Package ‘documair’

February 19, 2015

Version 0.6-0
Date 2014-09-06
Type Package

Title Automatic Documentation for R packages

Author Jean-Baptiste Denis <Jean-Baptiste.Denis@jouy.inra.fr>, Regis Pouil-

lot <RPouillot@yahoo. fr>, Kien Kieu <Kien.Kieu@jouy.inra.fr>

Maintainer Jean-Baptiste Denis <Jean-Baptiste.Denis@jouy.inra.fr>

Description Production of R packages from tagged comments introduced within the code

and a minimum of additional documentation files.

License GPL (>=2.15)
Repository CRAN

Repository/R-Forge/Project riskassessment

Repository/R-Forge/Revision 283
Repository/R-Forge/DateTimeStamp 2014-09-17 09:16:39
Date/Publication 2014-09-22 17:22:20

NeedsCompilation yes

R topics documented:

Index

documair-package . . . . . . ... e e e 2
build8pkg . . . . . 8
change8names . . . . . . . . . ... e e e 9
compile8pKg . . . . . L e e e e 10
COPYBODJECES . . . . . e e e e e 11
display8tags . . . . . . .. e e e e 12
documairQ . . . . . . .. 13
dpert . . . . e e e 13
prepare8pkg . . . . .o L e e e e e e 15

17



2 documair-package

documair-package Automatic Documentation for (and confection of) R packages

Description

The development of this package was led by the idea that it is a bad practice to separate code and
documentation. Code and documentation should be at the same place so that both can easily be
modified simultaneously. We proceed according to this principle since the middle of the 90ties
using a Perl script (a very convenient language for this kind of tasks). Now, we share it with the
community by the more convenient way of an R package. The recent development of R make things
quite easy.

To use documair, each code defining an object (either function or variable) must be encapsulated
within a series of tagged comments; we propose tags but their values can be adapted as you wish
(by modifying the ‘documair@$tag$v’ list). From these tagged comments, documair automatically
writes ‘Rd’ files and gathers them with a few more files to produce the complete package until the
‘tar.gz’. For some specific objects, the user can write manually the ‘Rd’ file. All the necessary
files must be gathered in a unique directory. In it, the user must place the following set of mandatory
files (in the following ‘pkg’ will designate the name of the package):

1. A ‘pkg.DESCRIPTION’ file: the standard text DESCRIPTION file to be associated to the pack-
age. The NAMESPACE file is automatically created from the exported objects and the pres-
ence of C and Fortran files.

2. A ‘pkg.package.Rd’ file: a text file describing in Rd syntax the general description of the
package to appear in the documentation. This file can be slightly supplemented by documair
to add some additional information.

3. As many as wanted ‘foo.code.r’ files where are placed the documented code of each object.
Each files can include more than one object. The extension ‘code.r’ can be modified within
the ‘pkg.which. txt’ file.

Additional optional files can also be included:

* ‘foo.test.r’ files including some scripts to test the functions. The extension ‘test.r’ can
be modified within the ‘pkg.which. txt’ file.

* ‘pkg.foo.rda’ files where are placed possible data sets. These binary files must be loadable
with the function ‘load’. The associated ‘pkg.foo.Rd’ documentation files must be provided.

* ‘object(s).Rd’ files the user wants to produce by hand. They will be used by documair
instead of the one based on the tagged code for (and only for) exported objects. By default, all
the objects are exported, but some can be declared hidden with the ‘pkg.which.txt’ file (see
below).

e ‘C’ functions must be stored into individual files with the same name and extension °.c’; the
same for ‘Fortran’ functions with extension ‘. f’.

* An optional ‘pkg.which.txt’ file allows the user to override the standard use of files and
functions to prepare different versions of the package with the same set of code files. It gives
the possibility to hide or not functions in the package as well as to get sets of aliased objects.
For details see the example below.



documair-package 3

* Every additional file the author wants to share with the other users of the package.

