
Package ‘ebirdst’
April 1, 2022

Type Package
Title Access and Analyze eBird Status and Trends Data
Version 0.3.5
Description Tools to download, map, plot and analyze eBird Status and

Trends data (<https://ebird.org/science/status-and-trends>). eBird
(<https://ebird.org/home>) is a global database of bird observations
collected by citizen scientists. eBird Status and Trends uses these
data to model continental bird abundances, range boundaries, habitat
associations, and trends.

License GPL-3

URL https://github.com/CornellLabofOrnithology/ebirdst

BugReports https://github.com/CornellLabofOrnithology/ebirdst/issues

Depends R (>= 3.3.0)
Imports DBI, dplyr (>= 0.7.0), fasterize, gbm, ggplot2, grDevices,

jsonlite, gridExtra, magrittr, methods, mgcv, PresenceAbsence,
rappdirs, raster, rgdal, rlang, RSQLite, sf (>= 1.0-0), stats,
stringr, tidyr (>= 1.0.0), tools, utils, viridisLite, xml2

Suggests covr, fields, knitr, rmarkdown, rnaturalearth, testthat
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
NeedsCompilation no
Author Matthew Strimas-Mackey [aut, cre]

(<https://orcid.org/0000-0001-8929-7776>),
Shawn Ligocki [aut],
Tom Auer [aut] (<https://orcid.org/0000-0001-8619-7147>),
Daniel Fink [aut] (<https://orcid.org/0000-0002-8368-1248>),
Cornell Lab of Ornithology [cph]

Maintainer Matthew Strimas-Mackey <mes335@cornell.edu>

Repository CRAN
Date/Publication 2022-04-01 12:10:02 UTC

1

https://ebird.org/science/status-and-trends
https://ebird.org/home
https://github.com/CornellLabofOrnithology/ebirdst
https://github.com/CornellLabofOrnithology/ebirdst/issues
https://orcid.org/0000-0001-8929-7776
https://orcid.org/0000-0001-8619-7147
https://orcid.org/0000-0002-8368-1248

2 abundance_palette

R topics documented:
abundance_palette . 2
bernoulli_dev . 3
binom_test_p . 4
calc_bins . 4
calc_full_extent . 5
date_to_st_week . 6
ebirdst . 7
ebirdst_download . 7
ebirdst_extent . 8
ebirdst_habitat . 10
ebirdst_ppms . 12
ebirdst_ppms_ts . 14
ebirdst_predictors . 15
ebirdst_runs . 16
ebirdst_subset . 17
ebirdst_weeks . 18
get_species . 19
get_species_path . 19
label_raster_stack . 20
load_config . 21
load_fac_map_parameters . 22
load_pds . 23
load_pis . 24
load_predictions . 25
load_raster . 26
load_stixels . 27
parse_raster_dates . 28
plot_pds . 29
plot_pis . 31
poisson_dev . 32
project_extent . 33
sample_grid . 34
set_ebirdst_access_key . 35
stixelize . 36
stixel_footprint . 37

Index 39

abundance_palette eBird Status and Trends color palettes for mapping

Description

Generate the color palettes used for the eBird Status and Trends relative abundance maps.

bernoulli_dev 3

Usage

abundance_palette(
n,
season = c("weekly", "breeding", "nonbreeding", "migration", "prebreeding_migration",

"postbreeding_migration", "year_round")
)

Arguments

n integer; the number of colors to be in the palette.

season character; the season to generate colors for or "weekly" to get the color palette
used in the weekly abundance animations.

Value

A character vector of hex color codes.

Examples

breeding season color palette
abundance_palette(10, season = "breeding")

bernoulli_dev Bernoulli deviance

Description

Bernoulli deviance

Usage

bernoulli_dev(obs, pred)

Arguments

obs numeric; observed values.

pred numeric; predicted values.

Value

A named numeric vector with three elements: model deviance, mean deviance, and deviance ex-
plained.

Examples

obs <- c(1, 1, 1, 0, 0, 0)
pred <- c(0.9, 0.8, 0.7, 0.3, 0.1, 0.2)
ebirdst:::bernoulli_dev(obs, pred)

4 calc_bins

binom_test_p Binomial test for ensemble support

Description

Binomial test for ensemble support

Usage

binom_test_p(x, pat_cutoff = 1/10)

Arguments

x numeric; named numeric vector with values for "pat" and "pi_es".

pat_cutoff numeric; percent above threshold cutoff

Value

A numeric p-value.

Examples

ebirdst:::binom_test_p(c(pat = 0.1, pi_es = 75))

calc_bins Calculates relative abundance bins (breaks) based for mapping

Description

Mapping species abundance across the full-annual cycle presents a challenge, in that patterns of
concentration and dispersion in abundance change throughout the year, making it difficult to define
color bins that suit all seasons and accurately reflect the detail of abundance predictions. To address
this, when mapping the relative abundance data, we recommend using quantile bins based on the
underlying count distribution, adjusted according to the relative abundance distribution. To access
pre-calculated bins for the full annual cycle use load_fac_map_parameters().

Usage

calc_bins(abundance, count)

Arguments

abundance Raster object; eBird Status and Trends relative abundance data cube, or a subset
of the data cube.

count Raster object; eBird Status and Trends count data cube, or a subset of the data
cube.

calc_full_extent 5

Value

A numeric vector defining the breaks of the relative abundance bins. In addition, the labels at-
tribute of this vector provides the 5th, 50th, and 95th quantile of abundance, which can be used to
label the bottom, middle, and top of a legend.

Examples

Not run:
download example data
path <- ebirdst_download("example_data")
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

abundance data
abd <- load_raster(path, "abundance")
count data
cnt <- load_raster(path, "count")

calculate bins for a single week for this example
bins <- calc_bins(abd, cnt)

End(Not run)

calc_full_extent Calculate the spatial extent of non-zero data in a raster

Description

eBird Status and Trends data cubes are defined over broad areas, filling in regions where the species
doesn’t occur with zeros (predicted absences) or NAs (regions where models weren’t fit). When
producing maps, it’s best to only display the spatial extent where the species occurs. To show
determine an ideal extent for mapping, this function trims away 0 and NA values. When called
on a RasterStack (e.g., a data cube consisting of all 52 weeks), this function returns the ex-
tent of occurrence across all layers.To access a pre-calculated extent for the full annual cycle use
load_fac_map_parameters().

Usage

calc_full_extent(x, aggregate = TRUE)

Arguments

x Raster object; either a full 52-week data cube or a subset.

aggregate logical; whether data should be aggregated by a factor of 3 in each dimension
prior to calculating the extent. When working with the high resolution cubes,
data should be aggregated otherwise processing times will be extremely long.

6 date_to_st_week

Value

The extent of occurrence as a raster Extent object.

