
Package ‘dnet’
February 20, 2020

Type Package

Title Integrative Analysis of Omics Data in Terms of Network,
Evolution and Ontology

Version 1.1.7

Date 2020-2-20

Author Hai Fang and Julian Gough

Maintainer Hai Fang <hfang@well.ox.ac.uk>

Depends R (>= 3.1.0), igraph, supraHex

Imports graph, Rgraphviz, Matrix

Suggests limma, survival, foreach, doParallel, Biobase

Description The focus of the dnet by Fang and Gough (2014) <doi:10.1186/s13073-014-0064-
8> is to make sense of omics data (such as gene expression and mutations) from different an-
gles including: integration with molecular networks, enrichments using ontologies, and rele-
vance to gene evolutionary ages. Integration is achieved to identify a gene subnet-
work from the whole gene network whose nodes/genes are labelled with informa-
tive data (such as the significant levels of differential expression or sur-
vival risks). To help make sense of identified gene networks, enrichment analysis is also sup-
ported using a wide variety of pre-compiled ontologies and phylostratific gene age informa-
tion in major organisms including: human, mouse, rat, chicken, C.elegans, fruit fly, ze-
brafish and arabidopsis. Add-on functionalities are supports for calculating semantic similar-
ity between ontology terms (and between genes) and for calculating network affin-
ity based on random walk; both can be done via high-performance parallel computing.

URL http://dnet.r-forge.r-project.org,

https://github.com/hfang-bristol/dnet

Collate 'dGSEA.r' 'dGSEAview.r' 'dGSEAwrite.r' 'visGSEA.r'
'dPvalAggregate.r' 'dNetInduce.r' 'dBUMfit.r' 'dBUMscore.r'
'dNetFind.r' 'dNetPipeline.r' 'dNetConfidence.r' 'visNet.r'
'visNetMul.r' 'visNetAnimate.r' 'visNetReorder.r'
'dNetReorder.r' 'visNetArc.r' 'visNetCircle.r' 'dRWR.r'
'dRWRcontact.r' 'dRWRpipeline.r' 'dContrast.r' 'dCommSignif.r'
'dSVDsignif.r' 'dFDRscore.r' 'dDAGinduce.r' 'dDAGreverse.r'
'dDAGroot.r' 'dDAGtip.r' 'dDAGlevel.r' 'dDAGannotate.r'

1

http://dnet.r-forge.r-project.org
https://github.com/hfang-bristol/dnet

2 R topics documented:

'dDAGancestor.r' 'dDAGtermSim.r' 'dDAGgeneSim.r' 'visDAG.r'
'dEnricher.r' 'dEnricherView.r' 'visBoxplotAdv.r'
'dRDataLoader.r' 'dCheckParallel.r' 'dFunArgs.r'

License GPL-2

biocViews Bioinformatics

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-20 10:10:07 UTC

R topics documented:
dBUMfit . 3
dBUMscore . 4
dCheckParallel . 6
dCommSignif . 7
dContrast . 8
dDAGancestor . 9
dDAGannotate . 10
dDAGgeneSim . 12
dDAGinduce . 14
dDAGlevel . 16
dDAGreverse . 17
dDAGroot . 18
dDAGtermSim . 19
dDAGtip . 21
dEnricher . 22
dEnricherView . 26
dFDRscore . 27
dFunArgs . 28
dGSEA . 29
dGSEAview . 33
dGSEAwrite . 35
dNetConfidence . 36
dNetFind . 37
dNetInduce . 39
dNetPipeline . 40
dNetReorder . 42
dPvalAggregate . 45
dRDataLoader . 47
dRWR . 50
dRWRcontact . 52
dRWRpipeline . 55
dSVDsignif . 57
ig.HPPA . 59
org.Hs.egHPPA . 60
visBoxplotAdv . 61

dBUMfit 3

visDAG . 63
visGSEA . 67
visNet . 68
visNetAnimate . 71
visNetArc . 75
visNetCircle . 77
visNetMul . 80
visNetReorder . 82

Index 85

dBUMfit Function to fit a p-value distribution under beta-uniform mixture
model

Description

dBUMfit is supposed to take as input a vector of p-values for deriving their distribution under beta-
uniform mixture model (see Note below). The density distribution of input p-values is expressed
as a mixture of two components: one for the null hypothesis (the noise component) and the other
for the alternative hypothesis (the signal component). The noise component is the uniform density,
while the signal component is the remainder of the mixture distribution. It returns an object of class
"BUM".

Usage

dBUMfit(x, ntry = 1, hist.bum = T, contour.bum = T, verbose = T)

Arguments

x a vector containing input p-values
ntry an integeter specifying how many trys are used to find the optimised parameters

by maximum likelihood estimation
hist.bum logical to indicate whether the histogram graph should be drawn
contour.bum logical to indicate whether a contour plot should be drawn to show the log likeli-

hood as a function of two parameters (a and lambda) in the beta-uniform mixture
model

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

an object of class "BUM", a list with following elements:

• lambda: estimated mixture parameter
• a: estimated shape parameter
• NLL: Negative log-likelihood
• pvalues: the input pvalues
• call: the call that produced this result

4 dBUMscore

Note

The probability density function of p-values under the Beta-Uniform Mixture model is formulated
as: f(x|λ, a) = λ+ (1− λ) ∗ a ∗ xa−1. The model names after mixing two distributions:

• the uniform distribution with the density function as 1
b−a |

b=1
a=0 = 1

• the beta distribution with the density function as Γ(a+b)
Γ(a)+Γ(b) ∗x

a−1 ∗(1−x)b−1|b=1 = a∗xa−1

Both are mixed via λ. The mixture parameter λ measures the contribution from the uniform dis-
tribution. Accordingly, 1 − λ measures the contribution from the beta distribution. Notably, the
probability density function of the beta distribution can be splitted into two parts (rather than the
exclusitive signal):

• the constant part as noise: a ∗ xa−1|x=1 = a

• the rest part as signal: a ∗ (xa−1 − 1)

In other words, there is no signal at x = 1 but all being noise. It is a conservative, upper bound
estimation of the noise. Therefore, the probability density function in the model can be decomposed
into signal-noise components:

• the signal component: (1− λ) ∗ a ∗ (xa−1 − 1)

• the noise component: λ+ (1− λ) ∗ a

It is misleading to simply view λ as the noise component and (1 − λ) ∗ a ∗ xa−1 as the signal
component, just as wrongly do in the literatures (e.g. http://www.ncbi.nlm.nih.gov/pubmed/
18586718)

See Also

dBUMscore

Examples

1) generate an vector consisting of random values from beta distribution
x <- rbeta(1000, shape1=0.5, shape2=1)

2) fit a p-value distribution under beta-uniform mixture model
fit <- dBUMfit(x)
fit$lambda
fit$a

dBUMscore Function to transform p-values into scores according to the fitted beta-
uniform mixture model and/or after controlling false discovery rate

Description

dBUMscore is supposed to take as input a vector of p-values, which are transformed into scores
according to the fitted beta-uniform mixture model. Also if the FDR threshold is given, it is used
to make sure that p-values below this are considered significant and thus scored positively. Instead,
those p-values above the given FDR are considered insigificant and thus scored negatively.

http://www.ncbi.nlm.nih.gov/pubmed/18586718
http://www.ncbi.nlm.nih.gov/pubmed/18586718

dBUMscore 5

Usage

dBUMscore(fit, method = c("pdf", "cdf"), fdr = NULL, scatter.bum = T)

Arguments

fit an object of class "BUM"

method the method used for the transformation. It can be either "pdf" for the method
based on the probability density function of the fitted model, or "cdf" for the
method based on the cumulative distribution function of the fitted model

fdr the given FDR threshold. By default, it is set to NULL, meaning there is no
constraint. If given, those p-values with the FDR below this are considered
significant and thus scored positively. Instead, those p-values with the FDR
above this given FDR are considered insigificant and thus scored negatively

scatter.bum logical to indicate whether the scatter graph of scores against p-values should
be drawn. Also indicated is the p-value (called tau) corresponding to the given
FDR threshold (if any)

Value

• scores: a vector of scores

Note

The transformation from the input p-value x to the score S(x) is based on the fitted beta-uniform
mixture model with two parameters λ and a: f(x|λ, a) = λ + (1 − λ) ∗ a ∗ xa−1. Specifically,
it considers the log-likelyhood ratio between the signal and noise compoment of the model. The
probability density function (pdf) of the signal component and the noise component are (1 − λ) ∗
a ∗ (xa−1 − 1) and λ+ (1− λ) ∗ a, respectively. Accordingly, the cumulative distribution function
(cdf) of the signal component and the noise component are

∫ x
0
(1 − λ) ∗ a ∗ (xa−1 − 1) dx and∫ x

0
λ+(1−λ)∗a dx. In order to take into account the significance of the p-value, the fdr threshold

is also used for down-weighting the score. According to how to measure both components, there
are two methods implemented for deriving the score S(x):

• The method "pdf": S(x) = log2
(1−λ)∗a∗(xa−1−1)

λ+(1−λ)∗a − log2
(1−λ)∗a∗(τa−1−1)

λ+(1−λ)∗a = log2

(
xa−1−1
τa−1−1

)
.

For the purpose of down-weighting scores, it must ensure log2
(1−λ)∗a∗(τa−1−1)

λ+(1−λ)∗a ≥ 0, that is,

the constraint via τ ≤
(λ+2∗a∗(1−λ)

a∗(1−λ)

) 1
a−1

• The method "cdf": S(x) = log2

∫ x
0

(1−λ)∗a∗(xa−1−1) dx∫ x
0
λ+(1−λ)∗a dx

−log2

∫ τ
0

(1−λ)∗a∗(τa−1−1) dx∫ τ
0
λ+(1−λ)∗a dx

= log2
(1−λ)∗(xa−1−a)
λ+(1−λ)∗a −

log2
(1−λ)∗(τa−1−a)
λ+(1−λ)∗a = log2

(
xa−1−a
τa−1−a

)
. For the purpose of down-weighting scores, it must en-

sure log2
(1−λ)∗(τa−1−a)
λ+(1−λ)∗a ≥ 0, that is, the constraint via τ ≤

(λ+2∗a∗(1−λ)
1−λ

) 1
a−1

• Where τ =
[λ+(1−λ)∗a−fdr∗λ

fdr∗(1−λ)

] 1
a−1 , i.e. the p-value corresponding to the exact fdr threshold.

It can be deduced from the definition of the false discovery rate: fdr .
=

∫ τ
0
λ+(1−λ)∗a dx∫ τ

0
λ+(1−λ)∗a∗xa−1 dx

.

Notably, if the calculated τ exceeds the contraint, it will be reset to the maximum end of that
constraint

6 dCheckParallel

See Also

dBUMfit

Examples

1) generate an vector consisting of random values from beta distribution
x <- rbeta(1000, shape1=0.5, shape2=1)

2) fit a p-value distribution under beta-uniform mixture model
fit <- dBUMfit(x)

3) calculate the scores according to the fitted BUM and fdr=0.01
using "pdf" method
scores <- dBUMscore(fit, method="pdf", fdr=0.01)
using "cdf" method
scores <- dBUMscore(fit, method="cdf", fdr=0.01)

dCheckParallel Function to check whether parallel computing should be used and how

Description

dCheckParallel is used to check whether parallel computing should be used and how

Usage

dCheckParallel(multicores = NULL, verbose = T)

Arguments

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the ’foreach’ package. If NULL, it will use a half of cores available
in a user’s computer

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

TRUE for using parallel computing; FALSE otherwise

Note

Whether parallel computation with multicores is used is system-specific. Also, it will depend on
whether these two packages "foreach" and "doParallel" have been installed. It can be installed via:
source("http://bioconductor.org/biocLite.R"); biocLite(c("foreach","doParallel")).

See Also

dRWR, dRWRcontact, dRWRpipeline, dDAGtermSim, dDAGgeneSim

dCommSignif 7

Examples

#dCheckParallel(multicores=2)

dCommSignif Function to test the significance of communities within a graph

Description

dCommSignif is supposed to test the significance of communities within a graph. For a community
of the graph, it first calculates two types of degrees for each node: degrees based on parters only
within the community itself, and the degrees based on its parters NOT in the community but in the
graph. Then, it performs two-sample Wilcoxon tests on these two types of degrees to produce the
signficance level (p-value)

Usage

dCommSignif(g, comm)

Arguments

g an object of class "igraph" or "graphNEL"

comm an object of class "communities". Details on this class can be found at http:
//igraph.org/r/doc/communities.html

Value

• significance: a vector of p-values (significance)

Note

none

See Also

dCommSignif

Examples

1) generate an vector consisting of random values from beta distribution
x <- rbeta(1000, shape1=0.5, shape2=1)

2) fit a p-value distribution under beta-uniform mixture model
fit <- dBUMfit(x, ntry=1, hist.bum=FALSE, contour.bum=FALSE)

3) calculate the scores according to the fitted BUM and fdr=0.01
using "pdf" method
scores <- dBUMscore(fit, method="pdf", fdr=0.05, scatter.bum=FALSE)
names(scores) <- as.character(1:length(scores))

http://igraph.org/r/doc/communities.html
http://igraph.org/r/doc/communities.html

8 dContrast

4) generate a random graph according to the ER model
g <- erdos.renyi.game(1000, 1/100)

5) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

6) find the module with the maximum score
module <- dNetFind(subg, scores)

7) find the module and test its signficance
comm <- walktrap.community(module, modularity=TRUE)
significance <- dCommSignif(module, comm)

dContrast Function to help build the contrast matrix

Description

dContrast is used to help build the contrast matrix

Usage

dContrast(
level_sorted,
contrast.type = c("average", "zero", "sequential", "pairwise")
)

Arguments

level_sorted a vector of levels (usually sorted) which are contrated to each other

contrast.type the type of the contrast. It can be one of either ’average’ for the contrast against
the average of all levels, ’zero’ for the contrast against the zero, ’sequential’ for
the contrast in a sequential order (it requires the levels being sorted properly), or
’pairwise’ for the pairwise contrast.

Value

a list with following components:

• each: the contrast being specified

• name: the name of the contrast

Note

none

dDAGancestor 9

Examples

level_sorted <- c("L1","L2","L3","L4")

the contrast against the average of all levels
contrasts <- dContrast(level_sorted, contrast.type="average")

the contrast against the zero
contrasts <- dContrast(level_sorted, contrast.type="zero")

the contrast in a sequential order
contrasts <- dContrast(level_sorted, contrast.type="sequential")

the pairwise contrast
contrasts <- dContrast(level_sorted, contrast.type="pairwise")

dDAGancestor Function to find common ancestors of two terms/nodes from a direct
acyclic graph (DAG)

Description

dDAGancestor is supposed to find a list of common ancestors shared by two terms/nodes, given a
direct acyclic graph (DAG; an ontology). If two terms are given as NULL, then a sparse matrix of
children x ancestors is built for all terms. If one of them is null, then a sparse matrix of children x
ancestors is built but only for non-null input terms.

Usage

dDAGancestor(g, term1 = NULL, term2 = NULL, verbose = T)

Arguments

g an object of class "igraph" or "graphNEL"

term1 the first term/node as input

term2 the second term/node as input

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

• When two terms are given: a list of terms/nodes that are common ancestors for two input
terms/nodes

• When two terms are given as NULL: a sparse matrix of children x ancestors is built for all
terms, with ’1’ for the reachable and otherwise ’0’.

• When one of terms is given as NULL: a sparse matrix of children x ancestors is built but only
for non-null input terms, with ’1’ for the reachable and otherwise ’0’.

10 dDAGannotate

Note

none

See Also

dDAGinduce

Examples

1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) randomly give two terms
term1 <- sample(V(g)$name,1)
term2 <- sample(V(g)$name,1)

3) find common ancestors
dDAGancestor(g, term1, term2)

dDAGannotate Function to generate a subgraph of a direct acyclic graph (DAG) in-
duced by the input annotation data

Description

dDAGannotate is supposed to produce a subgraph induced by the input annotation data, given a
direct acyclic graph (DAG; an ontology). The input is a graph of "igraph" or "graphNET" object, a
list of the vertices containing annotation data, and the mode defining the paths to the root of DAG.
The induced subgraph contains vertices (with annotation data) and their ancestors along with the
defined paths to the root of DAG. The annotations at these vertices (including their ancestors) are
also updated according to the true-path rule: a gene annotated to a term should also be annotated by
its all ancestor terms.

Usage

dDAGannotate(
g,
annotations,
path.mode = c("all_paths", "shortest_paths", "all_shortest_paths"),
verbose = TRUE
)

dDAGannotate 11

Arguments

g an object of class "igraph" or "graphNEL"

annotations the vertices/nodes for which annotation data are provided

path.mode the mode of paths induced by vertices/nodes with input annotation data. It can be
"all_paths" for all possible paths to the root, "shortest_paths" for only one path
to the root (for each node in query), "all_shortest_paths" for all shortest paths to
the root (i.e. for each node, find all shortest paths with the equal lengths)

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

• subg: an induced subgraph, an object of class "igraph". In addition to the original attributes to
nodes and edges, the return subgraph is also appended by new node attributes: "annotations",
which contains a list of genes either as original annotations or inherited annotations; "IC",
which stands for information content defined as negative 10-based log-transformed frequency
of genes annotated to that term.

Note

For the mode "shortest_paths", the induced subgraph is the most concise, and thus informative for
visualisation when there are many nodes in query, while the mode "all_paths" results in the complete
subgraph.

See Also

dDAGinduce, dDAGlevel

Examples

Not run:
1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) load human genes annotated by HPPA
org.Hs.egHPPA <- dRDataLoader(RData='org.Hs.egHPPA')
GS <- org.Hs.egHPPA # as 'GS' object

3) prepare for annotation data
randomly select vertices with annotation data
annotations <- GS$gs[sample(1:length(GS$gs),5)]

4) obtain the induced subgraph
4a) based on all possible paths (i.e. the complete subgraph induced)
dDAGannotate(g, annotations, path.mode="all_paths", verbose=TRUE)
4b) based on shortest paths (i.e. the most concise subgraph induced)
dag <- dDAGannotate(g, annotations, path.mode="shortest_paths",
verbose=TRUE)

12 dDAGgeneSim

5) color-code nodes/terms according to the number of annotations
data <- sapply(V(dag)$annotations, length)
names(data) <- V(dag)$name
visDAG(g=dag, data=data, node.info="both")

End(Not run)

dDAGgeneSim Function to calculate pair-wise semantic similarity between genes
based on a direct acyclic graph (DAG) with annotated data

Description

dDAGgeneSim is supposed to calculate pair-wise semantic similarity between genes based on a direct
acyclic graph (DAG) with annotated data. It first calculates semantic similarity between terms
and then derives semantic similarity between genes from terms-term semantic similarity. Parallel
computing is also supported for Linux or Mac operating systems.