The complete content of this directory will be copied in the free ‘inst’ directory of the package
arborescence. Once this directory is prepared, the user successively calls the ‘documair’ functions
‘prepare8pkg’ and ‘compile8pkg’.

The denomination of documair stands for documentation for R, ’air’ having the same pronunci-
ation as 'R’ in French.

Other R packages for generating Rd documentations files and building packages from comments
inserted in R code are available. Two outstanding examples are roxygen and inlinedocs. The for-
mer is based on header comments, uses powerful parsers and propose interesting analyses like the
call tree of the set of functions. The latter is very light, using simple tagging in logical places of
the code. documair is in between these two cases, tags are also within the code but are many and
varied giving rise to more possibilities than inlinedocs.

Documenting an object
Here is an example of a simple masked function of documair.
“H<LLLLLLLLLLLLLLLLLLL LKL LLLLLLLLLLLLLLLLLLLLL?

‘r.bd <- function(n1,n2)’
‘#TITLE sequence of increasing numbers’

‘#DESCRIPTION’
‘# This function returns {n1:n2} when {n1<=n2} and’
‘# {numeric(@)} otherwise.’

‘# Quite useful when some insertion must be done within’
‘# a sequence’

‘HDETAILS’

‘#KEYWORDS iteration’
‘#INPUTS’

‘#{n1} <<first integer>>’
‘#{n2} <<second integer>>’
‘#LINPUTST

‘#VALUE’

“# {n1:n2} if {ni<n2}’

‘# else {numeric(0)}.’
‘HEXAMPLE’

‘4 xx <- 1:5;’

‘# for (ii in 1:6) { print(c(xx[bd(1,ii-1)],10,xx[bd(ii,5)1));}’
‘#REFERENCE’

‘#SEE ALSO bf’

‘#CALLING’

‘#COMMENT’

‘#FUTURE’

‘#AUTHOR J.-B. Denis’
‘#CREATED 11_01_12’

‘#REVISED 11_05_21’



4 documair-package

‘{ 9

‘if (n1 <= n2) {return(ni:n2);}

‘numeric(@);’

‘}7

HEODSOSOOSOSOSOSSSSISSSSSSSSSSSSSSSS>SSSSS>S>S>>>’

One can notice the different tags used to structure the information provided in the comments lines:

o “H<<KLLLL, |, ‘KL< to open the object,
e “#TITLE’ to specify the title of the object,
e ‘#DESCRIPTION’ to describe the object,

o - T e > to close the documentation part

o HSS>S>>> . >>>>>>>>’ to close the object.

Those five tags are the only compulsory ones (Note: the ‘#DESCRIPTION’ tag can be missing for the
children objects of a set of aliased objects).

Monitoring documair

Introduction:

documair can build different packages from the same set of files by simply selecting which
files/objects have to be compiled and which ones must be proposed or hidden to the end user. This
is performed through the ‘pkg.which.txt’ text file. An example of such a file (with comments)
is ‘documair.which.txt’ of the documair package. If you are generating different packages
with the same functions, it is recommended to change the name of the package, this is the reason
why you can indicate in the ‘pkg.which.txt’ file other ‘DESCRIPTION’ and PRESENTATION
files than the standard ones deduced from the package name.

syntax of ‘pkg.which.txt’:

The documentation of documair was performed by itself. Below is provided, as an example, a
possible ‘documair.which.txt’. The comments introduced in the file are self-sufficient to un-
derstand what are the different possibilities:

K#?
‘4 created on 14_01_28’
‘4 last modified on 14_05_27 °
‘#?

‘# + the order of the items is irrelevant’
‘#  but they are exploited in that order’
‘# + according to an option, the existence’
‘4 of the specified file, objects is’

‘#  checked or not.’