Examples

Not run:
simple toy example
r <- raster::raster(nrow = 100, ncol = 100)
r[5025:5075] <- 1
raster::extent(r)
calc_full_extent(r)

download example data
path <- ebirdst_download("example_data")
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load abundance data
abd <- load_raster(path, "abundance")

calculate full extent
map_extent <- calc_full_extent(abd)

plot
raster::plot(abd[[20]], axes = FALSE, ext = map_extent)

End(Not run)

date_to_st_week Get the Status and Trends week that a date falls into

Description

Get the Status and Trends week that a date falls into

Usage

date_to_st_week(dates)

Arguments

dates a vector of dates.

Value

An integer vector of weeks numbers from 1-52.

ebirdst 7

Examples

d <- as.Date(c("2016-04-08", "2018-12-31", "2014-01-01", "2018-09-04"))
date_to_st_week(d)

ebirdst ebirdst: Tools to Load, Map, Plot, and Analyze eBird Status and
Trends Data Products

Description

Tools to load, map, plot, and analyze eBird Status and Trends data products

ebirdst_download Download eBird Status and Trends Data

Description

Download an eBird Status and Trends data package for a single species, or for an example species, to
a specified path. Accessing Status and Trends data requires an access key, consult set_ebirdst_access_key()
for instructions on how to obtain and store this key. The example data consist of the results for
Yellow-bellied Sapsucker subset to Michigan and are much smaller than the full dataset, making
these data quicker to download and process. In addition, the example data are accessible without an
access key.

Usage

ebirdst_download(
species,
path = rappdirs::user_data_dir("ebirdst"),
tifs_only = TRUE,
force = FALSE,
show_progress = TRUE

)

Arguments

species character; a single species given as a scientific name, common name or six-letter
species code (e.g. woothr). The full list of valid species is can be viewed in the
ebirdst_runs data frame included in this package. To download the example
dataset, use "example_data".

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named according to the unique run ID asso-
ciated with this species. Defaults to a persistent data directory, which can be
found by calling rappdirs::user_data_dir("ebirdst")).

https://ebird.org/science/status-and-trends

8 ebirdst_extent

tifs_only logical; whether to only download the GeoTIFFs for abundance and occurrence
(the default), or download the entire data package, including data for predictor
importance, partial dependence, and predictive performance metrics.

force logical; if the data have already been downloaded, should a fresh copy be down-
loaded anyway.

show_progress logical; whether to print download progress information.

Value

Path to the folder containing the downloaded data package for the given species.

Examples

Not run:
download the example data
ebirdst_download("example_data")

download the data package for wood thrush, geotiffs only
ebirdst_download("woothr")
download the data package for wood thrush, all data
ebirdst_download("woothr", tifs_only = FALSE)

End(Not run)

ebirdst_extent Construct a spatiotemporal extent object to subset Status and Trends
data

Description

ebirdst_extent object are used to subset the eBird Status and Trends data spatially and tempo-
rally. This function constructs these objects.

Usage

ebirdst_extent(x, t, ...)

S3 method for class 'bbox'
ebirdst_extent(x, t, ...)

S3 method for class 'numeric'
ebirdst_extent(x, t, crs = 4326, ...)

S3 method for class 'sfc'
ebirdst_extent(x, t, ...)

S3 method for class 'sf'
ebirdst_extent(x, t, ...)

ebirdst_extent 9

Arguments

x the spatial extent; either a rectangular bounding box (defined as a vector of num-
bers representing the coordinates of the boundaries or an st_bbox() object) or
a polygon (an sf object). See Details for further explanation of the format of x.

t the temporal extent; a 2-element vector of the start and end dates of the temporal
extent, provided either as dates (Date objects or strings in ISO format "YYYY-
MM-DD") or numbers between 0 and 1 representing the fraction of the year.
Note that dates can wrap around the year, e.g. ‘c("2018-12-01", "2018-01-31")
is acceptable. See Details for further explanation of the format of t. Leave the
argument blank to include the full year of data.

... Additional arguments used by methods.

crs coordinate reference system, provided as a crs object or argument to st_crs().
Defaults to unprojected, lat/long coordinates (crs = 4326). Only required if x
is given as a numeric vector defining the bounding box, ignored in all other
cases.

Details

The spatial extent, x, can be either a rectangular bounding box or a set of spatial polygons. The
bounding box can be defined either as an st_bbox() object or by providing the coordinates of the
rectangle edges directly as a named vector with elements xmin, xmax, ymin, and ymax (note that
latitude and longitude correspond to y and x, respectively). In this latter case, a coordinate reference
system must be provided explicitly via the crs argument (crs = 4326 is the default and is a short
form for unprojected lat/long coordinates). For a polygon spatial extent, x should be either an sf or
sfc object (with feature type POLYGON or MULTIPOLYGON) from the sf package. To import data from
a Shapefile or GeoPackage into this format, use read_sf().

The temporal extent defines the start and end dates of the time period. These are most easily
provided as Date objects or date strings in ISO format ("YYYY-MM-DD"). If dates are defined as
strings, the year can be omitted (i.e. "MM-DD"). Alternatively, dates can be defined in terms of
fractions of the year, e.g. t = c(0.25,0.5) would subset to data within the second quarter of the
year. In all cases, dates can wrap around the year, e.g. c("2018-12-01", "2018-01-31") would subset
to data in December or January.

Value

An ebirdst_extent object consisting of a list with three elements: the spatial extent extent, the
temporal extent t, and type (either "bbox" or "polygon").

Methods (by class)

• bbox: bounding box created with st_bbox()

• numeric: bounding box given as edges

• sfc: polygons as sfc spatial feature column

• sf: polygons as sf object

10 ebirdst_habitat

Examples

bounding box of the north eastern united stats as a numeric vector
bb_vec <- c(xmin = -80, xmax = -70, ymin = 40, ymax = 47)
ebirdst_extent(bb_vec)

bbox object
bb <- sf::st_bbox(bb_vec, crs = 4326)
ebirdst_extent(bb)

polygon imported from a shapefile
poly <- sf::read_sf(system.file("shape/nc.shp", package="sf"))
ebirdst_extent(poly)

subset to january
ebirdst_extent(bb, t = c("2018-01-01", "2018-01-31"))

dates can wrap around, e.g. to use dec-jan
ebirdst_extent(bb, t = c("2018-12-01", "2018-01-31"))

dates can also be given without an associated year
ebirdst_extent(bb, t = c("12-01", "01-31"))

ebirdst_habitat eBird Status and Trends predictive habitat associations

Description

Combine the predictor importance (PI) and partial dependence (PD) data to provide an estimate of
the importance and directionality of the land cover classes (i.e. habitat) used as covariates in the
occurrence probability model. Note: This is one of, if not the most, computationally expensive
operations in the package.

