Package ‘dlookr’

April 11, 2022
Type Package
Title Tools for Data Diagnosis, Exploration, Transformation
Version 0.5.6
Date 2022-04-10

Description A collection of tools that support data diagnosis, exploration, and transformation.
Data diagnostics provides information and visualization of missing values and outliers and
unique and negative values to help you understand the distribution and quality of your data.
Data exploration provides information and visualization of the descriptive statistics of
univariate variables, normality tests and outliers, correlation of two variables, and
relationship between target variable and predictor. Data transformation supports binning
for categorizing continuous variables, imputates missing values and outliers, resolving skewness.
And it creates automated reports that support these three tasks.

License GPL-2 | file LICENSE

URL https://github.com/choonghyunryu/dlookr/,
https://choonghyunryu.github.io/dlookr/

Encoding UTF-8

LazyData true

Depends R (>=3.2.0)

Imports dplyr (>=0.7.6), showtext (>= 0.9-4), sysfonts (>=0.7.1),
ggplot2 (>=3.0.0), grid, gridExtra, hrbrthemes (>= 0.8.0),
htmltools, kableExtra, knitr (>= 1.22), methods, mice, pagedown
(>=0.15), partykit, purrr, reactable, rlang, rmarkdown, shiny,
tibble, tidyr, tidyselect, utils

Suggests DBI, classInt, dbplyr, forecast (>= 8.3), funModeling, ISLR,
nycflights13, ppsr, randomForest, rpart, prettydoc, RSQLite,
ranger, stringi

Author Choonghyun Ryu [aut, cre]

Maintainer Choonghyun Ryu <choonghyun. ryu@gmail.com>

BugReports https://github.com/choonghyunryu/dlookr/issues
VignetteBuilder knitr

https://github.com/choonghyunryu/dlookr/
https://choonghyunryu.github.io/dlookr/
https://github.com/choonghyunryu/dlookr/issues

2 R topics documented:

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-04-11 15:12:29 UTC

R topics documented:

dlookr-package e e e 4
binning e e e 5
binning_by e e e e 7
bIinning_rgr e e e e e 9
COMPArE_CAtEEOTY . .« .« v v v v v e 11
COMPATE_NUIMETIC . . + . v v v v v e v e 14
correlate oL e 17
describe 20
describe.tbl_dbi 23
diagnose L e e e 26
diagnose.tbl_dbi. L. 28
diagnose_category e e e e e e e e e e e 30
diagnose_category.tbl_dbi 33
diagnose_NUMeTic v v it e e e e e e e e 36
diagnose_numeric.tbl_dbi.o 38
diagnose_outlier L. e 40
diagnose_outlier.tbl_dbi. 42
diagnose_paged_report e e e e 44
diagnose_paged_report.tbl_dbi o Lo 48
diagnose_reportl e 51
diagnose_report.tbl_dbi 53
diagnose_spareseo e e e 55
diagnose_web_report L e e 57
diagnose_web_report.tbl_dbio 60
dlookr_orange_paged o 63
dlookr_templ_html 63
eda_paged_report e e e e 64
eda_paged_report.tbl_dbi oL 67
eda_report e e e e e e 70
eda_report.tbl_dbi. 72
eda_web_report e e 76
eda_web_report.tbl_dbi L. 78
ENITOPY + « v v e e e e e e e e e e e e e e e e e e e 81
EXITACE o o e e e e e e e e e e e 82
find_class 83
find_na e 84
find_outliers e 85
find_skewness e 86
get_classo 87

get_column_info 88

R topics documented: 3

BELLOS o v e e e e e e e e e e e e 89
get_percentile L e e 90
get_transform 91
heartfailure 92
import_google_font L 93
IMPULAte N Lo e e e e e e e e e e e 94
imputate_outlier 96
jobchange L e e e 98
1 99
Kid . . . e 100
kurtosis 101
normality e e e e e 101
normality.tbl_dbi 103
OVEIVIBW . .« v o v vt e e it e e e e e e e e 106
performance_bin L e e 107
plotbins 110
plot.compare_category e e 111
PlOL.COMPATE_NUMETIC . . . v v v v v v v e e e e e e e e e e e e e e e e 113
plot.correlate L e e 114
plotimputation 116
plotinfogain_bins L 117
plot.optimal_bins L. e e 118
plotoverview e 120
plot.performance_bin oL 121
PIOLDDS .« o o e e e e e e 122
plotrelate e e e 124
plottransform L 126
plotunivar_categoryo e e 127
plotunivar_NUMETIC v v o it e e e e e e e e e 128
plot_bar_category 130
plot_box_numeric 133
plot_hist_numeric e e e e e e 135
plot_na hclust. 137
plot_na_intersect e e 138
plot_na_pareto 140
plot_normality e e e e e e 141
plot_normality.tbl_dbi 145
plot_outlier 147
plot_outlier.target_df 150
plot_outlier.tbl_dbi 151
plot_qg numeric 154
PPS o o e e e e e e e e e e e e e e 156
printrelate oL L L e e e e e 159
relate ... oL e e 160
SKEWNESS e 163
SUMMArY.DiNs L e e e e e e e e e e 164
SUMMAry.Compare_Category v v v vttt e e e e 165

SUMMAry.Compare_NUMeriC v v v v v v v it e e e et e 167

4 dlookr-package
summary.correlate e e e e e e e e 170
SUMMAry.imputation L. e e e e e e e e e e 172
summary.optimal_bins L. 173
SUMMATY.OVEIVIEW . . o v v v v v v e v e e e e e e e e e e e e e e e e e 175
summary.performance_bin L. 176
SUMMATY.PPS + « « « v v e 177
summary.transform oL L L e e e e 179
SUMMATY.UNIVAT_CAtEZOTY .« .« & v v v v v e e e e e e e e e e e e e e e e 180
SUMMArY.Univar_NUMETIC v v v v v v v v e e e e e e e e e e e e e e e 181
target_by . . . e e e 183
target_by.tbl_dbi L 185
transform L L e 186
transformation_paged_reporto e e 188
transformation_report e e e e e e 191
transformation_web_report 192
UNIVAT_CAtEZOTY .+ . v v v v v e 194
UNIVAT_NUIMETIC v v v v e e e e e e e e e e e e e e e e e e 196

Index 199

dlookr-package dlookr: Tools for Data Diagnosis, Exploration, Transformation

Description

dlookr provides data diagnosis, data exploration and transformation of variables during data analy-
sis.

Details

It has three main goals:
* When data is acquired, it is possible to judge whether data is erroneous or to select a variable
to be corrected or removed through data diagnosis.
* Understand the distribution of data in the EDA process. It can also understand the relationship
between target variables and predictor variables for the prediction model.
* Imputes missing value and outlier to standardization and resolving skewness. And, To convert
a continuous variable to a categorical variable, bin the continuous variables.
To learn more about dlookr, start with the vignettes: ‘browseVignettes(package = "dlookr")*
Author(s)

Maintainer: Choonghyun Ryu <choonghyun. ryu@gmail.com>

binning

See Also
Useful links:

e https://github.com/choonghyunryu/dlookr/
* https://choonghyunryu.github.io/dlookr/
* Report bugs at https://github.com/choonghyunryu/dlookr/issues

binning Binning the Numeric Data

Description

The binning() converts a numeric variable to a categorization variable.

Usage

binning(
X,
nbins,
type = c("quantile”, "equal”, "pretty", "kmeans”, "bclust"”),
ordered = TRUE,
labels = NULL,
approxy.lab = TRUE

)
Arguments

X numeric. numeric vector for binning.

nbins integer. number of intervals(bins). required. if missing, nclass.Sturges is used.

type character. binning method. Choose from "quantile", "equal", "pretty", "kmeans"
and "bclust". The "quantile" sets breaks with quantiles of the same interval. The
"equal” sets breaks at the same interval. The "pretty" chooses a number of breaks
not necessarily equal to nbins using base::pretty function. The "kmeans" uses
stats::kmeans function to generate the breaks. The "bclust" uses e1071::bclust
function to generate the breaks using bagged clustering. "kmeans" and "bclust"
was implemented by classInt::classIntervals() function.

ordered logical. whether to build an ordered factor or not.

labels character. the label names to use for each of the bins.

approxy.lab logical. If TRUE, large number breaks are approximated to pretty numbers. If

FALSE, the original breaks obtained by type are used.

Details

This function is useful when used with the mutate/transmute function of the dplyr package.

See vignette("transformation") for an introduction to these concepts.

https://github.com/choonghyunryu/dlookr/
https://choonghyunryu.github.io/dlookr/
https://github.com/choonghyunryu/dlookr/issues

6 binning

Value
An object of bins class. Attributes of bins class is as follows.

e class : "bins"

"non

* type : binning type, "quantile", "equal", "pretty", "kmeans", "bclust".
* breaks : breaks for binning. the number of intervals into which x is to be cut.
* levels : levels of binned value.

* raw : raw data, numeric vector corresponding to x argument.

See Also

binning_by, print.bins, summary.bins, plot.bins.

Examples

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA

Binning the platelets variable. default type argument is "quantile”
bin <- binning(heartfailure2$platelets)

Print bins class object

bin

Summarise bins class object
summary (bin)

Plot bins class object
plot(bin)

Using labels argument

bin <- binning(heartfailure2$platelets, nbins = 4,
labels = c("LQ1", "UQ1", "LQ3", "UQ3"))

bin

Using another type argument

bin <- binning(heartfailure2$platelets, nbins = 5, type = "equal”)
bin

bin <- binning(heartfailure2$platelets, nbins = 5, type = "pretty")
bin

bin <- binning(heartfailure2$platelets, nbins = 5, type = "kmeans")
bin

bin <- binning(heartfailure2$platelets, nbins = 5, type = "bclust")
bin

X <- sample(1:1000, size = 50) * 12345679
bin <- binning(x)

bin

bin <- binning(x, approxy.lab = FALSE)
bin

binning_by 7

extract binned results
extract(bin)

library(dplyr)

Compare binned frequency by death_event
heartfailure2 %>%
mutate(platelets_bin = binning(heartfailure2$platelets) %>%
extract()) %>%
group_by(death_event, platelets_bin) %>%
summarise(freq = n()) %>%
arrange(desc(freq)) %>%
head(10)

Compare binned frequency by death_event using Viz
heartfailure2 %>%
mutate(platelets_bin = binning(heartfailure2$platelets) %>%
extract()) %>%
target_by(death_event) %>%
relate(platelets_bin) %>%
plot()

binning_by Optimal Binning for Scoring Modeling

Description
The binning_by() finding intervals for numerical variable using optical binning. Optimal binning
categorizes a numeric characteristic into bins for ulterior usage in scoring modeling.

Usage
binning_by(.data, y, x, p = 0.05, ordered = TRUE, labels = NULL)

Arguments

.data a data frame.

y character. name of binary response variable(0, 1). The variable must contain
only the integers 0 and 1 as element. However, in the case of factor having
two levels, it is performed while type conversion is performed in the calculation
process.

X character. name of continuous characteristic variable. At least 5 different values.

and Inf is not allowed.

8 binning_by

p numeric. percentage of records per bin. Default 5% (0.05). This parameter only
accepts values greater that 0.00 (0%) and lower than 0.50 (50%).

ordered logical. whether to build an ordered factor or not.
labels character. the label names to use for each of the bins.
Details

This function is useful when used with the mutate/transmute function of the dplyr package. And
this function is implemented using smbinning() function of smbinning package.

Value

an object of "optimal_bins" class. Attributes of "optimal_bins" class is as follows.

* class : "optimal_bins".

* type : binning type, "optimal".

* breaks : numeric. the number of intervals into which x is to be cut.
* levels : character. levels of binned value.

* raw : numeric. raw data, x argument value.

* ivtable : data.frame. information value table.

* iv : numeric. information value.

* target : integer. binary response variable.

attributes of "optimal_bins'' class

Attributes of the "optimal_bins" class that is as follows.

e class : "optimal_bins".

* levels : character. factor or ordered factor levels
* type : character. binning method

* breaks : numeric. breaks for binning

e raw : numeric. before the binned the raw data

e ivtable : data.frame. information value table

* iv : numeric. information value

* target : integer. binary response variable

See vignette("transformation") for an introduction to these concepts.

See Also

binning, plot.optimal_bins.

binning rgr 9

Examples

library(dplyr)

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "creatinine”] <- NA

optimal binning using character
bin <- binning_by(heartfailure2, "death_event”, "creatinine")

optimal binning using name

bin <- binning_by(heartfailure2, death_event, creatinine)
bin

performance table

attr(bin, "performance")

summary optimal_bins class
summary (bin)

visualize all information for optimal_bins class
plot(bin)

visualize WoE information for optimal_bins class
plot(bin, type = "WoE")

visualize all information without typographic
plot(bin, typographic = FALSE)

extract binned results
extract(bin) %>%
head(20)

binning_rgr Binning by recursive information gain ratio maximization

Description
The binning_rgr() finding intervals for numerical variable using recursive information gain ratio
maximization.

Usage

binning_rgr(.data, y, x, min_perc_bins = 0.1, max_n_bins = 5, ordered = TRUE)

10

Arguments
.data
y

min_perc_bins

max_n_bins

ordered

Details

binning_rgr

a data frame.

character. name of binary response variable. The variable must character of
factor.

character. name of continuous characteristic variable. At least 5 different values.
and Inf is not allowed.

numeric. minimum percetange of rows for each split or segment (controls the
sample size), 0.1 (or 10 percent) as default.

integer. maximum number of bins or segments to split the input variable, 5 bins
as default.

logical. whether to build an ordered factor or not.

This function can be usefully used when developing a model that predicts y.

Value

an object of "infogain_bins" class. Attributes of "infogain_bins" class is as follows.

* class : "infogain_bins".

* type : binning type, "infogain".

¢ breaks : numeric. the number of intervals into which X is to be cut.

e Jevels : character. levels of binned value.

* raw : numeric. raw data, X argument value.

* target : integer. binary response variable.

e x_var : character. name of x variable.

 y_var : character. name of y variable.

See Also

binning, binning_by, plot.infogain_bins.

Examples

library(dplyr)

binning by recursive information gain ratio maximization using character
bin <- binning_rgr(heartfailure, "death_event”, "creatinine")

binning by recursive information gain ratio maximization using name
bin <- binning_rgr(heartfailure, death_event, creatinine)

bin

summary optimal_bins class

compare_category 11

summary (bin)

visualize all information for optimal_bins class
plot(bin)

visualize WoE information for optimal_bins class
plot(bin, type = "cross")

visualize all information without typographic
plot(bin, type = "cross”, typographic = FALSE)

extract binned results
extract(bin) %>%
head(20)

compare_category Compare categorical variables

Description

The compare_category() compute information to examine the relationship between categorical vari-
ables.

Usage

compare_category(.data, ...)

S3 method for class 'data.frame'

compare_category(.data, ...)
Arguments
.data a data.frame or a tb1l_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. These arguments are automatically quoted and evaluated in a
context where column names represent column positions. They support unquot-
ing and splicing.

Details

It is important to understand the relationship between categorical variables in EDA. compare_category()
compares relations by pair combination of all categorical variables. and return compare_category
class that based list object.

12 compare_category

Value

An object of the class as compare based list. The information to examine the relationship between
categorical variables is as follows each components.

* varl : factor. The level of the first variable to compare. ’varl’ is the name of the first variable
to be compared.

» var2 : factor. The level of the second variable to compare. ’var2’ is the name of the second
variable to be compared.

* n: integer. frequency by varl and var2.
* rate : double. relative frequency.
* first_rate : double. relative frequency in first variable.

* second_rate : double. relative frequency in second variable.

Attributes of return object

Attributes of compare_category class is as follows.

* variables : character. List of variables selected for comparison.

* combination : matrix. It consists of pairs of variables to compare.

See Also

summary.compare_category, print.compare_category, plot.compare_category.
Examples

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

library(dplyr)

Compare the all categorical variables
all_var <- compare_category(heartfailure2)

Print compare_numeric class objects
all_var

Compare the categorical variables that case of joint the death_event variable
all_var %>%
"["(grep("death_event”, names(all_var)))

Compare the two categorical variables
two_var <- compare_category(heartfailure2, smoking, death_event)

Print compare_category class objects
two_var

compare_category 13

Filtering the case of smoking included NA
two_var %>%

"LL" (1) %%

filter(!is.na(smoking))

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

Summary by returned objects
stat

component of table
stat$table

component of chi-square test
stat$chisq

component of chi-square test
summary(all_var, "chisq")

component of chi-square test (first, third case)
summary(all_var, "chisqg”, pos = c(1, 3))

component of relative frequency table
summary(all_var, "relative")

component of table without missing values
summary(all_var, "table"”, na.rm = TRUE)

component of table include marginal value
margin <- summary(all_var, "table”, marginal = TRUE)
margin

component of chi-square test
summary (two_var, method = "chisqg")

verbose is FALSE
summary(all_var, "chisq", verbose = FALSE)

#' # Using pipes & dplyr -----------------—————-—-

If you want to use dplyr, set verbose to FALSE

summary(all_var, "chisq", verbose = FALSE) %>%
filter(p.value < 0.26)

Extract component from list by index

summary(all_var, "table"”, na.rm = TRUE, verbose = FALSE) %>%
)

Extract component from list by name

summary(all_var, "table”, na.rm = TRUE, verbose = FALSE) %>%

"[L"("smoking vs death_event”)

plot all pair of variables

14 compare_numeric

plot(all_var)

plot a pair of variables
plot(two_var)

plot all pair of variables by prompt
plot(all_var, prompt = TRUE)

plot a pair of variables
plot(two_var, las = 1)

compare_numeric Compare numerical variables

Description

The compare_numeric() compute information to examine the relationship between numerical vari-
ables.

Usage

compare_numeric(.data, ...)

S3 method for class 'data.frame'

compare_numeric(.data, ...)
Arguments
.data a data.frame or a tb1_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. These arguments are automatically quoted and evaluated in a
context where column names represent column positions. They support unquot-
ing and splicing.

Details

It is important to understand the relationship between numerical variables in EDA. compare_numeric()
compares relations by pair combination of all numerical variables. and return compare_numeric
class that based list object.

Value

An object of the class as compare based list. The information to examine the relationship between
numerical variables is as follows each components. - correlation component : Pearson’s correlation
coefficient.

compare_numeric 15

* varl : factor. The level of the first variable to compare. ’varl’ is the name of the first variable
to be compared.

» var2 : factor. The level of the second variable to compare. ’var2’ is the name of the second
variable to be compared.

e coef _corr : double. Pearson’s correlation coefficient.
- linear component : linear model summaries
* varl : factor. The level of the first variable to compare. ’varl’ is the name of the first variable
to be compared.

» var2 : factor.The level of the second variable to compare. ’var2’ is the name of the second
variable to be compared.

* r.squared : double. The percent of variance explained by the model.

* adj.r.squared : double. r.squared adjusted based on the degrees of freedom.

* sigma : double. The square root of the estimated residual variance.

* statistic : double. F-statistic.

 p.value : double. p-value from the F test, describing whether the full regression is significant.
 df : integer degrees of freedom.

* logLik : double. the log-likelihood of data under the model.

* AIC : double. the Akaike Information Criterion.

* BIC : double. the Bayesian Information Criterion.

* deviance : double. deviance.

o df.residual : integer residual degrees of freedom.

Attributes of return object
Attributes of compare_numeric class is as follows.

* raw : a data.frame or a tb1_df. Data containing variables to be compared. Save it for visual-
ization with plot.compare_numeric().

* variables : character. List of variables selected for comparison.

* combination : matrix. It consists of pairs of variables to compare.

See Also

correlate, summary.compare_numeric, print.compare_numeric, plot.compare_numeric.

Examples

Generate data for the example
heartfailure2 <- heartfailure[, c("platelets”, "creatinine”, "sodium")]

library(dplyr)
Compare the all numerical variables
all_var <- compare_numeric(heartfailure2)

16

Print compare_numeric class object
all_var

Compare the correlation that case of joint the sodium variable
all_var %>%
"$" (correlation) %>%
filter(varl == "sodium” | var2 == "sodium”) %>%
arrange(desc(abs(coef_corr)))

Compare the correlation that case of abs(coef_corr) > 0.1
all_var %>%

"$" (correlation) %>%

filter(abs(coef_corr) > 0.1)

Compare the linear model that case of joint the sodium variable
all_var %>%
"$"(linear) %>%
filter(var1l == "sodium” | var2 == "sodium") %>%
arrange(desc(r.squared))

Compare the two numerical variables
two_var <- compare_numeric(heartfailure2, sodium, creatinine)

Print compare_numeric class objects
two_var

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

Just correlation
summary(all_var, method = "correlation")

Just correlation condition by r > 0.1
summary(all_var, method = "correlation”, thres_corr = 0.1)

linear model summaries condition by R*2 > 0.05
summary(all_var, thres_rs = 0.05)

verbose is FALSE
summary(all_var, verbose = FALSE)

plot all pair of variables
plot(all_var)

plot a pair of variables
plot(two_var)

plot all pair of variables by prompt
plot(all_var, prompt = TRUE)

plot a pair of variables not focuses on typographic elements
plot(two_var, typographic = FALSE)

compare_numeric

correlate 17

correlate Compute the correlation coefficient between two variable

Description

The correlate() compute the correlation coefficient for numerical or categorical data.

Usage

correlate(.data, ...)

S3 method for class 'data.frame'

correlate(
.data,
method = c("pearson”, "kendall”, "spearman”, "cramer", "theil”)
)
S3 method for class 'grouped_df'
correlate(
.data,
method = c("pearson”, "kendall"”, "spearman”, "cramer", "theil”)
)
S3 method for class 'tbl_dbi'
correlate(
.data,
method = c("pearson”, "kendall”, "spearman”, "cramer”, "theil"),

in_database = FALSE,
collect_size = Inf

Arguments

.data a data.frame or a grouped_df or a tbl_dbi.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, correlate() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

See vignette("EDA") for an introduction to these concepts.

18

correlate

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson” (default), "kendall", or "spearman": can be
abbreviated. For numerical variables, one of "pearson" (default), "kendall", or
"spearman': can be used as an abbreviation. For categorical variables, "cramer"
and "theil" can be used. "cramer" computes Cramer’s V statistic, "theil" com-
putes Theil’s U statistic.

in_database Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

collect_size ainteger. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

Details

This function is useful when used with the group_by() function of the dplyr package. If you want
to compute by level of the categorical data you are interested in, rather than the whole observation,
you can use grouped_df as the group_by() function. This function is computed stats::cor() function
by use = "pairwise.complete.obs" option for numerical variable. And support categorical variable
with theil’s U correlation coefficient and Cramer’s V correlation coefficient.

Correlation coefficient information

It returns data.frame with the following variables.:

* varl : names of numerical variable
* var2 : name of the corresponding numeric variable

e coef _corr : Correlation coefficient

When method = "cramer", data.frame with the following variables is returned.

* varl : names of numerical variable

* var2 : name of the corresponding numeric variable

* chisq : the value the chi-squared test statistic

* df : the degrees of freedom of the approximate chi-squared distribution of the test statistic
* pval : the p-value for the test

 coef_corr : theil’s U correlation coefficient (Uncertainty Coefficient).

See Also

cor, summary.correlate, plot.correlate.

Examples

Correlation coefficients of all numerical variables
tab_corr <- correlate(heartfailure)
tab_corr

correlate

mat_corr <- summary(tab_corr)
mat_corr

plot(tab_corr)

Select the variable to compute
correlate(heartfailure, "creatinine”, "sodium")

Non-parametric correlation coefficient by kendall method
correlate(heartfailure, creatinine, method = "kendall")

theil's U correlation coefficient (Uncertainty Coefficient)
tab_corr <- correlate(heartfailure, anaemia, hblood_pressure, method = "theil")
tab_corr

summary (tab_corr)
plot(tab_corr)

Using dplyr::grouped_dt
library(dplyr)

gdata <- group_by(heartfailure, smoking, death_event)
correlate(gdata)

Using pipes ——=--—==-——=--—---------—---——-—-
Correlation coefficients of all numerical variables
heartfailure %>%

correlate()

Non-parametric correlation coefficient by spearman method
heartfailure %>%
correlate(creatinine, sodium, method = "spearman")

Correlation coefficient
that eliminates redundant combination of variables
heartfailure %>%

correlate() %>%

filter(as.integer(varl) > as.integer(var2))

Using pipes & dplyr —--———-------——-———o——-
Compute the correlation coefficient of 'creatinine' variable by 'smoking'
and 'death_event' variables. And extract only those with absolute
value of correlation coefficient is greater than 0.2
heartfailure %>%
group_by(smoking, death_event) %>%
correlate(creatinine) %>%
filter(abs(coef_corr) >= 0.2)

extract only those with 'smoking' variable level is "Yes”,

and compute the correlation coefficient of 'Sales' variable

by 'hblood_pressure' and 'death_event' variables.

And the correlation coefficient is negative and smaller than 0.5

19

20 describe

heartfailure %>%
filter(smoking == "Yes") %>%
group_by(hblood_pressure, death_event) %>%
correlate(creatinine) %>%
filter(coef_corr < @) %>%
filter(abs(coef_corr) > 0.5)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE"”, overwrite = TRUE)

Using pipes ——--——==-——=--—---------—---——---
Correlation coefficients of all numerical variables
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

correlate()

Using pipes & dplyr ----------—-—=—-———-—o-—-
Compute the correlation coefficient of creatinine variable by 'hblood_pressure'
and 'death_event' variables.
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
group_by(hblood_pressure, death_event) %>%
correlate(creatinine)

Disconnect DBMS
DBI: :dbDisconnect(con_sqlite)

describe Compute descriptive statistic

Description

The describe() compute descriptive statistic of numeric variable for exploratory data analysis.
Usage
describe(.data, ...)

S3 method for class 'data.frame'
describe(.data, ..., statistics = NULL, quantiles = NULL)

S3 method for class 'grouped_df'
describe(

describe

.data,

L

statistics =

21

NULL,

quantiles = NULL,
all.combinations = FALSE

Arguments

.data

statistics

quantiles

a data.frame or a tb1_df or a grouped_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, describe() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

See vignette("EDA") for an introduction to these concepts.

character. the name of the descriptive statistic to calculate. The defaults is

non

c("mean", "sd", "se_mean", "IQR", "skewness", "kurtosis", "quantiles")

numeric. list of quantiles to calculate. The values of elements must be between
0 and 1. and to calculate quantiles, you must include "quantiles" in the statistics
argument value. The default is ¢(0, .01, .05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7,
0.75, 0.8, 0.9, 0.95,0.99, 1).

all.combinations

Details

logical. When used with group_by(), this argument expresses all combinations
of group combinations. If the argument value is TRUE, cases that do not exist
as actual data are also included in the output.

This function is useful when used with the group_by function of the dplyr package. If you want
to calculate the statistic by level of the categorical data you are interested in, rather than the whole
statistic, you can use grouped_df as the group_by() function.

From version 0.5.5, the ’variable’ column in the "descriptive statistic information" tibble object has
been changed to ’described_variables’. This is because there are cases where ’variable’ is included
in the variable name of the data. There is probably no case where ’described_variables’ is included
in the variable name of the data.

Value

An object of the same class as .data.

Descriptive statistic information

The information derived from the numerical data describe is as follows.

* n : number of observations excluding missing values

* na: number of missing values

22 describe

* mean : arithmetic average

* sd : standard deviation

* se_mean : standard error mean. sd/sqrt(n)

* IQR : interquartile range (Q3-Q1)

» skewness : skewness

* kurtosis : kurtosis

e p25: Q1. 25% percentile

* p50 : median. 50% percentile

e p75: Q3. 75% percentile

* p01, p05, p10, p20, p30 : 1%, 5%, 20%, 30% percentiles
* p40, p60, p70, p80 : 40%, 60%, 70%, 80% percentiles

* p90, p95, p99, p100 : 90%, 95%, 99%, 100% percentiles

See Also

describe.tbl_dbi, diagnose_numeric.data.frame.

