Package 'earlywarnings'

February 19, 2015

Type Package						
Title Early Warning Signals Toolbox for Detecting Critical Transitions in Timeseries						
Version 1.0.59						
Date 2013-04-07						
Author Vasilis Dakos <vasilis.dakos@gmail.com>, with contributions from S.R. Carpenter, T. Cline, L. Lahti</vasilis.dakos@gmail.com>						
Maintainer Vasilis Dakos <vasilis.dakos@gmail.com></vasilis.dakos@gmail.com>						
Description The Early-Warning-Signals Toolbox provides methods for estimating statistical changes in timeseries that can be used for identifying nearby critical transitions. Based on Dakos et al (2012) Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data. PLoS ONE 7(7):e41010						
Depends R (>= 3.0.2), ggplot2, moments, tgp, tseries						
Imports fields, nortest, quadprog, Kendall, KernSmooth, Imtest, som, spam, stats						
LazyLoad yes						
URL http://www.early-warning-signals.org,						
http://vasilisdakos.wordpress.com						
License FreeBSD						
NeedsCompilation no						
Repository CRAN						
Date/Publication 2014-04-12 23:25:14						

R topics documented:

bdstest_ews																	•									 					2
ch_ews			•			•				•		•	•			•				•	•	•	•	•	•	 					4
circulation		•	•	•		•	•	•	 •	•		•	•	•		•	•			•	•	•	•	•	•	 					5
ddjnonparam_ev	WS	•	•	•	•	•	•	•	 •		•	•	•	•	•	•	•		•	•	•	•	•	•	•	 		•		•	6

bdstest_ews

find.optima	7
foldbif	8
generic_ews	9
livpotential_ews	11
movpotential_ews	13
PlotPotential	
qda_ews	15
sensitivity_ews	17
surrogates_ews	19
UnivariateGrouping	21
YD2PB_grayscale	21
	23

Index

bdstest_ews

Description: BDS test Early Warning Signals

Description

 $bdstest_ews$ is used to estimate the BDS statistic to detect nonlinearity in the residuals of a timeseries after first-difference detrending, fitting an ARMA(p,q) model, and fitting a GARCH(0,1) model. The function is making use of bds.test from the tseries package.

Usage

```
bdstest_ews(timeseries, ARMAoptim = TRUE, ARMAorder = c(1, 0),
GARCHorder = c(0, 1), embdim = 3, epsilon = c(0.5, 0.75, 1),
boots = 1000, logtransform = FALSE, interpolate = FALSE)
```

timeseries	a numeric vector of the observed univariate timeseries values or a numeric ma- trix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.
ARMAoptim	is the order of the ARMA(p,q) model to be fitted on the original timeseries. If TRUE the best ARMA model based on AIC is applied. If FALSE the ARMAorder is used.
ARMAorder	is the order of the AR(p) and MA(q) process to be fitted on the original timeseries. Default is $p=1 q=0$.
GARCHorder	fits a GARCH model on the original timeseries where GARCHorder[1] is the GARCH part and GARCHorder[2] is the ARCH part.
embdim	is the embedding dimension (2, 3, embdim) up to which the BDS test will be estimated (must be numeric). Default value is 3.
epsilon	is a numeric vector that is used to scale the standard deviation of the timeseries. The BDS test is computed for each element of epsilon. Default is 0.5, 0.75 and 1.

bdstest_ews

boots	is the number of bootstraps performed to estimate significance p values for the BDS test. Default is 1000.
logtransform	logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

Details

See also bds.test{tseries} for more details. The function requires the installation of packages tseries and quadprog that are not available under Linux and need to be manually installed under Windows.

Arguments:

Value

bdstest_ews returns output on the R console that summarizes the BDS test statistic for all embedding dimensions and epsilon values used, and for first-differenced data, ARMA(p.q) residuals, and GARCH(0,1) residuals). Also the significance p values are returned estimated both by comparing to a standard normal distribution and by bootstrapping.

