Package 'ensembleBMA'

November 13, 2021
Version 5.1.7
Date 2021-11-12
Title Probabilistic Forecasting using Ensembles and Bayesian ModelAveraging
Author Chris Fraley, Adrian E. Raftery, J. McLean Sloughter, Tilmann Gneiting, University of Washington.
Maintainer Chris Fraley fraley@u.washington.edu
Depends R (>=2.10), chron
Suggests fields, maps
Description Bayesian Model Averaging to create probabilistic forecastsfrom ensemble forecasts and weather observationshttps://stat.uw.edu/sites/default/files/files/reports/2007/tr516.pdf.
License GPL (>=2)
Repository CRAN
NeedsCompilation no
Date/Publication 2021-11-13 05:30:11 UTC
R topics documented:
brierScore 2
cdf 4
combine 6
controlBMAgamma 7
controlBMAgamma0 9
controlBMAnormal 11
crps 12
dateCheck 14
ensBMAtest 15
ensembleBMA 17
ensembleBMAgamma 20
ensembleBMAgamma0 22
ensembleBMAnormal 24
ensembleData 26
fitBMA 28
fitBMAgamma 30
fitBMAgamma0 32
fitBMAnormal 34
julTOymdh 36
MAE 37
modelParameters 38
pit 39
pitHist 41
plot.ensembleBMA 43
plotProbcast 45
prcpDJdata 47
prcpFit 48
prcpGrid 50
quantileForecast 51
srft 53
srftGrid 54
trainingData 56
verifPlot 57
verifRankHist 58
ymdhTOjul 60
Index 61
brierScore Brier Scores

Description

Computes Brier Scores for climatology, raw ensemble, and ensemble forecasting models given observation thresholds.

Usage

brierScore(fit, ensembleData, thresholds, dates = NULL, ...)

Arguments

fit A model fit to ensemble forecasting data.
ensembleData An ensembleData object including ensemble forecasts, verification observations and possibly dates. Missing values (indicated by NA) are allowed. \backslash This need not be the data used for the model fit, although it must include the same ensemble members.
thresholds One or more threshold values for the Brier score computations.
dates The dates for which the Brier score will be computed. These dates must be consistent with fit and ensembleData. The default is to use all of the dates in fit. The dates are ignored if fit originates from fitBMA, which also ignores date information.
. . . Included for generic function compatibility.

Value

A data frame giving the Brier Scores for climatology (empirical distribution of the verifying observations), ensemble (voting), and ensemble foreacsting models for the specified thresholds.
A logistic Brier score is also given for the BMAgamma0 model.

References

G. W. Brier, Verification of forecasts expressed in terms of probability, Monthly Weather Review, 78:1-3, 1950.
T. Gneiting and A. E. Raftery, Strictly proper scoring rules, prediction and estimation, Journal of the American Statistical Association 102:359-378, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleBMA

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("PCP24","obs", sep = ".")
    ens <- paste("PCP24", ensMemNames, sep = ".")
    prcpTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    prcpTestFit <- ensembleBMAgamma0( prcpTestData, trainingDays = 30)
## End(Not run)
    hist(prcpTestData$obs)
    brierScore(prcpTestFit, prcpTestData,
```

$$
\text { thresholds }=\operatorname{seq}(\text { from }=0, \text { to }=.5, \text { by }=.1))
$$

cdf Cummulative Distribution Function for ensemble forcasting models

Description

Computes the cumulative distribution function (CDF) of an ensemble forecasting model at observation locations.

Usage

cdf(fit, ensembleData, values, dates = NULL, ...)

Arguments

fit A model fit to ensemble forecasting data.
ensembleData An ensembleData object that includes ensemble forecasts, verification observations and possibly dates. Missing values (indicated by NA) are allowed. \This need not be the data used for the model fit, although it must include the same ensemble members.
values The vector of desired values at which the CDF of the ensemble forecasting model is to be evaluated.
dates The dates for which the CDF will be computed. These dates must be consistent with fit and ensembleData. The default is to use all of the dates in fit. The dates are ignored if fit originates from fitBMA, which also ignores date information.
... Included for generic function compatibility.

Details

This method is generic, and can be applied to any ensemble forecasting model.
Note the model may have been applied to a power transformation of the data, but that information is included in the input fit, and the output is transformed appropriately.

Value

A vector of probabilities corresponding to the CDF at the desired values. Useful for determining propability of freezing, precipitation, etc.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleBMA, fitBMA, quantileForecast

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma", "ngps","tcwb", "ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
# for quick run only; use more training days for forecasting
    tempTestFit <- ensembleBMAnormal( tempTestData[1:20,], trainingDays = 8)
    tempTestForc <- quantileForecast( tempTestFit, tempTestData)
    range(tempTestForc)
    tempTestCDF <- cdf( tempTestFit, tempTestData,
                        values = seq(from=277, to=282, by = 1))
    tempTestCDF
```


Description

Combines BMA models having the same characteristics for different dates.

Usage

combine($x, y, \ldots)$

Arguments

$x \quad$ An ensembleBMA model.
$y \quad$ An ensembleBMA model having the same characteristics as x except for dates.
$\ldots \quad$ Other ensembleBMA models compatible with x and y .

Details

Input models are checked for compatibility, and entries from different inputs having the same dates are eliminated. Dates are ordered chronologically and ensemble members are ordered in the order in which they occur in inout x.

Value

An ensembleBMA model that merges the models from each input into a single model for the common dates.

References

C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleBMA

Examples

```
data(ensBMAtest)
ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
```

```
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    tempTestFit12 <- ensembleBMAnormal( tempTestData, trainingDays = 30,
                            dates = c("2008010100","2008010200"))
    tempTestFit34 <- ensembleBMAnormal( tempTestData, trainingDays = 30,
                        dates = c("2008010300","2008010400"))
## End(Not run)
# for quick run only; use more training days for forecasting
    tempTestFit12 <- ensembleBMAnormal( tempTestData, trainingDays = 8,
            dates = c("2008010100","2008010200"))
    tempTestFit34 <- ensembleBMAnormal( tempTestData, trainingDays = 8.,
        dates = c("2008010300","2008010400"))
    tempTestFit <- combine( tempTestFit12, tempTestFit34)
```

 controlBMAgamma Control parameters for BMA wind speed modeling

Description

Specifies a list of values controling the Bayesian Model Averaging fit of a mixture of gammas to ensemble forecasts for wind speed.

Usage

controlBMAgamma(maxIter, tol, power $=1$, startupSpeed $=$ NULL, init, optim.control $=$ list(ndeps $=r e p(\operatorname{sqrt}(. M a c h i n e \$ d o u b l e . e p s), ~ 2)))$

Arguments

maxiter An integer specifying an upper limit on the number of iterations‘ for fitting the BMA mixture via EM. The default is Inf, which sets no upper limit on the number of iterations, so that the convergence criterion based on eps is used.
tol A numeric convergence tolerance. The EM fit for the mixture of gammas is terminated when the relative error in successive objective values in the M-step falls below tol. The default is sqrt(.Machine\$double.eps), which is approximately 1.e-8 on IEEE compliant machines.

$$
\begin{array}{ll}
\text { power } & \begin{array}{l}
\text { A scalar value giving the power by which the data will be transformed to fit the } \\
\text { model for mean of the observations. The default is not to transform the data. } \\
\text { The untransformed forecast is used to fit the variance model. }
\end{array} \\
\text { startupSpeed } & \begin{array}{l}
\text { A scalar value giving a global value for the anemometer startup speed, or the } \\
\text { threshold below which a value of } 0 \text { is recorded. As this can vary from station to } \\
\text { station and network to network, it may be preferable to include startupSpeed } \\
\text { as part of the ensembleData object. }
\end{array} \\
\text { init } & \begin{array}{l}
\text { An optional list of initial values for variance coefficients and weights. The de- } \\
\text { fault is to start with the variance coefficients equal to 1, and with equal weights } \\
\text { for each member of the ensemble. }
\end{array} \\
\text { optim.control } \begin{array}{l}
\text { Control parameters for the optim function used in the M-step of EM. The default } \\
\text { here is list(ndeps = rep(sqrt(.Machine\$double.eps), 2)), which assigns a smaller } \\
\text { finite-difference step size than the optim default of 1.e-3. To use the default } \\
\text { control parameters for optim, set optim.control=NULL. }
\end{array}
\end{array}
$$

Value

A list whose components are the input arguments and their assigned values.

