
Package ‘effects’
January 6, 2022

Version 4.2-1

Date 2022-01-05

Title Effect Displays for Linear, Generalized Linear, and Other Models

Depends R (>= 3.5.0), carData

Suggests pbkrtest (>= 0.4-4), nlme, MASS, poLCA, heplots, splines,
ordinal, car, knitr, betareg, alr4, robustlmm

Imports lme4, nnet, lattice, grid, colorspace, graphics, grDevices,
stats, survey, utils, estimability, insight

Description Graphical and tabular effect displays, e.g., of interactions, for
various statistical models with linear predictors.

License GPL (>= 2)

URL https://www.r-project.org,

https://socialsciences.mcmaster.ca/jfox/

VignetteBuilder knitr

Author John Fox [aut, cre],
Sanford Weisberg [aut],
Brad Price [aut],
Michael Friendly [aut],
Jangman Hong [aut],
Robert Andersen [ctb],
David Firth [ctb],
Steve Taylor [ctb],
R Core Team [ctb]

Maintainer John Fox <jfox@mcmaster.ca>

Repository CRAN

Repository/R-Forge/Project effects

Repository/R-Forge/Revision 418

Repository/R-Forge/DateTimeStamp 2022-01-05 19:55:13

Date/Publication 2022-01-06 16:40:02 UTC

NeedsCompilation no

1

https://www.r-project.org
https://socialsciences.mcmaster.ca/jfox/

2 effects-package

R topics documented:
effects-package . 2
effCoef . 3
effect . 4
effectsHexsticker . 16
effectsTheme . 17
LegacyArguments . 18
plot.effects . 20
predictorEffects . 28
summary.eff . 31

Index 34

effects-package Effect Displays for Linear, Generalized Linear, and Other Models

Description

Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear
predictors.

Details

Package: effects
Version: 4.2-1
Date: 2021-12-05
Depends: R (>= 3.5.0), carData
Suggests: pbkrtest (>= 0.4-4), nlme, MASS, poLCA, heplots, splines, ordinal, car, knitr, betareg, alr4, robustlmm
Imports: lme4, nnet, lattice, grid, colorspace, graphics, grDevices, stats, survey, utils, estimability, insight
LazyLoad: yes
License: GPL (>= 2)
URL: https://www.r-project.org, https://socialsciences.mcmaster.ca/jfox/

This package creates effect displays for various kinds of models, as partly explained in the refer-
ences. Typical usage is plot(allEffects(model)) or plot(predictorEffects(model)), where
model is an appropriate fitted-model object. Additional arguments to allEffects, predictorEffects
and plot can be used to customize the resulting displays. The function effect can be employed
to produce an effect display for a particular term in the model, or to which terms in the model are
marginal. The function predictorEffect can be used to construct an effect display for a partic-
ularly predictor. The function Effect may similarly be used to produce an effect display for any
combination of predictors. In any of the cases, use plot to graph the resulting effect object. For
linear and generalized linear models it is also possible to plot partial residuals to obtain (multidimen-
sional) component+residual plots. See ?effect, ?Effect, ?predictorEffect, and ?plot.eff for
details.

effCoef 3

Author(s)

John Fox, Sanford Weisberg, Brad Price, Michael Friendly, Jangman Hong, Robert Anderson,
David Firth, Steve Taylor, and the R Core Team.

Maintainer: John Fox <jfox@mcmaster.ca>

References

Fox, J. and S. Weisberg (2019) An R Companion to Applied Regression, Third Edition Sage Publi-
cations.

Fox, J. (1987) Effect displays for generalized linear models. Sociological Methodology 17, 347–
361.

Fox, J. (2003) Effect displays in R for generalised linear models. Journal of Statistical Software
8:15, 1–27, doi: 10.18637/jss.v008.i15.

Fox, J. and R. Andersen (2006) Effect displays for multinomial and proportional-odds logit models.
Sociological Methodology 36, 225–255.

Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit mod-
els: Extensions to the effects package. Journal of Statistical Software 32:1, 1–24, doi: 10.18637/
jss.v032.i01.

Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Mod-
els: Effect Plots with Partial Residuals. Journal of Statistical Software 87:9, 1–27, doi: 10.18637/
jss.v087.i09.

effCoef Function to get coefficient estimates from regression models for use in
the effects package.

Description

This function uses the get_parameters function in the insight package to get a vector of regres-
sion coefficients for use in the effects package. It converts the two-column data.frame returned by
get_parameters to a vector of named elements.

Usage

effCoef(mod, ...)

Default S3 method:
effCoef(mod, ...)

Arguments

mod A model object with a linear predictor representing fixed effects.

... Additional parameter passed to get_parameters.

https://doi.org/10.18637/jss.v008.i15
https://doi.org/10.18637/jss.v032.i01
https://doi.org/10.18637/jss.v032.i01
https://doi.org/10.18637/jss.v087.i09
https://doi.org/10.18637/jss.v087.i09

4 effect

Details

The get_parameters function can be used to retrieve the coefficient estimates corresponding to a
linear predictor for many regression models, and return them as a two column data.frame, with
regressor names in the first column and estimates in the second column. This function converts this
output to a named vector as is expected by the effects package.

Value

A vector of coefficient estimates

Author(s)

Sanford Weisberg <sandy@umn.edu>

See Also

get_parameters, and vignette Regression Models Supported by the effects Package

Examples

m1 <- lm(prestige ~ type + income + education, Duncan)
effCoef(m1)

effect Functions For Constructing Effect Displays

Description

Effect and effect construct an "eff" object for a term (usually a high-order term) in a regression
that models a response as a linear function of main effects and interactions of factors and covariates.
These models include, among others, linear models (fit by lm and gls), and generalized linear mod-
els (fit by glm), for which an "eff" object is created, and multinomial and proportional-odds logit
models (fit respectively by multinom and polr), for which an "effpoly" object is created. The
computed effect absorbs the lower-order terms marginal to the term in question, and averages over
other terms in the model. For multivariate linear models (of class "mlm", fit by lm), the functions
construct a list of "eff" objects, separately for the various response variables in the model.

effect builds the required object by specifying explicitly a focal term like "a:b" for an a by b
interaction. Effect in contrast specifies the predictors in a term, for example c("a","b"), rather
than the term itself. Effect is consequently more flexible and robust than effect, and will succeed
with some models for which effect fails. The effect function works by constructing a call to
Effect and continues to be included in effects so older code that uses it will not break.

The Effect and effect functions can also be used with many other models; see Effect.default
and the Regression Models Supported by the effects Package vignette.

allEffects identifies all of the high-order terms in a model and returns a list of "eff" or "effpoly"
objects (i.e., an object of class "efflist").

For information on computing and displaying predictor effects, see predictorEffect and plot.predictoreff.

For further information about plotting effects, see plot.eff.

effect 5

Usage

effect(term, mod, vcov.=vcov, ...)

Default S3 method:
effect(term, mod, vcov.=vcov, ...)

Effect(focal.predictors, mod, ...)

S3 method for class 'lm'
Effect(focal.predictors, mod, xlevels=list(),

fixed.predictors, vcov. = vcov, se=TRUE,
residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2),
x.var=NULL, ...,
#legacy arguments:
given.values, typical, offset, confint, confidence.level,
partial.residuals, transformation)

S3 method for class 'multinom'
Effect(focal.predictors, mod,

xlevels=list(), fixed.predictors,
vcov. = vcov, se=TRUE, ...,
#legacy arguments:
confint, confidence.level, given.values, typical)

S3 method for class 'polr'
Effect(focal.predictors, mod,

xlevels=list(), fixed.predictors,
vcov.=vcov, se=TRUE, latent=FALSE, ...,
#legacy arguments:
confint, confidence.level, given.values, typical)

S3 method for class 'svyglm'
Effect(focal.predictors, mod, fixed.predictors, ...)

S3 method for class 'merMod'
Effect(focal.predictors, mod, ..., KR=FALSE)

S3 method for class 'poLCA'
Effect(focal.predictors, mod, ...)

S3 method for class 'mlm'
Effect(focal.predictors, mod, response, ...)

allEffects(mod, ...)

Default S3 method:
allEffects(mod, ...)