Examples

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "sodium"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

Describe descriptive statistics of numerical variables
describe(heartfailure2)

Select the variable to describe

describe(heartfailure2, sodium, platelets, statistics = c("mean”, "sd"”, "quantiles"))
describe(heartfailure2, -sodium, -platelets)

describe(heartfailure2, 5, statistics = ¢("mean”, "sd"”, "quantiles”), quantiles = c(0@.01, 0.1))

Using dplyr::grouped_dt
library(dplyr)

gdata <- group_by(heartfailure2, hblood_pressure, death_event)
describe(gdata, "creatinine")

Using pipes ------—--—--—--—--——-—--——-——-——-
Positive values select variables
heartfailure2 %>%

describe(platelets, sodium, creatinine)

Negative values to drop variables
heartfailure2 %>%
describe(-platelets, -sodium, -creatinine)

describe.tbl_dbi 23

Using pipes & dplyr ---------------------———-
Find the statistic of all numerical variables by 'hblood_pressure' and 'death_event',
and extract only those with 'hblood_pressure' variable level is "Yes”.
heartfailure2 %>%
group_by(hblood_pressure, death_event) %>%
describe() %>%
filter(hblood_pressure == "Yes")

Using all.combinations = TRUE

heartfailure2 %>%
filter(!hblood_pressure %in% "Yes” | !death_event %in% "Yes") %>%
group_by(hblood_pressure, death_event) %>%
describe(all.combinations = TRUE)

extract only those with 'smoking' variable level is "Yes”,
and find 'creatinine' statistics by 'hblood_pressure' and 'death_event'
heartfailure2 %>%

filter(smoking == "Yes") %>%

group_by(hblood_pressure, death_event) %>%

describe(creatinine)

describe.tbl_dbi Compute descriptive statistic

Description

The describe() compute descriptive statistic of numerical(INTEGER, NUMBER, etc.) column of
the DBMS table through tbl_dbi for exploratory data analysis.

Usage

S3 method for class 'tbl_dbi'
describe(
.data,
statistics = NULL,
quantiles = NULL,
all.combinations = FALSE,
in_database = FALSE,
collect_size = Inf

Arguments

.data a tbl_dbi.

24

statistics

quantiles

describe.tbl_dbi

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, describe() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

character. the name of the descriptive statistic to calculate. The defaults is

non

c("mean", "sd", "se_mean", "IQR", "skewness", "kurtosis", "quantiles")

numeric. list of quantiles to calculate. The values of elements must be between
0 and 1. and to calculate quantiles, you must include "quantiles” in the statistics
argument value. The default is ¢(0, .01, .05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7,
0.75,0.8,0.9, 0.95,0.99, 1).

all.combinations

in_database

collect_size

Details

logical. When used with group_by(), this argument expresses all combinations
of group combinations. If the argument value is TRUE, cases that do not exist
as actual data are also included in the output.

Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

See vignette("EDA") for an introduction to these concepts.

This function is useful when used with the group_by function of the dplyr package. If you want
to calculate the statistic by level of the categorical data you are interested in, rather than the whole
statistic, you can use grouped_df as the group_by() function.

From version 0.5.5, the ’variable’ column in the "descriptive statistic information" tibble object has
been changed to ’described_variables’. This is because there are cases where ’variable’ is included
in the variable name of the data. There is probably no case where ’described_variables’ is included
in the variable name of the data.

Value

An object of the same class as .data.

Descriptive statistic information

The information derived from the numerical data describe is as follows.

* n: number of observations excluding missing values

* na: number of missing values

* mean : arithmetic average

¢ sd : standard deviation

* se_mean : standard error mean. sd/sqrt(n)

describe.tbl_dbi 25

* IQR : interquartile range (Q3-Q1)

* skewness : skewness

* kurtosis : kurtosis

* p25: Q1. 25% percentile

* p50 : median. 50% percentile

* p75: Q3. 75% percentile

* p01, p05, p10, p20, p30 : 1%, 5%, 20%, 30% percentiles
* p40, p60, p70, p80 : 40%, 60%, 70%, 80% percentiles

* p90, p95, p99, p100 : 90%, 95%, 99%, 100% percentiles

See Also

describe.data.frame, diagnose_numeric.tbl_dbi.

Examples

library(dplyr)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

Using pipes ---—--—--—--—--—--——-——-——-——-——-
Positive values select variables
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
describe(platelets, creatinine, sodium)

con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
describe(platelets, creatinine, sodium,
statistics = c("mean”, "sd"”, "quantiles”), quantiles = 0.1)

Negative values to drop variables, and In-memory mode and collect size is 200
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

describe(-platelets, -creatinine, -sodium, collect_size = 200)

Using pipes & dplyr ----------—=—=————-—————-
Find the statistic of all numerical variables by 'smoking' and 'death_event',
and extract only those with 'smoking' variable level is "Yes".
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
group_by(smoking, death_event) %>%
describe() %>%
filter(smoking == "Yes")

26 diagnose

Using all.combinations = TRUE
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
filter(!smoking %in% "Yes" | !death_event %in% "Yes") %>%
group_by(smoking, death_event) %>%
describe(all.combinations = TRUE) %>%
filter(smoking == "Yes")
extract only those with 'sex' variable level is "Male”,
and find 'sodium' statistics by 'smoking' and 'death_event
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%

filter(sex == "Male") %>%
group_by(smoking, death_event) %>%
describe(sodium)

Disconnect DBMS
DBI: :dbDisconnect(con_sqglite)

diagnose Diagnose data quality of variables

Description

The diagnose() produces information for diagnosing the quality of the variables of data.frame or
tbl_df.

Usage

diagnose(.data, ...)

S3 method for class 'data.frame'

diagnose(.data, ...)
Arguments
.data a data.frame or a tb1_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, diagnose() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

diagnose 27

Details

The scope of data quality diagnosis is information on missing values and unique value information.
Data quality diagnosis can determine variables that require missing value processing. Also, the
unique value information can determine the variable to be removed from the data analysis.

Value

An object of tbl_df.

Diagnostic information

The information derived from the data diagnosis is as follows.:

¢ variables : variable names

* types : data type of the variable or to select a variable to be corrected or removed through data
diagnosis.

— integer, numeric, factor, ordered, character, etc.
* missing_count : number of missing values
* missing_percent : percentage of missing values
* unique_count : number of unique values

* unique_rate : ratio of unique values. unique_count / number of observation

See vignette("diagonosis") for an introduction to these concepts.

See Also

diagnose.tbl_dbi, diagnose_category.data.frame, diagnose_numeric.data.frame.

Examples

Diagnosis of all variables
diagnose(jobchange)

Select the variable to diagnose

diagnose(jobchange, gender, experience, training_hours)
diagnose(jobchange, -gender, -experience, -training_hours)
diagnose(jobchange, "gender", "experience"”, "training_hours")
diagnose(jobchange, 4, 9, 13)

Using pipes ——---—==-——-------------—---——---
library(dplyr)

Diagnosis of all variables
jobchange %>%
diagnose()
Positive values select variables
jobchange %>%
diagnose(gender, experience, training_hours)

28

diagnose.tbl_dbi

Negative values to drop variables

jobchange %>%

diagnose(-gender, -experience, -training_hours)
Positions values select variables

jobchange %>%
diagnose(4, 9,

13)

Negative values to drop variables

jobchange %>%

diagnose(-8, -9

» ~10)

Using pipes & dplyr ----------------—---————-
Diagnosis of missing variables

jobchange %>%
diagnose() %>%

filter(missing_

count > 0)

diagnose.tbhl_dbi

Diagnose data quality of variables in the DBMS

Description

The diagnose() produces information for diagnosing the quality of the column of the DBMS table

through tbl_dbi.

Usage

S3 method for class 'tbl_dbi'

diagnose(.data,

Arguments

.data

in_database

collect_size

., in_database = TRUE, collect_size = Inf)

a tbl_dbi.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, diagnose() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

a logical. Specifies whether to perform in-database operations. If TRUE, most
operations are performed in the DBMS. if FALSE, table data is taken in R and
operated in-memory.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

diagnose.tbl_dbi 29

Details

The scope of data quality diagnosis is information on missing values and unique value information.
Data quality diagnosis can determine variables that require missing value processing. Also, the
unique value information can determine the variable to be removed from the data analysis.

Value

An object of tbl_df.

Diagnostic information

The information derived from the data diagnosis is as follows.:

e variables : column names

* types : data type of the variable or to select a variable to be corrected or removed through data
diagnosis.

— integer, numeric, factor, ordered, character, etc.
* missing_count : number of missing values
* missing_percent : percentage of missing values
* unique_count : number of unique values

* unique_rate : ratio of unique values. unique_count / number of observation

See vignette("diagonosis") for an introduction to these concepts.

See Also

diagnose.data.frame, diagnose_category.tbl_dbi, diagnose_numeric.tbl_dbi.

Examples

library(dplyr)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy jobchange to the DBMS with a table named TB_JOBCHANGE
copy_to(con_sqlite, jobchange, name = "TB_JOBCHANGE"”, overwrite = TRUE)

Using pipes ——-—---—-—=——————-—-—-—mm oo
Diagnosis of all columns
con_sqlite %>%

tb1("TB_JOBCHANGE") %>%

diagnose()

Positive values select columns
con_sqlite %>%
tb1("TB_JOBCHANGE") %>%
diagnose(gender, education_level, company_size)

30 diagnose_category

Negative values to drop columns
con_sqlite %>%
tb1("TB_JOBCHANGE") %>%
diagnose(-gender, -education_level, -company_size)

Positions values select columns, and In-memory mode
con_sqlite %>%

tb1("TB_JOBCHANGE") %>%

diagnose(1, 3, 8, in_database = FALSE)

Positions values select columns, and In-memory mode and collect size is 200
con_sqlite %>%

tb1("TB_JOBCHANGE") %>%

diagnose(-8, -9, -10, in_database = FALSE, collect_size = 200)

Using pipes & dplyr —-—-—-—----—-—-—-———mo———
Diagnosis of missing variables
con_sqlite %>%

tb1("TB_JOBCHANGE") %>%

diagnose() %>%

filter(missing_count > @)

Disconnect DBMS
DBI: :dbDisconnect(con_sqlite)

diagnose_category Diagnose data quality of categorical variables

Description

The diagnose_category() produces information for diagnosing the quality of the variables of data.frame
or tbl_df.

Usage

diagnose_category(.data, ...)

S3 method for class 'data.frame'
diagnose_category(
.data,
top = 10,
type = c("rank”, "n")[2],
add_character = TRUE,
add_date = TRUE

diagnose_category 31

Arguments

.data a data.frame or a thl_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, diagnose_category() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

top an integer. Specifies the upper top rows or rank to extract. Default is 10.

type a character string specifying how result are extracted. "rank" that extract top
n ranks by decreasing frequency. In this case, if there are ties in rank, more
rows than the number specified by the top argument are returned. Default is "n"
extract only top n rows by decreasing frequency. If there are too many rows to
be returned because there are too many ties, you can adjust the returned rows
appropriately by using "n".

add_character logical. Decide whether to include text variables in the diagnosis of categorical
data. The default value is TRUE, which also includes character variables.

add_date ogical. Decide whether to include Date and POSIXct variables in the diagnosis
of categorical data. The default value is TRUE, which also includes character
variables.
Details

The scope of the diagnosis is the occupancy status of the levels in categorical data. If a certain level
of occupancy is close to 100 then the removal of this variable in the forecast model will have to be
considered. Also, if the occupancy of all levels is close to 0 variable is likely to be an identifier.

Value

an object of tbl_df.

Categorical diagnostic information

The information derived from the categorical data diagnosis is as follows.

* variables : variable names

* levels: level names

* N : number of observation

* freq : number of observation at the levels

* ratio : percentage of observation at the levels

* rank : rank of occupancy ratio of levels

See vignette("diagonosis") for an introduction to these concepts.

See Also

diagnose_category.tbl_dbi, diagnose.data.frame, diagnose_numeric.data.frame, diagnose_outlier.data.frar

32 diagnose_category

Examples

Diagnosis of categorical variables
diagnose_category(jobchange)

Select the variable to diagnose

diagnose_category(jobchange, education_level, company_type)

diagnose_category(jobchange, -education_level, -company_type)
diagnose_category(jobchange, "education_level”, "company_type")
diagnose_category(jobchange, 7)

Using pipes ——=-——==-——=-----=-------—---——-—-
library(dplyr)

Diagnosis of all categorical variables
jobchange %>%
diagnose_category()

Positive values select variables
jobchange %>%
diagnose_category(company_type, job_chnge)

Negative values to drop variables
jobchange %>%
diagnose_category(-company_type, -job_chnge)

Positions values select variables
jobchange %>%
diagnose_category(7)

Negative values to drop variables
jobchange %>%
diagnose_category(-7)

Top rank levels with top argument
jobchange %>%
diagnose_category(top = 2)

Using pipes & dplyr ----------—=—-————-—————-
Extraction of level that is more than 60% of categorical data
jobchange %>%

diagnose_category() %>%

filter(ratio >= 60)

All observations of enrollee_id have a rank of 1.
Because it is a unique identifier. Therefore, if you select up to the top rank 3,
all records are displayed. It will probably fill your screen.

extract rows that less than equal rank 3
default of type argument is "n”
jobchange %>%

diagnose_category(enrollee_id, top = 3)

diagnose_category.tbl_dbi 33

extract rows that less than equal rank 3
jobchange %>%

diagnose_category(enrollee_id, top = 3, type = "rank”)

extract only 3 rows
jobchange %>%
diagnose_category(enrollee_id, top = 3, type = "n")

diagnose_category.tbl_dbi
Diagnose data quality of categorical variables in the DBMS

Description

The diagnose_category() produces information for diagnosing the quality of the character(CHAR,
VARCHAR, VARCHAR?2, etc.) column of the DBMS table through tbl_dbi.

Usage

S3 method for class 'tbl_dbi'
diagnose_category(
.data,
top = 10,
type = c("rank”, "n")[1],
in_database = TRUE,
collect_size = Inf

Arguments

.data a tbl_dbi.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, diagnose_category() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

top an integer. Specifies the upper top rank to extract. Default is 10.

type a character string specifying how result are extracted. Default is "rank" that
extract top n ranks by decreasing frequency. In this case, if there are ties in
rank, more rows than the number specified by the top argument are returned.

n" extract top n rows by decreasing frequency. If there are too many rows to
be returned because there are too many ties, you can adjust the returned rows

non

appropriately by using "n".

34 diagnose_category.tbl_dbi

in_database Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory.

collect_size a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

Details

The scope of the diagnosis is the occupancy status of the levels in categorical data. If a certain level
of occupancy is close to 100 then the removal of this variable in the forecast model will have to be
considered. Also, if the occupancy of all levels is close to 0 variable is likely to be an identifier.

Value

an object of tbl_df.

Categorical diagnostic information

The information derived from the categorical data diagnosis is as follows.

* variables : variable names

* levels: level names

* N : number of observation

* freq : number of observation at the levels

* ratio : percentage of observation at the levels

* rank : rank of occupancy ratio of levels

See vignette("diagonosis") for an introduction to these concepts.

See Also
diagnose_category.data.frame, diagnose.tbl_dbi, diagnose_category.tbl_dbi, diagnose_numeric.tbl_dbi,

diagnose_outlier.tbl_dbi.

Examples

library(dplyr)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy jobchange to the DBMS with a table named TB_JOBCHANGE
copy_to(con_sqlite, jobchange, name = "TB_JOBCHANGE"”, overwrite = TRUE)

Using pipes ——-—---—-—=——————-—-—m—m—m oo
Diagnosis of all categorical variables
con_sqlite %>%

tb1("TB_JOBCHANGE") %>%

diagnose_category.tbl_dbi

diagnose_category()

Positive values select variables
con_sqlite %>%
tb1("TB_JOBCHANGE") %>%
diagnose_category(company_type, job_chnge)

Negative values to drop variables, and In-memory mode
con_sqlite %>%
tb1 ("TB_JOBCHANGE") %>%
diagnose_category(-company_type, -job_chnge, in_database = FALSE)

Positions values select variables, and In-memory mode and collect size is 200
con_sqlite %>%

tb1(”"TB_JOBCHANGE") %>%

diagnose_category(7, in_database = FALSE, collect_size = 200)

Negative values to drop variables
con_sqlite %>%
tb1("TB_JOBCHANGE") %>%
diagnose_category(-7)

Top rank levels with top argument
con_sqlite %>%
tb1 ("TB_JOBCHANGE") %>%
diagnose_category(top = 2)

Using pipes & dplyr ----------—-—=—-———-—o-—-
Extraction of level that is more than 60% of categorical data
con_sqlite %>%

tb1("TB_JOBCHANGE") %>%

diagnose_category() %>%

filter(ratio >= 60)

Using type argument ----------------——--————-
dfm <- data.frame(alpabet = c(rep(letters[1:5], times = 5), "c"))

copy dfm to the DBMS with a table named TB_EXAMPLE
copy_to(con_sqlite, dfm, name = "TB_EXAMPLE", overwrite = TRUE)

extract rows that less than equal rank 10
default of top argument is 10
con_sqlite %>%

tbl ("TB_EXAMPLE") %>%

diagnose_category()

extract rows that less than equal rank 2
con_sqlite %>%
tb1("TB_EXAMPLE") %>%
diagnose_category(top = 2, type = "rank")

extract rows that less than equal rank 2
default of type argument is "rank”

36 diagnose_numeric

con_sqlite %>%
tb1("TB_EXAMPLE") %>%
diagnose_category(top = 2)

extract only 2 rows

con_sqlite %>%
tb1("TB_EXAMPLE") %>%
diagnose_category(top = 2, type = "n")

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

diagnose_numeric Diagnose data quality of numerical variables

Description

The diagnose_numeric() produces information for diagnosing the quality of the numerical data.

Usage

diagnose_numeric(.data, ...)

S3 method for class 'data.frame'

diagnose_numeric(.data, ...)
Arguments
.data a data.frame or a tb1_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, diagnose_numeric() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

Details

The scope of the diagnosis is the calculate a statistic that can be used to understand the distribution
of numerical data. min, Q1, mean, median, Q3, max can be used to estimate the distribution of data.
If the number of zero or minus is large, it is necessary to suspect the error of the data. If the number
of outliers is large, a strategy of eliminating or replacing outliers is needed.

Value

an object of tbl_df.

diagnose_numeric 37

Numerical diagnostic information

The information derived from the numerical data diagnosis is as follows.

e variables : variable names

* min : minimum

* QI : 25 percentile

* mean : arithmetic average

* median : median. 50 percentile
* Q3 : 75 percentile

* max : maximum

¢ zero : count of zero values

e minus : count of minus values

e outlier : count of outliers

See vignette("diagonosis") for an introduction to these concepts.

See Also

diagnose_numeric.tbl_dbi, diagnose.data.frame, diagnose_category.data.frame, diagnose_outlier.data.frar

Examples

Diagnosis of numerical variables
diagnose_numeric(heartfailure)

Select the variable to diagnose
diagnose_numeric(heartfailure, cpk_enzyme, sodium)
diagnose_numeric(heartfailure, -cpk_enzyme, -sodium)
diagnose_numeric(heartfailure, "cpk_enzyme", "sodium")
diagnose_numeric(heartfailure, 5)

Using pipes —----—---——-------------—---————-
library(dplyr)

Diagnosis of all numerical variables
heartfailure %>%
diagnose_numeric()
Positive values select variables
heartfailure %>%
diagnose_numeric(cpk_enzyme, sodium)
Negative values to drop variables
heartfailure %>%
diagnose_numeric(-cpk_enzyme, -sodium)
Positions values select variables
heartfailure %>%
diagnose_numeric(5)
Negative values to drop variables

38

heartfailure %>%

diagnose_numeric.tbl_dbi

diagnose_numeric(-1, -5)

Using pipes & dplyr ---------------------———-
List of variables containing outliers

heartfailure %>%

diagnose_numeric() %>%
filter(outlier > 0)

diagnose_numeric.tbl_dbi

Diagnose data quality of numerical variables in the DBMS

Description

The diagnose_numeric() produces information for diagnosing the quality of the numerical INTEGER,
NUMBER, etc.) column of the DBMS table through tbl_dbi.

Usage

S3 method for class 'tbl_dbi'

diagnose_numeric(.data, ..., in_database = FALSE, collect_size = Inf)
Arguments

.data a tbl_dbi.

in_database

collect_size

Details

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, diagnose_numeric() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

The scope of the diagnosis is the calculate a statistic that can be used to understand the distribution
of numerical data. min, Q1, mean, median, Q3, max can be used to estimate the distribution of data.
If the number of zero or minus is large, it is necessary to suspect the error of the data. If the number
of outliers is large, a strategy of eliminating or replacing outliers is needed.

diagnose_numeric.tbl_dbi 39

Value

an object of tbl_df.

Numerical diagnostic information

The information derived from the numerical data diagnosis is as follows.

e variables : variable names

* min : minimum

* QI : 25 percentile

* mean : arithmetic average

* median : median. 50 percentile
* Q3 : 75 percentile

* max : maximum

e zero : count of zero values

e minus : count of minus values

e outlier : count of outliers

See vignette("diagonosis") for an introduction to these concepts.

See Also

diagnose_numeric.data.frame, diagnose.tbl_dbi, diagnose_category.tbl_dbi, diagnose_outlier.tbl_dbi.

Examples

library(dplyr)

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

Using pipes ——————=—=——=——-—---——-——m—mm—m o
Diagnosis of all numerical variables
con_sqlite %>%
tbl("TB_HEARTFAILURE") %>%
diagnose_numeric()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

diagnose_numeric(age, sodium, collect_size = 200)

Negative values to drop variables
con_sqlite %>%

40 diagnose_outlier

tb1 ("TB_HEARTFAILURE") %>%
diagnose_numeric(-age, -sodium)

Positions values select variables

con_sqlite %>%
tb1("TB_HEARTFAILURE") %>%
diagnose_numeric(5)

Negative values to drop variables

con_sqglite %>%
tb1("TB_HEARTFAILURE") %>%
diagnose_numeric(-1, -5)

Using pipes & dplyr —-—-——-----—-—-—-———-o———
List of variables containing outliers
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

diagnose_numeric() %>%

filter(outlier > @)

Disconnect DBMS
DBI: :dbDisconnect(con_sqlite)

diagnose_outlier Diagnose outlier of numerical variables

Description

The diagnose_outlier() produces outlier information for diagnosing the quality of the numerical
data.

Usage

diagnose_outlier(.data, ...)

S3 method for class 'data.frame'

diagnose_outlier(.data, ...)
Arguments
.data a data.frame or a tb1_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, diagnose_outlier() will auto-
matically start with all variables. These arguments are automatically quoted and
evaluated in a context where column names represent column positions. They
support unquoting and splicing.

diagnose_outlier 41

Details

The scope of the diagnosis is the provide a outlier information. If the number of outliers is small
and the difference between the averages including outliers and the averages not including them is
large, it is necessary to eliminate or replace the outliers.

Value

an object of tbl_df.

Outlier Diagnostic information

The information derived from the numerical data diagnosis is as follows.

e variables : variable names

¢ outliers_cnt : number of outliers

* outliers_ratio : percent of outliers

* outliers_mean : arithmetic average of outliers

* with_mean : arithmetic average of with outliers

» without_mean : arithmetic average of without outliers

See vignette("diagonosis") for an introduction to these concepts.

See Also

diagnose_outlier.tbl_dbi, diagnose.data.frame, diagnose_category.data.frame, diagnose_numeric.data.frar

Examples

Diagnosis of numerical variables
diagnose_outlier (heartfailure)

Select the variable to diagnose
diagnose_outlier(heartfailure, cpk_enzyme, sodium)
diagnose_outlier(heartfailure, -cpk_enzyme, -sodium)
diagnose_outlier(heartfailure, "cpk_enzyme", "sodium")
diagnose_outlier(heartfailure, 5)

Using pipes —--——-—-———-——-——-—————-————————-
library(dplyr)

Diagnosis of all numerical variables
heartfailure %>%
diagnose_outlier()
Positive values select variables
heartfailure %>%
diagnose_outlier(cpk_enzyme, sodium)
Negative values to drop variables
heartfailure %>%

42 diagnose_outlier.tbl_dbi

diagnose_outlier(-cpk_enzyme, -sodium)
Positions values select variables
heartfailure %>%

diagnose_outlier(5)
Negative values to drop variables
heartfailure %>%

diagnose_outlier(-1, -5)

Using pipes & dplyr ------—--------———--————-
outlier_ratio is more than 1%
heartfailure %>%
diagnose_outlier() %>%
filter(outliers_ratio > 1)

diagnose_outlier.tbl_dbi
Diagnose outlier of numerical variables in the DBMS

Description

The diagnose_outlier() produces outlier information for diagnosing the quality of the numerical INTEGER,
NUMBER, etc.) column of the DBMS table through tbl_dbi.

Usage

S3 method for class 'tbl_dbi'

diagnose_outlier(.data, ..., in_database = FALSE, collect_size = Inf)
Arguments

.data a tbl_dbi.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, diagnose_outlier() will auto-
matically start with all variables. These arguments are automatically quoted and
evaluated in a context where column names represent column positions. They
support unquoting and splicing.

in_database Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

collect_size ainteger. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

diagnose_outlier.tbl_dbi 43

Details

The scope of the diagnosis is the provide a outlier information. If the number of outliers is small
and the difference between the averages including outliers and the averages not including them is
large, it is necessary to eliminate or replace the outliers.

Value

an object of tbl_df.

Outlier Diagnostic information

The information derived from the numerical data diagnosis is as follows.

e variables : variable names

¢ outliers_cnt : number of outliers

* outliers_ratio : percent of outliers

* outliers_mean : arithmetic average of outliers

* with_mean : arithmetic average of with outliers

» without_mean : arithmetic average of without outliers

See vignette("diagonosis") for an introduction to these concepts.

See Also

diagnose_outlier.data.frame, diagnose.tbl_dbi, diagnose_category.tbl_dbi, diagnose_numeric.tbl_dbi.
Examples

library(dplyr)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

Using pipes ——=-——==-——=---—--------—---——---
Diagnosis of all numerical variables
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
diagnose_outlier()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%

tbl1("TB_HEARTFAILURE") %>%

diagnose_outlier(platelets, sodium, collect_size = 200)

Negative values to drop variables

44

con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
diagnose_outlier(-platelets, -sodium)

Positions values select variables
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
diagnose_outlier(5)

Negative values to drop variables
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
diagnose_outlier(-1, -5)

Using pipes & dplyr ----------------——--————-

outlier_ratio is more than 1%

con_sqlite %>%
tbl("TB_HEARTFAILURE") %>%
diagnose_outlier() %>%
filter(outliers_ratio > 1)

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

diagnose_paged_report

diagnose_paged_report Reporting the information of data diagnosis

Description

The diagnose_paged_report() paged report the information for diagnosing the quality of the data.

Usage

diagnose_paged_report(.data, ...)

S3 method for class 'data.frame'
diagnose_paged_report(

.data,

output_format = c("pdf”, "html"),

output_file = NULL,

output_dir = tempdir(),

browse = TRUE,

title = "Data Diagnosis Report”,

subtitle = deparse(substitute(.data)),

author = "dlookr"”,
abstract_title = "Report Overview”,
abstract = NULL,

diagnose_paged_report

title_color = "white”,

45

subtitle_color = "gold",

thres_unig_cat = 0.5,
thres_unig_num = 5

flag_content_zero = TRUE,

flag_content_minus =

TRUE,

flag_content_missing = TRUE,

cover_img = NULL,

create_date = Sys.time(),

logo_img = NULL,

theme = c("orange”, "blue"),

sample_percent = 100,
is_tbl_dbi = FALSE,
base_family = NULL,

Arguments

.data a data.frame or a tbl_df.

arguments to be passed to methods.

output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by
rmarkdown::render() and pagedown::chrome_print(). so, you needed Chrome
web browser on computer. "html" create html file by rmarkdown::render().

output_file name of generated file. default is NULL.

output_dir name of directory to generate report file. default is tempdir().
browse logical. choose whether to output the report results to the browser.
title character. title of report. default is "Data Diagnosis Report".

subtitle character.
author character.
abstract_title character.
abstract character.
title_color character.

subtitle_color character.

subtitle of report. default is name of data.

author of report. default is "dlookr".

abstract title of report. default is "Report Overview".
abstract of report.

color of title. default is "white".

color of subtitle. default is "gold".

thres_uniq_cat numeric. threshold to use for "Unique Values - Categorical Variables". default

is 0.5.

thres_uniq_num numeric. threshold to use for "Unique Values - Numerical Variables". default is

5.
flag_content_zero

logical. whether to output "Zero Values" information. the default value is TRUE,
and the information is displayed.

flag_content_minus

logical. whether to output "Minus Values" information. the default value is
TRUE, and the information is displayed.