‘# + '_ALL_' means all occurences’

”

‘# specifying the description file’
‘<<DESCRIPTION>> documair.DESCRIPTION’

"



documair-package

‘# the Rd file to describe the package’
‘<<PRESENTATION>> documair.package.Rd’

"

‘# specifying the extension for the code files’
‘<<C.EXTE>> code.r’

"

‘# specifying the extension for the test files’
‘<<T.EXTE>> test.r’

”

‘# specifying hidden code files’

‘# (in the example, all objects are hidden)’
‘<<HIDDEN.F>> _ALL_’

"

‘# specifying exported code files and’

‘# modifying previous prescriptions’

‘<<EXPORTED.F>> user.code.r’

"

‘# specifying exported code files containing alias sets
‘<<ALIASED.F>> exterieur.code.r’

”

‘# specifying hidden objects’

‘# (in the example no specific object should be hidden’
‘4 so the item here is suppressed with an '#'.)’
‘#<<HIDDEN.O>> ’

”

‘# specifying exported objects’

‘# (in the example an object belonging to a hidden file
‘4  (documair@) is exported)’

‘<<EXPORTED.0>> documair@’

”

‘# specifying objects for which’

‘# the content will be displayed on the’

‘# screen during the process.’

‘# (the same can be done at the level of the’

‘4 files with '<<DISPLAY.F>>'.)’

‘<<DISPLAY.0>> documair@ display8tags’

”

‘# specifying keywords from the components’

‘# (here 'compile' must be interpreted as’

‘4 'compilation', 'pkg' as 'package',...’

‘# be aware that the two words must be stuck’

‘4 with '=' and that a word must not comprise’

‘4 any blank. Also that the special word '_NO_'’

‘4 means that this component must not appear’

‘4 as a keyword.)’
‘<<KEYWORDS>>/=/U’
‘compile=compilation
‘pkg=package’

>

)

s



6 documair-package

‘prepare=preparation’

‘documair=_NO_’

6#7

‘4 end of the which.documair.txt file’

Aliasing:
documair accepts the aliasing of set of objects but some rules must be followed for that.

1. Objects sharing the same alias must be proposed into a single file, and only those objects
should be present in this file.

2. The parent object must be in the first position into this file.
3. The first alias name of the parent object must be the common alias

4. The name of the file must be declared as containing aliased objects in the (in that case manda-
tory) ‘pkg.which. txt’ file after the tag ‘<<ALIASED.F>>’.

The alias ‘Rd’ file can be either provided by the user or composed by documair from the docu-
menting tags. When the ‘Rd’ file is hand-written, it must be named under the first object (the parent
alias). When the documentation is built by documair, the descriptions of identical arguments are
taken in the first object using them according to the ordering within the file.

Examples:

To get more insights about the flexibility of documair, the reader can have a glance to documair
itself since all necessary files are gathered in the ‘inst’ directory. In the same directory is pre-
pared within the script ‘make. r’ four examples of building package variations based on documair
objects; the first one being documair itself. The second one (named documairl proposes the
building of the package without ‘pkg.which.txt’ file meaning that all objects are exported. The
fourth example (documair3 gives an example of using ‘C’ and ‘Fortran’ functions which can
be not effective for some configurations. Due to minor inconsistencies, some examples generate
warnings.

Errors with documair

Currently, documair is quite sensitive to errors in the input files! Some are detected but indications
are not always very clear, others are not detected. For instance the double ‘#’ in

‘##{argument} << explanation...>> when describing the arguments of a function causes a
non explicit error. Also, it can be easily affected by a mismatched parenthesis... To help the user in
seeing where the mistake is located, it is suggested to put the ‘check’ argument of ‘prepare8pkg’
to ‘TRUE’ and introduce the line *‘<<DISPLAY.0>> _ALL_" in the used ‘pkg.which.txt’ file. This
way the interpreted content of each object of the package will be displayed on the screen during
the process with a pause to give an opportunity to see if everything seems consistent. It is strongly
advised:

* to introduce only standard ascii characters, even in the comments.

* to test regularly the preparation of a ‘tar.gz’ with documair during the development of a
package, rather than once at the end, in order detect more easily the origins of potantial issues.