6 effect

Arguments

term the quoted name of a term, usually, but not necessarily, a high-order term in
the model. The term must be given exactly as it appears in the printed model,
although either colons (:) or asterisks (*) may be used for interactions. If term
is NULL, the function returns the formula for the linear predictor.

focal.predictors

a character vector of one or more predictors in the model in any order.
mod a regression model object. If no specific method exists for the class of mod,

Effect.default will be called.
xlevels this argument is used to set the number of levels for any focal numeric predictor

(that is predictors that are not factors, character variables, or logical variables, all
of which are treated as factors). If xlevels=NULL, then each numeric predictor
is represented by five values over its range, equally spaced and then rounded
to ’nice’ numbers. If xlevels=n is an integer, then each numeric predictor is
represented by n equally spaced values rounded to ’nice’ numbers.
More generally, xlevels can be a named list of values at which to set each
numeric predictor. For example, xlevels=list(x1=c(2,4.5,7),x2=4) would
use the values 2, 4.5, and 7 for x1, use 4 equally spaced values for x2, and use
the default for any other numeric predictors.
If partial residuals are computed, then the focal predictor that is to appear on
the horizontal axis of an effect plot is evaluated at 100 equally spaced values
along its full range, and, by default, other numeric predictors are evaluated at
the quantiles specified in the quantiles argument, unless their values are given
explicitly in xlevels.

fixed.predictors

an optional list of specifications affecting the values at which fixed predictors
for an effect are set, potentially including:
given.values given.values="default" (which is, naturally, the default) spec-

ifies averaging over levels of a non-focal factor, weighting levels of the fac-
tor in proportion to sample size.
given.values="equal" computes unweighted averages over the levels of
non-focal factors.
For finer control, the user can also provide a named numeric vector of
weights for particular columns of the model matrix that correspond to the
regressors for the factor.
Character and logical predictors are treated as factors.
For example, for a factor X with three levels a, b and c, the regressors gener-
ated using the default contr.treatment parameterization for a factor will
be named Xb and Xc, as the regressor for level a is excluded as the baseline
level. The specification given.values=c(Xb=1/2,Xc=1/4) would average
over the levels of X with weight 1/2 for level b, 1/4 for c, and weight 1 = 1/2
- 1/4 = 1/4 for the baseline level a. Setting given.values=c(Xb=1) would
fix X at level b.

typical a function to be applied to the columns of the model matrix over which
the effect is "averaged"; with the exception of the "svyglm" method, the
default is mean. For"svyglm" objects, the default is to use the survey-design
weighted mean.

effect 7

apply.typical.to.factors It generally doesn’t make sense to apply typical val-
ues that aren’t means (e.g., medians) to the columns of the model-matrix
representing contrasts for factors. This value generally defaults to FALSE
except for "svyglm" objects, for which the default is TRUE, using the the
survey-design weighted mean.

offset a function to be applied to the offset values (if there is an offset) in a
linear or generalized linear model, or a mixed-effects model fit by lmer or
glmer; or a numeric value, to which the offset will be set. The default is
the mean function, and thus the offset will be set to its mean; in the case of
"svyglm" objects, the default is to use the survey-design weighted mean.
Note: Only offsets defined by the offset argument to lm, glm, svyglm,
lmer, or glmer will be handled correctly; use of the offset function in the
model formula is not supported.

vcov. Effect methods generally use the matrix returned by vcov(mod) to compute stan-
dard errors and confidence bounds. Alternatively, the user may specify the name
of a function that returns a matrix of the same dimension and structure as the ma-
trix returned by vcov(mod). For example, vcov. = hccm uses the hccm function
from the car package to use a heteroscedasticity corrected covariance matrix
for a linear model in place of the standard covariance estimate. This argument
can be set to equal matrix of the same size and structure as the matrix returned
by vcov(mod). For example, using vcov. = vcov(Boot(mod)) uses Boot from
the car package to get a bootstrap estimate of the covariance matrix for linear,
generalized linear, and possibly other modeling frameworks.

se TRUE (the default), FALSE, or a list with any or all of the following elements,
controlling whether and how standard errors and confidence limits are computed
for the effects:

compute (default TRUE) whether or not to compute standard errors and confi-
dence limits.

level (default 0.95) confidence level for confidence limits.
type one of "pointwise" (the default), "Scheffe", or "scheffe", whether

to compute confidence limits with specified coverage at each point for an
effect or to compute limits for a Scheffe-type confidence envelope. For mer,
merMod, and lme objects, the normal distribution is used to get confidence
limits.

residuals if TRUE, residuals for a linear or generalized linear model will be computed and
saved; if FALSE (the default), residuals are suppressed. If residuals are saved,
partial residuals are computed when the effect is plotted: see plot.eff and the
vignette Effect Displays with Partial Residuals. This argument may also be used
for mixed-effects and some other models.

quantiles quantiles at which to evaluate numeric focal predictors not on the horizontal
axis, used only when partial residuals are displayed; superseded if the xlevels
argument gives specific values for a predictor.

x.var the (quoted) name or index of the numeric predictor to define the horizontal axis
of an effect plot for a linear or generalized linear model; the default is NULL, in
which case the first numeric predictor in the effect will be used if partial residu-
als are to be computed. This argument is intended to be used when residuals

8 effect

is TRUE; otherwise, the variable on the horizontal axis can be chosen when the
effect object is plotted: see plot.eff.

latent if TRUE, effects in a proportional-odds logit model are computed on the scale of
the latent response; if FALSE (the default) effects are computed as individual-
level probabilities and logits.

x an object of class "eff", "effpoly", or "efflatent".

KR if TRUE and the pbkrtest package is installed, use the Kenward-Roger coefficient
covariance matrix to compute effect standard errors for linear mixed models fit
with lmer; the default is FALSE because the computation can be time-consuming.

response for an "mlm" object, a vector containing the (quoted) name(s) or indices of one
or more response variable(s). The default is to use all responses in the model.

... arguments to be passed down.
confint, confidence.level, given.values, typical, offset, partial.residuals, transformation

legacy arguments retained for backwards compatibility; if present, these argu-
ments take precedence over the level element of the confint list argument and
the given.values, typical, and offset elements of the fixed.predictors
list argument; confint may be used in place of the se argument; partial.residuals
may be used in place of the residuals argument. See LegacyArguments for
details.

Details

Normally, the functions to be used directly are allEffects, to return a list of high-order effects, and
the generic plot function to plot the effects (see plot.efflist, plot.eff, and plot.effpoly).
Alternatively, Effect can be used to vary a subset of predictors over their ranges, while other
predictors are held to typical values.

Plotting methods for effect objects call the xyplot (or in some cases, the densityplot) func-
tion in the lattice package. Effects may also be printed (implicitly or explicitly via print) or
summarized (using summary) (see print.efflist, summary.efflist, print.eff, summary.eff,
print.effpoly, and summary.effpoly).

If asked, the effect function will compute effects for terms that have higher-order relatives in the
model, averaging over those terms (which rarely makes sense), or for terms that do not appear in
the model but are higher-order relatives of terms that do. For example, for the model Y ~ A*B + A*C
+ B*C, one could compute the effect corresponding to the absent term A:B:C, which absorbs the
constant, the A, B, and C main effects, and the three two-way interactions. In either of these cases, a
warning is printed.

See predictorEffects for an alternative paradigm for defining effects.

Value

For "lm", "glm", "svyglm", "lmerMod", "glmerMod", and "lme", model objects, effect and
Effect return an "eff" object, and for "multinom", "polr", "clm", "clmm", and "clm2" mod-
els, an "effpoly" object, with the components listed below. For an "mlm" object with one response
specified, an "eff" object is returned, otherwise an "efflist" object is returned, containing one
"eff" object for each response.

term the term to which the effect pertains.

effect 9

formula the complete model formula.

response a character string giving the name of the response variable.

y.levels (for "effpoly" objects) levels of the polytomous response variable.

variables a list with information about each predictor, including its name, whether it is a
factor, and its levels or values.

fit (for "eff" objects) a one-column matrix of fitted values, representing the ef-
fect on the scale of the linear predictor; this is a raveled table, representing all
combinations of predictor values.

prob (for "effpoly" objects) a matrix giving fitted probabilities for the effect for
the various levels of the the response (columns) and combinations of the focal
predictors (rows).

logit (for "effpoly" objects) a matrix giving fitted logits for the effect for the various
levels of the the response (columns) and combinations of the focal predictors
(rows).

x a data frame, the columns of which are the predictors in the effect, and the rows
of which give all combinations of values of these predictors.

model.matrix the model matrix from which the effect was calculated.

data a data frame with the data on which the fitted model was based.

discrepancy the percentage discrepancy for the ‘safe’ predictions of the original fit; should
be very close to 0. Note: except for gls models, this is now necessarily 0.

offset value to which the offset is fixed; 0 if there is no offset.

model (for "effpoly" objects) "multinom" or "polr", as appropriate.

vcov (for "eff" objects) a covariance matrix for the effect, on the scale of the linear
predictor.

se (for "eff" objects) a vector of standard errors for the effect, on the scale of the
linear predictor.

se.prob, se.logit

(for "effpoly" objects) matrices of standard errors for the effect, on the proba-
bility and logit scales.

lower, upper (for "eff" objects) one-column matrices of confidence limits, on the scale of
the linear predictor.

lower.prob, upper.prob, lower.logit, upper.logit

(for "effpoly" objects) matrices of confidence limits for the fitted logits and
probabilities; the latter are computed by transforming the former.

confidence.level

for the confidence limits.

transformation (for "eff" objects) a two-element list, with element link giving the link func-
tion, and element inverse giving the inverse-link (mean) function.

residuals (working) residuals for linear or generalized linear models (and some similar
models), to be used by plot.eff to compute and plot partial residuals.

x.var the name of the predictor to appear on the horizontal axis of an effect plot made
from the returned object; will usually be NULL if partial residuals aren’t com-
puted.