References

J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Ensemble Forecasting using Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleBMAgamma, fitBMAgamma

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg", "eta","gasp","jma", "ngps", "tcwb", "ukmo")
    obs <- paste("MAXWSP10","obs", sep = ".")
    ens <- paste("MAXWSP10", ensMemNames, sep = ".")
    winsTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
## Not run: # R check
    winsTestFit1 <- ensembleBMAgamma(winsTestData, trainingDays = 30,
        control = controlBMAgamma(maxIter = 100, tol = 1.e-6,
```

```
    startupSpeed =1))
## End(Not run)
# for quick run only; use more training days for forecasting
    winsTestFit1 <- ensembleBMAgamma(winsTestData[1:14,], trainingDays = 5,
        control = controlBMAgamma(maxIter = 100, tol = 1.e-6, startupSpeed = 1))
```

 controlBMAgamma0 Control parameters for BMA precipitation modeling

Description

Specifies a list of values controling the Bayesian Model Averaging fit of a mixture of gammas with a point mass at 0 to ensemble forecasts for precipitation.

Usage

```
controlBMAgamma0(maxIter = Inf, tol = sqrt(.Machine$double.eps),
            power = (1/3), rainobs = 10,
                        init = list(varCoefs = NULL, weights = NULL),
        optim.control = list(ndeps = rep( sqrt(.Machine$double.eps), 2)))
```


Arguments

maxIter An integer specifying an upper limit on the number of iterations for fitting the BMA mixture via EM. The default is Inf, which sets no upper limit on the number of iterations, so that the convergence criterion based on eps is used.
tol A numeric convergence tolerance. The EM fit for the mixture of gammas is terminated when the relative error in successive objective values in the M-step falls below tol. The default is sqrt(.Machine\$double.eps), which is approximately $1 . \mathrm{e}-8$ on IEEE compliant machines.
power A scalar value giving the power by which the data will be transformed to fit the models for the point mass at 0 and mean of nonzero observations. The default is to use the $1 / 3$ power of the data. The untransformed forecast is used to fit the variance model.
rainobs An integer specifying a minimum number of observations with nonzero precipitation in the training data. When necessary and possible, the training period will be extended backward in increments of days to meet the minimum requirement. It is not possible to fit the BMA model for precipitation without sufficient nonzero observations. The default minimum number is 10 . It many instances fewer nonzero observations may suffice, but it could also be that more are needed to model precipitation in some datasets.
init An optional list of initial values for variance coefficients and weights. The default is to start with the variance coefficients equal to 1 , and with equal weights for each member of the ensemble.
optim. control Control parameters for the optim function used in the M-step of EM. The default here is list(ndeps $=\operatorname{rep}(\operatorname{sqrt}($. Machine\$double.eps), 2)), which assigns a smaller finite-difference step size than the optim default of 1.e-3. To use the default control parameters for optim, set optim. control=NULL.

Value

A list whose components are the input arguments and their assigned values.

References

J. M. Sloughter, A. E. Raftery, T Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Ensemble Forecasting using Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleBMAgamma0, fitBMAgamma0

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("PCP24","obs", sep = ".")
    ens <- paste("PCP24", ensMemNames, sep = ".")
    prcpTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                                    dates = ensBMAtest[,"vdate"],
                                    observations = ensBMAtest[,obs],
                                    station = ensBMAtest[,"station"],
                                    forecastHour = 48,
                                    initializationTime = "00")
## Not run: # R check
    prcpTestFit1 <- ensembleBMAgamma0( prcpTestData, trainingDays = 30,
        control = controlBMAgamma0(power = (1/4)))
## End(Not run)
# for quick run only; use more training days for forecasting
    prcpTestFit1 <- ensembleBMAgamma0( prcpTestData[1:14,], trainingDays = 6,
        control = controlBMAgamma0(power = (1/4)))
```


Description

Specifies a list of values controling the Bayesian Model Averaging fit of a mixture of normals to ensemble forecasts.

Usage

controlBMAnormal(maxIter, tol, equalVariance, biasCorrection, init)

Arguments

maxIter An integer specifying an upper limit on the number of iterations for fitting the BMA mixture via EM. The default is Inf, which sets no upper limit on the number of iterations, so that the convergence criterion based on eps is used.
tol A numeric convergence tolerance. The EM fit for the mixture model is terminated when the relative error in successive objective values in the M-step falls below tol. The default is sqrt(.Machine\$double.eps), which is approximately $1 . \mathrm{e}-8$ on IEEE compliant machines.
equalVariance A logical value indicating whether or not the variances for the mixture components should to be equal. The default is to constrain them to be equal.
biasCorrection A character string describing the type of bias correction to be used.
"regression" The bias correction term is formed by regression on the forecast values (including an intercept).
"additive" The mean of the difference between observations and forecasts is used for bias correction.
"none" No bias correction.
init An optional list of initial values for standard deviations and weights. The default is to start with all standard deviations equal to 1 , and with equal weights for each member of the ensemble.

Value

A list whose components are the input arguments and their assigned values.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleBMAnormal, fitBMAnormal

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                dates = ensBMAtest[,"vdate"],
                observations = ensBMAtest[,obs],
                station = ensBMAtest[,"station"],
                forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    tempTestFit1 <- ensembleBMAnormal(tempTestData, trainingDays = 30,
        control = controlBMAnormal(maxIter = 100, biasCorrection = "additive"))
## End(Not run)
# for quick run only; use more training days for forecasting
    tempTestFit1 <- ensembleBMAnormal(tempTestData[1:20,], trainingDays = 5,
        control = controlBMAnormal(maxIter = 100, biasCorrection = "additive"))
```


Description

Computes the continuous ranked probability score (CRPS) for univariate ensemble forecasting models.

Usage

crps(fit, ensembleData, dates=NULL, nSamples=NULL, seed=NULL, ...)
CRPS(fit, ensembleData, dates=NULL, nSamples=NULL, seed=NULL, ...)

Arguments

fit A model fit to ensemble forecasting data.
ensembleData An ensembleData object that includes ensemble forecasts, verification observations and possibly dates. Missing values (indicated by NA) are allowed. \This need not be the data used for the model fit, although it must include the same ensemble members.
nSamples The number of simulation samples for CRPS via simulation. For the normal model, the default is analytic computation of the CRPS. For the gamma model with a point mass at 0 (precipitation), the CRPS is always computed by simulation, with default $n S a m p l e s=10000$.
seed Argument to set. seed for random number generation in simulation.
dates The dates for which the CRPS will be computed. These dates must be consistent with fit and ensembleData. The default is to use all of the dates in fit. The dates are ignored if fit originates from fitBMA, which also ignores date information.

Included for generic function compatibility.

Details

These methods are generic, and can be applied to all ensemble forecasting models.
For gamma0 model for precipitation and the gamma model for wind speed the CRPS is only available through simulation. The default number of simulation samples is 10,000 .
Note that the gamma0 model for precipitation and the gamma model for wind speed may have been applied to a power transformation of the data.
For normal models for temperature and pressure, analytic computation of the CRPS is the default. CRPS will be computed via simulation for normal models only if nSamples is set to a positive value.
For the bivariate normal model for wind speed and direction, the CRPS is computed for the marginal wind speed distribution.

Value

crps is a matrix giving the CRPS for each instance in the data for both the raw ensemble and the median probabilistic forecast.
CRPS is a vector giving the mean of the CRPS over all instances for the raw ensemble and the median probabilistic forecast.

References

T. Gneiting and A. E. Raftery, Strictly proper scoring rules, prediction and estimation, Journal of the American Statistical Association 102:359-378, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleBMA, fitBMA

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
# for quick run only; use more training days for forecasting
    tempTestFit <- ensembleBMAnormal( tempTestData[1:20,], trainingDays = 8)
    crpsValues <- crps( tempTestFit, tempTestData)
    colMeans(crpsValues)
    CRPS( tempTestFit, tempTestData)
```

```
dateCheck Checks date format.
```


Description

Checks that the character form of a vector of dates conforms to YYYYMMDDHH or YYYYMMDD.

Usage

dateCheck(YYYYMMDDHH)

Arguments

YYYYMMDDHH
A character vector (or its factor equivalent) of dates which should be in the form YYYYMMDDHH or YYYYMMDD, in which YYYY specifies the year, MM the month, DD the day, and (optionally) HH the hour.

Details

If both YYYYMMDDHH and YYYYMMDD are present, the YYYYMMDD dates are assumed to be in error even if $\mathrm{HH}==00$ for all of the longer dates.
Requires the chron library.

Value

A logical vector indicating whether or not each element of YYYYMMDDHH has the correct format.

See Also
ymdhTOjul,julTOymdh

Examples

```
    dateCheck(c("2008043000", "20080431", "20080501"))
```

ensBMAtest Ensemble BMA Test Data Set

Description

This data set gives 48-hour forecasts for 2-m temperature, precipitation accumulated over the last 24 hours, and maximum wind speed at SeaTac (KSEA) and Portland (PDX) ariports in 2007/2008 initialized at 00 hours UTC using a 12 km grid. The forecasts are based on an 8 member version of the University of Washington mesoscale ensemble (Grimit and Mass 2002; Eckel and Mass 2005).

Format

A data frame with 66 rows and 34 columns:
idate the initialization date of each forecast/observation, format YYYYMMDDHH (categorical). vdate the validation date of each forecast/observation, format YYYYMMDDHH (categorical). latitude the latitude of each forecast/observation (numeric).
longitude the longitude of each forecast/observation (numeric).
longitude the elevation (in meters) above sea level (numeric).
station weather station identifier (categorical).
network weather network identifier (categorical). *.gfs,*.cmcg, *. eta, *.gasp,*.jma, *.ngps, *. tcwb
forecasts from the 8 members of the ensemble (numeric). $*$. obs observed values for the weather parameters. The prefix $*$ is one of T2 for temperature, PCP24 for precipitation, MAXWSP10 for wind speed.

