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dixon2002 Dixon (2002) Nearest-neighbor contingency table analysis
Description
dixon2002 is a wrapper to the functions of Dixon (2002) to test spatial segregation for several
species by analyzing the counts of the nearest neighbour contingency table for a marked point
pattern.
Usage
dixon2002(datos, nsim = 99)
Arguments
datos data. frame with three columns: x-coordinate, y-coordinate and sp-name. See
swamp.
nsim number of simulations for the randomization approximation of the p-values.
Details

A measure of segregation describes the tendency of one species to be associated with itself or with
other species. Dixon (2002) proposed a measure of the segregation of species i in a multiespecies
spatial pattern as:

Sli] = log[(Nliil /(N [i] — NT{id))]/[(N[i] = 1)/(N — N[i])]
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where N[i] is the number of individuals of species i, N[i] is the frequency of species i as neighbor
of especies i and N is the total number of locations. Values of S[é] larger than O indicate that
species i is segregated; the larger the value of Si], the more extreme the segregation. Values of S|i]
less than 0 indicate that species i is is found as neighbor of itself less than expected under random
labelling. Values of S[i] close to 0 are consistent with random labelling of the neighbors of species
i.

Dixon (2002) also proposed a pairwise segregation index for the off-diagonal elements of the
contingency table:

S[ig) = log[(N[ij]/(N[i] = NgDI/[(N[i])/ (N = N[j]) = 1]

S1ij] is larger than 0 when N [ij], the frequency of neighbors of species j around points of species i,
is larger than expected under random labelling and less than 0 when N[ij] is smaller than expected
under random labelling.

As a species/neighbor-specific test, Dixon(2002) proposed the statistic
Zlij] = (Nij] = EN[ij])/sqrt(VarN[ij])

where j may be the same as i and EN[ij] is the expected count in the contingency table. It has
an asymptotic normal distribution with mean 0 and variance 1; its asymptotic p-value can be ob-
tained from the numerical evaluation of the cumulative normal distribution; when the sample size
is small, a p-value on the observed counts in each cell (N [:5]) may be obtained by simulation, i.e,
by condicting a randomization test.

An overall test of random labelling (i.e. a test that all counts in the k£ x k£ nearest-neighbor
contingency table are equal to their expected counts) is based on the quadratic form

C = (N — EN) Sigma™ (N — EN)

where N is the vector of all cell counts in the contingency table, Sigma is the variance-covariance
matrix of those counts and Sigma~ is a generalized inverse of Sigma. Under the null hypothesis
of random labelling of points, C' has a asymptotic Chi-square distribution with k(k — 1) degrees
of freedom (if the sample sizes are small its distribution should be estimated using Monte-Carlo
simulation). P-values are computed from the probability of observing equal or larger values of C.
The overall statistic C' can be partitioned into k species-specific test statistics C[¢]. Each C[i] test
if the frequencies of the neighbors of species i are similar to the expected frequencies if the points
were randomly labelled. Because the C[i] are not independent Chi-square statistics, they do not
sum to the overall C.

Value

A list with the following components:

ON Observed nearest neighbor counts in table format. From row sp to column sp.
EN Expected nearest neighbor counts in table format.

Z Z-score for testing whether the observed count equals the expected count.

S Segregation measure.

pZas P-values based on the asymptotic normal distribution of the Z statistic.
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pNr If nsim !=0, p-values of the observed counts in each cell based on the random-
ization distribution.

C Overall test of random labelling.

Ci Species-specific test of random labelling.

pCas P-value of the overall test from the asymptotic chi-square distribution with the
appropriate degrees of freedom.

pCias P-values of the species-specific tests from the asymptotic chi-square distribution
with the appropriate degrees of freedom.

pCr If nsim !=0, p-value of the overall test from the randomization distribution.

pCir If nsim !=0, p-values of the species-specific tests from the randomization distri-
bution.

tablaz table with ON, EN, Z, S, pZas and pNr in pretty format, as in the table II of
Dixon (2002).

tablaC table with C, Ci, pCas,pCias, pCr and pCir in pretty format, as in the table IV of

Dixon (2002).

Warning

The S[i] and S|ij] statistics asume that the spatial nearest-neighbor process is stationary, at least to
second order, i.e., have the same sign in every part of the entire plot. A biologically heterogeneous
process will violate this asumption.

Author(s)

Philip M. Dixon . Marcelino de la Cruz wrote the wrapper code for the ecespa version.

References

Dixon, PM. 2002. Nearest-neighbor contingency table analysis of spatial segregation for several
species. Ecoscience, 9 (2): 142-151. doi: 10.1080/11956860.2002.11682700.

See Also

K@12 for another segregation test, based in the differences of univariate and bivariate K -functions.
A faster version of this function, with code implemented in FORTRAN it is available in function
dixon in dixon.

Examples

data(swamp)

dixon2002(swamp,nsim=99)


https://doi.org/10.1080/11956860.2002.11682700
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ecespa Functions for spatial point pattern analysis in ecology

Description

This is a summary of the features of ecespa by way of examples of its main functions.

Author(s)

Marcelino de la Cruz Rot, with contributions of Philip M. Dixon and Jose M. Blanco-Moreno and
heavily borrowing Baddeley’s & Turner’s spatstat code.

References

De la Cruz, M. 2006. Introduccién al andlisis de datos mapeados o algunas de las (muchas) cosas
que puedo hacer si tengo coordenadas. Ecosistemas 15 (3): 19-39.

De la Cruz, M. 2008. Métodos para analizar datos puntuales. En: Introduccion al Andlisis Espacial
de Datos en Ecologia y Ciencias Ambientales: Métodos y Aplicaciones (eds. Maestre, F. T., Es-
cudero, A. y Bonet, A.), pp 76-127. Asociacién Espaiiola de Ecologia Terrestre, Universidad Rey
Juan Carlos y Caja de Ahorros del Mediterraneo, Madrid.

De la Cruz, M., Romao, R.L., Escudero, A. and Maestre, ET. 2008. Where do seedlings go? A
spatio-temporal analysis of early mortality in a semiarid specialist. Ecography, 31(6): 720-730.
doi: 10.1111/j.09067590.2008.05299.x.

Diggle, P. J. 2003. Statistical analysis of spatial point patterns. Arnold, London.

Dixon, P.M. 2002. Nearest-neighbor contingency table analysis of spatial segregation for several
species. Ecoscience, 9 (2): 142-151. doi: 10.1080/11956860.2002.11682700.

Dixon, P. M. 2002. Ripley’s K function. In The encyclopedia of environmetrics (eds. El-Shaarawi,
A.H. & Piergorsch, W.W.), pp. 1976-1803. John Wiley & Sons Ltd, NY.

Escudero, A., Romao, R.L., De la Cruz, M. & Maestre, F. 2005. Spatial pattern and neighbour
effects on Helianthemum squamatum seedlings in a Mediterranean gypsum community. Journal of
Vegetation Science, 16: 383-390. doi: 10.1111/5.16541103.2005.tb02377 .x.

Getis, A. and Franklin, J. 1987. Second-order neighbourhood analysis of mapped point patterns.
Ecology 68: 473-477. doi: 10.2307/1938452.

Loosmore, N.B. and Ford, E.D. (2006) Statistical inference using the G or K point pattern spatial
statistics. Ecology 87, 1925-1931. doi: 10.1890/00129658(2006)87[1925:SIUTGO]2.0.CO;2.

Lotwick,H.W. & Silverman, B. W. 1982. Methods for analysing spatial processes of several types of
points. Journal of the Royal Statistical Society B, 44: 406-413. doi: 10.1111/j.25176161.1982.tb01221 x.

Olano, J.M., Laskurain, N.A., Escudero, A. and De la Cruz, M. 2009. Why and where adult trees
die in a secondary temperate forest? The role of neighbourhood. Annals of Forest Science, 66: 105.
doi: 10.1051/forest:2008074.

Penttinen, A. 2006. Statistics for Marked Point Patterns. In The Yearbook of the Finnish Statistical
Society, pp. 70-91.
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Rey-Benayas, J.M., de la Montafa, E., Pérez-Camacho, L., de la Cruz, M., Moreno, D., Parejo,
J.L. and Sudrez-Seoane, S. 2010. Inter-annual dynamics and spatial congruence of a nocturnal bird
assemblage inhabiting a Mediterranean agricultural mosaic. Ardeola,57(2): 303-320.

Syrjala, S. E. 1996. A statistical test for a difference between the spatial distributions of two popu-
lations. Ecology 77: 75-80. doi: 10.2307/2265656.

Waagepetersen, R. P. 2007. An estimating function approach to inference for inhomogeneous
Neymann-Scott processes. Biometrics 63: 252-258. doi: 10.1111/5.15410420.2006.00667 .x.

Examples
## Not run:
HHHHHHHA A A
### Transfom easily data from a data.frame into the ppp format
### of spatstat:
data(figl)
plot(figl) #typical xyplot
figl.ppp <- haz.ppp (figl)
figl.ppp

plot(figl.ppp) # point pattern plot of spatstat

S HHHHHHEEE AR AR
### Summarize the joint pattern of points and marks at different scales
### with the normalized mark-weighted K-function (Penttinen, 2006).
### Compare this function in two consecutive cohorts of Helianthemum
### squamatum seedlings:

## Figure 3.10 of De la Cruz (2008):

data(seedlings1)

data(seedlings?)

s1km <- Kmm(seedlings1, r=1:100)

s2km <- Kmm(seedlings2, r=1:100)

plot(s1km, ylime=c(0.6,1.2), lwd=2, maine="", xlabe="r(cm)")

plot(s2km, 1wd=2, 1ty=2, add=T )

abline(h=1, lwd=2, lty=3)

legend(x=60, y=1.2, legend=c("Hs_C1", "Hs_C2", "Ho"),
lty=c(1, 2, 3), lwd=c(3, 2, 2), bty="n")


https://doi.org/10.2307/2265656
https://doi.org/10.1111/j.1541-0420.2006.00667.x
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## A pointwise test of normalized Kmm == 1 for seedlingsi:
s1km.test <- Kmm(seedlings1, r=1:100, nsim=99)

plot(slkm.test, xlabe="r(cm)")

HHHHHHAAHEEA A

### Explore the local relationships between marks and locations (e.g. size
### of one cohort of H. squamatum seedlings). Map the marked point pattern
### to a random field for visual inspection, with the normalized mark-sum
### measure (Penttinen, 2006).

data(seedlings1)

seed.m <- marksum(seedlings1, R=25)

plot(seed.m, what="marksum”, sigma = 5) # raw mark-sum measure; sigma is bandwith for smoothing
plot(seed.m, what="pointsum”, sigma = 5) # point sum measure

plot(seed.m, what="normalized", dimyx=200, contour=TRUE, sigma = 5) # normalized mark-sum measure
# the same with added grid

plot(seed.m, what="normalized", dimyx=200, contour=TRUE, sigma = 5, grid=TRUE)

SHHHHHHHHHEEE AR AR

### Test against the null model of "independent labelling”,

### 1i.e. test asociation/repulsion between a "fixed” pattern (e.g. adult
### H. squamatum plants) and a "variable"” pattern (e.g. of surviving and
### dead seedlings), with 2.5% and 97.5% envelopes of 999 random

### labellings (De la Cruz & al. 2008).

data(Helianthemum)

cosa <- K@12(Helianthemum, fijo="adultHS", i="deadpl”, j="survpl”,
r=seq(0,200,1e=201), nsim=999, nrank=25, correction="isotropic")

plot(cosa$kd1, sqrt(./pi)-r~r, col=c(3, 1, 3), lty=c(3, 1, 3), las=1,
ylab=expression(L[12]), xlim=c(@, 200),
main="adult HS vs. dead seedlings”, legend=FALSE)

plot(cosa$k02, sqrt(./pi)-r~r, col=c(3, 1, 3), lty=c(3, 1, 3), las=1,
ylab=expression(L[12]), xlim=c(@, 200),
main="adult HS vs. surviving seedlings”, legend=FALSE)
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AR AR R
#i## Test differences of agregation and segregation between two patterns,
### e.g. surviving and dying H. squamatum seedlings (De la Cruz & al. 2008).

data(Helianthemum)

cosal2 <- K1K2(Helianthemum, j="deadpl”, i="survpl", r=seq(0,200,1le=201),
nsim=999, nrank=1, correction="isotropic")

plot(cosal2$kik2, lty=c(2, 1, 2), col=c(2, 1, 2), xlim=c(0, 200),
main= "survival- death"”,ylab=expression(K[1]-K[2]), legend=FALSE)

plot(cosal2$kik12, lty=c(2, 1, 2), col=c(2, 1, 2), xlim=c(@, 200),
main="segregation of surviving seedlings"”,ylab=expression(K[1]-K[12]), legend=FALSE)

plot(cosal2$k2k12, lty=c(2, 1, 2), col=c(2, 1, 2), xlim=c(@, 200),

main= "segregation of dying seedlings”,ylab=expression(K[2]-K[12]), legend=FALSE)