10 effect

family for a "glm" model, the name of the distributional family of the model; for an
"lm" model, this is "gaussian"; otherwise NULL. The family controls how
partial residuals are smoothed in plots.

link the value returned by family(mod). Down-stream methods may need the link,
inverse link and derivative functions.

allEffects returns an "efflist" object, a list of "eff" or "effpoly" objects corresponding to
the high-order terms of the model.

If mod is of class "poLCA" (from the poLCA package), representing a polytomous latent class
model, effects are computed for the predictors given the estimated latent classes. The result is of
class "eff" if the latent class model has 2 categories and of class "effpoly" with more than 2
categories.

Warnings and Limitations

The Effect function handles factors and covariates differently, and is likely to be confused if one is
changed to the other in a model formula. Consequently, formulas that include calls to as.factor,
factor, or numeric (as, e.g., in y ~ as.factor(income)) will cause errors. Instead, create the
modified variables outside of the model formula (e.g., fincome <-as.factor(income)) and use
these in the model formula.

The effect function doesn’t work with factors that have colons in level names (e.g., "level:A");
the effect function will confuse the colons with interactions; rename levels to remove or replace
the colons (e.g., "level.A"). Level names with colons are perfectly fine for use with Effect.

The functions in the effects package work properly with predictors that are numeric variables, fac-
tors, character variables, or logical variables; consequently, e.g., convert dates to numeric. Character
predictors and logical predictors are treated as factors, the latter with "levels" "FALSE" and "TRUE".

Empty cells in crossed-factors are now permitted for "lm", "glm", and "multinom" models. For
"multinom" models with two or more crossed factors with an empty cell, stacked area plots appar-
ently do not work because of a bug in the barchart function in the lattice package. However, the
default line plots do work.

Offsets in linear and generalized linear models are supported, as are offsets in mixed models fit
by lmer or glmer, but must be supplied through the offset argument to lm, glm, lmer or glmer;
offsets supplied via calls to the offset function on the right-hand side of the model formula are not
supported.

Fitting ordinal mixed models using clmm or clmm2 permits many options, including a variety of link
functions, scale functions, nominal regressors, and various methods for setting thresholds. Effects
are currently generated only for the default values of the arguments scale, nominal, link, and
threshold, which is equivalent to fitting an ordinal-response mixed-effects model with a logit link.
Effect can also be used with objects created by clm or clm2, fitting ordinal response models with
the same links permitted by polr in the MASS package, with no random effects, and with results
similar to those from polr.

Calling any of these functions from within a user-written function may result in errors due to R’s
scoping rules. See the vignette embedding.pdf in the car package for a solution to this problem.

Author(s)

John Fox <jfox@mcmaster.ca>, Sanford Weisberg <sandy@umn.edu> and Jangman Hong.

effect 11

References

Fox, J. (1987). Effect displays for generalized linear models. Sociological Methodology 17, 347–
361.

Fox, J. (2003) Effect displays in R for generalised linear models. Journal of Statistical Software
8:15, 1–27, doi: 10.18637/jss.v008.i15.

Fox, J. and R. Andersen (2006). Effect displays for multinomial and proportional-odds logit models.
Sociological Methodology 36, 225–255.

Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit mod-
els:? Extensions to the effects package. Journal of Statistical Software 32:1, 1–24, doi: 10.18637/
jss.v032.i01.

Fox, J. and S. Weisberg (2019). An R Companion to Applied Regression, third edition, Thousand
Oaks: Sage.

Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Mod-
els with Predictor Effect Plots with Partial Residuals. Journal of Statistical Software 87:9, 1–27,
doi: 10.18637/jss.v087.i09.

Hastie, T. J. (1992). Generalized additive models. In Chambers, J. M., and Hastie, T. J. (eds.)
Statistical Models in S, Wadsworth.

Weisberg, S. (2014). Applied Linear Regression, 4th edition, Wiley, http://z.umn.edu/alr4ed.

See Also

LegacyArguments. For information on printing, summarizing, and plotting effects: print.eff,
summary.eff, plot.eff, print.summary.eff, print.effpoly, summary.effpoly, plot.effpoly,
print.efflist, summary.efflist, plot.efflist, xyplot, densityplot, and the Effect Dis-
plays with Partial Residuals and Regression Models Supported by the effects Package vignettes.

Examples

mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion,
data=Cowles, family=binomial)

eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6)),
fixed.predictors=list(given.values=c(sexmale=0.5)))

eff.cowles
as.data.frame(eff.cowles[[2]])

the following are equivalent:
eff.ne <- effect("neuroticism*extraversion", mod.cowles)
Eff.ne <- Effect(c("neuroticism", "extraversion"), mod.cowles)
all.equal(eff.ne$fit, Eff.ne$fit)

plot(eff.cowles, 'sex', axes=list(y=list(lab="Prob(Volunteer)")))

plot(eff.cowles, 'neuroticism:extraversion',
axes=list(y=list(lab="Prob(Volunteer)",

ticks=list(at=c(.1,.25,.5,.75,.9)))))

plot(Effect(c("neuroticism", "extraversion"), mod.cowles,

https://doi.org/10.18637/jss.v008.i15
https://doi.org/10.18637/jss.v032.i01
https://doi.org/10.18637/jss.v032.i01
https://doi.org/10.18637/jss.v087.i09
http://z.umn.edu/alr4ed

12 effect

se=list(type="Scheffe"),
xlevels=list(extraversion=seq(0, 24, 6)),
fixed.predictors=list(given.values=c(sexmale=0.5))),

axes=list(y=list(lab="Prob(Volunteer)",
ticks=list(at=c(.1,.25,.5,.75,.9)))))

plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE),
axes=list(y=list(lab="Prob(Volunteer)")))

plot(effect('sex:neuroticism:extraversion', mod.cowles,
xlevels=list(extraversion=seq(0, 24, 6))),

lines=list(multiline=TRUE))

a nested model:

mod <- lm(log(prestige) ~ income:type + education, data=Prestige)

plot(Effect(c("income", "type"), mod, transformation=list(link=log, inverse=exp)),
axes=list(y=list(lab="prestige")))

if (require(nnet)){
mod.beps <- multinom(vote ~ age + gender + economic.cond.national +

economic.cond.household + Blair + Hague + Kennedy +
Europe*political.knowledge, data=BEPS)

plot(effect("Europe*political.knowledge", mod.beps,
xlevels=list(political.knowledge=0:3)))

plot(Effect(c("Europe", "political.knowledge"), mod.beps,
xlevels=list(Europe=1:11, political.knowledge=0:3),
fixed.predictors=list(given.values=c(gendermale=0.5))),

lines=list(col=c("blue", "red", "orange")),
axes=list(x=list(rug=FALSE), y=list(style="stacked")))

plot(effect("Europe*political.knowledge", mod.beps, # equivalent
xlevels=list(Europe=1:11, political.knowledge=0:3),
fixed.predictors=list(given.values=c(gendermale=0.5))),

lines=list(col=c("blue", "red", "orange")),
axes=list(x=list(rug=FALSE), y=list(style="stacked")))

}

if (require(MASS)){
mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3),

data=WVS)

plot(effect("country*poly(age, 3)", mod.wvs))

effect 13

plot(Effect(c("country", "age"), mod.wvs),
axes=list(y=list(style="stacked")))

plot(effect("country*poly(age, 3)", mod.wvs),
axes=list(y=list(style="stacked"))) # equivalent

plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs))
plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs,

se=list(type="scheffe"))) # Scheffe-type confidence envelopes

}

mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2),
data=Prestige)

eff.pres <- allEffects(mod.pres, xlevels=50)
plot(eff.pres)
plot(eff.pres[1],

axes=list(x=list(income=list(
transform=list(trans=log10, inverse=function(x) 10^x),
ticks=list(at=c(1000, 2000, 5000, 10000, 20000))