In addition, bdstest_ews returns a plot with the original timeseries, the residuals after first-differencing, and fitting the ARMA(p,q) and GARCH(0,1) models. Also the autocorrelation acf and partial autocorrelation pacf functions are estimated serving as guides for the choice of lags of the linear models fitted to the data.

Author(s)

S. R. Carpenter, modified by V. Dakos

References

J. B. Cromwell, W. C. Labys and M. Terraza (1994): Univariate Tests for Time Series Models, Sage, Thousand Oaks, CA, pages 32-36.

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews; ch_ews; movpotential_ews; livpotential_ews

```
#
data(foldbif)
bdstest_ews(foldbif,ARMAoptim=FALSE,ARMAorder=c(1,0),embdim=3,epsilon=0.5,
boots=200,logtransform=FALSE,interpolate=FALSE)
```

Description

ch_ews is used to estimate changes in conditional heteroskedasticity within rolling windows along a timeseries

Usage

```
ch_ews(timeseries, winsize = 10, alpha = 0.1, optim = TRUE, lags = 4,
logtransform = FALSE, interpolate = FALSE)
```

Arguments

timeseries	a numeric vector of the observed timeseries values or a numeric matrix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.
winsize	is length of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 10%.
alpha	is the significance threshold (must be numeric). Default is 0.1.
optim	logical. If TRUE an autoregressive model is fit to the data within the rolling window using AIC optimization. Otherwise an autoregressive model of specific order lags is selected.
lags	is a parameter that determines the specific order of an autoregressive model to fit the data. Default is 4.
logtransform	logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

Details

see ref below

Arguments:

Value

ch_ews returns a matrix that contains:

time	the time index.
r.squared	the R2 values of the regressed residuals.
critical.value	the chi-square critical value based on the desired alpha level for 1 degree of freedom divided by the number of residuals used in the regression.

circulation

test.result	logical. It indicates whether conditional heteroskedasticity was significant.
ar.fit.order	the order of the specified autoregressive model- only informative if optim FALSE
	was selected.

In addition, ch_ews plots the original timeseries and the R2 where the level of significance is also indicated.

Author(s)

T. Cline, modified by V. Dakos

References

Seekell, D. A., et al (2011). 'Conditional heteroscedasticity as a leading indicator of ecological regime shifts.' *American Naturalist* 178(4): 442-451

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews; ch_ews; movpotential_ews; livpotential_ews

Examples

```
data(foldbif)
out=ch_ews(foldbif, winsize=50, alpha=0.05, optim=TRUE, lags)
```

circulation circulation data set

Description

circulation data set

Format

TBA

Source

TBA

References

See citation('earlywarnings')

Examples

#

ddjnonparam_ews

Description

ddjnonparam_ews is used to compute nonparametrically conditional variance, drift, diffusion and jump intensity in a timeseries. It also interpolates to obtain the evolution of the nonparametric statistics in time.

Usage

```
ddjnonparam_ews(timeseries, bandwidth = 0.6, na = 500,
logtransform = TRUE, interpolate = FALSE)
```

Arguments

timeseries	a numeric vector of the observed univariate timeseries values or a numeric ma- trix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.
bandwidth	is the bandwidht of the kernel regressor (must be numeric). Default is 0.6.
na	is the number of points for computing the kernel (must be numeric). Default is 500.
logtransform	logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

Details

The approach is based on estimating terms of a drift-diffusion-jump model as a surrogate for the unknown true data generating process: [1] $dx = f(x, \theta)dt + g(x, \theta)dW + dJ$ Here x is the state variable, f() and g() are nonlinear functions, dW is a Wiener process and dJ is a jump process. Jumps are large, one-step, positive or negative shocks that are uncorrelated in time.

Arguments:

Value

ddjnonparam_ews returns an object with elements:

avec	is the mesh for which values of the nonparametric statistics are estimated.
S2.vec	is the conditional variance of the timeseries x over avec.
TotVar.dx.vec	is the total variance of dx over avec.
Diff2.vec	is the diffusion estimated as total variance - jumping intensity vs avec.

find.optima

LamdaZ.vec	is the jump intensity over avec.
Tvec1	is the timeindex.
S2.t	is the conditional variance of the timeseries x data over Tvec1.
TotVar.t	is the total variance of dx over Tvec1.
Diff2.t	is the diffusion over Tvec1.
Lamda.t	is the jump intensity over Tvec1.