S HEHHHEHEHEE AR

### Test 'univariate' and 'bivariate' point patterns
### against non-Poisson (in-)homogeneous models

### (De la Cruz and Escudero, submited).
data(urkiola)

HHHHEHEHHHEHHHHHH
## univariate example

# get univariate pp
I.ppp <- split.ppp(urkiola)$birch

# estimate inhomogeneous intensity function
I.lam <- predict (ppm(I.ppp, ~polynom(x,y,2)), type="trend”, ngrid=200)

# Compute and plot envelopes to Kinhom, simulating from an Inhomogeneous
# Poisson Process:

I2.env <- envelope( I.ppp,Kinhom, lambda=I.lam, correction="trans",
nsim=99, simulate=expression(rpoispp(I.lam)))

plot(I2.env, sqrt(./pi)-r~r, xlab="r (metres)"”, ylab= "L (r)", col=c(1,3,2,2),legend=FALSE)

# It seems that there is short scale clustering; let's fit an Inhomogeneous
# Poisson Cluster Process:

I.ki <- ipc.estK(mippp=I.ppp, lambda=I.lam, correction="trans")
# Compute and plot envelopes to Kinhom, simulating from the fitted IPCP:

Ipc.env <- Ki(I.ki, correction="trans", nsim=99, ngrid=200)
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plot (Ipc.env, xlab="r (metres)", ylab= "L (r)")

HHHHHHHEEEE
## bivariate example: test independence between birch and quercus in Urkiola

J.ppp <- split.ppp(urkiola)$oak

# We want to simulate oak from a homogeneous Poisson model:
J.ppm <- ppm(J.ppp, trend=~1, interaction=Poisson() )

IJ.env <- Kci (mod1=I.ki, mod2=J.ppm, nsim=99)
plot(IJ.env, type=12)

plot(IJ.env, type=21)

HHH AR A A
### Simulate envelopes from the fitted values of a logistic model,
### as in Olano et al. (2009)

data(quercusvm)

# read fitted values from logistic model:

probquercus <-c(0.99955463, 0.96563477, 0.97577094, ©.97327199, 0.92437309,

0.84023396, 0.94926682, 0.89687281, 0.99377915, 0.74157478, ©.95491518,
0.72366493, 0.66771787, ©.77330148, 0.67569082, ©0.9874892, 0.7918891,
0.73246803, 0.81614635, 0.66446411, 0.80077908, ©0.98290508, 0.54641754,
0.53546689, 0.73273626, 0.7347013, 0.65559655, 0.89481468, 0.63946334,
0.62101995, 0.78996371, ©.93179582, 0.80160346, 0.82204428, 0.90050059,
0.83810669, 0.92153079, 0.47872421, 0.24697004, 0.50680935, 0.6297911,
0.46374812, 0.65672284, 0.87951682, 0.35818237, 0.50932432, ©0.92293014,
0.48580241, 0.49692053, 0.52290553, 0.7317549, 0.32445982, 0.30300865,
0.73599359, 0.6206056, 0.85777043, 0.65758613, 0.50100406, 0.31340849,
0.22289286, 0.40002879, 0.29567678, 0.56917817, 0.56866864, 0.27718552,
0.4910667, ©.47394411, 0.40543788, ©0.29571349, 0.30436276, 0.47859015,
0.31754526, 0.42131675, ©.37468782, 0.73271225, 0.26786274, 0.59506388,
0.54801851, ©.38983575, 0.64896835, 0.37282031, 0.67624306, 0.29429766,
0.29197755, 0.2247629, 0.40697843, 0.17022391, 0.26528042, 0.24373722,
0.26936163, 0.13052254, ©.19958585, 0.18659692, 0.36686678, 0.47263005,
0.39557661, ©.68048997, 0.74878567, ©.88352322, ©.93851375)

HHHEHHPEEE AR
## Envelopes for an homogeneous point pattern:

cosap <- Kinhom.log(A=quercusvm, lifemark="0", nsim=99, prob=probquercus)
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plot(cosap)

B

## Envelopes for an inhomogeneous point pattern:

## First, fit an inhomogeneous Poisson model to alive trees :
quercusalive <- unmark(quercusvm[quercusvm$marks == 0])

mod2 <- ppm(quercusalive, ~polynom(x,y,2))

## Now use mod2 to estimate lambda for K.inhom:

cosapm <- Kinhom.log(A=quercusvm, lifemark="0", prob=probquercus,

nsim=99, mod=mod2)
plot(cosapm)

HHHHEHHHHHAHAEHHHHHEHHH A

### Test segregation based on the counts in the contingency table
### of nearest neighbors in a multitype point pattern (Dixon, 2002)
data(swamp)

dixon2002(swamp,nsim=99)

B

### Fit the Poisson cluster point process to a point pattern with
### the method of minimum contrast (Diggle 2003).
data(gypsophylous)

# Estimate K function ("Kobs").

gyps.env <- envelope(gypsophylous, Kest, correction="iso", nsim=99)

plot(gyps.env, sqrt(./pi)-r~r, ylab="L(r)", legend=FALSE)

# Fit Poisson Cluster Process. The limits of integration
# rmin and rmax are setup to @ and 60, respectively.

cosa.pc <- pc.estK(Kobs = gyps.env$obs[gyps.env$r<=60],
r = gyps.env$rlgyps.env$r<=607])

# Add fitted Kclust function to the plot.

ecespa
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lines(gyps.env$r,sqrt(Kclust(gyps.env$r, cosa.pc$sigma?2,cosa.pc$rho)/pi)-gyps.envsr,
1ty=2, 1lwd=3, col="purple”)

# A kind of pointwise test of the gypsophylous pattern been a realisation
# of the fitted model, simulating with sim.poissonc and using function J (Jest).

gyps.env.sim <- envelope(gypsophylous, Jest, nsim=99,
simulate=expression(sim.poissonc(gypsophylous,

sigma=sqrt(cosa.pc$sigma2), rho=cosa.pc$rho)))

plot(gyps.env.sim, main="" 6 legendpos="bottomleft")

HHH A

### Compute Syrjala's test for the difference between the spatial
### distributions of two populations, as in Rey-Benayas et al.
### (submited)

data(syr1); data(syr2); data(syr3)

plot(syrjala.test(syrl, syr2, nsim=999))

plot(syrjala.test(syrl, syr3, nsim=999))

## End(Not run)

figuras Artificial point data.

Description

The three different point patterns in the figure 3.1 of De la Cruz (2008)

Usage

data(figl)
data(fig2)
data(fig3)
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Format

A data frame with 87 observations on the following 2 variables.

X X coordinate

y y coordinate

References

De la Cruz, M. 2008. Métodos para analizar datos puntuales. En: Introduccion al Andlisis Espacial
de Datos en Ecologia y Ciencias Ambientales: Métodos y Aplicaciones (eds. Maestre, F. T., Es-
cudero, A. y Bonet, A.), pp 76-127. Asociacién Espaiiola de Ecologia Terrestre, Universidad Rey
Juan Carlos y Caja de Ahorros del Mediterraneo, Madrid.

Examples

## Not run:
data(figl)

data(fig2)

data(fig3)

# transform to ppp format of spatstat with function haz.ppp:

figl.ppp <- haz.ppp(figl)

fig2.ppp <- haz.ppp(fig2)

fig3.ppp <- haz.ppp(fig3)

#Analyses as in Fig.3.2 of De la Cruz (2008). First, compute function K:
cosal <- Kest(figl.ppp)

# Plot different estimators.
# Fig. 3.2a:

par("mar"=par("mar")+c(0,1,0,0))

plot(cosal, col=c(1,0,0,1), lwd=c(2,2,2,2), lty=c(1,1,1,2),
main="")

# Fig. 3.2b:

plot(cosal, sqrt(./pi)-r~r, col=c(1,0,0,1), lwd=c(2,2,2,2),
1ty=c(1,1,1,2), main="", ylab="L(r)")

# Fig. 3.2c:

plot(cosal, .-(pi*r*2)~r, col=c(1,0,0,1), lwd=c(2,2,2,2),
lty=c(1,1,1,2), main="", ylab=expression(K(r)-pixr*2))
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# Fig. 3.2d:
plot(cosal, (./(pi*r*2))-1~r, col=c(1,0,0,1), lwd=c(2,2,2,2),
lty=c(1,1,1,2), main="",
ylab=expression((K(r)/pi*r*2)-1))

## Analyses as in fig. 3.7 of De la Cruz (2008).
## First, compute function K and pointwise envelopes:

cosal.env <- envelope(figl.ppp, Kest)
cosa2.env <- envelope(fig2.ppp, Kest)
cosa3.env <- envelope(fig3.ppp, Kest)
## Plot function L with pointwise envelopes:
plot(cosal.env,sqrt(./pi)-r~r, lwd=c(1,1,2,2),
1ty=c(1,1,3,3), col=c(1,1,1,1), xlab="r",
ylab="L(r)", main="", ylim=c(-2,2))

## Add simultaneous envelopes of Ripley (+-1.68 *sqrt(A)/N):

abline(h=1.68*sqrt(area.owin(figl.ppp$window))/figl.ppp$n,
lty=2, 1wd=2)

abline(h=-1.68*sqrt(area.owin(figl.ppp$window))/figl.ppp$n,
lty=2, 1wd=2)

## Plot function L with pointwise envelopes:

plot(cosa2.env,sqrt(./pi)-r~r, lwd=c(1,1,2,2),
1ty=c(1,1,3,3), col=c(1,1,1,1), xlab="r",
ylab="L(r)", main="")

## Add simultaneous envelopes of Ripley:

abline(h=1.68*sqrt(area.owin(fig2.ppp$window))/fig2.ppp$n,
1ty=2, 1lwd=2)

abline(h=-1.68*sqrt(area.owin(fig2.ppp$window))/fig2.ppp$n,
1ty=2, 1lwd=2)

## Plot function L with pointwise envelopes:

plot(cosa3.env,sqrt(./pi)-r~r, lwd=c(1,1,2,2),
1ty=c(1,1,3,3), col=c(1,1,1,1), xlab="r",
ylab="L(r)", main="")

## Add simultaneous envelopes of Ripley:

abline(h=1.68*sqrt(area.owin(fig3.ppp$window))/fig3.ppp$n,
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1ty=2, 1lwd=2)

abline(h=-1.68*sqrt(area.owin(fig3.ppp$window))/fig3.pppsn,
1ty=2, 1lwd=2)

## End(Not run)

getis Neighbourhood density function

Description

Computes and plots the neighbourhood density function, a local version of the K -function defined
by Getis and Franklin (1987).

Usage
getis(mippp, nx = 30, ny = 30, R = 10)
## S3 method for class 'ecespa.getis'

plot(x, type="k", dimyx=NULL, xy=NULL, eps=NULL, color=NULL,
contour=TRUE, points=TRUE,...)

Arguments

mippp A point pattern. An object with the ppp format of spatstat.

nx Grid dimensions (for estimation) in the x-side.

ny Grid dimensions (for estimation) in the y-side.

R Radius. The distance argument r at which the function K should be computed.

X Result of applying getis to a point pattern.

type Type of local statistics to be ploted. One of k (local-K), 1 (local-L), n (local-n)
or d (deviations from CSR).

color A list of colors such as that generated by rainbow, heat.colors, topo.colors,
terrain.colors or similar functions.

dimyx pixel array dimensions, will be passed to (i.e. see details in) as.mask.

Xy pixel coordinates, will be passed to (i.e. see details in) as.mask.

eps width and height of pixels, will be passed to (i.e. see details in) as.mask.

contour Logical; if TRUE, add a contour to current plot.

points Logical; if TRUE, add the point pattern to current plot.

Additional graphical parameters passed to link{plot}.
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Details

Getis and Franklin (1987) proposed the neigbourhood density function, a local version of Ripley’s
L- function. Given a spatial point pattern X, the neigbourhood density function associated with the
ith point in X is computed by

L[i](r) = sqrt((a/((n — 1)) * pi)) * suml[jle[i, j])

where the sum is over all points j /= i that lie within a distance r of the ith point, a is the area of
the observation window, n is the number of points in X, and e[i,j] is the isotropic edge correction
term (as described in Kest). The value of L[i](r) can also be interpreted as one of the summands
that contributes to the global estimate of the L-function.