))))

linear model with log-response and log-predictor
to illustrate transforming axes and setting tick labels
mod.pres1 <- lm(log(prestige) ~ log(income) + poly(education, 3) + poly(women, 2),

data=Prestige)
effect of the log-predictor
eff.log <- Effect("income", mod.pres1)
effect of the log-predictor transformed to the arithmetic scale
eff.trans <- Effect("income", mod.pres1, transformation=list(link=log, inverse=exp))
#variations:
y-axis: scale is log, tick labels are log
x-axis: scale is arithmetic, tick labels are arithmetic
plot(eff.log)

y-axis: scale is log, tick labels are log
x-axis: scale is log, tick labels are arithmetic
plot(eff.log, axes=list(x=list(income=list(

transform=list(trans=log, inverse=exp),
ticks=list(at=c(5000, 10000, 20000)),
lab="income, log-scale"))))

y-axis: scale is log, tick labels are arithmetic
x-axis: scale is arithmetic, tick labels are arithmetic
plot(eff.trans, axes=list(y=list(lab="prestige")))

y-axis: scale is arithmetic, tick labels are arithmetic
x-axis: scale is arithmetic, tick labels are arithmetic
plot(eff.trans, axes=list(y=list(type="response", lab="prestige")))

y-axis: scale is log, tick labels are arithmetic

14 effect

x-axis: scale is log, tick labels are arithmetic
plot(eff.trans, axes=list(

x=list(income=list(
transform=list(trans=log, inverse=exp),
ticks=list(at=c(1000, 2000, 5000, 10000, 20000)),
lab="income, log-scale")),

y=list(lab="prestige, log-scale")),
main="Both response and X in log-scale")

y-axis: scale is arithmetic, tick labels are arithmetic
x-axis: scale is log, tick labels are arithmetic
plot(eff.trans, axes=list(

x=list(
income=list(transform=list(trans=log, inverse=exp),

ticks=list(at=c(1000, 2000, 5000, 10000, 20000)),
lab="income, log-scale")),

y=list(type="response", lab="prestige")))

if (require(nlme)){ # for gls()
mod.hart <- gls(fconvict ~ mconvict + tfr + partic + degrees, data=Hartnagel,

correlation=corARMA(p=2, q=0), method="ML")
plot(allEffects(mod.hart))
detach(package:nlme)

}

if (require(lme4)){
data(cake, package="lme4")
fm1 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake,

REML = FALSE)
plot(Effect(c("recipe", "temperature"), fm1))

plot(effect("recipe:temperature", fm1),
axes=list(grid=TRUE)) # equivalent (plus grid)

if (any(grepl("pbkrtest", search()))) detach(package:pbkrtest)
detach(package:lme4)

}

if (require(nlme) && length(find.package("lme4", quiet=TRUE)) > 0){
data(cake, package="lme4")
cake$rep <- with(cake, paste(as.character(recipe), as.character(replicate), sep=""))
fm2 <- lme(angle ~ recipe * temperature, data=cake,

random = ~ 1 | rep, method="ML")
plot(Effect(c("recipe", "temperature"), fm2))
plot(effect("recipe:temperature", fm2),

axes=list(grid=TRUE)) # equivalent (plus grid)
}
detach(package:nlme)

effect 15

if (require(poLCA)){
data(election)
f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG,

MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY*AGE
nes2a <- poLCA(f2a,election,nclass=3,nrep=5)
plot(Effect(c("PARTY", "AGE"), nes2a),

axes=list(y=list(style="stacked")))
}

mlm example
if (require(heplots)) {

data(NLSY, package="heplots")
mod <- lm(cbind(read,math) ~ income+educ, data=NLSY)
eff.inc <- Effect("income", mod)
plot(eff.inc)
eff.edu <- Effect("educ", mod)
plot(eff.edu, axes=list(x=list(rug=FALSE), grid=TRUE))

plot(Effect("educ", mod, response="read"))

detach(package:heplots)
}

svyglm() example (adapting an example from the survey package)

if (require(survey)){
data("api")
dstrat<-svydesign(id=~1, strata=~stype, weights=~pw,
data=apistrat, fpc=~fpc)

mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat,
family=quasibinomial())

plot(allEffects(mod),
axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)),

ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99)))))
}

component + residual plot examples

Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof"))

mod.prestige.1 <- lm(prestige ~ income + education, data=Prestige)
plot(allEffects(mod.prestige.1, residuals=TRUE)) # standard C+R plots
plot(allEffects(mod.prestige.1, residuals=TRUE,

se=list(type="scheffe"))) # with Scheffe-type confidence bands

mod.prestige.2 <- lm(prestige ~ type*(income + education), data=Prestige)
plot(allEffects(mod.prestige.2, residuals=TRUE))

mod.prestige.3 <- lm(prestige ~ type + income*education, data=Prestige)

16 effectsHexsticker

plot(Effect(c("income", "education"), mod.prestige.3, residuals=TRUE),
partial.residuals=list(span=1))

artificial data

set.seed(12345)
x1 <- runif(500, -75, 100)
x2 <- runif(500, -75, 100)
y <- 10 + 5*x1 + 5*x2 + x1^2 + x2^2 + x1*x2 + rnorm(500, 0, 1e3)
Data <- data.frame(y, x1, x2)
mod.1 <- lm(y ~ poly(x1, x2, degree=2, raw=TRUE), data=Data)
raw=TRUE necessary for safe prediction
mod.2 <- lm(y ~ x1*x2, data=Data)
mod.3 <- lm(y ~ x1 + x2, data=Data)

plot(Effect(c("x1", "x2"), mod.1, residuals=TRUE)) # correct model
plot(Effect(c("x1", "x2"), mod.2, residuals=TRUE)) # wrong model
plot(Effect(c("x1", "x2"), mod.3, residuals=TRUE)) # wrong model

effectsHexsticker View the Official Hex Sticker for the effects Package

Description

Open the official hex sticker for the effects package in your browser

Usage

effectsHexsticker()

Value

Used for its side effect of openning the hex sticker for the effects package in your browser.

Author(s)

John Fox <jfox@mcmaster.ca>

Examples

Not run:
effectsHexsticker()

End(Not run)

effectsTheme 17

effectsTheme Set the lattice Theme for Effect Plots

Description

Set the lattice theme (see trellis.device) appropriately for effect plots. This function is invoked
automatically when the effects package is loaded if the lattice package hasn’t previously been
loaded. A typical call is lattice::trellis.par.set(effectsTheme()).

Usage

effectsTheme(strip.background = list(col = gray(seq(0.95, 0.5, length = 3))),
strip.shingle = list(col = "black"), clip = list(strip = "off"),
superpose.line = list(lwd = c(2, rep(1, 6))), col)

Arguments

strip.background

colors for the background of conditioning strips at the top of each panel; the
default uses shades of gray and makes allowance for up to three conditioning
variables.

strip.shingle when lines rather than numeric values are used to indicate the values of condi-
tioning variables, the default sets the color of the lines to black.

clip the default allows lines showing values of conditioning variables to extend slightly
beyond the boundaries of the strips—making the lines more visible at the ex-
tremes.

superpose.line the default sets the line width of the first (of seven) lines to 2.

col an optional argument specifying the colors to use for lines and symbolst: if col
= "car", then the color palette for the car package is used (see carPalette);
col = "R", then the current R palette (ignoring the first entry which is "black"
in the standard R palette) is used (see palette); if col = "colorblind", then
a colorblind-friendly palette (from https://jfly.uni-koeln.de/color/ but
ignoring black) is used; if a vector of color specifications, then these are used.
If col isn’t specified then the current lattice colors are used.

Value

a list suitable as an argument for trellis.par.set; current values of modified parameters are
supplied as an attribute.

Author(s)

John Fox <jfox@mcmaster.ca>

See Also

trellis.device, trellis.par.set

https://jfly.uni-koeln.de/color/

18 LegacyArguments

Examples

Not run:
lattice::trellis.par.set(effectsTheme())

End(Not run)

LegacyArguments Legacy Arguments for plot and Effect Methods

Description

Prior to verson 4.0-0 of the effects package, there were many (literally dozens) of arguments to the
plot methods for "eff" and "effpoly" objects.

In version 4.0-0 of the package, we have consolidated these arguments into a much smaller num-
ber of arguments (e.g., lines, points, axes) that take lists of specifications. We have similarly
consolidated some of the arguments to Effect methods into the confint and fixed.predictors
arguments.

For backwards compatibility, we have to the extent possible retained the older arguments. If speci-
fied, these legacy arguments take precedence over the newer list-style arguments

Details

Here is the correspondence between the old and new arguments.