Usage

dDAGgeneSim(
g,
genes = NULL,
method.gene = c("BM.average", "BM.max", "BM.complete", "average",
"max"),
method.term = c("Resnik", "Lin", "Schlicker", "Jiang", "Pesquita"),
force = TRUE,
fast = TRUE,
parallel = TRUE,
multicores = NULL,
verbose = TRUE
)

Arguments

g an object of class "igraph" or "graphNEL". It must contain a vertex attribute
called ’annotations’ for storing annotation data (see example for howto)

genes the genes between which pair-wise semantic similarity is calculated. If NULL,
all genes annotatable in the input dag will be used for calculation, which is very
prohibitively expensive!

method.gene the method used for how to derive semantic similarity between genes from se-
mantic similarity between terms. It can be "average" for average similarity be-
tween any two terms (one from gene 1, the other from gene 2), "max" for the
maximum similarity between any two terms, "BM.average" for best-matching
(BM) based average similarity (i.e. for each term of either gene, first calcu-
late maximum similarity to any term in the other gene, then take average of
maximum similarity; the final BM-based average similiary is the pre-calculated

dDAGgeneSim 13

average between two genes in pair), "BM.max" for BM based maximum sim-
ilarity (i.e. the same as "BM.average", but the final BM-based maximum si-
miliary is the maximum of the pre-calculated average between two genes in
pair), "BM.complete" for BM-based complete-linkage similarity (inspired by
complete-linkage concept: the least of any maximum similarity between a term
of one gene and a term of the other gene). When comparing BM-based simi-
larity between genes, "BM.average" and "BM.max" are sensitive to the number
of terms invovled; instead, "BM.complete" is much robust in this aspect. By
default, it uses "BM.average".

method.term the method used to measure semantic similarity between terms. It can be "Resnik"
for information content (IC) of most informative common ancestor (MICA) (see
http://arxiv.org/pdf/cmp-lg/9511007.pdf), "Lin" for 2*IC at MICA di-
vided by the sum of IC at pairs of terms (see https://www.cse.iitb.ac.
in/~cs626-449/Papers/WordSimilarity/3.pdf), "Schlicker" for weighted
version of ’Lin’ by the 1-prob(MICA) (see http://www.ncbi.nlm.nih.gov/
pubmed/16776819), "Jiang" for 1 - difference between the sum of IC at pairs
of terms and 2*IC at MICA (see http://arxiv.org/pdf/cmp-lg/9709008.
pdf), "Pesquita" for graph information content similarity related to Tanimoto-
Jacard index (ie. summed information content of common ancestors divided
by summed information content of all ancestors of term1 and term2 (see http:
//www.ncbi.nlm.nih.gov/pubmed/18460186))

force logical to indicate whether the only most specific terms (for each gene) will be
used. By default, it sets to true. It is always advisable to use this since it is
computationally fast but without compromising accuracy (considering the fact
that true-path-rule has been applied when running dDAGannotate)

fast logical to indicate whether a vectorised fast computation is used. By default, it
sets to true. It is always advisable to use this vectorised fast computation; since
the conventional computation is just used for understanding scripts

parallel logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. It will depend on whether these
two packages "foreach" and "doParallel" have been installed. It can be installed
via: source("http://bioconductor.org/biocLite.R"); biocLite(c("foreach","doParallel")).
If not yet installed, this option will be disabled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the ’foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

It returns a sparse matrix containing pair-wise semantic similarity between input genes. This sparse
matrix can be converted to the full matrix via the function as.matrix

Note

For the mode "shortest_paths", the induced subgraph is the most concise, and thus informative for
visualisation when there are many nodes in query, while the mode "all_paths" results in the complete

http://arxiv.org/pdf/cmp-lg/9511007.pdf
https://www.cse.iitb.ac.in/~cs626-449/Papers/WordSimilarity/3.pdf
https://www.cse.iitb.ac.in/~cs626-449/Papers/WordSimilarity/3.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16776819
http://www.ncbi.nlm.nih.gov/pubmed/16776819
http://arxiv.org/pdf/cmp-lg/9709008.pdf
http://arxiv.org/pdf/cmp-lg/9709008.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18460186
http://www.ncbi.nlm.nih.gov/pubmed/18460186

14 dDAGinduce

subgraph.

See Also

dDAGtermSim, dDAGinduce, dDAGtip, dCheckParallel

Examples

Not run:
1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) load human genes annotated by HPPA
org.Hs.egHPPA <- dRDataLoader(RData='org.Hs.egHPPA')

3) prepare for ontology and its annotation information
dag <- dDAGannotate(g, annotations=org.Hs.egHPPA,
path.mode="all_paths", verbose=TRUE)

4) calculate pair-wise semantic similarity between 5 randomly chosen genes
allgenes <- unique(unlist(V(dag)$annotations))
genes <- sample(allgenes,5)
sim <- dDAGgeneSim(g=dag, genes=genes, method.gene="BM.average",
method.term="Resnik", parallel=FALSE, verbose=TRUE)
sim

End(Not run)

dDAGinduce Function to generate a subgraph of a direct acyclic graph (DAG) in-
duced by given vertices

Description

dDAGinduce is supposed to produce a subgraph induced by given vertices, given a direct acyclic
graph (DAG; an ontology). The input is a graph of "igraph" or "graphNET" object, a list of the
vertices of the graph, and the mode defining the paths to the root of DAG. The resultant subgraph
inherits the class from the input one. The induced subgraph contains exactly the vertices of interest
and their defined paths to the root of DAG.

Usage

dDAGinduce(
g,
nodes_query,
path.mode = c("all_paths", "shortest_paths", "all_shortest_paths")
)

dDAGinduce 15

Arguments

g an object of class "igraph" or "graphNEL"

nodes_query the vertices for which the calculation is performed

path.mode the mode of paths induced by nodes in query. It can be "all_paths" for all pos-
sible paths to the root, "shortest_paths" for only one path to the root (for each
node in query), "all_shortest_paths" for all shortest paths to the root (i.e. for
each node, find all shortest paths with the equal lengths)

Value

• subg: an induced subgraph, an object of class "igraph" or "graphNEL"

Note

For the mode "shortest_paths", the induced subgraph is the most concise, and thus informative for
visualisation when there are many nodes in query, while the mode "all_paths" results in the complete
subgraph.

See Also

dDAGroot

Examples

Not run:
1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) randomly select vertices as the query nodes
the query nodes can be igraph vertex sequences
nodes_query <- sample(V(g),5)
more commonly, the query nodes can be term id
nodes_query <- sample(V(g),5)$name

3) obtain the induced subgraph
3a) based on all possible paths (i.e. the complete subgraph induced)
subg <- dDAGinduce(g, nodes_query, path.mode="all_paths")
3b) based on shortest paths (i.e. the most concise subgraph induced)
subg <- dDAGinduce(g, nodes_query, path.mode="shortest_paths")

End(Not run)

16 dDAGlevel

dDAGlevel Function to define/calculate the level of nodes in a direct acyclic graph
(DAG)

Description

dDAGlevel is supposed to calculate the level of nodes, given a direct acyclic graph (DAG; an ontol-
ogy). The input is a graph of "igraph" or "graphNET" object, and the definition of the node level.
The return can be the level for each node or the nodes for each level.

Usage

dDAGlevel(
g,
level.mode = c("longest_path", "shortest_path"),
return.mode = c("node2level", "level2node")
)

Arguments

g an object of class "igraph" or "graphNEL"

level.mode the mode of how to define the level of nodes in DAG. It can be "longest_path"
for defining the node level as the length of the longest path from the node to the
root, and "shortest_paths" for defining the node level as the length of the shortest
path from the node to the root

return.mode the mode of how to return the node level information. It can be "node2level"
for returning a named vector (i.e. the level for each node), and "level2node" for
returning a named list (i.e. nodes for each level)

Value

When "return.mode" is "node2level", it returns a named vector: for each named node (i.e. Term
ID), it stores its level When "return.mode" is "level2node", it returns a named list: for each named
level, it contains the names (i.e. Term ID) of nodes belonging to this level

Note

The level for the root is 1. The level based on the longest path will ensure that nodes at the same
level will never be reachable (i.e. in the same path), while the level based on the shortest path will
not be necessary. The "longest path" based level can be useful in visiting nodes from the tipmost
level to the root: 1) for the current node, all children have been visited; 2) nodes at the same level
can be looked at independantly. The "shortest path" based level can be useful in deriving nodes
according to their closeness to the root.

See Also

dDAGroot, dDAGreverse

dDAGreverse 17

Examples

1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) randomly select vertices as the query nodes
nodes_query <- sample(V(g),5)$name

3) obtain the complete subgraph induced
subg <- dDAGinduce(g, nodes_query)

4) calculate the node levels
4a) definition based on the longest path
dDAGlevel(subg, level.mode="longest_path")
4b) definition based on the shortest path
dDAGlevel(subg, level.mode="shortest_path")
4c) definition based on the longest path, and return nodes for each level
dDAGlevel(subg, level.mode="longest_path", return.mode="level2node")

dDAGreverse Function to reverse the edge direction of a direct acyclic graph (DAG)

Description

dDAGreverse is supposed to reverse the edge direction of a direct acyclic graph (DAG; an ontology).
The return graph remains all attributes associated on nodes and edges.

Usage

dDAGreverse(g)

Arguments

g an object of class "igraph" or "graphNEL"

Value

• gr: a graph being reversed, an object of class "igraph" or "graphNEL"

Note

none

See Also

dDAGreverse

18 dDAGroot

Examples

1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) the graph with reverse edge direction
gr <- dDAGreverse(g)
gr

dDAGroot Function to find the root node of a direct acyclic graph (DAG)

Description

dDAGroot is supposed to find the root node of a direct acyclic graph (DAG; an ontology). It return
the name (i.e Term ID) of the root node.

Usage

dDAGroot(g)

Arguments

g an object of class "igraph" or "graphNEL"

Value

• root: the root name (i.e. Term ID)

Note

none

See Also

dDAGroot

Examples

Not run:
1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) find the root
root <- dDAGroot(g)
root

End(Not run)

dDAGtermSim 19

dDAGtermSim Function to calculate pair-wise semantic similarity between input
terms based on a direct acyclic graph (DAG) with annotated data

Description

dDAGtermSim is supposed to calculate pair-wise semantic similarity between input terms based on
a direct acyclic graph (DAG) with annotated data. Parallel computing is also supported for Linux
or Mac operating systems.

Usage

dDAGtermSim(
g,
terms = NULL,
method = c("Resnik", "Lin", "Schlicker", "Jiang", "Pesquita"),
fast = T,
parallel = TRUE,
multicores = NULL,
verbose = T
)

Arguments

g an object of class "igraph" or "graphNEL". It must contain a vertex attribute
called ’annotations’ for storing annotation data (see example for howto)

terms the terms/nodes between which pair-wise semantic similarity is calculated. If
NULL, all terms in the input DAG will be used for calcluation, which is very
prohibitively expensive!

method the method used to measure semantic similarity between input terms. It can
be "Resnik" for information content (IC) of most informative common ancestor
(MICA) (see http://arxiv.org/pdf/cmp-lg/9511007.pdf), "Lin" for 2*IC
at MICA divided by the sum of IC at pairs of terms (see https://www.cse.
iitb.ac.in/~cs626-449/Papers/WordSimilarity/3.pdf), "Schlicker" for
weighted version of ’Lin’ by the 1-prob(MICA) (see http://www.ncbi.nlm.
nih.gov/pubmed/16776819), "Jiang" for 1 - difference between the sum of IC
at pairs of terms and 2*IC at MICA (see http://arxiv.org/pdf/cmp-lg/
9709008.pdf), "Pesquita" for graph information content similarity related to
Tanimoto-Jacard index (ie. summed information content of common ancestors
divided by summed information content of all ancestors of term1 and term2
(see http://www.ncbi.nlm.nih.gov/pubmed/18460186)). By default, it uses
"Schlicker" method

fast logical to indicate whether a vectorised fast computation is used. By default, it
sets to true. It is always advisable to use this vectorised fast computation; since
the conventional computation is just used for understanding scripts

http://arxiv.org/pdf/cmp-lg/9511007.pdf
https://www.cse.iitb.ac.in/~cs626-449/Papers/WordSimilarity/3.pdf
https://www.cse.iitb.ac.in/~cs626-449/Papers/WordSimilarity/3.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16776819
http://www.ncbi.nlm.nih.gov/pubmed/16776819
http://arxiv.org/pdf/cmp-lg/9709008.pdf
http://arxiv.org/pdf/cmp-lg/9709008.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18460186

20 dDAGtermSim

parallel logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. It will depend on whether these
two packages "foreach" and "doParallel" have been installed. It can be installed
via: source("http://bioconductor.org/biocLite.R"); biocLite(c("foreach","doParallel")).
If not yet installed, this option will be disabled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the ’foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

It returns a sparse matrix containing pair-wise semantic similarity between input terms. This sparse
matrix can be converted to the full matrix via the function as.matrix

Note

none

See Also

dDAGinduce, dDAGancestor, dDAGgeneSim, dCheckParallel

Examples

Not run:
1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) load human genes annotated by HPPA
org.Hs.egHPPA <- dRDataLoader(RData='org.Hs.egHPPA')

3) prepare for ontology and its annotation information
dag <- dDAGannotate(g, annotations=org.Hs.egHPPA,
path.mode="all_paths", verbose=TRUE)

4) calculate pair-wise semantic similarity between 5 randomly chosen terms
terms <- sample(V(dag)$name, 5)
sim <- dDAGtermSim(g=dag, terms=terms, method="Schlicker",
parallel=FALSE)
sim

End(Not run)

dDAGtip 21

dDAGtip Function to find the tip node(s) of a direct acyclic graph (DAG)

Description

dDAGtip is supposed to find the tip node(s) of a direct acyclic graph (DAG; an ontology). It return
the name (i.e Term ID) of the tip node(s).

Usage

dDAGtip(g)

Arguments

g an object of class "igraph" or "graphNEL"

Value

• tip: the tip name (i.e. Term ID)

Note

none

See Also

dDAGtip

Examples

Not run:
1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) find tips
tips <- dDAGtip(g)
tips

End(Not run)

22 dEnricher

dEnricher Function to conduct enrichment analysis given the input data and the
ontology in query

Description

dEnricher is supposed to conduct enrichment analysis given the input data and the ontology in
query. It returns an object of class "eTerm". Enrichment analysis is based on either Fisher’s exact
test or Hypergeometric test. The test can respect the hierarchy of the ontology.

Usage

dEnricher(
data,
identity = c("symbol", "entrez"),
check.symbol.identity = FALSE,
genome = c("Hs", "Mm", "Rn", "Gg", "Ce", "Dm", "Da", "At"),
ontology = c("GOBP", "GOMF", "GOCC", "PS", "PS2", "SF", "DO", "HPPA",
"HPMI", "HPCM",
"HPMA", "MP", "MsigdbH", "MsigdbC1", "MsigdbC2CGP", "MsigdbC2CP",
"MsigdbC2KEGG",
"MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT", "MsigdbC3MIR",
"MsigdbC4CGN",
"MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF", "MsigdbC5CC", "MsigdbC6",
"MsigdbC7",
"DGIdb"),
sizeRange = c(10, 1000),
min.overlap = 3,
which_distance = NULL,
test = c("HypergeoTest", "FisherTest", "BinomialTest"),
p.adjust.method = c("BH", "BY", "bonferroni", "holm", "hochberg",
"hommel"),
ontology.algorithm = c("none", "pc", "elim", "lea"),
elim.pvalue = 0.01,
lea.depth = 2,
verbose = T,
RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dnet/1.0.7"
)

Arguments

data an input vector. It contains either Entrez Gene ID or Symbol

identity the type of gene identity (i.e. row names of input data), either "symbol" for gene
symbols (by default) or "entrez" for Entrez Gene ID. The option "symbol" is
preferred as it is relatively stable from one update to another; also it is possible
to search against synonyms (see the next parameter)

dEnricher 23

check.symbol.identity

logical to indicate whether synonyms will be searched against when gene sym-
bols cannot be matched. By default, it sets to FALSE since it may take a while
to do such check using all possible synoyms

genome the genome identity. It can be one of "Hs" for human, "Mm" for mouse, "Rn" for
rat, "Gg" for chicken, "Ce" for c.elegans, "Dm" for fruitfly, "Da" for zebrafish,
and "At" for arabidopsis

ontology the ontology supported currently. It can be "GOBP" for Gene Ontology Bi-
ological Process, "GOMF" for Gene Ontology Molecular Function, "GOCC"
for Gene Ontology Cellular Component, "PS" for phylostratific age informa-
tion, "PS2" for the collapsed PS version (inferred ancestors being collapsed
into one with the known taxonomy information), "SF" for domain superfam-
ily assignments, "DO" for Disease Ontology, "HPPA" for Human Phenotype
Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inheritance,
"HPCM" for Human Phenotype Clinical Modifier, "HPMA" for Human Pheno-
type Mortality Aging, "MP" for Mammalian Phenotype, and Drug-Gene Inter-
action database (DGIdb) and the molecular signatures database (Msigdb) only in
human (including "MsigdbH", "MsigdbC1", "MsigdbC2CGP", "MsigdbC2CP",
"MsigdbC2KEGG", "MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT",
"MsigdbC3MIR", "MsigdbC4CGN", "MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF",
"MsigdbC5CC", "MsigdbC6", "MsigdbC7"). Note: These four ("GOBP", "GOMF",
"GOCC" and "PS") are availble for all genomes/species; for "Hs" and "Mm",
these six ("DO", "HPPA", "HPMI", "HPCM", "HPMA" and "MP") are also sup-
ported; all "Msigdb" are only supported in "Hs". For details on the eligibility for
pairs of input genome and ontology, please refer to the online Documentations
at http://supfam.org/dnet/docs.html

sizeRange the minimum and maximum size of members of each gene set in consideration.
By default, it sets to a minimum of 10 but no more than 1000

min.overlap the minimum number of overlaps. Only those gene sets that overlap with input
data at least min.overlap (3 by default) will be processed

which_distance which distance of terms in the ontology is used to restrict terms in consideration.
By default, it sets to ’NULL’ to consider all distances

test the statistic test used. It can be "FisherTest" for using fisher’s exact test, "Hyper-
geoTest" for using hypergeometric test, or "BinomialTest" for using binomial
test. Fisher’s exact test is to test the independence between gene group (genes
belonging to a group or not) and gene annotation (genes annotated by a term or
not), and thus compare sampling to the left part of background (after sampling
without replacement). Hypergeometric test is to sample at random (without re-
placement) from the background containing annotated and non-annotated genes,
and thus compare sampling to background. Unlike hypergeometric test, bino-
mial test is to sample at random (with replacement) from the background with
the constant probability. In terms of the ease of finding the significance, they
are in order: hypergeometric test > binomial test > fisher’s exact test. In other
words, in terms of the calculated p-value, hypergeometric test < binomial test <
fisher’s exact test

p.adjust.method

the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni",
"holm", "hochberg" and "hommel". The first two methods "BH" (widely used)

http://supfam.org/dnet/docs.html

24 dEnricher

and "BY" control the false discovery rate (FDR: the expected proportion of false
discoveries amongst the rejected hypotheses); the last four methods "bonfer-
roni", "holm", "hochberg" and "hommel" are designed to give strong control of
the family-wise error rate (FWER). Notes: FDR is a less stringent condition
than FWER

ontology.algorithm

the algorithm used to account for the hierarchy of the ontology. It can be one of
"none", "pc", "elim" and "lea". For details, please see ’Note’

elim.pvalue the parameter only used when "ontology.algorithm" is "elim". It is used to con-
trol how to declare a signficantly enriched term (and subsequently all genes in
this term are eliminated from all its ancestors)

lea.depth the parameter only used when "ontology.algorithm" is "lea". It is used to con-
trol how many maximum depth is uded to consider the children of a term (and
subsequently all genes in these children term are eliminated from the use for the
recalculation of the signifance at this term)