Usage

ebirdst_habitat(path, ext, pis = NULL, pds = NULL, stixels = NULL)

S3 method for class 'ebirdst_habitat'
plot(x, n_predictors = 15, date_range = c(0, 1), ...)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

ext ebirdst_extent object; the spatiotemporal extent over which to calculate the habi-
tat associations. Note that temporal component of ext is ignored is this func-
tion, habitat associations are always calculated for the full year.

ebirdst_habitat 11

pis, pds, stixels

as an alternative to providing the path argument specifying the location of the
data package, the data required to calculate habitat associations can be provided
explicitly. PI, PD, and stixel data frames can provided, which come from the
load_pis(), load_pds(), and load_stixels() functions, respectively. Ig-
nored if path is provided. In most cases, users will want to avoid using these
arguments and simply provide path instead.

x ebirdst_habitat object; habitat relationships as calculated by ebirdst_habitat().
n_predictors number of predictors to include in the cake plot. The most important set of pre-

dictors will be chosen based on the maximum weekly importance value across
the whole year.

date_range the range of dates for plotting; a 2-element vector of the start and end dates of
the date range, provided either as dates (Date objects or strings in ISO format
"YYYY-MM-DD") or numbers between 0 and 1 representing the fraction of the
year. When providing dates as a string, the year can be omitted (i.e. "MM-DD").
By default the full year of data are plotted.

... ignored.

Details

The Status and Trends models use both effort (e.g. number of observers, length of checklist) and
habitat (e.g. elevation, percent forest cover) covariates; for the full list consult ebirdst_predictors.
This function calculates habitat associations only for the following covariates that most closely
represent metrics of available habitat. In all cases these are calculated within a 1.5 km radius of
each checklist:

• Land cover: percent of each landcover class
• Water cover: percent of each watercover class
• Intertidal: percent cover of intertidal mudflats
• Nighttime lights: total refelctance of nighttime lights
• Roads: road density. There are 5 covariates distinguishing between different road types; how-

ever, these are grouped together for the sake of the habitat associations.

The plot() method can be used to produce a cake plot, a stacked area chart showing habitat asso-
ciations in which area indicates the importance of a given land cover class and the position above
or below the x-axis indicates the direction of the relationship.

Value

An ebirdst_habitat object, consisting of a data frame giving the predictor importance and direc-
tionality for each predictor for each week of the year. The columns are:

• predictor: the name of the predictor
• date: the week centroid expressed as a continuous value between 0-1. See ebirdst_weeks to

convert these values to ISO dates.
• importance: the relative importance of the predictor, these values are scaled so they sum to 1

within each week.
• direction: the direction of the relationship, either 1 for a positive relationship, -1 for a

negative relationship, or NA when the direction of the relationship is not significant.

12 ebirdst_ppms

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

define a spatial extent to calculate ppms over
bb_vec <- c(xmin = -86, xmax = -83, ymin = 42.5, ymax = 44.5)
e <- ebirdst_extent(bb_vec)

compute habitat associations
habitat <- ebirdst_habitat(path = path, ext = e)
print(habitat)
produce a cake plot
plot(habitat)

End(Not run)

ebirdst_ppms eBird Status and Trends predictive performance metrics (PPMs)

Description

Calculate a suite of predictive performance metrics (PPMs) for the eBird Status and Trends model
of a given species within a spatiotemporal extent.

Usage

ebirdst_ppms(path, ext, es_cutoff)

S3 method for class 'ebirdst_ppms'
plot(x, ...)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

ext ebirdst_extent object (optional); the spatiotemporal extent over which to calcu-
late the PPMs.

es_cutoff integer between 0-100; the ensemble support cutoff to use in distinguishing zero
and non-zero predictions. Optimal ensemble support cutoff values are calculated
for each week during the modeling process and stored in the data package for
each species. In general, you should not specify a value for es_cutoff and
instead allow the function to use the species-specific model-base values.

x ebirdst_ppms object; PPMs as calculated by ebirdst_ppms().

... ignored.

ebirdst_ppms 13

Details

During the eBird Status and Trends modeling process, a subset of observations (the "test data") are
held out from model fitting to be used for evaluating model performance. Model predictions are
made for each of these observations and this function calculates a suite of predictive performance
metrics (PPMs) by comparing the predictions with the observed count on the eBird checklist.

Three types of PPMs are calculated: binary or range-based PPMs assess the ability of model to pre-
dict range boundaries, occurrence PPMs assess the occurrence probability predictions, and abun-
dance PPMs assess the predicted abundance. Both the occurrence and count PPMs are within-range
metrics, meaning the comparison between observations and predictions is only made within the
range where the species occurs.

Prior to calculating PPMS, the test dataset is subsampled spatiotemporally using ebirdst_subset().
This process is performed for 25 monte carlo iterations resulting in 25 estimates of each PPM.

Value

An ebirdst_pppms object containing a list of three data frames: binary_ppms, occ_ppms, and
abd_ppms. These data frames have 25 rows corresponding to 25 Monte Carlo iterations each es-
timating the PPMs using a spatiotemporal subsample of the test data. Columns correspond to the
different PPMS. binary_ppms contains binary or range-based PPMS, occ_ppms contains within-
range occurrence probability PPMs, and abd_ppms contains within-range abundance PPMs. In
some cases, PPMs may be missing, either because there isn’t a large enough test set within the
spatiotemporal extent or because average occurrence or abundance is too low. In these cases, try
increasing the size of the ebirdst_extent object.

plot() can be called on the returned ebirdst_ppms object to produce a boxplot of PPMs in all
three categories: Binary Occurrence, Occurrence Probability, and Abundance.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

define a spatiotemporal extent to calculate ppms over
bb_vec <- c(xmin = -86, xmax = -83, ymin = 42.5, ymax = 44.5)
e <- ebirdst_extent(bb_vec, t = c("05-01", "05-31"))

compute predictive performance metrics
ppms <- ebirdst_ppms(path = path, ext = e)
plot(ppms)

End(Not run)

14 ebirdst_ppms_ts

ebirdst_ppms_ts Time series of eBird Status and Trends PPMs summarized temporally

Description

Calculate a time series of predictive performance metrics (PPMs) for the eBird Status and Trends
model. For each week or month of the year, PPMs will be summarized independently to produce a
time series. For further details on eBird Status and Trends PPMs consult the help for ebirdst_ppms.

Usage

ebirdst_ppms_ts(path, ext, summarize_by = c("weeks", "months"), ...)

S3 method for class 'ebirdst_ppms_ts'
plot(x, type = c("binary", "occurrence", "abundance"), metric = "kappa", ...)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

ext ebirdst_extent object (optional); the spatial extent over which to calculate the
PPMs. Note that ebirdst_extent objects typically specify both a spatial and tem-
poral extent, however, within this function only the spatial component of the
extent is used.

summarize_by character; periods over which to summarize PPMs. PPMs can either be calcu-
lated for eBird Status and Trends weeks (as defined in ebirdst_weeks) or for the
months of the year.