Details

Temperature is given in Kelvin.
Precipitation amounts are quantized to hundredths of an inch.
Maximum wind speed is defined as the maximum of the hourly 'instantaneous' wind speeds over the previous 18 hours, where an hourly 'instantaneous' wind speed is a 2-minute average from the period of two minutes before the hour to on the hour.
The wind speed observations are measured at $10-\mathrm{m}$ above the ground and discretized when recorded by rounding to the nearest meter per second.
This is a small dataset provided for the purposes of testing. Typically forecasting would be performed on much larger datasets.

References

F. A. Eckel and C. F. Mass, Effective mesoscale, short-range ensemble forecasting, Weather and Forecasting 20:328-350, 2005.
E. P. Grimit and C. F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest, Weather and Forecasting 17:192-205, 2002.

Examples

```
## Not run: # R check
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb", "ukmo")
#------------------------------------------------------------------------------
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                                    dates = ensBMAtest[,"vdate"],
                                    observations = ensBMAtest[,obs],
                                    station = ensBMAtest[,"station"],
                                    forecastHour = 48,
                                    initializationTime = "00")
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
    MAE( tempFit, tempTestData)
    CRPS( tempFit, tempTestData)
#------------------------------------------------------------------------------
    obs <- paste("PCP24","obs", sep = ".")
    ens <- paste("PCP24", ensMemNames, sep = ".")
    prcpTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
```

```
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
    prcpTestFit <- ensembleBMAgamma0( prcpTestData, trainingDays = 30)
    MAE( prcpTestFit, prcpTestData)
    CRPS( prcpTestFit, prcpTestData)
#----------------------------------------------------------------------------
    obs <- paste("MAXWSP10","obs", sep = ".")
    ens <- paste("MAXWSP10", ensMemNames, sep = ".")
    winsTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
    winsTestFit <- ensembleBMAgamma(winsTestData, trainingDays = 30)
    MAE( winsTestFit, winsTestData)
    CRPS( winsTestFit, winsTestData)
## End(Not run)
```

ensembleBMA BMA mixture model fit

Description

Fits a BMA mixture model to ensemble forecasts. Allows specification of a model, training rule, and forecasting dates.

Usage

ensembleBMA(ensembleData, trainingDays, dates = NULL, control = NULL, model $=$ NULL, exchangeable $=$ NULL, minCRPS $=$ NULL)

Arguments

ensembleData An ensembleData object including ensemble forecasts with the corresponding verifying observations and their dates. Missing values (indicated by NA) are allowed.
dates The dates for which BMA forecasting models are desired. By default, this will be all dates in ensembleData for which modeling is allowed given training rule.

trainingDays	An integer giving the number of time steps (e.g. days) in the training period. There is no default.
control	A list of control values for the fitting functions. The default is controlBMAnormal () for normal models and controlBMAgamma0() for gamma models with a point mass at 0.
model	A character string describing the BMA model to be fit. Current choices are "normal", typically used for temperature or pressure data, and "gamma0", typi- cally used for precipitation data.
exchangeable \quadA numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The model fit will have equal weights and parameters within each group. The default determines exchangeability from	
ensembleData.	

Details

If dates are specified in dates that cannot be forecast with the training rule, the corresponding BMA model parameter outputs will be missing (NA) but not NULL.
The training rule uses the number of days corresponding to its length regardless of whether or not the dates are consecutive.
The following methods are available for the output of ensembleBMA: cdf, quantileForecast, modelParameters, brierScore, crps, CRPS and MAE.

Value

A list with the following output components:
dateTable The table of observations corresponding to the dates in x in chronological order.
trainingDays The number of days in the training period as specified in input.
. . One or more components corresponding to fitted coefficients for the model.
weights The fitted BMA weights for the mixture components for each ensemble member at each date.
power A scalar value giving the power (if any) by which the data was transformed for modeling. The untransformed forecast is used to fit the variance model. This is input as part of control, and applies only to certain models.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian Model Averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleData, ensembleBMAnormal, ensembleBMAgamma0, ensembleBMAgamma, cdf, quantileForecast, modelParameters, brierScore, crps, MAE, controlBMAnormal, controlBMAgamma0, controlBMAgamma

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMA( tempTestData, trainingDays = 30,
        model = "normal")
## equivalent to
## tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
# for quick run only; use more training days for forecasting
    tempTestFit <- ensembleBMA( tempTestData[1:20,], trainingDays = 8,
                    model = "normal")
    set.seed(0); exch <- sample(1:length(ens),replace=TRUE)
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        exchangeable = exch,
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
```

```
    initializationTime = "00")
    # for quick run only; use more training days for forecasting
    tempTestFit <- ensembleBMA( tempTestData[1:20,], trainingDays = 8,
    model = "normal")
```

 ensembleBMAgamma BMA wind speed modeling

Description

Fits a Bayesian Model Averaging mixture of gammas to ensemble forecasts. Intended for predicting wind speed. Allows specification of a training period and forecasting dates.

Usage

ensembleBMAgamma(ensembleData, trainingDays, dates = NULL, control = controlBMAgamma(), exchangeable $=$ NULL)

Arguments

ensembleData An ensembleData object including ensemble forecasts with the corresponding verifying observations and their dates. Missing values (indicated by NA) are allowed.
trainingDays An integer giving the number of time steps (e.g. days) in the training period. There is no default.
dates The dates for which forecasting models are desired. By default, this will be all dates in ensembleBMA for which modeling is allowed given the training rule.
control A list of control values for the fitting functions. The defaults are given by the function controlBMAgamma0.
exchangeable A numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The models fit will have equal weights and parameters within each group. The default determines exchangeability from ensembleData.

Details

The output is for all of the dates in ensembleBMA, so there will be missing entries denoted by NA for dates that are too recent to be forecast with the training rule.
The following methods are available for ensembleBMAgamma0 objects: cdf, quantileForecast, modelParameters, brierScore, crps, CRPS and MAE.

Value

A list with the following output components:

training	A list containing information on the training length and lag and the number of instances used for training for each modeling day.
prob0coefs	The fitted coefficients in the model for the point mass at 0 (probability of zero precipitaion) for each member of the ensemble at each date.
biasCoefs	The fitted coefficients in the model for the mean of the gamma components for each member of the ensemble at each date (bias correction).
varCoefs	The fitted coefficients for the model for the variance of gamma components for each date. The coefficients are the same for all members of the ensemble.
weights	The fitted BMA weights for the gamma components for each ensemble member at each date.
power	A scalar value giving to the power by which the data was transformed to fit the models for the point mass at 0 and the bias model. The untransformed forecast is used to fit the variance model. This is input as part of control.

References

J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleData, controlBMAgamma, fitBMAgamma, cdf, quantileForecast, modelParameters, brierScore, crps, MAE

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("MAXWSP10","obs", sep = ".")
    ens <- paste("MAXWSP10", ensMemNames, sep = ".")
    winsTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
## Not run: # R check
    winsTestFit <- ensembleBMAgamma(winsTestData, trainingDays = 30,
        control = controlBMAgamma(startupSpeed = 1))
```

```
## equivalent to
## winsTestFit <- ensembleBMA(winsTestData, trainingDays = 30,
## model = "gamma")
## End(Not run)
# for quick run only; use more training days for forecasting
    winsTestFit <- ensembleBMAgamma(winsTestData[1:14,], trainingDays = 5,
                control = controlBMAgamma(startupSpeed = 1))
```

ensembleBMAgamma0 BMA precipitation modeling

Description

Fits a Bayesian Model Averaging mixture of gammas with a point mass at 0 to ensemble forecasts. Intended for predicting precipitation. Allows specification of a training rule and forecasting dates.

Usage

ensembleBMAgamma0(ensembleData, trainingDays, dates = NULL,

```
                        control = controlBMAgamma0(), exchangeable = NULL)
```


Arguments

ensembleData An ensembleData object including ensemble forecasts with the corresponding verifying observations and their dates. Missing values (indicated by NA) are allowed.
trainingDays An integer giving the number of time steps (e.g. days) in the training period. There is no default.
dates The dates for which forecasting models are desired. By default, this will be all dates in ensembleData for which modeling is allowed given the training rule.
control A list of control values for the fitting functions. The defaults are given by the function controlBMAgamma0.
exchangeable A numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The models fit will have equal weights and parameters within each group. The default determines exchangeability from ensembleData.

Details

The output is for all of the dates in ensembleBMA, so there will be missing entries denoted by NA for dates that are too recent to be forecast with the training rule.
The following methods are available for ensembleBMAgamma0 objects: cdf, quantileForecast, modelParameters, brierScore, crps, CRPS and MAE.

Value

A list with the following output components:

training	A list containing information on the training length and lag and the number of instances used for training for each modeling day.
prob0coefs	The fitted coefficients in the model for the point mass at 0 (probability of zero precipitaion) for each member of the ensemble at each date. The fitted coefficients in the model for the mean of the gamma components for each member of the ensemble at each date (bias correction).
biasCoefs	The fitted coefficients for the model for the variance of gamma components for each date. The coefficients are the same for all members of the ensemble.
varCoefs	The fitted BMA weights for the gamma components for each ensemble member at each date.
power	A scalar value giving to the power by which the data was transformed to fit the models for the point mass at 0 and the bias model. The untransformed forecast is used to fit the variance model. This is input as part of control.

References

J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.