In addition, ddjnonparam_ews returns a first plot with the original timeseries and the residuals after first-differencing. A second plot shows the nonparametric conditional variance, total variance, diffusion and jump intensity over the data, and a third plot the same nonparametric statistics over time.

Author(s)

S. R. Carpenter, modified by V. Dakos

References

Carpenter, S. R. and W. A. Brock (2011). 'Early warnings of unknown nonlinear shifts: a nonparametric approach.' *Ecology* 92(12): 2196-2201

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews;surrogates_ews; ch_ews; movpotential_ews; livpotential_ews

Examples

```
data(foldbif)
output<-ddjnonparam_ews(foldbif,bandwidth=0.6,na=500,
logtransform=TRUE,interpolate=FALSE)</pre>
```

find.optima Desc

Description: find.optima

Description

Detect optima, excluding very local optima below detection.threshold

Usage

```
find.optima(f, detection.threshold = 0, bw, x, detection.limit = 0)
```

foldbif

Arguments

f	density
detection.thre	shold
	detection threshold for peaks
bw	bandwidth
х	original data
detection.limi	t
	ignore maxima that are below this value
	Returns:

Details

Arguments:

Value

A list with the following elements: min minima max maxima

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation('TBA')

Examples

#

foldbif

foldbif data set

Description

foldbif data set

Format

TBA

Source

TBA

generic_ews

References

See citation('earlywarnings')

Examples

#

generic_ews

Description: Generic Early Warning Signals

Description

generic_ews is used to estimate statistical moments within rolling windows along a timeserie

Usage

```
generic_ews(timeseries, winsize = 50, detrending = c("no", "gaussian",
   "loess", "linear", "first-diff"), bandwidth = NULL, span = NULL,
   degree = NULL, logtransform = FALSE, interpolate = FALSE,
   AR_n = FALSE, powerspectrum = FALSE)
```

timeseries	a numeric vector of the observed univariate timeseries values or a numeric ma- trix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings. If the powerspectrum is to be plotted as well, the timeseries lenght should be even number.
winsize	is the size of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 50%.
bandwidth	is the bandwidth used for the Gaussian kernel when gaussian filtering is applied. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Alternatively it can be given by the bandwidth selector bw.nrd0 (Default).
detrending	the timeseries can be detrended/filtered prior to analysis. There are four options: gaussian filtering, loess fitting, linear detrending and first-differencing. Default is no detrending.
span	parameter that controls the degree of smoothing (numeric between 0 and 100, Default 25). see more on loessstats
degree	the degree of polynomial to be used for when loess fitting is applied, normally 1 or 2 (Default). see more on loessstats
logtransform	logical. If TRUE data are log transformed prior to analysis as $\log(X+1)$. Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

AR_n	logical. If TRUE the best fitted AR(n) model is fitted to the data. Default is FALSE.
powerspectrum	logical. If TRUE the power spectrum within each rolling window is plotted. Default is FALSE.

Details

see ref below

Value

generic_ews returns a matrix that contains:

tim	the time index.
ar1	the autoregressive coefficient ar(1) of a first order AR model fitted on the data within the rolling window.
sd	the standard deviation of the data estimated within each rolling window.
sk	the skewness of the data estimated within each rolling window.
kurt	the kurtosis of the data estimated within each rolling window.
cv	the coefficient of variation of the data estimated within each rolling win- dow.
returnrate	the return rate of the data estimated as 1-ar(1) cofficient within each rolling window.
densratio	the density ratio of the power spectrum of the data estimated as the ratio of low frequencies over high frequencies within each rolling window.
acf1	the autocorrelation at first lag of the data estimated within each rolling window.