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to false for no display

RData.location the characters to tell the location of built-in RData files. By default, it remotely
locates at https://github.com/hfang-bristol/RDataCentre/blob/master/
dnet and http://dnet.r-forge.r-project.org/RData. Be aware of several
versions and the latest one is matched to the current package version. For the
user equipped with fast internet connection, this option can be just left as de-
fault. But it is always advisable to download these files locally. Especially when
the user needs to run this function many times, there is no need to ask the func-
tion to remotely download every time (also it will unnecessarily increase the
runtime). For examples, these files (as a whole or part of them) can be first
downloaded into your current working directory, and then set this option as:
RData.location = ”.”. Surely, the location can be anywhere as long as the
user provides the correct path pointing to (otherwise, the script will have to re-
motely download each time). Here is the UNIX command for downloading all
RData files (preserving the directory structure): wget−r−l2−A”∗.RData”−
np−nH−−cut−dirs = 0”http : //dnet.r−forge.r−project.org/RData”

Value

an object of class "eTerm", a list with following components:

• set_info: a matrix of nSet X 4 containing gene set information, where nSet is the number of
gene set in consideration, and the 4 columns are "setID" (i.e. "Term ID"), "name" (i.e. "Term
Name"), "namespace" and "distance"

• gs: a list of gene sets, each storing gene members. Always, gene sets are identified by "setID"
and gene members identified by "Entrez ID"

• data: a vector containing input data in consideration. It is not always the same as the input
data as only those mappable are retained

• overlap: a list of overlapped gene sets, each storing genes overlapped between a gene set and
the given input data (i.e. the genes of interest). Always, gene sets are identified by "setID"
and gene members identified by "Entrez ID"

https://github.com/hfang-bristol/RDataCentre/blob/master/dnet
https://github.com/hfang-bristol/RDataCentre/blob/master/dnet
http://dnet.r-forge.r-project.org/RData

dEnricher 25

• zscore: a vector containing z-scores

• pvalue: a vector containing p-values

• adjp: a vector containing adjusted p-values. It is the p value but after being adjusted for
multiple comparisons

• call: the call that produced this result

Note

The interpretation of the algorithms used to account for the hierarchy of the ontology is:

• "none": does not consider the ontology hierarchy at all.

• "lea": computers the significance of a term in terms of the significance of its children at the
maximum depth (e.g. 2). Precisely, once genes are already annotated to any children terms
with a more signficance than itself, then all these genes are eliminated from the use for the
recalculation of the signifance at that term. The final p-values takes the maximum of the
original p-value and the recalculated p-value.

• "elim": computers the significance of a term in terms of the significance of its all children.
Precisely, once genes are already annotated to a signficantly enriched term under the cutoff of
e.g. pvalue<1e-2, all these genes are eliminated from the ancestors of that term).

• "pc": requires the significance of a term not only using the whole genes as background but
also using genes annotated to all its direct parents/ancestors as background. The final p-value
takes the maximum of both p-values in these two calculations.

• "Notes": the order of the number of significant terms is: "none" > "lea" > "elim" > "pc".

See Also

dEnricherView

Examples

Not run:
load data
#library(Biobase)
#TCGA_mutations <- dRDataLoader(RData='TCGA_mutations')
#symbols <- as.character(fData(TCGA_mutations)$Symbol)

Enrichment analysis using Disease Ontology (DO)
#data <- symbols[1:100] # select the first 100 human genes
#eTerm <- dEnricher(data, identity="symbol", genome="Hs", ontology="DO")

visualise the top significant terms in the ontology hierarchy
#ig.DO <- dRDataLoader(RData='ig.DO')
#g <- ig.DO
#nodes_query <- names(sort(eTerm$adjp)[1:5])
#nodes.highlight <- rep("red", length(nodes_query))
#names(nodes.highlight) <- nodes_query
#subg <- dDAGinduce(g, nodes_query)
color-code terms according to the adjust p-values (taking the form of 10-based negative logarithm)
#data <- -1*log10(eTerm$adjp[V(subg)$name])

26 dEnricherView

#visDAG(g=subg, data=data, node.info="both", zlim=c(0,2), node.attrs=list(color=nodes.highlight))
color-code terms according to the z-scores
#data <- eTerm$zscore[V(subg)$name]
#visDAG(g=subg, data=data, node.info="both", node.attrs=list(color=nodes.highlight))

End(Not run)

dEnricherView Function to view enrichment results of dEnricher

Description

dEnricherView is supposed to view results of enrichment analysis by dEnricher.

Usage

dEnricherView(
eTerm,
top_num = 10,
sortBy = c("adjp", "pvalue", "zscore", "nAnno", "nOverlap", "none"),
decreasing = NULL,
details = F
)

Arguments

eTerm an object of class "eTerm"

top_num the maximum number of gene sets (terms) will be viewed

sortBy which statistics will be used for sorting and viewing gene sets (terms). It can
be "adjp" for adjusted p value, "pvalue" for p value, "zscore" for enrichment
z-score, "nAnno" for the number of sets (terms), "nOverlap" for the number in
overlaps, and "none" for ordering according to ID of gene sets (terms)

decreasing logical to indicate whether to sort in a decreasing order. If it is null, it would be
true for "zscore", "nAnno" or "nOverlap"; otherwise it would be false

details logical to indicate whether the detailed information of gene sets (terms) is also
viewed. By default, it sets to false for no inclusion

Value

a data frame with following components:

• setID: term ID; as rownames

• name: term name

• nAnno: number in gene members annotated by a term

• nOverlap: number in overlaps

• zscore: enrichment z-score

dFDRscore 27

• pvalue: nominal p value

• adjp: adjusted p value

• namespace: term namespace; optional, it is only appended when "details" is true

• distance: term distance; optional, it is only appended when "details" is true

• members: members (represented as Gene Symbols) in overlaps; optional, it is only appended
when "details" is true

Note

none

See Also

dEnricher

Examples

#dEnricherView(eTerm, top_num=10, sortBy="adjp", decreasing=FALSE, details=TRUE)

dFDRscore Function to transform fdr into scores according to log-likelihood ratio
between the true positives and the false positivies and/or after control-
ling false discovery rate

Description

dFDRscore is supposed to take as input a vector of fdr, which are transformed into scores according
to log-likelihood ratio between the true positives and the false positivies. Also if the FDR threshold
is given, it is used to make sure that fdr below threshold are considered significant and thus scored
positively. Instead, those fdr above the given threshold are considered insigificant and thus scored
negatively.

Usage

dFDRscore(fdr, fdr.threshold = NULL, scatter = F)

Arguments

fdr a vector containing a list of input fdr

fdr.threshold the given FDR threshold. By default, it is set to NULL, meaning there is no
constraint. If given, those fdr with the FDR below threshold are considered
significant and thus scored positively. Instead, those fdr with the FDR above
given threshold are considered insigificant and thus scored negatively

scatter logical to indicate whether the scatter graph of scores against p-values should be
drawn. Also indicated is the score corresponding to the given FDR threshold (if
any)

28 dFunArgs

Value

• scores: a vector of scores

Note

none

See Also

dSVDsignif, dNetPipeline

Examples

1) generate data with an iid matrix of 1000 x 9
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))

2) calculate the significance according to SVD
using "fdr" significance
fdr <- dSVDsignif(data, signif="fdr", num.permutation=10)

3) calculate the scores according to the fitted BUM and fdr=0.01
no fdr threshold
scores <- dFDRscore(fdr)
using fdr threshold of 0.01
scores <- dFDRscore(fdr, fdr.threshold=0.1, scatter=TRUE)

dFunArgs Function to assign (and evaluate) arguments with default values for
an input function

Description

dFunArgs is supposed to assign (and evaluate) arguments with default values for an input function.

Usage

dFunArgs(fun, action = F, verbose = T)

Arguments

fun an input function name (character string)

action logical to indicate whether the function will act as it should be (with assigned
values in the current environment). By default, it sets to FALSE

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

dGSEA 29

Value

a list containing arguments and their default values

Note

This function is potentially useful when debugging. Because the developer does not have to specify
default values for all arguments except those arguments are of interest

See Also

dNetPipeline

Examples

Not run:
fun <- "dNetPipeline"
dFunArgs(fun)

End(Not run)

dGSEA Function to conduct gene set enrichment analysis given the input data
and the ontology in query

Description

dGSEA is supposed to conduct gene set enrichment analysis given the input data and the ontology in
query. It returns an object of class "eTerm".

Usage

dGSEA(
data,
identity = c("symbol", "entrez"),
check.symbol.identity = FALSE,
genome = c("Hs", "Mm", "Rn", "Gg", "Ce", "Dm", "Da", "At"),
ontology = c("GOBP", "GOMF", "GOCC", "PS", "PS2", "SF", "DO", "HPPA",
"HPMI", "HPCM",
"HPMA", "MP", "MsigdbH", "MsigdbC1", "MsigdbC2CGP", "MsigdbC2CP",
"MsigdbC2KEGG",
"MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT", "MsigdbC3MIR",
"MsigdbC4CGN",
"MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF", "MsigdbC5CC", "MsigdbC6",
"MsigdbC7",
"DGIdb", "Customised"),
customised.genesets = NULL,
sizeRange = c(10, 20000),

30 dGSEA

which_distance = NULL,
weight = 1,
nperm = 1000,
fast = T,
sigTail = c("two-tails", "one-tail"),
p.adjust.method = c("BH", "BY", "bonferroni", "holm", "hochberg",
"hommel"),
verbose = T,
RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dnet/1.0.7"
)

Arguments

data a data frame or matrix of input data. It must have row names, either Entrez Gene
ID or Symbol

identity the type of gene identity (i.e. row names of input data), either "symbol" for gene
symbols (by default) or "entrez" for Entrez Gene ID. The option "symbol" is
preferred as it is relatively stable from one update to another; also it is possible
to search against synonyms (see the next parameter)

check.symbol.identity

logical to indicate whether synonyms will be searched against when gene sym-
bols cannot be matched. By default, it sets to FALSE since it may take a while
to do such check using all possible synoyms

genome the genome identity. It can be one of "Hs" for human, "Mm" for mouse, "Rn" for
rat, "Gg" for chicken, "Ce" for c.elegans, "Dm" for fruitfly, "Da" for zebrafish,
and "At" for arabidopsis

ontology the ontology supported currently. It can be "GOBP" for Gene Ontology Bi-
ological Process, "GOMF" for Gene Ontology Molecular Function, "GOCC"
for Gene Ontology Cellular Component, "PS" for phylostratific age informa-
tion, "PS2" for the collapsed PS version (inferred ancestors being collapsed
into one with the known taxonomy information), "SF" for domain superfam-
ily assignments, "DO" for Disease Ontology, "HPPA" for Human Phenotype
Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inheritance,
"HPCM" for Human Phenotype Clinical Modifier, "HPMA" for Human Pheno-
type Mortality Aging, "MP" for Mammalian Phenotype, and Drug-Gene Inter-
action database (DGIdb) and the molecular signatures database (Msigdb) only in
human (including "MsigdbH", "MsigdbC1", "MsigdbC2CGP", "MsigdbC2CP",
"MsigdbC2KEGG", "MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT",
"MsigdbC3MIR", "MsigdbC4CGN", "MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF",
"MsigdbC5CC", "MsigdbC6", "MsigdbC7"). Note: These four ("GOBP", "GOMF",
"GOCC" and "PS") are availble for all genomes/species; for "Hs" and "Mm",
these six ("DO", "HPPA", "HPMI", "HPCM", "HPMA" and "MP") are also
supported; all "Msigdb" are only supported in "Hs". For details on the eligi-
bility for pairs of input genome and ontology, please refer to the online Docu-
mentations at http://supfam.org/dnet/docs.html. Also supported are the
user-customised gene sets; in doing so, the option "Customised" should be used
together with the input of the next parameter "customised.genesets"

http://supfam.org/dnet/docs.html

dGSEA 31

customised.genesets

an input vector/matrix/list which only works when the user chooses "Customised"
in the previous parameter "ontology". It contains either Entrez Gene ID or Sym-
bol

sizeRange the minimum and maximum size of members of each gene set in consideration.
By default, it sets to a minimum of 10 but no more than 1000

which_distance which distance of terms in the ontology is used to restrict terms in consideration.
By default, it sets to ’NULL’ to consider all distances

weight type of score weight. It can be "0" for unweighted (an equivalent to Kolmogorov-
Smirnov, only considering the rank), "1" for weighted by input gene score (by
default), and "2" for over-weighted, and so on

nperm the number of random permutations. For each permutation, gene-score associa-
tions will be permutated so that permutation of gene-term associations is realised

fast logical to indicate whether to fast calculate expected results from permutated
data. By default, it sets to true

sigTail the tail used to calculate the statistical significance. It can be either "two-tails"
for the significance based on two-tails or "one-tail" for the significance based on
one tail

p.adjust.method

the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni",
"holm", "hochberg" and "hommel". The first two methods "BH" (widely used)
and "BY" control the false discovery rate (FDR: the expected proportion of false
discoveries amongst the rejected hypotheses); the last four methods "bonfer-
roni", "holm", "hochberg" and "hommel" are designed to give strong control of
the family-wise error rate (FWER). Notes: FDR is a less stringent condition
than FWER

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to false for no display

RData.location the characters to tell the location of built-in RData files. By default, it remotely
locates at https://github.com/hfang-bristol/RDataCentre/blob/master/
dnet and http://dnet.r-forge.r-project.org/RData. Be aware of several
versions and the latest one is matched to the current package version. For the
user equipped with fast internet connection, this option can be just left as de-
fault. But it is always advisable to download these files locally. Especially when
the user needs to run this function many times, there is no need to ask the func-
tion to remotely download every time (also it will unnecessarily increase the
runtime). For examples, these files (as a whole or part of them) can be first
downloaded into your current working directory, and then set this option as:
RData.location = ”.”. Surely, the location can be anywhere as long as the
user provides the correct path pointing to (otherwise, the script will have to re-
motely download each time). Here is the UNIX command for downloading all
RData files (preserving the directory structure): wget−r−l2−A”∗.RData”−
np−nH−−cut−dirs = 0”http : //dnet.r−forge.r−project.org/RData”

Value

an object of class "eTerm", a list with following components:

https://github.com/hfang-bristol/RDataCentre/blob/master/dnet
https://github.com/hfang-bristol/RDataCentre/blob/master/dnet
http://dnet.r-forge.r-project.org/RData

32 dGSEA

• set_info: a matrix of nSet X 4 containing gene set information, where nSet is the number of
gene set in consideration, and the 4 columns are "setID" (i.e. "Term ID"), "name" (i.e. "Term
Name"), "namespace" and "distance"

• gs: a list of gene sets, each storing gene members. Always, gene sets are identified by "setID"
and gene members identified by "Entrez ID"

• data: a matrix of nGene X nSample containing input data in consideration. It is not always
the same as the input data as only those mappable are retained

• es: a matrix of nSet X nSample containing enrichment score, where nSample is the number
of samples (i.e. the number of columns in input data

• nes: a matrix of nSet X nSample containing normalised enrichment score. It is the version of
enrichment score but after being normalised by gene set size

• pvalue: a matrix of nSet X nSample containing nominal p value

• adjp: a matrix of nSet X nSample containing adjusted p value. It is the p value but after being
adjusted for multiple comparisons

• gadjp: a matrix of nSet X nSample containing globally adjusted p value in terms of all sam-
ples

• fdr: a matrix of nSet X nSample containing false discovery rate (FDR). It is the estimated
probability that the normalised enrichment score represents a false positive finding

• qvalue: a matrix of nSet X nSample containing q value. It is the monotunically increasing
FDR

• weight: the input type of score weight

• call: the call that produced this result

Note

The interpretation of returned components:

• "es": enrichment score for the gene set is the degree to which this gene set is overrepresented
at the top or bottom of the ranked list of genes in each column of input data;

• "nes": normalised enrichment score for the gene set is enrichment score that has already
normalised by gene set size. It is comparable across analysed gene sets;

• "pvalue": nominal p value is the statistical significance of the enrichment score. It is not
adjusted for multiple hypothesis testing, and thus is of limited use in comparing gene sets;

• "adjp": adjusted p value by Benjamini & Hochberg method. It is comparable across gene sets;

• "gadjp": globally adjusted p value by Benjamini & Hochberg method. Unlike "adjp", it is
adjusted in terms of all samples;

• "fdr": false discovery rate is the estimated probability that the normalised enrichment score
represents a false positive finding. Unlike "adjp" or "gadjp" (also aliased as "fdr") that is
derived from a list of p values, this version of fdr is directly calculate from the statistic (i.e.
normalised enrichment score);

• "qvalue": q value is the monotunically increasing FDR so that the higher "nes", the lower
"qvalue".

dGSEAview 33

See Also

dGSEAview, dGSEAwrite, visGSEA

Examples

Not run:
load data
#library(Biobase)
#TCGA_mutations <- dRDataLoader(RData='TCGA_mutations')

gene set enrichment analysis (GSEA) using KEGG pathways
calculate the total mutations for each gene
#tol <- apply(exprs(TCGA_mutations), 1, sum)
#data <- data.frame(tol=tol)
#eTerm <- dGSEA(data, identity="symbol", genome="Hs", ontology="MsigdbC2KEGG")
#res <- dGSEAview(eTerm, which_sample=1, top_num=5, sortBy="adjp", decreasing=FALSE, details=TRUE)
#visGSEA(eTerm, which_sample=1, which_term=rownames(res)[1])
#output <- dGSEAwrite(eTerm, which_content="gadjp", which_score="gadjp", filename="eTerm.txt")

based on customised gene sets
#eTerm <- dGSEA(data, ontology="Customised", customised.genesets=sample(rownames(data),100))
#res <- dGSEAview(eTerm, which_sample=1, top_num=5, sortBy="adjp", decreasing=FALSE, details=TRUE)
#visGSEA(eTerm, which_sample=1, which_term=rownames(res)[1])

End(Not run)

dGSEAview Function to view enrichment results in a sample-specific manner

Description

dGSEAview is supposed to view results of gene set enrichment analysis but for a specific sample.