... ignored.

x ebirdst_ppms_ts object; PPMs summarized by weeks or months as calculated
by ebirdst_ppms_ts().

type character; the PPM type to plot, either a binary, occurrence, or abundance PPM
can be plotted.

metric character; the specific metric to plot, the list list of possible metrics varies by
PPM type:

• Binary or occurrence: auc, ppc, kappa, bernoulli_dev, sensitivity,
specificity

• Abundance: poisson_dev_abd, poisson_dev_occ, spearman_abd, spearman_occ

Value

An ebirdst_pppms_ts object containing a list of three data frames: binary_ppms, occ_ppms,
and abd_ppms. Each row of these data frames corresponds to the PPMs from one Monte Carlo
iteration for a given time period. Columns correspond to the different PPMS. binary_ppms contains
binary or range-based PPMS, occ_ppms contains within-range occurrence probability PPMs, and
abd_ppms contains within-range abundance PPMs. In some cases, PPMs may be missing, either

ebirdst_predictors 15

because there isn’t a large enough test set within the spatiotemporal extent or because average
occurrence or abundance is too low. In these cases, try increasing the size of the ebirdst_extent
object. plot() can be called on the returned ebirdst_pppms_ts object to plot a time series of a
single PPM.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

define a spatial extent to calculate ppms over
e <- ebirdst_extent(c(xmin = -86, xmax = -83, ymin = 42.5, ymax = 44.5))

compute predictive performance metrics, summarized by months
ppms <- ebirdst_ppms_ts(path = path, ext = e, summarize_by = "months")

plot time series
binary, kappa
plot(ppms, type = "binary", metric = "kappa")
occurrence, sensitivity
plot(ppms, type = "occurrence", metric = "sensitivity")
#' # abundance, poisson deviance
plot(ppms, type = "abundance", metric = "poisson_dev_abd")

End(Not run)

ebirdst_predictors eBird Status and Trends predictors

Description

A data frame of the predictors used in the eBird Status and Trends models. These include effort
variables (e.g. distance traveled, number of observers, etc.) in addition to land and water cover
variables. These landcover variables are derived from the MODIS MCD12Q1 500 m landcover
product, and for each land cover class two FRAGSTATS metrics are calculated within a 1.5 km
buffer around each checklist: % landcover (PLAND) and edge density (ED).

Usage

ebirdst_predictors

Format

A data frame with 74 rows and 5 columns:

predictor Predictor variable name.

16 ebirdst_runs

predictor_tidy Predictor variable name, tidied to only contain lowercase letters and underscores.

predictor_label Descriptive labels for predictors for plotting and translating the cryptic variables
names (e.g. umd_fs_c1 is Evergreen Needleleaf Forest.

lc_class For the land and water cover FRAGSTATS variables, this gives the associated landcover
class. It can be used for grouping and summarizing the four FRAGSTATS metrics to the level
of the landcover class.

lc_class_label Similar to predictor_label; however, this variable gives the FRAGSTATS metrics
a single name for the landcover class.

ebirdst_runs Data frame of available eBird Status and Trends species

Description

A dataset containing the species for which eBird Status and Trends data are available In addition, the
dates defining the boundaries of the seasons are provided. These seasons are defined on a species-
specific basis through expert review. For information on the details of defining seasons, please see
the seasons section of the FAQ. Note that missing dates imply that a season failed expert review for
that species within that season.

Usage

ebirdst_runs

Format

A data frame with 15 variables:

run_name Unique analysis identifier and the top level folder name for all results

species_code Six letter eBird code in eBird Taxonomy v2018

scientific_name Scientific name from eBird Taxonomy v2018

common_name English common name from eBird Taxonomy v2018

resident Classifies this species a resident or a migrant

breeding_quality Breeding season quality

breeding_range_modeled Is the full range modeled?

breeding_start Breeding season start date

breeding_end Breeding season start date

nonbreeding_quality Non-breeding season quality

nonbreeding_range_modeled Is the full range modeled?

nonbreeding_start Non-breeding season start date

nonbreeding_end Non-breeding season start date

postbreeding_migration_quality Post-breeding season quality

https://ebird.org/science/status-and-trends/faq#seasons

ebirdst_subset 17

postbreeding_migration_range_modeled Is the full range modeled?

postbreeding_migration_start Post-breeding season start date

postbreeding_migration_end Post-breeding season start date

prebreeding_migration_quality Pre-breeding season quality

prebreeding_migration_range_modeled Is the full range modeled?

prebreeding_migration_start Pre-breeding season start date

prebreeding_migration_end Pre-breeding season start date

resident_quality Resident quality

resident_start For resident species, the year-round start date

resident_end For resident species, the year-round end date

ebirdst_subset Subset eBird Status and Trends data spatiotemporally

Description

Spatiotemporally subset the raster or tabular eBird Status and Trends data. The spatiotemporal
extent should be defined using ebirdst_extent().

Usage

ebirdst_subset(x, ext)

S3 method for class 'data.frame'
ebirdst_subset(x, ext)

S3 method for class 'sf'
ebirdst_subset(x, ext)

S3 method for class 'Raster'
ebirdst_subset(x, ext)

Arguments

x eBird Status and Trends data to subset; either a RasterStack object with 52
layers (one for each week) or a data frame with PI or PD data.

ext ebirdst_extent object; the spatiotemporal extent to filter the data to.

Value

eBird Status and Trends data in the same format as the input data, but subset in space and time.

18 ebirdst_weeks

Methods (by class)

• data.frame: PI or PD data

• sf: PI or PD data as an sf object

• Raster: Status and Trends rasters

Examples

Not run:
download example data
path <- ebirdst_download("example_data")
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

bbox for southern michigan in may
bb_vec <- c(xmin = -86, xmax = -83, ymin = 41.5, ymax = 43.5)
e <- ebirdst_extent(bb_vec, t = c("05-01", "05-31"))

load and subset raster data
abd <- load_raster(path, product = "abundance")
abd_ss <- ebirdst_subset(abd, ext = e)

End(Not run)

ebirdst_weeks eBird Status and Trends weeks

Description

eBird Status and Trends predictions are made for each of 52 weeks of the year. This data frame
provides the boundaries of the weeks.