46

diagnose_paged_report

flag_content_missing

cover_img

create_date

logo_img

theme

sample_percent

is_tbl_dbi

base_family

Details

logical. whether to output "Missing Value" information. the default value is
TRUE, and the information is displayed.

character. name of cover image.

Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

character. name of logo image file on top right.

character. name of theme for report. support "orange" and "blue". default is
"orange".

numeric. Sample percent of data for performing Diagnosis. It has a value be-
tween (0, 100]. 100 means all data, and 5 means 5% of sample data. This is
useful for data with a large number of observations.

logical. whether .data is a tbl_dbi object.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Generate generalized data diagnostic reports automatically. You can choose to output to pdf and
html files. This is useful for diagnosing a data frame with a large number of variables than data with
a small number of variables.

Create an PDF through the Chrome DevTools Protocol. If you want to create PDF, Google Chrome

or Microsoft Edge
installed, you must

Reported information

(or Chromium on Linux) must be installed prior to using this function. If not
use output_format = "html".

Reported from the data diagnosis is as follows.

¢ Overview

— Data Structures

— Job Informations

— Warnings

— Variables

* Missing Values

— List of Missing Values

— Visualization

* Unique Values

— Categorical Variables

— Numerical Variables

* Categorical Variable Diagnosis
— Top Ranks

* Numerical Variable Diagnosis

diagnose_paged_report 47

— Distribution

% Zero Values

+ Minus Values
— Outliers

List of Outliers

+ Individual Outliers

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

diagnose_paged_report.tbl_dbi.

Examples

if (FALSE) {

create dataset

heartfailure2 <- dlookr::heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "sodium”] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 2), "time"] <- @
heartfailure2[sample(seq(NROW(heartfailure2)), 1), "creatinine”] <- -0.3

create pdf file. file name is Diagnosis_Paged_Report.pdf
diagnose_paged_report(heartfailure2)

create pdf file. file name is Diagn.pdf. and change cover image

cover <- file.path(system.file(package = "dlookr"), "report”, "cover2.jpg")

diagnose_paged_report(heartfailure2, cover_img = cover, title_color = "gray”,
output_file = "Diagn.pdf")

create pdf file. file name is ./Diagn.pdf and not browse

cover <- file.path(system.file(package = "dlookr"), "report”, "cover3.jpg")

diagnose_paged_report(heartfailure2, output_dir = ".", cover_img = cover,
flag_content_missing = FALSE, output_file = "Diagn.pdf"”, browse = FALSE)

create pdf file. file name is Diagnosis_Paged_Report.html
diagnose_paged_report(heartfailure2, output_format = "html")

}

48 diagnose_paged_report.tbl_dbi

diagnose_paged_report.tbl_dbi
Reporting the information of data diagnosis for table of the DBMS

Description

The diagnose_paged_report() paged report the information for diagnosing the quality of the DBMS
table through tbl_dbi.

Usage

S3 method for class 'tbl_dbi'
diagnose_paged_report(
.data,
output_format = c("pdf”, "html")[1],
output_file = NULL,
output_dir = tempdir(),
browse = TRUE,

title = "Data Diagnosis Report”,
subtitle = deparse(substitute(.data)),
author = "dlookr"”,

abstract_title = "Report Overview”,
abstract = NULL,

title_color = "white”,

subtitle_color = "gold",
thres_unig_cat = 0.5,
thres_unig_num = 5,
flag_content_zero = TRUE,
flag_content_minus = TRUE,
flag_content_missing = TRUE,
cover_img = NULL,
create_date = Sys.time(),
logo_img = NULL,

theme = c("orange”, "blue")[11],
sample_percent = 100,
in_database = FALSE,
collect_size = Inf,
as_factor = TRUE,

Arguments

.data a tbl_dbi.

output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by
rmarkdown::render() and pagedown::chrome_print(). so, you needed Chrome
web browser on computer. "html" create html file by rmarkdown::render().

diagnose_paged_report.tbl_dbi 49

output_file
output_dir
browse

title

subtitle
author
abstract_title
abstract
title_color
subtitle_color

thres_uniqg_cat

thres_unig_num

name of generated file. default is NULL.

name of directory to generate report file. default is tempdir().
logical. choose whether to output the report results to the browser.
character. title of report. default is "Data Diagnosis Report".
character. subtitle of report. default is name of data.

character. author of report. default is "dlookr".

character. abstract title of report. default is "Report Overview".
character. abstract of report.

character. color of title. default is "white".

character. color of title. default is "gold".

numeric. threshold to use for "Unique Values - Categorical Variables". default
is 0.5.

numeric. threshold to use for "Unique Values - Numerical Variables". default is
5.

flag_content_zero

logical. whether to output "Zero Values" information. the default value is TRUE,
and the information is displayed.

flag_content_minus

logical. whether to output "Minus Values" information. the default value is
TRUE, and the information is displayed.

flag_content_missing

cover_img

create_date

logo_img

theme

sample_percent

in_database

collect_size

as_factor

logical. whether to output "Missing Value" information. the default value is
TRUE, and the information is displayed.

character. name of cover image.

Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

character. name of logo image on top right.

character. name of theme for report. support "orange" and "blue". default is
"orange".

numeric. Sample percent of data for performing Diagnosis. It has a value be-
tween (0, 100]. 100 means all data, and 5 means 5% of sample data. This is
useful for data with a large number of observations.

Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

logical. whether to convert to factor when importing a character type variable
from DBMS table into R.

arguments to be passed to methods.

50 diagnose_paged_report.tbl_dbi

Details

Generate generalized data diagnostic reports automatically. You can choose to output to pdf and
html files. This is useful for diagnosing a data frame with a large number of variables than data with
a small number of variables.

Create an PDF through the Chrome DevTools Protocol. If you want to create PDF, Google Chrome
or Microsoft Edge (or Chromium on Linux) must be installed prior to using this function. If not
installed, you must use output_format = "html".

Reported information
Reported from the data diagnosis is as follows.

e Overview

Data Structures

Job Informations

Warnings
— Variables
* Missing Values

— List of Missing Values
— Visualization

e Unique Values

— Categorical Variables
— Numerical Variables

* Categorical Variable Diagnosis
— Top Ranks
* Numerical Variable Diagnosis

— Distribution
x Zero Values
+ Minus Values
— Outliers
List of Outliers
* Individual Outliers

See Also

diagnose_paged_report.data. frame.

Examples

if (FALSE) {
library(dplyr)

Generate data for the example
heartfailure2 <- heartfailure

diagnose_report

heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure2 to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure2, name = "TB_HEARTFAILURE", overwrite

reporting the diagnosis information -------------------—————-
create pdf file. file name is Diagnosis_Paged_Report.pdf
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

diagnose_paged_report()

create pdf file. file name is Diagn.pdf, and collect size is 250
con_sqlite %>%

tbl("TB_HEARTFAILURE") %>%

diagnose_paged_report(collect_size = 250, output_file = "Diagn.pdf")

Disconnect DBMS
DBI: :dbDisconnect(con_sqlite)
3

TRUE)

51

diagnose_report Reporting the information of data diagnosis

Description

The diagnose_report() report the information for diagnosing the quality of the data.

Usage

diagnose_report(.data, output_format, output_file, output_dir,

S3 method for class 'data.frame'
diagnose_report(
.data,
output_format = c("pdf”, "html"),
output_file = NULL,
output_dir = tempdir(),
font_family = NULL,
browse = TRUE,

>

52 diagnose_report

Arguments

.data a data.frame or a tbl_df.

output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by
knitr::knit(). "html" create html file by rmarkdown::render().

output_file name of generated file. default is NULL.
output_dir name of directory to generate report file. default is tempdir().

arguments to be passed to methods.

font_family character. font family name for figure in pdf.
browse logical. choose whether to output the report results to the browser.
Details

Generate generalized data diagnostic reports automatically. You can choose to output to pdf and
html files. This is useful for diagnosing a data frame with a large number of variables than data
with a small number of variables. For pdf output, Korean Gothic font must be installed in Korean
operating system.

Reported information

Reported from the data diagnosis is as follows.

* Diagnose Data

— Overview of Diagnosis
List of all variables quality
% Diagnosis of missing data
% Diagnosis of unique data(Text and Category)
% Diagnosis of unique data(Numerical)
— Detailed data diagnosis
* Diagnosis of categorical variables
Diagnosis of numerical variables
+ List of numerical diagnosis (zero)

* List of numerical diagnosis (minus)
* Diagnose Outliers

— Overview of Diagnosis
Diagnosis of numerical variable outliers

Detailed outliers diagnosis

See vignette("diagonosis") for an introduction to these concepts.

diagnose_report.tbl_dbi 53

Examples

if (FALSE) {

reporting the diagnosis information --------------—-—-——————-
create pdf file. file name is DataDiagnosis_Report.pdf
diagnose_report(heartfailure)

create pdf file. file name is Diagn.pdf
diagnose_report(heartfailure, output_file = "Diagn.pdf")

create pdf file. file name is ./Diagn.pdf and not browse
diagnose_report(heartfailure, output_dir = ".", output_file = "Diagn.pdf",
browse = FALSE)

create html file. file name is Diagnosis_Report.html
diagnose_report(heartfailure, output_format = "html")

create html file. file name is Diagn.html
diagnose_report(heartfailure, output_format = "html”, output_file = "Diagn.html")

}

diagnose_report.tbl_dbi
Reporting the information of data diagnosis for table of the DBMS

Description

The diagnose_report() report the information for diagnosing the quality of the DBMS table through
tbl_dbi

Usage

S3 method for class 'tbl_dbi'
diagnose_report(
.data,
output_format = c("pdf”, "html"),
output_file = NULL,
output_dir = tempdir(),
font_family = NULL,
in_database = FALSE,
collect_size = Inf,

54 diagnose_report.tbl_dbi

Arguments

.data a tbl_dbi.

output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by
knitr::knit(). "html" create html file by rmarkdown::render().

output_file name of generated file. default is NULL.

output_dir name of directory to generate report file. default is tempdir().
font_family character. font family name for figure in pdf.
in_database Specifies whether to perform in-database operations. If TRUE, most operations

are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

collect_size ainteger. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

arguments to be passed to methods.

Details

Generate generalized data diagnostic reports automatically. You can choose to output to pdf and
html files. This is useful for diagnosing a data frame with a large number of variables than data
with a small number of variables. For pdf output, Korean Gothic font must be installed in Korean
operating system.

Reported information
Reported from the data diagnosis is as follows.

* Diagnose Data

— Overview of Diagnosis

*

List of all variables quality
* Diagnosis of missing data
* Diagnosis of unique data(Text and Category)
% Diagnosis of unique data(Numerical)
— Detailed data diagnosis
* Diagnosis of categorical variables
Diagnosis of numerical variables
% List of numerical diagnosis (zero)
+ List of numerical diagnosis (minus)

* Diagnose Outliers

— Overview of Diagnosis
% Diagnosis of numerical variable outliers
+ Detailed outliers diagnosis

See vignette("diagonosis") for an introduction to these concepts.

diagnose_sparese

See Also

diagnose_report.data.frame.

Examples

if (FALSE) {
library(dplyr)

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets”] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure2 to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure2, name = "TB_HEARTFAILURE", overwrite = TRUE)

reporting the diagnosis information ----------------——-—————-
create pdf file. file name is DataDiagnosis_Report.pdf
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

diagnose_report()

create pdf file. file name is Diagn.pdf, and collect size is 350
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

diagnose_report(collect_size = 350, output_file = "Diagn.pdf")

create html file. file name is Diagnosis_Report.html
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
diagnose_report(output_format = "html")

create html file. file name is Diagn.html
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
diagnose_report(output_format = "html”, output_file = "Diagn.html")

Disconnect DBMS
DBI: :dbDisconnect(con_sqglite)
3

diagnose_sparese Diagnosis of level combinations of categorical variables

56

Description

diagnose_sparese

The diagnose_sparese() checks for combinations of levels that do not appear as data among all
combinations of levels of categorical variables.

Usage

diagnose_sparese(.data, ...)

S3 method for class 'data.frame'
diagnose_sparese(

.data,

type = c("all”, "sparse")[2],
add_character = FALSE,

limit = 500

Arguments

.data

type

add_character

limit

Value

a data.frame or a thl_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, diagnose_sparese() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

a character string specifying how result are extracted. "all" that returns a com-
bination of all possible levels. At this time, the frequency of each case is also
returned.. Default is "sparse" returns only sparse level combinations.

logical. Decide whether to include text variables in the diagnosis of categorical
data. The default value is TRUE, which also includes character variables.

integer. Conditions to check sparse levels. If the number of all possible combi-
nations exceeds the limit, the calculation ends.

an object of data.frame.

Information of sparse levels

The information derived from the sparse levels diagnosis is as follows.

* variables : level of categorical variables.

* N : number of observation. (optional)

diagnose_web_report 57

Examples

library(dplyr)

Examples of too many combinations
diagnose_sparese(jobchange)

Character type is also included in the combination variable
diagnose_sparese(jobchange, add_character = TRUE)

Combination of two variables
jobchange %>%
diagnose_sparese(education_level, major_discipline)

Remove two categorical variables from combination
jobchange %>%
diagnose_sparese(-city, -education_level)

diagnose_sparese(heartfailure)

Adjust the threshold of limt to calculate
diagnose_sparese(heartfailure, limit = 50)

List all combinations, including parese cases
diagnose_sparese(heartfailure, type = "all")

collaboration with dplyr

heartfailure %>%
diagnose_sparese(type = "all") %>%
arrange(desc(n_case)) %>%
mutate(percent = round(n_case / sum(n_case) * 100, 1))

diagnose_web_report Reporting the information of data diagnosis with html

Description

The diagnose_web_report() report the information for diagnosing the quality of the data.

Usage

diagnose_web_report(.data, ...)

S3 method for class 'data.frame'
diagnose_web_report(

.data,

output_file = NULL,

58 diagnose_web_report

output_dir = tempdir(),
browse = TRUE,

title = "Data Diagnosis”,
subtitle = deparse(substitute(.data)),
author = "dlookr”,
title_color = "gray",
thres_uniqg_cat = 0.5,
thres_unig_num = 5,

logo_img = NULL,

create_date = Sys.time(),
theme = c("orange”, "blue"),
sample_percent = 100,
is_tbl_dbi = FALSE,
base_family = NULL,

Arguments

.data a data.frame or a tb1l_df.
arguments to be passed to methods.

output_file name of generated file. default is NULL.

output_dir name of directory to generate report file. default is tempdir().

browse logical. choose whether to output the report results to the browser.

title character. title of report. default is "Data Diagnosis Report".

subtitle character. subtitle of report. default is name of data.

author character. author of report. default is "dlookr".

title_color character. color of title. default is "gray".

thres_uniq_cat numeric. threshold to use for "Unique Values - Categorical Variables". default
is 0.5.

thres_uniq_num numeric. threshold to use for "Unique Values - Numerical Variables". default is
5.

logo_img character. name of logo image file on top left.

create_date Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

theme character. name of theme for report. support "orange" and "blue". default is
"orange".

sample_percent numeric. Sample percent of data for performing Diagnosis. It has a value be-
tween (0, 100]. 100 means all data, and 5 means 5% of sample data. This is
useful for data with a large number of observations.

is_tbl_dbi logical. whether .data is a tbl_dbi object.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

diagnose_web_report 59

Details

Generate generalized data diagnostic reports automatically. This is useful for diagnosing a data
frame with a large number of variables than data with a small number of variables.

Reported information

Reported from the data diagnosis is as follows.

* Overview
— Data Structures
+ Data Structures
* Data Types
+ Job Informations
— Warnings
— Variables
* Missing Values

— List of Missing Values
— Visualization
* Unique Values
— Categorical Variables
— Numerical Variables
* Qutliers
* Samples
— Duplicated

— Heads
— Tails

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

diagnose_web_report.tbl_dbi.

Examples

if (FALSE) {

create dataset

heartfailure2 <- dlookr::heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "sodium"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 2), "time"] <- @
heartfailure2[sample(seq(NROW(heartfailure2)), 1), "creatinine”] <- -0.3

60 diagnose_web_report.tbl_dbi

create pdf file. file name is Diagnosis_Report.html
diagnose_web_report(heartfailure2)

file name is Diagn.html. and change logo image

logo <- file.path(system.file(package = "dlookr"), "report”, "R_logo_html.svg")

diagnose_web_report(heartfailure2, logo_img = logo, title_color = "black”,
output_file = "Diagn.html")

file name is ./Diagn_heartfailure.html, "blue” theme and not browse

diagnose_web_report(heartfailure2, output_dir = ".", author = "Choonghyun Ryu”,
output_file = "Diagn_heartfailure.html”, theme = "blue”, browse = FALSE)

3

diagnose_web_report.tbl_dbi
Reporting the information of data diagnosis for table of the DBMS
with html

Description

The diagnose_web_report() report the information for diagnosing the quality of the DBMS table
through tbl_dbi

Usage

S3 method for class 'tbl_dbi'
diagnose_web_report(
.data,
output_file = NULL,
output_dir = tempdir(),
browse = TRUE,
title = "Data Diagnosis”,
subtitle = deparse(substitute(.data)),
author = "dlookr"”,
title_color = "gray",
thres_uniq_cat = 0.5,
thres_unig_num = 5,
logo_img = NULL,
create_date = Sys.time(),
theme = c("orange”, "blue")[1],
sample_percent = 100,
in_database = FALSE,
collect_size = Inf,
as_factor = TRUE,

diagnose_web_report.tbl_dbi 61

Arguments

.data
output_file
output_dir
browse
title
subtitle
author
title_color

thres_uniqg_cat

thres_uniq_num

logo_img

create_date

theme

sample_percent

in_database

collect_size

as_factor

Details

a tbl_dbi.

name of generated file. default is NULL.

name of directory to generate report file. default is tempdir().
logical. choose whether to output the report results to the browser.
character. title of report. default is "Data Diagnosis Report".
character. subtitle of report. default is name of data.

character. author of report. default is "dlookr".

character. color of title. default is "gray".

numeric. threshold to use for "Unique Values - Categorical Variables". default
is 0.5.

numeric. threshold to use for "Unique Values - Numerical Variables". default is
5.

character. name of logo image on top right.

Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

character. name of theme for report. support "orange" and "blue". default is
"orange".

numeric. Sample percent of data for performing Diagnosis. It has a value be-
tween (0, 100]. 100 means all data, and 5 means 5% of sample data. This is
useful for data with a large number of observations.

Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

logical. whether to convert to factor when importing a character type variable
from DBMS table into R.

arguments to be passed to methods.

Generate generalized data diagnostic reports automatically. This is useful for diagnosing a data
frame with a large number of variables than data with a small number of variables.

Reported information

Reported from the data diagnosis is as follows.

e Overview

— Data Structures

+ Data Structures

* Data Types

62
Job Informations
— Warnings
— Variables
* Missing Values
— Top Ranks
* Numerical Variable Diagnosis
— List of Missing Values
— Visualization
* Unique Values
— Categorical Variables
— Numerical Variables
* Outliers
e Samples
— Duplicated
— Heads
— Tails
See Also
diagnose_web_report.data.frame.
Examples

if (FALSE) {
library(dplyr)

Generate data for the example
heartfailure2 <- heartfailure

diagnose_web_report.tbl_dbi

heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

connect DBMS

con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure2 to the DBMS with a table named TB_HEARTFAILURE

copy_to(con_sqlite, heartfailure2, name

"TB_HEARTFAILURE", overwrite = TRUE)

reporting the diagnosis information -------------------—————-
create pdf file. file name is Diagnosis_Report.html

con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
diagnose_web_report()

create pdf file. file name is Diagn.html, and collect size is 250

con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%

dlookr_orange_paged 63

diagnose_web_report(collect_size = 250, output_file = "Diagn.html")

Disconnect DBMS
DBI: :dbDisconnect(con_sqglite)
3

dlookr_orange_paged Generate paged HTML document

Description

Generate paged HTML document

Usage
dlookr_orange_paged(...)
dlookr_blue_paged(...)

Arguments

arguments to be passed to pagedown: :html_paged.

Value

document of markdown format.

References

https://pagedown.rbind.io

dlookr_templ_html dlookr HTML template Loads additional style and template file

Description

dlookr HTML template
Loads additional style and template file

Usage

dlookr_templ_html(toc = TRUE, ...)

https://pagedown.rbind.io

64 eda_paged_report

Arguments
toc should a table of contents be displayed?
additional arguments provided to html_document
Value

An R Markdown output format.

References

https://raw.githubusercontent.com/dr-harper/example-rmd-templates/master/R/my_html_format.R

eda_paged_report Reporting the information of EDA

Description

The eda_paged_report() paged report the information for EDA.

Usage

eda_paged_report(.data, ...)

S3 method for class 'data.frame'

eda_paged_report(
.data,
target = NULL,
output_format = c("pdf”, "html"),
output_file = NULL,
output_dir = tempdir(),
browse = TRUE,
title = "EDA Report”,
subtitle = deparse(substitute(.data)),
author = "dlookr"”,
abstract_title = "Report Overview”,
abstract = NULL,
title_color = "black”,
subtitle_color = "blue”,
cover_img = NULL,
create_date = Sys.time(),
logo_img = NULL,
theme = c("orange”, "blue"),
sample_percent = 100,
is_tbl_dbi = FALSE,
base_family = NULL,

eda_paged_report

Arguments

.data

target

output_format

output_file
output_dir
browse

title

subtitle
author
abstract_title
abstract
title_color
subtitle_color
cover_img

create_date

logo_img

theme

sample_percent

is_tbl_dbi

base_family

Details

65

a data.frame or a tb1l_df.
arguments to be passed to methods.
character. target variable.

report output type. Choose either "pdf" and "html". "pdf" create pdf file by
rmarkdown::render() and pagedown::chrome_print(). so, you needed Chrome
web browser on computer. "html" create html file by rmarkdown::render().

name of generated file. default is NULL.

name of directory to generate report file. default is tempdir().
logical. choose whether to output the report results to the browser.
character. title of report. default is "Data Diagnosis Report".
character. subtitle of report. default is name of data.

character. author of report. default is "dlookr".

character. abstract title of report. default is "Report Overview".
character. abstract of report.

character. color of title. default is "black".

character. color of subtitle. default is "blue".

character. name of cover image.

Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

character. name of logo image file on top right.

character. name of theme for report. support "orange" and "blue". default is
"orange".

numeric. Sample percent of data for performing Diagnosis. It has a value be-
tween (0, 100]. 100 means all data, and 5 means 5% of sample data. This is
useful for data with a large number of observations.

logical. whether .data is a tbl_dbi object.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Generate generalized EDA report automatically. You can choose to output to pdf and html files.
This feature is useful for EDA of data with many variables, rather than data with fewer variables.

Create an PDF through the Chrome DevTools Protocol. If you want to create PDF, Google Chrome
or Microsoft Edge (or Chromium on Linux) must be installed prior to using this function. If not
installed, you must use output_format = "html".

66 eda_paged_report

Reported information

The EDA process will report the following information:

* Overview
— Data Structures
— Job Informations
* Univariate Analysis
— Descriptive Statistics
% Numerical Variables
* Categorical Variables
— Normality Test
* Bivariate Analysis
— Compare Numerical Variables
— Compare Categorical Variables
* Multivariate Analysis
— Correlation Analysis
* Correlation Coefficient Matrix
* Correlation Plot
 Target based Analysis
— Grouped Numerical Variables
— Grouped Categorical Variables
— Grouped Correlation

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

eda_paged_report.tbl_dbi.

Examples

if (FALSE) {

create the dataset

heartfailure2 <- dlookr::heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "sodium"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

create pdf file. file name is EDA_Paged_Report.pdf
eda_paged_report(heartfailure2, sample_percent = 80)

create pdf file. file name is EDA.pdf. and change cover image
cover <- file.path(system.file(package = "dlookr"), "report”, "coverl.jpg")
eda_paged_report(heartfailure2, cover_img = cover, title_color = "gray”,

eda_paged_report.tbl_dbi 67

output_file = "EDA.pdf")

create pdf file. file name is ./EDA.pdf and not browse

cover <- file.path(system.file(package = "dlookr"), "report”, "cover3.jpg")

eda_paged_report(heartfailure2, output_dir = ".", cover_img = cover,
flag_content_missing = FALSE, output_file = "EDA.pdf", browse = FALSE)

create pdf file. file name is EDA_Paged_Report.html
eda_paged_report(heartfailure2, target = "death_event”, output_format = "html")
}

eda_paged_report.tbl_dbi
Reporting the information of EDA for table of the DBMS

Description

The eda_paged_report() paged report the information for EDA of the DBMS table through tbl_dbi

Usage

S3 method for class 'tbl_dbi'
eda_paged_report(
.data,
target = NULL,
output_format = c("pdf"”, "html")[11],
output_file = NULL,
output_dir = tempdir(),
browse = TRUE,
title = "EDA Report”,
subtitle = deparse(substitute(.data)),
author = "dlookr”,
abstract_title = "Report Overview”,
abstract = NULL,
title_color = "black”,
subtitle_color = "blue”,
cover_img = NULL,
create_date = Sys.time(),
logo_img = NULL,
theme = c("orange”, "blue")[1],
sample_percent = 100,
in_database = FALSE,
collect_size = Inf,
as_factor = TRUE,

68

Arguments

.data
target

output_format

output_file
output_dir
browse

title

subtitle
author
abstract_title
abstract
title_color
subtitle_color
cover_img

create_date

logo_img

theme

sample_percent

in_database

collect_size

as_factor

Details

eda_paged_report.tbl_dbi

a tbl_dbi.
character. target variable.

report output type. Choose either "pdf" and "html". "pdf" create pdf file by
rmarkdown::render() and pagedown::chrome_print(). so, you needed Chrome
web browser on computer. "html" create html file by rmarkdown::render().

name of generated file. default is NULL.

name of directory to generate report file. default is tempdir().
logical. choose whether to output the report results to the browser.
character. title of report. default is "Data Diagnosis Report".
character. subtitle of report. default is name of data.

character. author of report. default is "dlookr".

character. abstract title of report. default is "Report Overview".
character. abstract of report.

character. color of title. default is "black".

character. color of title. default is "blue".

character. name of cover image.

Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

character. name of logo image on top right.

character. name of theme for report. support "orange" and "blue". default is
"orange".

numeric. Sample percent of data for performing EDA. It has a value between
(0, 100]. 100 means all data, and 5 means 5% of sample data. This is useful for
data with a large number of observations.

Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

logical. whether to convert to factor when importing a character type variable
from DBMS table into R.

arguments to be passed to methods.

Generate generalized EDA report automatically. You can choose to output to pdf and html files.
This feature is useful for EDA of data with many variables, rather than data with fewer variables.

Create an PDF through the Chrome DevTools Protocol. If you want to create PDF, Google Chrome
or Microsoft Edge (or Chromium on Linux) must be installed prior to using this function. If not
installed, you must use output_format = "html".

eda_paged_report.tbl_dbi

Reported information

The EDA process will report the following information:

¢ Overview

— Data Structures
— Job Informations

* Univariate Analysis
— Descriptive Statistics
Numerical Variables
Categorical Variables
— Normality Test
* Bivariate Analysis
— Compare Numerical Variables
— Compare Categorical Variables
* Multivariate Analysis
— Correlation Analysis
% Correlation Coefficient Matrix
Correlation Plot
 Target based Analysis
— Grouped Numerical Variables
— Grouped Categorical Variables
— Grouped Correlation

See Also

eda_paged_report.data.frame.

Examples

if (FALSE) {
library(dplyr)

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking”] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure2 to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure2, name = "TB_HEARTFAILURE", overwrite = TRUE)

reporting the diagnosis information ---------------——--—————-
create pdf file. file name is EDA_Paged_Report.pdf

69

70 eda_report

con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
eda_paged_report(target = "death_event”)

create pdf file. file name is EDA.pdf, and collect size is 250
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

eda_paged_report(collect_size = 250, output_file = "EDA.pdf")

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)
3

eda_report Reporting the information of EDA

Description

The eda_report() report the information of exploratory data analysis for object inheriting from
data.frame.

Usage

eda_report(.data, ...)