For plot methods:

multiline=TRUE/FALSE lines=list(multiline=TRUE/FALSE)

type=c("rescale", "link", "response") For models with a link function, "link" plots in lin-
ear predictor scale, "response" plots in the response scale, and the default "rescale" plots
in linear predictor scale but labels tick-marks in response scale.

z.var=which.min(levels) lines=list(z.var=which.min(levels)) relevant only when lines=list(multiline=TRUE)

colors={vector of colors} lines=list(col={vector of colors})

lty={vector of line types} lines=list(lty={vector of line types})

lwd={vector of line widths} lines=list(lwd={vector of line widths})

use.splines=TRUE/FALSE lines=list(splines=TRUE/FALSE)

cex={number} points=list(cex={number})

rug=TRUE/FALSE axes=list(x=list(rug=TRUE/FALSE)

xlab={"axis title"} axes=list(x=list(lab={"axis title"}))

xlim={c(min, max)} axes=list(x=list(lim={c(min,max)}))

rotx={degrees} axes=list(x=list(rot={degrees}))

ticks.x=list({tick specifications}) axes=list(x=list(ticks=list({tick specifications})))

transform.x=list(link={function}, inverse={function}) axes=list(x=list(transform=list({lists
of transformations by predictors})))

LegacyArguments 19

ylab={"axis title"} axes=list(y=list(lab={"axis title"}))

ylim={c(min, max)} axes=list(y=list(lim={c(min,max)}))

roty={degrees} axes=list(y=list(rot={degrees}))

ticks=list({tick specifications}) axes=list(y=list(ticks=list({tick specifications})))

alternating=TRUE/FALSE axes=list(alternating=TRUE/FALSE)

grid=TRUE/FALSE axes=list(grid=TRUE/FALSE)

ci.style="bands"/"lines"/"bars"/"none" confint=list(style="bands"/"lines"/"bars"/"none")

band.transparency={number} confint=list(alpha={number})

band.colors={vector of colors} confint=list(col={vector of colors})

residuals.color={color} partial.residuals=list(col={color})

residuals.pch={plotting character} partial.residuals=list(pch={plotting character})

residuals.cex={number} partial.residuals=list(cex={number})

smooth.residuals=TRUE/FALSE partial.residuals=list(smooth=TRUE/FALSE)

residuals.smooth.color={color} partial.residuals=list(smooth.col={color})

span={number} partial.residuals=list(span={number})

show.fitted=TRUE/FALSE partial.residuals=list(fitted=TRUE/FALSE)

factor.names=TRUE/FALSE lattice=list(strip=list(factor.names=TRUE/FALSE))

show.strip.values=TRUE/FALSE lattice=list(strip=list(values=TRUE/FALSE))

layout={lattice layout} lattice=list(layout={lattice layout})

key.args={lattice key args} lattice=list(key.args={lattice key args})

style="lines"/"stacked" for plot.effpoly, axes=list(y=list(style="lines"/"stacked"))

rescale.axis=TRUE/FALSE type="rescale"/"response"/"link"

For Effect methods:

confint=TRUE/FALSE or a list may be substituted for the se argument.

confidence.level={number} se=list(level={number})

given.values={named vector} fixed.predictors=list(given.values={named vector})

typical={function} fixed.predictors=list(typical={function})

offset={function} fixed.predictors=list(offset={function})

partial.residuals=TRUE/FALSE residuals=TRUE/FALSE

transformation This argument to Effect is not needed to compute effects. It can now be set di-
rectly with the plot method with the argument axes = list(y = list(transformation=specification)).

Author(s)

John Fox <jfox@mcmaster.ca>

See Also

Effect, plot.eff, plot.effpoly

20 plot.effects

plot.effects Plots of Effects and Predictor Effects

Description

plot methods for predictoreff, predictorefflist, eff, efflist and effpoly objects created
by calls other methods in the effects package. The plot arguments were substantially changed
in mid-2017. For more details and many examples, see the Predictor Effects Graphics Gallery
vignette.

Usage

S3 method for class 'eff'
plot(x, x.var,

main=paste(effect, "effect plot"),
symbols=TRUE, lines=TRUE, axes, confint,
partial.residuals, id, lattice, ...,
legacy arguments:
multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd,
ylim, xlim, factor.names, ci.style,
band.transparency, band.colors, type, ticks,
alternating, rotx, roty, grid, layout,
rescale.axis, transform.x, ticks.x, show.strip.values,
key.args, use.splines,
residuals.color, residuals.pch, residuals.cex, smooth.residuals,
residuals.smooth.color, show.fitted, span)

S3 method for class 'efflist'
plot(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...)

S3 method for class 'predictoreff'
plot(x, x.var,

main = paste(names(x$variables)[1], "predictor effect plot"), ...)

S3 method for class 'predictorefflist'
plot(x, selection, rows, cols, ask = FALSE,

graphics = TRUE, lattice, ...)

S3 method for class 'effpoly'
plot(x, x.var=which.max(levels),

main=paste(effect, "effect plot"),
symbols=TRUE, lines=TRUE, axes, confint, lattice, ...,
legacy arguments:
type, multiline, rug, xlab, ylab, colors, cex, lty, lwd,
factor.names, show.strip.values,
ci.style, band.colors, band.transparency, style,

plot.effects 21

transform.x, ticks.x, xlim,
ticks, ylim, rotx, roty, alternating, grid,
layout, key.args, use.splines)

S3 method for class 'mlm.efflist'
plot(x, ...)

Arguments

x an object of class "predictoreff", "predictorefflist", "eff", "effpoly",
"efflist", "mlm.efflist", or "summary.eff", as appropriate.

x.var the index (number) or quoted name of the covariate or factor to place on the hor-
izontal axis of each panel of the effect plot. The default is the predictor with the
largest number of levels or values. This argument is ignored with predictoreff
objects.

main the title for the plot, printed at the top; the default title is constructed from the
name of the effect.

symbols TRUE, FALSE, or an optional list of specifications for plotting symbols; if not
given, symbol properties are taken from superpose.symbol in the lattice theme.
See Detailed Argument Descriptions under Details for more information.

lines TRUE, FALSE, or an optional list of specifications for plotting lines (and possibly
areas); if not given, line properties are taken from superpose.line in the lattice
theme. See Detailed Argument Descriptions under Details for more information.

axes an optional list of specifications for the x and y axes; if not given, axis properties
take generally reasonable default values. See Details for more information.

confint an optional list of specifications for plotting confidence regions and intervals; if
not given, generally reasonable default values are used. See Detailed Argument
Descriptions under Details for more information.

partial.residuals

an optional list of specifications for plotting partial residuals for linear and gen-
eralized linear models; if not given, generally reasonable default values are used.
See Detailed Argument Descriptions under Details for more information, along
with the Effect Displays with Partial Residuals vignette.

id an optional list of specifications for identifying points when partial residuals
are plotted; if not specified, no points are labelled. See Detailed Argument
Descriptions under Details for more information.

lattice an optional list of specifications for various lattice properties, such as legend
placement; if not given, generally reasonable default values are used. See De-
tailed Argument Descriptions under Details for more information.

selection the optional index (number) or quoted name of the effect in an efflist object to
be plotted; if not supplied, a menu of high-order terms is presented or all effects
are plotted.

rows, cols Number of rows and columns in the “meta-array” of plots produced for an
efflist object; if either argument is missing, then the meta-layout will be com-
puted by the plot method.

22 plot.effects

ask if selection is not supplied and ask is TRUE, a menu of high-order terms is pre-
sented; if ask is FALSE (the default), effects for all high-order terms are plotted
in an array.

graphics if TRUE (the default), then the menu of terms to plot is presented in a dialog box
rather than as a text menu.

... arguments to be passed down. For "predictoreff" or "predictorefflist"
objects, the arguments passed down can include all the arguments for "eff".

multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, type, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span, style

legacy arguments retained for backwards compatibility; if specified, these will
take precedence over the newer list-style arguments described above. See LegacyArguments
for details.

Details

Effects plots and predictor effects plots are produced by these methods. The plots are highly cus-
tomizable using the optional arguments described here. For example, effects in a GLM are plotted
on the scale of the linear predictor, but the vertical axis is labelled on the response scale. This pre-
serves the linear structure of the model while permitting interpretation on what is usually a more
familiar scale. This approach may also be used with linear models, for example to display effects
on the scale of the response even if the data are analyzed on a transformed scale, such as log or
square-root. See the axes argument details below to change the scale to response scale, or to linear
predictor scale with tick marks labeled in response scale.

When a factor is on the x-axis, the plot method for eff objects connects the points representing
the effect by line segments, creating a response “profile.” If you wish to suppress these lines, add
lty=0 to the lines argument to the call to plot (see below and the examples).

In a polytomous multinomial or proportional-odds logit model, by default effects are plotted on the
probability scale; they may alternatively be plotted on the scale of the individual-level logits.

All of the arguments to plot objects created by Effect or allEffects can also be used with objects
created by predictorEffect or predictorEffects.