The command getis actually computes the local K -function using Kcross. As the main objective
of getis is to map the local density function, as sugested by Gestis and Franklin (1987: 476) a grid
of points (whose density is controled by nx and ny), is used to accurately estimate the functions
in empty or sparse areas. The S3 method plot.ecespa.getis plots the spatial distribution of the
local K or L function or other related local statistics, such as n[i](r), the number of neighbor points
[=lambda * K[i](r)] or the deviations from the expected value of local L under CSR [= L[i](r) —
r]. It some of the arguments dimyx, xy or eps is provided it will use the function interp.im in
spatstat package to interpolate the results;otherwise it will plot the estimated values at the origial
grid points.

Value

getis gives an object of class ecespa.getis, bassically a list with the following elements:

X x coordinates of pattern points (ahead) and grid points.
y y coordinates of pattern points (ahead) and grid points.
klocal Estimate of local K [i](r) at the point pattern points.
klocalgrid Estimate of local K [i](r) at the grid points.

R Distance r at which the estimation is made.

nx Density of the estimating grid in the x-side.

ny Density of the estimating grid in the x-side.

dataname Name of the ppp object analysed.

ppp Original point pattern.

plot.ecespa.getis plots an interpolated map of the selected local statistics

Note

As plot.ecespa.getis interpolates over rectangular grid of points, it is not apropriate to map
irregular windows. In those cases, Smooth.ppp of spatstat can be used to interpolate the local
statistics (see examples).

Author(s)

Marcelino de la Cruz Rot
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References

Getis, A. and Franklin, J. 1987. Second-order neighbourhood analysis of mapped point patterns.
Ecology 68: 473-477. doi: 10.2307/1938452.

See Also

localk, a different approach in spatstat.

Examples

## Compare with fig. 5b of Getis & Franklin (1987: 476):
data(ponderosa)

#ponderosal2 <- getis(ponderosa, nx = 30, ny = 30, R = 12)
ponderosal2 <- getis(ponderosa, nx = 20, ny = 20, R = 12)

plot(ponderosal2, type = "1", dimyx=256)

## Not run:
## Plot the same, using Smooth.ppp in spatstat

ponderosa.12 <- setmarks(ponderosa, ponderosal2$klocal)

Z <- Smooth(ponderosa.12, sigma=5, dimyx=256)

plot(Z, col=topo.colors(128), main="smoothed neighbourhood density")
contour(Z, add=TRUE)

points(ponderosa, pch=16, cex=0.5)

## Example with irregular window:
data(letterR)

X <- rpoispp(50, win=letterR)
X.g <- getis(X, R=0.2)
plot(X.g,dimyx=c(200,100))

## Plot the same, using Smooth.ppp in spatstat
X2 <- setmarks(X, X.g$klocal)

Z <- Smooth(X2, sigma=0.05, dimxy=256)
plot(Z, col=topo.colors(128), main="smoothed neighbourhood density")

contour(Z, add=TRUE)


https://doi.org/10.2307/1938452
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points(X, pch=16, cex=0.5)

## End(Not run)

gypsophylous Spatial point pattern of a plant community

Description

Locations of plants in a gypsophylous plant community in Central Spain. These are part of the data
collected by Romao (2003) that have been analyzed several times (Escudero et al. 2005, De la Cruz
2006). The coordinates of the plans are given in cm.

Usage
data(gypsophylous)

Format
An object of class "ppp" of spatstat representing the point pattern of plants locations. See
ppp.object for details of the format.

Source
Romao, R.L. 2003. Estructura espacial de comunidades de gipsdfitos: interacciones bioticas y
constricciones abioticas. Tesis Doctoral. Universidad Politécnica de Madrid.

References

De la Cruz, M. 2006. Introduccién al andlisis de datos mapeados o algunas de las (muchas) cosas
que puedo hacer si tengo coordenadas. Ecosistemas 15 (3): 19-39.

Escudero, A., Romao, R.L., De la Cruz, M. & Maestre, F. 2005. Spatial pattern and neighbour
effects on Helianthemum squamatum seedlings in a Mediterranean gypsum community. Journal of
Vegetation Science, 16: 383-390. doi: 10.1111/5.16541103.2005.tb02377 .x.

Examples

## Not run:
data(gypsophylous)

plot(gypsophylous)

## End(Not run)


https://doi.org/10.1111/j.1654-1103.2005.tb02377.x
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haz.ppp Easily convert xy data to ppp format

Description

ppp maker for the impatient layman

Usage
haz. ppp (W)
Arguments
W a data frame or matrix with two or three columns (coordinate x, coordinate y,
and mark of the point)
Details

This naive function easily transform your xy data to the format required by spatstat (version <2.0).
It establishes the window of observation as the rectangle defined by the xy range. It asumes that the
first two columns are coordinates x and y, and the third (if any) gives the marks of the points.

Value

A point pattern with the format of spatstat v. < 2.0

Note

This window is an underestimate of the real sampling window of the observed points. For a less
biassed estimate, use function ripras in spatstat.

Author(s)

Marcelino de la Cruz

See Also

ppp, as.ppp

Examples

data(figl)
plot(figl) #typical xyplot

figl.ppp <- haz.ppp (figl)



Helianthemum 19

figl.ppp

plot(figl.ppp) # point pattern plot of spatstat

Helianthemum Spatial point pattern of Helianthemum squamatum adult plants and
seedlings

Description

Locations of H. squamatum adult plants and seedlings in a 6 m x 7 m plot over gypsum soil in
Chinchén (near Madrid, Spain). These are part of the data collected by Romao (2003) that have
been analyzed several times (Escudero et al.2005, De la Cruz 2006, De la Cruz et al. in press. ).
The coordinates of the plans are given in cm.

Usage

data(Helianthemum)

Format

An object of class "ppp" of spatstat representing the point pattern of plants locations marked by
their type. See ppp.object for details of the format.The dataset has 866 points with the following
levels:

adultHS adult H. squamatum plants

deadp dying H. squamatum seedlings

survpl surviving H. squamatum seedlings

Source

Romao, R.L. 2003. Estructura espacial de comunidades de gipsofitos: interacciones bioticas y
constricciones abidticas. Tesis Doctoral. Universidad Politécnica de Madrid.

References

De la Cruz, M. 2006. Introduccién al andlisis de datos mapeados o algunas de las (muchas) cosas
que puedo hacer si tengo coordenadas. Ecosistemas 15 (3): 19-39.

De la Cruz, M., Romao, R.L., Escudero, A. and Maestre, F.T. 2008. Where do seedlings go? A
spatio-temporal analysis of early mortality in a semiarid specialist. Ecography,31(6): 720-730.
doi: 10.1111/5.09067590.2008.05299 ..

Escudero, A., Romao, R.L., De la Cruz, M. & Maestre, F. 2005. Spatial pattern and neighbour
effects on Helianthemum squamatum seedlings in a Mediterranean gypsum community. Journal of
Vegetation Science, 16: 383-390. doi: 10.1111/j.16541103.2005.tb02377 .x.


https://doi.org/10.1111/j.0906-7590.2008.05299.x
https://doi.org/10.1111/j.1654-1103.2005.tb02377.x
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Examples
data(Helianthemum)
plot(Helianthemum)
ipc.estK Fit the (In)homogeneous Poisson Cluster Point Process by Minimum
Contrast
Description
Fits the (In)homogeneous Poisson Cluster point process to a point pattern dataset by the Method of
Minimum Contrast.
Usage
ipc.estK(mippp, lambda = NULL, correction = "iso", r = NULL, sigma2 = NULL,
rho = NULL, q = 1/4, p = 2)
## S3 method for class 'ecespa.minconfit'
plot(x, type="L", add=FALSE, x1im=NULL, ylim=NULL, lwd=c(1,1),
1ty=c(1,2), col=c(1,2), main=NULL, ...)
Arguments
mippp Point pattern to which the (D)PCP will be fitted. A point pattern with the ppp
format of spatstat.
lambda Optional. Values of the estimated intensity function as a pixel image (object of
class "im" of spatstat) giving the intensity values at all locations of mippp.
correction A character item selecting any of the options "border", "bord.modif", "isotropic",
"Ripley" or "translate". It specifies the edge correction(s) to be applied in the
computation of the K (r) function.
r Numeric vector. The values of the argument r at which the K (r) functions
should be evaluated.
sigma2 Optional. Starting value for the parameter sigma2 of the Poisson Cluster pro-
cess.
rho Optional. Starting value for the parameter rho of the Poisson Cluster process.
q q exponent of the contrast criterion (see mincontrast).
p p exponent of the contrast criterion (see mincontrast).
X An object of class ’ecespa.minconfit’, resulting of applying ipc.estK to fit a
Poisson Cluster Process.
type Type of function to be ploted. If type="L", function L(r) [= sqrt(K (r)/pi) —r]
is ploted. Otherwise, function K (r) is ploted.
add Logical. Should the curves be added to another plot?
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x1lim Vector setting the limits of the x-axis.

ylim Vector setting the limits of the y-axis.

lwd Vector (length=2) setting the line width for ploting the two functions.
1ty Vector (length=2) setting the line type for ploting the two functions.
col Vector (length=2) setting the line color for ploting the two functions.
main Optional. Text to appear as a title of the plot.

Additional graphical parameters passed to link{plot}.

Details

The algorithm fits the (inhomogeneous) Poisson cluster point process (PCP) to a point pattern, by
finding the parameters of the (inhomogeneous) Poisson cluster model which give the closest match
between the theoretical K function of the Poisson cluster process and the observed K function. For
a concise explanation of the PCP see pc.estK. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast in spatstat or Diggle (2003: 86).

The inhomogeneous PCP can be thought of as a thinned process of an homogeneous PCP, where
the spatially varying thinning probability f(s) is related to the spatially varying intensity function
lambda(s) as f(s) = lambda(s)/mazlambda(s) (Waagepetersen, 2007). As the inhomogeneous
K function for the IPCP coincides with the (homogeneous) K function for the corresponding ho-
mogeneous PCP, the parameters of the underlying homomgeneous PCP can be estimated as those
that give the closest match between the theoretical K function for the homogeneous PCP and the
empirical inhomogeneous K function for the observed IPCP.

This Poisson cluster process can be simulated with rIPCP.

Value

ipc.estK gives an object of class *ecespa.minconfit’, basically a list with the following compo-

nents:

sigma2 Parameter sigma?.

rho Parameter rho.

d.theta Minimized value of the contrast criterion D(theta).
Kobs Values of the observed K-function.

Kfit Values of the fitted K-function.

r Sequence of distances at which Kobs and Kfit have been estimated.
data Original point pattern.

lambda Original intensity function.

dataname Name of the original point pattern.

lambdaname Name of the original intensity function image.

q q exponent of the contrast criterion.

p p exponent of the contrast criterion.
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Author(s)

Marcelino de la Cruz Rot , inspired by some code of Philip M. Dixon

References

Diggle, P. J. 2003. Statistical analysis of spatial point patterns. Arnold, London.

Waagepetersen, R. P. 2007. An estimating function approach to inference for inhomogeneous
Neymann-Scott processes. Biometrics 63: 252-258. doi: 10.1111/j.15410420.2006.00667 .x.

See Also

some functions in spatstat: mincontrast for a more general implementation of the method of
mimimum contrast; matclust.estK and lgcp.estK fit other appropriate processes for clustered
patterns.