Usage

dGSEAview(
eTerm,
which_sample = 1,
top_num = 10,
sortBy = c("adjp", "gadjp", "ES", "nES", "pvalue", "FWER", "FDR",
"qvalue", "none"),
decreasing = NULL,
details = F
)

34 dGSEAview

Arguments

eTerm an object of class "eTerm"

which_sample which sample will be viewed

top_num the maximum number of gene sets will be viewed

sortBy which statistics will be used for sorting and viewing gene sets. It can be "adjp"
for adjusted p value, "gadjp" for globally adjusted p value, "ES" for enrichment
score, "nES" for normalised enrichment score, "pvalue" for p value, "FWER"
for family-wise error rate, "FDR" for false discovery rate, "qvalue" for q value,
"none" for sorting by setID

decreasing logical to indicate whether to sort in a decreasing order. If it is null, it would be
true for "ES" or "nES"; otherwise it would be false

details logical to indicate whether the detail information of gene sets is also viewed. By
default, it sets to false for no inclusion

Value

a data frame with following components:

• setID: term ID

• ES: enrichment score

• nES: normalised enrichment score

• pvalue: nominal p value

• adjp: adjusted p value

• gadjp: globally adjusted p value

• FDR: false discovery rate

• qvalue: q value

• setSize: the number of genes in the set; optional, it is only appended when "details" is true

• name: term name; optional, it is only appended when "details" is true

• namespace: term namespace; optional, it is only appended when "details" is true

• distance: term distance; optional, it is only appended when "details" is true

Note

none

See Also

dGSEA

Examples

#dGSEAview(eTerm, which_sample=1, top_num=10, sortBy="adjp", decreasing=FALSE, details=TRUE)

dGSEAwrite 35

dGSEAwrite Function to write out enrichment results

Description

dGSEAwrite is supposed to write out enrichment results.

Usage

dGSEAwrite(
eTerm,
which_content = c("gadjp", "adjp", "pvalue", "FWER", "FDR", "qvalue",
"nES", "ES"),
which_score = c("gadjp", "adjp", "FWER", "FDR", "qvalue", "nES"),
cutoff = 0.1,
filename = NULL,
keep.significance = T
)

Arguments

eTerm an object of class "eTerm"
which_content the content will be written out. It includes two categories: i) based on "adjp"

for adjusted p value, "gadjp" for globally adjusted p value, "pvalue" for p value,
"FWER" for family-wise error rate, "FDR" for false discovery rate, "qvalue" for
q value; ii) based on "ES" for enrichment score, "nES" for normalised enrich-
ment score. For the former, the content is : first -1*log10-transformed, and then
multiplied by -1 if nES is negative.

which_score which statistics/score will be used for declaring the significance. It can be "adjp"
for adjusted p value, "gadjp" for globally adjusted p value, "FWER" for family-
wise error rate, "FDR" for false discovery rate, "qvalue" for q value

cutoff a cutoff to declare the signficance. It should be used together with ’which_score’
filename a character string naming a filename
keep.significance

logical to indicate whether or not to mask those insignfiicant by NA. By default,
it sets to true to mask those insignfiicant by NA

Value

a data frame with following components:

• setID: term ID
• setSize: the number of genes in the set
• name: term name
• namespace: term namespace
• distance: term distance
• sample names: sample names in the next columns

36 dNetConfidence

Note

If "filename" is not NULL, a tab-delimited text file will be also written out.

See Also

dGSEA

Examples

#output <- dGSEAwrite(eTerm, which_content="gadjp", which_score="gadjp", filename="eTerm.txt")

dNetConfidence Function to append the confidence information from the source graphs
into the target graph

Description

eConsensusGraph is supposed to append the confidence information (extracted from a list of the
source graphs) into the target graph. The confidence information is about how often a node (or
an edge) in the target graph that can be found in the input source graphs. The target graph is an
object of class "igraph" or "graphNEL", and the source graphs are a list of objects of class "igraph"
or "graphNEL". It also returns an object of class "igraph" or "graphNEL"; specifically, the same
as the input target graph but appended with the "nodeConfidence" attribute to the nodes and the
"edgeConfidence" attribute to the edges.

Usage

dNetConfidence(target, sources, plot = F)

Arguments

target the target graph, an object of class "igraph" or "graphNEL"

sources a list of the source graphs, each with an object of class "igraph" or "graphNEL".
These source graphs will be used to calculate how often a node (or an edge) in
the target graph that can be found with them.

plot logical to indicate whether the returned graph (i.e. the target graph plus the
confidence information on nodes and edges) should be plotted. If it sets true, the
plot will display the returned graph with the size of nodes indicative of the node
confidence (the frequency that a node appears in the source graphs), and with
the width of edges indicative of the edge confidence (the frequency that an edge
appears in the source graphs)

Value

an object of class "igraph" or "graphNEL", which is a target graph but appended with the "node-
Confidence" attribute to the nodes and the "edgeConfidence" attribute to the edges (in the form of
100 percentage)

dNetFind 37

Note

None

See Also

visNet

Examples

1) generate a target graph according to the ER model
g <- erdos.renyi.game(100, 1/100)
target <- dNetInduce(g, V(g), knn=0)

2) generate a list source graphs according to the ER model
sources <- lapply(1:100, function(x) erdos.renyi.game(100*runif(1),
1/10))

3) append the confidence information from the source graphs into the target graph
g <- dNetConfidence(target=target, sources=sources)

4) visualise the confidence target graph
visNet(g, vertex.size=V(g)$nodeConfidence/10,
edge.width=E(g)$edgeConfidence)

dNetFind Function to find heuristically maximum scoring subgraph

Description

dNetFind is supposed to find the maximum scoring subgraph from an input graph and scores im-
posed on its nodes. The input graph and the output subgraph are both of "igraph" or "graphNET"
object. The input scores imposed on the nodes in the input graph can be divided into two parts: the
positive nodes and the negative nodes. The searching for maximum scoring subgraph is deduced
to find the connected subgraph containing the positive nodes as many as possible, but the negative
nodes as few as possible. To this end, a heuristic search is used (see Note below).

Usage

dNetFind(g, scores)

Arguments

g an object of class "igraph" or "graphNEL"

scores a vector of scores. For each element, it must have the name that could be mapped
onto the input graph. Also, the names in input "scores" should contain all those
in the input graph "g", but the reverse is not necessary

38 dNetFind

Value

a subgraph with a maximum score, an object of class "igraph" or "graphNEL". It has node attributes
’score’ and ’type’ (either ’desired’ or ’linker’)

Note

The search procedure is heuristic to find the subgraph with the maximum score:

• i) transform the input graph into a new graph by collapsing connected positive nodes into a
meta-node. As such, meta-nodes are isolated to each other but are linked via negative nodes
(single-nodes). Clearly, meta-nodes have positive scores, and negative scores for the single-
nodes.

• ii) append the weight attribute to the edges in the transformed graph. There are two types of
edges: 1) the single-single edge with two single-nodes as two ends, and 2) single-meta edge
with a single-node as one end and a meta-node as the other end. The weight for a single-
single edge is the absolute sum of the scores in its two-end single-nodes but normalised by
their degrees. The weight for a single-meta edge is simply the absolute score in its single-node
end normalised by the degree. As such, weights are all non-negative.

• iii) find minimum spanning tree (MST) in the weighted transformed graph using Prim’s greedy
algorithm. A spanning tree of the weighted graph is a subgraph that is tree and connects all
the node together. The MST is a spanning tree with the sum of its edge weights minimised
amongst all possible spanning trees.

• iv) find all shortest paths between any pair of meta-nodes in the MST. Within the weighted
transformed graph in ii), a subgraph is induced containing nodes (only occuring in these short-
est paths) and all edges between them.

• v) within the induced subgraph, identify single-nodes that are direct neighbors of meta-nodes.
For each of these single-nodes, also make sure it has the absolute scores no more than the sum
of scores in its neighboring meta-nodes. These single-nodes meeting both criteria are called
"linkers".

• vi) still within the induced subgraph in v), find the linker graph that contains only linkers and
edges between them. Similarly to iii), find MST of the linker graph, called ’linker MST’.
Notably, this linker MST serves as the scaffold, which only contains linkers but has meta-
nodes being direcly attached to.

• vii) in linker MST plus its attached meta-nodes, find the optimal path that has the sum of
scores of its nodes and attached meta-nodes maximised amongest all possible paths. Nodes
along this optimal path plus their attached meta-nodes are called ’subgraph nodes’.

• viii) finally, from the input graph extract a subgraph (called ’subgraph’) that only contains
subgraph nodes and edges betwen them. This subgraph is the maximum scoring subgraph
containing the positive nodes as many as possible, but the negative nodes as few as possible.

See Also

dNetFind

dNetInduce 39

Examples

1) generate an vector consisting of random values from beta distribution
x <- rbeta(1000, shape1=0.5, shape2=1)

2) fit a p-value distribution under beta-uniform mixture model
fit <- dBUMfit(x, ntry=1, hist.bum=FALSE, contour.bum=FALSE)

3) calculate the scores according to the fitted BUM and fdr=0.01
using "pdf" method
scores <- dBUMscore(fit, method="pdf", fdr=0.05, scatter.bum=FALSE)
names(scores) <- as.character(1:length(scores))

4) generate a random graph according to the ER model
g <- erdos.renyi.game(1000, 1/100)

5) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

6) find the subgraph with the maximum score
subgraph <- dNetFind(subg, scores)

dNetInduce Function to generate a subgraph induced by given vertices and their k
nearest neighbors

Description

dNetInduce is supposed to produce a subgraph induced by given vertices and its k nearest neigh-
bors. The input is a graph of "igraph" or "graphNET" object, a list of the vertices of the graph, and
a k value for finding k nearest neighbors for these vertices. The output is a subgraph induced by
given vertices plus their k neighbours. The resultant subgraph inherits the class from the input one.
The induced subgraph contains exactly the vertices of interest, and all the edges between them.

Usage

dNetInduce(
g,
nodes_query,
knn = 0,
remove.loops = F,
largest.comp = T,
min.comp.size = 1
)

Arguments

g an object of class "igraph" or "graphNEL"

nodes_query the vertices for which the calculation is performed

40 dNetPipeline

knn an integeter specifying how many k steps are used to find the nearest neighbours
of the given vertices. By default, knn is set to zero; it means no neighbors will
be considered. When knn is 1, the immediate neighbors of the given vertices
will be also considered for inducing the subgraph. The same is true when knn is
2, etc

remove.loops logical to indicate whether the loop edges are to be removed. By default, it sets
to false

largest.comp logical to indicate whether the largest component is only retained. By default, it
sets to true for the largest component being left

min.comp.size an integer specifying the minimum size of component that will be retained. This
parameter only works when setting the false to keep the largest component. By
default, it sets to 1 meaning all nodes will be retained

Value

• subg: an induced subgraph, an object of class "igraph" or "graphNEL". Appended with a
node attribute ’comp’ if multiple components are kept

Note

The given vertices plus their k nearest neighbors will be used to induce the subgraph.

See Also

dNetInduce

Examples

1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) select the first 10 vertices as the query nodes
nodes_query <- V(g)[1:10]

3) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, nodes_query, knn=0)

4) produce the induced subgraph based on the nodes in query ane their immediate neighbours
subg <- dNetInduce(g, nodes_query, knn=1)

dNetPipeline Function to setup the pipeline for finding maximum-scoring subgraph
from an input graph and the signficance imposed on its nodes

Description

dNetPipeline is supposed to finish ab inito maximum-scoring subgraph identification for the input
graph with the node information on the significance (p-value or fdr). It returns an object of class
"igraph" or "graphNEL".

dNetPipeline 41

Usage

dNetPipeline(
g,
pval,
method = c("pdf", "cdf", "customised"),
significance.threshold = NULL,
nsize = NULL,
plot = F,
verbose = T
)

Arguments

g an object of class "igraph" or "graphNEL"

pval a vector containing input p-values (or fdr). For each element, it must have the
name that could be mapped onto the input graph. Also, the names in input "pval"
should contain all those in the input graph "g", but the reverse is not necessary

method the method used for the transformation. It can be either "pdf" for the method
based on the probability density function of the fitted model, or "cdf" for the
method based on the cumulative distribution function of the fitted model

significance.threshold

the given significance threshold. By default, it is set to NULL, meaning there
is no constraint. If given, those p-values below this are considered significant
and thus scored positively. Instead, those p-values above this given significance
threshold are considered insigificant and thus scored negatively

nsize the desired number of nodes constrained to the resulting subgraph. It is not
nulll, a wide range of significance thresholds will be scanned to find the optimal
significance threshold leading to the desired number of nodes in the resulting
subgraph. Notably, the given significance threshold will be overwritten by this
option.

plot logical to indicate whether the histogram plot, contour plot and scatter plot
should be drawn. By default, it sets to false for no plotting

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

a subgraph with a maximum score, an object of class "igraph" or "graphNEL". It has node attributes
’score’ and ’type’ (either ’desired’ or ’linker’). Also appended is a graph attribute ’threshold’ (that
is, ’significance.threshold’ used particularly useful when ’nsize’ is defined)

Note

The pipeline sequentially consists of:

• ia) if the method is either "pdf" or "cdf", dBUMfit used to fit the p-value distribution under
beta-uniform mixture model, and dBUMscore used to calculate the scores according to the
fitted BUM and the significance threshold.

42 dNetReorder

• ib) if the method is either "customised", then the user input list of fdr (or p-values) and the
significance threshold will be directly used for score transformation by dFDRscore.

• ii) if there is the desired number of nodes constrained to the resulting subgraph, a wide range
of significance thresholds (including rough stage with large intervals, and finetune stage with
smaller intervals) will be scanned to find the significance threshold to meet the desired number
of nodes.

• iii) dNetFind used to find maximum-scoring subgraph from the input graph and scores im-
posed on its nodes.

See Also

dBUMfit, dBUMscore, dFDRscore, dNetFind

Examples

Not run:
1) generate an vector consisting of random values from beta distribution
x <- rbeta(1000, shape1=0.5, shape2=1)
names(x) <- as.character(1:length(x))

2) generate a random graph according to the ER model
g <- erdos.renyi.game(1000, 1/100)

3) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

4) find maximum-scoring subgraph based on the given significance threshold
4a) assume the input is a list of p-values (controlling fdr=0.1)
subgraph <- dNetPipeline(g=subg, pval=x, significance.threshold=0.1)
4b) assume the input is a list of customised significance (eg FDR directly)
subgraph <- dNetPipeline(g=subg, pval=x, method="customised",
significance.threshold=0.1)

5) find maximum-scoring subgraph with the desired node number nsize=20
subgraph <- dNetPipeline(g=subg, pval=x, nsize=20)

End(Not run)

dNetReorder Function to reorder the multiple graph colorings within a sheet-shape
rectangle grid

Description

dNetReorder is reorder the multiple graph colorings within a sheet-shape rectangle grid

dNetReorder 43

Usage

dNetReorder(
g,
data,
feature = c("node", "edge"),
node.normalise = c("none", "degree"),
xdim = NULL,
ydim = NULL,
amplifier = NULL,
metric = c("none", "pearson", "spearman", "kendall", "euclidean",
"manhattan", "cos",
"mi"),
init = c("linear", "uniform", "sample"),
algorithm = c("sequential", "batch"),
alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma")
)

Arguments

g an object of class "igraph" or "graphNEL"

data an input data matrix used to color-code vertices/nodes. One column corresponds
to one graph node coloring. The input matrix must have row names, and these
names should include all node names of input graph, i.e. V(g)$name, since there
is a mapping operation. After mapping, the length of the patern vector should be
the same as the number of nodes of input graph. The way of how to color-code
is to map values in the pattern onto the whole colormap (see the next arguments:
colormap, ncolors, zlim and colorbar)

feature the type of the features used. It can be one of either ’edge’ for the edge feature
or ’node’ for the node feature. See ’Note’ for explanations.

node.normalise the normalisation of the nodes. It can be one of either ’none’ for no normalisa-
tion or ’degree’ for a node being penalised by its degree.

xdim an integer specifying x-dimension of the grid

ydim an integer specifying y-dimension of the grid

amplifier an integer specifying the amplifier (3 by default) of the number of component
planes. The product of the component number and the amplifier constitutes the
number of rectangles in the sheet grid

metric distance metric used to define the similarity between component planes. It can
be "none", which means directly using column-wise vectors of codebook/data
matrix. Otherwise, first calculate the covariance matrix from the codebook/data
matrix. The distance metric used for calculating the covariance matrix be-
tween component planes can be: "pearson" for pearson correlation, "spearman"
for spearman rank correlation, "kendall" for kendall tau rank correlation, "eu-
clidean" for euclidean distance, "manhattan" for cityblock distance, "cos" for
cosine similarity, "mi" for mutual information.

44 dNetReorder

init an initialisation method. It can be one of "uniform", "sample" and "linear" ini-
tialisation methods

algorithm the training algorithm. Currently, only "sequential" algorithm has been imple-
mented

alphaType the alpha type. It can be one of "invert", "linear" and "power" alpha types
neighKernel the training neighbor kernel. It can be one of "gaussian", "bubble", "cutgaus-

sian", "ep" and "gamma" kernels

Value

an object of class "sReorder", a list with following components:

• nHex: the total number of rectanges in the grid
• xdim: x-dimension of the grid
• ydim: y-dimension of the grid
• uOrder: the unique order/placement for each component plane that is reordered to the "sheet"-

shape grid with rectangular lattice
• coord: a matrix of nHex x 2, with each row corresponding to the coordinates of each "uOrder"

rectangle in the 2D map grid
• call: the call that produced this result

Note

According to which features are used and whether nodes should be penalised by degrees, the feature
data are constructed differently from the input data and input graph:

• When the node features are used, the feature data is the input data (or penalised data) with the
same dimension.

• When the edge featrues are used, each entry (i.e. given an edge and a sample) in the feature
data is the absolute difference between its two-end nodes (or after being penalised).

• After that, the constructed feature are subject to sample correlation analysis by supraHex.
That is, a map grid (with sheet shape consisting of a rectangular lattice) is used to train either
column-wise vectors of the feature data matrix or the covariance matrix thereof.