Detailed Argument Descriptions

For more information about these arguments and many examples, see the Predictor Effects Graphics
Gallery vignette.

Maximizing the flexibility of these plot commands requires inclusion of a myriad of options. In an
attempt to simplify the use of these options, they have been organized into just a few arguments that
each accept a list of specifications as an argument. In a few cases the named entries in the list are
themselves lists.

Each of the following arguments takes an optional list of specifications; any specification absent
from the list assumes its default value. Some of the list elements are themselves lists, so in complex
cases, the argument can take the form of nested lists. All of these arguments can also be used on
objects created with predictorEffects.

symbols TRUE, FALSE, or a list of options that controls the plotting symbols and their sizes for use
with factors; if FALSE symbols are suppressed; if TRUE default values are used:

pch ploting symbols, a vector of plotting characters, with the default taken from trellis.par.get("superpose.symbol")$pch,
typically a vector of 1s (circles).

plot.effects 23

cex plotting character sizes, a vector of values, with the default taken from trellis.par.get("superpose.symbol")$cex,
typically a vector of 0.8s.

lines TRUE, FALSE, or a list that controls the characteristics of lines drawn on a plot, and also
whether or not multiple lines should be drawn in the same panel in the plot; if FALSE lines are
suppressed; if TRUE default values are used:

multiline display a multiline plot in each panel; the default is TRUE if there are no standard
errors in the "eff" object, FALSE otherwise. For an "effpoly" object multline=TRUE
causes all of the response levels to be shown in the same panel rather than in separate
panels.

z.var for linear, generalized linear or mixed models, the index (number) or quoted name of
the covariate or factor for which individual lines are to be drawn in each panel of the
effect plot. The default is the predictor with the smallest number of levels or values. This
argument is only used for multipline plots.

lty vector of line types, with the default taken from trellis.par.get("superpose.line")$lty,
typically a vector of 1s (solid lines).

lwd vector of line widths, with the default taken from trellis.par.get("superpose.line")$lwd,
typically a vector with 2 in the first position followed by 1s.

col a vector of line colors, with the default taken from from trellis.par.get("superpose.line")$col,
used both for lines and for areas in stacked area plots for "effpoly" objects; in the latter
case, the default colors for an ordered response are instead generated by sequential_hcl
in the colorspace package.

splines use splines to smooth plotted effect lines; the default is TRUE.

axes a list with elements x, y, alternating, and grid that control axis limits, ticks, and labels.
The x and y elements may themselves be lists.
The x entry is a list with elements named for predictors, with each predictor element itself a
list with the following elements:

lab axis label, defaults to the name of the predictor; may either be a text string or a list with
the text label (optionally named label) as its first element and the named element cex as
its second element.

lim a two-element vector giving the axis limits, with the default determined from the data.
ticks a list with either element at, a vector specifying locations for the ticks marks, or n, the

number of tick marks.
transform transformations to be applied to the horizontal axis of a numeric predictor, in the

form of a list of two functions, with element names trans and inverse. The trans
function is applied to the values of the predictor, and inverse is used for computing
proper axis tick labels. The default is not to transform the predictor axis.

Two additional elements may appear in the x list, and apply to all predictors:

rotate angle in degrees to rotate tick labels; the default is 0.
rug display a rug plot showing the marginal distribution of a numeric predictor; the default is

TRUE.

The y list contains lab, lim, ticks, and rotate elements (similar to those specified for in-
dividual predictors in the x list), along with the additional type, transform, and style ele-
ments:

type for plotting linear or generalized linear models, "rescale" (the default) plots the verti-
cal axis on the link scale (e.g., the logit scale for a logit model) but labels the axis on the

24 plot.effects

response scale (e.g., the probability scale for a logit model); "response" plots and labels
the vertical axis on the scale of the response (e.g., the probability scale for a logit model);
and "link" plots and labels the vertical axis on the scale of the link (e.g., the logit scale
for a logit model). For polytomous logit models, this element is either "probability"
or "logit", with the former as the default.

transform primarily for linear or linear mixed models, this argument is used to apply an
arbitrary transformation to the vertical axis. For example, if fitting a linear model with re-
sponse log(y), then setting transform=exp would plot exp(log(y)) = y on the vertical
axis. If the response were 1/y, then use transform=function(yt) 1/yt, since the recip-
rocal is its own inverse. The transform argument can also be a list of two functions. For
example with a response log(y), the specification transform=list(trans=log,inverse=log),type="rescale"
will plot in log-scale, but will label tick marks in arithmetic scale; see the example be-
low. The specification transform=list(trans=log,inverse=exp),type="response"
is equivalent to transform=exp. When type="response" the lab argument will ge-
neally be used to get a label for the axis that matches the untransformed response. If this
argument is used with a generalized linear model or another model with a non-identity
link function, the function is applied to the linear predictor, and will probably not be of
interest.

style for polytomous logit models, this element can take on the value "lines" (the default)
or "stacked" for line plots or stacked-area plots, respectively.

Other elements:

alternating if TRUE (the default), the tick labels alternate by panels in multi-panel displays
from left to right and top to bottom; if FALSE, tick labels appear at the bottom and on the
left.

grid if TRUE (the default is FALSE), add grid lines to the plot.

confint specifications to add/remove confidence intervals or regions from a plot, and to set the
nominal confidence level.

style one of "auto", "bars", "lines", "bands", and "none"; the default is "bars" for
factors, "bands" for numeric predictors, and "none" for multiline plots; "auto" also
produces "bars" for factors and "bands" for numeric predictors, even in multiline plots.

alpha transparency of confidence bands; the default is 0.15.
col colors; the default is taken from the line colors.

partial.residuals specifications concerning the addition of partial residuals to the plot.

plot display the partial residuals; the default is TRUE if residuals are present in the "eff"
object, FALSE otherwise.

fitted show fitted values as well as residuals; the default is FALSE.
col color for partial residuals; the default is the second line color.
pch plotting symbols for partial residuals; the default is 1, a circle.
cex size of symbols for partial residuals; the default is 1.
smooth draw a loess smooth of the partial residuals; the default is TRUE.
span span for the loess smooth; the default is 2/3.
smooth.col color for the loess smooth; the default is the second line color.
lty line type for the loess smooth; the default is the first line type, normally 1 (a solid line).
lwd line width for the loess smooth; the default is the first line width, normally 2.

plot.effects 25

id specifications for optional point identification when partial residuals are plotted.

n number of points to identify; default is 2 if id=TRUE and 0 if id=FALSE. Points are selected
based on the Mahalanobis distances of the pairs of x-values and partial residuals from
their centroid.

col color for the point labels; default is the same as the color of the partial residuals.
cex relative size of text for point labels; default is 0.75.
labels vector of point labels; the default is the names of the residual vector, which is typi-

cally the row names of the data frame to which the model is fit.

lattice the plots are drawn with the lattice package, generally by the xyplot function. These
specifications are passed as arguments to the functions that actually draw the plots.

layout the layout argument to the lattice function xyplot (or, in some cases densityplot),
which is used to draw the effect display; if not specified, the plot will be formatted so that
it appears on a single page.

key.args a key, or legend, is added to the plot if multiline=TRUE. This argument is a list
with components that determine the the placement and other characteristics of the key.
The default if not set by the user is key.args = list(space="top",columns=2,border=FALSE,fontfamily="serif",cex.title=.80,cex=0.75).
If there are more than 6 groups in the plot, columns is set to 3. For stacked-area plots, the
default is a one-column key. In addition to the arguments shown explicitly below, any of
the arguments listed in the xyplot documentation in the key section can be used.
space determines the placement of the key outside the plotting area, with default space="above"

for above the plot and below its title. Setting space="right" uses space to the right
of the plot for the key.

x, y, corner used to put the key on the graph itself. For example, x=.05,y=.95,corner=c(0,1)
will locate the upper-left corner of the key at (.05, .95), thinking of the graph as a unit
square.

columns number of columns in the key. If space="top", columns should be 2, 3 or 4; if
space="right", set columns=1.

border if TRUE draw a border around the key; omit the border if FALSE.
fontfamily the default is "sans" for the sans-serif font used in the rest of the plot; the

alternative is "serif" for a serif font.
cex, cex.title the default relative size of the font for labels and the title, respectively.

To save space set these to be smaller than 1.
strip a list with three elements: factor.names, which if TRUE, the default, shows condition-

ing variable names in the panel headers; values, which if TRUE, the default unless partial
residuals are plotted, displays conditioning variable values in the panel headers, and cex,
the relative size of the text displayed in the strip.

array a list with elements row, col, nrow, ncol, and more, used to graph an effect as part of
an array of plots; row, col, nrow, and ncol are used to compose the split argument and
more the more argument to print.trellis. The array argument is automatically set by
plot.efflist and will be ignored if used with that function.