Examples

SR
## Same example as in pc.estK

data(gypsophylous)

# set the number of simulations (nsim=199 or larger for real analyses)
# and resolution for lambda (ngrid=200 or larger for real analyses)
nsim<- 19

ngrid <- 50

## Estimate K function ("Kobs").

gyps.env <- envelope(gypsophylous, Kest, correction="iso"”, nsim=nsim)

plot(gyps.env, sqrt(./pi)-r~r, legend=FALSE)

## Fit Poisson Cluster Process. The limits of integration
## rmin and rmax are setup to @ and 6@, respectively.

cosa.pc2 <- ipc.estK(gypsophylous, r = gyps.env$rlgyps.env$r<=60])

## Add fitted Kclust function to the plot.

plot(cosa.pc2, add=TRUE, lwd=c(3,3))

## A kind of pointwise test of the gypsophylous pattern been a realisation
## of the fitted model, simulating with rIPCP and using function J (Jest).

gyps.env.sim2 <- envelope(gypsophylous, Jest, nsim=nsim,


https://doi.org/10.1111/j.1541-0420.2006.00667.x
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simulate=expression(rIPCP(cosa.pc2)))

plot(gyps.env.sim2, main="",legendpos="bottomleft")
## Not run:

HHHHHHAHE
## Inhomogeneous example

data(urkiola)

S
## univariate case

# get univariate pp
I.ppp <- split.ppp(urkiola)$birch

# estimate inhomogeneous intensity function
I.lam <- predict (ppm(I.ppp, ~polynom(x,y,2)), type="trend"”, ngrid=ngrid)

# Compute and plot envelopes to Kinhom, simulating from an Inhomogeneous
# Poisson Process:

I2.env <- envelope( I.ppp,Kinhom, lambda=I.lam, correction="trans",
nsim=nsim, simulate=expression(rpoispp(I.lam)))

plot(I2.env, sqrt(./pi)-r~r, xlab="r (metres)"”, ylab= "L (r)", col=c(1,3,2,2),legend=FALSE)

# It seems that there is short scale clustering; let's fit an Inhomogeneous
# Poisson Cluster Process:

I.ki <~ ipc.estK(mippp=I.ppp, lambda=I.lam, correction="trans")

# Compute and plot envelopes to Kinhom, simulating from the fitted IPCP:
Ipc.env <- Ki(I.ki, correction="trans", nsim=nsim, ngrid=ngrid)

plot (Ipc.env, xlab="r (metres)", ylab= "L (r)")

SR
## bivariate case: test independence between birch and quercus in Urkiola

J.ppp <- split.ppp(urkiola)s$oak

# We want to simulate oak from a homogeneous Poisson model:
J.ppm <- ppm(J.ppp, trend=~1, interaction=Poisson() )

IJ.env <- Kci (mod1=I.ki, mod2=J.ppm, nsim=nsim)
plot(IJ.env, type=12)

plot(IJ.env, type=21)



24 K012

## End(Not run)

Ko12 Tests against ’independent labelling’

Description

Given a "fixed" point pattern and some process that asign labels (LJ) to another "variable" point
pattern, K@12 estimates the combined bivariate K function between the fixed pattern and every type
of the variable pattern, and test that they are independent (i.e. that the labels are randomly assigned,
irrespectively of the fixed pattern).

Usage
Ko12(X, fijo, i, j, nsim = 99, nrank = 1, r = NULL,
correction = "isotropic")
Arguments
X Multitype marked point pattern. An object with the ppp format of spatstat.
fijo Number or character string identifying the mark value of the "fixed" pattern in
X
i Number or character string identifying the mark value of the I pattern in X
h Number or character string identifying the mark value of the J pattern in X
nsim Number of simulated point patterns to be generated when computing the en-
velopes.
nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank

of 1 means that the minimum and maximum simulated values will be used.

r Numeric vector. The values of the argument r at which the K functions should
be evaluated.

correction A character item selecting any of the options "border", "bord.modif", "isotropic”,
"Ripley" or "translate". It specifies the edge correction(s) to be applied.

Details

This test was developped to answer some questions about the spatial pattern of survival and mor-
tality of seedlings and its relationships with adult plants in a plant community (De la Cruz et al.
2008). In order to evaluate the spatial structures of seedlings fates (survive or die), the null hy-
pothesis of random labelling (Cuzick & Edwards 1990, Dixon 2002) would be the appropriate one.
This kind of pattern is the result of two hierarchical processes: a first one that generates the pat-
tern of points (seedlings) and other that assign "labels" (i.e. "die", "survive") to the points. On the
other hand, to analyze the relationships between the spatial pattern of emerging seedlings and the

pattern of adult plants (two patterns that have been generated independently), independence would
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be the appropriate null hypothesis (Goreaud & Pellisier 2003). However, testing the relationship
between the pattern of seedling fates and the pattern of adult plants does not completely fit any of
the mentioned hypotheses because, although the pattern of adult plants and the pattern of, e.g., dead
seedlings are generated independently, their relationship is conditioned by the dependence of the
fate "dead" on the locations of emerging seedlings. This implies that one can not apply the usual
technique of toroidal shifting one pattern over the other to test the independence hypothesis. Instead
one must permute the label of the focal fate (i.e. survive, die) over the global pattern of seedlings
points, keeping the locations and labels of adults fixed. This is the method that K&12 uses to build
the envelopes. The bivariate K functions are computed with the Lotwick’s and Silverman’s (1982)
combined estimator (Kmulti.ls).

Value

A list with two elements.
ko1 Bivariate K function of the fixed point pattern and the I variable type, with sim-
ulation envelopes

ko2 Bivariate K function of the fixed point pattern and the J variable type, with sim-
ulation envelopes

Each of the above elements is a fv.object, essentially a data. frame with the
following items:

r the values of the argument r at which the functions kave been estimated
hi upper envelope of simulations
lo lower envelope of simulations

together with the observed corrected estimate of the combined bivariate K function ( iso, trans,
border, etc).

Author(s)

Marcelino de la Cruz

References

Cuzick, J. and Edwards, R. 1990. Spatial clustering for inhomogeneous populations (with discus-
sion). Journal of the Royal Statistical Society B 52: 73-104.

De la Cruz, M. 2006. Introduccién al andlisis de datos mapeados o algunas de las (muchas) cosas
que puedo hacer si tengo coordenadas. Ecosistemas 15 (3): 19-39.

De la Cruz, M., Romao, R.L., Escudero, A. and Maestre, F.T. 2008. Where do seedlings go? A
spatio-temporal analysis of early mortality in a semiarid specialist. Ecography, 31(6): 720-730.
doi: 10.1111/5.09067590.2008.05299 ..

Dixon, P. M. 2002. Ripley’s K function. In The encyclopedia of environmetrics (eds. El-Shaarawi,
A H. & Piergorsch, W.W.), pp. 1976-1803. John Wiley & Sons Ltd, NY.

Goreaud, F. and Pelissier, R. 2003. Avoiding misinterpretation of biotic interactions with the in-
tertype K12-function: population independence vs. random labelling hypotheses. J. Veg. Sci. 14:
681-692.


https://doi.org/10.1111/j.0906-7590.2008.05299.x
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Lotwick, H. W. & Silverman, B. W. 1982. Methods for analysing spatial processes of several types
of points. Journal of the Royal Statistical Society B 44: 406-413.

See Also

dixon2002 for another segregation test, based in the contingency table of counts of nearest neigbors
in a marked point pattern.

Examples

data(Helianthemum)

# To get 2.5% and 97.5% envelopes of 999 random labelings.

## as in fig. 10 of De la Cruz (2006), change nsim= 999 and nrank=25
nsim <-19

nrank <-1

## Test asociation/repulsion between the fixed pattern of adult
## H. squamatum plants and the "variable” pattern of surviving and
## dead seedlings,

cosa <- K@12(Helianthemum, fijo="adultHS", i="deadpl”, j="survpl”,
r=seq(0,200,1e=201), nsim=nsim, nrank=nrank, correction="isotropic")

plot(cosa$kd1, sqrt(./pi)-r~r, col=c(3, 1, 3), lty=c(3, 1, 3), las=1,
ylab=expression(L[12]), xlim=c(@, 200),
main="adult HS vs. dead seedlings")

plot(cosa$k02, sqrt(./pi)-r~r, col=c(3, 1, 3), lty=c(3, 1, 3), las=1,
ylab=expression(L[12]), xlim=c(@, 200),
main="adult HS vs. surviving seedlings")

K1K2 Differences between univariate and bivariate K-functions

Description

Given two point patterns I and J, K1K2computes the differences between both univariate i -functions
(i.e. Ki(r) — Kj(r)) as well as the differences between the univariate and the bivariate K -function
(i.e. Ki(r) — Kij(r) and Kj(r) — Kij(r)). It also computes simulation envelopes to test that that
the observed differences are within the range expected asuming the random labelling hypothesis.
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Usage
K1K2(X, i, j, nsim = 99, nrank = 1, r = NULL,
correction = "isotropic”)
Arguments
X Multitype marked point pattern. An object with the ppp format of spatstat.
i Number or character string identifying the mark value of the I pattern in X.
A Number or character string identifying the mark value of the J pattern in X.
nsim Number of simulated point patterns to be generated when computing the en-
velopes.
nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank

of 1 means that the minimum and maximum simulated values will be used.

r Numeric vector. The values of the argument r at which the K (r) functions
should be evaluated.

correction A character item selecting any of the options "border”, "bord.modif", "isotropic”,
"Ripley" or "translate". It specifies the edge correction(s) to be applied.

Details

The indiscriminate use of the raw bivariate functions (mainly the K or the L-bivariate functions) in
ecological studies for testing the association/ repulsion between different point patterns waste some
of the most interesting properties of the /-function. One of them is that under the random labelling
hypothesis every individual pattern would be a random thinning of the corresponding bivariate
pattern and therefore Ki(r) = Kj(r) = Kij(r) = pi * r* (Diggle 2003). Dixon (2002) sugested
that some differences of these functions could provide provide interesting ecological information.
For example, D(r) = Ki(r) — Kj(r), has an expected value of O for all r distances under random
labelling and evaluates the differences in the intensity of aggregation of the two point patterns (e.g.,
in the example bellow, the pattern of drought and herbivory deaths). Other relevant function is
D(r) = Ki(r) — Kij(r) and the complementary D(r) = Kj(r) — Kij(r) which evaluate the
degree of segregation of every individual pattern, i.e. if every point of the pattern is more -or less-
surrounded by other points of the same type than would be expected under the random labelling
hypothesis. K1K2 uses K*ij(r), the combined estimator of Lotwick and Silverman (a weigthed
mean of Kij(r) and K ji(r)) as computed by Kmulti.ls.

Value

A list with three elements.

k1k2 Difference between Ki(r) and K j(r), with simulation envelopes.
k1k12 Difference between Ki(r) and Kij(r), with simulation envelopes.
k2k12 Difference between K j(r) and Kij(r), with simulation envelopes.

Each of the above elements is a fv.object, essentially a data. frame with the
following items:
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r The values of the argument r at which the functions have been estimated.
hi Upper envelope of simulations.
D The respective difference function D(r), i.e., respectively, Ki(r) — Kj(r),

Ki(r) — K*ij(r) or Kj(r) — K*ij(r).

lo Lower envelope of simulations.

Author(s)
Marcelino de la Cruz

References
De la Cruz, M. 2006. Introduccién al andlisis de datos mapeados o algunas de las (muchas) cosas
que puedo hacer si tengo coordenadas. Ecosistemas 15 (3): 19-39.
De la Cruz, M., Romao, R.L., Escudero, A. and Maestre, F.T. 2008. Where do seedlings go? A
spatio-temporal analysis of early mortality in a semiarid specialist. Ecography,31(6): 720-730.
doi: 10.1111/5.09067590.2008.05299.x.
Diggle, P.J. 2003. Statistical analysis of spatial point patterns. Arnold, London.
Dixon, P. M. 2002. Ripley’s K function. In The encyclopedia of environmetrics (eds. El-Shaarawi,
A.H. & Piergorsch, W.W.), pp. 1976-1803. John Wiley & Sons Ltd, NY.

Examples

data(Helianthemum)

# set the number of simulations (nsim=199 or larger for real analyses)
nsim<- 19

cosal2 <- K1K2(Helianthemum, j="deadpl”, i="survpl", r=seq(0,200,1e=201),
nsim=nsim, correction="isotropic”)

## plots of figure 9 in De la Cruz (2006) (they where made with nsim=999)
plot(cosal2$kik2, lty=c(2, 1, 2), col=c(2, 1, 2), xlim=c(0, 200),
main= "survival- death")

plot(cosal2$kik12, lty=c(2, 1, 2), col=c(2, 1, 2), xlim=c(@, 200),
main="segregation of surviving seedlings”)

plot(cosal2$k2k12, lty=c(2, 1, 2), col=c(2, 1, 2), xlim=c(@, 200),
main= "segregation of dying seedlings”, legend=FALSE)


https://doi.org/10.1111/j.0906-7590.2008.05299.x
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Kci Test against non-Poisson (in-)homogeneous models

Description

Functions to automate testing of ’univariate’ and ’bivariate’ point pattern hypothesis against non-
Poisson (in-)homogeneous models.

Usage

Kci(mod1l, mod2, correction="trans”, nsim=99, ngrid=200, nrep=1e+05,
r=NULL, simu="both", spctype=1)

Ki(mod1l, correction="trans", nsim=99, ngrid=200, nrep=1e+05, r=NULL,
spctype=1)

## S3 ploth method for objects of class 'ecespa.kci':

## S3 method for class 'ecespa.kci'

plot(x, type=1, q=0.025, kmean=TRUE, add=FALSE, maine=NULL,
xlabe=NULL, ylabe=NULL, xlime=NULL, ylime=NULL,

1ty=c(1,2,3), col=c(1,2,3), lwd=c(1,1,1), ...)
Arguments

mod1 Fitted model. An object of class ppm or ecespa.minconfit.

mod2 Fitted model. An object of class ppm or ecespa.minconfit.

correction A character item selecting any of the options "border", "bord.modif", or "trans-
late". It specifies the edge correction to be applied when computing K-functions.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

ngrid Dimensions (ngrid by ngrid) of a rectangular grid of locations where predict.ppm
would evaluate the spatial trend of the fitted models.

nrep Total number of steps (proposals) of Metropolis-Hastings algorithm that should
be run by rmh to simulate models of class ppm.

r Numeric vector. The values of the argument r at which the K (r) functions
should be evaluated.

simu A character item indicating if both models will be simulated for the computation
of the envelopes (simu = "both") or just the second model (simu != "both").

spctype Type of *pre-thinning’ method employed by rIPCP in the simulation of ecespa.minconfit
models.