S3 method for class 'data.frame'
eda_report(
.data,
target = NULL,
output_format = c("pdf”, "html"),
output_file = NULL,
output_dir = tempdir(),
font_family = NULL,
browse = TRUE,

)
Arguments
.data a data.frame or a tbl_df.
arguments to be passed to methods.
target target variable.

output_format character. report output type. Choose either "pdf" and "html". "pdf" create pdf
file by knitr::knit(). "html" create html file by rmarkdown::render().

output_file character. name of generated file. default is NULL.

eda_report 71

output_dir character. name of directory to generate report file. default is tempdir().

font_family character. font family name for figure in pdf.

browse logical. choose whether to output the report results to the browser.
Details

Generate generalized EDA report automatically. You can choose to output as pdf and html files.
This feature is useful for EDA of data with many variables, rather than data with fewer variables.
For pdf output, Korean Gothic font must be installed in Korean operating system.

Reported information

The EDA process will report the following information:

e Introduction
— Information of Dataset

— Information of Variables
— About EDA Report
* Univariate Analysis
— Descriptive Statistics
— Normality Test of Numerical Variables
Statistics and Visualization of (Sample) Data
» Relationship Between Variables
— Correlation Coefficient
+ Correlation Coefficient by Variable Combination
* Correlation Plot of Numerical Variables
 Target based Analysis
— Grouped Descriptive Statistics
% Grouped Numerical Variables
% Grouped Categorical Variables
— Grouped Relationship Between Variables
* Grouped Correlation Coefficient
Grouped Correlation Plot of Numerical Variables

See vignette("EDA") for an introduction to these concepts.

Examples

if (FALSE) {
library(dplyr)

target variable is categorical variable ------------------—---———--——————
reporting the EDA information

create pdf file. file name is EDA_Report.pdf

eda_report(heartfailure, death_event)

72 eda_report.tbl_dbi

create pdf file. file name is EDA_heartfailure.pdf
eda_report(heartfailure, "death_event”, output_file = "EDA_heartfailure.pdf")

create pdf file. file name is EDA_heartfailure.pdf and not browse

eda_report(heartfailure, "death_event”, output_dir = ".",
output_file = "EDA_heartfailure.pdf”, browse = FALSE)

create html file. file name is EDA_Report.html
eda_report(heartfailure, "death_event”, output_format = "html")

create html file. file name is EDA_heartfailure.html
eda_report(heartfailure, death_event, output_format = "html”,
output_file = "EDA_heartfailure.html”)

target variable is numerical variable ----------------—moo—mmommm oo
reporting the EDA information
eda_report(heartfailure, sodium)

create pdf file. file name is EDA2.pdf
eda_report(heartfailure, "sodium”, output_file = "EDA2.pdf")

create html file. file name is EDA_Report.html
eda_report(heartfailure, "sodium”, output_format = "html")

create html file. file name is EDA2.html
eda_report(heartfailure, sodium, output_format = "html”, output_file = "EDA2.html")

target variable is null
reporting the EDA information
eda_report(heartfailure)

create pdf file. file name is EDA2.pdf
eda_report(heartfailure, output_file = "EDA2.pdf")

create html file. file name is EDA_Report.html
eda_report(heartfailure, output_format = "html")

create html file. file name is EDA2.html
eda_report(heartfailure, output_format = "html”, output_file = "EDA2.html")
3

eda_report.tbl_dbi Reporting the information of EDA for table of the DBMS

Description

The eda_report() report the information of Exploratory data analysis for object inheriting from the
DBMS table through tbl_dbi

eda_report.tbl_dbi

Usage

S3 method for class

eda_report(

.data,

target = NULL
output_format
output_file =
font_family =
output_dir =
in_database =

73

"tbl_dbi'

’

= C(defll’ Hhtml")’
NULL,
NULL,

tempdir(),

FALSE,

collect_size = Inf,

Arguments

.data
target

output_format

output_file
font_family
output_dir

in_database

collect_size

Details

a tbl_dbi.
target variable.

report output type. Choose either "pdf" and "html". "pdf" create pdf file by
knitr::knit(). "html" create html file by rmarkdown::render().

name of generated file. default is NULL.
character. font family name for figure in pdf.
name of directory to generate report file. default is tempdir().

Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

arguments to be passed to methods.

Generate generalized data EDA reports automatically. You can choose to output to pdf and html
files. This is useful for EDA a data frame with a large number of variables than data with a small
number of variables. For pdf output, Korean Gothic font must be installed in Korean operating

system.

Reported information

The EDA process will report the following information:

* Introduction

— Information of Dataset
— Information of Variables
— About EDA Report

* Univariate Analysis

74 eda_report.tbl_dbi

— Descriptive Statistics
— Normality Test of Numerical Variables
Statistics and Visualization of (Sample) Data

* Relationship Between Variables

— Correlation Coefficient
* Correlation Coefficient by Variable Combination
% Correlation Plot of Numerical Variables

» Target based Analysis

— Grouped Descriptive Statistics
% Grouped Numerical Variables
* Grouped Categorical Variables
— Grouped Relationship Between Variables
+ Grouped Correlation Coefficient
* Grouped Correlation Plot of Numerical Variables

See vignette("EDA") for an introduction to these concepts.

See Also

eda_report.data.frame.

Examples

if (FALSE) {
library(dplyr)

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking”] <- NA

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure2 to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure2, name = "TB_HEARTFAILURE", overwrite = TRUE)

target variable is categorical variable
reporting the EDA information
create pdf file. file name is EDA_Report.pdf
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
eda_report(death_event)

create pdf file. file name is EDA_TB_HEARTFAILURE.pdf
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
eda_report("death_event"”, output_file = "EDA_TB_HEARTFAILURE.pdf")

eda_report.tbl_dbi 75

create html file. file name is EDA_Report.html
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
eda_report("death_event"”, output_format = "html")

create html file. file name is EDA_TB_HEARTFAILURE.html
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
eda_report(death_event, output_format = "html”, output_file = "EDA_TB_HEARTFAILURE.html")

target variable is numerical variable
reporting the EDA information, and collect size is 250
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

eda_report(sodium, collect_size = 250)

create pdf file. file name is EDA2.pdf
con_sqlite %>%
tbl1("TB_HEARTFAILURE") %>%
eda_report(”sodium”, output_file = "EDA2.pdf")

create html file. file name is EDA_Report.html
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
eda_report("sodium”, output_format = "html")

create html file. file name is EDA2.html
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
eda_report(sodium, output_format = "html”, output_file = "EDA2.html")

target variable is null
reporting the EDA information
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
eda_report()

create pdf file. file name is EDA2.pdf
con_sqlite %>%
tbl("TB_HEARTFAILURE") %>%
eda_report(output_file = "EDA2.pdf")

create html file. file name is EDA_Report.html
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
eda_report(output_format = "html")

create html file. file name is EDA2.html
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
eda_report(output_format = "html"”, output_file = "EDA2.html")

76

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

}

eda_web_report

eda_web_report

Reporting the information of EDA with html

Description

Usage

)
Arguments
.data a data.frame or a tbl_df.
arguments to be passed to methods.
target character. target variable.

The eda_web_report() report the information of exploratory data analysis for object inheriting from
data.frame.

eda_web_report(.data, ...)

S3 method for class 'data.frame'
eda_web_report(

output_file
output_dir

browse

.data,

target = NULL,

output_file = NULL,
output_dir = tempdir(),
browse = TRUE,

title = "EDA",

subtitle = deparse(substitute(.data)),
author = "dlookr”,
title_color = "gray",
logo_img = NULL,

create_date = Sys.time(),
theme = c("orange”, "blue"),
sample_percent = 100,
is_tbl_dbi = FALSE,
base_family = NULL,

name of generated file. default is NULL.

name of directory to generate report file. default is tempdir().

logical. choose whether to output the report results to the browser.

eda_web_report

title
subtitle
author
title_color
logo_img

create_date

theme

sample_percent

is_tbl_dbi

base_family

Details

77

character. title of report. default is "EDA".
character. subtitle of report. default is name of data.
character. author of report. default is "dlookr".
character. color of title. default is "gray".

character. name of logo image file on top left.

Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

character. name of theme for report. support "orange" and "blue". default is
"orange".

numeric. Sample percent of data for performing EDA. It has a value between
(0, 100]. 100 means all data, and 5 means 5% of sample data. This is useful for
data with a large number of observations.

logical. whether .data is a tbl_dbi object.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Generate generalized EDA report automatically. This feature is useful for EDA of data with many
variables, rather than data with fewer variables.

Reported information

Reported from the EDA is as follows.

e Overview

— Data Structures

— Data Types

— Job Informations

* Univariate Analysis

— Descriptive Statistics

— Normality Test

* Bivariate Analysis

— Compare Numerical Variables

— Compare Categorical Variables

* Multivariate Analysis

— Correlation Analysis

* Correlation Matrix

% Correlation Plot

 Target based Analysis

— Grouped Numerical Variables

— Grouped Categorical Variables

78 eda_web_report.tbl_dbi

— Grouped Correlation

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

eda_web_report.tbl_dbi.

Examples

if (FALSE) {

create the dataset

heartfailure2 <- dlookr::heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "sodium"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

create html file. file name is EDA_Report.html
eda_web_report(heartfailure2)

file name is EDA.html. and change logo image

logo <- file.path(system.file(package = "dlookr"), "report”, "R_logo_html.svg")

eda_web_report(heartfailure2, logo_img = logo, title_color = "black”,
output_file = "EDA.html")

file name is ./EDA_heartfailure.html, "blue" theme and not browse

eda_web_report(heartfailure2, target = "death_event”, output_dir =
author = "Choonghyun Ryu"”, output_file = "EDA_heartfailure.html”,
theme = "blue”, browse = FALSE)

3

non

eda_web_report.tbl_dbi
Reporting the information of EDA for table of the DBMS with html

Description

The eda_web_report() report the information of exploratory data analysis for the DBMS table
through tbl_dbi

Usage

S3 method for class 'tbl_dbi'
eda_web_report(
.data,

eda_web_report.tbl_dbi 79

target = NULL,
output_file = NULL,
output_dir = tempdir(),
browse = TRUE,

title = "EDA",
subtitle = deparse(substitute(.data)),
author = "dlookr”,

title_color = "gray",

logo_img = NULL,

create_date = Sys.time(),

theme = c("orange”, "blue")[11],
sample_percent = 100,
in_database = FALSE,
collect_size = Inf,

as_factor = TRUE,

Arguments
.data a tbl_dbi.
target character. target variable.

output_file name of generated file. default is NULL.

output_dir name of directory to generate report file. default is tempdir().
browse logical. choose whether to output the report results to the browser.
title character. title of report. default is "EDA Report".

subtitle character. subtitle of report. default is name of data.

author character. author of report. default is "dlookr".

title_color character. color of title. default is "gray".

logo_img character. name of logo image on top right.

create_date Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

theme character. name of theme for report. support "orange" and "blue". default is
"orange".

sample_percent numeric. Sample percent of data for performing EDA. It has a value between
(0, 100]. 100 means all data, and 5 means 5% of sample data. This is useful for
data with a large number of observations.

in_database Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

collect_size a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

as_factor logical. whether to convert to factor when importing a character type variable
from DBMS table into R.

arguments to be passed to methods.

80 eda_web_report.tbl_dbi

Details

Generate generalized EDA report automatically. This feature is useful for EDA of data with many
variables, rather than data with fewer variables.

Reported information

Reported from the EDA is as follows.

e Overview

— Data Structures
— Data Types
— Job Informations

* Univariate Analysis

— Descriptive Statistics
— Normality Test

* Bivariate Analysis

— Compare Numerical Variables
— Compare Categorical Variables

e Multivariate Analysis

— Correlation Analysis
x Correlation Matrix
% Correlation Plot

* Target based Analysis

— Grouped Numerical Variables
— Grouped Categorical Variables
— Grouped Correlation

See Also

eda_web_report.data. frame.

Examples

if (FALSE) {
library(dplyr)

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure2 to the DBMS with a table named TB_HEARTFAILURE

entropy

copy_to(con_sqlite, heartfailure2, name = "TB_HEARTFAILURE", overwrite

reporting the diagnosis information -------------------—————-
create pdf file. file name is EDA_Report.html
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

eda_web_report(target = "death_event")

create pdf file. file name is EDA.html, and collect size is 250
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

eda_web_report(collect_size = 250, output_file = "EDA.html")

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)
}

entropy Calculate the entropy

Description

Calculate the Shannon’s entropy.

Usage

entropy(x)

Arguments

X a numeric vector.

Value

numeric. entropy

Examples

set.seed(123)
x <- sample(1:10, 20, replace = TRUE)

entropy(x)

82 extract

extract Extract bins from "bins"

Description

The extract() extract binned variable from "bins", "optimal_bins" class object.

Usage
extract(x)
S3 method for class 'bins'
extract(x)

Arguments

X a bins class or optimal_bins class.

Details

The "bins" and "optimal_bins" class objects use the summary() and plot() functions to diagnose the
performance of binned results. This function is used to extract the binned result if you are satisfied
with the result.

Value

factor.

See Also

binning, binning_by.

Examples

library(dplyr)

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "creatinine”] <- NA

optimal binning using binning_by()
bin <- binning_by(heartfailure2, "death_event”, "creatinine")
bin

extract binning result
extract(bin) %>%
head(20)

find_class 83

find_class Extract variable names or indices of a specific class

Description

The find_class() extracts variable information having a certain class from an object inheriting

data.frame.
Usage
find_class(
df,
type = c("numerical”, "categorical”, "categorical2”, "date_categorical”,
"date_categorical2"),
index = TRUE
)
Arguments
df a data.frame or objects inheriting from data.frame
type character. Defines a group of classes to be searched. "numerical" searches
for "numeric" and "integer" classes, "categorical" searches for "factor" and "or-
dered" classes. "categorical2" adds "character” class to "categorical". "date_categorical"
adds result of "categorical2" and "Date", "POSIXct". "date_categorical2" adds
result of "categorical" and "Date", "POSIXct".
index logical. If TRUE is return numeric vector that is variables index. and if FALSE
is return character vector that is variables name. default is TRUE.
Value

character vector or numeric vector. The meaning of vector according to data type is as follows.

e character vector : variables name

e numeric vector : variables index

See Also

get_class.

Examples

Not run:

data.frame

find_class(iris, "numerical”)

find_class(iris, "numerical”, index = FALSE)
find_class(iris, "categorical”)
find_class(iris, "categorical”, index = FALSE)

84 find_na

tbl_df

find_class(ggplot2::diamonds, "numerical")
find_class(ggplot2::diamonds, "numerical”, index = FALSE)
find_class(ggplot2::diamonds, "categorical”)
find_class(ggplot2::diamonds, "categorical”, index = FALSE)

type is "categorical2”

iris2 <- data.frame(iris, char = "chars”,
stringsAsFactors = FALSE)

find_class(iris2, "categorical”, index = FALSE)

find_class(iris2, "categorical2”, index = FALSE)

End(Not run)

find_na Finding variables including missing values

Description

Find the variable that contains the missing value in the object that inherits the data.frame or data.frame.

Usage

find_na(.data, index = TRUE, rate = FALSE)

Arguments
.data a data.frame or a tbl_df.
index logical. When representing the information of a variable including missing val-
ues, specify whether or not the variable is represented by an index. Returns an
index if TRUE or a variable names if FALSE.
rate logical. If TRUE, returns the percentage of missing values in the individual
variable.
Value

Information on variables including missing values.

See Also

imputate_na, find_outliers.

find_outliers 85

Examples

Not run:
find_na(jobchange)

find_na(jobchange, index = FALSE)
find_na(jobchange, rate = TRUE)

using dplyr ----——------------- -
library(dplyr)

Perform simple data quality diagnosis of variables with missing values.
jobchange %>%

select(find_na(.)) %>%

diagnose()

End(Not run)

find_outliers Finding variables including outliers

Description

Find the numerical variable that contains outliers in the object that inherits the data.frame or data.frame.

Usage

find_outliers(.data, index = TRUE, rate = FALSE)

Arguments
.data a data.frame or a tb1l_df.
index logical. When representing the information of a variable including outliers,
specify whether or not the variable is represented by an index. Returns an index
if TRUE or a variable names if FALSE.
rate logical. If TRUE, returns the percentage of outliers in the individual variable.
Value

Information on variables including outliers.

See Also

find_na, imputate_outlier.

86 find_skewness

Examples

Not run:
find_outliers(heartfailure)

find_outliers(heartfailure, index = FALSE)
find_outliers(heartfailure, rate = TRUE)

using dplyr ----—----—---—mmm oo
library(dplyr)

Perform simple data quality diagnosis of variables with outliers.
heartfailure %>%

select(find_outliers(.)) %>%

diagnose()

End(Not run)

find_skewness Finding skewed variables

Description

Find the numerical variable that skewed variable that inherits the data.frame or data.frame.

Usage

find_skewness(.data, index = TRUE, value = FALSE, thres = NULL)

Arguments
.data a data.frame or a tb1_df.
index logical. When representing the information of a skewed variable, specify whether
or not the variable is represented by an index. Returns an index if TRUE or a
variable names if FALSE.
value logical. If TRUE, returns the skewness value in the individual variable.
thres Returns a skewness threshold value that has an absolute skewness greater than
thres. The defaultis NULL to ignore the threshold. but, If value = TRUE, default
to 0.5.
Value

Information on variables including skewness.

See Also

find_na, find_outliers.

get_class 87

Examples

Not run:
find_skewness(heartfailure)

find_skewness(heartfailure, index = FALSE)
find_skewness(heartfailure, thres = 0.1)
find_skewness(heartfailure, value = TRUE)
find_skewness(heartfailure, value = TRUE, thres = 0.1)

using dplyr -------------—----—mm o
library(dplyr)

Perform simple data quality diagnosis of skewed variables
heartfailure %>%

select(find_skewness(.)) %>%

diagnose()

End(Not run)

get_class Extracting a class of variables

Description

The get_class() gets class of variables in data.frame or tbl_df.

Usage
get_class(df)

Arguments

df a data.frame or objects inheriting from data.frame

Value

a data.frame Variables of data.frame is as follows.

 variable : variables name

e class : class of variables

See Also

find_class.

88 get_column_info

Examples

Not run:
data.frame
get_class(iris)

tbl_df
get_class(ggplot2::diamonds)

library(dplyr)
ggplot2: :diamonds %>%
get_class() %>%
filter(class %in% c("integer”, "numeric"))

End(Not run)

get_column_info Describe column of table in the DBMS

Description
The get_column_info() retrieves the column information of the DBMS table through the tbl_bdi
object of dplyr.

Usage

get_column_info(df)

Arguments

df a tbl_dbi.

Value

An object of data.frame.

Column information of the DBMS table
¢ SQLite DBMS connected RSQLite::SQLite():

— name: column name
— type: data type in R
* MySQL/MariaDB DBMS connected RMySQL::MySQL():

— name: column name

Sclass: data type in R
— type: data type of column in the DBMS
— length: data length in the DBMS

¢ Oracle DBMS connected ROracle::dbConnect():

get_os 89

— name: column name

— Sclass: column type in R

— type: data type of column in the DBMS

— len: length of column(CHAR/VARCHAR/VARCHAR?2 data type) in the DBMS
— precision: precision of column(NUMBER data type) in the DBMS

— scale: decimal places of column(NUMBER data type) in the DBMS

— nullOK: nullability

Examples

library(dplyr)
connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
get_column_info

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

get_os Finding Users Machine’s OS

Description

Get the operating system that users machines.

Usage

get_os()

Value

OS names. "windows" or "osx" or "linux"

Examples

get_os()

90

get_percentile

get_percentile

Finding percentile

Description

Find the percentile of the value specified in numeric vector.

Usage

get_percentile(x, value, from = @, to = 1, eps =

Arguments
X
value
from
to

eps

Value

numeric. a numeric vector.

numeric. a scalar to find percentile value from vector x.

1e-06)

numeric. Start interval in logic to find percentile value. default to 0.

numeric. End interval in logic to find percentile value. default to 1.

numeric. Threshold value for calculating the approximate value in recursive
calling logic to find the percentile value. (epsilon). default to 1e-06.

list. Components of list. is as follows.

* percentile : numeric. Percentile position of value. It has a value between [0, 100].

* is_outlier : logical. Whether value is an outlier.

Examples

Not run:

carat <- ggplot2::diamonds$carat

quantile(carat)

get_percentile(carat, value
get_percentile(carat, value
get_percentile(carat, value
get_percentile(carat, value

End(Not run)

0.5)
median(diamonds$carat))
D)

7

get_transform

get_transform Transform a numeric vector

Description

The get_transform() gets transformation of numeric variable.

Usage

get_transform(
X’
methOd = C(”]_Og”, "Sqrt”, "10g+1“’ I,10g+a”, II-I/XII’ “XAZI,, "XA3", ”BOX_COXII’
"Yeo-Johnson")

)
Arguments

X numeric. numeric for transform

method character. transformation method of numeric variable
Details

The supported transformation method is follow.:

* "log" : log transformation. log(x)

* "log+1" : log transformation. log(x + 1). Used for values that contain 0.

* "log+a" : log transformation. log(x + 1 - min(x)). Used for values that contain 0.
* "sqrt" : square root transformation.

e "1/x": 1/x transformation

e "x"2" : x square transformation

* "x"3" : x"3 square transformation

* "Box-Cox" : Box-Box transformation

¢ "Yeo-Johnson" : Yeo-Johnson transformation

Value

numeric. transformed numeric vector.

See Also

plot_normality.

92 heartfailure

Examples

Not run:
log+a transform
get_transform(iris$Sepal.Length, "log+a")

if (requireNamespace("forecast”, quietly = TRUE)) {
Box-Cox transform
get_transform(iris$Sepal.Length, "Box-Cox")

Yeo-Johnson transform
get_transform(iris$Sepal.Length, "Yeo-Johnson")
} else {
cat("If you want to use this feature, you need to install the forecast package.\n")

}

End(Not run)

heartfailure Heart Failure Data

Description

A dataset containing the ages and other attributes of almost 300 cases.

Usage

data(heartfailure)

Format
A data frame with 299 rows and 13 variables. The variables are as follows:

age patient’s age.

anaemia decrease of red blood cells or hemoglobin (boolean), Yes, No.

cpk_enzyme level of the CPK(creatinine phosphokinase) enzyme in the blood (mcg/L).
diabetes if the patient has diabetes (boolean), Yes, No.

ejection_fraction percentage of blood leaving the heart at each contraction (percentage).
hblood_pressure high_blood_pressure. if the patient has hypertension (boolean), Yes, No.
platelets platelets in the blood (kiloplatelets/mL).

creatinine level of serum creatinine in the blood (mg/dL).

sodium level of serum sodium in the blood (mEq/L).

sex patient’s sex (binary), Male, Female.

smoking if the patient smokes or not (boolean), Yes, No.

time follow-up period (days).

death_event if the patient deceased during the follow-up period (boolean), Yes, No.

import_google_font 93

Details
Heart failure is a common event caused by Cardiovascular diseasess and this dataset contains 12
features that can be used to predict mortality by heart failure.

Source
"Heart Failure Prediction" in Kaggle <https://www.kaggle.com/andrewmvd/heart-failure-clinical-
data>, License : CC BY 4.0

References

Davide Chicco, Giuseppe Jurman: Machine learning can predict survival of patients with heart
failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision
Making 20, 16 (2020). <https://doi.org/10.1186/s12911-020-1023-5>

import_google_font Import Google Fonts

Description

Import google font to be used when drawing charts.

Usage

import_google_font(family)

Arguments

family character. font family name

Details

When attaching the dlookr package, use "Roboto Condensed" and "Noto Sans Korean" among
Google fonts. And also loads "Liberation Sans Narrow" and "NanumSquare" included in the pack-
age for offline environment.

If you want to use anything other than the 4 fonts that are loaded with the dlookr package, load the
desired Google fonts with import_google_font().

dlookr recommends the following google fonts, both sans and condensed: "IBM Plex Sans Con-
densed", "Encode Sans Condensed", "Barlow Condensed", "Saira Condensed", "Titillium Web",
"Oswald", "PT Sans Narrow"

Korean fonts: "Nanum Gothic", "Gothic A1"

94 imputate_na

imputate_na Impute Missing Values

Description

Missing values are imputed with some representative values and statistical methods.

Usage

imputate_na(.data, xvar, yvar, method, seed, print_flag, no_attrs)

Arguments
.data a data.frame or a tb1l_df.
xvar variable name to replace missing value.
yvar target variable.
method method of missing values imputation.
seed integer. the random seed used in mice. only used "mice" method.
print_flag logical. If TRUE, mice will print running log on console. Use print_flag=FALSE
for silent computation. Used only when method is "mice".
no_attrs logical. If TRUE, return numerical variable or categorical variable. else If
FALSE, imputation class.
Details

imputate_na() creates an imputation class. The ‘imputation‘ class includes missing value position,
imputed value, and method of missing value imputation, etc. The ‘imputation‘ class compares the
imputed value with the original value to help determine whether the imputed value is used in the
analysis.

See vignette("transformation") for an introduction to these concepts.

Value

An object of imputation class. or numerical variable or categorical variable. if no_attrs is FALSE
then return imputation class, else no_attrs is TRUE then return numerical vector or factor. Attributes
of imputation class is as follows.

* var_type : the data type of predictor to replace missing value.
* method : method of missing value imputation.
— predictor is numerical variable.
+ "mean” : arithmetic mean.
* "median" : median.
+ "mode" : mode.
"knn" : K-nearest neighbors.

imputate_na

+ "rpart" : Recursive Partitioning and Regression Trees.

* "mice" : Multivariate Imputation by Chained Equations.
— predictor is categorical variable.

* "mode" : mode.

+ "rpart" : Recursive Partitioning and Regression Trees.

* "mice" : Multivariate Imputation by Chained Equations.

* na_pos : position of missing value in predictor.

* seed : the random seed used in mice. only used "mice" method.
* type : "missing values". type of imputation.

* message : a message tells you if the result was successful.

* success : Whether the imputation was successful.

See Also

imputate_outlier.
Examples

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets”] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

Replace the missing value of the platelets variable with median
imputate_na(heartfailure2, platelets, method = "median")

Replace the missing value of the platelets variable with rpart
The target variable is death_event.
imputate_na(heartfailure2, platelets, death_event, method = "rpart")

Replace the missing value of the smoking variable with mode
imputate_na(heartfailure2, smoking, method = "mode")

Replace the missing value of the smoking variable with mice
The target variable is death_event.
imputate_na(heartfailure2, smoking, death_event, method = "mice")

using dplyr -------------—----—-- oo
library(dplyr)

The mean before and after the imputation of the platelets variable
heartfailure2 %>%
mutate(platelets_imp = imputate_na(heartfailure2, platelets, death_event,
method = "knn", no_attrs = TRUE)) %>%
group_by(death_event) %>%
summarise(orig = mean(platelets, na.rm = TRUE),
imputation = mean(platelets_imp))

96 imputate_outlier

If the variable of interest is a numerical variable

platelets <- imputate_na(heartfailure2, platelets, death_event, method = "rpart"”)
platelets

summary (platelets)

plot(platelets)

If the variable of interest is a categorical variable

smoking <- imputate_na(heartfailure2, smoking, death_event, method = "mice")
smoking

summary(smoking)

plot(smoking)

imputate_outlier Impute Outliers

Description

Outliers are imputed with some representative values and statistical methods.

Usage

imputate_outlier(.data, xvar, method, no_attrs)

Arguments
.data a data.frame or a tbl_df.
xvar variable name to replace missing value.
method method of missing values imputation.
no_attrs logical. If TRUE, return numerical variable or categorical variable. else If
FALSE, imputation class.
Details

imputate_outlier() creates an imputation class. The ‘imputation* class includes missing value posi-
tion, imputed value, and method of missing value imputation, etc. The ‘imputation‘ class compares
the imputed value with the original value to help determine whether the imputed value is used in
the analysis.

See vignette("transformation") for an introduction to these concepts.

imputate_outlier 97

Value

An object of imputation class. or numerical variable. if no_attrs is FALSE then return imputation
class, else no_attrs is TRUE then return numerical vector. Attributes of imputation class is as
follows.

* method : method of missing value imputation.
— predictor is numerical variable
* "mean" : arithmetic mean
"median" : median
"mode" : mode
* "capping” : Impute the upper outliers with 95 percentile, and Impute the bottom
outliers with 5 percentile.
* outlier_pos : position of outliers in predictor.
* outliers : outliers. outliers corresponding to outlier_pos.

* type : "outliers". type of imputation.

See Also

imputate_na.

