
Package ‘doFuture’
March 31, 2022

Version 0.12.1

Title A Universal Foreach Parallel Adapter using the Future API of the
'future' Package

Depends foreach (>= 1.5.0), future (>= 1.22.1)

Imports globals, iterators, parallel, utils

Suggests doRNG (>= 1.8.2), markdown, R.rsp

VignetteBuilder R.rsp

Description Provides a '%dopar%' adapter such that any type of futures can
be used as backends for the 'foreach' framework.

License LGPL (>= 2.1)

LazyLoad TRUE

URL https://doFuture.futureverse.org,

https://github.com/HenrikBengtsson/doFuture

BugReports https://github.com/HenrikBengtsson/doFuture/issues

RoxygenNote 7.1.2

NeedsCompilation no

Author Henrik Bengtsson [aut, cre, cph]

Maintainer Henrik Bengtsson <henrikb@braju.com>

Repository CRAN

Date/Publication 2022-03-31 07:50:05 UTC

R topics documented:
doFuture . 2
registerDoFuture . 5

Index 7

1

https://doFuture.futureverse.org
https://github.com/HenrikBengtsson/doFuture
https://github.com/HenrikBengtsson/doFuture/issues

2 doFuture

doFuture doFuture: Foreach Parallel Adapter using Futures

Description

The doFuture package provides a %dopar% adapter for the foreach package such that any type
of future (that is supported by Future API of the future package) can be used for asynchronous
(parallel/distributed) or synchronous (sequential) processing.

Details

In other words, if a computational backend is supported via the Future API, it’ll be automatically
available for all functions and packages making using the foreach framework. Neither the devel-
oper nor the end user has to change any code.

Usage

To use futures with the foreach package, load doFuture, use registerDoFuture() to register
it to be used as a %dopar% adapter (no need to ever use %do%). After this, how and where the
computations are performed is controlled solely by the future strategy set, which in controlled by
future::plan(). For example:

• plan(multisession): multiple R processes on the local machine.

• plan(cluster,workers = c("n1","n2","n2","n3")): multiple R processes on external ma-
chines.

See the future package for more examples.

Built-in backends

The built-in backends of doFuture are for instance ’multicore’ (forked processes), ’multisession’
(background R sessions), and ad-hoc ’cluster’ (background R sessions on local and / or remote ma-
chines). Additional futures are provided by other "future" packages (see below for some examples).

Backends for high-performance compute clusters

The future.batchtools package provides support for high-performance compute (HPC) cluster
schedulers such as SGE, Slurm, and TORQUE / PBS. For example,

• plan(batchtools_slurm): Process via a Slurm scheduler job queue.

• plan(batchtools_torque): Process via a TORQUE / PBS scheduler job queue.

This builds on top of the queuing framework that the batchtools package provides. For more details
on backend configuration, please see the future.Batchtools and batchtools packages.

doFuture 3

Global variables and packages

Unless running locally in the global environment (= at the R prompt), the foreach package requires
you do specify what global variables and packages need to be available and attached in order for the
"foreach" expression to be evaluated properly. It is not uncommon to get errors on one or missing
variables when moving from running a res <-foreach() %dopar% { ... } statement on the local
machine to, say, another machine on the same network. The solution to the problem is to explicitly
export those variables by specifying them in the .export argument to foreach::foreach(), e.g.
foreach(...,.export = c("mu","sigma")). Likewise, if the expression needs specific packages
to be attached, they can be listed in argument .packages of foreach().

When using doFuture::registerDoFuture(), the above becomes less critical, because by de-
fault the Future API identifies all globals and all packages automatically (via static code inspec-
tion). This is done exactly the same way regardless of future backend. This automatic identifica-
tion of globals and packages is illustrated by the below example, which does not specify .export
= c("my_stat"). This works because the future framework detects that function my_stat() is
needed and makes sure it is exported. If you would use, say, cl <-parallel::makeCluster(2)
and doParallel::registerDoParallel(cl), you would get a run-time error on Error in { :
task 1 failed -\"could not find function "my_stat"

Having said this, note that, in order for your "foreach" code to work everywhere and with other
types of foreach adapters as well, you may want to make sure that you always specify arguments
.export and .packages.

Load balancing ("chunking")

Whether load balancing ("chunking") should take place or not can be controlled by specifying either
argument .options.future = list(scheduling = <ratio>) or .options.future = list(chunk.size = <count>)
to foreach().

The value chunk.size specifies the average number of elements processed per future ("chunks").
If +Inf, then all elements are processed in a single future (one worker). If NULL, then argument
future.scheduling is used.