Usage

ebirdst_weeks

Format

A data frame with 52 rows and 5 columns:

week_number Integer week number from 1-52.

date Date of the midpoint of the week.

week_midpoint Date of the midpoint of the week expressed as a fraction of the year, i.e. a number
from 0-1.

week_start Date of the start of the week expressed as a fraction of the year, i.e. a number from
0-1.

week_end Date of the end of the week expressed as a fraction of the year, i.e. a number from 0-1.

get_species 19

get_species Get eBird species code for a set of species

Description

Give a vector of species codes, common names, and/or scientific names, return a vector of 6-letter
eBird species codes. This function will only look up codes for species for which eBird Status and
Trends results exist.

Usage

get_species(x)

Arguments

x character; vector of species codes, common names, and/or scientific names.

Value

A character vector of eBird species codes.

Examples

get_species(c("Black-capped Chickadee", "Poecile gambeli", "carchi"))

get_species_path Get the data package path for a given species

Description

This helper function can be used to get the path to a data package for a given species to be used by
the various loading functions.

Usage

get_species_path(species, path = rappdirs::user_data_dir("ebirdst"))

Arguments

species character; a single species given as a scientific name, common name or six-letter
species code (e.g. woothr). The full list of valid species is can be viewed in the
ebirdst_runs data frame included in this package. To download the example
dataset, use "example_data".

path character; directory to download the data to. All downloaded files will be placed
in a sub-directory of this directory named according to the unique run ID asso-
ciated with this species. Defaults to a persistent data directory, which can be
found by calling rappdirs::user_data_dir("ebirdst")).

20 label_raster_stack

Value

The path to the data package directory.

Examples

Not run:
download the example data
ebirdst_download("example_data")

get the path
path <- get_species_path("example_data")

use it to load data
abd <- load_raster(path, "abundance")

get the path to the full data package for yellow-bellied sapsucker
common name, scientific name, or species code can be used
path <- get_species_path("Yellow-bellied Sapsucker")
path <- get_species_path("Sphyrapicus varius")
path <- get_species_path("yebsap")

End(Not run)

label_raster_stack Label data cubes with the week date for each band

Description

The data cubes are saved as GeoTIFFs, which don’t allow for band labels. For convenience, this
function labels the layers of a data cube once it has been loaded with the week dates for each band.

Usage

label_raster_stack(x)

Arguments

x RasterStack or RasterBrick; original eBird Status and Trends data cube with
52 bands, one for each week.

Value

A RasterStack or RasterBrick with names assigned for the dates in the format of "wYYYY.MM.DD"
per raster package constraints. The Raster* objects do not allow the names to start with a number,
nor are they allowed to contain "-", so it is not possible to store the date in an ISO compliant format.
Use parse_raster_dates() to convert the layer names to dates.

load_config 21

Examples

Not run:
download and load example abundance data
sp_path <- ebirdst_download("example_data")
abd <- load_raster(sp_path, "abundance")

label
abd <- label_raster_stack(abd)
names(abd)

End(Not run)

load_config Load eBird Status and Trends configuration file

Description

Load the configuration file for an eBird Status and Trends runs. This configuration file is mostly for
internal use and contains a variety of parameters used in the modeling process.

Usage

load_config(path)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

Value

A list with the run configuration parameters.

Examples

Not run:
download example data
path <- ebirdst_download("example_data")
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load configuration file
cfg <- load_config(path)

End(Not run)

22 load_fac_map_parameters

load_fac_map_parameters

Load full annual cycle map parameters

Description

Get the map parameters used on the eBird Status and Trends website to optimally display the full
annual cycle data. This includes bins for the abundance data, a projection, and an extent to map.
The extent is the spatial extent of non-zero data across the full annual cycle and the projection is
optimized for this extent.

Usage

load_fac_map_parameters(path)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

Value

A list containing elements:

• custom_projection: a custom projection optimized for the given species’ full annual cycle

• fa_extent: an Extent object storing the spatial extent of non-zero data for the given species
in the custom projection

• res: a numeric vector with 2 elements giving the target resolution of raster in the custom
projection.

• fa_extent_sinu: the extent in sinusoidal projection

• abundance_bins: abundance bins for the full annual cycle

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

get map parameters
load_fac_map_parameters(path)

End(Not run)

load_pds 23

load_pds Load eBird Status and Trends partial dependence data

Description

Partial dependence (PD) plots depict the relationship between the modeled occurrence probability
and each of the predictor variables used in the model. Status and Trends provides the data to
generate these plots for every stixel.

Usage

load_pds(path, ext, return_sf = FALSE)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

ext ebirdst_extent object; the spatiotemporal extent to filter the data to. The spa-
tial component of the extent object must be provided in unprojected, latitude-
longitude coordinates.

return_sf logical; whether to return an sf object of spatial points rather then the default
data frame.

Value

Data frame, or sf object if return_sf = TRUE, containing PD estimates for each stixel for either the
occurrence and relative model. The data frame will have the following columns:

• stixel_id: unique stixel identifier

• lat and lon: stixel centroid

• date: day of year, expressed as a value from 0-1, of the stixel center

• predictor: name of the predictor that the PD data correspond to, for a full list of predictors
consult the ebirdst_predictors data frame

• predictor_value: value of the predictor variable at which PD is evaluated

• response: predicted response, occurrence or relative abundance, at the given value of the
predictor averaged across all the values of the other predictors

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load partial dependence data

24 load_pis

pds <- load_pds(path)

plot the top 15 predictor importances
define a spatiotemporal extent to plot data from
bb_vec <- c(xmin = -86.6, xmax = -82.2, ymin = 41.5, ymax = 43.5)
e <- ebirdst_extent(bb_vec, t = c("05-01", "05-31"))
plot_pds(pds, "solar_noon_diff", ext = e, n_bs = 5)

End(Not run)

load_pis Load eBird Status and Trends predictor importance data

Description

Loads the predictor importance (PI) data from the pi-pd.db sqlite database. PI estimates are provided
for each stixel over which a model was run and are identified by a unique stixel ID in addition to
the coordinates of the stixel centroid. PI estimates are for the occurrence model only.

Usage

load_pis(path, ext, return_sf = FALSE)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

ext ebirdst_extent object; the spatiotemporal extent to filter the data to. The spa-
tial component of the extent object must be provided in unprojected, latitude-
longitude coordinates.

return_sf logical; whether to return an sf object of spatial points rather then the default
data frame.

Value

Data frame, or sf object if return_sf = TRUE, containing PI estimates for each stixel for both the
occurrence and relative abundance models. The data are provided in a ’wide’ format, with each row
corresponding to the PI estimates for a give stixel for the occurrence count model, and the relative
importance of each predictor in columns. Stixels are identified by a unique stixel_id, the centroid
of the stixel in space and time is specified by the lat, lon, and date column, which expresses the
day of year as a value from 0-1.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded

load_predictions 25

path <- get_species_path("example_data")

load predictor importance
pis <- load_pis(path)

plot the top 15 predictor importances
define a spatiotemporal extent to plot data from
bb_vec <- c(xmin = -86.6, xmax = -82.2, ymin = 41.5, ymax = 43.5)
e <- ebirdst_extent(bb_vec, t = c("05-01", "05-31"))
plot_pis(pis, ext = e, n_top_pred = 15, by_cover_class = TRUE)

End(Not run)

load_predictions Load eBird Status and Trends test data predictions

Description

During eBird Status and Trends modeling, predictions are made for checklists in a test dataset that
is not included in the model fitting process. This function loads these predictions in addition to the
actual observed count on the associated checklist. These data are used by ebirdst_ppms() to get
for calculating predictive performance metrics.