Examples

Replace the outliers of the sodium variable with median.
imputate_outlier(heartfailure, sodium, method = "median")

Replace the outliers of the sodium variable with capping.
imputate_outlier(heartfailure, sodium, method = "capping")

using dplyr ---------—---——mm oo
library(dplyr)

The mean before and after the imputation of the sodium variable
heartfailure %>%
mutate(sodium_imp = imputate_outlier(heartfailure, sodium,
method = "capping”, no_attrs = TRUE)) %>%
group_by(death_event) %>%
summarise(orig = mean(sodium, na.rm = TRUE),
imputation = mean(sodium_imp, na.rm = TRUE))

If the variable of interest is a numerical variables
sodium <- imputate_outlier(heartfailure, sodium)
sodium

summary (sodium)

plot(sodium)

98 Jjobchange

jobchange Job Change of Data Scientists

Description

A dataset containing the gender and other attributes of almost 20000 cases.

Usage

data(jobchange)

Format

A data frame with 19158 rows and 14 variables. The variables are as follows:

enrollee_id unique ID for candidate

city city code.

city_dev_index developement index of the city (scaled).

gender gender of candidate.

relevent_experience relevant experience of candidate
enrolled_university type of University course enrolled if any.
education_level education level of candidate.

major_discipline education major discipline of candidate.
experience candidate total experience in years.

company_size number of employees in current employer’s company.
company_type type of current employer.

last new_job difference in years between previous job and current job.
training_hours training hours completed.

job_chnge if looking for a job change (boolean), Yes, No.

Details
This dataset designed to understand the factors that lead a person to leave current job for HR re-
searches too.

Source

"HR Analytics: Job Change of Data Scientists" in Kaggle <https://www.kaggle.com/arashnic/hr-
analytics-job-change-of-data-scientists>, License : CCO(Public Domain

jsd 99

jsd Jensen-Shannon Divergence

Description

Computes the Jensen-Shannon divergence between two probability distributions.

Usage

jsd(p, q, base = c("log", "log2", "logl1@"), margin = FALSE)

Arguments
p numeric. probability distributions.
q numeric. probability distributions.
base character. log bases. "log", "log2", "log10". default is "log"
margin logical. Choose whether to return individual values or totals. The default value
is FALSE, which returns individual values.
Value

numeric. Jensen-Shannon divergence of probability distributions p and q.

See Also

kld.

Examples

Sample data for probability distributions p.
event <- c(115, 76, 61, 39, 55, 10, 1)
no_event <- c(3, 3, 7, 10, 28, 44, 117)

p <- event / sum(event)
g <- no_event / sum(no_event)

jsd(p, @
jsd(p, q, base = "log2")
jsd(p, g, margin = TRUE)

100 kid

kld Kullback-Leibler Divergence

Description

Computes the Kullback-Leibler divergence between two probability distributions.

Usage

kld(p, q, base = c("log"”, "log2", "logl@"), margin = FALSE)

Arguments
p numeric. probability distributions.
q numeric. probability distributions.
base character. log bases. "log", "log2", "log10". default is "log"
margin logical. Choose whether to return individual values or totals. The default value
is FALSE, which returns individual values.
Value

numeric. Kullback-Leibler divergence of probability distributions p and q.

See Also

jsd.

Examples

Sample data for probability distributions p.
event <- c(115, 76, 61, 39, 55, 10, 1)
no_event <- c(3, 3, 7, 10, 28, 44, 117)

p <- event / sum(event)
g <- no_event / sum(no_event)

kld(p,)
kld(p, g, base = "log2")
kld(p, g, margin = TRUE)

kurtosis 101

kurtosis Kurtosis of the data

Description

This function calculated kurtosis of given data.

Usage

kurtosis(x, na.rm = FALSE)

Arguments
X a numeric vector.
na.rm logical. Determine whether to remove missing values and calculate them. The
default is TRUE.
Value

numeric. calculated kurtosis

See Also

skewness.

Examples

set.seed(123)
kurtosis(rnorm(100))

normality Performs the Shapiro-Wilk test of normality

Description

The normality() performs Shapiro-Wilk test of normality of numerical values.
Usage
normality(.data, ...)

S3 method for class 'data.frame'
normality(.data, ..., sample = 5000)

S3 method for class 'grouped_df'
normality(.data, ..., sample = 5000)

102 normality

Arguments
.data a data.frame or a tbl_df.
one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, normality() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.
sample the number of samples to perform the test.
See vignette("EDA") for an introduction to these concepts.
Details

This function is useful when used with the group_by function of the dplyr package. If you want to
test by level of the categorical data you are interested in, rather than the whole observation, you can
use group_tf as the group_by function. This function is computed shapiro.test function.

Value

An object of the same class as .data.

Normality test information

The information derived from the numerical data test is as follows.

* statistic : the value of the Shapiro-Wilk statistic.

* p_value : an approximate p-value for the test. This is said in Roystion(1995) to be adequate
for p_value < 0.1.

e sample : the number of samples to perform the test. The number of observations supported by
the stats::shapiro.test function is 3 to 5000.

See Also

normality.tbl_dbi, diagnose_numeric.data.frame, describe.data.frame, plot_normality.data.frame.

Examples

Normality test of numerical variables
normality(heartfailure)

Select the variable to describe
normality(heartfailure, platelets, sodium)
normality(heartfailure, -platelets, -sodium)
normality(heartfailure, 1)

normality(heartfailure, platelets, sodium, sample = 200)

death_eventing dplyr::grouped_dt
library(dplyr)

normality.tbl_dbi 103

gdata <- group_by(heartfailure, smoking, death_event)
normality(gdata, "platelets”)
normality(gdata, sample = 250)

death_eventing pipes ----------=—-—-——--—m—mm—m—mmm o
Normality test of all numerical variables
heartfailure %>%

normality()

Positive values select variables
heartfailure %>%
normality(platelets, sodium)

Positions values select variables
heartfailure %>%
normality(1)

death_eventing pipes & dplyr ---------------------———-
Test all numerical variables by 'smoking' and 'death_event',
and extract only those with 'smoking' variable level is "No".
heartfailure %>%

group_by(smoking, death_event) %>%

normality() %>%

filter(smoking == "No")

1 '

extract only those with 'sex' variable level is "Male”,
and test 'platelets' by 'smoking' and 'death_event'
heartfailure %>%

filter(sex == "Male") %>%

group_by(smoking, death_event) %>%

normality(platelets)

Test log(platelets) variables by 'smoking' and 'death_event',
and extract only p.value greater than 0.01.
heartfailure %>%
mutate(platelets_income = log(platelets)) %>%
group_by(smoking, death_event) %>%
normality(platelets_income) %>%
filter(p_value > 0.01)

normality.tbl_dbi Performs the Shapiro-Wilk test of normality

Description

The normality() performs Shapiro-Wilk test of normality of numerical(INTEGER, NUMBER, etc.)
column of the DBMS table through tbl_dbi.

104 normality.tbl_dbi
Usage

S3 method for class 'tbl_dbi'

normality(.data, ..., sample = 5000, in_database = FALSE, collect_size = Inf)
Arguments

.data a tbl_dbi.

sample

in_database

collect_size

Details

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, normality() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

the number of samples to perform the test.

Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

See vignette("EDA") for an introduction to these concepts.

This function is useful when used with the group_by function of the dplyr package. If you want to
test by level of the categorical data you are interested in, rather than the whole observation, you can
use group_tf as the group_by function. This function is computed shapiro.test function.

Value

An object of the same class as .data.

Normality test information

The information derived from the numerical data test is as follows.

* statistic : the value of the Shapiro-Wilk statistic.

» p_value : an approximate p-value for the test. This is said in Roystion(1995) to be adequate
for p_value < 0.1.

 sample : the numer of samples to perform the test. The number of observations supported by
the stats::shapiro.test function is 3 to 5000.

See Also

normality.data.frame, diagnose_numeric.tbl_dbi, describe.tbl_dbi.

normality.tbl_dbi 105

Examples

library(dplyr)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

Using pipes ——-—---—-—=—=-—-—-—-—mmm oo
Normality test of all numerical variables
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

normality()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

normality(platelets, sodium, collect_size = 200)

Positions values select variables
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
normality(1)

Using pipes & dplyr ----------—=—-————-—————-
Test all numerical variables by 'smoking' and 'death_event',
and extract only those with 'smoking' variable level is "Yes".
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
group_by(smoking, death_event) %>%
normality() %>%
filter(smoking == "Yes")
extract only those with 'sex' variable level is "Male”,
and test 'sodium' by 'smoking' and 'death_event'
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
filter(sex == "Male") %>%
group_by(smoking, death_event) %>%
normality(sodium)

Test log(sodium) variables by 'smoking' and 'death_event',
and extract only p.value greater than 0.01.

SQLite extension functions for log
RSQLite::initExtension(con_sqglite)

con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
mutate(log_sodium = log(sodium)) %>%

106

overview

group_by(smoking, death_event) %>%
normality(log_sodium) %>%
filter(p_value > 0.01)

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

overview

Describe overview of data

Description

Inquire basic information to understand the data in general.

Usage

overview(.data)

Arguments

.data

Details

a data.frame or a thl_df.

overview() creates an overview class. The ‘overview* class includes general information such as
the size of the data, the degree of missing values, and the data types of variables.

Value

An object of overview class. The overview class contains data.frame and two attributes. data.frame
has the following 3 variables.: data.frame is as follow.:

e division : division of information.

size : indicators of related to data capacity
duplicated : indicators of related to duplicated value
missing : indicators of related to missing value
data_type : indicators of related to data type

e metrics : name of metrics.

observations : number of observations (number of rows)

variables : number of variables (number of columns)

values : number of values (number of cells. rows * columns)

memory size : an estimate of the memory that is being used to store an R object.
duplicate observation: number of duplicate cases(observations).

complete observation : number of complete cases(observations). i.e., have no missing
values.

performance_bin 107

missing observation : number of observations that has missing values.
missing variables : number of variables that has missing values.
missing values : number of values(cells) that has missing values.
numerics : number of variables that is data type is numeric.

integers : number of variables that is data type is integer.

factors : number of variables that is data type is factor.

characters : number of variables that is data type is character.

Dates : number of variables that is data type is Date.

POSIXcts : number of variables that is data type is POSIXct.

others : number of variables that is not above.

¢ value : value of metrics.

Attributes of overview class is as follows.:

* duplicated : the index of duplicated observations.

* na_col : the data type of predictor to replace missing value.

* info_class : data.frame. variable name and class name that describe the data type of variables.

See Also

data.frame has a two variables.
% variable : variable names
* class : data type

summary.overview, plot.overview.

Examples

ov <- overview(jobchange)

ov

summary (ov)

plot(ov)

performance_bin Diagnose Performance Binned Variable

Description

The performance_bin() calculates metrics to evaluate the performance of binned variable for bino-
mial classification model.

108 performance_bin
Usage
performance_bin(y, x, na.rm = FALSE)
Arguments
y character or numeric, integer, factor. a binary response variable (0, 1). The
variable must contain only the integers 0 and 1 as element. However, in the case
of factor/character having two levels, it is performed while type conversion is
performed in the calculation process.
X integer or factor, character. At least 2 different values. and Inf is not allowed.
na.rm logical. a logical indicating whether missing values should be removed.
Details
This function is useful when used with the mutate/transmute function of the dplyr package.
Value

an object of "performance_bin" class. vaue of data.frame is as follows.

* Bin : character. bins.

* CntRec : integer. frequency by bins.

* CntPos : integer. frequency of positive by bins.

* CntNeg : integer. frequency of negative by bins.

¢ CntCumPos : integer. cumulate frequency of positive by bins.
* CntCumNeg : integer. cumulate frequency of negative by bins.
* RatePos : integer. relative frequency of positive by bins.

» RateNeg : integer. relative frequency of negative by bins.

* RateCumPos : numeric. cumulate relative frequency of positive by bins.

* RateCumNeg : numeric. cumulate relative frequency of negative by bins.

* Odds : numeric. odd ratio.

* LnOdds : numeric. loged odd ratio.

* WOE : numeric. weight of evidence.

e IV : numeric. Jeffrey’s Information Value.

* JSD : numeric. Jensen-Shannon Divergence.

e AUC : numeric. AUC. area under curve.

Attributes of "performance_bin" class is as follows.

* names : character. variable name of data.frame with "Binning Table".
e class : character. name of class. "performance_bin" "data.frame".
* row.names : character. row name of data.frame with "Binning Table".

e IV : numeric. Jeffrey’s Information Value.

performance_bin 109

* JSD : numeric. Jensen-Shannon Divergence.

* KS : numeric. Kolmogorov-Smirnov Statistics.

* gini : numeric. Gini index.

e HHI : numeric. Herfindahl-Hirschman Index.

¢ HHI norm : numeric.normalized Herfindahl-Hirschman Index.

e Cramer_V : numeric. Cramer’s V Statistics.

* chisq_test : data.frame. table of significance tests. name is as follows.

— Bin A : character. first bins.
— Bin B : character. second bins.

statistics : numeric. statistics of Chi-square test.
— p_value : numeric. p-value of Chi-square test.

See Also

summary.performance_bin, plot.performance_bin, binning_by.

Examples

Generate data for the example
heartfailure2 <- heartfailure

set.seed(123)
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "creatinine”] <- NA

Change the target variable to @(negative) and 1(positive).
heartfailure2$death_event_2 <- ifelse(heartfailure2$death_event %in% "Yes", 1, 0)

Binnig from creatinine to platelets_bin.
breaks <- c(0, 1, 2, 10)
heartfailure2$creatinine_bin <- cut(heartfailure2$creatinine, breaks)

Diagnose performance binned variable

perf <- performance_bin(heartfailure2$death_event_2, heartfailure2$creatinine_bin)
perf

summary (perf)

plot(perf)

Diagnose performance binned variable without NA

perf <- performance_bin(heartfailure2$death_event_2, heartfailure2$creatinine_bin, na.rm = TRUE)
perf

summary (perf)

plot(perf)

110 plot.bins

plot.bins Visualize Distribution for a "bins" object

Description

Visualize two plots on a single screen. The plot at the top is a histogram representing the frequency
of the level. The plot at the bottom is a bar chart representing the frequency of the level.

Usage
S3 method for class 'bins'
plot(x, typographic = TRUE, base_family = NULL, ...)
Arguments
X an object of class "bins", usually, a result of a call to binning().

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

binning, print.bins, summary.bins.

Examples

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets”] <- NA

Binning the platelets variable. default type argument is "quantile”
bin <- binning(heartfailure2$platelets, nbins = 5)
plot(bin)

Using another type arguments
bin <- binning(heartfailure2$platelets, nbins = 5, type = "equal”)
plot(bin)

plot.compare_category

bin <- binning(heartfailure2$platelets, nbins

plot(bin)

bin <- binning(heartfailure2$platelets, nbins

plot(bin)

111

5, type = "pretty")

5, type = "kmeans")

bin <- binning(heartfailure2$platelets, nbins = 5, type = "bclust")

plot(bin)

plot.compare_category Visualize Information for an "compare_category"” Object

Description

Visualize mosaics plot by attribute of compare_category class.

Usage

S3 method for class 'compare_category'

plot(
X,

prompt = FALSE,

na.rm = FALSE
typographic =
base_family =

Arguments

X

prompt

na.rm

typographic

base_family

’

TRUE,
NULL,

an object of class "compare_category", usually, a result of a call to compare_category().
logical. The default value is FALSE. If there are multiple visualizations to be
output, if this argument value is TRUE, a prompt is output each time.

logical. Specifies whether to include NA when plotting mosaics plot. The de-

fault is FALSE, so plot NA.

logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).
However, it only support las parameter. las is numeric in 0,1; the style of axis
labels.

* 0: always parallel to the axis [default],

* 1 : always horizontal to the axis,

112 plot.compare_category

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

compare_category, print.compare_category, summary.compare_category.

Examples

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

library(dplyr)

Compare the all categorical variables
all_var <- compare_category(heartfailure2)

Print compare_numeric class objects
all_var

Compare the two categorical variables
two_var <- compare_category(heartfailure2, smoking, death_event)

Print compare_category class objects
two_var

plot all pair of variables
plot(all_var)

plot a pair of variables
plot(two_var)

plot all pair of variables by prompt
plot(all_var, prompt = TRUE)

plot a pair of variables without NA
plot(two_var, na.rm = TRUE)

plot a pair of variables
plot(two_var, las = 1)

plot a pair of variables not focuses on typographic elements
plot(two_var, typographic = FALSE)

plot.compare_numeric 113

plot.compare_numeric Visualize Information for an "compare_numeric" Object

Description

Visualize scatter plot included box plots by attribute of compare_numeric class.

Usage
S3 method for class 'compare_numeric'
plot(x, prompt = FALSE, typographic = TRUE, base_family = NULL, ...)
Arguments
X an object of class "compare_numeric", usually, a result of a call to compare_numeric().
prompt logical. The default value is FALSE. If there are multiple visualizations to be

output, if this argument value is TRUE, a prompt is output each time.

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).
However, it does not support.
Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

compare_numeric, print.compare_numeric, summary.compare_numeric.

Examples

Generate data for the example
heartfailure2 <- heartfailure[, c("platelets”, "creatinine”, "sodium")]

library(dplyr)
Compare the all numerical variables
all_var <- compare_numeric(heartfailure2)

Print compare_numeric class object
all_var

114 plot.correlate

Compare the two numerical variables
two_var <- compare_numeric(heartfailure2, sodium, creatinine)

Print compare_numeric class objects
two_var

plot all pair of variables
plot(all_var)

plot a pair of variables
plot(two_var)

plot all pair of variables by prompt
plot(all_var, prompt = TRUE)

plot a pair of variables not focuses on typographic elements
plot(two_var, typographic = FALSE)

plot.correlate Visualize Information for an "correlate" Object

Description

Visualize by attribute of ‘correlate‘ class. The plot of correlation matrix is a tile plot.

Usage
S3 method for class 'correlate'
plot(x, typographic = TRUE, base_family = NULL, ...)
Arguments
X an object of class "correlate", usually, a result of a call to correlate().

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

plot.correlate 115

See Also

correlate, summary.correlate.

Examples

library(dplyr)

correlate type is generic
tab_corr <- correlate(iris)
tab_corr

visualize correlate class
plot(tab_corr)

tab_corr <- iris %>%
correlate(Sepal.Length, Petal.Length)
tab_corr

visualize correlate class
plot(tab_corr)

correlate type is group

tab_corr <- iris %>%
group_by(Species) %>%
correlate()

plot correlate class
plot(tab_corr)

S3 method for correlate class by 'tbl_dbi' ================
connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy iris to the DBMS with a table named TB_IRIS
copy_to(con_sqlite, iris, name = "TB_IRIS"”, overwrite = TRUE)

correlation coefficients of all numerical variables
tab_corr <- con_sqlite %>%

tb1("TB_IRIS") %>%

correlate()

plot(tab_corr)

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

116

plot.imputation

plot.imputation

Visualize Information for an "imputation" Object

Description

Visualize two kinds of plot by attribute of ‘imputation‘ class. The imputation of a numerical variable
is a density plot, and the imputation of a categorical variable is a bar plot.

Usage
S3 method for class 'imputation'
plot(x, typographic = TRUE, base_family = NULL, ...)
Arguments
X an object of class "imputation", usually, a result of a call to imputate_na() or

typographic

base_family

Details

imputate_outlier().

logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par). only
applies when the model argument is TRUE, and is used for ... of the plot.Im()
function.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

imputate_na, imputate_outlier, summary.imputation.

Examples

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

Impute missing values ------------------————--—--—-
If the variable of interest is a numerical variables
platelets <- imputate_na(heartfailure2, platelets, death_event, method = "rpart"”)

plot.infogain_bins 117

platelets
summary (platelets)

plot(platelets)

If the variable of interest is a categorical variables

smoking <- imputate_na(heartfailure2, smoking, death_event, method = "mice")
smoking

summary (smoking)

plot(smoking)

Impute outliers -----------------------—————---———

If the variable of interest is a numerical variable

platelets <- imputate_outlier(heartfailure2, platelets, method = "capping")
platelets

summary(platelets)

plot(platelets)

plot.infogain_bins Visualize Distribution for an "infogain_bins" Object

Description

It generates plots for understand distribution and distribution by target variable using infogain_bins.

Usage
S3 method for class 'infogain_bins'
plot(x, type = c("bar”, "cross”), typographic = TRUE, base_family = NULL, ...)
Arguments
X an object of class "infogain_bins", usually, a result of a call to binning_rgr().
type character. options for visualization. Distribution("bar"), Relative Frequency by

target ("cross").

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

further arguments to be passed from or to other methods.

118 plot.optimal_bins

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

binning_rgr, summary.bins
Examples

binning by recursive information gain ratio maximization using character
bin <- binning_rgr(heartfailure, "death_event”, "creatinine")

binning by recursive information gain ratio maximization using name
bin <- binning_rgr(heartfailure, death_event, creatinine)
bin

summary optimal_bins class
summary (bin)

visualize all information for optimal_bins class
plot(bin)

visualize WoE information for optimal_bins class
plot(bin, type = "cross")

visualize all information without typographic
plot(bin, type = "cross", typographic = FALSE)

plot.optimal_bins Visualize Distribution for an "optimal_bins" Object

Description

It generates plots for understand distribution, frequency, bad rate, and weight of evidence using
optimal_bins.

See vignette("transformation") for an introduction to these concepts.

Usage

S3 method for class 'optimal_bins'
plot(
X)
type = c("all”, "dist”, "freq”, "posrate”, "WoE"),

plot.optimal_bins 119

typographic = TRUE,
base_family = NULL,
rotate_angle = 0,

)

Arguments
X an object of class "optimal_bins", usually, a result of a call to binning_by().
type character. options for visualization. Distribution ("dist"), Relateive Frequency

("freq"), Positive Rate ("posrate"), and Weight of Evidence ("WoE"). and default
"all" draw all plot.

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

rotate_angle integer. specifies the rotation angle of the x-axis label. This is useful when the
x-axis labels are long and overlap. The default is O to not rotate the label.

further arguments to be passed from or to other methods.

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

binning_by, summary.optimal_bins
Examples

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "creatinine”] <- NA

optimal binning using binning_by()
bin <- binning_by(heartfailure2, "death_event”, "creatinine")

bin

summary optimal_bins class.
summary (bin)

visualize all information for optimal_bins class
plot(bin)

rotate the x-axis labels by 45 degrees so that they do not overlap.

120 plot.overview

plot(bin, rotate_angle = 45)

visualize WoE information for optimal_bins class
plot(bin, type = "WoE")

visualize all information with typographic
plot(bin)

plot.overview Visualize Information for an "overview" Object

Description

Visualize a plot by attribute of ‘overview* class. Visualize the data type, number of observations,
and number of missing values for each variable.

Usage
S3 method for class 'overview'
plot(
X7
order_type = c("none”, "name", "type"),

typographic = TRUE,
base_family = NULL,

)

Arguments
X an object of class "overview", usually, a result of a call to overview().
order_type character. method of order of bars(variables).

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

further arguments to be passed from or to other methods.

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

plot.performance_bin 121

See Also

overview, summary.overview.

Examples

ov <- overview(jobchange)
ov

summary (ov)
plot(ov)

sort by name of variables
plot(ov, order_type = "name")

sort by data type of variables
plot(ov, order_type = "type")

plot.performance_bin Visualize Performance for an "performance_bin" Object

Description

It generates plots for understand frequency, WoE by bins using performance_bin.

Usage
S3 method for class 'performance_bin'
plot(x, typographic = TRUE, base_family = NULL, ...)
Arguments
X an object of class "performance_bin", usually, a result of a call to performance_bin().

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

further arguments to be passed from or to other methods.

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

122 plot.pps

See Also

performance_bin, summary.performance_bin, binning_by, plot.optimal_bins.
Examples

Generate data for the example
heartfailure2 <- heartfailure

set.seed(123)
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "creatinine”] <- NA

Change the target variable to @(negative) and 1(positive).
heartfailure2$death_event_2 <- ifelse(heartfailure2$death_event %in% "Yes”, 1, 0)

Binnig from creatinine to platelets_bin.
breaks <- c(o0, 1, 2, 10)
heartfailure2$creatinine_bin <- cut(heartfailure2$creatinine, breaks)

Diagnose performance binned variable

perf <- performance_bin(heartfailure2$death_event_2, heartfailure2$creatinine_bin)
perf

summary (perf)

plot(perf)

Diagnose performance binned variable without NA

perf <- performance_bin(heartfailure2$death_event_2, heartfailure2$creatinine_bin, na.rm = TRUE)
perf

summary (perf’)

plot(perf)
plot(perf, typographic = FALSE)

plot.pps Visualize Information for an "pps" Object

Description
Visualize by attribute of ‘pps‘ class. The plot of a PPS(Predictive Power Score) is a bar plot or tile
plot by PPS.

Usage

S3 method for class 'pps'
plot(x, typographic = TRUE, base_family = NULL, ...)

plot.pps 123

Arguments

X an object of class "pps", usually, a result of a call to pps().

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

pps, summary . pps.

Examples

library(dplyr)

pps type is generic
pps_generic <- pps(iris)
pps_generic

visualize pps class
plot(pps_generic)

pps type is target_by

If the target variable is a categorical variable
Using dplyr
pps_cat <- iris %>%

target_by(Species) %>%

pps()

plot pps class
plot(pps_cat)

If the target variable is a numerical variable
Using dplyr
pps_num <- iris %>%

target_by(Petal.Length) %>%

pps ()

plot pps class

124 plot.relate

plot(pps_num)

plot.relate Visualize Information for an "relate” Object

Description

Visualize four kinds of plot by attribute of relate class.

Usage

S3 method for class 'relate’
plot(
X,
model = FALSE,
hex_thres = 1000,
pal = c("#FFFFB2", "#FED976", "#FEB24C", "#FD8D3C", "#FC4E2A", "#E31A1C", "#B10026"),
typographic = TRUE,
base_family = NULL,

Arguments

X an object of class "relate", usually, a result of a call to relate().

model logical. This argument selects whether to output the visualization result to the
visualization of the object of the Im model to grasp the relationship between the
numerical variables.

hex_thres an integer. Use only when the target and predictor are numeric variables. Used
when the number of observations is large. Specify the threshold of the observa-
tions to draw hexabin plots that are not scatterplots. The default value is 1000.

pal Color palette to paint hexabin. Use only when the target and predictor are nu-
meric variables. Applied only when the number of observations is greater than
hex_thres.

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par). only
applies when the model argument is TRUE, and is used for ... of the plot.lm()
function.

plot.relate 125

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

relate, print.relate.

Examples

If the target variable is a categorical variable
categ <- target_by(heartfailure, death_event)

If the variable of interest is a numerical variable
cat_num <- relate(categ, sodium)

cat_num

summary (cat_num)

plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, hblood_pressure)

cat_cat

summary(cat_cat)

plot(cat_cat)

If the target variable is a numerical variable
num <- target_by(heartfailure, creatinine)

If the variable of interest is a numerical variable
num_num <- relate(num, sodium)

num_num

summary (num_num)

plot (num_num)

If the variable of interest is a categorical variable
num_cat <- relate(num, smoking)

num_cat

summary (num_cat)

plot(num_cat)

Not allow typographic
plot(num_cat, typographic = FALSE)

126 plot.transform

plot.transform Visualize Information for an "transform" Object

Description

Visualize two kinds of plot by attribute of ‘transform® class. The transformation of a numerical
variable is a density plot.

Usage
S3 method for class 'transform'
plot(x, typographic = TRUE, base_family = NULL, ...)
Arguments
X an object of class "transform", usually, a result of a call to transform().

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

transform, summary.transform.

Examples

Standardization ------------------------—————-

creatinine_minmax <- transform(heartfailure$creatinine, method = "minmax")
creatinine_minmax

summary(creatinine_minmax)

plot(creatinine_minmax)

Resolving Skewness ----------------—---——----

creatinine_log <- transform(heartfailure$creatinine, method = "log")
creatinine_log

summary(creatinine_log)

plot.univar_category 127

plot(creatinine_log)

plot(creatinine_log, typographic = FALSE)

plot.univar_category Visualize Information for an "univar_category" Object

Description

Visualize mosaics plot by attribute of univar_category class.