The value scheduling specifies the average number of futures ("chunks") that each worker pro-
cesses. If 0.0, then a single future is used to process all iterations; none of the other workers are
not used. If 1.0 or TRUE, then one future per worker is used. If 2.0, then each worker will process
two futures (if there are enough iterations). If +Inf or FALSE, then one future per iteration is used.
The default value is scheduling = 1.0.

The name of foreach() argument .options.future follows the naming conventions of the doMC,
doSNOW, and doParallel packages, This argument should not be mistaken for the R options of the
future package.

For backward-compatibility reasons with existing foreach code, one may also use arguments .op-
tions.multicore = list(preschedule = <logical>) and .options.snow = list(preschedule = <logical>)
when using doFuture. .options.multicore = list(preschedule = TRUE) is equivalent to .options.future
= list(scheduling = 1.0) and .options.multicore = list(preschedule = FALSE) is equiv-
alent to .options.future = list(scheduling = +Inf). and analogously for .options.snow.
Argument .options.future takes precedence over argument .option.multicore which takes
precedence over argument .option.snow, when it comes to chunking.

4 doFuture

Random Number Generation (RNG)

The doFuture package does not itself provide a framework for generating proper random numbers
in parallel. This is a deliberate design choice based on how the foreach ecosystem is set up. For
valid parallel RNG, it is recommended to use the doRNG package, where the %dorng% operator is
used in place of %dopar%. Note that doRNG is designed to work with any type of foreach adapter
including doFuture.

Examples

library(doFuture)
registerDoFuture()
plan(multisession)
library(iterators) # iter()

Example 1
A <- matrix(rnorm(100^2), nrow = 100)
B <- t(A)

y1 <- apply(B, MARGIN = 2L, FUN = function(b) {
A %*% b

})

y2 <- foreach(b = iter(B, by="col"), .combine = cbind) %dopar% {
A %*% b

}
stopifnot(all.equal(y2, y1))

Example 2 - Chunking (4 elements per future [= worker])
y3 <- foreach(b = iter(B, by="col"), .combine = cbind,

.options.future = list(chunk.size = 10)) %dopar% {
A %*% b

}
stopifnot(all.equal(y3, y1))

Example 3 - Simulation with parallel RNG
library(doRNG)

my_stat <- function(x) {
median(x)

}

my_experiment <- function(n, mu = 0.0, sigma = 1.0) {
Important: use %dorng% whenever random numbers
are involved in parallel evaluation
foreach(i = 1:n) %dorng% {

x <- rnorm(i, mean = mu, sd = sigma)
list(mu = mean(x), sigma = sd(x), own = my_stat(x))

registerDoFuture 5

}
}

Reproducible results when using the same RNG seed
set.seed(0xBEEF)
y1 <- my_experiment(n = 3)

set.seed(0xBEEF)
y2 <- my_experiment(n = 3)

stopifnot(identical(y2, y1))

But only then
y3 <- my_experiment(n = 3)
str(y3)
stopifnot(!identical(y3, y1))

registerDoFuture Registers the future %dopar% backend

Description

Register the doFuture parallel adapter to be used by the foreach package.

Usage

registerDoFuture()

Value

Invisibly returns the previously registered foreach backend.

For package developers

Please refrain from modifying the foreach backend inside your packages / functions, i.e. do not call
registerNnn() in your code. Instead, leave the control on what backend to use to the end user.
This idea is part of the core philosophy of the foreach framework.

However, if you think it necessary to register the doFuture backend in a function, please make sure
to undo your changes when exiting the function. This can be done using:

oldDoPar <- registerDoFuture()
on.exit(with(oldDoPar, foreach::setDoPar(fun=fun, data=data, info=info)), add = TRUE)
[...]

6 registerDoFuture

This is important because the end-user might have already registered a foreach backend elsewhere
for other purposes and will most likely not known that calling your function will break their setup.
Remember, your package and its functions might be used in a greater context where multiple pack-
ages and functions are involved and those might also rely on the foreach framework, so it is impor-
tant to avoid stepping on others’ toes.

Examples

registerDoFuture()

Index

∗ utilities
registerDoFuture, 5

%dopar%, 4
%dorng%, 4

doFuture, 2, 5
doFuture-package (doFuture), 2

foreach::foreach(), 3
future::plan(), 2

options of the future package, 3

registerDoFuture, 5
registerDoFuture(), 2

7

	doFuture
	registerDoFuture
	Index