* to avoid functions with name having more than one dot (“.”). It is considered as a method for
an S3 object by documair but only the last dot is taken into account.



documair-package 7

* to be aware that the tagging of ‘documair@$tags$v$deb$v’ which is
KL LLLLLLLL LKL LKL LKL L LKL LKL LKL LKL LLLLLLLLLLLL

must be exactly respected as well as those of ‘documair@$tags$v$fin$v’ and
ESSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS>S>S>>"’
Of course, you can modify them as you wish.

Naming conventions

Remembering object names in a given package is not always an easy task, the first reason being
their number. To relieve it, we propose to follow some conventions, if so documair will propose
deduced keywords.

* Names will be composed of name components separated with digits. For instance ‘print8object’
has ‘print’ and ‘object’ as components. The number of components can be one, two,...or
more.

* When nouns, the components can be singular or plural, making differences.

* The separating digits have a meaning:

0 pkgO (object proposed by the package pkg) /0 ~ Object/

1 res4objAlobjB (and; here 'res’ obtained from 'objA’ and 'objB’) /1 = one = an ~ and/

2 a2b (conversion from object a to object b, even if the conversion is not one-to-one, a
reverse function b2a is supposed to exist) / 2 ~ to/

series3fun (function fun belongs to the family series) /3 ~ \in/

trait4object (extract some characteristic from an object) /4 = Four ~ From/

<free for the moment>

split8text6tag (split a text object [with | by means of] tags) /6 = sIx ~~ wlth/

image7path (image path) /upper bar of 7 is similar to an hyphen used to join two nouns
or an adjective and a noun./

~N N R W

oo

action8object (make an action on an (or several) object(s)) /8 ~ a/
9 empty7object9 (is it an empty object?: question mark) /9 ~~ ¥/

Projected evolution of documair

* Make possible to have operator functions like “%T%’.

* Allow the user not to have too many ‘*.code.r’ files. For that, the code files could be first
splitted into elementary sub-files with a splitting tag like ‘#<<<--->>>’. This would be conve-
nient when there are numerous aliased object sets. Indeed, currently, each identically aliased
set of objects must be in a distinct file.

* Get the main steps of the algorithm used in the function by collecting some tag contents
within the code (introduced as special titles) and added either as a special section or as a new
paragraph in the details section.

» Allows the possibility of including files for repeated pieces of code, at least for one level.
* Allows the introduction of enumerations in the comments.

* As an option, check and impose typographical rules like upper cases at the beginning and final
dot to the argument description... with some indication in a separate file of the changes to give
the user the opportunity to check them.

» Improve the way aliased objects are documented, allowing collective fields like titles...



8 build8pkg

Acknowledgment

The authors want to thank Annie Bouvier and Caroline Bidot for their useful supports in solving
some technical difficulties we had when elaborating the package.

Additional Information

* This package was built with /documair/ package (version 0.6-0) on 14_09_15

* There are 65 object(s) in total. 11 are exported and there exist 54 masked object(s): anal-
yse8description, code7objects4textbtags, components9, extract8object, make8rd, parse8code,
rrrbe, rrrbd, rrrbelong9, rrrbf, rrrdipa, rrrdisplay 8k, rrrerreur, rrrexplore8list, rrrfidi9, rrrfile2list,
rrrfile2text, rrrfilter8text, rrrform3crop, rrrform3display, rrrform3justify, rrrform3parag, rrrform3repeat,
rrrform3title, rrrform3titre, rrrget8comp7list, rrrinterv/belonging, rrrlist2text, rrrlistdtext, rrrnow,
rrrobject9, rrrparse8text, rrrpause, rrrplacesdtext6tags, rrrrbsa0, rrrrbsa7list9, rrrtext2file, rrrtext2list,
rrrtext2vma, rrrtext3acceptance, rrrtext3brackets, rrrtext3ij2n, rrrtext3interval, rrrtext3n2ij,
rrrtext3places8brackets, rrrtext3places8word, rrrtext3preparation, rrrtext3replace, rrrtext3stext,
rrrtext3translate, rrrtextsdtext, rrrvma2text, rrrvoid9, write8lyse.

¢ There were 1 C file(s).
¢ There were 1 Fortran file(s).