X An object of class "ecespa.kci’. The result of runing Kci or Ki.

type What to plot. One of 1 (K1), 2 (K2), 12 (K12), 21 (K21), 112 (KI1-K12) or 221

(K2-K21).
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q Quantile for selecting the simulation envelopes.

kmean Logical. Should the mean of the simulated envelopes be ploted?

add Logical. Should the kci.plot be added to a previous plot?

maine Title to add to the plot.

xlabe Text or expression to label the x-axis.

ylabe Text or expression to label the y-axis.

x1lime Max and min coordinates for the x-axis.

ylime Max and min coordinates for the y-axis.

1ty Vector with the line type for the estimated Kmm function, the simulated en-

velopes and the mean of the simulated envelopes.

col Vector with the color for the estimated K-function, the simulated envelopes and
the mean of the simulated envelopes.

1wd Vector with the line width for the estimated K-function, the simulated envelopes
and the mean of the simulated envelopes.

Additional graphical parameters passed to plot.

Details

These functions are designed to automate the testing of univariate’ and(/or) ’bivariate’ point pattern
hypotheses (based on K-functions) against non-Poisson (in-)homogeneous models. These non-
Poisson (in-)homogeneous models should have been fitted with pseudolikelihood tools (spatstat
ppm function) or with minimum contrast methods (ecespa.minconfit).

Function Ki is designed to test "univariate’ hypotheses. It will compute the (in-)homogeneous K-
function (using spatstat Kinhom function) of the point pattern to which the ppm or ecespa.minconfit
model has beeen fitted and will compute ’envelopes’ simulating from the fitted model. The com-
puted envelopes can be considered as a pointwise test of the point pattern been a realisation of the
fitted model.

Function Kci is designed to test "bivariate’ hypotheses. It will compute the (in-)homogeneous cross
K-function (using spatstat Kcross. inhom function) and will compute envelopes simulating from
the fitted models. As, when dealing with inhomogeneos patterns K12 != K21, Kci will compute
both functions. If simu = "both" (default option), Kci will simulate from mod?2 to test K12 and from
mod1 to test K21. If simu != "both", only mod2 will be simulated. This option may be useful when
only K12 is of interest. Function Kci will also compute univariate (in-) homogeneous K-functions
and envelopes for each individual point pattern.

The S3 ploth method will plot the selected K-function and envelopes (actually, it will plot the
most usual L-function = sqrt[K (r)/pi] — ). The appropriate K function can be selected with the
argument type. If type = 1 (default option), it will plot the univariate K function (of the analized
model in Ki or of the first model [mod1] in Kci). If type = 2, it will plot the univariate K function
of the second model (mod2 in Kci). When type = 12 or type = 21, it will plot respectively K12 or
K21. Options type = 112 or type = 221 will graph a kind of ’segregation test’ (see K1K2), and will
represent de differences K1-K12, K2-K21 and their envelopes.
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Both Kci and Ki return an object of class 'ecespa.kci', basically a list with the following items:

kia
kib

kci.ab.o

kci.ba.o

kci.ab.s

kci.ba.s

kib.s
kia.s
datanamea
datanameb
modnamea

modnameb

type

Warning

Numeric vector. The values of the argument 7 at which the K (r) functions have
been evaluated.

Numeric vector. Observed (in-)homogeneous K function for mod1 point pattern.
Numeric vector. Observed (in-)homogeneous K function for mod2 point pattern.

Numeric vector. Observed (in-) homogeneous cross K-function (K12) for mod1
and mod2 point patterns.

Numeric vector. Observed (in-) homogeneous cross K-function (K21) for mod2
and mod1 point patterns.

Matrix of simulated (in-) homogeneous cross K-function (K12) for mod1 and
mod2 point patterns.

Matrix of simulated (in-) homogeneous cross K-function (K21) for mod2 and
mod1 point patterns.

Matrix of simulated (in-)homogeneous K function for mod2 point pattern.
Matrix of simulated (in-)homogeneous K function for mod1 point pattern.
Name of mod1 point pattern.

Name of mod2 point pattern.

Name of model mod1.

Name of model mod2.

Type of analysis. "Kci" or "Ki".

As this implementation involves the use of images as the means of evaluation of the (inhomoge-
neous) spatial trend, and a mask based on those images will be used as the point pattern window,

the "Ripley

or "isotropic" edge correction can not be employed.

It is usual that during the simulation process some warnings are produced. They are related to some
simulated points being rejected as lying outside the specified window.

Note

Even when one of the two point patterns is assumed to be homogeneous Poisson (and, apparently
not worth of fitting any model), an homogeneous Poisson model can be easily fitted and passed to
Kci with ppm. See the examples.

Author(s)

Marcelino de la Cruz Rot
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References

De la Cruz, M. and Escudero, A. 2008. Null models and tools for multivariate heterogeneous point
patterns. Submitted.

De Soto, L., Olano, J.M., Rozas, V. and De la Cruz, M. 2009. Release of Juniperus thurifera
woodlands from herbivore-mediated arrested succession in Spain. Applied Vegetation Science, 13:
1525. doi: 10.1111/1.1654109X.2009.01045.x

Examples

data(urkiola)

# set the number of simulations (nsim=199 or larger for real analyses)
nsim<- 5

S
## univariate case

# get univariate pp
I.ppp <- split.ppp(urkiola)$birch

# estimate inhomogeneous intensity function
I.lam <- predict (ppm(I.ppp, ~polynom(x,y,2)), type="trend"”, ngrid=200)

# Compute and plot envelopes to Kinhom, simulating from an Inhomogeneous
# Poisson Process:

I2.env <- envelope( I.ppp,Kinhom, lambda=I.lam, correction="trans",
nsim=nsim, simulate=expression(rpoispp(I.lam)))

plot(I2.env, sqrt(./pi)-r~r, xlab="r (metres)”, ylab= "L (r)", col=c(1,3,2,2),legend=FALSE)

# It seems that there is short scale clustering; let's fit an Inhomogeneous
# Poisson Cluster Process:

I.ki <~ ipc.estK(mippp=I.ppp, lambda=I.lam, correction="trans")

# Compute and plot envelopes to Kinhom, simulating from the fitted IPCP:
Ipc.env <- Ki(I.ki, correction="trans"”, nsim=nsim, ngrid=200)

plot (Ipc.env, xlab="r (metres)", ylab= "L (r)")
## Not run:

HHHHHHHEEEEE

## bivariate case: test independence between birch and quercus in Urkiola

J.ppp <- split.ppp(urkiola)s$oak

# We want to simulate oak from a homogeneous Poisson model:
J.ppm <- ppm(J.ppp, trend=~1, interaction=Poisson() )


https://doi.org/10.1111/j.1654-109X.2009.01045.x
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IJ.env <- Kci (mod1=I.ki, mod2=J.ppm, nsim=nsim)

plot(IJ.env, type=12)

plot(IJ.env, type=21)

## End(Not run)

Kinhom. log

Simulation envelopes from the fitted values of a logistic model

Description

Computes simulation envelopes for (in-)homogeneous K-function simulating from a vector of prob-

abilitiesn.

Usage

Kinhom.log (A, lambda=NULL, mod=NULL, lifemark="@", prob=NULL,
r=NULL, nsim=99, correction="trans", ngrid=200)

Arguments

A
lambda

mod
lifemark

prob

nsim

correction

ngrid

A marked point pattern with the ppp format of spatstat.

Optional. Values of the estimated intensity function as a pixel image (object of
class "im" of spatstat) giving the intensity values at all locations of A.

A fitted model. An object of class ppm.
Level of the marks of A which represents the "live" or "succes" cases.

Numeric vector, with length equal to the number of points of A, represeting the
fitted values of a logistic model fitted to A marks.

Numeric vector. The values of the argument r at which the K (r) functions
should be evaluated.

Number of simulated point patterns to be generated when computing the en-
velopes.

A character item selecting any of the options "border", "bord.modif", or "trans-
late". It specifies the edge correction to be applied when computing K-functions.

Dimensions (ngrid by ngrid) of a rectangular grid of locations where predict. ppm
would evaluate the spatial trend of the fitted models.
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Details

This function is a wrapper to compute the critical envelopes for Monte Carlo test of goodness-of-
fit of (in-)homogeneous K functions, simulating from the fittted values of a logistic model (i.e. a
binomial GLM with logit link) fitted to the marks ("failure", "success") of a "binomially"-marked
point pattern. This is particularly interesting in plant ecology when considering alternatives to
the random mortality hypothesis (Kenkel 1988). This hypothesis is usually tested building Monte
Carlo envelopes from the "succesful" patterns resulting from a random labelling of a "binomially"-
marked point pattern (this is equivalent to a random thinning of the whole pattern irrespective of
the marks). As tree mortality is rarely random but instead can be modelled as a function of a
certain number of covariates, the most natural alternative to the random mortality hypothesis is the
logistic mortality hypothesis, that can be tested thinning the original pattern of trees with retention
probabilities defined by the fitted values of a logistic model (Batista and Maguire 1998, Olano et al.
2008).

Kinhom.log will compute the envelopes by thinning the unmarked point pattern A with retention
probabilities prob. If no prob vector is provided, all points will be thinned with the same probability
( number of "live" points / number of points ), i.e. Kinhom.log will compute random thinning
envelopes.

Kinhom.log will compute envelopes both to homogeneous and inhomogeneous K functions. If no
lambda or mode arguments are provided, Kinhom. log assumes that the original pattern is homoge-
neous and will use a constant lambda to compute the inhomogeneous K (i.e. it will compute the
homogeneous K). The most convenient use with inhomogeneous point patterns is to provide the
argument mod with an inhomogeneous Poisson model fitted to the original pattern of ’live’ points
(with spatstat function ppm; see the examples). This model will be used to compute (and to update
in the simulations) the inhomogeneous trend (i.e. the "lambda") of the patterns. If the argument
lambda is provided but not mod, these lambda will be used as a covariate to fit an inhomogeneous
Poisson model that will be used to compute (and to update in the simulations) the inhomogeneous
spatial trend.

Kinhom.log will produce an object of class "ecespa.kci’ that can be easily ploted (see the examples).
This is accomplished by the S3 ploth method plot.ecespa.kci; it will plot the K-function and its
envelopes (actually, it will plot the most usual L-function = sqrt[K (r)/pi] — r).

Value

Kinhom.log returns an object of class ecespa.kci, basically a list with the following items:

r Numeric vector. The values of the argument 7 at which the K () functions have
been evaluated.

kia Numeric vector. Observed (in-)homogeneous K function.

kia.s Matrix of simulated (in-)homogeneous K functions.

datanamea Name of point pattern A.

modnamea Name of model mod.

type Type of analysis. Always "Kinhom.log".

probname Name of the vector of fitted retention probabilities prob.

modtrend Spatial trend (formula) of the model mod.

nsim Number of simulations.
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Warning

As this implementation involves the use of images as the means of evaluation of the (inhomoge-
neous) spatial trend, and a mask based on those images will be used as the point pattern window,

s n

the "Ripley’s" or "isotropic" edge correction can not be employed.

Author(s)

Marcelino de la Cruz Rot

References

Batista, J.L.F. and Maguire, D.A. 1998. Modelling the spatial structure of tropical forests. For.
Ecol. Manag., 110: 293-314.

Kenkel, N.C. 1988. Pattern of self-thinning in Jack Pine: testing the random mortality hypothesis.
Ecology, 69: 1017-1024.

Olano, J.M., Laskurain, N.A., Escudero, A. and De la Cruz, M. 2009. Why and where adult trees
die in a secondary temperate forest? The role of neighbourhood. Annals of Forest Science, 66: 105.
doi: 10.1051/forest:2008074.