In addition, generic_ews returns three plots. The first plot contains the original data, the detrending/filtering applied and the residuals (if selected), and all the moment statistics. For each statistic trends are estimated by the nonparametric Kendall tau correlation. The second plot, if asked, quantifies resilience indicators fitting AR(n) selected by the Akaike Information Criterion. The third plot, if asked, is the power spectrum estimated by spec.ar for all frequencies within each rolling window.

Author(s)

Vasilis Dakos <vasilis.dakos@gmail.com>

References

Ives, A. R. (1995). 'Measuring resilience in stochastic systems.' *Ecological Monographs* 65: 217-233

Dakos, V., et al (2008). 'Slowing down as an early warning signal for abrupt climate change.' *Proceedings of the National Academy of Sciences* 105(38): 14308-14312

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

livpotential_ews

See Also

```
generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews; ch_ews;
movpotential_ews; livpotential_ews;
```

Examples

```
data(foldbif)
out=generic_ews(foldbif,winsize=50,detrending='gaussian',
bandwidth=5,logtransform=FALSE,interpolate=FALSE)
```

livpotential_ews Description: Potential Analysis for univariate data

Description

livpotential_ews performs one-dimensional potential estimation derived from a uni-variate timeseries

Usage

```
livpotential_ews(x, std = 1, bw = "nrd", weights = c(),
grid.size = NULL, detection.threshold = 0.01, bw.adjust = 1,
density.smoothing = 0, detection.limit = 0.1)
```

Arguments

х	Univariate data (vector) for which the potentials shall be estimated	
std	Standard deviation of the noise (defaults to 1; this will set scaled potentials)	
bw	bandwidth for kernel estimation	
weights	optional weights in ksdensity (used by movpotentials).	
grid.size	Grid size for potential estimation.	
detection.thre	shold	
	maximum detection threshold as fraction of density kernel height dnorm(0, sd = bandwidth)/N	
bw.adjust	The real bandwidth will be bw.adjust*bw; defaults to 1	
density.smoothing		
	Add a small constant density across the whole observation range to regularize density estimation (and to avoid zero probabilities within the observation range). This parameter adds uniform density across the observation range, scaled by density.smoothing.	
detection.limit		
	ignore maxima that are below detection.limit * maximum density	

Details

Value

livpotential returns a list with the following elements:

xi	the grid of points on which the potential is estimated
pot	The estimated potential: $-\log(f)$ *std^2/2, where f is the density.
density	Density estimate corresponding to the potential.
min.inds	indices of the grid points at which the density has minimum values; (-potentials; neglecting local optima)
max.inds	indices the grid points at which the density has maximum values; (-potentials; neglecting local optima)
bw	bandwidth of kernel used
min.points	grid point values at which the density has minimum values; (-potentials; ne- glecting local optima)
max.points	grid point values at which the density has maximum values; (-potentials; ne- glecting local optima)

Author(s)

Based on Matlab code from Egbert van Nes modified by Leo Lahti. Implemented in early warnings package by V. Dakos.

References

Livina, VN, F Kwasniok, and TM Lenton, 2010. Potential analysis reveals changing number of climate states during the last 60 kyr. *Climate of the Past*, 6, 77-82.

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews;surrogates_ews; ch_ews;movpotential_ews

```
data(foldbif)
res <- livpotential_ews(foldbif)</pre>
```

Description

This function reconstructs a potential derived from data along a gradient of a given parameter.

Usage

```
movpotential_ews(X, param = NULL, bw = "nrd", bw.adjust = 1,
  detection.threshold = 0.1, std = 1, grid.size = 50, plot.cutoff = 0.5,
  plot.contours = TRUE, binwidth = 0.2, bins = NULL)
```

Arguments

X a vector of the X observatio	ns of the state variable of interest
param parameter values correspond	ding to the observations in X
bw Bandwidth for smoothing k	ernels. Automatically determined by default.
bw.adjust Bandwidth adjustment cons	tant
detection.threshold	
Threshold for local optima	to be discarded.
std Standard deviation.	
grid.size number of evaluation points also used as kernel window	s; number of steps between min and max potential; size
plot.cutoff cuttoff for potential minima	and maxima in visualization
plot.contours Plot contours on the landsca	ape visualization
binwidth binwidth for contour plot	
bins bins for contour plot. Overr	ides binwidth if given