» They were provided through 8 code file(s).

Author(s)

Jean-Baptiste Denis (MIA]j - Inra - Jouy-en-Josas),
RVegis Pouillot and
KiVten Ki\*eu (MIA] - Inra - Jouy-en-Josas)

build8pkg builds a package

Description

From the documair directory containing at least the description file (‘pkg.DESCRIPTION’), the pre-
sentation file (‘pkk.pacakge.Rd’) and the code files (‘*.code.r’) launches the preparation, the
checking and the building by R itself.

Resulting ‘pdf’ manual and ‘pkg. tar.gz’ files are placed into the indicated destination directory.
Some intermediate directory (especially the ‘pkg.Rcheck’ directory) are placed then deleted (in
case of no error) into the within directory: so the possibility to create and remove them there is
necessary. To look at the intermediate results, ‘prepare8pkg’ and ‘compile8pkg’ must be directly
used, or ‘1’ for ‘left’ must be included in the argument ‘what’.

Usage

build8pkg(pkg,documair7dir,destination7dir,
what="pz",display=TRUE,
signature=2,check=FALSE)



change8names

Arguments

pkg

documair7dir
destination7dir

what

display

signature

check

Details

Name of the package.

Directory where are gathered all necessary files for documair.

Directory where the resulting files have to be placed. If not existing will be
created.

‘character(1)’. Indicates the actions to perform. It is lowercased before de-
coding. Wwhen it comprises ‘c’ the check is performed; when it comprises ‘z’
the tar.gz is generated; when it comprises ‘p’ the pdf manual is generated; when
it comprises ‘1’ intermediate directories are left.

Must indications about the process progress be displayed onto the screen?

‘numeric(1)’. Must additional information be included in the ‘pkg.package.Rd’
file? When ‘@’ no; when ‘1’ just the name of documair; when ‘2’ plus the list
of the masked functions.

Must checking be done by the user after each debugging display? Checking
means that the program rrrpause after each display awaiting for an answer from
the user to continue or stop.

Whatever is the argument ‘what’, the preparation of the arborescence is made.
Checking with fatal errors can be issued by the functions called by ‘build8pkg’. If this occurs, it
means that the check made by ‘build8pkg’ are not sufficient: please indicate us it.

Value

‘character (@)’ when all went right if not a ‘character’ reporting the motives of difficulties.

Future

Make ‘display’ more efficient when ‘FALSE’.

See Also

prepare8pkg compile8pkg

change8names

changes object names in R script files

Description

Explores a series of R script files and modify them changing some objects names for new ones.
Changes must be unambiguous; they are performed sequentially according to the order of ‘nnames’
rows. Also, if some functions have got common names used in comments or messages, they will be
changed as well since the syntaxic analysis made in ‘rrrtext3places8word’ is very limited.



10 compile8pkg
Usage

change8names(nfiles,nnames)

Arguments
nfiles A two column ‘character’ matrix, giving by row old and new names of files to
consider. Old and new names can be identical.
nnames A two column ‘character’ matrix, giving by row old and new names of objects.
Details

It is difficult to ensure that the modifications are perfect, but at least they can give a hand.

Each file is dealt in turn. When old and new names of a file coincide, the old file is first saved
into a temporary file suffixed with the moment of the saving and only destroyed at the end. So if
something went wrong, you can recover the initial file.

Value

‘character (@)’ if everything went right, if not, some warning messages.

compile8pkg compiles a package

Description

From the standard directory containing the package sources, launches the checking and building by
R itself. Pdf manual and tar ball can be placed in another directory.

Usage

compile8pkg(pkg,pkgdir,
chkdir=getwd(),resdir=getwd(),
what="pz",
display=FALSE)

Arguments
pkg Name of the package.
pkgdir Directory where the building of the package has been prepared. Probably by the
function ‘prepare8pkg’.
chkdir Directory where to put the directory where "R" makes the checking. Must exist.
resdir Directory where to copy the resulting files. Must exist.
what ‘character(1)’. Which resulting file to copy: ‘p’ for the pdf manual and ‘z’

for the tar.gz ball.

display Must indications about the process progress be displayed on the screen?



copy8objects 11

Value

Nothing but the check, the compilation, [the copy of the manual, the tar.gz] are performed.