Examples

data(quercusvm)

# set the number of simulations (nsim=199 or larger for real analyses)
nsim<- 19

# read fitted values from logistic model:

probquercus <-c(0.99955463, 0.96563477, ©.97577094, ©.97327199, 0.92437309,

0.84023396, 0.94926682, 0.89687281, 0.99377915, 0.74157478, ©.95491518,
0.72366493, 0.66771787, ©.77330148, 0.67569082, 0.9874892, 0.7918891,
0.73246803, 0.81614635, 0.66446411, 0.80077908, ©0.98290508, 0.54641754,
0.53546689, 0.73273626, 0.7347013, 0.65559655, 0.89481468, 0.63946334,
0.62101995, 0.78996371, ©.93179582, 0.80160346, 0.82204428, 0.90050059,
0.83810669, 0.92153079, 0.47872421, 0.24697004, 0.50680935, 0.6297911,
0.46374812, 0.65672284, 0.87951682, 0.35818237, ©.50932432, ©0.92293014,
0.48580241, 0.49692053, 0.52290553, 0.7317549, 0.32445982, 0.30300865,
0.73599359, 0.6206056, 0.85777043, 0.65758613, 0.50100406, 0.31340849,
0.22289286, 0.40002879, 0.29567678, 0.56917817, 0.56866864, 0.27718552,
0.4910667, ©.47394411, 0.40543788, 0.29571349, 0.30436276, 0.47859015,
0.31754526, 0.42131675, ©.37468782, 0.73271225, 0.26786274, 0.59506388,
0.54801851, 0.38983575, 0.64896835, 0.37282031, 0.67624306, 0.29429766,
0.29197755, 0.2247629, 0.40697843, 0.17022391, 0.26528042, 0.24373722,
0.26936163, 0.13052254, ©.19958585, 0.18659692, 0.36686678, 0.47263005,
0.39557661, 0.68048997, 0.74878567, 0.88352322, ©.93851375)


https://doi.org/10.1051/forest:2008074
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HHHHAHAEHEE R
## Envelopes for an homogeneous point pattern:

cosap <- Kinhom.log(A=quercusvm, lifemark="@", prob=probquercus, nsim=nsim)
plot(cosap)

B S S

## Envelopes for an inhomogeneous point pattern:

## First, fit an inhomogeneous Poisson model to alive trees :
quercusalive <- unmark(quercusvm[quercusvm$marks == 0])

mod2 <- ppm(quercusalive, ~polynom(x,y,2))

## Now use mod2 to estimate lambda for K.inhom:

cosapm <- Kinhom.log(A=quercusvm, lifemark="0", prob=probquercus,

nsim=nsim, mod=mod2)

B S S
## An example of homogeneous random thinning:

cosa <- Kinhom.log(A=quercusvm, lifemark="0", nsim=nsim)

plot(cosa)

Kmm Mark-weighted K-function

Description
This is a functional data summary for marked point patterns that measures the joint pattern of points
and marks at different scales determined by r.
Usage
Kmm(mippp, r = 1:10, nsim=NULL)
## S3 method for ploting objects of class 'ecespa.kmm':
## S3 method for class 'ecespa.kmm'

plot(x, type="Kmm.n", g=0.025,
xlime=NULL, ylime=NULL, maine=NULL, add=FALSE, kmean=TRUE,
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Arguments

mippp

r

nsim

type

x1lime
ylime
maine
add

kmean
ylabe
xlabe

1ty

col

Iwd

Details
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ylabe=NULL, xlabe=NULL, lty=c(1,2,3), col=c(1,2,3), lwd=c(1,1,1),
L)

A marked point pattern. An object with the ppp format of spatstat.
Sequence of distances at which Kmm is estimated.

Number of simulated point patterns to be generated when computing the en-
velopes.

An object of class "ecespa.kmm’. The result of applying Kmm to a marked point
pattern.

Type of mark-weighted K-function to plot. One of "Kmm" ("plain” mark-weighted
K-function) or "Kmm.n" (normalized mark-weighted K-function).

Quantile for selecting the simulation envelopes.

Max and min coordinates for the x-axis.

Max and min coordinates for the y-axis.

Title to add to the plot.

Logical. Should the kmm.object be added to a previous plot?

Logical. Should the mean of the simulated Kmm envelopes be ploted?
Text or expression to label the y-axis.

Text or expression to label the x-axis.

Vector with the line type for the estimated Kmm function, the simulated en-
velopes and the mean of the simulated envelopes.

Vector with the color for the estimated Kmm function, the simulated envelopes
and the mean of the simulated envelopes.

Vector with the line width for the estimated Kmm function, the simulated en-
velopes and the mean of the simulated envelopes.

Additional graphical parameters passed to plot.

Penttinnen (2006) defines K'mm(r), the mark-weighted K-function of a stationary marked point

process X, so that

lambda x Kmm(r) = Eo[sum(mo * mn)]/mu?

where lambda is the intensity of the process, i.e. the expected number of points of X per unit
area, Fol] denotes expectation (given that there is a point at the origin); m0 and mn are the marks
attached to every two points of the process separated by a distance <= r and mu is the mean
mark. It measures the joint pattern of marks and points at the scales determmined by r. If all the
marks are set to 1, then lambda * K'mm(r) equals the expected number of additional random points
within a distance r of a typical random point of X, i.e. Kmm becomes the conventional Ripley’s
K -function for unmarked point processes. As the K-function measures clustering or regularity
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among the points regardless of the marks, one can separate clustering of marks with the normalized
weighted K-function

Kmm.normalized(r) = Kmm(r)/K(r)

If the process is independently marked, K'mm(r) equals K(r) so the normalized mark-weighted
K -function will equal 1 for all distances 7.

If nsim !'= NULL, Kmm computes ’simulation envelopes’ from the simulated point patterns. These are
simulated from nsim random permutations of the marks over the points coordinates. This is a kind
of pointwise test of Kmm(r) == 1 or normalized Kmm(r) == 1 for a given r.

Value

Kmm returns an object of class 'ecespa.kmm', basically a list with the following items:

dataname Name of the analyzed point pattern.

r Sequence of distances at which Kmm is estimated.

nsim Number of simulations for computing the envelopes, or NULL if none.

kmm Mark-weighted K -function.

kmm.n Normalized mark-weighted K -function.

kmmsim Matrix of simulated mark-weighted K -functions, or or NULL if none.

kmmsim.n Matrix of simulated normalized mark-weighted K -functions, or or NULL if none.
Note

This implementation estimates Krmm/(r) without any correction of border effects, so it must be
used with caution. However, as K () is also estimed without correction it migth compensate the
border effects on the normalized K mm-function.

Author(s)

Marcelino de la Cruz Rot

References

De la Cruz, M. 2008. Métodos para analizar datos puntuales. En: Introduccion al Andlisis Espacial
de Datos en Ecologia y Ciencias Ambientales: Métodos y Aplicaciones (eds. Maestre, F. T., Es-
cudero, A. y Bonet, A.), pp 76-127. Asociacién Espaiiola de Ecologia Terrestre, Universidad Rey
Juan Carlos y Caja de Ahorros del Mediterraneo, Madrid.

Penttinen, A. 2006. Statistics for Marked Point Patterns. In The Yearbook of the Finnish Statistical
Society, pp. 70-91.

See Also

markcorr
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Examples
## Figure 3.10 of De la Cruz (2008):
# change r to r=1:100
r = seq(1,100, by=5)
data(seedlings1)
data(seedlings?2)
s1km <- Kmm(seedlings1, r=r)
s2km <- Kmm(seedlings2, r=r)
plot(s1km, ylime=c(0.6,1.2), lwd=2, maine="", xlabe="r(cm)")
plot(s2km, 1wd=2, 1ty=2, add=TRUE )
abline(h=1, 1lwd=2, 1lty=3)
legend(x=60, y=1.2, legend=c("Hs_C1", "Hs_C2", "He"),
lty=c(1, 2, 3), lwd=c(3, 2, 2), bty="n")
## Not run:
## A pointwise test of normalized Kmm == 1 for seedlingsi:

s1km.test <- Kmm(seedlingsl, r=1:100, nsim=99)

plot(slkm.test, xlabe="r(cm)")

## End(Not run)

Kmulti.ls Lotwick’s and Silverman’s combined estimator of the marked K-
function

Description
For a multitype point pattern, calculates the combined estimator of the bivariate Kij(r) and K ji(r)
functions.

Usage

Kmulti.ls(X, I, J, r = NULL, corre = "isotropic")
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Arguments
X Multitype marked point pattern. An object with the ppp format of spatstat.
I Subset index specifying the points of the first pattern.
J Subset index specifying the points of the second pattern.
r Numeric vector. The values of the argument r at which the multitype K function
K*ij(r) should be evaluated.
corre A character item selecting any of the options "border", "bord.modif", "isotropic”,
"Ripley" or "translate", as described in Kest. It specifies the edge correction(s)
to be applied.
Details

As a consequence of edge effects, the estimators Kij(r) and K ji(r) of the same bivariate pattern
could differ. K*ij(r) is the combined estimator defined by Lotwick and Silverman (1982) as

nj * Kij(r) 4+ ni « Kji(r)/(ni + nj),

ns and nj being respectively the number of points in I and J.

Value

An object of class "fv" (see fv.object). Essentially a data frame containing numeric columns

r The values of the argument r at which the function K *ij(r) has been estimated

theo The theoretical value of K * ij(r) for a marked Poisson process, namely pi * 2

together with a column or columns named "border”, "bord.modif", "iso" and/or "trans", according
to the selected edge corrections. These columns contain estimates of the function K *ij(r) obtained
by the edge corrections named.

Note
Kmulti.ls is a wrapper for a convenient use of the Kmulti function of spatstat. Please refer to its
help page for additional documentation.

Author(s)

Marcelino de la Cruz

References

Lotwick,H.W. & Silverman, B. W. 1982. Methods for analysing spatial processes of several types of
points. Journal of the Royal Statistical Society B, 44: 406-413. doi: 10.1111/j.25176161.1982.tb01221 x.


https://doi.org/10.1111/j.2517-6161.1982.tb01221.x
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Examples

data(amacrine)

plot(Kmulti.ls(amacrine, I=amacrine$marks=="on", J=amacrine$marks=="off",
corre="isotropic"), sqrt(./pi)-r~r, main="")

# compare with Kmulti

plot(Kmulti(amacrine, I=amacrine$marks=="on", J=amacrine$marks=="off"),
sqrt(iso/pi)-r~r, add=TRUE, col=3)

plot(Kmulti(amacrine, J=amacrine$marks=="on", I=amacrine$marks=="off"),
sqrt(iso/pi)-r~r, add=TRUE, col=4)

LF.gof Loosmore and Ford Goodness of Fit Test

Description

Performs the Loosmore and Ford (2006) test or the Maximum Absolute Deviation test for a spatial
point pattern.

Usage

LF.gof (X, rmin=NULL, rmax=NULL, na.rm=TRUE)

Arguments
X An object resulting from the function envelope, i.e., with an attribute "simfuns"
(obtained using the argument savefuns=TRUE in envelope) ,which is an ob-
ject of class "fv" containing the summary functions computed for each of the
simulated patterns.
rmin Minimum value of the function argument r over which the maximum absolute
deviation, or the integral, will be computed for the test.
rmax Maximum value of the function argument r over which the maximum absolute
deviation, or the integral, will be computed for the test.
na.rm Should NA’s be removed to compute the integral?
Details

These function perform a tests for goodness-of-fit of a point pattern dataset to a point process model,
based on Monte Carlo simulation from the model. The simulations should have been previously
computed with the function envelope, applied with the argument savefuns=TRUE in order to save
all the simulated functions, required for the computation of the test.
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The test, popularized in the ecological field by Loosmore and Ford (2006) is also described in
Diggle (2003, page 14), and according to Baddeley and Turner (2005) also in Diggle (1986) and
Cressie (1991, page 667, equation (8.5.42)). If the arguments rmin and rmax are set to NULL, the
integral of the GoF statistics will be computed over the complete range of r values.

Value

A list with the following components:

u The GoF statistic, i.e., the value of the integral over the range of r’s
p The p-value of the test

na.count.by.r Number of NA values for each r. It helps to evaluate the reliability of the computed
u’s, specially for small r’s

Author(s)

Marcelino de la Cruz

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neuroscience Methods 18, 115-125.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Loosmore, N.B. and Ford, E.D. (2006) Statistical inference using the G or K point pattern spatial
statistics. Ecology 87, 1925-1931. doi: 10.1890/00129658(2006)87[1925:SIUTGO]2.0.CO;2.

See Also

dclf. test for an alternative implementation of the test in spatstat.

marksum Mark-sum measure

Description

An exploratory data analysis technique for marked point patterns. The marked point pattern is
mapped to a random field for visual inspection.

Usage
marksum(mippp, R = 10, nx = 30, ny = 30)
## S3 method for ploting objects of class 'ecespa.marksum':
## S3 method for class 'ecespa.marksum'

plot(x, what="normalized”, contour=FALSE, grid=FALSE,
ribbon=TRUE, col=NULL ,main=NULL,xlab="",ylab="",...)


https://doi.org/10.1890/0012-9658(2006)87[1925:SIUTGO]2.0.CO;2

marksum

Arguments

mippp
R

nx

ny

what

contour
grid
ribbon
col
main
xlab
ylab

Details
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A marked point pattern. An object with the ppp format of spatstat.