• As a result, similar samples are placed closer to each other within this map grid. More pre-
cisely, to ensure the unique placement, each sample mapped to the "sheet"-shape grid with
rectangular lattice is determinied iteratively in an order from the best matched to the next
compromised one. If multiple samples are hit in the same rectangular lattice, the worse one
is always sacrificed by moving to the next best one till all samples are placed somewhere
exclusively on their own.

The size of "sheet"-shape rectangle grid depends on the input arguments:

• How the input parameters are used to determine nHex is taken priority in the following order:
"xdim & ydim" > "nHex" > "data".

• If both of xdim and ydim are given, nHex = xdim ∗ ydim.
• If only data is input, nHex = 5 ∗ sqrt(dlen), where dlen is the number of rows of the input

data.
• After nHex is determined, xy-dimensions of rectangle grid are then determined according to

the square root of the two biggest eigenvalues of the input data.

dPvalAggregate 45

See Also

visNetReorder

Examples

1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

3) reorder the module with vertices being color-coded by input data
nnodes <- vcount(subg)
nsamples <- 10
data <- matrix(runif(nnodes*nsamples), nrow=nnodes, ncol=nsamples)
rownames(data) <- V(subg)$name
sReorder <- dNetReorder(g=subg, data, feature="node",
node.normalise="none")

dPvalAggregate Function to aggregate p values

Description

dPvalAggregate is supposed to aggregate a input matrix p-values into a vector of aggregated p-
values. The aggregate operation is applied to each row of input matrix, each resulting in an ag-
gregated p-value. The method implemented can be based on the order statistics of p-values or
according to Fisher’s method or Z-transform method.

Usage

dPvalAggregate(
pmatrix,
method = c("orderStatistic", "fishers", "Ztransform", "logistic"),
order = ncol(pmatrix),
weight = rep(1, ncol(pmatrix))
)

Arguments

pmatrix a data frame or matrix of p-values
method the method used. It can be either "orderStatistic" for the method based on the

order statistics of p-values, or "fishers" for Fisher’s method (summation of logs),
or "Ztransform" for Z-transform test (summation of z values, Stouffer’s method)
and the weighted Z-test, or "logistic" for summation of logits

order an integeter specifying the order used for the aggregation according to the order
statistics of p-values

weight a vector specifying the weights used for the aggregation according to Z-transform
method

46 dPvalAggregate

Value

• ap: a vector with the length nrow(pmatrix), containing aggregated p-values

Note

For each row of input matrix with the c columns, there are c p-values that are uniformly indepen-
dently distributed over [0,1] under the null hypothesis (uniform distribution). According to the order
statisitcs, they follow the Beta distribution with the paramters a = order and b = c − order + 1.
According to the Fisher’s method, after transformation by −2 ∗

∑c
log(pvalue), they follow Chi-

Squared distribution. According to the Z-transform method, first converts the one-tailed P-values

into standard normal deviates Z, then combines Z via
∑c

(w∗Z)∑c
(w2)

, where w is the weight (usually

square root of the sample size if the weighted Z-test; 1 if Z-transform test), and finally the com-
bined Z follows the standard normal distribution to test the cumulative/aggregated evidence on
the common null hypothesis. The logistic method is defined as

∑c
log(pvalue

1−pvalue) ∗ 1/C, where
C = sqrt((kpi2(5k + 2))/(3(5k + 4))), following Student’s t distribution. Generally speaking,
Fisher’s method places greater emphasis on small p-values, while the Z-transform method on equal
footings, the logistic method provides a compromise between these two. In other words, the Z-
transform method does well in problems where evidence against the combined null is spread more
than a small fraction of the individual tests, or when the total evidence is weak; Fisher’s method does
best in problems where the evidence is concentrated in a relatively small fraction of the individual
tests or when the evidence is at least moderately strong.

See Also

dPvalAggregate

Examples

1) generate an iid uniformly-distributed random matrix of 1000x3
pmatrix <- cbind(runif(1000), runif(1000), runif(1000))

2) aggregate according to the order statistics
ap <- dPvalAggregate(pmatrix, method="orderStatistic")

3) aggregate according to the Fisher's method
ap <- dPvalAggregate(pmatrix, method="fishers")

4) aggregate according to the Z-transform method
ap <- dPvalAggregate(pmatrix, method="Ztransform")

5) aggregate according to the logistic method
ap <- dPvalAggregate(pmatrix, method="logistic")

dRDataLoader 47

dRDataLoader Function to load dnet built-in RData

Description

dRDataLoader is supposed to load the package built-in RData.

Usage

dRDataLoader(
RData = c(NA, "TCGA_mutations", "ig.DO", "ig.GOBP", "ig.GOCC",
"ig.GOMF", "ig.HPCM",
"ig.HPMA", "ig.HPMI", "ig.HPPA", "ig.MP", "org.At.eg", "org.At.egGOBP",
"org.At.egGOCC", "org.At.egGOMF", "org.At.egPS", "org.At.egSF",
"org.At.string",
"org.Ce.eg", "org.Ce.egGOBP", "org.Ce.egGOCC", "org.Ce.egGOMF",
"org.Ce.egPS",
"org.Ce.egSF", "org.Ce.string", "org.Da.eg", "org.Da.egGOBP",
"org.Da.egGOCC",
"org.Da.egGOMF", "org.Da.egPS", "org.Da.egSF", "org.Da.string",
"org.Dm.eg",
"org.Dm.egGOBP", "org.Dm.egGOCC", "org.Dm.egGOMF", "org.Dm.egPS",
"org.Dm.egSF",
"org.Dm.string", "org.Gg.eg", "org.Gg.egGOBP", "org.Gg.egGOCC",
"org.Gg.egGOMF",
"org.Gg.egPS", "org.Gg.egSF", "org.Gg.string", "org.Hs.eg",
"org.Hs.egDGIdb",
"org.Hs.egDO", "org.Hs.egGOBP", "org.Hs.egGOCC", "org.Hs.egGOMF",
"org.Hs.egHPCM",
"org.Hs.egHPMA", "org.Hs.egHPMI", "org.Hs.egHPPA", "org.Hs.egMP",
"org.Hs.egMsigdbC1",
"org.Hs.egMsigdbC2BIOCARTA", "org.Hs.egMsigdbC2CGP",
"org.Hs.egMsigdbC2CP",
"org.Hs.egMsigdbC2KEGG", "org.Hs.egMsigdbC2REACTOME",
"org.Hs.egMsigdbC3MIR",
"org.Hs.egMsigdbC3TFT", "org.Hs.egMsigdbC4CGN", "org.Hs.egMsigdbC4CM",
"org.Hs.egMsigdbC5BP", "org.Hs.egMsigdbC5CC", "org.Hs.egMsigdbC5MF",
"org.Hs.egMsigdbC6", "org.Hs.egMsigdbC7", "org.Hs.egMsigdbH",
"org.Hs.egPS",
"org.Hs.egSF", "org.Hs.string", "org.Mm.eg", "org.Mm.egDO",
"org.Mm.egGOBP",
"org.Mm.egGOCC", "org.Mm.egGOMF", "org.Mm.egHPCM", "org.Mm.egHPMA",
"org.Mm.egHPMI",
"org.Mm.egHPPA", "org.Mm.egMP", "org.Mm.egPS", "org.Mm.egSF",
"org.Mm.string",
"org.Rn.eg", "org.Rn.egGOBP", "org.Rn.egGOCC", "org.Rn.egGOMF",
"org.Rn.egPS",

48 dRDataLoader

"org.Rn.egSF", "CLL", "org.Rn.string"),
genome = c(NA, "Hs", "Mm", "Rn", "Gg", "Ce", "Dm", "Da", "At"),
ontology = c(NA, "GOBP", "GOMF", "GOCC", "PS", "PS2", "SF", "DO",
"HPPA", "HPMI",
"HPCM", "HPMA", "MP", "MsigdbH", "MsigdbC1", "MsigdbC2CGP",
"MsigdbC2CP",
"MsigdbC2KEGG", "MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT",
"MsigdbC3MIR",
"MsigdbC4CGN", "MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF", "MsigdbC5CC",
"MsigdbC6",
"MsigdbC7", "DGIdb"),
verbose = T,
RData.location =
"https://github.com/hfang-bristol/RDataCentre/blob/master/dnet/1.0.7"
)

Arguments

RData which built-in RData to load. It can be one of "TCGA_mutations", "ig.DO",
"ig.GOBP", "ig.GOCC", "ig.GOMF", "ig.HPCM", "ig.HPMA", "ig.HPMI", "ig.HPPA",
"ig.MP", "org.At.eg", "org.At.egGOBP", "org.At.egGOCC", "org.At.egGOMF",
"org.At.egPS", "org.At.egSF", "org.At.string", "org.Ce.eg", "org.Ce.egGOBP",
"org.Ce.egGOCC", "org.Ce.egGOMF", "org.Ce.egPS", "org.Ce.egSF", "org.Ce.string",
"org.Da.eg", "org.Da.egGOBP", "org.Da.egGOCC", "org.Da.egGOMF", "org.Da.egPS",
"org.Da.egSF", "org.Da.string", "org.Dm.eg", "org.Dm.egGOBP", "org.Dm.egGOCC",
"org.Dm.egGOMF", "org.Dm.egPS", "org.Dm.egSF", "org.Dm.string", "org.Gg.eg",
"org.Gg.egGOBP", "org.Gg.egGOCC", "org.Gg.egGOMF", "org.Gg.egPS", "org.Gg.egSF",
"org.Gg.string", "org.Hs.eg", "org.Hs.egDGIdb", "org.Hs.egDO", "org.Hs.egGOBP",
"org.Hs.egGOCC", "org.Hs.egGOMF", "org.Hs.egHPCM", "org.Hs.egHPMA",
"org.Hs.egHPMI", "org.Hs.egHPPA", "org.Hs.egMP", "org.Hs.egMsigdbC1", "org.Hs.egMsigdbC2BIOCARTA",
"org.Hs.egMsigdbC2CGP", "org.Hs.egMsigdbC2CP", "org.Hs.egMsigdbC2KEGG",
"org.Hs.egMsigdbC2REACTOME", "org.Hs.egMsigdbC3MIR", "org.Hs.egMsigdbC3TFT",
"org.Hs.egMsigdbC4CGN", "org.Hs.egMsigdbC4CM", "org.Hs.egMsigdbC5BP",
"org.Hs.egMsigdbC5CC", "org.Hs.egMsigdbC5MF", "org.Hs.egMsigdbC6", "org.Hs.egMsigdbC7",
"org.Hs.egMsigdbH", "org.Hs.egPS", "org.Hs.egSF", "org.Hs.string", "org.Mm.eg",
"org.Mm.egDO", "org.Mm.egGOBP", "org.Mm.egGOCC", "org.Mm.egGOMF",
"org.Mm.egHPCM", "org.Mm.egHPMA", "org.Mm.egHPMI", "org.Mm.egHPPA",
"org.Mm.egMP", "org.Mm.egPS", "org.Mm.egSF", "org.Mm.string", "org.Rn.eg",
"org.Rn.egGOBP", "org.Rn.egGOCC", "org.Rn.egGOMF", "org.Rn.egPS", "org.Rn.egSF",
"CLL", "org.Rn.string". On the meanings, please refer to the Documentations at
http://supfam.org/dnet/docs.html

genome the genome identity. It can be one of "Hs" for human, "Mm" for mouse, "Rn" for
rat, "Gg" for chicken, "Ce" for c.elegans, "Dm" for fruitfly, "Da" for zebrafish,
and "At" for arabidopsis

ontology the ontology supported currently. It can be "GOBP" for Gene Ontology Bi-
ological Process, "GOMF" for Gene Ontology Molecular Function, "GOCC"
for Gene Ontology Cellular Component, "PS" for phylostratific age informa-
tion, "PS2" for the collapsed PS version (inferred ancestors being collapsed

http://supfam.org/dnet/docs.html

dRDataLoader 49

into one with the known taxonomy information), "SF" for domain superfam-
ily assignments, "DO" for Disease Ontology, "HPPA" for Human Phenotype
Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inheritance,
"HPCM" for Human Phenotype Clinical Modifier, "HPMA" for Human Pheno-
type Mortality Aging, "MP" for Mammalian Phenotype, and Drug-Gene Inter-
action database (DGIdb) and the molecular signatures database (Msigdb) only in
human (including "MsigdbH", "MsigdbC1", "MsigdbC2CGP", "MsigdbC2CP",
"MsigdbC2KEGG", "MsigdbC2REACTOME", "MsigdbC2BIOCARTA", "MsigdbC3TFT",
"MsigdbC3MIR", "MsigdbC4CGN", "MsigdbC4CM", "MsigdbC5BP", "MsigdbC5MF",
"MsigdbC5CC", "MsigdbC6", "MsigdbC7"). Note: These four ("GOBP", "GOMF",
"GOCC" and "PS") are availble for all genomes/species; for "Hs" and "Mm",
these six ("DO", "HPPA", "HPMI", "HPCM", "HPMA" and "MP") are also sup-
ported; all "Msigdb" are only supported in "Hs". For details on the eligibility for
pairs of input genome and ontology, please refer to the online Documentations
at http://supfam.org/dnet/docs.html

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to TRUE for display

RData.location the characters to tell the location of built-in RData files. By default, it remotely
locates at https://github.com/hfang-bristol/RDataCentre/blob/master/
dnet and http://dnet.r-forge.r-project.org/RData. Be aware of several
versions and the latest one is matched to the current package version. For the
user equipped with fast internet connection, this option can be just left as de-
fault. But it is always advisable to download these files locally. Especially when
the user needs to run this function many times, there is no need to ask the func-
tion to remotely download every time (also it will unnecessarily increase the
runtime). For examples, these files (as a whole or part of them) can be first
downloaded into your current working directory, and then set this option as:
RData.location = ”.”. Surely, the location can be anywhere as long as the
user provides the correct path pointing to (otherwise, the script will have to re-
motely download each time). Here is the UNIX command for downloading all
RData files (preserving the directory structure): wget−r−l2−A”∗.RData”−
np−nH−−cut−dirs = 0”http : //dnet.r−forge.r−project.org/RData”

Value

any use-specified variable that is given on the right side of the assigement sign ’<-’, which contains
the loaded RData.

Note

If there are no use-specified variable that is given on the right side of the assigement sign ’<-’, then
no RData will be loaded onto the working environment.

See Also

dRDataLoader

http://supfam.org/dnet/docs.html
https://github.com/hfang-bristol/RDataCentre/blob/master/dnet
https://github.com/hfang-bristol/RDataCentre/blob/master/dnet
http://dnet.r-forge.r-project.org/RData

50 dRWR

Examples

Not run:
org.Hs.egSF <- dRDataLoader(RData='org.Hs.egSF')
org.Hs.eg <- dRDataLoader(RData='org.Hs.eg')
org.Hs.egDGIdb <- dRDataLoader(RData='org.Hs.egDGIdb')
org.Hs.egMsigdbC2KEGG <- dRDataLoader(RData='org.Hs.egMsigdbC2KEGG')
org.Hs.egHPPA <- dRDataLoader(genome='Hs', ontology='HPPA')
ig.MP <- dRDataLoader(RData='ig.MP')

End(Not run)

dRWR Function to implement Random Walk with Restart (RWR) on the input
graph

Description

dRWR is supposed to implement Random Walk with Restart (RWR) on the input graph. If the seeds
(i.e. a set of starting nodes) are given, it intends to calculate the affinity score of all nodes in the
graph to the seeds. If the seeds are not given, it will pre-compute affinity matrix for nodes in the
input graph with respect to each starting node (as a seed) by looping over every node in the graph.
Parallel computing is also supported for Linux or Mac operating systems.

Usage

dRWR(
g,
normalise = c("laplacian", "row", "column", "none"),
setSeeds = NULL,
restart = 0.75,
normalise.affinity.matrix = c("none", "quantile"),
parallel = TRUE,
multicores = NULL,
verbose = T
)

Arguments

g an object of class "igraph" or "graphNEL"

normalise the way to normalise the adjacency matrix of the input graph. It can be ’lapla-
cian’ for laplacian normalisation, ’row’ for row-wise normalisation, ’column’
for column-wise normalisation, or ’none’

setSeeds an input matrix used to define sets of starting seeds. One column corresponds
to one set of seeds that a walker starts with. The input matrix must have row
names, coming from node names of input graph, i.e. V(g)$name, since there is
a mapping operation. The non-zero entries mean that the corresonding rows (i.e.
the gene/row names) are used as the seeds, and non-zero values can be viewed

dRWR 51

as how to weight the relative importance of seeds. By default, this option sets
to "NULL", suggesting each node in the graph will be used as a set of the seed
to pre-compute affinity matrix for the input graph. This default does not scale
for large input graphs since it will loop over every node in the graph; however,
the pre-computed affinity matrix can be extensively reused for obtaining affinity
scores between any combinations of nodes/seeds, allows for some flexibility in
the downstream use, in particular when sampling a large number of random node
combinations for statistical testing

restart the restart probability used for RWR. The restart probability takes the value from
0 to 1, controlling the range from the starting nodes/seeds that the walker will
explore. The higher the value, the more likely the walker is to visit the nodes
centered on the starting nodes. At the extreme when the restart probability is
zero, the walker moves freely to the neighbors at each step without restarting
from seeds, i.e., following a random walk (RW)

normalise.affinity.matrix

the way to normalise the output affinity matrix. It can be ’none’ for no normali-
sation, ’quantile’ for quantile normalisation to ensure that columns (if multiple)
of the output affinity matrix have the same quantiles

parallel logical to indicate whether parallel computation with multicores is used. By de-
fault, it sets to true, but not necessarily does so. It will depend on whether these
two packages "foreach" and "doParallel" have been installed. It can be installed
via: source("http://bioconductor.org/biocLite.R"); biocLite(c("foreach","doParallel")).
If not yet installed, this option will be disabled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the ’foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

It returns a sparse matrix, called ’PTmatrix’:

• When the seeds are NOT given: a pre-computated affinity matrix with the dimension of n
X n, where n is the number of nodes in the input graph. Columns stand for starting nodes
walking from, and rows for ending nodes walking to. Therefore, a column for a starting node
represents a steady-state affinity vector that the starting node will visit all the ending nodes in
the graph

• When the seeds are given: an affinity matrix with the dimension of n X nset, where n is
the number of nodes in the input graph, and nset for the number of the sets of seeds (i.e.
the number of columns in setSeeds). Each column stands for the steady probability vector,
storing the affinity score of all nodes in the graph to the starting nodes/seeds. This steady
probability vector can be viewed as the "influential impact" over the graph imposed by the
starting nodes/seeds.