Usage

load_predictions(path, return_sf = FALSE)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

return_sf logical; whether to return an sf object of spatial points rather then the default
data frame.

Value

Data frame, or sf object if return_sf = TRUE, containing observed counts and model predictiosn
for the test data.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

test data
test_predictions <- load_predictions(path)

26 load_raster

dplyr::glimpse(test_predictions)

End(Not run)

load_raster Load eBird Status and Trends raster data cubes

Description

Each of the eBird Status and Trends products is packaged as a GeoTIFF file (referred to as a "cube)
with 52 bands, one for each week of the year. This function loads the cube for a given product and
species as a RasterStack object.

Usage

load_raster(
path,
product = c("abundance", "abundance_seasonal", "count", "occurrence",
"abundance_lower", "abundance_upper", "template"),

resolution = c("hr", "mr", "lr")
)

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

product character; Status and Trends product to load, see Details for available products.
It is also possible to return a template raster with no data.

resolution character; the resolution of the raster data to load. The default is to load the
native ~3 km resolution ("hr"); however, for some applications 9 km ("mr") or
27 km ("lr") data may be suitable.

Details

The available Status and Trends data cubes are as follows:

• occurrence: the expected probability of occurrence of the species, ranging from 0 to 1, on an
eBird Traveling Count by a skilled eBirder starting at the optimal time of day with the optimal
search duration and distance that maximizes detection of that species in a region.

• count: the expected count of a species, conditional on its occurrence at the given location,
on an eBird Traveling Count by a skilled eBirder starting at the optimal time of day with the
optimal search duration and distance that maximizes detection of that species in a region.

• abundance: the expected relative abundance, computed as the product of the probability of
occurrence and the count conditional on occurrence, of the species on an eBird Traveling
Count by a skilled eBirder starting at the optimal time of day with the optimal search duration
and distance that maximizes detection of that species in a region.

load_stixels 27

• abundance_lower: the lower 10th quantile of the expected relative abundance of the species
on an eBird Traveling Count by a skilled eBirder starting at the optimal time of day with the
optimal search duration and distance that maximizes detection of that species in a region.

• abundance_upper: the upper 90th quantile of the expected relative abundance of the species
on an eBird Traveling Count by a skilled eBirder starting at the optimal time of day with the
optimal search duration and distance that maximizes detection of that species in a region.

In addition to these cubes with 52 layers (one for each week), it is possible to load:

• abundance_seasonal: the expected relative abundance averaged across the weeks within
each season. The date boundaries used for the seasonal definitions appear in ebirdst_runs
and if a season failed review no associated layer will be included.

• template: a template raster covering the whole Earth and without any data.

Value

A RasterStack with 52 layers for the given product, labeled by week. Seasonal abundance will
have up to four layers labeled according to the seasons. The template raster will be returned as a
RasterLayer.

Examples

Not run:
download example data
path <- ebirdst_download("example_data")
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load data
load_raster(path, "abundance")

End(Not run)

load_stixels Load summary data for eBird Status and Trends stixels

Description

eBird Status and Trends divides space and time into variably sized "stixels" within which individual
base models are fit. The process of stixelization is performed many times and the prediction at
any given point is the median of the predictions from all the stixels that that point falls in. This
function loads summary statistics for each stixel, for example, the size of the stixels and the number
of observations within each stixel.

Usage

load_stixels(path, ext, return_sf = FALSE)

28 parse_raster_dates

Arguments

path character; directory that the Status and Trends data for a given species was
downloaded to. This path is returned by ebirdst_download() or get_species_path().

ext ebirdst_extent object; the spatiotemporal extent to filter the data to. The spa-
tial component of the extent object must be provided in unprojected, latitude-
longitude coordinates.

return_sf logical; whether to return an sf object of spatial points rather then the default
data frame.

Value

Data frame, or sf object if return_sf = TRUE, containing stixel summary data. Data are organized
with one stixel per row and each stixel identified by a unique stixel_id, the centroid of each stixel
in space and time is specified by lat, lon, and date.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load stixel summary information
stixels <- load_stixels(path)
dplyr::glimpse(stixels)

End(Not run)

parse_raster_dates Parse data cube layer names into dates

Description

label_raster_stack() labels the layers of a data cube with the associated week dates in the
format of "wYYYY.MM.DD", because of constraints in the raster package. This function converts
that character vector into an ISO compliant Date vector.

Usage

parse_raster_dates(x)

Arguments

x Raster object; labeled Status and Trends data cube.

plot_pds 29

Value

Date vector.

Examples

Not run:
download and load example abundance data
sp_path <- ebirdst_download("example_data")
abd <- load_raster(sp_path, "abundance")

parse dates
parse_raster_dates(abd)

End(Not run)

plot_pds Plot partial dependency (PD) line plots

Description

For a given eBird Status and Trends species, produce a line plot showing the partial dependence
(PD) relationship for a given predictor. Two options for smoothing are provided.

Usage

plot_pds(
pds,
predictor,
ext,
bootstrap_smooth = TRUE,
show_stixel_pds = FALSE,
show_quantiles = FALSE,
n_bs = 100,
ss_equivalent = 10,
k = 25,
ci_alpha = 0.05,
gbm_n_trees = 500,
ylim = NULL,
plot = TRUE

)

Arguments

pds data frame; partial dependence data from load_pds().

predictor character; single predictor name to plot PD for. For a full list of predictors, and
their associated definitions, see ebirdst_predictors.