Usage
S3 method for class 'univar_category'
plot(
X’
na.rm = TRUE,

prompt = FALSE,
typographic = TRUE,
base_family = NULL,

Arguments
X an object of class "univar_category", usually, a result of a call to univar_category().
na.rm logical. Specifies whether to include NA when plotting bar plot. The default is
FALSE, so plot NA.
prompt logical. The default value is FALSE. If there are multiple visualizations to be

output, if this argument value is TRUE, a prompt is output each time.

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).
However, it does not support all parameters.

Details

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

128 plot.univar_numeric

See Also

univar_category, print.univar_category, summary.univar_category.

Examples

library(dplyr)

Calculates the all categorical variables
all_var <- univar_category(heartfailure)

Print univar_category class object
all_var

smoking <- univar_category(heartfailure, smoking)

Print univar_category class object
smoking

plot all variables
plot(all_var)

plot smoking
plot(smoking)

plot.univar_numeric Visualize Information for an "univar_numeric" Object

Description

Visualize boxplots and histogram by attribute of univar_numeric class.

Usage

S3 method for class 'univar_numeric'
plot(
X,
indiv = FALSE,
viz = c("hist"”, "boxplot"),
stand = ifelse(rep(indiv, 4), c("none”, "robust”, "minmax", "zscore"), c("robust”,
"minmax", "zscore", "none")),
prompt = FALSE,
typographic = TRUE,
base_family = NULL,

plot.univar_numeric

Arguments

X

indiv

viz

stand

prompt

typographic

base_family

Details

129

an object of class "univar_numeric", usually, a result of a call to univar_numeric().

logical. Select whether to display information of all variables in one plot when
there are multiple selected numeric variables. In case of FALSE, all variable
information is displayed in one plot. If TRUE, the information of the individual
variables is output to the individual plots. The default is FALSE. If only one
variable is selected, TRUE is applied.

character. Describe what to plot visualization. "hist" draws a histogram and
"boxplot" draws a boxplot. The default is "hist".

character. Describe how to standardize the original data. "robust" normalizes the
raw data through transformation calculated by IQR and median. "minmax" nor-
malizes the original data using minmax transformation. "zscore" standardizes
the original data using z-Score transformation. "none" does not perform data
transformation. he default is "none" if indiv is TRUE, and "robust" if FALSE.

logical. The default value is FALSE. If there are multiple visualizations to be

output, if this argument value is TRUE, a prompt is output each time.

logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods, such as graphical parameters (see par).
However, it does not support.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

univar_numeric, print.univar_numeric, summary.univar_numeric.

Examples

Calculates the all categorical variables
all_var <- univar_numeric(heartfailure)

Print univar_numeric class object

all_var

Calculates the platelets, sodium variable
univar_numeric(heartfailure, platelets, sodium)

Summary the all case : Return a invisible copy of an object.

130 plot_bar_category

stat <- summary(all_var)

Summary by returned object
stat

one plot with all variables
plot(all_var)

one plot with all normalized variables by Min-Max method
plot(all_var, stand = "minmax")

one plot with all variables
plot(all_var, stand = "none")

one plot with all robust standardized variables
plot(all_var, viz = "boxplot")

one plot with all standardized variables by Z-score method
plot(all_var, viz = "boxplot”, stand = "zscore")

individual boxplot by variables
plot(all_var, indiv = TRUE, "boxplot")

individual histogram by variables
plot(all_var, indiv = TRUE, "hist")

individual histogram by robust standardized variable
plot(all_var, indiv = TRUE, "hist"”, stand = "robust")

plot all variables by prompt
plot(all_var, indiv = TRUE, "hist", prompt = TRUE)

plot_bar_category Plot bar chart of categorical variables

Description
The plot_bar_category() to visualizes the distribution of categorical data by level or relationship to
specific numerical data by level.

Usage

plot_bar_category(.data, ...)

S3 method for class 'data.frame'
plot_bar_category(
.data,

L

plot_bar_category

top = 10,

131

add_character = TRUE,
title = "Frequency by levels of category”,
each = FALSE,

typographic
base_family

)

TRUE,
NULL

S3 method for class 'grouped_df'
plot_bar_category(

.data,

’

top = 10,

add_character
title = "Frequency by levels of category”,
each = FALSE,

typographic
base_family

Arguments

.data

top

add_character

title

each

typographic

base_family

Details

= TRUE,

TRUE,
NULL

a data.frame or a tb1l_df or a grouped_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_bar_category() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

an integer. Specifies the upper top rank to extract. Default is 10.

logical. Decide whether to include text variables in the diagnosis of categorical
data. The default value is TRUE, which also includes character variables.

character. a main title for the plot.

logical. Specifies whether to draw multiple plots on one screen. The default is
FALSE, which draws multiple plots on one screen.

logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

The distribution of categorical variables can be understood by comparing the frequency of each
level. The frequency table helps with this. As a visualization method, a bar graph can help you
understand the distribution of categorical data more easily than a frequency table.

132 plot_bar_category

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets”] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

set.seed(123)
heartfailure2$test <- sample(LETTERS[1:15], 299, replace = TRUE)
heartfailure2$test[1:30] <- NA

Visualization of all numerical variables
plot_bar_category(heartfailure2)

Select the variable to diagnose
plot_bar_category(heartfailure2, "test"”, "smoking")
plot_bar_category(heartfailure2, -test, -smoking)

Visualize the each plots
plot_bar_category(heartfailure2, each = TRUE)

Not allow typographic argument
plot_bar_category(heartfailure2, typographic = FALSE)

Using pipes ——--——==--——=--——---—----—---——-—-
library(dplyr)

Plot of all categorical variables
heartfailure2 %>%
plot_bar_category()

Visualize just 7 levels of top frequency
heartfailure2 %>%
plot_bar_category(top = 7)

Visualize only factor, not character
heartfailure2 %>%
plot_bar_category(add_character = FALSE)

Using groupd_df ----------------------m o
heartfailure2 %>%

group_by(death_event) %>%

plot_bar_category(top = 5)

heartfailure2 %>%
group_by(death_event) %>%
plot_bar_category(each = TRUE, top = 5)

plot_box_numeric

133

plot_box_numeric

Plot Box-Plot of numerical variables

Description

The plot_box_numeric() to visualizes the box plot of numeric data or relationship to specific cate-

gorical data.

Usage

plot_box_numeric(.data, ...)

S3 method for class 'data.frame'
plot_box_numeric(

.data,

title = "Distribution by numerical variables”,
each = FALSE,

typographic = TRUE,

base_family = NULL

)

S3 method for class 'grouped_df'
plot_box_numeric(

.data,

title = "Distribution by numerical variables”,
each = FALSE,

typographic = TRUE,

base_family = NULL

Arguments

.data

title

each

data.frame or a tb1l_df or a grouped_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_box_numeric() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

character. a main title for the plot.

logical. Specifies whether to draw multiple plots on one screen. The default is
FALSE, which draws multiple plots on one screen.

134 plot_box_numeric

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Details

The box plot helps determine whether the distribution of a numeric variable. plot_box_numeric()
shows box plots of several numeric variables on one screen. This function can also display a box
plot for each level of a specific categorical variable.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

Visualization of all numerical variables
plot_box_numeric(heartfailure)

Select the variable to diagnose
plot_box_numeric(heartfailure, "age", "time")
plot_box_numeric(heartfailure, -age, -time)

Visualize the each plots
plot_box_numeric(heartfailure, "age"”, "time", each = TRUE)

Not allow the typographic elements
plot_box_numeric(heartfailure, typographic = FALSE)

Using pipes ——--——-=-——----—--------—---——-—-
library(dplyr)

Plot of all numerical variables
heartfailure %>%
plot_box_numeric()

Using groupd_df --------------—----c-oomo -
heartfailure %>%

group_by(smoking) %>%

plot_box_numeric()

heartfailure %>%
group_by (smoking) %>%
plot_box_numeric(each = TRUE)

plot_hist_numeric 135

plot_hist_numeric Plot histogram of numerical variables

Description

The plot_hist_numeric() to visualizes the histogram of numeric data or relationship to specific cat-
egorical data.

Usage

plot_hist_numeric(.data, ...)

S3 method for class 'data.frame'
plot_hist_numeric(

)

.data,

title = "Distribution by numerical variables”,
each = FALSE,

typographic = TRUE,

base_family = NULL

S3 method for class 'grouped_df'
plot_hist_numeric(

.data,
title = "Distribution by numerical variables”,
each = FALSE,
typographic = TRUE,
base_family = NULL
)
Arguments
.data data.frame or a tbl_df or a grouped_df.
one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_hist_numeric() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.
title character. a main title for the plot.
each logical. Specifies whether to draw multiple plots on one screen. The default is

FALSE, which draws multiple plots on one screen.

136 plot_hist_numeric

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Details

The histogram helps determine whether the distribution of a numeric variable. plot_hist_numeric()
shows box plots of several numeric variables on one screen. This function can also display a his-
togram for each level of a specific categorical variable. The bin-width is set to the Freedman-
Diaconis rule (2 * IQR(x) / length(x)"(1/3))

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

Visualization of all numerical variables
plot_hist_numeric(heartfailure)

Select the variable to diagnose
plot_hist_numeric(heartfailure, "age"”, "time")
plot_hist_numeric(heartfailure, -age, -time)

Visualize the each plots
plot_hist_numeric(heartfailure,

”

age"”, "time", each = TRUE)

Not allow the typographic elements
plot_hist_numeric(heartfailure, typographic = FALSE)

Using pipes —----—---——-----------------————-
library(dplyr)

Plot of all numerical variables
heartfailure %>%
plot_hist_numeric()

Using groupd_df ----------------------
heartfailure %>%

group_by (smoking) %>%

plot_hist_numeric()

heartfailure %>%
group_by(smoking) %>%
plot_hist_numeric(each = TRUE)

plot_na_hclust 137

plot_na_hclust Combination chart for missing value

Description

Visualize distribution of missing value by combination of variables.

Usage
plot_na_hclust(
X,
main = NULL,

col.left = "#QQ9E73",
col.right = "#56B4E9",
typographic = TRUE,
base_family = NULL

)
Arguments
X data frames, or objects to be coerced to one.
main character. Main title.
col.left character. The color of left legend that is frequency of NA. default is "#009E73".
col.right character. The color of right legend that is percentage of NA. default is "#56B4E9".

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Details

Rows are variables containing missing values, and columns are observations. These data structures
were grouped into similar groups by applying hclust. So, it was made possible to visually examine
how the missing values are distributed for each combination of variables.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

Generate data for the example
set.seed(123L)
jobchange2 <- jobchange[sample(nrow(jobchange), size = 1000),]

138

plot_na_intersect

Visualize hcluster chart for variables with missing value.
plot_na_hclust(jobchange2)

Change the main title.
plot_na_hclust(jobchange2, main = "Distribution of missing value")

Non typographic elements
plot_na_hclust(jobchange2, typographic = FALSE)

plot_na_intersect

Plot the combination variables that is include missing value

Description

Visualize the combinations of missing value across cases.

Usage
plot_na_intersect(
X,
only_na =

n_intersacts

TRUE,
= NULL,

n_vars = NULL,

main = NULL,
typographic

TRUE,

base_family = NULL

Arguments

X

only_na

n_intersacts

n_vars

main

typographic

data frames, or objects to be coerced to one.

logical. The default value is FALSE. If TRUE, only variables containing missing
values are selected for visualization. If FALSE, included complete case.

integer. Specifies the number of combinations of variables including missing
values. The combination of variables containing many missing values is chosen
first.

integer. Specifies the number of variables that contain missing values to be
visualized. The default value is NULL, which visualizes variables containing all
missing values. If this value is greater than the number of variables containing
missing values, all variables containing missing values are visualized. Variables
containing many missing values are chosen first.

character. Main title.

logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

plot_na_intersect 139

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Details

The visualization consists of four parts. The bottom left, which is the most basic, visualizes the case
of cross(intersection)-combination. The x-axis is the variable including the missing value, and the
y-axis represents the case of a combination of variables. And on the marginal of the two axes, the
frequency of the case is expressed as a bar graph. Finally, the visualization at the top right expresses
the number of variables including missing values in the data set, and the number of observations
including missing values and complete cases .

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

Generate data for the example
set.seed(123L)
jobchange2 <- jobchange[sample(nrow(jobchange), size = 1000),]

Visualize the combination variables that is include missing value.
plot_na_intersect(jobchange2)

Diagnose the data with missing_count using diagnose() function
library(dplyr)

jobchange2 %>%
diagnose %>%
arrange(desc(missing_count))

Visualize the combination variables that is include missing value
plot_na_intersect(jobchange2)

Visualize variables containing missing values and complete case
plot_na_intersect(jobchange2, only_na = FALSE)

Using n_vars argument
plot_na_intersect(jobchange2, n_vars = 5)

Using n_intersects argument
plot_na_intersect(jobchange2, only_na = FALSE, n_intersacts = 7)

Non typographic elements
plot_na_intersect(jobchange2, typographic = FALSE)

140

plot_na_pareto

plot_na_pareto

Pareto chart for missing value

Description

Visualize pareto chart for variables with missing value.

Usage
plot_na_pareto(
X}
only_na = FALSE,
relative = FALSE,
main = NULL,
col = "black",

grade = list(Good = 0.05, OK = @.1, NotBad = 0.2, Bad = 0.5, Remove = 1),

plot = TRUE,
typographic = TRUE,
base_family = NULL

)
Arguments

X data frames, or objects to be coerced to one.

only_na logical. The default value is FALSE. If TRUE, only variables containing missing
values are selected for visualization. If FALSE, all variables are included.

relative logical. If this argument is TRUE, it sets the unit of the left y-axis to relative
frequency. In case of FALSE, set it to frequency.

main character. Main title.

col character. The color of line for display the cumulative percentage.

grade list. Specifies the cut-off to set the grade of the variable according to the ratio of
missing values. The default values are Good: [0, 0.05], OK: (0.05, 0.1], NotBad:
(0.1, 0.2], Bad: (0.2, 0.5], Remove: (0.5, 1].

plot logical. If this value is TRUE then visualize plot. else if FALSE, return aggre-
gate information about missing values.

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-

base_family

Details

ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

plot_normality 141

Examples

Generate data for the example
set.seed(123L)
jobchange2 <- jobchange[sample(nrow(jobchange), size = 1000),]

Diagnose the data with missing_count using diagnose() function
library(dplyr)

jobchange2 %>%
diagnose %>%
arrange(desc(missing_count))

Visualize pareto chart for variables with missing value.
plot_na_pareto(jobchange2)

Visualize pareto chart for variables with missing value.
plot_na_pareto(jobchange2, col = "blue")

Visualize only variables containing missing values
plot_na_pareto(jobchange2, only_na = TRUE)

Display the relative frequency
plot_na_pareto(jobchange2, relative = TRUE)

Change the grade
plot_na_pareto(jobchange2, grade = list(High = 0.1, Middle = 0.6, Low = 1))

Change the main title.
plot_na_pareto(jobchange2, relative = TRUE, only_na = TRUE,
main = "Pareto Chart for jobchange")

Return the aggregate information about missing values.
plot_na_pareto(jobchange2, only_na = TRUE, plot = FALSE)

Non typographic elements
plot_na_pareto(jobchange2, typographic = FALSE)

plot_normality Plot distribution information of numerical data

Description

The plot_normality() visualize distribution information for normality test of the numerical data.

142 plot_normality
Usage
plot_normality(.data, ...)
S3 method for class 'data.frame'
plot_normality(
.data,
]_e.Ft = C("log", “Sqrt“, Illog+‘l ll’ Hlog+all’ "1/X", ”XAZ’,, “XA3“, "BOX_COX“’
"Yeo-Johnson"),
right = C(qurtu’ "]_Og", Illog+-| Il’ lllog+all’ “1/X“, IIXAZH, “XA3”’ ”BOX_COX“’
"Yeo-Johnson"),
col = "steelblue”,
typographic = TRUE,
base_family = NULL
)
S3 method for class 'grouped_df'
plot_normality(
.data,
1ef’t = C("]_Og"’ ”Sqrt"’ Hlog+1 II’ Hlog+a1l’ II-I/XH’ ”XA2“’ ”XA3”’ ”BOX_COX"’
"Yeo-Johnson"),
right = C(”Sqrt”, Hlog"7 "log+‘l ”’ "log+a”’ ’,1/X’,’ "XAZ," ”XA3”, HBOX_COX”,
"Yeo-Johnson"),
col = "steelblue”,
typographic = TRUE,
base_family = NULL
)
Arguments
.data a data.frame or a tbl_df.
one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_normality() will auto-
matically start with all variables. These arguments are automatically quoted and
evaluated in a context where column names represent column positions. They
support unquoting and splicing.
See vignette("EDA") for an introduction to these concepts.
left character. Specifies the data transformation method to draw the histogram in the
lower left corner. The default is "log".
right character. Specifies the data transformation method to draw the histogram in the
lower right corner. The default is "sqrt".
col a color to be used to fill the bars. The default is "steelblue".
typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-

ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

plot_normality 143

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Details

The scope of the visualization is the provide a distribution information. Since the plot is drawn for
each variable, if you specify more than one variable in the ... argument, the specified number of
plots are drawn.

The argument values that left and right can have are as follows.:

* "log" : log transformation. log(x)

* "log+1" : log transformation. log(x + 1). Used for values that contain 0.

* "log+a" : log transformation. log(x + 1 - min(x)). Used for values that contain 0.
e "sqrt" : square root transformation.

e "1/x" : 1 /x transformation

e "x"2" : x square transformation

e "xA3" : x"3 square transformation

* "Box-Cox" : Box-Box transformation

¢ "Yeo-Johnson" : Yeo-Johnson transformation

Distribution information

The plot derived from the numerical data visualization is as follows.

* histogram by original data
* g-q plot by original data
* histogram by log transfer data

* histogram by square root transfer data

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

plot_normality.tbl_dbi, plot_outlier.data.frame.

Examples

Visualization of all numerical variables
heartfailure2 <- heartfailure[, c("creatinine"”, "platelets”, "sodium”, "sex", "smoking")]
plot_normality(heartfailure2)

Select the variable to plot
plot_normality(heartfailure2, platelets, sodium)
plot_normality(heartfailure2, -platelets, -sodium, col = "gray")

144

plot_normality(heartfailure2, 1)

Change the method of transformation
plot_normality(heartfailure2, platelets, right = "1/x")

if (requireNamespace("forecast”, quietly = TRUE)) {

plot_normality

plot_normality(heartfailure2, platelets, left = "Box-Cox", right = "Yeo-Johnson")

} else {

cat("If you want to use this feature, you need to install the rpart package.\n")

}
Non typographic elements
plot_normality(heartfailure2, platelets, typographic = FALSE)

Using dplyr::grouped_df
library(dplyr)

gdata <- group_by(heartfailure2, sex, smoking)
plot_normality(gdata)
plot_normality(gdata, "creatinine")

Using pipes —---—--—-=—————————-———-———m——————
Visualization of all numerical variables
heartfailure2 %>%

plot_normality()

Positive values select variables
heartfailure2 %>%
plot_normality(platelets, sodium)

Positions values select variables
heartfailure2 %>%
plot_normality(1)

Using pipes & dplyr ----------—--=—-———-—o-—-
Plot 'creatinine' variable by 'sex' and 'smoking'
heartfailure2 %>%
group_by(sex, smoking) %>%
plot_normality(creatinine)
extract only those with 'sex' variable level is "Male”,
and plot 'platelets' by 'smoking'
if (requireNamespace("forecast”, quietly = TRUE)) {
heartfailure2 %>%
filter(sex == "Male") %>%
group_by (smoking) %>%
plot_normality(platelets, right = "Box-Cox")
} else {

cat("If you want to use this feature, you need to install the rpart package.\n")

}

plot_normality.tbl_dbi 145

plot_normality.tbl_dbi
Plot distribution information of numerical data

Description

The plot_normality() visualize distribution information for normality test of the numerical INTEGER,
NUMBER, etc.) column of the DBMS table through tbl_dbi.

Usage

S3 method for class 'tbl_dbi'
plot_normality(
.data,
in_database = FALSE,
collect_size = Inf,
left = c("log", "sqrt”, "log+1", "1/x", "x*2", "x*3", "Box-Cox", "Yeo-Johnson"),
right = c("sqrt”, "log"”, "log+1", "1/x", "x*2", "x*3", "Box-Cox", "Yeo-Johnson"),
col = "steelblue”,
typographic = TRUE,
base_family = NULL
)

Arguments

.data a tbl_dbi.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_normality() will auto-
matically start with all variables. These arguments are automatically quoted and
evaluated in a context where column names represent column positions. They
support unquoting and splicing.

See vignette("EDA") for an introduction to these concepts.

in_database Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

collect_size ainteger. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

left character. Specifies the data transformation method to draw the histogram in the
lower left corner. The default is "log".

right character. Specifies the data transformation method to draw the histogram in the
lower right corner. The default is "sqrt".

col a color to be used to fill the bars. The default is "steelblue".

146 plot_normality.tbl_dbi

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visualiza-
tion.
base_family character. The name of the base font family to use for the visualization. If not

specified, the font defined in dlookr is applied. (See details)

Details

The scope of the visualization is the provide a distribution information. Since the plot is drawn for
each variable, if you specify more than one variable in the ... argument, the specified number of
plots are drawn.

The argument values that left and right can have are as follows.:

* "log" : log transformation. log(x)

* "log+1" : log transformation. log(x + 1). Used for values that contain 0.
e "sqrt" : square root transformation.

e "1/x": 1/x transformation

e "x"2" : x square transformation

e "x"3" : x"3 square transformation

* "Box-Cox" : Box-Box transformation

¢ "Yeo-Johnson" : Yeo-Johnson transformation

Distribution information

The plot derived from the numerical data visualization is as follows.

* histogram by original data
* g-q plot by original data
* histogram by log transfer data

* histogram by square root transfer data

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

plot_normality.data.frame, plot_outlier.tbl_dbi.

Examples

library(dplyr)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE

plot_outlier 147

copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

Using pipes —-—-————-——=——-—-———-—-—mmmmmmm oo
Visualization of all numerical variables
con_sqlite %>%

tb1("TB_HEARTFAILURE") %>%

plot_normality()

Positive values select variables, and In-memory mode and collect size is 200
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

plot_normality(platelets, sodium, collect_size = 200)

Positions values select variables
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
plot_normality(1)

Not allow the typographic elements
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
plot_normality(1, typographic = FALSE)

Using pipes & dplyr ---------------———--————-
Plot 'sodium' variable by 'smoking' and 'death_event'
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
group_by(smoking, death_event) %>%
plot_normality(sodium)

Plot using left and right arguments

con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
group_by(smoking, death_event) %>%
plot_normality(sodium, left = "Box-Cox", right = "log")

extract only those with 'smoking' variable level is "Yes”,
and plot 'sodium' by 'death_event'
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

filter(smoking == "Yes") %>%

group_by(death_event) %>%

plot_normality(sodium)

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

plot_outlier Plot outlier information of numerical data diagnosis

148

Description

plot_outlier

The plot_outlier() visualize outlier information for diagnosing the quality of the numerical data.

Usage

plot_outlier(.data, ...)

S3 method for class 'data.frame'

plot_outlier(
.data,

’

col = "steelblue”,
typographic = TRUE,

base_family =

)

Arguments

.data

col

typographic

base_family

Details

NULL

a data.frame or a tbl_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_outlier() will automat-
ically start with all variables. These arguments are automatically quoted and
evaluated in a context where column names represent column positions. They
support unquoting and splicing.

a color to be used to fill the bars. The default is "steelblue".

logical. Whether to apply focuses on typographic elements to ggplot2 visualiza-
tion.

character. The name of the base font family to use for the visualization. If
not specified, the font defined in dlookr is applied. (See details) The default is
TRUE. if TRUE provides a base theme that focuses on typographic elements
using hrbrthemes package.

The scope of the diagnosis is the provide a outlier information. Since the plot is drawn for each
variable, if you specify more than one variable in the ... argument, the specified number of plots are

drawn.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Outlier diagnostic information

The plot derived from the numerical data diagnosis is as follows.

* With outliers box plot

plot_outlier 149

* Without outliers box plot
* With outliers histogram

* Without outliers histogram

See vignette("diagonosis") for an introduction to these concepts.

See Also

plot_outlier.tbl_dbi, diagnose_outlier.data.frame.

Examples

Visualization of all numerical variables
plot_outlier(heartfailure)

Select the variable to diagnose
plot_outlier(heartfailure, cpk_enzyme, sodium)
plot_outlier(heartfailure, -cpk_enzyme, -sodium)
plot_outlier(heartfailure, "cpk_enzyme"”, "sodium")
plot_outlier(heartfailure, 7)

Using the col argument
plot_outlier(heartfailure, cpk_enzyme, col = "gray")

Not allow typographic argument
plot_outlier(heartfailure, cpk_enzyme, typographic = FALSE)

Using pipes ——--——==--——=--——---—----—---——-—-
library(dplyr)

Visualization of all numerical variables
heartfailure %>%
plot_outlier()

Positive values select variables
heartfailure %>%
plot_outlier(cpk_enzyme, sodium)

Negative values to drop variables
heartfailure %>%
plot_outlier(-cpk_enzyme, -sodium)

Positions values select variables
heartfailure %>%
plot_outlier(7)

Negative values to drop variables
heartfailure %>%

plot_outlier(-1, -5)

Using pipes & dplyr -----------—---———--————-

150

plot_outlier.target_df

Visualization of numerical variables with a ratio of
outliers greater than 5%

heartfailure %>%

plot_outlier(heartfailure %>%
diagnose_outlier() %>%
filter(outliers_ratio > 5) %>%
select(variables) %>%

pull(d)

plot_outlier.target_df

Plot outlier information of target_df

Description

The plot_outlier() visualize outlier information for diagnosing the quality of the numerical data with

target_df class.

Usage

S3 method for class 'target_df'

plot_outlier(.data, ..., typographic = TRUE, base_family = NULL)
Arguments

.data a target_df. reference target_by.

typographic

base_family

Details

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_outlier() will automat-
ically start with all variables. These arguments are automatically quoted and
evaluated in a context where column names represent column positions. They
support unquoting and splicing.

logical. Whether to apply focuses on typographic elements to ggplot2 visualiza-
tion.

character. The name of the base font family to use for the visualization. If
not specified, the font defined in dlookr is applied. (See details) The default is
TRUE. if TRUE provides a base theme that focuses on typographic elements
using hrbrthemes package.

The scope of the diagnosis is the provide a outlier information. Since the plot is drawn for each
variable, if you specify more than one variable in the ... argument, the specified number of plots are

drawn.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

plot_outlier.tb]_dbi 151

Outlier diagnostic information

The plot derived from the numerical data diagnosis is as follows.

» With outliers box plot by target variable

* Without outliers box plot by target variable

» With outliers density plot by target variable

* Without outliers density plot by target variable

See Also

plot_outlier.data.frame.

Examples

the target variable is a categorical variable
categ <- target_by(heartfailure, death_event)

plot_outlier(categ, sodium)
plot_outlier(categ, sodium, typographic = FALSE)

death_eventing dplyr

library(dplyr)

heartfailure %>%
target_by(death_event) %>%
plot_outlier(sodium, cpk_enzyme)

death_eventing DBMS tables ----------------------—---———————-
connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

If the target variable is a categorical variable
categ <- target_by(con_sqlite %>% tbl1("TB_HEARTFAILURE") , death_event)

plot_outlier(categ, sodium)

plot_outlier.tbl_dbi Plot outlier information of numerical data diagnosis in the DBMS

Description

The plot_outlier() visualize outlier information for diagnosing the quality of the numerical(INTEGER,
NUMBER, etc.) column of the DBMS table through tbl_dbi.

152 plot_outlier.tbl_dbi

Usage

S3 method for class 'tbl_dbi'
plot_outlier(
.data,

’

col = "steelblue”,
in_database = FALSE,
collect_size = Inf,
typographic = TRUE,
base_family = NULL

Arguments

.data a tbl_dbi.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_outlier() will automat-
ically start with all variables. These arguments are automatically quoted and
evaluated in a context where column names represent column positions. They
support unquoting and splicing.

col a color to be used to fill the bars. The default is "lightblue".

in_database Specifies whether to perform in-database operations. If TRUE, most operations
are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

collect_size ainteger. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)
Details

The scope of the diagnosis is the provide a outlier information. Since the plot is drawn for each
variable, if you specify more than one variable in the ... argument, the specified number of plots are
drawn.