See Also

ensembleData, controlBMAgamma0, fitBMAgamma0, cdf, quantileForecast, modelParameters, brierScore, crps, MAE

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg", "eta","gasp","jma", "ngps", "tcwb", "ukmo")
    obs <- paste("PCP24","obs", sep = ".")
    ens <- paste("PCP24", ensMemNames, sep = ".")
    prcpTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
```

```
## Not run: # R check
    prcpTestFit <- ensembleBMAgamma0( prcpTestData, trainingDays = 30)
## equivalent to
## prcpTestFit <- ensembleBMA( prcpTestData, trainingDays = 30,
## model = "gamma0")
## End(Not run)
# for quick run only; use more training days for forecasting
    prcpTestFit <- ensembleBMAgamma0( prcpTestData[3:16,], trainingDays = 6)
```

ensembleBMAnormal BMA mixture of normals modeling

Description

Fits a Bayesian Model Averaging mixture of normals to ensemble forecasts. Allows specification of a training rule and forecasting dates.

Usage

```
ensembleBMAnormal(ensembleData, trainingDays, dates = NULL,
control = controlBMAnormal(), exchangeable = NULL,
minCRPS = FALSE)
```


Arguments

ensembleData An ensembleData object including ensemble forecasts with the corresponding verifying observations and their dates. Missing values (indicated by NA) are allowed.
trainingDays An integer giving the number of time steps (e.g. days) in the training period. There is no default.
dates The dates for which BMA forecasting models are desired. By default, this will be all dates in ensembleData for which modeling is allowed given the training rule.
control A list of control values for the fitting functions. The defaults are given by the function controlBMAnormal.
exchangeable A numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The modeling will have equal weights and parameters within each group. The default determines exchangeability from ensembleData.
minCRPS A logical variable indicating whether or not to add a postprocessing step after the BMA fit to choose the standard deviation so as to minimize the CRPS for the training data. The default is not to do the CRPS minimization, because it can add considerable extra cost to the computation, particularly when there are many ensemble members.

Details

The output is for all of the dates in ensembleData, so there will be missing entries denoted by NA for dates that are too recent to be forecast with the training rule.
The following methods are available for ensembleBMAnormal objects: cdf, quantileForecast, modelParameters, brierScore, crps, CRPS and MAE.

Value

A list with the following output components:

training	A list containing information on the training length and lag and the number of instances used for training for each modeling day.
biasCoefs	The fitted bias-correction coefficients for each ensemble member at each date.
sd	The fitted standard deviations for the mixture of normals model at each date.
weights	The fitted BMA weights for the normal components for each ensemble member at each date.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.

See Also

ensembleData, controlBMAnormal, fitBMAnormal, cdf, quantileForecast, modelParameters, brierScore, crps, MAE

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
```

```
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## equivalent to
## tempTestFit <- ensembleBMA( tempTestData, trainingDays = 30,
## model = "normal")
## End(Not run)
# for quick run only; use more training days for forecasting
    tempTestFit <- ensembleBMAnormal( tempTestData[1:20,], trainingDays = 8)
```

```
ensembleData Create an ensembleData object
```


Description

Creates an ensembleData object including ensemble forecasts along with dates and (optionally) observations. Other descriptive information such as latitude, longitude, and station type may be included as well.

Usage

```
ensembleData( forecasts, dates = NULL, observations = NULL, ...,
forecastHour, initializationTime,
startupSpeed = NULL, exchangeable = NULL)
```


Arguments

forecasts	A matrix or array (for vector quantities) with columns corresponding to forecasts from individual members of an ensemble and rows corresponding to forecasts for the same date.
dates	A numeric or character vector or factor specifying the valid dates for the fore casts. If numeric, it is interpreted as a Julian date if it has an origin attribute specifying the month, day, and year, e.g. c (month $=1$, day $=1$, year $=2000$) Otherwise the character form of each date must be a string with format format YYYYMMDDHH or YYYYMMDD, where YYYY is the year, MM the monthn, DD the day, and (optionally) HH the hour.
observations	Optional vector (or matrix for vector quantities) of observed weather conditions corresponding to the forecasts. Must be supplied if the data is to be used for BMA modeling.
	A named list of additional attributes such as latitude, longitude, and startup Speed for wind speed.
forecastHour	A number giving the forecast hour, the time interval between the initialization and forecast times, in units of hours.

initializationTime
A number or character string giving the initialization time.
startupSpeed A numeric value specifying a value below which the anemometer readings for wind speed will be recorded as zero. This value is used for all stations when the startup speed is not explicity specified as part of the data.
exchangeable A numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The models fit will have equal weights and parameters within each group. The same names/labels should be used as for the forecasts. The default assumes that none of the ensemble members are exhangeable.

Details

For use with batch processing modeling functions (ensembleBMA etc), instances ensembleData object are assumed the same forecast hour and initialization time, which should be specified as part of the object.
Methods for ensembleData objects include ensembleSize, ensembleForecasts, ensembleValidDates.
Subsetting is possible, but in the case of columns it applies only to the ensemble forecasts.
For vector wind computations, the velocity should be in the first column and the direction in the second.

Value

An ensembleData object, incorporating forecasts and (optionally) observations with the associated valid dates.

References

C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

ensembleBMA, ensembleBMAgamma, ensembleBMAgamma0, ensembleBMAnormal

Examples

```
data(ensBMAtest)
ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
obs <- paste("T2","obs", sep = ".")
ens <- paste("T2", ensMemNames, sep = ".")
tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                dates = ensBMAtest[,"vdate"],
                observations = ensBMAtest[,obs],
                station = ensBMAtest[,"station"],
```

```
    forecastHour = 48,
    initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
    obs <- paste("PCP24","obs", sep = ".")
    ens <- paste("PCP24", ensMemNames, sep = ".")
    prcpTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    prcpTestFit <- ensembleBMAgamma0( prcpTestData, trainingDays = 30)
## End(Not run)
    obs <- paste("MAXWSP10","obs", sep = ".")
    ens <- paste("MAXWSP10", ensMemNames, sep = ".")
    winsTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    winsTestFit <- ensembleBMAgamma(winsTestData, trainingDays = 30)
## End(Not run)
```

fitBMA

Description

Fits a Bayesian Modeling Averaging mixture model to a given training set.

Usage

fitBMA(ensembleData, control $=$ NULL, model $=$ NULL, exchangeable $=$ NULL)

Arguments

ensembleData An ensembleData object including ensemble forecasts and verification observations. Missing values (indicated by NA) are allowed. Dates are ignored if they are included. This is the training set for the model.
control A list of control values for the fitting functions. The default is controlBMAnormal() for normal models and controlBMAgamma0() for gamma models with a point mass at 0 .
model A character string describing the BMA model to be fit. Current choices are "normal" for temperature or pressure data, and "gamma0" for precipitation data.
exchangeable A numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The model fit will have equal weights and parameters within each group. The default determines exchangeability from ensembleData.

Details

This function fits a BMA model to a training data set.
Methods available for fitBMA objects (the output of fitBMA) include: cdf, quantileForecast, and modelParameters.

Value

A list with the following output components:
... One or more components corresponding to the coeffcients of the model.
weights The fitted BMA weights for the mixture components for each ensemble member.
nIter The number of EM iterations.
power A scalar value giving the power (if any) by which the data was transformed for modeling. The untransformed forecast is used to fit the variance model. This is input as part of control, and applies only to certain models.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleData, ensembleBMA, fitBMAgamma, fitBMAgamma0, fitBMAnormal, cdf, quantileForecast, modelParameters, controlBMAgamma, controlBMAgamma0, controlBMAnormal

Examples

```
    data(ensBMAtest)
    ensNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        dates = ensBMAtest[,"vdate"],
        forecastHour = 48,
        initializationTime = "00")
    tempTrain <- trainingData( tempTestData, trainingDays = 30,
        date = "2008010100")
    tempTrainFit <- fitBMA( tempTrain, model = "normal")
## equivalent to
## tempTrainFit <- fitBMAnormal( tempTrain)
    set.seed(0); exch <- sample(1:length(ens),replace=TRUE)
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        exchangeable = exch,
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        dates = ensBMAtest[,"vdate"],
        forecastHour = 48,
        initializationTime = "00")
```


Description

Fits a Bayesian Modeling Averaging mixture of gammas. Intended for wind speed forecasts.

Usage

fitBMAgamma(ensembleData, control = controlBMAgamma(), exchangeable = NULL)

Arguments

ensembleData An ensembleData object including ensemble forecasts and verification observations. Missing values (indicated by NA) are allowed. Dates are ignored if they are included. This is the training set for the model.
control A list of control values for the fitting functions. The defaults are given by the function controlBMAgamma.
exchangeable An optional numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The model fit will have equal weights and parameters within each group. If supplied, this argument will override any specification of exchangeability in ensembleData.

Details

This function fits a BMA model to a training data set.
It is called by ensembleBMAgamma, which can produce a sequence of fits over a larger precipitation data set.
Methods available for the output of fitBMA include: cdf, quantileForecast, and modelParameters.

Value

A list with the following output components:
biasCoefs The fitted coefficients in the model for the mean of nonzero observations for each member of the ensemble (used for bias correction).
varCoefs The fitted coefficients for the model for the variance of nonzero observations (these are the same for all members of the ensemble).
weights The fitted BMA weights for the gamma components for each ensemble member.
nIter The number of EM iterations.
power A scalar value giving to the power by which the data was transformed to fit the models for the point mass at 0 and the bias model. The untransformed forecast is used to fit the variance model. This is input as part of control.