Details

Arguments:

Value

A list with the following elements: pars values of the covariate parameter as matrix; xis values of the x as matrix; pots smoothed potentials; mins minima in the densities (-potentials; neglecting local optima); maxs maxima in densities (-potentials; neglecting local optima); plot an object that displays the potential estimated in 2D

Author(s)

L. Lahti, E. van Nes, V. Dakos.

References

Hirota, M., Holmgren, M., van Nes, E.H. & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. *Science*, 334, 232-235.

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews;surrogates_ews; ch_ews; livpotential_ews

Examples

```
X = c(rnorm(1000, mean = 0), rnorm(1000, mean = -2), rnorm(1000, mean = 2));
param = seq(0,5,length=3000);
res <- movpotential_ews(X, param)</pre>
```

PlotPotential Description: Plot Potential

Description

Visualization of the potential function from the movpotential function

Usage

```
PlotPotential(res, title = "", xlab.text, ylab.text, cutoff = 0.5,
    plot.contours = TRUE, binwidth = 0.2, bins = NULL)
```

Arguments

res	output from movpotential function
title	title text
xlab.text	xlab text
ylab.text	ylab text
cutoff	parameter determining the upper limit of potential for visualizations
plot.contours	Plot contour lines.
binwidth	binwidth for contour plot
bins	bins for contour plot. Overrides binwidth if given

Details

Arguments:

Value

ggplot2 potential plotted

qda_ews

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

Examples

```
X = c(rnorm(1000, mean = 0), rnorm(1000, mean = -2), rnorm(1000, mean = 2));
param = seq(0,5,length=3000); res <- movpotential_ews(X, param);
PlotPotential(res$res, title = '', xlab.text = '', ylab.text = '',
cutoff = 0.5, plot.contours = TRUE, binwidth = 0.2)</pre>
```

qda	a_ews
-----	-------

Description: Quick Detection Analysis for Generic Early Warning Signals

Description

qda_ews is used to estimate autocorrelation, variance within rolling windows along a timeseries, test the significance of their trends, and reconstruct the potential landscape of the timeseries

Usage

```
qda_ews(timeseries, param = NULL, winsize = 50, detrending = c("no",
  "gaussian", "linear", "first-diff"), bandwidth = NULL, boots = 100,
  s_level = 0.05, cutoff = 0.05, detection.threshold = 0.002,
  grid.size = 50, logtransform = FALSE, interpolate = FALSE)
```

timeseries	a numeric vector of the observed univariate timeseries values or a numeric ma- trix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.
param	values corresponding to observations in timeseries
winsize	is the size of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 50%.
detrending	the timeseries can be detrended/filtered prior to analysis. There are four options: gaussian filtering, linear detrending and first-differencing. Default is no detrending.
bandwidth	is the bandwidth used for the Gaussian kernel when gaussian filtering is applied. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Alternatively it can be given by the bandwidth selector bw.nrd0 (Default).

boots	the number of surrogate data to generate from fitting an ARMA(p,q) model. Default is 100.
s_level	significance level. Default is 0.05.
cutoff	the cutoff value to visualize the potential landscape
detection.thres	hold
	detection threshold for potential minima
grid.size	grid size (for potential analysis)
logtransform	logical. If TRUE data are log transformed prior to analysis as $log(X+1)$. Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).
	qda_ews produces three plots. The first plot contains the original data, the detrending/filtering applied and the residuals (if selected), autocorrelation and variance. For each statistic trends are estimated by the nonparametric Kendall tau correlation. The second plot, returns a histogram of the distributions of the Kendall trend statistic for autocorrelation and variance estimated on the surrogated data. Vertical lines represent the level of significance, whereas the black dots the actual trend found in the time series. The third plot is the reconstructed potential landscape in 2D. In addition, the function returns a list containing the output from the respective functions generic_RShiny (indicators); surrogates_RShiny (trends); movpotential_ews (potential analysis)