Outlier diagnostic information
The plot derived from the numerical data diagnosis is as follows.
* With outliers box plot

* Without outliers box plot

* With outliers histogram

plot_outlier.tb]_dbi 153

* Without outliers histogram

See vignette("diagonosis") for an introduction to these concepts.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

See Also

plot_outlier.data.frame, diagnose_outlier.tbl_dbi.

Examples

library(dplyr)

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

Using pipes —-—-——-—-—--————--—-—--—mmmmmm o
Visualization of all numerical variables
con_sqlite %>%

tb1 ("TB_HEARTFAILURE") %>%

plot_outlier()

Positive values select variables
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
plot_outlier(platelets, sodium)

Negative values to drop variables, and In-memory mode and collect size is 200
con_sqlite %>%

tbl ("TB_HEARTFAILURE") %>%

plot_outlier(-platelets, -sodium, collect_size = 200)

Positions values select variables
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
plot_outlier(6)

Negative values to drop variables

con_sqlite %>%
tb1("TB_HEARTFAILURE") %>%
plot_outlier(-1, -5)

Not allow the typographic elements
con_sqlite %>%
tb1 ("TB_HEARTFAILURE") %>%
plot_outlier(-1, -5, typographic = FALSE)

154

Using pipes & dplyr ----------------——--————-

Visualization of numerical variables with a ratio of

outliers greater than 1%
con_sqlite %>%
tbl ("TB_HEARTFAILURE") %>%
plot_outlier(con_sqlite %>%
tbl1 ("TB_HEARTFAILURE") %>%
diagnose_outlier() %>%
filter(outliers_ratio > 1) %>%
select(variables) %>%
pull())

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

plot_qq_numeric

plot_gg_numeric Plot Q-Q plot of numerical variables

Description

The plot_qq_numeric() to visualizes the Q-Q plot of numeric data or relationship to specific cate-

gorical data.

Usage

plot_qg_numeric(.data, ...)

S3 method for class 'data.frame'
plot_qgq_numeric(

.data,

col_point = "steelblue”,

col_line = "black",

title = "Q-Q plot by numerical variables”,

each = FALSE,

typographic = TRUE,

base_family = NULL

S3 method for class 'grouped_df'
plot_qgg_numeric(

.data,

col_point = "steelblue”,

col_line = "black”,

plot_qq_numeric 155

title = "Q-Q plot by numerical variables”,
each = FALSE,

typographic = TRUE,

base_family = NULL

)
Arguments

.data data.frame or a thbl_df or a grouped_df.
one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. If the first expression is negative, plot_qq_numeric() will
automatically start with all variables. These arguments are automatically quoted
and evaluated in a context where column names represent column positions.
They support unquoting and splicing.

col_point character. a color of points in Q-Q plot.

col_line character. a color of line in Q-Q plot.

title character. a main title for the plot.

each logical. Specifies whether to draw multiple plots on one screen. The default is

FALSE, which draws multiple plots on one screen.

typographic logical. Whether to apply focuses on typographic elements to ggplot2 visual-
ization. The default is TRUE. if TRUE provides a base theme that focuses on
typographic elements using hrbrthemes package.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

Details

The The Q-Q plot helps determine whether the distribution of a numeric variable is normally dis-
tributed. plot_qq_numeric() shows Q-Q plots of several numeric variables on one screen. This
function can also display a Q-Q plot for each level of a specific categorical variable.

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

Visualization of all numerical variables
plot_qgqg_numeric(heartfailure)

Select the variable to diagnose
plot_qgq_numeric(heartfailure, "age"”, "time")
plot_gg_numeric(heartfailure, -age, -time)

Not allow the typographic elements
plot_qgq_numeric(heartfailure, "age", typographic = FALSE)

"

156

Using pipes ---

library(dplyr)

pps

Plot of all numerical variables

heartfailure %>%

plot_qq_numeric()

Using groupd_df

heartfailure %>%

group_by(smoking) %>%
plot_qgq_numeric()

heartfailure %>%

group_by (smoking) %>%
plot_qgq_numeric(each = TRUE)

pps

Compute Predictive Power Score

Description

The pps() compute PPS(Predictive Power Score) for exploratory data analysis.

Usage

pps(.data, ...)

S3 method for class 'data.frame'

pps(.data, ...,

cv_folds = 5, do_parallel = FALSE, n_cores = -1)

S3 method for class 'target_df'

pps(.data, ...,

Arguments

.data

cv_folds
do_parallel

n_cores

cv_folds = 5, do_parallel = FALSE, n_cores = -1)

a target_df or data.frame.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values to
drop variables. If the first expression is negative, describe() will automatically
start with all variables. These arguments are automatically quoted and evaluated
in a context where column names represent column positions. They support
unquoting and splicing.

integer. number of cross-validation folds.
logical. whether to perform score calls in parallel.

integer. number of cores to use, defaults to maximum cores - 1.

Pps 157

Details

The PPS is an asymmetric, data-type-agnostic score that can detect linear or non-linear relationships
between two variables. The score ranges from O (no predictive power) to 1 (perfect predictive
power).

Value

An object of the class as pps. Attributes of pps class is as follows.

* type : type of pps
* target : name of target variable

* predictor : name of predictor

Information of Predictive Power Score

The information of PPS is as follows.

* x : the name of the predictor variable

* y : the name of the target variable

* result_type : text showing how to interpret the resulting score

* pps : the predictive power score

* metric : the evaluation metric used to compute the PPS

e baseline_score : the score of a naive model on the evaluation metric

* model_score : the score of the predictive model on the evaluation metric
 cv_folds : how many cross-validation folds were used

* seed : the seed that was set

e algorithm : text shwoing what algorithm was used

* model_type : text showing whether classification or regression was used

References

* RIP correlation. Introducing the Predictive Power Score - by Florian Wetschoreck

— https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598

See Also

print.relate, plot.relate.

Examples

library(dplyr)

pps type is generic
pps_generic <- pps(iris)
pps_generic

158

summary pps class
mat <- summary(pps_generic)
mat

visualize pps class
plot(pps_generic)

pps type is target_by

If the target variable is a categorical variable
categ <- target_by(iris, Species)

compute all variables
pps_cat <- pps(categ)
pps_cat

compute Petal.Length and Petal.Width variable
pps_cat <- pps(categ, Petal.Length, Petal.Width)
pps_cat

Using dplyr
pps_cat <- iris %>%
target_by(Species) %>%

pps ()
pps_cat
Using parallel process
pps_cat <- iris %>%
target_by(Species) %>%
pps(do_parallel = TRUE)
#
pps_cat

summary pps class
tab <- summary(pps_cat)
tab

visualize pps class
plot(pps_cat)

If the target variable is a numerical variable
num <- target_by(iris, Petal.Length)

pps_num <- pps(num)
pps_num

summary pps class
tab <- summary(pps_num)
tab

pps

print.relate 159

plot pps class
plot(pps_num)

print.relate Summarizing relate information

Description

print and summary method for "relate" class.

Usage
S3 method for class 'relate’
print(x, ...)
Arguments
X an object of class "relate", usually, a result of a call to relate().
further arguments passed to or from other methods.
Details

print.relate() tries to be smart about formatting four kinds of relate. summary.relate() tries to be
smart about formatting four kinds of relate.

See Also

plot.relate.

Examples

Not run:
If the target variable is a categorical variable
categ <- target_by(heartfailure, death_event)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, hblood_pressure)

Print bins class object
cat_cat

summary (cat_cat)

End(Not run)

160 relate

If the target variable is a categorical variable
categ <- target_by(heartfailure, death_event)

If the variable of interest is a numerical variable
cat_num <- relate(categ, sodium)

cat_num

summary (cat_num)

plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, hblood_pressure)

cat_cat

summary (cat_cat)

plot(cat_cat)

If the target variable is a numerical variable
num <- target_by(heartfailure, creatinine)

If the variable of interest is a numerical variable
num_num <- relate(num, sodium)

num_num

summary (num_num)

plot(num_num)

If the variable of interest is a categorical variable
num_cat <- relate(num, smoking)

num_cat

summary (num_cat)

plot(num_cat)

Not allow typographic
plot(num_cat, typographic = FALSE)

relate Relationship between target variable and variable of interest

Description

The relationship between the target variable and the variable of interest (predictor) is briefly ana-
lyzed.

relate 161
Usage
relate(.data, predictor)

S3 method for class 'target_df'
relate(.data, predictor)

Arguments
.data a target_df.
predictor variable of interest. predictor.
See vignette("relate") for an introduction to these concepts.
Details

Returns the four types of results that correspond to the combination of the target variable and the
data type of the variable of interest.

* target variable: categorical variable

— predictor: categorical variable
% contingency table
+ c("xtabs", "table") class
— predictor: numerical variable
+ descriptive statistic for each levels and total observation.

* target variable: numerical variable

— predictor: categorical variable
* ANOVA test. "Im" class.
— predictor: numerical variable
% simple linear model. "Im" class.

Value
An object of the class as relate. Attributes of relate class is as follows.
* target : name of target variable
e predictor : name of predictor

¢ model : levels of binned value.

* raw : table_df with two variables target and predictor.

Descriptive statistic information
The information derived from the numerical data describe is as follows.
* mean : arithmetic average

¢ sd : standard deviation

* se_mean : standrd error mean. sd/sqrt(n)

162 relate

* IQR : interqurtle range (Q3-Q1)

* skewness : skewness

* kurtosis : kurtosis

* p25: Q1. 25% percentile

* p50 : median. 50% percentile

* p75: Q3. 75% percentile

* p01, p05, p10, p20, p30 : 1%, 5%, 20%, 30% percentiles
* p40, p60, p70, p80 : 40%, 60%, 70%, 80% percentiles

* p90, p95, p99, p100 : 90%, 95%, 99%, 100% percentiles

See Also

print.relate, plot.relate.

Examples

If the target variable is a categorical variable
categ <- target_by(heartfailure, death_event)

If the variable of interest is a numerical variable
cat_num <- relate(categ, sodium)

cat_num

summary (cat_num)

plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, hblood_pressure)

cat_cat

summary (cat_cat)

plot(cat_cat)

If the target variable is a numerical variable
num <- target_by(heartfailure, creatinine)

If the variable of interest is a numerical variable
num_num <- relate(num, sodium)

num_num

summary (num_num)

plot(num_num)

If the variable of interest is a categorical variable
num_cat <- relate(num, smoking)

num_cat

summary (num_cat)

skewness 163

plot(num_cat)

Not allow typographic
plot(num_cat, typographic = FALSE)

skewness Skewness of the data

Description

This function calculated skewness of given data.

Usage

skewness(x, na.rm = TRUE)

Arguments
X a numeric vector.
na.rm logical. Determine whether to remove missing values and calculate them. The
default is TRUE.
Value

numeric. calculated skewness.

See Also

kurtosis, find_skewness.

Examples

set.seed(123)
skewness(rnorm(100))

164 summary.bins

summary.bins Summarizing Binned Variable

Description

summary method for "bins" and "optimal_bins".

Usage

S3 method for class 'bins'
summary (object, ...)

S3 method for class 'bins'

print(x, ...)
Arguments
object an object of "bins" and "optimal_bins", usually, a result of a call to binning().
further arguments passed to or from other methods.
X an object of class "bins" and "optimal_bins", usually, a result of a call to bin-
ning().
Details

print.bins() prints the information of "bins" and "optimal_bins" objects nicely. This includes fre-
quency of bins, binned type, and number of bins. summary.bins() returns data.frame including
frequency and relative frequency for each levels(bins).

See vignette("transformation") for an introduction to these concepts.

Value

The function summary.bins() computes and returns a data.frame of summary statistics of the binned
given in object. Variables of data frame is as follows.

e levels : levels of factor.
* freq : frequency of levels.

* rate : relative frequency of levels. it is not percentage.

See Also

binning

summary.compare_category 165

Examples

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets"] <- NA

Binning the platelets variable. default type argument is "quantile”
bin <- binning(heartfailure2$platelets)

Print bins class object
bin

Summarize bins class object
summary (bin)

summary .compare_category
Summarizing compare_category information

Description

print and summary method for "compare_category" class.

Usage
S3 method for class 'compare_category'
summary (
object,
method = c(”all”, "table", "relative”, "chisq"),
pos = NULL,
na.rm = TRUE,

marginal = FALSE,
verbose = TRUE,

)
S3 method for class 'compare_category'
print(x, ...)
Arguments
object an object of class "compare_category", usually, a result of a call to compare_category().
method character. Specifies the type of information to be aggregated. "table" create

contingency table, "relative" create relative contingency table, and "chisq" create
information of chi-square test. and "all" aggregates all information. The default
is "all"

166 summary.compare_category

pos integer. Specifies the pair of variables to be summarized by index. The default
is NULL, which aggregates all variable pairs.

na.rm logical. Specifies whether to include NA when counting the contingency tables
or performing a chi-square test. The default is TRUE, where NA is removed and
aggregated.

marginal logical. Specifies whether to add marginal values to the contingency table. The

default value is FALSE, so no marginal value is added.

verbose logical. Specifies whether to output additional information during the calcula-
tion process. The default is to output information as TRUE. In this case, the
function returns the value with invisible(). If FALSE, the value is returned by
return().

further arguments passed to or from other methods.

X an object of class "compare_category", usually, a result of a call to compare_category().

Details

print.compare_category() displays only the information compared between the variables included
in compare_category. The "type", "variables" and "combination" attributes are not displayed. When
using summary.compare_category(), it is advantageous to set the verbose argument to TRUE if the
user is only viewing information from the console. It is also advantageous to specify FALSE if you

want to manipulate the results.

See Also

plot.compare_category.
Examples

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

library(dplyr)

Compare the all categorical variables
all_var <- compare_category(heartfailure2)

Print compare_category class objects
all_var

Compare the two categorical variables
two_var <- compare_category(heartfailure2, smoking, death_event)

Print compare_category class objects
two_var

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

summary.compare_numeric 167

Summary by returned objects
stat

component of table
stat$table

component of chi-square test
stat$chisq

component of chi-square test
summary(all_var, "chisqg")

component of chi-square test (first, third case)
summary(all_var, "chisq", pos = c(1, 3))

component of relative frequency table
summary(all_var, "relative")

component of table without missing values
summary(all_var, "table"”, na.rm = TRUE)

component of table include marginal value
margin <- summary(all_var, "table"”, marginal = TRUE)
margin

component of chi-square test
summary (two_var, method = "chisq")

verbose is FALSE
summary(all_var, "chisq"”, verbose = FALSE)

#' # Using pipes & dplyr ---—---------—---——--———-

If you want to use dplyr, set verbose to FALSE

summary(all_var, "chisq”, verbose = FALSE) %>%
filter(p.value < 0.26)

Extract component from list by index
summary(all_var, "table"”, na.rm = TRUE, verbose = FALSE) %>%
"L (1)

Extract component from list by name
summary(all_var, "table"”, na.rm = TRUE, verbose = FALSE) %>%
"[L"("smoking vs death_event"”)

summary . compare_numeric
Summarizing compare_numeric information

168 summary.compare_numeric

Description

print and summary method for "compare_numeric" class.

Usage
S3 method for class 'compare_numeric'
summary (
object,
method = c("all”, "correlation”, "linear"),

thres_corr = 0.3,
thres_rs = 0.1,
verbose = TRUE,

)

S3 method for class 'compare_numeric'

print(x, ...)

Arguments

object an object of class "compare_numeric", usually, a result of a call to compare_numeric().

method character. Select statistics to be aggregated. "correlation" calculates the Pear-
son’s correlation coefficient, and "linear" returns the aggregation of the lin-
ear model. "all" returns both information. However, the difference between
summary.compare_numeric() and compare_numeric() is that only cases that are
greater than the specified threshold are returned. "correlation” returns only cases
with a correlation coefficient greater than the thres_corr argument value. "lin-
ear" returns only cases with R"2 greater than the thres_rs argument.

thres_corr numeric. This is the correlation coefficient threshold of the correlation coeffi-
cient information to be returned. The default is 0.3.

thres_rs numeric. R"2 threshold of linear model summaries information to return. The
default is 0.1.

verbose logical. Specifies whether to output additional information during the calcula-
tion process. The default is to output information as TRUE. In this case, the
function returns the value with invisible(). If FALSE, the value is returned by
return().
further arguments passed to or from other methods.

X an object of class "compare_numeric", usually, a result of a call to compare_numeric().

Details

print.compare_numeric() displays only the information compared between the variables included in
compare_numeric. When using summary.compare_numeric(), it is advantageous to set the verbose
argument to TRUE if the user is only viewing information from the console. It is also advantageous
to specify FALSE if you want to manipulate the results.

summary.compare_numeric 169

Value

An object of the class as compare based list. The information to examine the relationship between
numerical variables is as follows each components. - correlation component : Pearson’s correlation
coefficient.

varl : factor. The level of the first variable to compare. *varl’ is the name of the first variable
to be compared.

var2 : factor. The level of the second variable to compare. ’var2’ is the name of the second
variable to be compared.

coef_corr : double. Pearson’s correlation coefficient.

- linear component : linear model summaries

See Also

varl : factor. The level of the first variable to compare. ’varl’ is the name of the first variable
to be compared.

var2 : factor. The level of the second variable to compare. ’var2’ is the name of the second
variable to be compared.

r.squared : double. The percent of variance explained by the model.

adj.r.squared : double. r.squared adjusted based on the degrees of freedom.

sigma : double. The square root of the estimated residual variance.

statistic : double. F-statistic.

p.value : double. p-value from the F test, describing whether the full regression is significant.
df : integer degrees of freedom.

logLik : double. the log-likelihood of data under the model.

AIC : double. the Akaike Information Criterion.

BIC : double. the Bayesian Information Criterion.

deviance : double. deviance.

df.residual : integer residual degrees of freedom.

plot.compare_numeric.

Examples

Generate data for the example
heartfailure2 <- heartfailure[, c("platelets”, "creatinine”, "sodium")]

library(dplyr)
Compare the all numerical variables
all_var <- compare_numeric(heartfailure2)

Print compare_numeric class object
all_var

170 summary.correlate

Compare the correlation that case of joint the sodium variable
all_var %>%
"$"(correlation) %>%
filter(varl == "sodium” | var2 == "sodium") %>%
arrange(desc(abs(coef_corr)))

Compare the correlation that case of abs(coef_corr) > 0.1
all_var %>%

"$"(correlation) %>%

filter(abs(coef_corr) > 0.1)

Compare the linear model that case of joint the sodium variable
all_var %>%
"$"(linear) %>%
filter(varl == "sodium” | var2 == "sodium”) %>%
arrange(desc(r.squared))

Compare the two numerical variables
two_var <- compare_numeric(heartfailure2, sodium, creatinine)

Print compare_numeric class objects
two_var

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

Just correlation
summary(all_var, method = "correlation")

Just correlation condition by r > 0.1
summary(all_var, method = "correlation”, thres_corr = 0.1)

linear model summaries condition by R*"2 > 0.05
summary(all_var, thres_rs = 0.05)

verbose is FALSE
summary(all_var, verbose = FALSE)

summary.correlate Summarizing Correlation Coefficient

Description

summary method for "correlate" class.

Usage

S3 method for class 'correlate'
summary (object, ...)

summary.correlate 171

Arguments
object an object of class "correlate", usually, a result of a call to correlate().
further arguments passed to or from other methods.
Details

summary.correlate compares the correlation coefficient by variables.

See Also

correlate, plot.correlate.

Examples

library(dplyr)

Correlation type is "generic”
Correlation coefficients of all numerical variables
corr_tab <- correlate(heartfailure)

corr_tab

summary correlate class
mat <- summary(corr_tab)
mat

Select the variable to compute
corr_tab <- correlate(heartfailure, creatinine, sodium)
corr_tab

summary correlate class
mat <- summary(corr_tab)
mat

Correlation type is "group”

If the target variable is a categorical variable
Using dplyr
corr_tab <- heartfailure %>%

group_by(smoking, death_event) %>%

correlate()

corr_tab

summary correlate class
mat <- summary(corr_tab)
mat

corr_tab <- heartfailure %>%
group_by(smoking, death_event) %>%
correlate(creatinine) %>%

172 summary.imputation

filter(abs(coef_corr) >= 0.2)
corr_tab

summary correlate class
mat <- summary(corr_tab)
mat

connect DBMS
con_sqglite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

Using pipes ——--—----——-----------------————-
Correlation coefficients of all numerical variables
corr_tab <- con_sqlite %>%

tbl("TB_HEARTFAILURE") %>%

correlate()

summary correlate class
mat <- summary(corr_tab)
mat

Disconnect DBMS
DBI::dbDisconnect(con_sqglite)

summary.imputation Summarizing imputation information

Description

print and summary method for "imputation" class.

Usage
S3 method for class 'imputation'
summary (object, ...)
Arguments
object an object of class "imputation", usually, a result of a call to imputate_na() or

imputate_outlier().

further arguments passed to or from other methods.

Details

summary.imputation() tries to be smart about formatting two kinds of imputation.

summary.optimal_bins 173

See Also

imputate_na, imputate_outlier, summary.imputation.

Examples

Generate data for the example

heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 20), "platelets”] <- NA
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA

Impute missing values --—---------———=—————————————

If the variable of interest is a numerical variables

platelets <- imputate_na(heartfailure2, platelets, death_event, method = "rpart"”)
platelets

summary(platelets)

plot(platelets)

If the variable of interest is a categorical variables

smoking <- imputate_na(heartfailure2, smoking, death_event, method = "mice”)
smoking

summary (smoking)

plot(smoking)

Impute outliers ---—---—-------"--—--——

If the variable of interest is a numerical variable

platelets <- imputate_outlier(heartfailure2, platelets, method = "capping")
platelets

summary(platelets)

plot(platelets)

summary.optimal_bins Summarizing Performance for Optimal Bins

Description

summary method for "optimal_bins". summary metrics to evaluate the performance of binomial
classification model.

Usage

S3 method for class 'optimal_bins'
summary (object, ...)

174 summary.optimal_bins

Arguments
object an object of class "optimal_bins", usually, a result of a call to binning_by().
further arguments to be passed from or to other methods.
Details

print() to print only binning table information of "optimal_bins" objects. summary.performance_bin()
includes general metrics and result of significance tests life follows.:
* Binning Table : Metrics by bins.
— CntRec, CntPos, CntNeg, RatePos, RateNeg, Odds, WoE, IV, JSD, AUC.
* General Metrics.

— Gini index.

Jeffrey’s Information Value.

Jensen-Shannon Divergence.

Kolmogorov-Smirnov Statistics.
Herfindahl-Hirschman Index.
normalized Herfindahl-Hirschman Index.

Cramer’s V Statistics.

* Table of Significance Tests.

Value

NULL.

See Also

binning_by, plot.optimal_bins

Examples

library(dplyr)

Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "creatinine”] <- NA

optimal binning
bin <- binning_by(heartfailure2, "death_event”, "creatinine")
bin

summary optimal_bins class
summary (bin)

performance table
attr(bin, "performance")

summary.overview 175

visualize all information for optimal_bins class
plot(bin)

visualize WoE information for optimal_bins class
plot(bin, type = "WoE")

visualize all information without typographic
plot(bin, typographic = FALSE)

extract binned results
extract(bin) %>%
head(20)

summary.overview Summarizing overview information

Description

print and summary method for "overview" class.

Usage
S3 method for class 'overview'
summary(object, html = FALSE, ...)
Arguments
object an object of class "overview", usually, a result of a call to overview().
html logical. whether to send summary results to html. The default is FALSE, which

prints to the R console.

further arguments passed to or from other methods.

Details

summary.overview() tries to be smart about formatting 14 information of overview.

See Also

overview, plot.overview.

176 summary.performance_bin

Examples

ov <- overview(jobchange)
ov

summary (ov)

summary.performance_bin
Summarizing Performance for Binned Variable

Description

summary method for "performance_bin". summary metrics to evaluate the performance of binomial
classification model.

Usage
S3 method for class 'performance_bin'
summary (object, ...)
Arguments
object an object of class "performance_bin", usually, a result of a call to performance_bin().

further arguments to be passed from or to other methods.

Details

print() to print only binning table information of "performance_bin" objects. summary.performance_bin()
includes general metrics and result of significance tests life follows.:
* Binning Table : Metrics by bins.
— CntRec, CntPos, CntNeg, RatePos, RateNeg, Odds, WoE, 1V, JSD, AUC.
* General Metrics.

Gini index.

Jeffrey’s Information Value.

Jensen-Shannon Divergence.

Kolmogorov-Smirnov Statistics.
Herfindahl-Hirschman Index.
— normalized Herfindahl-Hirschman Index.

— Cramer’s V Statistics.

* Table of Significance Tests.

summary.pps 177

Value

NULL.

See Also

performance_bin, plot.performance_bin, binning_by, summary.optimal_bins.

Examples

Generate data for the example
heartfailure2 <- heartfailure

set.seed(123)
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "creatinine"”] <- NA

Change the target variable to @(negative) and 1(positive).
heartfailure2$death_event_2 <- ifelse(heartfailure2$death_event %in% "Yes"”, 1, @)

Binnig from creatinine to platelets_bin.
breaks <- c(e, 1, 2, 10)
heartfailure2$creatinine_bin <- cut(heartfailure2$creatinine, breaks)

Diagnose performance binned variable

perf <- performance_bin(heartfailure2$death_event_2, heartfailure2$creatinine_bin)
perf

summary (perf)

plot(perf)

Diagnose performance binned variable without NA

perf <- performance_bin(heartfailure2$death_event_2, heartfailure2$creatinine_bin, na.rm = TRUE)
perf

summary (perf)

plot(perf)

summary . pps Summarizing Predictive Power Score

Description

print and summary method for "pps" class.

Usage

S3 method for class 'pps'
summary (object, ...)

178 summary.pps

Arguments
object an object of class "pps", usually, a result of a call to pps().
further arguments passed to or from other methods.
Details

summary.pps compares the PPS by variables.

See Also

pps, plot.pps.

Examples

library(dplyr)

pps type is generic
pps_generic <- pps(iris)
pps_generic

summary pps class
mat <- summary(pps_generic)
mat

pps type is target_by

If the target variable is a categorical variable
Using dplyr
pps_cat <- iris %>%

target_by(Species) %>%

pps ()

pps_cat

summary pps class
tab <- summary(pps_cat)
tab

If the target variable is a numerical variable
num <- target_by(iris, Petal.Length)

pps_num <- pps(num)
pps_num

summary pps class
tab <- summary(pps_num)
tab

summary.transform 179

summary.transform Summarizing transformation information

Description

print and summary method for "transform" class.

Usage
S3 method for class 'transform'
summary (object, ...)
Arguments
object an object of class "transform", usually, a result of a call to transform().

further arguments passed to or from other methods.

Details

summary.transform compares the distribution of data before and after data transformation.

See Also

transform, plot.transform.

Examples

Standardization --------------------—---———-——

creatinine_minmax <- transform(heartfailure$creatinine, method = "minmax")
creatinine_minmax

summary (creatinine_minmax)

plot(creatinine_minmax)

Resolving Skewness ----—--——-=——————————————-

creatinine_log <- transform(heartfailure$creatinine, method = "log")
creatinine_log

summary(creatinine_log)

plot(creatinine_log)

plot(creatinine_log, typographic = FALSE)

180

summary.univar_category

summary.univar_category
Summarizing univar_category information

Description

print and summary method for "univar_category" class.

Usage

S3 method for class 'univar_category'
summary(object, na.rm = TRUE, ...)

S3 method for class 'univar_category'

print(x, ...)
Arguments
object an object of class "univar_category", usually, a result of a call to univar_category().
na.rm logical. Specifies whether to include NA when performing a chi-square test.
The default is TRUE, where NA is removed and aggregated.
further arguments passed to or from other methods.
X an object of class "univar_category", usually, a result of a call to univar_category().
Details

print.univar_category() displays only the information of variables included in univar_category. The

"variables" attribute is not displayed.

Value

An object of the class as individual variables based list. The information to examine the relationship

between categorical variables is as follows each components.

e variable : factor. The level of the variable. ’variable’ is the name of the variable.

* statistic : numeric. the value the chi-squared test statistic.
* p.value : numeric. the p-value for the test.

 df : integer. the degrees of freedom of the chi-squared test.