Value

The summary method for "eff" objects returns a "summary.eff" object with the following com-
ponents (those pertaining to confidence limits need not be present):

26 plot.effects

header a character string to label the effect.

effect an array containing the estimated effect.

lower.header a character string to label the lower confidence limits.

lower an array containing the lower confidence limits.

upper.header a character string to label the upper confidence limits.

upper an array containing the upper confidence limits.

The plot method for "eff" objects returns a "plot.eff" object (an enhanced "trellis" object);
the provided print method plots the object.

The [method for "efflist" objects is used to subset an "efflist" object and returns an object
of the same class.

Author(s)

John Fox <jfox@mcmaster.ca> and Jangman Hong.

See Also

LegacyArguments, effect, allEffects, effectsTheme, xyplot, densityplot, print.trellis,
loess, sequential_hcl, and the Predictor Effects Graphics Gallery and Effect Displays with Par-
tial Residuals vignettes.

Examples

also see examples in ?effect

plot predictorEffects
mod <- lm(prestige ~ education + log(income)*type + women, Prestige)
plot(predictorEffects(mod, ~ income), axes=list(grid=TRUE))
plot(predictorEffects(mod, ~ income), lines=list(multiline=TRUE),

axes=list(grid=TRUE))
plot(predictorEffects(mod, ~ type), lines=list(multiline=TRUE),

axes=list(grid=TRUE),
confint=list(style="bars"))

mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion,
data=Cowles, family=binomial)

eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6)))
eff.cowles
as.data.frame(eff.cowles[[2]]) # neuroticism*extraversion interaction

plot(eff.cowles, 'sex', axes=list(grid=TRUE,
y=list(lab="Prob(Volunteer)"),
x=list(rotate=90)),

lines=list(lty=0))

plot(eff.cowles, 'neuroticism:extraversion',
axes=list(y=list(lab="Prob(Volunteer)",

ticks=list(at=c(.1,.25,.5,.75,.9)))))

plot.effects 27

plot(Effect(c("neuroticism", "extraversion"), mod.cowles,
se=list(type="Scheffe"),
xlevels=list(extraversion=seq(0, 24, 6))),

axes=list(y=list(lab="Prob(Volunteer)",
ticks=list(at=c(.1,.25,.5,.75,.9)))))

change color of the confidence bands to 'black' with .15 transparency
plot(eff.cowles, 'neuroticism:extraversion',

axes=list(y=list(lab="Prob(Volunteer)",
ticks=list(at=c(.1,.25,.5,.75,.9)))),

confint=list(col="red", alpha=.3))

plot(eff.cowles, 'neuroticism:extraversion',
lines=list(multiline=TRUE),
axes=list(y=list(lab="Prob(Volunteer)")),
lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1))))

use probability scale in place of logit scale, all lines are black.
plot(eff.cowles, 'neuroticism:extraversion',

lines=list(multiline=TRUE, lty=1:8, col="black"),
axes=list(y=list(type="response", lab="Prob(Volunteer)")),
lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1))),
confint=list(style="bands"))

plot(effect('sex:neuroticism:extraversion', mod.cowles,
xlevels=list(extraversion=seq(0, 24, 6))),

lines=list(multiline=TRUE))

plot(effect('sex:neuroticism:extraversion', mod.cowles,
xlevels=list(extraversion=seq(0, 24, 6))),

lines=list(multiline=TRUE),
axes=list(y=list(type="response")),
confint=list(style="bands"),
lattice=list(key.args = list(x=0.75, y=0.75, corner=c(0, 0))))

if (require(nnet)){
mod.beps <- multinom(vote ~ age + gender + economic.cond.national +

economic.cond.household + Blair + Hague + Kennedy +
Europe*political.knowledge, data=BEPS)

plot(effect("Europe*political.knowledge", mod.beps,
xlevels=list(political.knowledge=0:3)))

plot(effect("Europe*political.knowledge", mod.beps,
xlevels=list(political.knowledge=0:3),
fixed.predictors=list(given.values=c(gendermale=0.5))),

axes=list(y=list(style="stacked"), x=list(rug=FALSE), grid=TRUE),
lines=list(col=c("blue", "red", "orange")))

}

28 predictorEffects

if (require(MASS)){
mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3),

data=WVS)
plot(effect("country*poly(age, 3)", mod.wvs))

plot(effect("country*poly(age, 3)", mod.wvs), lines=list(multiline=TRUE))
plot(effect("country*poly(age, 3)", mod.wvs),

axes=list(y=list(style="stacked")),
lines=list(col=c("gray75", "gray50", "gray25")))

plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs))

}

mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2),
data=Prestige)

eff.pres <- allEffects(mod.pres)

plot(eff.pres)
plot(eff.pres[1:2])

plot(eff.pres[1],
axes=list(x=list(income=list(transform=list(

trans=log10, inverse=function(x) 10^x),
ticks=list(at=c(1000, 2000, 5000, 10000, 20000))))))

mod <- lm(log(prestige) ~ income:type + education, data=Prestige)
p1 <- predictorEffects(mod, ~ income)
log-scale for response
plot(p1, lines=list(multiline=TRUE))
log-scale, with arithmetic tick marks
plot(p1, lines=list(multiline=TRUE),

axes=list(y=list(transform=list(trans=log, inverse = exp),
lab="prestige", type="rescale")))

arithmetic scale and tick marks, with other arguments
plot(p1, lines=list(multiline=TRUE), grid=TRUE,

lattice=list(key.args=list(space="right", border=TRUE)),
axes=list(y=list(transform=exp, lab="prestige")))

predictorEffects Functions For Computing Predictor Effects

Description

Alternatives to the Effect and allEffects functions that use a different paradigm for conditioning
in an effect display. The user specifies one predictor, either numeric or a factor (where character and
logical variables are treated as factors), for the horizontal axis of a plot, and the function determines
the appropriate plot to display (which is drawn by plot). See the vignette Predictor Effects Graphics
Gallery for details and examples.

predictorEffects 29

Usage

predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...)

S3 method for class 'poLCA'
predictorEffect(predictor, mod, focal.levels=50,

xlevels=5, ...)

S3 method for class 'svyglm'
predictorEffect(predictor, mod, focal.levels=50,

xlevels=5, ...)

Default S3 method:
predictorEffect(predictor, mod, focal.levels=50,

xlevels=5, ..., sources)

predictorEffects(mod, predictors, focal.levels=50, xlevels=5, ...)

S3 method for class 'poLCA'
predictorEffects(mod, predictors = ~ .,

focal.levels=50, xlevels=5, ...)

Default S3 method:
predictorEffects(mod, predictors = ~ .,

focal.levels=50, xlevels=5, ..., sources)

Arguments

mod A model object. Supported models include all those described on the help page
for Effect.

predictor quoted name of the focal predictor.

predictors If the default, ~ ., a predictor effect plot is drawn for each predictor (not regres-
sor) in a model. Otherwise, this is a one-sided formula specifying the first-order
predictors for which predictor effect plots are to be drawn.

focal.levels for predictorEffect, the number of evenly-spaced values (the default is 50)
for the numeric focal predictor or a vector of values for the focal predictor.
For predictorEffects, the number of evenly-spaced values (default 50) to use
for each numeric focal predictor in turn, or a named list, similar to xlevels,
giving the number of values or the values themselves for each predictor individ-
ually, to be used when that predictor is the focal predictor; if a numeric focal
predictor doesn’t appear in the list, the default of 50 values is used.

xlevels this argument is used to set the levels of conditioning predictors; it may either
be a single number specifying the number of evenly-spaced values (the default
is 5) to which each conditioning predictor is to be set, or it may be a list with
elements named for the predictors giving the number of values or a vector of
values to which each conditioning predictor is to be set, as explained in the help
for Effect.

30 predictorEffects

If the focal predictor is included in the xlevels list, it is disregarded; if any
conditioning predictor is omitted from the list, its number of values is set to 5.
The default behavior of xlevels is different when residuals=TRUE; in that
case, it behaves as in Effect.lm, and is effectively set by default to the 0.2, 0.4,
0.6, and 0.8 quantiles of conditioning predictors.
The xlevels argument works similarly for predictorEffect and predictorEffects.

... Additional arguments passed to Effect.
sources Provides a mechanism for applying predictorEffect methods to a variety of

regression models; see the vignette Regression Models Supported by the effects
Package for an explanation.