Details

see ref below

Arguments:

Author(s)

Vasilis Dakos, Leo Lahti, March 1, 2013 <vasilis.dakos@gmail.com>

References

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews; ch_ews; movpotential_ews; livpotential_ews;

```
data(foldbif)
out <- qda_ews(foldbif, param = NULL, winsize = 50, detrending='gaussian', bandwidth=NULL,
boots = 50, s_level = 0.05, cutoff=0.05, detection.threshold = 0.002, grid.size = 50,
logtransform=FALSE, interpolate=FALSE)</pre>
```

```
sensitivity_ews
```

Description

sensitivity_ews is used to estimate trends in statistical moments for different sizes of rolling windows along a timeseries. The trends are estimated by the nonparametric Kendall tau correlation coefficient.

Usage

```
sensitivity_ews(timeseries, indicator = c("ar1", "sd", "acf1", "sk", "kurt",
    "cv", "returnrate", "densratio"), winsizerange = c(25, 75),
    incrwinsize = 25, detrending = c("no", "gaussian", "loess", "linear",
    "first-diff"), bandwidthrange = c(5, 100), spanrange = c(5, 100),
    degree = NULL, incrbandwidth = 20, incrspanrange = 10,
    logtransform = FALSE, interpolate = FALSE)
```

timeseries	a numeric vector of the observed univariate timeseries values or a numeric ma- trix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.
indicator	is the statistic (leading indicator) selected for which the sensitivity analysis is perfomed. Currently, the indicators supported are: ar1 autoregressive coefficient of a first order AR model, sd standard deviation, acf1 autocorrelation at first lag, sk skewness, kurt kurtosis, cv coeffcient of variation, returnrate, and densratio density ratio of the power spectrum at low frequencies over high frequencies.
winsizerange	is the range of the rolling window sizes expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 25% - 75% .
incrwinsize	increments the rolling window size (must be numeric between 0 and 100). Default is 25.
detrending	the timeseries can be detrended/filtered. There are three options: gaussian filtering, loess fitting, linear detrending and first-differencing. Default is no detrending.
bandwidthrange	is the range of the bandwidth used for the Gaussian kernel when gaussian filtering is selected. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 5% - 100%.
spanrange	parameter that controls the degree of smoothing (numeric between 0 and 100). Default is 5% - 100%. see more on loessstats
degree	the degree of polynomial to be used for when loess fitting is applied, normally 1 or 2 (Default). see more on loessstats

incrbandwidth	is the size to increment the bandwidth used for the Gaussian kernel when gaus- sian filtering is applied. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 20.
incrspanrange	Span range
logtransform	logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

Details

see ref below

Arguments:

Value

sensitivity_ews returns a matrix that contains the Kendall tau rank correlation estimates for the rolling window sizes (rows) and bandwidths (columns), if gaussian filtering is selected.

In addition, sensitivity_ews returns a plot with the Kendall tau estimates and their p-values for the range of rolling window sizes used, together with a histogram of the distributions of the statistic and its significance. When gaussian filtering is chosen, a contour plot is produced for the Kendall tau estimates and their p-values for the range of both rolling window sizes and bandwidth used. A reverse triangle indicates the combination of the two parameters for which the Kendall tau was the highest

Author(s)

Vasilis Dakos <vasilis.dakos@gmail.com>

References

Dakos, V., et al (2008). 'Slowing down as an early warning signal for abrupt climate change.' Proceedings of the National Academy of Sciences 105(38): 14308-14312

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' PLoS ONE 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews; ch_ews; movpotential_ews; livpotential_ews

```
data(foldbif)
output=sensitivity_ews(foldbif,indicator='sd',detrending='gaussian',
incrwinsize=25, incrbandwidth=20)
```

```
surrogates_ews
```

Description

surrogates_ews is used to estimate distributions of trends in statistical moments from different surrogate timeseries generated after fitting an ARMA(p,q) model on the data. The trends are estimated by the nonparametric Kendall tau correlation coefficient and can be compared to the trends estimated in the original timeseries to produce probabilities of false positives.