Future

Make ‘display’ more efficient when ‘FALSE’.

See Also

prepare8pkg

copy8objects generates a file comprising indicated functions

Description
Explores a series of R code files supposed to comprise the needed functions with tagging and copy
them into a new not already existing file.

Usage

copy8objects(nfiles,nobjects,file)

Arguments
nfiles Files where to look for the functions.
nobjects A ‘character’ indicating the objects to pick up from the indicated files.
file Name of the file to create.

Details

Standard tags defined by ‘documair@$tags’ are used.

Value

‘character (@)’ if everything went right, if not, some warning messages about found difficulties.



12 display8tags

display8tags returns the contents of a 'tags’ object

Description

Typically, ‘tags’ is either ‘documair@$tags’ or ‘documair@$tgs’ which defines the tagging of the
R code to introduce the documentation to be tackled by /documair/.

Such a function is provided to help the user in seeing the present constants, and possibly to change
their value.

Usage

display8tags(tags=documair@$tags,
what="values", imp=FALSE)

Arguments
tags List to be displayed.
what a ‘character(1)’ indicating what must be returned. The acceptable values
are ‘names’, ‘definitions’, ‘usage’, ‘content’, ‘preparation’, ‘title’ and
‘values’. For user convenience, the argument is lowercased before checked,
and only the first character is taken into consideration.
imp indicates if an adapted printing of the results must be done.
Details

More details on the possibilities offered with argument ‘what’ are obtained into ‘documair@$tags$d’.

Value

A character or a list according to ‘what’

Future

Make an equivalent function to change the tags values



documair0 13

documair@ list of the /documair/ constants

Description

Just a list of constants defined with a name, a definition and a value. They can be modified by the
user. Of course the modification must be consistent with the role of the constant, and only values
should be modified.

Details

It is a named list, one component for each constant. A sublist is associated to each constant with
two components: ‘$d’ for the definition and ‘$v’ for the value. Be aware that the value can be any
object (vector, list, matrix, function,...)

Value

A list (it is a self-documented object).

Examples

names (documair®);
print(documair@$texti);
print(documair@$text2$v);

dpert The (Modified) PERT Distribution

Description

((just an example extracted from the me2d package to illustrate the use of reduced documentation
with a series of related and aliased functions.))

Density, distribution function, quantile function and random generation for the PERT (aka Beta
PERT) distribution with minimum equals to ‘min’, mode equals to ‘mode’ and maximum equals to

3 k]

max-.

Usage

dpert(x,min=-1,mode=0,max=1, shape=4, log=FALSE)
ppert(q,min=-1,mode=0,max=1, shape=4, lower.tail=TRUE, log.p=FALSE)
gpert(p,min=-1,mode=0,max=1, shape=4, lower.tail=TRUE, log.p=FALSE)
rpert(n,min=-1,mode=0,max=1, shape=4)



14 dpert

Arguments

X,q Vector of quantiles.

p Vector of probabilities.

n Number of observations. If length(n) > 1, the length is taken to be the number

required.

min Vector of minima.

mode Vector of modes.

max Vector of maxima.

shape Vector of scaling parameters. Default value: 4.

log, log.p Logical; if ‘TRUE’, probabilities ‘p’ are given as ‘log(p)’.

lower.tail Logical; if ‘TRUE’ (default), probabilities are ‘P[X <= x]’, otherwise, ‘P[X > x]’.
Details

The PERT distribution is a beta distribution extended to the domain ‘[Cmin, max]’ with mean

min + shape X mode + max
shape + 2

The underlying beta distribution is specified by «; and a5 defined as

(u — min)(2 x mode — min — max)

= (mode — p)(max — min)

a1 X (mazx — p)
Qg = ——
mu — min

If 4+ = mode, oy is set to 1 + /2. David Vose proposed a modified PERT distribution with a shape
parameter different from 4. The PERT distribution is frequently used to translate expert estimates
of the min, max and mode of a random variable in a smooth parametric distribution.