See Also

plot.univar_category.

summary.univar_numeric 181

Examples

library(dplyr)

Calculates the all categorical variables
all_var <- univar_category(heartfailure)

Print univar_category class object
all_var

Calculates the only smoking variable
all_var %>%
"["(names(all_var) %in% "smoking")

smoking <- univar_category(heartfailure, smoking)

Print univar_category class object
smoking

Filtering the case of smoking included NA
smoking %>%

"L (1) %>%

filter(!is.na(smoking))

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

Summary by returned object
stat

summary.univar_numeric
Summarizing univar_numeric information

Description

print and summary method for "univar_numeric" class.

Usage

S3 method for class 'univar_numeric'
summary(object, stand = c("robust”, "minmax"”, "zscore"), ...)

S3 method for class 'univar_numeric'
print(x, ...)

182 summary.univar_numeric

Arguments
object an object of class "univar_numeric", usually, a result of a call to univar_numeric().
stand character Describe how to standardize the original data. "robust" normalizes the
raw data through transformation calculated by IQR and median. "minmax" nor-
malizes the original data using minmax transformation. "zscore" standardizes
the original data using z-Score transformation. The default is "robust".
further arguments passed to or from other methods.
X an object of class "univar_numeric", usually, a result of a call to univar_numeric().
Details

print.univar_numeric() displays only the information of variables included in univar_numeric The
"variables" attribute is not displayed.

Value

An object of the class as indivisual variabes based list. The statistics returned by summary.univar_numeric()
are different from the statistics returned by univar_numeric(). univar_numeric() is the statistics for
the original data, but summary. univar_numeric() is the statistics for the standardized data. A
component named "statistics" is a tibble object with the following statistics.:

* variable : factor. The level of the variable. ’variable’ is the name of the variable.

* n: number of observations excluding missing values

* na: number of missing values

* mean : arithmetic average

* sd : standard deviation

* se_mean : standard error mean. sd/sqrt(n)

* IQR : interquartile range (Q3-Q1)

* skewness : skewness

* kurtosis : kurtosis

* median : median. 50% percentile

See Also

plot.univar_numeric.

Examples

Calculates the all categorical variables
all_var <- univar_numeric(heartfailure)

Print univar_numeric class object
all_var

Calculates the platelets, sodium variable

target_by 183

univar_numeric(heartfailure, platelets, sodium)

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

Summary by returned object
stat

Statistics of numerical variables normalized by Min-Max method
summary(all_var, stand = "minmax")

Statistics of numerical variables standardized by Z-score method

summary(all_var, stand = "zscore")
target_by Target by one variables
Description

In the data analysis, a target_df class is created to identify the relationship between the target vari-
able and the other variable.

Usage

target_by(.data, target, ...)

S3 method for class 'data.frame'

target_by(.data, target, ...)
Arguments

.data a data.frame or a thl_df.

target target variable.

arguments to be passed to methods.

Details

Data analysis proceeds with the purpose of predicting target variables that correspond to the facts
of interest, or examining associations and relationships with other variables of interest. Therefore,
it is a major challenge for EDA to examine the relationship between the target variable and its cor-
responding variable. Based on the derived relationships, analysts create scenarios for data analysis.

target_by() inherits the grouped_df class and returns a target_df class containing information about
the target variable and the variable.

See vignette("EDA") for an introduction to these concepts.

184

Value
an object of target_df class. Attributes of target_df class is as follows.

* type_y : the data type of target variable.

See Also

relate.

Examples

If the target variable is a categorical variable
categ <- target_by(heartfailure, death_event)

If the variable of interest is a numerical variable
cat_num <- relate(categ, sodium)

cat_num

summary (cat_num)

plot(cat_num)

If the variable of interest is a categorical variable
cat_cat <- relate(categ, hblood_pressure)

cat_cat

summary(cat_cat)

plot(cat_cat)

If the target variable is a numerical variable
num <- target_by(heartfailure, creatinine)

If the variable of interest is a numerical variable
num_num <- relate(num, sodium)

num_num

summary (num_num)

plot(num_num)

If the variable of interest is a categorical variable
num_cat <- relate(num, smoking)

num_cat

summary (num_cat)

plot(num_cat)

Non typographic
plot(num_cat, typographic = FALSE)

target_by

target_by.tbl_dbi 185

target_by.tbl_dbi Target by one column in the DBMS

Description

In the data analysis, a target_df class is created to identify the relationship between the target column
and the other column of the DBMS table through tbl_dbi

Usage

S3 method for class 'tbl_dbi'

target_by(.data, target, in_database = FALSE, collect_size = Inf, ...)
Arguments

.data a tbl_dbi.

target target variable.

in_database Specifies whether to perform in-database operations. If TRUE, most operations

are performed in the DBMS. if FALSE, table data is taken in R and operated
in-memory. Not yet supported in_database = TRUE.

collect_size a integer. The number of data samples from the DBMS to R. Applies only if
in_database = FALSE.

arguments to be passed to methods.

Details

Data analysis proceeds with the purpose of predicting target variables that correspond to the facts
of interest, or examining associations and relationships with other variables of interest. Therefore,
it is a major challenge for EDA to examine the relationship between the target variable and its cor-
responding variable. Based on the derived relationships, analysts create scenarios for data analysis.

target_by() inherits the grouped_df class and returns a target_df class containing information about
the target variable and the variable.

See vignette("EDA") for an introduction to these concepts.

Value

an object of target_df class. Attributes of target_df class is as follows.

* type_y : the data type of target variable.

See Also

target_by.data.frame, relate.

186 transform

Examples

library(dplyr)

connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

copy heartfailure to the DBMS with a table named TB_HEARTFAILURE
copy_to(con_sqlite, heartfailure, name = "TB_HEARTFAILURE", overwrite = TRUE)

If the target variable is a categorical variable
categ <- target_by(con_sqlite %>% tbl("TB_HEARTFAILURE") , death_event)

If the variable of interest is a numerical variable
cat_num <- relate(categ, sodium)

cat_num

summary (cat_num)

plot(cat_num)

If the variable of interest is a categorical column
cat_cat <- relate(categ, hblood_pressure)

cat_cat

summary (cat_cat)

plot(cat_cat)

If the target variable is a categorical column,
and In-memory mode and collect size is 200
num <- target_by(con_sqlite %>% tbl("TB_HEARTFAILURE"), death_event, collect_size = 250)

If the variable of interest is a numerical column
num_num <- relate(num, creatinine)

num_num

summary (num_num)

plot(num_num)

plot(num_num, hex_thres = 200)

If the variable of interest is a categorical column
num_cat <- relate(num, smoking)

num_cat

summary (num_cat)

plot(num_cat)

Disconnect DBMS
DBI::dbDisconnect(con_sqlite)

transform Data Transformations

transform 187

Description

Performs variable transformation for standardization and resolving skewness of numerical variables.

Usage
transform(
X’
method = c("zscore”, "minmax”, "log”, "log+1", "sqgrt”, "1/x", "x*2", "x*3",
"Box-Cox", "Yeo-Johnson")
)
Arguments
X numeric vector for transformation.
method method of transformations.
Details

transform() creates an transform class. The ‘transform* class includes original data, transformed
data, and method of transformation.

See vignette("transformation") for an introduction to these concepts.

Value

An object of transform class. Attributes of transform class is as follows.

¢ method : method of transformation data.

— Standardization

x "zscore" : z-score transformation. (x - mu) / sigma

+ "minmax" : minmax transformation. (X - min) / (max - min)
— Resolving Skewness

* "log" : log transformation. log(x)

* "log+1" : log transformation. log(x + 1). Used for values that contain 0.

% "sqrt" : square root transformation.

#* "1/x" : 1/x transformation

x "x2" : X square transformation

% "x"3" : xA3 square transformation

* "Box-Cox" : Box-Box transformation

% "Yeo-Johnson" : Yeo-Johnson transformation

See Also

summary.transform, plot.transform.

188 transformation_paged_report

Examples

Standardization --------------------—---———-——

creatinine_minmax <- transform(heartfailure$creatinine, method = "minmax")
creatinine_minmax

summary (creatinine_minmax)

plot(creatinine_minmax)

Resolving Skewness ----------------—---———-—-

creatinine_log <- transform(heartfailure$creatinine, method = "log")
creatinine_log

summary (creatinine_log)

plot(creatinine_log)
plot(creatinine_log, typographic = FALSE)

Using dplyr ----------—---——---——-mm—mm -
library(dplyr)

heartfailure %>%
mutate(creatinine_log = transform(creatinine, method = "log+1")) %>%
Im(sodium ~ creatinine_log, data = .)

transformation_paged_report
Reporting the information of transformation

Description

The eda_paged_report() paged report the information for data transformatiom.

Usage

transformation_paged_report(
.data,
target = NULL,
output_format = c("pdf”, "html"),
output_file = NULL,
output_dir = tempdir(),
browse = TRUE,
title = "Transformation Report”,
subtitle = deparse(substitute(.data)),
author = "dlookr"”,
abstract_title = "Report Overview”,
abstract = NULL,

transformation_paged_report 189

title_color = "white”,
subtitle_color = "tomatol”,
cover_img = NULL,

create_date

Sys.time(),

logo_img = NULL,
theme = c("orange”, "blue"),
sample_percent = 100,

base_family =

Arguments

.data
target

output_format

output_file
output_dir
browse

title

subtitle
author
abstract_title
abstract
title_color
subtitle_color
cover_img

create_date

logo_img

theme

sample_percent

base_family

NULL,

a data.frame or a tbl_df.
character. target variable.

report output type. Choose either "pdf" and "html". "pdf" create pdf file by
rmarkdown::render() and pagedown::chrome_print(). so, you needed Chrome
web browser on computer. "html" create html file by rmarkdown::render().

name of generated file. default is NULL.

name of directory to generate report file. default is tempdir().
logical. choose whether to output the report results to the browser.
character. title of report. default is "Data Diagnosis Report".
character. subtitle of report. default is name of data.

character. author of report. default is "dlookr".

character. abstract title of report. default is "Report Overview".
character. abstract of report.

character. color of title. default is "white".

character. color of subtitle. default is "tomato1".

character. name of cover image.

Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

character. name of logo image file on top right.

character. name of theme for report. support "orange" and "blue". default is
"orange".

numeric. Sample percent of data for performing Diagnosis. It has a value be-
tween (0, 100]. 100 means all data, and 5 means 5% of sample data. This is
useful for data with a large number of observations.

character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods.

190 transformation_paged_report

Details

Generate transformation reports automatically. You can choose to output to pdf and html files. This
is useful for Binning a data frame with a large number of variables than data with a small number
of variables.

Create an PDF through the Chrome DevTools Protocol. If you want to create PDF, Google Chrome
or Microsoft Edge (or Chromium on Linux) must be installed prior to using this function. If not
installed, you must use output_format = "html".

Reported information

TThe transformation process will report the following information:

¢ Overview
— Data Structures
— Job Informations
* Imputation
— Missing Values
— Outliers
* Resolving Skewness
* Binning

* Optimal Binning

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

if (FALSE) {
create pdf file. file name is Transformation_Paged_Report.pdf
transformation_paged_report(heartfailure, sample_percent = 80)

create pdf file. file name is Transformation_heartfailure. and change cover image

cover <- file.path(system.file(package = "dlookr"), "report”, "cover2.jpg")

transformation_paged_report(heartfailure, cover_img = cover, title_color = "gray",
output_file = "Transformation_heartfailure")

create pdf file. file name is ./Transformation.pdf and not browse

cover <- file.path(system.file(package = "dlookr"), "report”, "coverl.jpg")

transformation_paged_report(heartfailure, output_dir = ".", cover_img = cover,
flag_content_missing = FALSE, output_file = "Transformation.pdf”, browse = FALSE)

create pdf file. file name is Transformation_Paged_Report.html
transformation_paged_report(heartfailure, target = "death_event”, output_format = "html")

}

transformation_report 191

transformation_report Reporting the information of transformation

Description

The transformation_report() report the information of transform numerical variables for object in-
heriting from data.frame.

Usage

transformation_report(
.data,
target = NULL,
output_format = c("pdf”, "html"),
output_file = NULL,
output_dir = tempdir(),
font_family = NULL,
browse = TRUE

)
Arguments
.data a data.frame or a tb1_df.
target target variable. If the target variable is not specified, the method of using the

target variable information is not performed when the missing value is imputed.
and Optimal binning is not performed if the target variable is not a binary class.

output_format report output type. Choose either "pdf" and "html". "pdf" create pdf file by
knitr::knit(). "html" create html file by rmarkdown::render().

output_file name of generated file. default is NULL.

output_dir name of directory to generate report file. default is tempdir().

font_family character. font family name for figure in pdf.

browse logical. choose whether to output the report results to the browser.
Details

Generate transformation reports automatically. You can choose to output to pdf and html files. This

is useful for Binning a data frame with a large number of variables than data with a small number

of variables. For pdf output, Korean Gothic font must be installed in Korean operating system.
Reported information

The transformation process will report the following information:

* Imputation

— Missing Values

192 transformation_web_report

* Variable names including missing value
— Outliers
% * Variable names including outliers
* Resolving Skewness
— Skewed variables information
% * Variable names with an absolute value of skewness greater than or equal to 0.5
* Binning
— Numerical Variables for Binning
— Binning
* Numeric variable names
— Optimal Binning
* Numeric variable names

See vignette("transformation") for an introduction to these concepts.

Examples

if (FALSE) {

reporting the Binning information ---------------------———-

create pdf file. file name is Transformation_Report.pdf & No target variable
transformation_report(heartfailure)

create pdf file. file name is Transformation_Report.pdf
transformation_report(heartfailure, death_event)

create pdf file. file name is Transformation_heartfailure.pdf
transformation_report(heartfailure, "death_event”,
output_file = "Transformation_heartfailure.pdf")

create html file. file name is Transformation_Report.html
transformation_report(heartfailure, "death_event”, output_format = "html")

create html file. file name is Transformation_heartfailure.html
transformation_report(heartfailure, death_event, output_format = "html",
output_file = "Transformation_heartfailure.html"”)

transformation_web_report
Reporting the information of transformation with html

Description

The transformation_web_report() report the information of transform numerical variables for object
inheriting from data.frame.

transformation_web_report 193

Usage

transformation_web_report(
.data,
target = NULL,
output_file = NULL,
output_dir = tempdir(),
browse = TRUE,
title = "Transformation”,
subtitle = deparse(substitute(.data)),
author = "dlookr”,
title_color = "gray",
logo_img = NULL,
create_date = Sys.time(),
theme = c("orange”, "blue"),
sample_percent = 100,
base_family = NULL,

)
Arguments
.data a data.frame or a tbl_df.
target character. target variable.
output_file name of generated file. default is NULL.
output_dir name of directory to generate report file. default is tempdir().
browse logical. choose whether to output the report results to the browser.
title character. title of report. default is "EDA Report".
subtitle character. subtitle of report. default is name of data.
author character. author of report. default is "dlookr".
title_color character. color of title. default is "gray".
logo_img character. name of logo image file on top left.

create_date Date or POSIXct, character. The date on which the report is generated. The
default value is the result of Sys.time().

theme character. name of theme for report. support "orange" and "blue". default is
"orange".

sample_percent numeric. Sample percent of data for performing EDA. It has a value between
(0, 100]. 100 means all data, and 5 means 5% of sample data. This is useful for
data with a large number of observations.

base_family character. The name of the base font family to use for the visualization. If not
specified, the font defined in dlookr is applied. (See details)

arguments to be passed to methods.
Details

Generate transformation reports automatically. This is useful for Binning a data frame with a large
number of variables than data with a small number of variables.

194 univar._category

Reported information

The transformation process will report the following information:

¢ Overview
— Data Structures

— Data Types
— Job Informations

Imputation

— Missing Values
— Outliers

Resolving Skewness

* Binning

Optimal Binning

The base_family is selected from "Roboto Condensed", "Liberation Sans Narrow", "NanumSquare",
"Noto Sans Korean". If you want to use a different font, use it after loading the Google font with
import_google_font().

Examples

if (FALSE) {
create html file. file name is Transformation_Report.html
transformation_web_report(heartfailure)

file name is Transformation.html. and change logo image

logo <- file.path(system.file(package = "dlookr"), "report”, "R_logo_html.svg")

transformation_web_report(heartfailure, logo_img = logo, title_color = "black”,
output_file = "Transformation.html")

file name is ./Transformation.html, "blue"” theme and not browse
transformation_web_report(heartfailure, output_dir = ".", target = "death_event”,
author = "Choonghyun Ryu”, output_file = "Transformation.html”,
theme = "blue”, browse = FALSE)
3

univar_category Statistic of univariate categorical variables

Description

The univar_category() calculates statistic of categorical variables that is frequency table

univar_category 195

Usage

univar_category(.data, ...)

S3 method for class 'data.frame'

univar_category(.data, ...)
Arguments
.data a data.frame or a tbl_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. These arguments are automatically quoted and evaluated in a
context where column names represent column positions. They support unquot-
ing and splicing.

Details

univar_category() calculates the frequency table of categorical variables. If a specific variable name
is not specified, frequency tables for all categorical variables included in the data are calculated. The
univar_category class returned by univar_category() is useful because it can draw chisqure tests and
bar plots as well as frequency tables of individual variables. and return univar_category class that
based list object.

Value

An object of the class as individual variables based list. The information to examine the relationship
between categorical variables is as follows each components.

e variable : factor. The level of the variable. ’variable’ is the name of the variable.
* n: integer. frequency by variable.

* rate : double. relative frequency.

Attributes of return object

Attributes of compare_category class is as follows.

* variables : character. List of variables selected for calculate frequency.

See Also

summary.univar_category, print.univar_category, plot.univar_category.

Examples

library(dplyr)

Calculates the all categorical variables
all_var <- univar_category(heartfailure)

196 univar_numeric

Print univar_category class object
all_var

Calculates the only smoking variable
all_var %>%
"["(names(all_var) %in% "smoking")

smoking <- univar_category(heartfailure, smoking)

Print univar_category class object
smoking

Filtering the case of smoking included NA
smoking %>%

"CL"C1) %>%

filter(!is.na(smoking))

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

Summary by returned object
stat

plot all variables
plot(all_var)

plot smoking
plot(smoking)

plot all variables by prompt
plot(all_var, prompt = TRUE)

univar_numeric Statistic of univariate numerical variables

Description

The univar_numeric() calculates statistic of numerical variables that is frequency table

Usage

univar_numeric(.data, ...)

S3 method for class 'data.frame'
univar_numeric(.data, ...)

univar_numeric 197

Arguments
.data a data.frame or a tb1l_df.

one or more unquoted expressions separated by commas. You can treat variable
names like they are positions. Positive values select variables; negative values
to drop variables. These arguments are automatically quoted and evaluated in a
context where column names represent column positions. They support unquot-
ing and splicing.

Details

univar_numeric() calculates the popular statistics of numerical variables. If a specific variable name
is not specified, statistics for all categorical numerical included in the data are calculated. The
statistics obtained by univar_numeric() are part of those obtained by describe(). Therefore, it is
recommended to use describe() to simply calculate statistics. However, if you want to visualize the
distribution of individual variables, you should use univar_numeric().

Value

An object of the class as individual variables based list. A component named "statistics" is a tibble
object with the following statistics.:

* variable : factor. The level of the variable. ’variable’ is the name of the variable.

* n : number of observations excluding missing values

* na: number of missing values

* mean : arithmetic average

* sd : standard deviation

* se_mean : standrd error mean. sd/sqrt(n)

* IQR : interquartile range (Q3-Q1)

» skewness : skewness

* kurtosis : kurtosis

* median : median. 50% percentile

Attributes of return object

Attributes of compare_category class is as follows.

» raw : a data.frame or a tb1l_df. Data containing variables to be compared. Save it for visual-
ization with plot.univar_numeric().

« variables : character. List of variables selected for calculate statistics.

See Also

summary.univar_numeric, print.univar_numeric, plot.univar_numeric.

198 univar_numeric

Examples

Calculates the all categorical variables
all_var <- univar_numeric(heartfailure)

Print univar_numeric class object
all_var

Calculates the platelets, sodium variable
univar_numeric(heartfailure, platelets, sodium)

Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)

Summary by returned object
stat

Statistics of numerical variables normalized by Min-Max method
summary(all_var, stand = "minmax")

Statistics of numerical variables standardized by Z-score method
summary(all_var, stand = "zscore")

one plot with all variables
plot(all_var)

one plot with all normalized variables by Min-Max method
plot(all_var, stand = "minmax")

one plot with all variables
plot(all_var, stand = "none")

one plot with all robust standardized variables
plot(all_var, viz = "boxplot")

one plot with all standardized variables by Z-score method
plot(all_var, viz = "boxplot”, stand = "zscore")

individual boxplot by variables
plot(all_var, indiv = TRUE, "boxplot")

individual histogram by variables
plot(all_var, indiv = TRUE, "hist")

individual histogram by robust standardized variable
plot(all_var, indiv = TRUE, "hist"”, stand = "robust")

plot all variables by prompt
plot(all_var, indiv = TRUE, "hist", prompt = TRUE)

Index

* datasets diagnose_report.tbl_dbi, 53
heartfailure, 92 diagnose_sparese, 55
jobchange, 98 diagnose_web_report, 57
diagnose_web_report.data.frame, 62
binning, 5, 8, 10, 82, 110, 164 diagnose_web_report.tbl_dbi, 59, 60
binning_by, 6,7, 10, 82, 109, 119, 122, 174, dlookr (dlookr-package), 4
177 dlookr-package, 4
binning_rgr,9, 118 dlookr_blue_paged
(dlookr_orange_paged), 63
compare_category, 11, 112 dlookr_orange_paged, 63
compare_numeric, 14, 113 dlookr_templ_html, 63
cor, I8
correlate, 15,117,115, 171 eda_paged_report, 64
eda_paged_report.data. frame, 69
describe, 20 eda_paged_report.tbl_dbi, 66, 67
describe.data.frame, 25, 102 eda_report, 70
describe.tbl_dbi, 22, 23, 104 eda_report.data. frame, 74
diagnose, 26 eda_report.tbl_dbi, 72
diagnose.data.frame, 29, 31, 37,41 eda_web_report, 76
diagnose.tbl_dbi, 27, 28, 34, 39, 43 eda_web_report.data.frame, 80
diagnose_category, 30 eda_web_report.tbl_dbi, 78, 78
diagnose_category.data.frame, 27, 34, 37, entropy, 81

41 extract, 82
diagnose_category.tbl_dbi, 29, 31, 33, 34,

39,43 find_class, 83, 87
diagnose_numeric, 36 find_na, 84, 85, 86
diagnose_numeric.data.frame, 22, 27, 31, find_outliers, 84, 85, 86

39,41,102 find_skewness, 86, 163
diagnose_numeric.tbl_dbi, 25, 29, 34, 37,

38,43, 104 get_class, 83, 87
diagnose_outlier, 40 get_column_info, 88
diagnose_outlier.data.frame, 31, 37, 43, get_os, 89

149 get_percentile, 90
diagnose_outlier.tbl_dbi, 34, 39,41, 42, get_transform, 91

153 group_by, 21, 24, 102, 104
diagnose_paged_report, 44 grouped_df, 17, 18,21, 131, 133, 135, 155,
diagnose_paged_report.data.frame, 50 183,185
diagnose_paged_report.tbl_dbi, 47, 48
diagnose_report, 51 heartfailure, 92
diagnose_report.data.frame, 55 html_paged, 63

199

200

import_google_font, 93
imputate_na, 84,94, 97,116, 173
imputate_outlier, 85, 95,96, 116, 173

jobchange, 98
jsd, 99, 100

kld, 99, 100
kurtosis, 101, 163

normality, 101
normality.data.frame, 104
normality.tbl_dbi, 7102, 103

overview, 106, 121, 175

performance_bin, 107, 122, 177
plot.bins, 6, 110
plot.compare_category, 12, 111, 166
plot.compare_numeric, 15,113, 169
plot.correlate, 18,114, 171
plot.imputation, 116
plot.infogain_bins, 10, 117
plot.optimal_bins, 8, 118, 122, 174
plot.overview, 107, 120, 175
plot.performance_bin, 109, 121, 177
plot.pps, 122, 178
plot.relate, 124, 157, 159, 162
plot.transform, 126, 179, 187
plot.univar_category, 127, 180, 195
plot.univar_numeric, 128, 182, 197
plot_bar_category, 130
plot_box_numeric, 133
plot_hist_numeric, 135
plot_na_hclust, 137
plot_na_intersect, 138
plot_na_pareto, 140
plot_normality, 91, 141
plot_normality.data.frame, 102, 146
plot_normality.tbl_dbi, /43, 145
plot_outlier, 147
plot_outlier.data.frame, 143, 151, 153
plot_outlier.target_df, 150
plot_outlier.tbl_dbi, /46, 149, 151
plot_gq_numeric, 154

pps, 123, 156, 178

print.bins, 6, 110

print.bins (summary.bins), 164
print.compare_category, 12, 112

INDEX

print.compare_category
(summary.compare_category), 165
print.compare_numeric, 15, 113
print.compare_numeric
(summary . compare_numeric), 167
print.relate, 125, 157,159, 162
print.univar_category, 128, 195
print.univar_category
(summary.univar_category), 180
print.univar_numeric, 129, 197
print.univar_numeric
(summary.univar_numeric), 181

relate, 125, 160, 184, 185

shapiro.test, 102, 104
skewness, 101, 163
summary.bins, 6, 110, 118, 164

summary . compare_category, 12, 112, 165
summary.compare_numeric, 15, 113, 167
summary.correlate, 18, 115,170
summary.imputation, 116,172, 173
summary.optimal_bins, 119,173,177
summary.overview, 107, 121, 175
summary.performance_bin, 109, 122, 176
summary.pps, 123, 177

summary . transform, 126, 179, 187
summary.univar_category, 128, 180, 195
summary.univar_numeric, 129, 181, 197

target_by, 150, 183
target_by.data.frame, /185
target_by.tbl_dbi, 185
tbl_df, 11, 14, 15, 21, 26, 31, 36, 40, 45, 52,
56, 58, 65, 70, 76, 84-86, 94, 96,
102, 106, 131, 133, 135, 142, 148,
155,183,189, 191, 193, 195, 197
transform, 126, 179, 186
transformation_paged_report, 188
transformation_report, 191
transformation_web_report, 192

univar_category, 128, 194
univar_numeric, 129, 196

	dlookr-package
	binning
	binning_by
	binning_rgr
	compare_category
	compare_numeric
	correlate
	describe
	describe.tbl_dbi
	diagnose
	diagnose.tbl_dbi
	diagnose_category
	diagnose_category.tbl_dbi
	diagnose_numeric
	diagnose_numeric.tbl_dbi
	diagnose_outlier
	diagnose_outlier.tbl_dbi
	diagnose_paged_report
	diagnose_paged_report.tbl_dbi
	diagnose_report
	diagnose_report.tbl_dbi
	diagnose_sparese
	diagnose_web_report
	diagnose_web_report.tbl_dbi
	dlookr_orange_paged
	dlookr_templ_html
	eda_paged_report
	eda_paged_report.tbl_dbi
	eda_report
	eda_report.tbl_dbi
	eda_web_report
	eda_web_report.tbl_dbi
	entropy
	extract
	find_class
	find_na
	find_outliers
	find_skewness
	get_class
	get_column_info
	get_os
	get_percentile
	get_transform
	heartfailure
	import_google_font
	imputate_na
	imputate_outlier
	jobchange
	jsd
	kld
	kurtosis
	normality
	normality.tbl_dbi
	overview
	performance_bin
	plot.bins
	plot.compare_category
	plot.compare_numeric
	plot.correlate
	plot.imputation
	plot.infogain_bins
	plot.optimal_bins
	plot.overview
	plot.performance_bin
	plot.pps
	plot.relate
	plot.transform
	plot.univar_category
	plot.univar_numeric
	plot_bar_category
	plot_box_numeric
	plot_hist_numeric
	plot_na_hclust
	plot_na_intersect
	plot_na_pareto
	plot_normality
	plot_normality.tbl_dbi
	plot_outlier
	plot_outlier.target_df
	plot_outlier.tbl_dbi
	plot_qq_numeric
	pps
	print.relate
	relate
	skewness
	summary.bins
	summary.compare_category
	summary.compare_numeric
	summary.correlate
	summary.imputation
	summary.optimal_bins
	summary.overview
	summary.performance_bin
	summary.pps
	summary.transform
	summary.univar_category
	summary.univar_numeric
	target_by
	target_by.tbl_dbi
	transform
	transformation_paged_report
	transformation_report
	transformation_web_report
	univar_category
	univar_numeric
	Index