Details

Effect plots view a fitted regression function E(Y|X) in (sequences of) two-dimensional plots using
conditioning and slicing. The functions described here use a different method of determining the
conditioning and slicing than allEffects uses. The predictor effect of a focal predictor, say x1, is
the usual effect for the generalized interaction of x1 with all the other predictors in a model. When
a predictor effect object is plotted, the focal predictor is by default plotted on the horizontal axis.
For example, in the model mod with formula y ~ x1 + x2 + x3, the predictor effect p1 <-predictorEffects(mod,~
x1) is essentially equilavent to p2 <-Effect("x1",mod). When plotted, these objects may produce
different graphs because plot(p1) will always put x1 on the horizontal axis, while plot(p2) uses a
rule to determine the horizontal axis based on the characteristics of all the predictors, e.g., preferring
numeric predictors over factors.
If mod has the formula y ~ x1 + x2 + x3 + x1:x2, then p1 <-predictorEffects(mod,~ x1) is es-
sentially equivalent to p2 <-Effect(c("x1","x2"),mod). As in the last example, the plotted ver-
sions of these objects may differ because of different rules used to determine the predictor on the
horizontal axis.
If mod has the formula y ~ x1 + x2 + x3 + x1:x2 + x1:x3, then p1 <-predictorEffects(mod,~
x1) is essentially equilavent to p2 <-Effect(c("x1","x2","x3"),mod). Again, the plotted ver-
sions of these objects may differ because of the rules used to determine the horizontal axis.

Value

predictorEffect returns an object of class c("predictoreff","eff"). The components of
the object are described in the help for Effect; predictorEffects returns an object of class
"predictorefflist", which is a list whose elements are of class c("predictoreff","eff").

Author(s)

S. Weisberg <sandy@umn.edu> and J. Fox

References

See Effect.

See Also

Effect, plot.predictoreff, the Predictor Effects Graphics Gallery vignette, and the Effect Dis-
plays with Partial Residuals vignette.

summary.eff 31

Examples

mod <- lm(prestige ~ type*(education + income) + women, Prestige)
plot(predictorEffect("income", mod))
plot(predictorEffects(mod, ~ education + income + women))

mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial)
plot(predictorEffects(mod.cowles, xlevels=4))
plot(predictorEffect("neuroticism", mod.cowles, xlevels=list(extraversion=seq(5, 20, by=5))),

axes=list(grid=TRUE,
x=list(rug=FALSE),
y=list(lab="Probability of Vounteering")),

lines=list(multiline=TRUE),
type="response")

predictorEffects(mod.cowles, focal.levels=4, xlevels=4)

svyglm() example (adapting an example from the survey package)

if (require(survey)){
data(api)
dstrat<-svydesign(id=~1, strata=~stype, weights=~pw,
data=apistrat, fpc=~fpc)

mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat,
family=quasibinomial())

plot(predictorEffects(mod),
axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)),

ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99)))))
}

summary.eff Summarizing and Printing Effects

Description

summary, print, and as.data.frame methods for objects created using the effects package.

Usage

S3 method for class 'eff'
print(x, type=c("response", "link"), ...)
S3 method for class 'effpoly'
print(x, type=c("probability", "logits"), ...)
S3 method for class 'efflatent'
print(x, ...)
S3 method for class 'efflist'
print(x, ...)
S3 method for class 'mlm.efflist'
print(x, ...)
S3 method for class 'summary.eff'

32 summary.eff

print(x, ...)
S3 method for class 'eff'
summary(object, type=c("response", "link"), ...)
S3 method for class 'effpoly'
summary(object, type=c("probability", "logits"), ...)
S3 method for class 'efflatent'
summary(object, ...)
S3 method for class 'efflist'
summary(object, ...)
S3 method for class 'mlm.efflist'
summary(object, ...)
S3 method for class 'eff'
as.data.frame(x, row.names=NULL, optional=TRUE,

type=c("response", "link"), ...)
S3 method for class 'efflist'
as.data.frame(x, row.names=NULL, optional=TRUE, type, ...)
S3 method for class 'effpoly'
as.data.frame(x, row.names=NULL, optional=TRUE, ...)
S3 method for class 'efflatent'
as.data.frame(x, row.names=NULL, optional=TRUE, ...)
S3 method for class 'eff'
vcov(object, ...)

Arguments

x, object an object consisting of fitted values and other information needed to draw effects
plots that is produced by functions in the effects package.

type fitted values are by default printed by these functions in the "response" scale.
For models with a link function like a GLM, fitted values in the linear predictor
scale are obtained by setting type="link". For polytomous response models
setting type="logits" returns fitted values in the logit scale.

row.names, optional

arguments to as.data.frame not used by these methods.

... other arguments passed on

Value

The print methods return the fitted values in tables. The summary methods return the fitted values
and 95 percent condifence intervals, also in tables. The as.data.frame method returns fitted val-
ues, standard errors, and 95 percent confidence intervals as a data frame, or as a list of data frames
for the efflist method. The vcov method returns the covariance matrix of the fitted values.

Author(s)

John Fox <jfox@mcmaster.ca> and Jangman Hong.

Examples

summary.eff 33

mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion,
data=Cowles, family=binomial)

eff.cowles <- predictorEffects(mod.cowles)
print(eff.cowles)
print(eff.cowles[["neuroticism"]], type="link")
summary(eff.cowles[["neuroticism"]], type="link")
as.data.frame(eff.cowles)
covariance matrix of fitted values in linear predictor scale
vcov(eff.cowles[[1]])

Index

∗ device
effectsTheme, 17

∗ hplot
effect, 4
LegacyArguments, 18
plot.effects, 20
predictorEffects, 28
summary.eff, 31

∗ misc
effectsHexsticker, 16

∗ models
effCoef, 3
effect, 4
plot.effects, 20
predictorEffects, 28
summary.eff, 31

∗ package
effects-package, 2

∗ utilities
effectsTheme, 17

[.efflist (plot.effects), 20

allEffects, 2, 26
allEffects (effect), 4
as.data.frame.eff (summary.eff), 31
as.data.frame.efflatent (summary.eff),

31
as.data.frame.efflist (summary.eff), 31
as.data.frame.effpoly (summary.eff), 31

barchart, 10
Boot, 7

carPalette, 17
clm, 10
clm2, 10
clmm, 10
clmm2, 10
contr.treatment, 6

densityplot, 8, 11, 25, 26

effCoef, 3
Effect, 2, 19, 29, 30
Effect (effect), 4
effect, 2, 4, 26
Effect.default, 4
Effect.default (effect), 4
effect.default (effect), 4
Effect.lm, 30
Effect.lm (effect), 4
Effect.merMod (effect), 4
Effect.mlm (effect), 4
Effect.multinom (effect), 4
Effect.poLCA (effect), 4
Effect.polr (effect), 4
Effect.svyglm (effect), 4
effects (effects-package), 2
effects-package, 2
effectsHexsticker, 16
effectsTheme, 17, 26

get_parameters, 3, 4
glm, 4, 7
glmer, 7
gls, 4

hccm, 7

lattice, 25
Legacy Arguments (LegacyArguments), 18
LegacyArguments, 8, 11, 18, 22, 26
lm, 4, 7
lmer, 7, 8
loess, 26

mean, 6, 7
multinom, 4

palette, 17
plot, 2
plot.eff, 4, 7–9, 11, 19
plot.eff (plot.effects), 20

34

INDEX 35

plot.effect (plot.effects), 20
plot.effects, 20
plot.efflist, 8, 11
plot.efflist (plot.effects), 20
plot.effpoly, 8, 11, 19
plot.effpoly (plot.effects), 20
plot.mlm.efflist (plot.effects), 20
plot.predictoreff, 4, 30
plot.predictoreff (plot.effects), 20
plot.predictorefflist (plot.effects), 20
polr, 4, 10
predictorEffect, 2, 4
predictorEffect (predictorEffects), 28
predictorEffects, 2, 8, 22, 28
print, 26
print.eff, 8, 11
print.eff (summary.eff), 31
print.efflatent (summary.eff), 31
print.efflist, 8, 11
print.efflist (summary.eff), 31
print.effpoly, 8, 11
print.effpoly (summary.eff), 31
print.mlm.efflist (summary.eff), 31
print.summary.eff, 11
print.summary.eff (summary.eff), 31
print.trellis, 25, 26

sequential_hcl, 23, 26
summary.eff, 8, 11, 31
summary.efflatent (summary.eff), 31
summary.efflist, 8, 11
summary.efflist (summary.eff), 31
summary.effpoly, 8, 11
summary.effpoly (summary.eff), 31
summary.mlm.efflist (summary.eff), 31
svyglm, 7

trellis.device, 17
trellis.par.set, 17

vcov.eff (summary.eff), 31

xyplot, 8, 11, 25, 26

	effects-package
	effCoef
	effect
	effectsHexsticker
	effectsTheme
	LegacyArguments
	plot.effects
	predictorEffects
	summary.eff
	Index