Radius. The distance argument r at which the mark-sum measure should be
computed

Grid density (for estimation) in the x-side.
Grid density (for estimation) in the y-side.

An object of class 'ecespa.marksum'. Usually, the result of applying marksum
to a point pattern.

What to plot. One of "marksum” (raw mark sum measure), "point” (point sum
measure) or "normalized” (normalized sum measure).

Logical; if "TRUE" add contour to map.

Logical; if "TRUE" add marked grid to map.

Logical; if "TRUE" add legend to map.

Color table to use for the map ( see help file on image for details).
Text or expression to add as a title to the plot.

Text or expression to add as a label to axis x.

Text or expression to add as a label to axis y.

Additional parameters to Smooth. ppp, density.ppp or as.mask, to control the
parameters of the smoothing kernel, pixel resolution, etc.

Penttinen (2006) defines the mark-sum measure as a smoothed summary measuring locally the
contribution of points and marks. For any fixed location = within the observational window and a
distance R, the mark-sum measure S[R](x) equals the sum of the marks of the points within the
circle of radius R with centre in x. The point-sum measure I[R](x) is defined by him as the sum
of points within the circle of radius R with centre in z, and describes the contribution of points
locally near z. The normalized mark-sum measure describes the contribution of marks near = and
is defined (Penttinen, 2006) as

S.normalized[R)(x) = S[R](x)/I[R](x)

This implementation of marksum estimates the mark-sum and the point-sum measures in a grid of
points whose density is defined by nx and ny.

Value

marksum gives an object of class 'ecespa.marksum'; basically a list with the following elements:

normalized
marksum
pointsum
minus

grid

Normalized mark-sum measure estimated in the grid points.
Raw mark-sum measure estimated in the grid points.
Point-sum measure estimated in the grid points.

Point-sum of the grid points. For advanced use only.

Grid of points.
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marksum
nx Density of the estimating grid in the x-side.
ny Density of the estimating grid in the x-side.
dataname Name of the ppp object analysed.
R Radius. The distance argument r at which the mark-sum measure has been com-
puted.
window Window of the point pattern.

plot.ecespa.marksum plots the selected mark-sum measure.

Author(s)

Marcelino de la Cruz Rot

References

Penttinen, A. 2006. Statistics for Marked Point Patterns. In The Yearbook of the Finnish Statistical
Society, pp. 70-91.

See Also

getis, related to the point-sum measure, and markstat for designing different implementations.

Examples

data(seedlings1)
seed.m <- marksum(seedlings1, R=25)

# raw mark-sum measure; sigma is bandwith for smoothing
plot(seed.m, what="marksum”, sigma = 5)

# point sum measure
plot(seed.m, what="pointsum”, sigma = 5)

# normalized mark-sum measure
plot(seed.m, what="normalized", dimyx=200, contour=TRUE, sigma = 5)

# the same with added grid and normalized mark-sum measure
plot(seed.m, what="normalized"”, dimyx=200,
contour=TRUE, sigma = 5, grid=TRUE)
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p2colasr P-value for a discrete distribution on small sample data

Description

Computes the p-value for a two-sided hypothesis test following Dixon’s (2002:145) description of
the method of Agresti & Min (2001).

Usage
p2colasr(Z)
Arguments
Z vector with the observed Z-score in the first position and all the simulated val-
ues behind.
Value

P-value of the two-sided hypothesis test

Note

This function is usually not to be called by the user. It is internally used by dixon2002.

Author(s)

Marcelino de la Cruz Rot

References

Agresti, A. & Min, Y. 2001. On small-sample confidence intervals for parameters in discrete distri-
butions. Biometrics, 57: 963-971.

Dixon, P.M. 2002. Nearest-neighbor contingency table analysis of spatial segregation for several
species. Ecoscience, 9(2): 142-151.
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pc.estK Fit the Poisson Cluster Point Process by Minimum Contrast

Description

Fits the Poisson Cluster point process to a point pattern dataset by the Method of Minimum Contrast.

Usage

pc.estK(Kobs, r, sigma2 = NULL, rho = NULL)
Kclust(r, sigma2, rho)

Arguments
Kobs Empirical K-function.
r Sequence of distances at which function K has been estimated.
sigma2 Optional. Starting value for the parameter sigma2 of the Poisson Cluster pro-
cess.
rho Optional. Starting value for the parameter rho of the Poisson Cluster process.
Details

The algorithm fits the Poisson cluster point process to a point pattern, by finding the parameters of
the Poisson cluster model which give the closest match between the theoretical K function of the
Poisson cluster process and the observed K function. For a more detailed explanation of the Method
of Minimum Contrast, see mincontrast in spatstat or Diggle (2003: 86).

The Poisson cluster processes are defined by the following postulates (Diggle 2003):

PCPl  Parent events form a Poisson process with intensity rho.
PCP2  Each parent produces a random number of offspring, according to a probability distribution
pls]:s=0,1,2,...

PCP3 The positions of the offspring relative to their parents are distributed according to a bivariate pdf h.

This implementation asumes that the probability distribution p[s] of offspring per parent is a Poisson
distribution and that the position of each offspring relative to its parent follows a radially symetric
Gaussian distribution with pdf

h(z,y) = [1/(2 * pi * sigma®)] * exp[— (2% + y*) /(2 * sigma?)]
The theoretical K -function of this Poisson cluster process is (Diggle, 2003):
pi x 1% + [1 — exp(—r? /4 * sigma?)] /rho

The command Kclust computes the theoretical K -function of this Poisson cluster process and can
be used to find some initial estimates of rho and sigma?. In any case, the optimization usually
finds the correct parameters even without starting values for these parameters.
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This Poisson cluster process can be simulated with sim.poissonc.

Value
sigma2 Parameter sigma?.
rho Parameter rho.
Note

The exponents p and q of the contrast criterion (see mincontrast) are fixed respectively to p = 2
and ¢ = 1/4. The rmin and rmax limits of integration of the contrast criterion are set up by the
sequence of values of r and K obs passed to pc.estK.

Author(s)

Marcelino de la Cruz Rot, inspired by some code of Philip M. Dixon

References

Diggle, P. J. 2003. Statistical analysis of spatial point patterns. Arnold, London.

See Also

ipc.estK for fitting the inhomogeneous Poisson cluster process; some functions in spatstat (
matclust.estK and 1gcp. estK) fit other appropriate processes for clustered patterns; mincontrast
performs a more general implementation of the method of mimimum contrast.

Examples

data(gypsophylous)

# set the number of simulations (nsim=199 or larger for real analyses)
nsim<- 19

## Estimate K function ("Kobs").

gyps.env <- envelope(gypsophylous, Kest, correction="iso"”, nsim=nsim)
plot(gyps.env, sqrt(./pi)-r~r, legend=FALSE)

## Fit Poisson Cluster Process. The limits of integration
## rmin and rmax are setup to @ and 6@, respectively.

cosa.pc <- pc.estK(Kobs = gyps.env$obs[gyps.env$r<=60],
r = gyps.env$rlgyps.env$r<=60])

## Add fitted Kclust function to the plot.
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lines(gyps.env$r,sqrt(Kclust(gyps.env$r, cosa.pc$sigma?2,cosa.pc$rho)/pi)-gyps.envsr,
1ty=2, 1lwd=3, col="purple”)

## A kind of pointwise test of the gypsophylous pattern been a realisation
## of the fitted model, simulating with sim.poissonc and using function J (Jest).

gyps.env.sim <- envelope(gypsophylous, Jest, nsim=nsim,
simulate=expression(sim.poissonc(gypsophylous,

sigma=sqrt(cosa.pc$sigma2), rho=cosa.pc$rho)))

plot(gyps.env.sim, main="",6legendpos="bottomleft")

guercusvm Alive and dead oak trees

Description

Locations of alive and dead oak trees (Quercus robur) in a secondary wood in Urkiola Natural Park
(Basque country, north of Spain). This is part of a more extensive dataset collected and analysed by
Laskurain (2008). The coordinates of the trees are given in meters.

Usage

data(quercusvm)

Format
An object of class "ppp" representing the point pattern of tree locations. Entries include
x Cartesian x-coordinate of tree.

y Cartesian y-coordinate of tree.

marks factor with two levels indicating the status of each tree (1 = "alive", 0 = "dead").

See ppp for details of the format of a ppp object.

References

Laskurain, N. A. (2008) Dindmica espacio-temporal de un bosque secundario en el Parque Natural
de Urkiola (Bizkaia). Tesis Doctoral. Universidad del Pais Vasco /Euskal Herriko Unibertsitatea.
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rIPCP Simulate Inhomogeneous Poisson Cluster Process

Description

Generate a random point pattern, a simulated realisation of the Inhomogeneous Poisson Cluster

Process.
Usage
rIPCP(x, lambda = NULL, type = 1, lmax = NULL, win = owin(c(@, 1), c(@, 1)), ...)
Arguments
X an object of class 'ecespa.minconfit', resulting from the function ipc.estK.
lambda Optional. Values of the estimated intensity function as a pixel image (object of
class "im" of spatstat) giving the intensity values at all locations.
type Type of ’prethining’ employed in the simulation. See details.
1max Optional. Upper bound on the values of lambda.
win Optional. Window of the simulated pattern.
Optional. Arguments passed to as.im.
Details

This function simulates the Inhomogeneous Poisson Cluster process from an object of class 'ecespa.minconfit’,
resulting from fitting an IPCP to some ’original’ point pattern using the function ipc.estK. Follow-
ing the approach of Waagepetersen (2007), the simulation involves a first step in which an homo-
geneous aggregated pattern is simulated (from the fitted parameters of the 'ecespa.minconfit’
object, using function rThomas of spatstat) and a second one in which the homogeneous pattern
is thinned with a spatially varying thinning probability f (s) proportional to the spatially varying
intensity, i.e. f(s) = lambda(s) / max[lambda(s)]. To obtain a ’final’ density similar to that of
the original point pattern, a "prethinning" must be performed. There are two alternatives. If the
argument 'type' is set equal to '1°, the expected number of points per cluster (mu parameter of
rThomas is thinned as mu <- mu.0/mean[f{s)], where mu.0 is the mean number of points per cluster
of the original pattern. This alternative produces point patterns most similar to the ’original’. If the
argument 'type' is set equal to '2’, the fitted intensity of the Poisson process of cluster centres
(kappa parameter of rThomas, i.e. the intensity of *parent’ points) is thinned as kappa <- kappa /
mean(f{s)]. This alternative produces patterns more uniform than the ’original’ and it is provided
only for experimental purposes.

Value

A point pattern, with the format of the ppp objects of spatstat.

Author(s)

Marcelino de la Cruz Rot
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References

Waagepetersen, R. P. 2007. An estimating function approach to inference for inhomogeneous
Neymann-Scott processes. Biometrics 63: 252-258. doi: 10.1111/j.15410420.2006.00667 .x.

See Also

sim.poissonc to simulate homogeneous PCP; rNeymanScott and rThomas in spatstat are the
basis of this function

Examples

data(gypsophylous)

plot(gypsophylous)

## It 'seems' that the pattern is clustered, so

## fit a Poisson Cluster Process. The limits of integration
## rmin and rmax are setup to @ and 60, respectively.
cosa.pc2 <- ipc.estK(gypsophylous, r = seq(@, 60, by=0.2))
## Create one instance of the fitted PCP:

pointp <- rIPCP( cosa.pc2)

plot(pointp)

W
## Inhomogeneous example

data(urkiola)

# get univariate pp
I.ppp <- split.ppp(urkiola)$birch

plot(I.ppp)

#estimate inhomogeneous intensity function
I.lam <- predict (ppm(I.ppp, ~polynom(x,y,2)), type="trend”, ngrid=200)

# It seems that there is short scale clustering; lets fit an IPCP:
I.ki <~ ipc.estK(mippp=I.ppp, lambda=I.lam, correction="trans")
## Create one instance of the fitted PCP:

pointpi <- rIPCP( I.ki)


https://doi.org/10.1111/j.1541-0420.2006.00667.x
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plot(pointpi)

seedlings Cohorts of Helianthemum squamatum seedlings

Description
Marked point patterns of two consecutive cohorts of seedlings of H. squamatum growing in a gyp-
sophylous plant community in Central Spain. The datasets contains the locations of the seedlings
marked with their heigth. Both the coordinates and the heigth of the seedlings are given in cm.
Usage
data(seedlings1)
data(seedlings2)
Format
seedlings1 and seedlings?2 are objects of class "ppp" representing the point pattern of seedling
locations marked by their heights. See ppp.object for details of the format.
Source
Romao, R.L. 2003. Estructura espacial de comunidades de gipsdfitos: interacciones bioticas y
constricciones abidticas. Tesis Doctoral. Universidad Politécnica de Madrid.
References

De la Cruz, M. 2006. Introduccién al andlisis de datos mapeados o algunas de las (muchas) cosas
que puedo hacer si tengo coordenadas. Ecosistemas 15 (3): 19-39.