References

J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("MAXWSP10","obs", sep = ".")
    ens <- paste("MAXWSP10", ensMemNames, sep = ".")
    winsTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        startupSpeed = 1,
        forecastHour = 48,
        initializationTime = "00")
## Not run: # R check
    winsTrain <- trainingData( winsTestData, trainingDays = 30,
                        date = "2008010100")
## End(Not run)
# for quick run only; use more training days for forecasting
    winsTrain <- trainingData( winsTestData, trainingDays = 10,
                        date = "2008010100")
    winsTrainFit <- fitBMAgamma( winsTrain)
## equivalent to
## winsTrainFit <- fitBMA( winsTrain, model = "gamma")
```

fitBMAgamma0 BMA precipitation model fit to a training set

Description

Fits a Bayesian Modeling Averaging mixture of gammas with a point mass at 0 to a given training set. Intended for precipitation forecasts.

Usage

fitBMAgamma0(ensembleData, control = controlBMAgamma0(), exchangeable $=$ NULL)

Arguments

ensembleData An ensembleData object including ensemble forecasts and verification observations. Missing values (indicated by NA) are allowed. Dates are ignored if they are included. This is the training set for the model.
control A list of control values for the fitting functions. The defaults are given by the function controlBMAgamma0.
exchangeable An optional numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The model fit will have equal weights and parameters within each group. If supplied, this argument will override any specification of exchangeability in ensembleData.

Details

This function fits a BMA model to a training data set.
It is called by ensembleBMAgamma0, which can produce a sequence of fits over a larger precipitation data set.
Methods available for the output of fitBMA include: cdf, quantileForecast, and modelParameters.

Value

A list with the following output components:
prob0coefs The fitted coefficients in the model for the point mass at 0 (probability of zero precipitation) for each member of the ensemble.
biasCoefs The fitted coefficients in the model for the mean of nonzero observations for each member of the ensemble (used for bias correction).
varCoefs The fitted coefficients for the model for the variance of nonzero observations (these are the same for all members of the ensemble).
weights The fitted BMA weights for the gamma components for each ensemble member.
nIter The number of EM iterations.
power A scalar value giving to the power by which the data was transformed to fit the models for the point mass at 0 and the bias model. The untransformed forecast is used to fit the variance model. This is input as part of control.

References

J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.

See Also

ensembleData, controlBMAgamma0, ensembleBMAgamma0, cdf, quantileForecast, modelParameters

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg", "eta","gasp","jma", "ngps", "tcwb", "ukmo")
    obs <- paste("PCP24","obs", sep = ".")
    ens <- paste("PCP24", ensMemNames, sep = ".")
    prcpTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
## Not run: # R check
    prcpTrain <- trainingData( prcpTestData, trainingDays = 30,
        date = "2008010100")
## End(Not run)
# quick run only; use more training days for forecasting
    prcpTrain <- trainingData( prcpTestData, trainingDays = 10,
        date = "2008010100")
    prcpTrainFit <- fitBMAgamma0( prcpTrain)
## equivalent to
## prcpTrainFit <- fitBMA( prcpTrain, model = "gamma0")
```

fitBMAnormal BMA mixture of normals fit to a training set

Description

Fits a Bayesian Model Averaging mixture of normals to a given training set.

Usage

fitBMAnormal(ensembleData, control = controlBMAnormal(), exchangeable $=$ NULL)

Arguments

ensembleData An ensembleData object including ensemble forecasts and verification observations. Missing values (indicated by NA) are allowed. Dates are ignored if they are included. This is the training set for the model.
control A list of control values for the fitting functions. The defaults are given by the function controlBMAnormal.
exchangeable An optional numeric or character vector or factor indicating groups of ensemble members that are exchangeable (indistinguishable). The models have equal weights and parameters within each group. If supplied, this argument will override any specification of exchangeability in ensembleData.

Details

This function fits a BMA model to a training data set.
It is called by ensembleBMAnormal, which can produce a sequence of fits over a larger data set.
Methods available for the output of fitBMAnormal include: cdf, quantileForecast, and modelParameters.

Value

A list with the following output components:
biasCoefs The fitted bias-correction coefficients.
sd The fitted standard deviations for the mixture of normals model (equal or varying across components according to the equalVariance setting in the control input).
weights The fitted BMA weights for the normal components for each ensemble member.
nIter The number of EM iterations.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian Model Averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.

See Also

ensembleData, controlBMAnormal, ensembleBMAnormal, cdf, quantileForecast, modelParameters

Examples

```
    data(ensBMAtest)
    ensNames <- c("gfs","cmcg", "eta", "gasp","jma", "ngps", "tcwb", "ukmo")
obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
```

```
    observations = ensBMAtest[,obs],
    station = ensBMAtest[,"station"],
    dates = ensBMAtest[,"vdate"],
    forecastHour = 48,
    initializationTime = "00")
    tempTrain <- trainingData( tempTestData, trainingDays = 30,
    date = "2008010100")
tempTrainFit <- fitBMAnormal( tempTrain)
```

 julTOymdh

Description

Converts Julian dates to YYYYMMDDHH or YYYYMMDD character format.

Usage

julTOymdh(julianDates, origin = NULL, dropHour = NULL)

Arguments

julianDates	A numeric vector specifying Julian dates.
origin	A named vector specifying the month, day, and year for the origin of the Ju- lian dates. The default is c(month $=1$, day $=1$, year $=2000) . ~ T h e ~ d e f a u l t ~ i s ~$
attr(julianDates, "origin") if it exists.	

Details

Requires the chron library.

Value

A character vector or numeric equivalent of dates in the form YYYYMMDDHH or YYYYMMDD, in which YYYY specifies the year, MM the month, DD the day, and (optionally) HH the hour corresponding to the Julian input.

See Also

```
dateCheck,ymdhTOjul
```


Examples

```
data(ensBMAtest)
julianIdates <- ymdhTOjul(ensBMAtest$idate)
all.equal( julTOymdh(julianIdates), as.character(ensBMAtest$idate))
all.equal( ymdhTOjul(ensBMAtest$vdate), julianIdates+2)
```

```
MAE Mean Absolute Error
```


Description

Computes the mean absolute error (MAE) for ensemble forecasting models.

Usage

MAE(fit, ensembleData, dates=NULL, ...)

Arguments

fit	A model fit to ensemble forecasting data.
ensembleData	An ensembleData object that includes ensemble forecasts, verification observa- tions and possibly dates. Missing values (indicated by NA) are allowed. \backslash This need not be the data used for the model fit, although it must include the same ensemble members.
dates	The dates for which the CRPS and MAE will be computed. These dates must be consistent with fit and ensembleData. The default is to use all of the dates in fit.
\ldots	Included for generic function compatibility.

Details

This method is generic, and can be applied to all ensemble forecasting models.
Note the model may have been applied to a power transformation of the data, but that information is included in the input fit, and the output is transformed appropriately.

Value

A vector giving the MAE for the deterministic forecasts associated with the raw ensemble and for the ensemble forecasting model. This is the mean absolute difference of the raw ensemble medians and the observations, and the mean absolute difference of the median forecast and the observations (as in Sloughter et al. 2007). \Note that Raftery et al. 2005 uses the mean absolute difference of the raw ensemble means and the observations, and the mean absolute difference of the BMA predictive mean and the observations.

References

C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised in 2010).

See Also

ensembleBMA

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg", "eta","gasp","jma", "ngps", "tcwb", "ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                dates = ensBMAtest[,"vdate"],
                observations = ensBMAtest[,obs],
                station = ensBMAtest[,"station"],
                forecastHour = 48,
                initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
    MAE( tempTestFit, tempTestData)
```

modelParameters Extract model parameters

Description

Extracts model parameters for ensemble forecasting models.

Usage

modelParameters(fit, ...)

Arguments

fit
A model fit to ensemble forecasting data.
... For ensemble fits involving dates, there is an additional dates argument, giving a character representation of the dates for which model parameters are desired. In this case dates must correspond to the models in the fit and the default is to give the model parameters for all available dates.

Value

A list of parameters (including weights) corresponding to the ensemble forecasting model for the specified dates. The list may also include a power by which the forecasts were transformed to obtain the model parameters.

See Also

ensembleBMAgamma, ensembleBMAgamma0, ensembleBMAnormal, fitBMAgamma, fitBMAgamma0, fitBMAnormal

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg", "eta", "gasp", "jma", "ngps", "tcwb", "ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                    dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
    modelParameters( tempTestFit, date = "2008010100")
    tempTrain <- trainingData( tempTestData, date = "2008010100",
                        trainingDays = tempTestFit$training$days)
    tempTrainFit <- fitBMAnormal( tempTrain)
    modelParameters( tempTrainFit)
```

pit

Probability Integral Transform for ensemble forcasting models

Description

Computes the probabilty integral transform (PIT) of a BMA ensemble forecasting model at observation locations.

Usage

pit(fit, ensembleData, dates = NULL, randomizeATzero=FALSE, ...)