Note

The input graph will treat as an unweighted graph if there is no ’weight’ edge attribute associated
with

52 dRWRcontact

See Also

dRWRcontact, dRWRpipeline, dCheckParallel

Examples

Not run:
1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)
V(subg)$name <- 1:vcount(subg)

3) obtain the pre-computated affinity matrix
PTmatrix <- dRWR(g=subg, normalise="laplacian", restart=0.75,
parallel=FALSE)
visualise affinity matrix
visHeatmapAdv(PTmatrix, Rowv=FALSE, Colv=FALSE, colormap="wyr",
KeyValueName="Affinity")

4) obtain affinity matrix given sets of seeds
define sets of seeds
each seed with equal weight (i.e. all non-zero entries are '1')
aSeeds <- c(1,0,1,0,1)
bSeeds <- c(0,0,1,0,1)
setSeeds <- data.frame(aSeeds,bSeeds)
rownames(setSeeds) <- 1:5
calcualte affinity matrix
PTmatrix <- dRWR(g=subg, normalise="laplacian", setSeeds=setSeeds,
restart=0.75, parallel=FALSE)
PTmatrix

End(Not run)

dRWRcontact Function to estimate RWR-based contact strength between samples
from an input gene-sample data matrix, an input graph and its pre-
computed affinity matrix

Description

dRWRcontact is supposed to estimate sample relationships (ie. contact strength between samples)
from an input gene-sample matrix, an input graph and its affinity matrix pre-computed according
to random walk restart (RWR) of the input graph. It includes: 1) RWR-smoothed columns of input
gene-sample matrix based on the pre-computed affinity matrix; 2) calculation of contact strength
(inner products of RWR-smooth columns of input gene-sample matrix); 3) estimation of the contact
signficance by a randomalisation procedure. Parallel computing is also supported for Linux or Mac
operating systems.

dRWRcontact 53

Usage

dRWRcontact(
data,
g,
Amatrix,
permutation = c("random", "degree"),
num.permutation = 10,
p.adjust.method = c("BH", "BY", "bonferroni", "holm", "hochberg",
"hommel"),
adjp.cutoff = 0.05,
parallel = TRUE,
multicores = NULL,
verbose = T
)

Arguments

data an input gene-sample data matrix used for seeds. Each value in input gene-
sample matrix does not necessarily have to be binary (non-zeros will be used as
a weight, but should be non-negative for easy interpretation).

g an object of class "igraph" or "graphNEL"
Amatrix an affinity matrix pre-computed from the input graph. Notes: columns for start-

ing nodes walking from, and rows for ending nodes walking to
permutation how to do permutation. It can be ’degree’ for degree-preserving permutation,

’random’ for permutation purely in random
num.permutation

the number of permutations used to for generating the distribution of contact
strength under randomalisation

p.adjust.method

the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni",
"holm", "hochberg" and "hommel". The first two methods "BH" (widely used)
and "BY" control the false discovery rate (FDR: the expected proportion of false
discoveries amongst the rejected hypotheses); the last four methods "bonfer-
roni", "holm", "hochberg" and "hommel" are designed to give strong control of
the family-wise error rate (FWER). Notes: FDR is a less stringent condition
than FWER

adjp.cutoff the cutoff of adjusted pvalue to construct the contact graph
parallel logical to indicate whether parallel computation with multicores is used. By de-

fault, it sets to true, but not necessarily does so. It will depend on whether these
two packages "foreach" and "doParallel" have been installed. It can be installed
via: source("http://bioconductor.org/biocLite.R"); biocLite(c("foreach","doParallel")).
If not yet installed, this option will be disabled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the ’foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

54 dRWRcontact

Value

an object of class "dContact", a list with following components:

• ratio: a symmetric matrix storing ratio (the observed against the expected) between pairwise
samples

• zscore: a symmetric matrix storing zscore between pairwise samples

• pval: a symmetric matrix storing pvalue between pairwise samples

• adjpval: a symmetric matrix storing adjusted pvalue between pairwise samples

• cgraph: the constructed contact graph (as a ’igraph’ object) under the cutoff of adjusted value

• call: the call that produced this result

Note

none

See Also

dRWR, dCheckParallel

Examples

Not run:
1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)
V(subg)$name <- 1:vcount(subg)

3) pre-compute affinity matrix from the input graph
Amatrix <- dRWR(g=subg, parallel=FALSE)

4) estimate RWR-based sample relationships
define sets of seeds as data
each seed with equal weight (i.e. all non-zero entries are '1')
aSeeds <- c(1,0,1,0,1)
bSeeds <- c(0,0,1,0,1)
data <- data.frame(aSeeds,bSeeds)
rownames(data) <- 1:5
calcualte their two contacts
dContact <- dRWRcontact(data=data, g=subg, Amatrix=Amatrix,
parallel=FALSE)
dContact

End(Not run)

dRWRpipeline 55

dRWRpipeline Function to setup a pipeine to estimate RWR-based contact strength
between samples from an input gene-sample data matrix and an input
graph

Description

dRWRpipeline is supposed to estimate sample relationships (ie. contact strength between samples)
from an input gene-sample matrix and an input graph. The pipeline includes: 1) random walk restart
(RWR) of the input graph using the input matrix as seeds; 2) calculation of contact strength (inner
products of RWR-smoothed columns of input matrix); 3) estimation of the contact signficance by a
randomalisation procedure. It supports two methods how to use RWR: ’direct’ for directly applying
RWR in the given seeds; ’indirectly’ for first pre-computing affinity matrix of the input graph, and
then deriving the affinity score. Parallel computing is also supported for Linux or Mac operating
systems.

Usage

dRWRpipeline(
data,
g,
method = c("direct", "indirect"),
normalise = c("laplacian", "row", "column", "none"),
restart = 0.75,
normalise.affinity.matrix = c("none", "quantile"),
permutation = c("random", "degree"),
num.permutation = 10,
p.adjust.method = c("BH", "BY", "bonferroni", "holm", "hochberg",
"hommel"),
adjp.cutoff = 0.05,
parallel = TRUE,
multicores = NULL,
verbose = T
)

Arguments

data an input gene-sample data matrix used for seeds. Each value in input gene-
sample matrix does not necessarily have to be binary (non-zeros will be used as
a weight, but should be non-negative for easy interpretation).

g an object of class "igraph" or "graphNEL"
method the method used to calculate RWR. It can be ’direct’ for directly applying RWR,

’indirect’ for indirectly applying RWR (first pre-compute affinity matrix and
then derive the affinity score)

normalise the way to normalise the adjacency matrix of the input graph. It can be ’lapla-
cian’ for laplacian normalisation, ’row’ for row-wise normalisation, ’column’
for column-wise normalisation, or ’none’

56 dRWRpipeline

restart the restart probability used for RWR. The restart probability takes the value from
0 to 1, controlling the range from the starting nodes/seeds that the walker will
explore. The higher the value, the more likely the walker is to visit the nodes
centered on the starting nodes. At the extreme when the restart probability is
zero, the walker moves freely to the neighbors at each step without restarting
from seeds, i.e., following a random walk (RW)

normalise.affinity.matrix

the way to normalise the output affinity matrix. It can be ’none’ for no normali-
sation, ’quantile’ for quantile normalisation to ensure that columns (if multiple)
of the output affinity matrix have the same quantiles

permutation how to do permutation. It can be ’degree’ for degree-preserving permutation,
’random’ for permutation in random

num.permutation

the number of permutations used to for generating the distribution of contact
strength under randomalisation

p.adjust.method

the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni",
"holm", "hochberg" and "hommel". The first two methods "BH" (widely used)
and "BY" control the false discovery rate (FDR: the expected proportion of false
discoveries amongst the rejected hypotheses); the last four methods "bonfer-
roni", "holm", "hochberg" and "hommel" are designed to give strong control of
the family-wise error rate (FWER). Notes: FDR is a less stringent condition
than FWER

adjp.cutoff the cutoff of adjusted pvalue to construct the contact graph
parallel logical to indicate whether parallel computation with multicores is used. By de-

fault, it sets to true, but not necessarily does so. It will depend on whether these
two packages "foreach" and "doParallel" have been installed. It can be installed
via: source("http://bioconductor.org/biocLite.R"); biocLite(c("foreach","doParallel")).
If not yet installed, this option will be disabled

multicores an integer to specify how many cores will be registered as the multicore parallel
backend to the ’foreach’ package. If NULL, it will use a half of cores available in
a user’s computer. This option only works when parallel computation is enabled

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

an object of class "dContact", a list with following components:

• ratio: a symmetric matrix storing ratio (the observed against the expected) between pairwise
samples

• zscore: a symmetric matrix storing zscore between pairwise samples
• pval: a symmetric matrix storing pvalue between pairwise samples
• adjpval: a symmetric matrix storing adjusted pvalue between pairwise samples
• cgraph: the constructed contact graph (as a ’igraph’ object) under the cutoff of adjusted value
• Amatrix: a pre-computated affinity matrix when using ’inderect’ method; NULL otherwise
• call: the call that produced this result

dSVDsignif 57

Note

The choice of which method to use RWR depends on the number of seed sets and the number of
permutations for statistical test. If the total product of both numbers are huge, it is better to use
’indrect’ method (for a single run). However, if the user wants to re-use pre-computed affinity
matrix (ie. re-use the input graph a lot), then it is highly recommended to sequentially use dRWR and
dRWRcontact instead.

See Also

dRWR, dRWRcontact, dCheckParallel

Examples

Not run:
1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)
V(subg)$name <- 1:vcount(subg)

3) estimate RWR dating based sample relationships
define sets of seeds as data
each seed with equal weight (i.e. all non-zero entries are '1')
aSeeds <- c(1,0,1,0,1)
bSeeds <- c(0,0,1,0,1)
data <- data.frame(aSeeds,bSeeds)
rownames(data) <- 1:5
calcualte their two contact graph
dContact <- dRWRpipeline(data=data, g=subg, parallel=FALSE)
dContact

End(Not run)

dSVDsignif Function to obtain SVD-based gene significance from the input gene-
sample matrix

Description

dSVDsignif is supposed to obtain gene signficance from the given gene-sample matrix according
to singular value decomposition (SVD)-based method. The method includes: 1) singular value
decomposition of the input matrix; 2) determination of the eigens in consideration (if not given); 3)
construction of the gene-specific project vector based on the considered eigens; 4) calculation of the
distance statistic from the projection vector to zero point vector; and 5) based on distance statistic
to obtain the gene significance.

58 dSVDsignif

Usage

dSVDsignif(
data,
num.eigen = NULL,
pval.eigen = 0.01,
signif = c("fdr", "pval"),
orient.permutation = c("row", "column", "both"),
num.permutation = 100,
fdr.procedure = c("stepup", "stepdown"),
verbose = T
)

Arguments

data an input gene-sample data matrix used for singular value decomposition

num.eigen an integer specifying the number of eigens in consideration. If NULL, this num-
ber will be automatically decided on based on the observed relative eigenexpres-
sion against randomised relative eigenexpression calculated from a list (here
100) of permutated input matrix

pval.eigen p-value used to call those eigens as dominant. This parameter is used only
when parameter ’num.eigen’ is NULL. Here, p-value is calcualted to assess how
likely the observed relative eigenexpression are more than the maximum relative
eigenexpression calculated from permutated matrix

signif the singificance to return. It can be either "pval" for using the p-value as the
gene significance, or "fdr" for using the fdr as the gene significance

orient.permutation

the orientation of matrix being permutated. It can be either "row" to permutate
values within each row, or "column" to permutate values within each column, or
"both" to permutate values both within rows and columns. Notably, when using
the p-value as the gene significance, it is always to permutate values within each
row.

num.permutation

an integer specifying how many permutations are used

fdr.procedure the procedure to adjust the fdr. To ensure that the high distance statistic the
more significance, the fdr should be adjusted either using "stepup" for step-up
procedure (from the most significant to the least significant) or using "stepdown"
for step-down procedure (from the least significant to the most significant)

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to true for display

Value

a vector storing gene significance

Note

none

ig.HPPA 59

See Also

dFDRscore

Examples

Not run:
1) generate data with an iid matrix of 1000 x 9
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))

2) calculate the significance according to SVD
using "fdr" significance
fdr <- dSVDsignif(data, signif="fdr", num.permutation=10)
using "pval" significance
pval <- dSVDsignif(data, signif="pval", num.permutation=10)

End(Not run)

ig.HPPA Human Phenotype Phenotypic Abnormality (HPPA).

Description

An R object that contains information on Human Phenotype Phenotypic Abnormality terms. These
terms are organised as a direct acyclic graph (DAG), which is further stored as an object of the
class ’igraph’ (see http://igraph.org/r/doc/aaa-igraph-package.html). This data is pre-
pared based on http://purl.obolibrary.org/obo/hp.obo.

Usage

data(ig.HPPA)

Value

an object of class "igraph". As a direct graph, it has attributes to vertices/nodes and edges:

• vertex attributes: "name" (i.e. "Term ID"), "term_id" (i.e. "Term ID"), "term_name" (i.e
"Term Name") and "term_distance" (i.e. Term Distance: the distance to the root; always 0 for
the root itself)

• edge attributes: "relation" (either ’is_a’ or ’part_of’)

References

Robinson et al. (2012) The Human Phenotype Ontology: a tool for annotating and analyzing human
hereditary disease. Am J Hum Genet, 83:610-615.

http://igraph.org/r/doc/aaa-igraph-package.html
http://purl.obolibrary.org/obo/hp.obo

60 org.Hs.egHPPA

Examples

ig.HPPA <- dRDataLoader(RData='ig.HPPA')
ig.HPPA

org.Hs.egHPPA Annotations of Human Entrez Genes (EG) by Human Phenotype Phe-
notypic Abnormality (HPPA).

Description

An R object that contains associations between HPPA terms and Human Entrez Genes. This data is
first prepared based on http://purl.obolibrary.org/obo/hp.obo and http://compbio.charite.
de/hudson/job/hpo.annotations.monthly/lastStableBuild/artifact/annotation/ALL_SOURCES_
ALL_FREQUENCIES_genes_to_phenotype.txt.

Usage

data(org.Hs.egHPPA)

Value

an object of class "GS", a list with following components:

• set_info: a matrix of nSet X 4 containing gene set information, where nSet is the number
of gene sets (i.e. HPPA terms), and the 4 columns are "setID" (i.e. "Term ID"), "name" (i.e.
"Term Name"), "namespace" and "distance"

• gs: a list of gene sets, each storing gene members thereof. Always, gene sets are identified by
"setID" and gene members identified by "Entrez ID"

References

Robinson et al. (2012) The Human Phenotype Ontology: a tool for annotating and analyzing human
hereditary disease. Am J Hum Genet, 83:610-615.

Examples

org.Hs.egHPPA <- dRDataLoader(RData='org.Hs.egHPPA')
names(org.Hs.egHPPA)

http://purl.obolibrary.org/obo/hp.obo
http://compbio.charite.de/hudson/job/hpo.annotations.monthly/lastStableBuild/artifact/annotation/ALL_SOURCES_ALL_FREQUENCIES_genes_to_phenotype.txt
http://compbio.charite.de/hudson/job/hpo.annotations.monthly/lastStableBuild/artifact/annotation/ALL_SOURCES_ALL_FREQUENCIES_genes_to_phenotype.txt
http://compbio.charite.de/hudson/job/hpo.annotations.monthly/lastStableBuild/artifact/annotation/ALL_SOURCES_ALL_FREQUENCIES_genes_to_phenotype.txt

visBoxplotAdv 61

visBoxplotAdv Function to visualise a data frame using advanced boxplot

Description

visBoxplotAdv is supposed to visualise a data frame using advanced boxplot. In addition to box-
plot, a scatter plot is also drawn with various methods to avoid co-incident points so that each point
is visible (with fine-controling the color and plotting character). Also, these points can be pies or
thermometers, which allows an additional proportation data to be visualised as well.

Usage

visBoxplotAdv(
formula,
data,
orientation = c("vertical", "horizontal"),
method = c("center", "hex", "square", "swarm"),
corral = c("none", "gutter", "wrap", "random", "omit"),
corralWidth,
cex = 1,
spacing = 1,
breaks = NULL,
labels,
at = NULL,
add = FALSE,
log = FALSE,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
pch = c("circles", "thermometers", "pies")[1],
col = graphics::par("col"),
bg = NA,
pwpch = NULL,
pwcol = NULL,
pwbg = NULL,
pwpie = NULL,
do.plot = TRUE,
do.boxplot = TRUE,
boxplot.notch = FALSE,
boxplot.border = "#888888C0",
boxplot.col = "transparent",
...
)

62 visBoxplotAdv

Arguments

formula a formula, such as ’y ~ grp’, where ’y’ is a numeric vector of data values to be
split into groups according to the grouping variable ’grp’ (usually a factor)

data a data.frame (or list) from which the variables in ’formula’ should be taken.

orientation the orientation. It can be one of "vertical" for the vertical orientation, "horizon-
tal" for the horizontal orientation

method the method for arranging the points. It can be one of "swarm" for arranging
points in increasing order (if a point would overlap an existing point, it is shifted
sideways (along the group axis) by a minimal amount sufficient to avoid over-
lap), "center" for first discretizing the values along the data axis (in order to cre-
ate more efficient packing) and then using a square grid to produce a symmetric
swarm, "hex" for first discretization and then arranging points in a hexagonal
grid, and "square" for first discretization and then arranging points in a square
grid

corral the method to adjust points that would be placed outside their own group region.
It can be one of "none" for not adjusting runaway points, "gutter" for collect-
ing runaway points along the boundary between groups, "wrap" for wrapping
runaway points to produce periodic boundaries, "random" for placing runaway
points randomly in the region, and "omit" for omitting runaway points

corralWidth the width of the "corral" in user coordinates

cex size of points relative to the default. This must be a single value

spacing relative spacing between points

breaks breakpoints (optional). If NULL, breakpoints are chosen automatically

labels labels for each group. Recycled if necessary. By default, these are inferred from
the data

at numeric vector giving the locations where the swarms should be drawn; defaults
to ’1:n’ where n is the number of groups

add whether to add to an existing plot

log whether to use a logarithmic scale on the data axis

xlim limits for x-axis

ylim limits for y-axis

xlab labels for x-aixs

ylab labels for y-aixs

pch plotting characters, specified by group and recycled if necessary. In additon to
the convertional pch values, it can also be "circles", "thermometers", or "pies".
For "pies" (or "thermometers"), users can also specify the proportional values
(see below "pwpie") to visualise another information in the pie (or themometer)
chart

col plotting colors, specified by group and recycled if necessary

bg plotting background, specified by group and recycled if necessary

pwpch point-wise version of pch

pwcol point-wise version of col

visDAG 63

pwbg point-wise version of bg

pwpie point-wise proportion used when drawing pies or themometers

do.plot whether to draw main plot

do.boxplot whether to draw boxplot. It only works when the main plot is drawn

boxplot.notch whether to draw a notch in the boxplot. If the notches of two plots do not overlap
this is ’strong evidence’ that the two medians differ

boxplot.border the color for the outlines of the boxplots

boxplot.col the color for the bodies of the boxplots

... additional graphic parameters for the plot

Value

A data frame with plotting information. It has the same row names as the input data