Usage

```
surrogates_ews(timeseries, indicator = c("ar1", "sd", "acf1", "sk", "kurt",
    "cv", "returnrate", "densratio"), winsize = 50, detrending = c("no",
    "gaussian", "loess", "linear", "first-diff"), bandwidth = NULL,
    span = NULL, degree = NULL, boots = 100, logtransform = FALSE,
    interpolate = FALSE)
```

timeseries	a numeric vector of the observed univariate timeseries values or a numeric ma- trix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.	
indicator	is the statistic (leading indicator) selected for which the surrogate timeseries are produced. Currently, the indicators supported are: ar1 autoregressive coefficient of a first order AR model, sd standard deviation, acf1 autocorrelation at first lag, sk skewness, kurt kurtosis, cv coeffcient of variation, returnrate, and densratio density ratio of the power spectrum at low frequencies over high frequencies.	
winsize	is the size of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default valuise 50%.	
detrending	the timeseries can be detrended/filtered prior to analysis. There are three op- tions: gaussian filtering, loess fitting, linear detrending and first-differencing. Default is no detrending.	
bandwidth	is the bandwidth used for the Gaussian kernel when gaussian filtering is selected. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Alternatively it can be given by the bandwidth selector bw.nrd0 (Default).	
span	parameter that controls the degree of smoothing (numeric between 0 and 100, Default 25). see more on loessstats	
degree	the degree of polynomial to be used for when loess fitting is applied, normally 1 or 2 (Default). see more on loessstats	
boots	the number of surrogate data. Default is 100.	
logtransform	logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.	

to

interpolate logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

Details

see ref below Arguments:

Value

surrogates_ews returns a matrix that contains:

Kendall	tau	estimate original
		the trends of the original timeseries.
Kendall	tau	p-value original
		the p-values of the trends of the original timeseries.
Kendall	tau	estimate surrogates
		the trends of the surrogate timeseries.
Kendall	tau	p-value surrogates
		the associated p-values of the trends of the surrogate timeseries.
signific	cance	p the p-value for the original Kendall tau rank correlation estimate compared
		the surrogates.

In addition, surrogates_ews returns a plot with the distribution of the surrogate Kendall tau estimates and the Kendall tau estimate of the original series. Vertical lines indicate the 5% and 95% significance levels.

Author(s)

Vasilis Dakos <vasilis.dakos@gmail.com>

References

Dakos, V., et al (2008). 'Slowing down as an early warning signal for abrupt climate change.' *Proceedings of the National Academy of Sciences* 105(38): 14308-14312

Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews; ch_ews; movpotential_ews; livpotential_ews

```
data(foldbif)
output=surrogates_ews(foldbif,indicator='sd',winsize=50,detrending='gaussian',
bandwidth=10,boots=200,logtransform=FALSE,interpolate=FALSE)
```

UnivariateGrouping Description: Get group assignment indices for univariate data points, given cluster break points

Description

Arguments:

Usage

UnivariateGrouping(x, breakpoints)

Arguments

х	Univariate data vector
breakpoints	Cluster breakpoints
	Returns:

Value

A vector of cluster indices

Author(s)

Leo Lahti <leo.lahti@iki.fi>

Examples

#

YD2PB_grayscale YD2PB_grayscale data set

Description

YD2PB_grayscale data set

Format

TBA

Source

TBA

References

See citation('earlywarnings')

Examples

#

Index

*Topic **datasetspl** foldbif, 8 *Topic datasets circulation, 5 YD2PB_grayscale, 21 *Topic early-warning bdstest_ews, 2 ch_ews, 4 ddjnonparam_ews, 6 generic_ews, 9 livpotential_ews, 11 movpotential_ews, 13 PlotPotential, 14 qda_ews, 15 sensitivity_ews, 17 surrogates_ews, 19 UnivariateGrouping, 21 *Topic **utilities** find.optima, 7

acf, 3

PlotPotential, 14

qda_ews, 15

UnivariateGrouping, 21

YD2PB_grayscale, 21