Arguments

fit A model fit to ensemble forecasting data.
ensembleData An ensembleData object that includes ensemble forecasts, verification observations and possibly dates. Missing values (indicated by NA) are allowed. \This need not be the data used for the model fit, although it must include the same ensemble members.
dates The dates for which the CDF will be computed. These dates must be consistent with fit and ensembleData. The default is to use all of the dates in fit. The dates are ignored if fit originates from fitBMA, which also ignores date information.
randomizeATzero
For the gamma0 model for precipitation, observations should be randomized at 0 for assessing the calibration. Has no effect for the other models.
... Included for generic function compatibility.

Details

Most often used for computing PIT histograms to assess calibration of forecasts, in which case the observations in ensembleData would be those used in modeling fit.
Instances in ensembleData without verifying observations are ignored.
Note the model may have been applied to a power transformation of the data, but that information is included in the input fit, and the output is transformed appropriately.
The PIT is a continuous analog of the verification rank.

Value

The value of the BMA cumulative distribution function CDF corresponding to the fit at the observed values in ensembleData.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
T. Gneiting, F. Balabdaoui and A. Raftery, Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society, Series B 69:243-268, 2007.
J. M. Sloughter, A. E. Raftery, T Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

pitHist, verifRankHist, ensembleBMA, fitBMA, quantileForecast

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
        dates = ensBMAtest[,"vdate"],
        observations = ensBMAtest[,obs],
        station = ensBMAtest[,"station"],
        forecastHour = 48,
        initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
    tempTestForc <- quantileForecast( tempTestFit, tempTestData)
    range(tempTestForc)
    tempTestPIT <- pit( tempTestFit, tempTestData)
```

 pitHist
 PIT Histogram

Description

Computes the probability integral transform of the obervations relative to the BMA forecast, and plots its histogram.

Usage

pitHist(fit, ensembleData, dates=NULL)

Arguments

$$
\begin{array}{ll}
\text { fit } & \text { A model fit to ensemble forecasting data. } \\
\text { ensembleData } & \begin{array}{l}
\text { An ensembleData object that includes ensemble forecasts, verification observa- } \\
\text { tions and possibly dates. Missing values (indicated by NA) are allowed. \ This } \\
\text { need not be the data used for the model fit, although it must include the same } \\
\text { ensemble members. }
\end{array} \\
\text { dates } & \begin{array}{l}
\text { The dates for which the CDF will be computed. These dates must be consis- } \\
\text { tent with fit and ensembleData. The default is to use all of the dates in fit. } \\
\text { The dates are ignored if fit originates from fitBMA, which also ignores date } \\
\text { information. }
\end{array}
\end{array}
$$

Details

PIT histograms are used to assess calibration of forecasts, in which case the observations in ensembleData would be those used in modeling fit.
Instances in ensembleData without verifying observations are ignored.
In the case of the gamma0 model for precipitation, observations of zero precipitation are randomized within their probabilistics range to avoid a false impression of bias.
Note the model may have been applied to a power transformation of the data, but that information is included in the input fit, and the output is transformed appropriately.
The PIT is a continuous analog of the verification rank.

Value

The value of the BMA cumulative distribution function CDF corresponding to the fit at the observed values in ensembleData. The corresponding histogram is also plotted.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
T. Gneiting, F. Balabdaoui and A. Raftery, Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society, Series B 69:243-268, 2007.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleData, pit, verifRankHist.

Examples

```
    data(srft)
    labels <- c("CMCG","ETA","GASP","GFS","JMA", "NGPS","TCWB", "UKMO")
    srftData <- ensembleData( forecasts = srft[ ,labels],
                        dates = srft$date,
                        observations = srft$obs,
                        latitude = srft$lat,
                        longitude = srft$lon,
                        forecastHour = 48,
                            initializationTime = "00")
## Not run:
# this takes time
# the PIT should be evaluated over relatively long periods
    srftFITall <- ensembleBMA( srftData, model = "normal", trainingDays = 25)
    srftPIT <- pitHist( srftFITall, srftData)
## End(Not run)
```

```
plot.ensembleBMA Plot the Predictive Distribution Function for ensemble forcasting
    models
```


Description

Plots the Predictive Distribution Function (PDF) of an ensemble forecasting model.

Usage

\#\# S3 method for class 'ensembleBMAgamma'
plot (x, ensembleData, dates=NULL, ask=TRUE, ...)
\#\# S3 method for class 'ensembleBMAgamma0'
plot (x, ensembleData, dates=NULL, ask=TRUE, ...)
\#\# S3 method for class 'ensembleBMAnormal'
plot (x, ensembleData, dates=NULL, ask=TRUE, ...)
\#\# S3 method for class 'fitBMAgamma'
plot (x , ensembleData, dates=NULL, ...)
\#\# S3 method for class 'fitBMAgamma0'
plot(x, ensembleData, dates=NULL, ...)
\#\# S3 method for class 'fitBMAnormal'
plot (x, ensembleData, dates=NULL, ...)

Arguments

x	A model fit to ensemble forecasting data.
ensembleData	An ensembleData object that includes ensemble forecasts, verification observa- tions and possibly dates. Missing values (indicated by NA) are allowed. \backslash This need not be the data used for the model fit, although it must include the same ensemble members.
dates	The dates for which the PDF will be computed. These dates must be consis- tent with fit and ensembleData. The default is to use all of the dates in fit. The dates are ignored if fit originates from fitBMA, which also ignores date information.
ask	A logical value indicating whether or not the user should be prompted for the next plot.
\ldots	Included for generic function compatibility.

Details

This method is generic, and can be applied to any ensemble forecasting model.
The colored curves are the weighted PDFs of the ensemble members, and the bold curve is the overall PDF. The vertical black line represents the median forecast, and the dotted back lines represent the .1 and .9 quartiles. The vertical orange line is the verifying observation (if any).
Exchangeable members are represented in the plots by the weighted group sum rather than by the indivdual weighted PDFs of each member.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

Examples

```
data(ensBMAtest)
ensMemNames <- c("gfs","cmcg","eta","gasp","jma","ngps", "tcwb", "ukmo")
obs <- paste("T2","obs", sep = ".")
ens <- paste("T2", ensMemNames, sep = ".")
```

```
        tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
        tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
        plot(tempTestFit, tempTestData)
## End(Not run)
```

plotProbcast Surface plots for forecast information.

Description

Produces contour, image, or perspective plot of a forecast using loess prediction on a grid.

Usage

plotProbcast(forecast, longitude, latitude, nGrid $=65$,
type $=c(" i m a g e ", " c o n t o u r ", ~ " p e r s p "), \ldots$,
interpolate $=$ FALSE, span $=0.75$, maps $=$ NULL $)$

Arguments

forecast	Numeric vector of forecasts.
longitude	Numeric vector giving the longitude of each forecast location.
latitude	Numeric vector giving the latitude of each forecast location.
nGrid	Number of grid points for loess interpolation. (Binning and interpolation are done on an nGrid by nGrid grid).
type	A character string indicating the desired plot type. Should be one of either "contour", "image", or "persp".
\ldots	Additional arguments to be passed to the plotting method.
interpolate	A logical variable indicating whether or not a loess fit should be used to inter- polate the data to points on a grid. The default is to determine grid values by binning, rather than interpolation.
span	Smoothing parameter for loess (used only when interpolate = TRUE). The default value is 0.75, which is the default for loess.
maps	A logical value indicating whether or not to include a map outline. The default is to include an outline if type = "image" and the fields library is loaded.

Details

If the fields library is loaded, a legend (and optionally a map outline) will be included in image plots.

Value

An image, contour, or perspective plot of the forecast.

References

C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

See Also

```
quantileForecast
```


Examples

```
    data(srft)
    labels <- c("CMCG","ETA","GASP","GFS","JMA", "NGPS", "TCWB", "UKMO")
    srftData <- ensembleData( forecasts = srft[,labels],
                        dates = srft$date, observations = srft$obs,
                        latitude = srft$lat, longitude = srft$lon,
                        forecastHour = 48, initializationTime = "00")
## Not run: # R check
    bmaFit <- ensembleBMA( srftData, date = "2004012900", trainingDays = 25,
                model = "normal")
    bmaForc <- quantileForecast( bmaFit, srftData, date = "2004012900",
                        quantiles = c(.1, .5, .9))
    obs <- srftData$date == "2004012900"
    lat <- srftData$latitude[obs]
    lon <- srftData$longitude[obs]
    plotProbcast( bmaForc[,"0.5"], lat, lon,
            type = "contour", interpolate = TRUE)
    title("Median Forecast")
    plotProbcast( srftData$obs[obs], lat, lon,
        type = "contour", interpolate = TRUE)
    title("Observed Surface Temperature")
    data(srftGrid)
```