Escudero, A., Romao, R.L., De la Cruz, M. & Maestre, F. 2005. Spatial pattern and neighbour
effects on Helianthemum squamatum seedlings in a Mediterranean gypsum community. Journal of
Vegetation Science, 16: 383-390. doi: 10.1111/j.16541103.2005.tb02377 .x.

Examples
## Not run:

data(seedlings1)

plot(seedlings1)

## End(Not run)


https://doi.org/10.1111/j.1654-1103.2005.tb02377.x
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sim.poissonc Simulate Poisson Cluster Process

Description

Generate a random point pattern, a simulated realisation of the Poisson Cluster Process

Usage

sim.poissonc(x.ppp, rho, sigma)

Arguments
X.ppp Point pattern whose window and intensity will be simulated. An object with the
ppp format of spatstat.
rho Parameter rho of the Poisson Cluster process.
sigma Parameter sigma of the Poisson Cluster process.
Details

The Poisson cluster processes are defined by the following postulates (Diggle 2003):

PCP1  Parent events form a Poisson process with intensity rho.
PCP2  Each parent produces a random number of offspring, according to a probability distribution
pls] :s=0,1,2,...

PCP3 The positions of the offspring relative to their parents are distributed according to a bivariate pdf h.

This implementation asumes that the probability distribution p[s] of offspring per parent is a Poisson
distribution and that the position of each offspring relative to its parent follows a radially symetric
Gaussian distribution with pdf

h(z,y) = [1/(2 * pi * sigma®)] * exp[—(z* + y*) /(2 * sigma?)]
Value

The simulated point pattern (an object of class "ppp").

Warning
This implementation simulates only point patterns within rectangular windows. Use ipc.estK to
fit and rIPCP (or the spatstat functions) to simulate point patterns within irregular windows.
Note

This function can use the results of pc.estK to simulate point patterns from a fitted model. Be
careful as the paramted returned by pc.estK is sigma? while sim.poissonc takes its square root,



sim.poissonc

i.e. sigma.

Author(s)

Marcelino de la Cruz Rot

References

Diggle, P.J. 2003. Statistical analysis of spatial point patterns. Arnold, London.

See Also

rIPCP to simulate inhomogeneous PCP; rNeymanScott and rThomas in spatstat

Examples

data(gypsophylous)

# set the number of simulations (nsim=199 or larger for real analyses)
nsim<- 39

## Estimate K function ("Kobs").
gyps.env <- envelope(gypsophylous, Kest, correction="iso"”, nsim=nsim)

plot(gyps.env, sqrt(./pi)-r~r, legend=FALSE)

## Fit Poisson Cluster Process. The limits of integration
## rmin and rmax are setup to @ and 60, respectively.
cosa.pc <- pc.estK(Kobs = gyps.env$obs[gyps.env$r<=601],

r = gyps.env$rlgyps.env$r<=60])

## Add fitted Kclust function to the plot.
lines(gyps.env$r,sqrt(Kclust(gyps.env$r, cosa.pc$sigma?2,cosa.pc$rho)/pi)-gyps.envsr,
1ty=2, 1lwd=3, col="purple")

## A kind of pointwise test of the pattern gypsophilous been a realisation
## of the fitted model, simulating with sim.poissonc and using function J (Jest).

gyps.env.sim <- envelope(gypsophylous, Jest, nsim=nsim,
simulate=expression(sim.poissonc(gypsophylous,

sigma=sqrt(cosa.pc$sigma2), rho=cosa.pc$rho)))

plot(gyps.env.sim, main="")

53
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swamp Tree Species in a Swamp Forest

Description

Locations and botanical classification of trees in a plot in the Savannah River. Locations are given
in metres, rounded to the nearest 0.1 metre. The data come from a 1-ha (200 m x 50 m) plot in
the Savannah River Site, South Carolina, USA. The 734 mapped stems included 156 Carolina ash
(Fraxinus caroliniana), 215 Water tupelo (Nyssa aquatica), 205 Swamp tupelo (Nyssa sylvatica),
98 Bald cypress (Taxodium distichum) and 60 stems of 8 additional species. Although the plots
were set up by Bill Good and their spatial patterns described in Good and Whipple(1982), the plots
have been maintained and resampled by Rebecca Sharitz and her colleagues of the Savannah River
Ecology Laboratory. There are slightly different versions of the Good plot data. Every time the plots
are resampled, some errors are corrected. This is mostly a concern for the biologists. The different
versions are very similar; they are all very good examples of a marked spatial point pattern.

Usage

data(swamp)

Format
A data frame with 734 observations on the following 3 variables.

x Cartesian x-coordinate of tree
y Cartesian y-coordinate of tree

sp a factor with levels indicating the species of each tree:

FX  Carolina ash (Fraxinus caroliniana)
NS  Swamp tupelo (Nyssa sylvatica)

NX  Water tupelo (Nyssa aquatica)

TD  Bald cypress (Taxodium distichum)
OT  Other species

References

Dixon, PM. 2002. Nearest-neighbor contingency table analysis of spatial segregation for several
species. Ecoscience, 9 (2): 142-151. doi: 10.1080/11956860.2002.11682700.

Good, , B.J. & Whipple, S.A. 1982. Tree spatial patterns: South Carolina bottomland and swamp
forest. Bulletin of the Torrey Botanical Club, 109: 529-536.

Jones et al. 1994. Tree population dynamics in seven South Carolina mixed-species forests. Bulletin
of the Torrey Botanical Club, 121:360-368.
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Examples
data(swamp)
plot(swamp$x, swamp$y, col=as.numeric(swamp$sp),pch=19,
xlab="" ,ylab="" ,main="Swamp forest")
syrjala Syrjala’s test for the difference between the spatial distributions of
two populations
Description

Computes a two-sample Cramer-von Mises (and Kolmogorov-Smirnov) type test for a difference
between the spatial distributions of two populations. It is designed to be sensitive to differences
in the way the populations are distributed across the study area but insensitive to differences in
abundance between the two populations.

Usage

syrjala@(coords, varl, var2, nsim, R=FALSE)

syrjala(coords = NULL, var1l = NULL, var2 = NULL, nperm = 999)
syrjala.test(pppl, ppp2, nsim = 999)

## S3 method for class 'syrjala.test'

plot(x, coline=1, ...)
## S3 method for class 'ecespa.syrjala'
plot(x, ...)
Arguments
coords A data.frame with ‘$x‘ and ‘$y‘ components.
varil The first numeric variable
var2 The second numeric variable.
nperm Number of permutations.
nsim Number of permutations.
R Logical. Should be computed using R approach?
ppp1 A marked point pattern, with the ppp format of spatstat, representing the values

of some parameter measured on the corresponding sampling locations.

ppp2 A marked point pattern, with the ppp format of spatstat, representing the values
of some other parameter measured on the same locations than ppp1.

X An object of class *syrjala.test’ or ’ecespa.syrjala’ resulting from syrjala
or syrjala. test, respectively.

coline color for drawing the statistic’s line in the plot.

Graphical parameters passed to hist.
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Details

The null hypothesis of Syrjala’s test is that across the study area, the normalized distributions of the
two populations are the same (Syrjala, 1996). Population density data are collected at K sampling
locations on two populations. Let (xk, yk) denote the coordinates of the kth sampling location
(k=1,...,K); letd.i(zk,yk) denote the sample density at the Kth sampling location of the ith
population. To construct a test that is independent of the population sizes, the observed density data
is first normalized:

gamma.i(zk,yk) = di(zk, yk) /D1,

where Di is the sum of d.i(xk,yk) observations across the K sampling locations. The value
of the cumulative distribution function at the location (xzk,yk) for the ith population, denoted
GAMM A.i(xk,yk), is the sum of all normalized density observations, gamma.i(xk, yk), whose
location (x, y) is such that x <= xk and y <= yk. The statistic proposed by Syrjala to test the null
hypothesis is the square of the difference between the cumulative distribution functions of the two
populations, summed over all sampling locations, that is

psi = sumGAMM A1 (zk, yk) — GAM M A.2(zk, yk)*.

As pst is not invariant with respect to the *corner’ of the rectangle enclosing the study area that is
chosen as the origin of the coordinate sytem, pst is computed four times, one with each corner as the
origin, and the average pst is employed as the test statistic. The level of significance of the observed
psi is determined from its position in the ordered set of test statistic values from all 2% pairwise
permutations (that is approximated from a large number of randomly selected permutations).

Value

Functions syrjala or syrjala@ (with the argument R=FALSE) return an object of class *syrjala. test’.
Functions syrjala. test or syrjala@ (with the argument R=TRUE) return an object of class ’ecespa.syrjala’.
In Both cases, the result is a list with the following elements:

cvm. obs (class syrjala.test). The observed (averaged) pst statistic for the CvM test.

cvm.sim (class syrjala.test). A numeric vector with the nperm+1 simulated psi’s statistics
(including cvm. obs).

ks.obs (class syrjala.test). The observed (averaged) pst statistic for the K-S test.

ks.sim (class syrjala.test). A numeric vector with the nperm+1 simulated psi’s statistics
(including ks. obs).

datanames (class syrjala.test). A character vector with the names of the two patterns, the
spatial congruence of which is been analyzed.

nperm (class syrjala.test). The number of permutations employed in the test (not count-
ing the original data).

psi.obs (class ecespa.syrjala). The observed (averaged) psi statistic.

psi.sim (class ecespa.syrjala). A vector with the nsim simulated psi’s statistics.

datanames (class ecespa.syrjala). A vector with the names of the two point patterns whose

spatial congruence is been analyzed.

nsim (class ecespa.syrjala). The number of permutations employed in the test.

Both S3 plot methods plot an histogram with the distribution of the simulated psi’s statistics and
draws the observed pst as a vertical line.
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Warning

The test requires both populations being sampled in exactly the same sampling locations. Althoug
this implementation employs ppp’s as the supporting data format, this kind of data are not spatial
point patterns. They cannot be analysed with the usual tools employed for marked point patterns.

Note

syrjala or syrjala@ (with the argument R=FALSE) implement a Fortran version of Syrjala’s test.
They run considerably faster than the "whole-R" implementation of syrjala.test or syrjala@
(with the argument R=TRUE). This last implementation is supplied for illustrative purposes and to
maintain compability with previous versions of package ecespa. One can use function haz. ppp to
easily build the ppp objects from a data. frame with only three columns (x-coordinate, y-coordinate
and abundance).

This function has been employed to compute Syrjala’s test in Rey-Benayas et al. (2008).

Author(s)

Jose M. Blanco-Moreno <jmblanco@ub.edu> for the Fortran implementation of Syrjala’s origi-
nal QBasic function, Marcelino de la Cruz Rot for the R version, the wrapping functions and the
documentation

References

Rey-Benayas, J.M., de la Montafia, E., Pérez-Camacho, L., de la Cruz, M., Moreno, D., Parejo,
J.L. and Sudrez-Seoane, S. 2010. Inter-annual dynamics and spatial congruence of a nocturnal bird
assemblage inhabiting a Mediterranean agricultural mosaic. Ardeola,57(2): 303-320.

Syrjala, S. E. 1996. A statistical test for a difference between the spatial distributions of two popu-
lations. Ecology 77: 75-80. doi: 10.2307/2265656.

Examples

data(syr1); data(syr2); data(syr3)

coords <- data.frame(x=syr1$x, y=syri$y); vari<- syri$marks; var2<- syr2$marks
(stest<-syrjala(coords, varl, var2, 9999))

plot(stest)

## Not run:

plot(syrjala.test(syrl, syr2, nsim=999))

plot(syrjala.test(syrl, syr3, nsim=999))

syrjala@(coords, varl, var2, 9999)

syrjala@(coords, varl, var2, 999, R=TRUE)


https://doi.org/10.2307/2265656
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coords <- expand.grid(x=1:10,y=1:10)
varl <- runif(100)

var2 <- runif(100)

syrjala(coords, varl, var2, 9999)

## End(Not run)

syrjala.data Syrjala test data

Description

Artificial data to exemplify Syrjala’s test.

Usage

data(syr1)
data(syr2)
data(syr3)

Format

syr1, syr2 and syr3 are marked point patterns of class "ppp" representing the coordinates of some
sampling locations, 'marked’ by the value of some parameters (e.g. density of individuals) mea-
sured on them. See ppp.object for details of the format. On the other hand, one can use function
haz.ppp to easily build ppp objects appropriate for use with syrjala.test.

Examples

data(syr1)
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terrain.colors, 14
topo.colors, 14
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