Note

none

See Also

visBoxplotAdv

Examples

Not run:
#data(TCGA_mutations)
#pd <- Biobase::pData(TCGA_mutations)
only tumor types "LAML" or "BLCA"
#data <- pd[pd$TCGA_tumor_type=="LAML" | pd$TCGA_tumor_type=="BLCA",]
#labels <- levels(as.factor(data$TCGA_tumor_type))
colors for gender
#pwcol <- as.numeric((data$Gender))
pie for relative age
#pwpie <- data$Age/(max(data$Age))
#out <- visBoxplotAdv(formula=time~TCGA_tumor_type, data=data, pch="pies", pwcol=pwcol, pwpie=pwpie)
#legend("topright", legend=levels(data$Gender), box.col="transparent", pch=19, col=unique(pwcol))

End(Not run)

visDAG Function to visualise a direct acyclic graph (DAG) with node colorings
according to a named input data vector (if provided)

Description

visDAG is supposed to visualise a direct acyclic graph (DAG) with node colorings according to a
named input data vector (if provided)

64 visDAG

Usage

visDAG(
g,
data = NULL,
height = 7,
width = 7,
margin = rep(0.1, 4),
colormap = c("yr", "bwr", "jet", "gbr", "wyr", "br", "rainbow", "wb",
"lightyellow-orange"),
ncolors = 40,
zlim = NULL,
colorbar = T,
colorbar.fraction = 0.1,
newpage = T,
layout.orientation = c("left_right", "top_bottom", "bottom_top",
"right_left"),
node.info = c("none", "term_id", "term_name", "both",
"full_term_name"),
numChar = 15,
graph.node.attrs = NULL,
graph.edge.attrs = NULL,
node.attrs = NULL
)

Arguments

g an object of class "igraph"

data a named input data verctor used to color-code vertices/nodes. The input data
vector must have names, and these names should include all node names of
input graph, i.e. V(g)$name, since there is a mapping operation. The way of
how to color-code is to map values in the data onto the whole colormap (see the
next arguments: colormap, ncolors, zlim and colorbar)

height a numeric value specifying the height of device

width a numeric value specifying the width of device

margin margins as units of length 4 or 1

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb"
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color
names, e.g. "lightyellow-orange" (by default), "blue-black-yellow", "royalblue-
white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names
can be found in http://html-color-codes.info/color-names

ncolors the number of colors specified over the colormap

zlim the minimum and maximum z/data values for which colors should be plotted,
defaulting to the range of the finite values of z. Each of the given colors will be

http://html-color-codes.info/color-names

visDAG 65

used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

colorbar logical to indicate whether to append a colorbar. If data is null, it always sets to
false

colorbar.fraction

the relative fraction of colorbar block against the device size

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

layout.orientation

the orientation of the DAG layout. It can be one of "left_right" for the left-
right layout (viewed from the DAG root point), "top_bottom" for the top-bottom
layout, "bottom_top" for the bottom-top layout, and "right_left" for the right-left
layout

node.info tells the ontology term information used to label nodes. It can be one of "none"
for no node labeling, "term_id" for using Term ID, "term_name" for using Term
Name (the first 15 characters), "both" for using both of Term ID and Name (the
first 15 characters), and "full_term_name" for using the full Term Name

numChar a positive integer specifying wrap width of node labelling
graph.node.attrs

a list of global node attributes. These node attributes will be changed globally.
See ’Note’ below for details on the attributes

graph.edge.attrs

a list of global edge attributes. These edge attributes will be changed globally.
See ’Note’ below for details on the attributes

node.attrs a list of local edge attributes. These node attributes will be changed locally; as
such, for each attribute, the input value must be a named vector (i.e. using Term
ID as names). See ’Note’ below for details on the attributes

Value

An object of class ’Ragraph’

Note

A list of global node attributes used in "graph.node.attrs":

• "shape": the shape of the node: "circle", "rectangle", "rect", "box" and "ellipse"

• "fixedsize": the logical to use only width and height attributes. By default, it sets to true for
not expanding for the width of the label

• "fillcolor": the background color of the node

• "color": the color for the node, corresponding to the outside edge of the node

• "fontcolor": the color for the node text/labelings

• "fontsize": the font size for the node text/labelings

• "height": the height (in inches) of the node: 0.5 by default

• "width": the width (in inches) of the node: 0.75 by default

66 visDAG

• "style": the line style for the node: "solid", "dashed", "dotted", "invis" and "bold"

A list of global edge attributes used in "graph.edge.attrs":

• "color": the color of the edge: gray by default

• "weight": the weight of the edge: 1 by default

• "style": the line style for the edge: "solid", "dashed", "dotted", "invis" and "bold"

A list of local node attributes used in "node.attrs" (only those named Term IDs will be changed
locally!):

• "label": a named vector specifying the node text/labelings

• "shape": a named vector specifying the shape of the node: "circle", "rectangle", "rect", "box"
and "ellipse"

• "fixedsize": a named vector specifying whether it sets to true for not expanding for the width
of the label

• "fillcolor": a named vector specifying the background color of the node

• "color": a named vector specifying the color for the node, corresponding to the outside edge
of the node

• "fontcolor": a named vector specifying the color for the node text/labelings

• "fontsize": a named vector specifying the font size for the node text/labelings

• "height": a named vector specifying the height (in inches) of the node: 0.5 by default

• "width": a named vector specifying the width (in inches) of the node: 0.75 by default

• "style": a named vector specifying the line style for the node: "solid", "dashed", "dotted",
"invis" and "bold"

See Also

dDAGreverse, dDAGroot, dDAGinduce, dDAGlevel

Examples

Not run:
1) load HPPA as igraph object
ig.HPPA <-dRDataLoader(RData='ig.HPPA')
g <- ig.HPPA

2) randomly select vertices as the query nodes
the more common, the query nodes can be term id
nodes_query <- V(g)[sample(V(g),5)]$name

3) obtain the induced subgraph based on all possible paths
subg <- dDAGinduce(g, nodes_query, path.mode="all_paths")

4) just visualise the induced subgraph
visDAG(g=subg, node.info="both")

5) color-code nodes/terms according to its level

visGSEA 67

data <- dDAGlevel(subg)
visDAG(g=subg, data=data, node.info="both")
5a) globally change the node and edge attributes
visDAG(g=subg, data=data, layout.orientation="top_bottom",
node.info="both",
graph.node.attrs=list(fixedsize=FALSE,shape="box",color="transparent"),
graph.edge.attrs=list(color="black"))
5b) locally highlight the root by changing its shape into "box"
root <- dDAGroot(subg)
root.shape <- "box"
names(root.shape) <- V(subg)[root]$name
visDAG(g=subg, data=data, node.info="both",
node.attrs=list(shape=root.shape))
5c) further locally remove the root labelling
root.label <- ""
names(root.label) <- V(subg)[root]$name
visDAG(g=subg, data=data, node.info="both",
node.attrs=list(shape=root.shape,label=root.label))

End(Not run)

visGSEA Function to visualise running enrichment score for a given sample and
a gene set

Description

visGSEA is supposed to visualise running enrichment score for a given sample and a gene set. To
help understand the underlying running enrichment score, the input gene scores are also displayed.
Positions for members in the given gene set are color-coded in both displays (red line for the positive
gene scores, and green line for the negative).

Usage

visGSEA(
eTerm,
which_sample = 1,
which_term = "GO:0006281",
plot = T,
orientation = c("vertical", "horizontal"),
hit.linewidth = 0.5,
newpage = T
)

Arguments

eTerm an object of class "eTerm"

which_sample which sample will be used. It can be index or sample names

68 visNet

which_term which term will be used. It can be index or term ID or term names

plot logical to indicate whether to plot

orientation the orientation of the plots. It can be either "vertical" (default) or "horizontal"

hit.linewidth the line width for the hits (ie genes in the gene set)

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

Value

leading genes (being sorted)

Note

none

See Also

dGSEA, dGSEAview

Examples

#visGSEA(eTerm, which_sample=1, which_term=1)

visNet Function to visualise a graph object of class "igraph" or "graphNEL"

Description

visNet is supposed to visualise a graph object of class "igraph" or "graphNEL". It also allows the
color-coding of vertices by providing the input pattern.

Usage

visNet(
g,
pattern = NULL,
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
colorbar = T,
newpage = T,
glayout = layout.fruchterman.reingold,
vertex.frame.color = NA,
vertex.size = NULL,
vertex.color = NULL,
vertex.shape = NULL,
vertex.label = NULL,

visNet 69

vertex.label.cex = NULL,
vertex.label.dist = NULL,
vertex.label.color = "black",
vertex.label.family = "sans",
...
)

Arguments

g an object of class "igraph" or "graphNEL"

pattern a numeric vector used to color-code vertices/nodes. Notably, if the input vector
contains names, then these names should include all node names of input graph,
i.e. V(g)$name, since there is a mapping operation. After mapping, the length
of the patern vector should be the same as the number of nodes of input graph;
otherwise, this input pattern will be ignored. The way of how to color-code is
to map values in the pattern onto the whole colormap (see the next arguments:
colormap, ncolors, zlim and colorbar)

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb"
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-
white-darkviolet". A list of standard color names can be found in http://
html-color-codes.info/color-names

ncolors the number of colors specified over the colormap

zlim the minimum and maximum z/patttern values for which colors should be plotted,
defaulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

colorbar logical to indicate whether to append a colorbar. If pattern is null, it always sets
to false

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

glayout either a function or a numeric matrix configuring how the vertices will be placed
on the plot. If layout is a function, this function will be called with the graph
as the single parameter to determine the actual coordinates. This function can
be one of "layout.auto", "layout.random", "layout.circle", "layout.sphere", "lay-
out.fruchterman.reingold", "layout.kamada.kawai", "layout.spring", "layout.reingold.tilford",
"layout.fruchterman.reingold.grid", "layout.lgl", "layout.graphopt", "layout.svd"
and "layout.norm". A full explanation of these layouts can be found in http:
//igraph.org/r/doc/layout_nicely.html

vertex.frame.color

the color of the frame of the vertices. If it is NA, then there is no frame

vertex.size the size of each vertex. If it is a vector, each vertex may differ in size

http://html-color-codes.info/color-names
http://html-color-codes.info/color-names
http://igraph.org/r/doc/layout_nicely.html
http://igraph.org/r/doc/layout_nicely.html

70 visNet

vertex.color the fill color of the vertices. If it is NA, then there is no fill color. If the pattern
is given, this setup will be ignored

vertex.shape the shape of each vertex. It can be one of "circle", "square", "csquare", "rectan-
gle", "crectangle", "vrectangle", "pie" (http://igraph.org/r/doc/vertex.
shape.pie.html), "sphere", and "none". If it sets to NULL, these vertices with
negative will be "csquare" and the rest "circle".

vertex.label the label of the vertices. If it is NA, then there is no label. The default vertex
labels are the name attribute of the nodes

vertex.label.cex

the font size of vertex labels.
vertex.label.dist

the distance of the label from the center of the vertex. If it is 0 then the label is
centered on the vertex. If it is 1 then the label is displayed beside the vertex.

vertex.label.color

the color of vertex labels.
vertex.label.family

the font family of vertex labels

... additional graphic parameters. See http://igraph.org/r/doc/plot.common.
html for the complete list.

Value

invisible

Note

none

See Also

dNetFind

Examples

1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

3) visualise the subg with vertices being color-coded by the pattern
pattern <- runif(vcount(subg))
names(pattern) <- V(subg)$name
visNet(g=subg, pattern=pattern, colormap="bwr", vertex.shape="sphere")

http://igraph.org/r/doc/vertex.shape.pie.html
http://igraph.org/r/doc/vertex.shape.pie.html
http://igraph.org/r/doc/plot.common.html
http://igraph.org/r/doc/plot.common.html

visNetAnimate 71

visNetAnimate Function to animate the same graph but with multiple graph node col-
orings according to input data matrix

Description

visNetAnimate is supposed to animate the same graph but with multiple colorings according to
input data matrix. The output can be a pdf file containing a list of frames/images, a mp4 video
file or a gif file. To support video output file, the software ’ffmpeg’ must be first installed (also
put its path into the system PATH variable; see Note). To support gif output file, the software
’ImageMagick’ must be first installed (also put its path into the system PATH variable; see Note).

Usage

visNetAnimate(
g,
data,
filename = "visNetAnimate",
filetype = c("pdf", "mp4", "gif"),
image.type = c("jpg", "png"),
num.frame = ncol(data),
sec_per_frame = 1,
height.device = 7,
margin = rep(0.1, 4),
border.color = "#EEEEEE",
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
colorbar = T,
colorbar.fraction = 0.25,
glayout = layout.fruchterman.reingold,
glayout.dynamics = F,
mtext.side = 3,
mtext.adj = 0,
mtext.cex = 1,
mtext.font = 2,
mtext.col = "black",
...
)

Arguments

g an object of class "igraph" or "graphNEL"

data an input data matrix used to color-code vertices/nodes. One column corresponds
to one graph node coloring. The input matrix must have row names, and these
names should include all node names of input graph, i.e. V(g)$name, since there
is a mapping operation. After mapping, the length of the patern vector should be

72 visNetAnimate

the same as the number of nodes of input graph. The way of how to color-code
is to map values in the pattern onto the whole colormap (see the next arguments:
colormap, ncolors, zlim and colorbar)

filename the without-extension part of the name of the output file. By default, it is ’vis-
NetAnimate’

filetype the type of the output file, i.e. the extension of the output file name. It can be
one of either ’pdf’ for the pdf file, ’mp4’ for the mp4 video file, ’gif’ for the gif
file

image.type the type of the image files temporarily generated. It can be one of either ’jpg’ or
’png’. These temporary image files are used for producing mp4/gif output file.
The reason doing so is to accommodate that sometimes only one of image types
is supported so that you can choose the right one

num.frame a numeric value specifying the number of frames/images. By default, it sets to
the number of columns in the input data matrix

sec_per_frame a numeric value specifying how long (seconds) it takes to stream a frame/image.
This argument only works when producing mp4 video or gif file.

height.device a numeric value specifying the height (or width) of device/frame/image.

margin margins as units of length 4 or 1

border.color the border color of each figure

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb"
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-
white-darkviolet". A list of standard color names can be found in http://
html-color-codes.info/color-names

ncolors the number of colors specified over the colormap

zlim the minimum and maximum z/patttern values for which colors should be plotted,
defaulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

colorbar logical to indicate whether to append a colorbar. If pattern is null, it always sets
to false

colorbar.fraction

the relative fraction of colorbar block against the figure block

glayout either a function or a numeric matrix configuring how the vertices will be placed
on the plot. If layout is a function, this function will be called with the graph
as the single parameter to determine the actual coordinates. This function can
be one of "layout.auto", "layout.random", "layout.circle", "layout.sphere", "lay-
out.fruchterman.reingold", "layout.kamada.kawai", "layout.spring", "layout.reingold.tilford",
"layout.fruchterman.reingold.grid", "layout.lgl", "layout.graphopt", "layout.svd"
and "layout.norm". A full explanation of these layouts can be found in http:
//igraph.org/r/doc/layout_nicely.html

http://html-color-codes.info/color-names
http://html-color-codes.info/color-names
http://igraph.org/r/doc/layout_nicely.html
http://igraph.org/r/doc/layout_nicely.html

visNetAnimate 73

glayout.dynamics

logical to indicate whether graph layout should be dynamic. By default, it al-
ways sets to false. If YES, the Fruchterman-Reingold layout algorithm http:
//igraph.org/r/doc/layout_with_fr.html will be used to stimulate the dy-
namic layout

mtext.side on which side of the mtext plot (1=bottom, 2=left, 3=top, 4=right)

mtext.adj the adjustment for mtext alignment (0 for left or bottom alignment, 1 for right
or top alignment)

mtext.cex the font size of mtext labels

mtext.font the font weight of mtext labels

mtext.col the color of mtext labels

... additional graphic parameters. See http://igraph.org/r/doc/plot.common.
html for the complete list.

Value

If specifying the output file name (see argument ’filename’ above), the output file is either ’file-
name.pdf’ or ’filename.mp4’ or ’filename.gif’ in the current working directory. If no output file
name specified, by default the output file is either ’visNetAnimate.pdf’ or ’visNetAnimate.mp4’ or
’visNetAnimate.gif’

Note

When producing mp4 video, this function requires the installation of the software ’ffmpeg’ at
https://www.ffmpeg.org. Shell command lines for ffmpeg installation in Terminal (for both Linux
and Mac) are:

• 1) wget -O ffmpeg.tar.gz http://www.ffmpeg.org/releases/ffmpeg-2.7.1.tar.gz

• 2) mkdir ~/ffmpeg | tar xvfz ffmpeg.tar.gz -C ~/ffmpeg --strip-components=1

• 3) cd ffmpeg

• 4a) # Assuming you want installation with a ROOT (sudo) privilege:
./configure --disable-yasm

• 4b) # Assuming you want local installation without ROOT (sudo) privilege:
./configure --disable-yasm --prefix=$HOME/ffmpeg

• 5) make

• 6) make install

• 7) # add the system PATH variable to your ~/.bash_profile file if you follow 4b) route:
export PATH=$HOME/ffmpeg:$PATH

• 8) # make sure ffmpeg has been installed successfully:
ffmpeg -h

When producing gif file, this function requires the installation of the software ’ImageMagick’ at
http://www.imagemagick.org. Shell command lines for ImageMagick installation in Terminal are:

• 1) wget http://www.imagemagick.org/download/ImageMagick.tar.gz

• 2) mkdir ~/ImageMagick | tar xvzf ImageMagick.tar.gz -C ~/ImageMagick --strip-components=1

http://igraph.org/r/doc/layout_with_fr.html
http://igraph.org/r/doc/layout_with_fr.html
http://igraph.org/r/doc/plot.common.html
http://igraph.org/r/doc/plot.common.html

74 visNetAnimate

• 3) cd ImageMagick

• 4) ./configure --prefix=$HOME/ImageMagick

• 5) make

• 6) make install

• 7) # add the system PATH variable to your ~/.bash_profile file.
For Linux:
export MAGICK_HOME=$HOME/ImageMagick
export PATH=$MAGICK_HOME/bin:$PATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:+$LD_LIBRARY_PATH:}$MAGICK_HOME/lib
For Mac:
export MAGICK_HOME=$HOME/ImageMagick
export PATH=$MAGICK_HOME/bin:$PATH
export DYLD_LIBRARY_PATH=$MAGICK_HOME/lib/

• 8a) # check configuration:
convert -list configure

• 8b) # check image format supported:
identify -list format

• Tips:
Prior to 4), please make sure libjpeg and libpng are installed. If NOT, for Mac try this:
brew install libjpeg libpng
To check whether ImageMagick does work, please get additional information from:
identify -list format
convert -list configure
On details, please refer to http://www.imagemagick.org/script/advanced-unix-installation.
php

See Also

visNetMul

Examples

Not run:
1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

3) visualise the module with vertices being color-coded by scores
nnodes <- vcount(subg)
nsamples <- 10
data <- matrix(runif(nnodes*nsamples), nrow=nnodes, ncol=nsamples)
rownames(data) <- V(subg)$name
output as a pdf file
visNetAnimate(g=subg, data=data, filetype="pdf")
output as a mp4 file but with dynamic layout
visNetAnimate(g=subg, data=data, filetype="mp4", glayout.dynamics=TRUE)

http://www.imagemagick.org/script/advanced-unix-installation.php
http://www.imagemagick.org/script/advanced-unix-installation.php

visNetArc 75

output as a gif file but with dynamic layout
visNetAnimate(g=subg, data=data, filetype="gif", glayout.dynamics=TRUE)

End(Not run)

visNetArc Function to visualise an igraph object via arc diagram

Description

visNetArc is supposed to visualise a graph object of class "igraph" via arc diagram in one-dimensional
layout. More precisely, it displays vertices (nodes) along an axis, with edges linked by arcs. With
proper ordering of vertices (e.g. according to communities and degrees), arc diagram is able to
identify clusters and bridges (as effective as two-dimensional layout). One advantage of using arc
diagram is to allow for easy annotations along vertices.