Value

‘dpert’ gives the density, ‘ppert’ gives the distribution function, ‘gpert’ gives the quantile func-
tion, and ‘rpert’ generates random deviates.

Examples

curve(dpert(x,min=3,mode=5,max=10, shape=6), from = 2, to = 11, lty=3)
curve(dpert(x,min=3,mode=5,max=10), from = 2, to = 11, add=TRUE)
curve(dpert(x,min=3,mode=5,max=10, shape=2), from = 2, to = 11, add=TRUE,1ty=2)
legend(x = 8, y = 2, c("Default”,"shape:2","shape:6"), lty=1:3)



prepare8pkg 15

prepare8pkg prepares a package

Description

Prepares all necessary directories and files for the building of an R package named ‘pkg’ from files
made by the user and placed in the ‘perdir’ directory. The built arborescence will placed into the
preexisting ‘pkgdir’ directory.

When an error occurs, it is not always very simple to know the origin of it. To get some clues, the
user is suggested to switch the display options on within the ‘pkg.which. txt’ file and putting the
‘check’ argument to ‘TRUE’.

Usage

prepare8pkg(pkg,perdir, pkgdir,
signature=2,
display=TRUE,
check=FALSE)

Arguments
pkg Name of the package, associated files like ‘pkg.DESCRIPTION’ must exist into
‘perdir’ directory.
perdir Directory where the prepared files have to be found.
pkgdir Directory where the building of the package has to be prepared. It is supposed
to have already been created, at least empty. The result of the preparation of the
package will be placed within it with a directory having the package name. In
case, it is not empty, it is first completely cleaned of its contents.
signature ‘numeric(1)’. Must additional information be included in the ‘pkg.package.Rd’
file? When ‘@’ no; when ‘1’ just the name of documair; when ‘2’ plus the list
of the masked functions.
display Must the programmed debbuging displays be performed?
check Must checking be done by the user after each debugging display? Checking
means that the program rrrpause after each display awaiting for an answer from
the user to continue or stop.
Details

The behaviour of ‘prepare8pkg’ with respect to files and objects coded in them, is also driven
by a possible ‘pkg.which.txt’ file where can be indicated which objects are exported or hidden,
which files contains a series of aliased objects, which files and/or objects must be displayed. See
the general description of the package for details.

When no such file is present, the default behavior is that all object are exported, no series of objects
are aliased, the displaying is just listing the explored files and the objects they contain. Notice that
the default displaying as well as the ‘which’ file display options can be cancelled with the argument
‘display’.



16 prepare8pkg

Value

Nothing but the preparation is made (see the description section) with possible displays to and
checks from the user.

Future

Introduce more sections and improve the existing ones.

See Also
compile8pkg display8tags



Index

*Topic build documaire, 13
build8pkg, 8 dpert, 13
+Topic change
change8nanmes, 9 ppert (dpert), 13
+Topic compilation prepare8pkg, 9, 11, 15

compile8pkg, 10
+Topic COPY
copy8objects, 11
+Topic display
display8tags, 12
+Topic distribution
dpert, 13
+Topic documair
documairo, 13
+Topic helpful
documaire, 13
*Topic names
change8names, 9
xTopic object
copy8objects, 11
xTopic package
build8pkg, 8
compile8pkg, 10
documair-package, 2
prepare8pkg, 15
+Topic preparation
prepare8pkg, 15
«Topic tags
display8tags, 12
documaire, 13

gpert (dpert), 13

rpert (dpert), 13

build8pkg, 8

change8names, 9
compile8pkg, 9, 10, 16
copy8objects, 11

display8tags, 12, 16

documair (documair-package), 2
documair-package, 2

17



	documair-package
	build8pkg
	change8names
	compile8pkg
	copy8objects
	display8tags
	documair0
	dpert
	prepare8pkg
	Index