```
    memberLabels <- c("CMCG", "ETA", "GASP", "GFS", "JMA", "NGPS", "TCWB", "UKMO")
    srftGridData <- ensembleData(forecasts = srftGrid[,memberLabels],
        latitude = srftGrid[,"latitude"], longitude = srftGrid[,"longitude"],
                        forecastHour = 48, initializationTime = "00")
gridForc <- quantileForecast( bmaFit, srftGridData,
            date = "2004021400", quantiles = c( .1, .5, .9))
    library(fields)
    plotProbcast(gridForc[,"0.5"],lon=srftGridData$lon,
        lat=srftGridData$lat,type="image",col=rev(rainbow(100, start=0,end=0.85)))
    title("Median Grid Forecast for Surface Temperature", cex = 0.5)
    probFreeze <- cdf( bmaFit, srftGridData, date = "2004021400",
        value = 273.15)
    plotProbcast(probFreeze, lon=srftGridData$lon, lat=srftGridData$lat,
        type="image", col=gray((32:0)/32))
    title("Probability of Freezing", cex = 0.5)
## End(Not run)
```

prcpDJdata Precipitation Data

Description

A subset of daily 48 hour forecasts of 24 hour accumulated precipitation over the US Pacific Northwest region from December 2002 to January 2003 based on a 9 member version of the University of Washington mesoscale ensemble (Grimit and Mass 2002; Eckel and Mass 2005). Precipitation amounts are quantized to hundredths of an inch.
Note that forecasts are not available for some of the interim dates.

Format

A data frame with 175 rows and 15 columns:
CENT , AVN , CMCG , ETA , GASP , JMA , NGAPS , TCWB , UKMO forecasts from the 9 members of the ensemble (numeric).
observation the observed accumulated precipitation (numeric).
date the date of each forecast/observation, format YYYYMMDDHH (categorical).
station weather station identifier (categorical).
latitude the latitude of each weather station (numeric).
longitude the longitude of each weather station (numeric).
elevation the elevation of each weather station (numeric).

Details

This dataset is a small subset of the data used in Sloughter et al. (2006), provided for the purposes of testing. Typically forecasting would be performed on much larger datasets.

References

E. P. Grimit and C. F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest, Weather and Forecasting 17:192-205, 2002.
F. A. Eckel and C. F. Mass, Effective mesoscale, short-range ensemble forecasting, Weather and Forecasting 20:328-350, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3309-3320, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

Examples

```
## Not run: # R check
    data(prcpDJdata)
    data(prcpFit)
    prcpForc <- quantileForecast( prcpFit, prcpDJdata, date = "20030113",
    quantiles = c( .1, .5, .9))
## End(Not run)
```

prcpFit BMA Model Fit to Precipitation Data

Description

The ensembleBMAgamma0 model fit with a 30 day training period to the precipitation data set from http://www.stat.washington.edu/MURI, which gives daily daily 48 hour forecasts of 24 hour accumulated precipitation over the US Pacific Northwest region from December 12, 2002 through March 31, 2005 on a 9 member version of the University of Washington mesoscale ensemble (Grimit and Mass 2002; Eckel and Mass 2005). Precipitation amounts are quantized to hundredths of an inch.

Format

A list with the following arguments:
dateTable A named vector in which the names are the dates and the entries are the number of observations for each date.
trainingRule The training rule used to compute the model fits.
prob0coefs The coefficients in the logistic regression for probability of zero precipitation.
biasCoefs The coefficients in the linear regression for bias correction.
varCoefs The variance coefficients of the models.
weights The BMA weights for the models.
power An scalar value giving the power by which the forecasts are transformed for the BMA fitting.

References

E. P. Grimit and C. F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest, Weather and Forecasting 17:192-205, 2002.
F. A. Eckel and C. F. Mass, Effective mesoscale, short-range ensemble forecasting, Weather and Forecasting 20:328-350, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3309-3320, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

Examples

```
## Not run: # R check
    data(prcpFit)
    modelParameters(prcpFit, date = "20030113")
    data(prcpGrid)
    prcpGridData <- ensembleData(forecasts = prcpGrid[,1:9],
                                    latitude = prcpGrid[,"latitude"],
                                    longitude = prcpGrid[,"longitude"],
                                    forecsatHour = 48,
                            initializationTime = "00")
# probability of precipitation
    1 - cdf( prcpFit, prcpGridData, value = 0)
# probability of precipitation above 0.25 in
    1 - cdf( prcpFit, prcpGridData, date = "20030115", value = 25)
## End(Not run)
```


Description

This data set gives 48 -hour forecasts of 24 hour accumulated precipitation on a grid of locations in the US Pacific Northwest initialized on January 13, 2003 OOZ and valid on January 15, 2003 OOZ. The ensemble forecasts come from a nine member version of the University of Washington Mesoscale Ensemble (Grimit and Mass 2002; Eckel and Mass 2005). Precipitation amounts are quantized to hundredths of an inch.

Format

A data frame with 8188 rows and 11 columns:
avn/gfs, cent, cmcg, eta, gasp,jma, ngps, tcwb, ukmo forecasts from the 9 members of the ensemble (numeric).
latitude the latitude of each forecast (numeric).
longitude the longitude of each forecast (numeric).

References

E. P. Grimit and C. F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest, Weather and Forecasting 17:192-205, 2002.
F. A. Eckel and C. F. Mass, Effective mesoscale, short-range ensemble forecasting, Weather and Forecasting 20:328-350, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Ensemble Forecasting using Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2009.

Examples

```
## Not run: # R check
    data(prcpGrid)
    prcpGridData <- ensembleData(forecasts = prcpGrid[,1:9],
    latitude = prcpGrid[,"latitude"],
    longitude = prcpGrid[,"longitude"],
    forecastHour = 48,
    initilaizationTime = "00")
    data(prcpFit)
# median forecast for Jan 15, 2003 at the grid points
```

```
    quantileForecast( prcpFit, prcpGridData, date = "20030115")
## End(Not run)
```

quantileForecast Quantile forecasts at observation locations

Description

Computes quantiles for the probability distribution function (PDF) for ensemble forecasting models.

Usage

quantileForecast(fit, ensembleData, quantiles $=0.5$, dates=NULL, ...)

Arguments

fit A model fit to ensemble forecasting data.
ensembleData An ensembleData object that includes ensemble forecasts, verification observations and possibly dates. Missing values (indicated by NA) are allowed. \backslash This need not be the data used for the model fit, although it must include the same ensemble members.
quantiles The vector of desired quantiles for the PDF of the BMA mixture model.
dates The dates for which the quantile forecasts will be computed. These dates must be consistent with fit and ensembleData. The default is to use all of the dates in fit. If ensembleData does not include dates, they will be inferred from fit and dates.
. . Included for generic function compatibility.

Details

This method is generic, and can be applied to any ensemble forecasting model.
Note the model may have been applied to a power transformation of the data, but that information is included in the input fit, and the output is transformed appropriately.
This can be used to compute prediction intervals for the PDF.
For the bivariate normal model for wind speed and direction, the CRPS is computed for the marginal wind speed distribution.

Value

A vector of forecasts corresponding to the desired quantiles.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleBMA, fitBMA, cdf

Examples

```
    data(ensBMAtest)
    ensMemNames <- c("gfs", "cmcg", "eta", "gasp", "jma", "ngps", "tcwb", "ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensMemNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                        dates = ensBMAtest[,"vdate"],
                        observations = ensBMAtest[,obs],
                        station = ensBMAtest[,"station"],
                        forecastHour = 48,
                        initializationTime = "00")
## Not run: # R check
    tempTestFit <- ensembleBMAnormal( tempTestData, trainingDays = 30)
## End(Not run)
    tempTestForc <- quantileForecast( tempTestFit, tempTestData)
## Not run: # R check
    data(srft)
    labels <- c("CMCG","ETA","GASP","GFS","JMA", "NGPS","TCWB","UKMO")
    srftData <- ensembleData( forecasts = srft[ ,labels],
        dates = srft$date,
```

```
        observations = srft$obs,
        latitude = srft$lat,
        longitude = srft$lon,
        forecastHour = 48,
        initializationTime = "00")
    srftFit <- ensembleBMAnormal(srftData, date = "2004013100",
        trainingDays = 25)
    data(srftGrid)
    srftGridData <- ensembleData(forecasts = srftGrid[ ,labels],
        latitude = srftGrid$lat,
        longitude = srftGrid$lon,
        forecastHour = 48,
        initializationTime = "00")
    srftGridForc <- quantileForecast( srftFit, srftGridData,
        date = "2004013100")
## End(Not run)
```

 srft
 Surface Temperature Ensemble Forecasts and Observations

Description

This data set gives 48 -hour forecasts of 2-m surface temperature and the associated observations for the US Pacific Northwest from January 1, 2004 to February 28, 2004. The ensemble forecasts come from an eight-member version of the University of Washington Mesoscale Ensemble (Grimit and Mass 2002; Eckel and Mass 2005). Temperatures are measured in kelvins.
Note that forecasts are not available for some of the interim dates.

Format

A data frame with 36826 rows and 15 columns:
CMCG, ETA , GASP , GFS, JMA , NGAPS , TCWB , UKMO forecasts from the 8 members of the ensemble (numeric).
observation the observed surface temperature (numeric).
date the date of each forecast/observation set, in the format YYYYMMDDHH (categorical).
latitude the latitude of each forecast (numeric).
longitude the longitude of each forecast (numeric).
station weather station identifier (categorical).
type weather station type (categorical).

References

F. A. Eckel and C. F. Mass, Effective mesoscale, short-range ensemble forecasting, Weather and Forecasting 20:328-350, 2005.
E. P. Grimit and C. F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest, Weather and Forecasting 17:192-205, 2002.
V. J. Berrocal, A. E. Raftery and T. Gneiting, Combining spatial and ensemble information in probabilistic weather forecasts, Monthly Weather Review 133:1386-1402, 2007.
V. J. Berrocal, A. E. Raftery, T. Gneiting and R. C. Steed, Probabilistic Weather Forecasting for Winter Road Maintenance, Journal of the American Statistical Association, 2010 (to appear).
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