Usage

visNetArc(
g,
orientation = c("vertical", "horizontal"),
newpage = T,
ordering = NULL,
labels = V(g)$name,
vertex.label.color = "black",
vertex.label.cex = 1,
vertex.color = "transparent",
vertex.frame.color = "black",
vertex.size = log(degree(g)) + 0.1,
vertex.pch = 21,
vertex.lwd = 1,
edge.color = "grey",
edge.width = 1,
edge.lty = 1,
...
)

Arguments

g an object of class "igraph"

orientation the orientation of the plots. It can be either "vertical" (default) or "horizontal"

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

ordering a numeric vector about the ordering of vertices. It is optional. It is highly rec-
ommend to order vertices according to communities and degrees

labels the label of the vertices. The default vertex labels are the name attribute of the
nodes

76 visNetArc

vertex.label.color

the color of vertex labels
vertex.label.cex

the font size of vertex labels

vertex.color the fill color of the vertices. The default vertex colors are transparent
vertex.frame.color

the color of the frame of the vertices. The default vertex frame colors are black

vertex.size the size of each vertex. By default, it is decided according to node degrees

vertex.pch the shape of each vertex. Either an integer specifying a symbol or a single char-
acter to be used as the default in plotting points. See http://www.statmethods.
net/advgraphs/parameters.html

vertex.lwd line width for the vertices (default 1)

edge.color the color of the edges (default "grey")

edge.width line width for the edges (default 1)

edge.lty line type for the edges (default 1)

... additional graphic parameters associated with ’mtext’

Value

invisible

Note

none

See Also

visNet

Examples

1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/80)

2) produce the induced subgraph only based on the nodes in query
g <- dNetInduce(g, V(g), knn=0)

3) color nodes according to communities identified via a spin-glass model and simulated annealing
com <- spinglass.community(g, spins=4)
vgroups <- com$membership
palette.name <- visColormap(colormap="rainbow")
vcolors <- palette.name(length(com))[vgroups]

4) size nodes according to degrees
vdegrees <- igraph::degree(g)

5) sort nodes: first by communities and then degrees
tmp <- data.frame(ind=1:vcount(g), vgroups, vdegrees)

http://www.statmethods.net/advgraphs/parameters.html
http://www.statmethods.net/advgraphs/parameters.html

visNetCircle 77

ordering <- tmp[order(vgroups,vdegrees),]$ind

6) visualise graph using 1-dimensional arc diagram
visNetArc(g, ordering=ordering, labels=V(g)$name,
vertex.label.color=vcolors,
vertex.color=vcolors, vertex.frame.color=vcolors,
vertex.size=log(vdegrees)+0.1)

7) as comparison, also visualise graph on 2-dimensional layout
visNet(g, colormap="bwr", layout=layout.kamada.kawai(g),
vertex.label=V(g)$name,
vertex.color=vcolors, vertex.frame.color=vcolors,
vertex.shape="sphere")

visNetCircle Function to visualise an igraph object via circle diagram

Description

visNetCircle is supposed to visualise a graph object of class "igraph" via circle diagram. For
better visualisation, ordering of vertices is determined according to communities and degrees.

Usage

visNetCircle(
g,
com,
circles = c("single", "multiple"),
newpage = T,
ordering = NULL,
colormap = c("rainbow", "bwr", "jet", "gbr", "wyr", "br", "yr", "wb"),
vertex.label = V(g)$name,
vertex.size = log(igraph::degree(g)) + 2,
vertex.label.color = "black",
vertex.label.cex = 0.6,
vertex.label.dist = 0.75,
vertex.shape = "sphere",
edge.width = 1,
edge.lty = 1,
edge.color.within = "grey",
edge.color.crossing = "black",
mark.shape = 1,
mark.expand = 10,
...
)

78 visNetCircle

Arguments

g an object of class "igraph"
com an object of class "communities" (see http://igraph.org/r/doc/communities.

html)
circles how circles are drawn in the plot. It can be either "single" for all communities

being drawn in a single circle (by default) or "multiple" for communities being
drawn in the different circles (i.e. one circle per community)

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

ordering a numeric vector about the ordering of vertices. It is optional. It is highly rec-
ommend to order vertices according to communities and degrees

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb"
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-
white-darkviolet". A list of standard color names can be found in http://
html-color-codes.info/color-names

vertex.label the label of the vertices. The default vertex labels are the name attribute of the
nodes

vertex.size the size of each vertex. By default, it is decided according to node degrees
vertex.label.color

the color of vertex labels
vertex.label.cex

the font size of vertex labels
vertex.label.dist

the distance of the label from the center of the vertex. If it is 0 then the label is
centered on the vertex. If it is 1 then the label is displayed beside the vertex.

vertex.shape the shape of each vertex. It can be one of "circle", "square", "csquare", "rectan-
gle", "crectangle", "vrectangle", "pie" (http://igraph.org/r/doc/vertex.
shape.pie.html), "sphere", and "none". If it sets to NULL, these vertices with
negative will be "csquare" and the rest "circle".

edge.width line width for the edges (default 1)
edge.lty line type for the edges (default 1)
edge.color.within

the color for edges within a community (default "grey")
edge.color.crossing

the color for edges between communities (default "black")
mark.shape a numeric scalar or vector controlling the smoothness of the vertex group mark-

ing polygons. Its possible values are between -1 (fully polygons) and 1 (fully
smoothness)

mark.expand a numeric scalar or vector, the size of the border around the marked vertex
groups

... additional graphic parameters. See http://igraph.org/r/doc/plot.common.
html for the complete list.

http://igraph.org/r/doc/communities.html
http://igraph.org/r/doc/communities.html
http://html-color-codes.info/color-names
http://html-color-codes.info/color-names
http://igraph.org/r/doc/vertex.shape.pie.html
http://igraph.org/r/doc/vertex.shape.pie.html
http://igraph.org/r/doc/plot.common.html
http://igraph.org/r/doc/plot.common.html

visNetCircle 79

Value

invisible

Note

none

See Also

visNet

Examples

Not run:
1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/80)

2) produce the induced subgraph only based on the nodes in query
g <- dNetInduce(g, V(g), knn=0)

3) color nodes according to communities identified via a spin-glass model and simulated annealing
com <- spinglass.community(g, spins=4)
vgroups <- com$membership
palette.name <- visColormap(colormap="rainbow")
mcolors <- palette.name(length(com))
vcolors <- mcolors[vgroups]

4) size nodes according to degrees
vdegrees <- igraph::degree(g)

5) sort nodes: first by communities and then degrees
tmp <- data.frame(ind=1:vcount(g), vgroups, vdegrees)
ordering <- tmp[order(vgroups,vdegrees),]$ind

6) visualise graph using circle diagram
6a) drawn into a single circle
visNetCircle(g=g, colormap="bwr", com=com, ordering=ordering)

6b) drawn into multlpe circles (one circle per community)
visNetCircle(g=g, colormap="bwr", com=com, circles="multiple",
ordering=ordering)

7) as comparison, also visualise graph on 2-dimensional layout
mark.groups <- communities(com)
mark.col <- visColoralpha(mcolors, alpha=0.2)
mark.border <- visColoralpha(mcolors, alpha=0.2)
edge.color <- c("grey", "black")[crossing(com,g)+1]
visNet(g, colormap="bwr", glayout=layout.fruchterman.reingold,
vertex.color=vcolors,
vertex.frame.color=vcolors, vertex.shape="sphere",
mark.groups=mark.groups, mark.col=mark.col,
mark.border=mark.border, mark.shape=1, mark.expand=10,

80 visNetMul

edge.color=edge.color)

End(Not run)

visNetMul Function to visualise the same graph but with multiple graph node
colorings according to input data matrix

Description

visNetMul is supposed to visualise the same graph but with multiple colorings according to input
data matrix

Usage

visNetMul(
g,
data,
height = 7,
margin = rep(0.1, 4),
border.color = "#EEEEEE",
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
colorbar = T,
colorbar.fraction = 0.25,
newpage = T,
glayout = layout.fruchterman.reingold,
mtext.side = 3,
mtext.adj = 0,
mtext.cex = 1,
mtext.font = 2,
mtext.col = "black",
...
)

Arguments

g an object of class "igraph" or "graphNEL"

data an input data matrix used to color-code vertices/nodes. One column corresponds
to one graph node coloring. The input matrix must have row names, and these
names should include all node names of input graph, i.e. V(g)$name, since there
is a mapping operation. After mapping, the length of the patern vector should be
the same as the number of nodes of input graph. The way of how to color-code
is to map values in the pattern onto the whole colormap (see the next arguments:
colormap, ncolors, zlim and colorbar)

height a numeric value specifying the height of device

visNetMul 81

margin margins as units of length 4 or 1

border.color the border color of each figure

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb"
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-
white-darkviolet". A list of standard color names can be found in http://
html-color-codes.info/color-names

ncolors the number of colors specified over the colormap

zlim the minimum and maximum z/patttern values for which colors should be plotted,
defaulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

colorbar logical to indicate whether to append a colorbar. If pattern is null, it always sets
to false

colorbar.fraction

the relative fraction of colorbar block against the figure block

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

glayout either a function or a numeric matrix configuring how the vertices will be placed
on the plot. If layout is a function, this function will be called with the graph
as the single parameter to determine the actual coordinates. This function can
be one of "layout.auto", "layout.random", "layout.circle", "layout.sphere", "lay-
out.fruchterman.reingold", "layout.kamada.kawai", "layout.spring", "layout.reingold.tilford",
"layout.fruchterman.reingold.grid", "layout.lgl", "layout.graphopt", "layout.svd"
and "layout.norm". A full explanation of these layouts can be found in http:
//igraph.org/r/doc/layout_nicely.html

mtext.side on which side of the mtext plot (1=bottom, 2=left, 3=top, 4=right)

mtext.adj the adjustment for mtext alignment (0 for left or bottom alignment, 1 for right
or top alignment)

mtext.cex the font size of mtext labels

mtext.font the font weight of mtext labels

mtext.col the color of mtext labels

... additional graphic parameters. See http://igraph.org/r/doc/plot.common.
html for the complete list.

Value

invisible

Note

none

http://html-color-codes.info/color-names
http://html-color-codes.info/color-names
http://igraph.org/r/doc/layout_nicely.html
http://igraph.org/r/doc/layout_nicely.html
http://igraph.org/r/doc/plot.common.html
http://igraph.org/r/doc/plot.common.html

82 visNetReorder

See Also

visNet, visNetAnimate

Examples

1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/80)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

3) visualise the module with vertices being color-coded by scores
nnodes <- vcount(subg)
nsamples <- 10
data <- matrix(runif(nnodes*nsamples), nrow=nnodes, ncol=nsamples)
rownames(data) <- V(subg)$name
visNetMul(g=subg, colormap="bwr", data=data,
glayout=layout.fruchterman.reingold)

visNetReorder Function to visualise the multiple graph colorings reorded within a
sheet-shape rectangle grid

Description

visNetReorder is supposed to visualise the multiple graph colorings reorded within a sheet-shape
rectangle grid

Usage

visNetReorder(
g,
data,
sReorder,
height = 7,
margin = rep(0.1, 4),
border.color = "#EEEEEE",
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
colorbar = T,
colorbar.fraction = 0.5,
newpage = T,
glayout = layout.fruchterman.reingold,
mtext.side = 3,
mtext.adj = 0,
mtext.cex = 1,
mtext.font = 2,

visNetReorder 83

mtext.col = "black",
...
)

Arguments

g an object of class "igraph" or "graphNEL"

data an input data matrix used to color-code vertices/nodes. One column corresponds
to one graph node coloring. The input matrix must have row names, and these
names should include all node names of input graph, i.e. V(g)$name, since
there is a mapping operation. After mapping, the length of the pattern vector
should be the same as the number of nodes of input graph. The way of how to
color-code is to map values in the pattern onto the whole colormap (see the next
arguments: colormap, ncolors, zlim and colorbar)

sReorder an object of class "sReorder"

height a numeric value specifying the height of device

margin margins as units of length 4 or 1

border.color the border color of each figure

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb"
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-
white-darkviolet". A list of standard color names can be found in http://
html-color-codes.info/color-names

ncolors the number of colors specified over the colormap

zlim the minimum and maximum z/patttern values for which colors should be plotted,
defaulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

colorbar logical to indicate whether to append a colorbar. If pattern is null, it always sets
to false

colorbar.fraction

the relative fraction of colorbar block against the figure block

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

glayout either a function or a numeric matrix configuring how the vertices will be placed
on the plot. If layout is a function, this function will be called with the graph
as the single parameter to determine the actual coordinates. This function can
be one of "layout.auto", "layout.random", "layout.circle", "layout.sphere", "lay-
out.fruchterman.reingold", "layout.kamada.kawai", "layout.spring", "layout.reingold.tilford",
"layout.fruchterman.reingold.grid", "layout.lgl", "layout.graphopt", "layout.svd"
and "layout.norm". A full explanation of these layouts can be found in http:
//igraph.org/r/doc/layout_nicely.html

http://html-color-codes.info/color-names
http://html-color-codes.info/color-names
http://igraph.org/r/doc/layout_nicely.html
http://igraph.org/r/doc/layout_nicely.html

84 visNetReorder

mtext.side on which side of the mtext plot (1=bottom, 2=left, 3=top, 4=right)

mtext.adj the adjustment for mtext alignment (0 for left or bottom alignment, 1 for right
or top alignment)

mtext.cex the font size of mtext labels

mtext.font the font weight of mtext labels

mtext.col the color of mtext labels

... additional graphic parameters. See http://igraph.org/r/doc/plot.common.
html for the complete list.

Value

invisible

Note

none

See Also

visNet, dNetReorder

Examples

1) generate a random graph according to the ER model
g <- erdos.renyi.game(100, 1/100)

2) produce the induced subgraph only based on the nodes in query
subg <- dNetInduce(g, V(g), knn=0)

3) reorder the module with vertices being color-coded by input data
nnodes <- vcount(subg)
nsamples <- 10
data <- matrix(runif(nnodes*nsamples), nrow=nnodes, ncol=nsamples)
rownames(data) <- V(subg)$name
sReorder <- dNetReorder(g=subg, data, feature="node",
node.normalise="none")

4) visualise the module with vertices being color-coded by input data
visNetReorder(g=subg, colormap="bwr", data=data, sReorder)

http://igraph.org/r/doc/plot.common.html
http://igraph.org/r/doc/plot.common.html

Index

∗Topic datasets
ig.HPPA, 59
org.Hs.egHPPA, 60

dBUMfit, 3, 6, 41, 42
dBUMscore, 4, 4, 41, 42
dCheckParallel, 6, 14, 20, 52, 54, 57
dCommSignif, 7, 7
dContrast, 8
dDAGancestor, 9, 20
dDAGannotate, 10, 13
dDAGgeneSim, 6, 12, 20
dDAGinduce, 10, 11, 14, 14, 20, 66
dDAGlevel, 11, 16, 66
dDAGreverse, 16, 17, 17, 66
dDAGroot, 15, 16, 18, 18, 66
dDAGtermSim, 6, 14, 19
dDAGtip, 14, 21, 21
dEnricher, 22, 26, 27
dEnricherView, 25, 26
dFDRscore, 27, 42, 59
dFunArgs, 28
dGSEA, 29, 34, 36, 68
dGSEAview, 33, 33, 68
dGSEAwrite, 33, 35
dNetConfidence, 36
dNetFind, 37, 38, 42, 70
dNetInduce, 39, 40
dNetPipeline, 28, 29, 40
dNetReorder, 42, 84
dPvalAggregate, 45, 46
dRDataLoader, 47, 49
dRWR, 6, 50, 54, 57
dRWRcontact, 6, 52, 52, 57
dRWRpipeline, 6, 52, 55
dSVDsignif, 28, 57

ig.HPPA, 59

org.Hs.egHPPA, 60

visBoxplotAdv, 61, 63
visDAG, 63
visGSEA, 33, 67
visNet, 37, 68, 76, 79, 82, 84
visNetAnimate, 71, 82
visNetArc, 75
visNetCircle, 77
visNetMul, 74, 80
visNetReorder, 45, 82

85

	dBUMfit
	dBUMscore
	dCheckParallel
	dCommSignif
	dContrast
	dDAGancestor
	dDAGannotate
	dDAGgeneSim
	dDAGinduce
	dDAGlevel
	dDAGreverse
	dDAGroot
	dDAGtermSim
	dDAGtip
	dEnricher
	dEnricherView
	dFDRscore
	dFunArgs
	dGSEA
	dGSEAview
	dGSEAwrite
	dNetConfidence
	dNetFind
	dNetInduce
	dNetPipeline
	dNetReorder
	dPvalAggregate
	dRDataLoader
	dRWR
	dRWRcontact
	dRWRpipeline
	dSVDsignif
	ig.HPPA
	org.Hs.egHPPA
	visBoxplotAdv
	visDAG
	visGSEA
	visNet
	visNetAnimate
	visNetArc
	visNetCircle
	visNetMul
	visNetReorder
	Index

