, J.K. (2003) Informative-
ness of genetic markers for inference of ancestry. The American Journal
of Human Genetics, 73, 1402–1422.

RStudio & Inc. (2012) shiny: Web Application Framework for R. R package
version 0.2.3.

Skrbinšek, T., Jelenčič, M., Waits, L., Potočnik, H., Kos, I. & Trontelj, P.
(2012) Using a reference population yardstick to calibrate and compare
genetic diversity reported in different studies: an example from the brown
bear. Heredity, 109, 299–305.

Sundqvist, L., Zackrisson, M. & Kleinhans, D. (2013) Directional genetic
differentiation and asymmetric migration.

Weir, B. & Cockerham, C. (1984) Estimating F-statistics for the analysis of
population structure. Evolution, 38, 1358–1370.

Whitlock, M. & McCauley, D. (1999) Indirect measures of gene flow and
migration: FST 6= 1/(4Nm+ 1). Heredity, 82, 117–25.

85

6 Reproducibility

R version 3.3.3 (2017-03-06)

Platform: x86_64-apple-darwin16.4.0 (64-bit)

Running under: macOS Sierra 10.12.3

##

attached base packages:

[1] stats graphics grDevices utils

[5] datasets methods base

##

other attached packages:

[1] diveRsity_1.9.89 knitr_1.15.1

##

loaded via a namespace (and not attached):

[1] splines_3.3.3 ellipse_0.3-8

[3] network_1.13.0 gtools_3.5.0

[5] Formula_1.2-1 shiny_1.0.0

[7] assertthat_0.1 highr_0.6

[9] stats4_3.3.3 latticeExtra_0.6-28

[11] d3Network_0.5.2.1 pbivnorm_0.6.0

[13] backports_1.0.4 lattice_0.20-34

[15] quadprog_1.5-5 digest_0.6.11

[17] RColorBrewer_1.1-2 checkmate_1.8.2

[19] ggm_2.3 minqa_1.2.4

[21] colorspace_1.3-2 httpuv_1.3.3

[23] htmltools_0.3.5 Matrix_1.2-8

[25] plyr_1.8.4 psych_1.6.12

[27] xtable_1.8-2 corpcor_1.6.8

[29] scales_0.4.1 glasso_1.8

[31] sna_2.4 whisker_0.3-2

[33] jpeg_0.1-8 fdrtool_1.2.15

[35] lme4_1.1-12 huge_1.2.7

[37] arm_1.9-3 htmlTable_1.8

[39] tibble_1.2 ggplot2_2.2.1

[41] nnet_7.3-12 lazyeval_0.2.0.9000

[43] mnormt_1.5-5 mime_0.5

[45] survival_2.40-1 magrittr_1.5

[47] statnet.common_3.3.0 evaluate_0.10

[49] nlme_3.1-131 MASS_7.3-45

[51] foreign_0.8-67 tools_3.3.3

[53] data.table_1.10.0 stringr_1.1.0

[55] munsell_0.4.3 cluster_2.0.5

86

[57] sem_3.1-8 grid_3.3.3

[59] nloptr_1.0.4 rjson_0.2.15

[61] igraph_1.0.1 lavaan_0.5-22

[63] base64enc_0.1-3 boot_1.3-18

[65] mi_1.0 gtable_0.2.0

[67] abind_1.4-5 R6_2.2.0

[69] reshape2_1.4.2 qgraph_1.4.1

[71] gridExtra_2.2.1 Hmisc_4.0-2

[73] stringi_1.1.2 matrixcalc_1.0-3

[75] parallel_3.3.3 Rcpp_0.12.9

[77] rpart_4.1-10 acepack_1.4.1

[79] png_0.1-7 coda_0.19-1

7 Acknowledgements

Many thanks to all of my colleagues for testing code and reporting bugs. In
particular, I thank Mark Ravinet, Erin Landguth, Mariah Meek, Andy Ja-
sonowicz and Kristina Cammen for reporting important bugs and for making
useful suggestions for the improvement of the package. Special thanks goes to
my PhD supervisor, Paulo A. Prodöhl, for many useful insights into the use
and applications of diveRsity, as well as avenues of future developments.

87

	Introduction
	About R
	About diveRsity
	How to cite
	What's new?

	Setup
	Installing R
	Installing diveRsity
	Installing optional enhancer packages
	Loading diveRsity

	Function details
	fastDivPart()
	Standard formulae
	Estimator formulae
	Bootstrapping

	inCalc()
	readGenepop()
	corPlot()
	difPlot()
	chiCalc
	divOnline
	fstOnly
	divRatio
	bigDivPart
	microPlexer
	arp2gen
	divMigrate
	haploDiv

	Function Usage
	divPart()
	Arguments
	Returned values

	inCalc()
	Arguments
	Returned values

	readGenepop()
	Arguments
	Returned values

	corPlot()
	Arguments
	Returned values

	difPlot()
	Arguments
	Returned values

	chiCalc
	Arguments
	Returned values

	divOnline
	fstOnly
	Arguments
	Returned values

	divRatio
	Arguments
	Returned values

	bigDivPart()
	Arguments
	Returned values

	microPlexer
	arp2gen
	divMigrate
	haploDiv

	Examples
	divPart
	Setting your working directory
	Loading Test_data
	Running divPart
	Accessing your results within the R session

	inCalc
	Setting your working directory
	Loading Test_data
	Running inCalc
	Accessing your results within the R session

	readGenepop
	Setting your working directory
	Loading Test_data
	Running readGenepop
	Accessing your results within the R session
	Applications for readGenepop
	A hypothetical example

	Running divPart in batch (using parallel)

	Reproducibility
	Acknowledgements