30 plot_pds

ext ebirdst_extent object; the spatiotemporal extent over which to calculate PDs.
This is required, since results are less meaningful over large spatiotemporal ex-
tents.

bootstrap_smooth

logical; the ideal visualization of the PD data is a pointwise GAM smoothing
of the individual stixel PD values. This argument specifies whether this should
be done directly on the full PD dataset (bootstrap_smooth = FALSE) or by sub-
sampling and bootstrapping. The latter approach deals with the randomness in
the data and can be more efficient for large datasets.

show_stixel_pds

logical; whether to plot the individual stixel PD values as semi-transparent lines.

show_quantiles logical; adds a band for the upper (90th) and lower (10th) quantiles of the indi-
vidual stixel PD values. These are calculated using quantile regression.

n_bs int; number of GAM bootstrap iterations when estimating PD confidence inter-
vals. Ignored if bootstrap_smooth = FALSE.

ss_equivalent int; when bootstrapping to estimate PD confidence intervals, this argument spec-
ifies the size of the subsample of the original data. In particular, ss_equivalent
should be an integer representing the equivalent sampling size when averaging
this number of PD estimates.

k integer; number of knots to use in the GAM when smooth the PD relationship.

ci_alpha numeric; alpha level of confidence intervals. Default is 0.05.

gbm_n_trees integer; number of trees to fit in the GBM when estimating quantiles. Ignored if
show_quantiles = FALSE. Default is 500.

ylim numeric; 2-element vector to pre-define the y-limits of plotting. In the format
c(ymin,ymax).

plot logical; whether to plot the PD relationships or just return data.

Value

Plots the smoothed partial dependence relationship for the specified predictor and returns a data
frame of the smoothed curve with confidence intervals.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load predictor dependence data
pds <- load_pds(path)

define a spatiotemporal extent to plot data from
bb_vec <- c(xmin = -86, xmax = -83, ymin = 41.5, ymax = 43.5)
e <- ebirdst_extent(bb_vec, t = c("05-01", "05-31"))

plot_pis 31

for testing, run with 5 bootstrap iterations for speed
in practice, best to run with the default number of iterations (100)
pd_smooth <- plot_pds(pds, "solar_noon_diff", ext = e, n_bs = 5)
dplyr::glimpse(pd_smooth)

End(Not run)

plot_pis Plot predictor importance (PI) box plots

Description

For a given eBird Status and Trends species, produce a box plot showing the predictor importance
(PI) for each of the predictors used in the occurrence model. Predictors are plotted in order from
highest to lowest importance. Many function parameters allow for customized plots.

Usage

plot_pis(
pis,
ext,
by_cover_class = TRUE,
n_top_pred = 20,
pretty_names = TRUE,
plot = TRUE

)

Arguments

pis data frame; predictor importance data from load_pis().

ext ebirdst_extent object; the spatiotemporal extent over which to calculate PIs.
This is required, since results are less meaningful over large spatiotemporal ex-
tents.

by_cover_class logical; whether to aggregate the FRAGSTATS metrics (PLAND and ED) for
the land cover classes into single values for the land cover classes.

n_top_pred integer; how many predictors to show.

pretty_names logical; whether to convert cryptic land cover codes to readable land cover class
names.

plot logical; whether to plot predictor importance or just return top predictors.

Value

Plots a boxplot of predictor importance and invisibly returns a named vector of top predictors, and
their median predictor importance, based on the n_top_pred parameter.

32 poisson_dev

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load predictor importance
pis <- load_pis(path)

define a spatiotemporal extent to plot data from
bb_vec <- c(xmin = -86, xmax = -83, ymin = 41.5, ymax = 43.5)
e <- ebirdst_extent(bb_vec, t = c("05-01", "05-31"))

top_pred <- plot_pis(pis, ext = e, by_cover_class = TRUE, n_top_pred = 10)
top_pred

End(Not run)

poisson_dev Poisson deviance

Description

Poisson deviance

Usage

poisson_dev(obs, pred)

Arguments

obs numeric; observed values.

pred numeric; predicted values.

Value

A named numeric vector with three elements: model deviance, mean deviance, and deviance ex-
plained.

Examples

obs <- c(0, 0, 1, 3, 5, 2)
pred <- c(0.5, 0.1, 2.5, 3.3, 5.2, 2.5)
ebirdst:::poisson_dev(obs, pred)

project_extent 33

project_extent Transform a spatiotemporal extent to a different CRS

Description

Transform an eBird Status and Trends extent object to a different coordinate reference system. This
is most commonly required to transform the extent to the sinusoidal CRS used by the eBird Status
and Trends rasters.

Usage

project_extent(x, crs)

Arguments

x ebirdst_extent object; a spatiotemporal extent.

crs coordinate references system, given either as a proj4string, an integer EPSG
code, or a crs object generated with st_crs().

Value

An ebirdst_extent object in the new CRS.

Examples

construct an ebirdst_extent object
bb_vec <- c(xmin = -80, xmax = -70, ymin = 40, ymax = 47)
bb <- sf::st_bbox(bb_vec, crs = 4326)
bb_ext <- ebirdst_extent(bb)

transform to sinusoidal projection of rasters
sinu <- "+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007 +b=6371007 +units=m +no_defs"
project_extent(bb_ext, crs = sinu)

also works on polygon extents
poly <- sf::read_sf(system.file("shape/nc.shp", package="sf"))
poly_ext <- ebirdst_extent(poly)
project_extent(poly_ext, crs = sinu)

34 sample_grid

sample_grid Spatiotemporal sampling of points on a grid

Description

Subsample points to deal with spatiotemporal bias in observations by defining a grid in space and
time, then sampling the given number of points from each cell. sample_case_control() addition-
ally samples presence and absence independently.

Usage

sample_grid(x, res, t_res, n = 1, replace = FALSE, jitter = TRUE)

sample_case_control(x, res, t_res, n = 1, replace = FALSE, jitter = TRUE)

Arguments

x data frame or sf object; the points to subsample. If x is a data frame the coor-
diantes should be provided as columns lat and lon. The day of year should be
expressed as a proportion from 0-1 and stored in the column date.

res numeric; the size in meters of the grid to sample from. This can be a 2 element
vector indicating the x and y dimensions of the cells.

t_res numeric; the temporal resolution for sampling expressed as a proportion of the
year. For example, 7 / 365 would result in sampling from each week.

n integer; the number of points to sample from each grid cell.

replace logical; whether to sample with replacement.

jitter logical; to avoid always using the same grid for sampling, the grid can be jittered
so that the origin is different each time this function is called.

Value

Logical vector indicating which rows are selected.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

test data to sample
preds <- load_predictions(path, return_sf = TRUE)

sample on a 100km, 1 month grid
s <- sample_grid(preds, res = 100000, t_res = 1 / 12)
preds_grid <- preds[s,]

set_ebirdst_access_key 35

case control sampling independently samples presence and absence
s <- sample_case_control(preds, res = 100000, t_res = 1 / 12)
preds_cc <- preds[s,]

grid sampling preserves the presence/absence ratio
table(preds$obs > 0) / nrow(preds)
table(preds_grid$obs > 0) / nrow(preds_grid)
while case control sampling increases the prevelance of presences
table(preds_cc$obs > 0) / nrow(preds_cc)

plot
library(sf)
p <- par(mar = c(0, 0, 0, 0))
plot(st_geometry(preds), col = "black", pch = 19, cex = 0.2)
plot(st_geometry(preds_cc), col = "red", pch = 19, cex = 0.5, add = TRUE)

End(Not run)

set_ebirdst_access_key

Store the eBird Status and Trends access key

Description

Accessing eBird Status and Trends data requires an access key, which can be obtained by visiting
https://ebird.org/st/request. This key must be stored as the environment variable EBIRDST_KEY in
order for ebirdst_download() to use it. The easiest approach is to store the key in your .Renviron
file so it can always be accessed in your R sessions. Use this function to set EBIRDST_KEY in your
.Renviron file provided that it is located in the standard location in your home directory. It is also
possible to manually edit the .Renviron file. The access key is specific to you and should never
be shared or made publicly accessible.

Usage

set_ebirdst_access_key(key, overwrite = FALSE)

Arguments

key character; API key obtained by filling out the form at https://ebird.org/st/request.

overwrite logical; should the existing EBIRDST_KEY be overwritten if it has already been
set in .Renviron.

Value

Edits .Renviron, then returns the path to this file invisibly.

36 stixelize

Examples

Not run:
save the api key, replace XXXXXX with your actual key
set_ebirdst_access_key("XXXXXX")

End(Not run)

stixelize Generate polygons for eBird Status and Trends stixels

Description

eBird Status and Trends divides space and time into variably sized "stixels" within which indi-
vidual base models are fit. The process of stixelization is performed many times and the predic-
tion at any given point is the median of the predictions from all the stixels that that point falls in.
load_stixels() loads information on all the stixels that compromise a species’ Status and Trends
model, with stixels identified by the location of their centroid. This function uses this information
to define polygons for each stixel and attaches them to the original data in the form of an sf object.

Usage

stixelize(x)

Arguments

x data.frame or sf object; stixel summary data loaded with load_stixels(), or
any other data frame with fields lon, lat, stixel_width, and stixel_hight.

Value

sf object with geometry column storing polygons representing the stixels boundaries.

Examples

Not run:
download example data
path <- ebirdst_download("example_data", tifs_only = FALSE)
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

load stixel summary information
stixels <- load_stixels(path)

build stixel polygons
stixelize(stixels)

End(Not run)

stixel_footprint 37

stixel_footprint Calculate the spatial footprint of a set of stixels

Description

eBird Status and Trends divides space and time into variably sized "stixels" within which individual
base models are fit. The process of stixelization is performed many times and the prediction at
any given point is the median of the predictions from all the stixels that that point falls in. For a
given spatiotemporal extent, this function identifies the set of stixels whose centroids fall within that
extent and calculates the spatial footprint of these stixels, i.e. a surface indicating the proportion of
the selected stixels that contribute information to model estimates at each location. This footprint
gives an estimate of where the information for the model predictions, predictor importances (PIs),
and partial dependencies (PDs) come from.

Usage

stixel_footprint(path, ext)

S3 method for class 'stixel_footprint'
plot(x, ...)

Arguments

path character; full path to directory containing the eBird Status and Trends products
for a single species.

ext ebirdst_extent object; the spatiotemporal extent to filter the data to.

x stixel_footprint object to map.

... ignored.

Value

A stixel_footprint object consisting of a list with three elements:

• footprint: a RasterStack giving the percentage of the selected stixels that are contributing
to each grid cell.

• centroids: an sf object containing the stixel centroids points.

• extent: an ebirdst_extent object specifying the chosen spatiotemporal extent.

The stixel footprint can be mapped by calling plot() on the returned stixel_footprint object.

Examples

Not run:
download example data
path <- ebirdst_download("example_data")
or get the path if you already have the data downloaded
path <- get_species_path("example_data")

38 stixel_footprint

define a spatiotemporal extent
bb_vec <- c(xmin = -86, xmax = -83, ymin = 42, ymax = 45)
e <- ebirdst_extent(bb_vec, t = c("05-01", "05-31"))

calculate effective extent map
footprint <- stixel_footprint(path, ext = e)
plot(footprint)

End(Not run)

Index

∗ datasets
ebirdst_predictors, 15
ebirdst_runs, 16
ebirdst_weeks, 18

abundance_palette, 2

bernoulli_dev, 3
binom_test_p, 4

calc_bins, 4
calc_full_extent, 5

date_to_st_week, 6

ebirdst, 7
ebirdst_download, 7
ebirdst_download(), 35
ebirdst_extent, 8, 10, 12–15, 17, 23, 24, 28,

30, 31, 33, 37
ebirdst_extent(), 17
ebirdst_habitat, 10, 11
ebirdst_habitat(), 11
ebirdst_ppms, 12, 12, 14
ebirdst_ppms(), 12, 25
ebirdst_ppms_ts, 14, 14
ebirdst_ppms_ts(), 14
ebirdst_predictors, 11, 15, 23, 29
ebirdst_runs, 7, 16, 19
ebirdst_subset, 17
ebirdst_subset(), 13
ebirdst_weeks, 11, 14, 18
Extent, 6

get_species, 19
get_species_path, 19

label_raster_stack, 20
label_raster_stack(), 28
load_config, 21
load_fac_map_parameters, 22

load_fac_map_parameters(), 4, 5
load_pds, 23
load_pds(), 29
load_pis, 24
load_pis(), 31
load_predictions, 25
load_raster, 26
load_stixels, 27
load_stixels(), 36

parse_raster_dates, 28
plot(), 37
plot.ebirdst_habitat (ebirdst_habitat),

10
plot.ebirdst_ppms (ebirdst_ppms), 12
plot.ebirdst_ppms_ts (ebirdst_ppms_ts),

14
plot.stixel_footprint

(stixel_footprint), 37
plot_pds, 29
plot_pis, 31
poisson_dev, 32
project_extent, 33

read_sf(), 9

sample_case_control (sample_grid), 34
sample_case_control(), 34
sample_grid, 34
set_ebirdst_access_key, 35
set_ebirdst_access_key(), 7
sf, 9, 23–25, 28, 34, 36, 37
sfc, 9
st_bbox(), 9
st_crs(), 9, 33
stixel_footprint, 37, 37
stixelize, 36

39

	abundance_palette
	bernoulli_dev
	binom_test_p
	calc_bins
	calc_full_extent
	date_to_st_week
	ebirdst
	ebirdst_download
	ebirdst_extent
	ebirdst_habitat
	ebirdst_ppms
	ebirdst_ppms_ts
	ebirdst_predictors
	ebirdst_runs
	ebirdst_subset
	ebirdst_weeks
	get_species
	get_species_path
	label_raster_stack
	load_config
	load_fac_map_parameters
	load_pds
	load_pis
	load_predictions
	load_raster
	load_stixels
	parse_raster_dates
	plot_pds
	plot_pis
	poisson_dev
	project_extent
	sample_grid
	set_ebirdst_access_key
	stixelize
	stixel_footprint
	Index