```
Examples
## Not run: # R check
    data(srft)
    labels <- c("CMCG","ETA","GASP","GFS","JMA","NGPS","TCWB","UKMO")
    srftData <- ensembleData( forecasts = srft[ ,labels],
                        dates = srft$date,
                        observations = srft$obs,
                        latitude = srft$lat,
                longitude = srft$lon,
                forecastHour = 48,
                initializationTime = "00")
    srftFit <- ensembleBMAnormal( srftData, date = "2004013100",
                        trainingDays = 25)
## End(Not run)
```

srftGrid

Gridded Surface Temperature Ensemble Forecasts

Description

This data set gives 48-hour forecasts of 2-m surface temperature on a grid of locations in the US Pacific Northwest initialized on January 29, 2004 00UTC and valid on January 31, 2004 00UTC. The ensemble forecasts come from an eight member version of the University of Washington Mesoscale Ensemble (Grimit and Mass 2002; Eckel and Mass 2005). Temperatures are measured in kelvins. Note that forecasts are not available for some of the interim dates.

Format

A data frame with 10098 rows and 10 columns:
CMCG, ETA , GASP , GFS, JMA , NGAPS, TCWB , UKMO forecasts from the 8 members of the ensemble (numeric).
latitude the latitude of each forecast (numeric).
longitude the longitude of each forecast (numeric).

References

F. A. Eckel and C. F. Mass, Effective mesoscale, short-range ensemble forecasting, Weather and Forecasting 20:328-350, 2005.
E. P. Grimit and C. F. Mass, Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest, Weather and Forecasting 17:192-205, 2002.
V. J. Berrocal, A. E. Raftery and T. Gneiting, Combining spatial and ensemble information in probabilistic weather forecasts, Monthly Weather Review 133:1386-1402, 2007.
V. J. Berrocal, A. E. Raftery, T. Gneiting and R. C. Steed, Probabilistic Weather Forecasting for Winter Road Maintenance, Journal of the American Statistical Association, 2010 (to appear).
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).

Examples

```
## Not run: # R check
    data(srft)
    data(srftGrid)
    labels <- c("CMCG","ETA","GASP","GFS","JMA", "NGPS","TCWB", "UKMO")
    srftData <- ensembleData( forecasts = srft[ ,labels],
                        dates = srft$date,
                        observations = srft$obs,
                        latitude = srft$lat,
                        longitude = srft$lon,
                        forecastHour = 48,
                        initializationTime = "00")
    srftFit <- ensembleBMAnormal( srftData, date = "2004013100",
                            trainingDays = 25)
    srftGridData <- ensembleData( forecasts = srftGrid[ ,labels],
                        latitude = srftGrid$lat,
                        longitude = srftGrid$lon,
                        forecastHour = 48,
                        initializationTime = "00")
    CRPS( srtGridData, srftFit)
```

\#\# End(Not run)

Description

Extracts a subset of an ensembleData object corresponding to a given date and number of training days.

Usage

trainingData(ensembleData, trainingDays, date)

Arguments

ensembleData An ensembleData object that includes, ensemble forecasts, observations and dates.
trainingDays An integer specifying the number of days in the training period.
date \quad The date for which the training data is desired.

Details

The most recent days are used for training regardless of whether or not they are consecutive.

Value

An ensembleData object corresponding to the training data for the given date relative to ensembleData.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3309-3320, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensembles and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleBMA, fitBMA

Examples

```
    data(ensBMAtest)
    ensNames <- c("gfs","cmcg","eta","gasp","jma","ngps","tcwb","ukmo")
    obs <- paste("T2","obs", sep = ".")
    ens <- paste("T2", ensNames, sep = ".")
    tempTestData <- ensembleData( forecasts = ensBMAtest[,ens],
                observations = ensBMAtest[,obs],
                station = ensBMAtest[,"station"],
                dates = ensBMAtest[,"vdate"],
                forecastHour = 48,
                initializationTime = "00")
    tempTrain <- trainingData( tempTestData, trainingDays = 30,
                date = "2008010100")
    tempTrainFit <- fitBMAnormal( tempTrain)
```

verifPlot

Plot observations along with median, 10th and 90th percentile forecasts.

Description

Computes the median, 10th and 90th percentile forecasts, and plots the corresponding observations.

Usage

```
verifPlot( fit, ensembleData, dates = NULL)
```


Arguments

fit	A model fit to ensemble forecasting data.
ensembleData	An ensembleData object that includes ensemble forecasts, verification observa- tions and possibly dates. Missing values (indicated by NA) are allowed. \backslash This need not be the data used for the model fit, although it must include the same ensemble members.
dates	The dates for which the CDF will be computed. These dates must be consis- tent with fit and ensembleData. The default is to use all of the dates in fit. The dates are ignored if fit originates from fitBMA, which also ignores date information.

Value

A matrix giving the median, 10th and 90th percentile forecasts for the ensemble data at the specified dates. If observations are available, they are plotted along with the forecasts in order of increasing 90th percentile forecast.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
T. Gneiting, F. Balabdaoui and A. Raftery, Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society, Series B 69:243-268, 2007.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleData, pit

Examples

```
data(prcpFit)
data(prcpDJdata)
    forc <- verifPlot( prcpFit, prcpDJdata, date = "20030113")
```

```
verifRankHist Verification Rank and Histogram
```


Description

Computes the rank of verifying observations relative to the corresponding ensemble forecasts and plots its histogram.

Usage

```
verifRankHist( forecasts, observations)
```


Arguments

forecasts A matrix of ensemble forecasts, in which the rows corresponds to locations and times and the columns correspond to the individual ensemble members.
observations A vector of observations corresponding to the locations and times of the forecasts.

Details

The verification rank is used to assess calibration of a forecast ensemble. A more uniform verification rank histogram indicates better calibartion.

Value

A vector giving the rank of verifying observations relative to the corresponding ensemble forecasts. The verification rank historgram is plotted.

References

A. E. Raftery, T. Gneiting, F. Balabdaoui and M. Polakowski, Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review 133:1155-1174, 2005.
T. Gneiting, F. Balabdaoui and A. Raftery, Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society, Series B 69:243-268, 2007.
J. M. Sloughter, A. E. Raftery, T. Gneiting and C. Fraley, Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review 135:3209-3220, 2007.
C. Fraley, A. E. Raftery, T. Gneiting and J. M. Sloughter, ensembleBMA: An R Package for Probabilistic Forecasting using Ensemble and Bayesian Model Averaging, Technical Report No. 516R, Department of Statistics, University of Washington, 2007 (revised 2010).
C. Fraley, A. E. Raftery, T. Gneiting, Calibrating Multi-Model Forecast Ensembles with Exchangeable and Missing Members using Bayesian Model Averaging, Monthly Weather Review 138:190202, 2010.
J. M. Sloughter, T. Gneiting and A. E. Raftery, Probabilistic wind speed forecasting using ensembles and Bayesian model averaging, Journal of the American Statistical Association, 105:25-35, 2010.

See Also

ensembleData, pit

Examples

```
    data(srft)
    labels <- c("CMCG","ETA","GASP","GFS","JMA", "NGPS","TCWB", "UKMO")
    srftData <- ensembleData( forecasts = srft[ , labels],
        dates = srft$date,
        observations = srft$obs,
        latitude = srft$lat,
        longitude = srft$lon,
```

```
        forecastHour = 48,
        initializationTime = "00")
    use <- ensembleValidDates(srftData) >= "2004013000"
    verifRankHist( ensembleForecasts(srftData[use,]),
        dataVerifObs(srftData[use,]))
```

 ymdhTOjul Convert to Julian dates.

Description

Converts YYYYMMDDHH or YYYYMMDD dates to Julian dates.

Usage

ymdhTOjul(YYYYMMDDHH, origin $=c($ month $=1$, day $=1$, year $=2000)$)

Arguments

YYYYMMDDHH	A character vector (or its factor equivalent) of dates in the form YYYYMMD-
DHH or YYYYMMDD, in which YYYY specifies the year, MM the month,	
DD the day, and (optionally) HH the hour.	
origin	A named vector specifying the month, day, and year for the origin of the Julian
dates. The default is c (month $=1$, day $=1$, year $=2000$).	

Details

Requires the chron library.

Value

A vector of Julian dates corresponding to YYYYMMDDHH. The vector has "origin" and "dropHour" attributes which give the origin for the Julian output and indicate whether or not the original format included the hour.

See Also

dateCheck, julTOymdh

Examples

```
    data(ensBMAtest)
    julianVdates <- ymdhTOjul(ensBMAtest$vdate)
    all.equal( julTOymdh(julianVdates), as.character(ensBMAtest$vdate))
    all.equal( ymdhTOjul(ensBMAtest$idate), julianVdates-2)
```


Index

* chron
dateCheck, 14
julTOymdh, 36
ymdhTOjul, 60
* datasets
ensBMAtest, 15
srft, 53
srftGrid, 54
* data
ensembleData, 26
prcpDJdata, 47
prcpFit, 48
prcpGrid, 50
* models
brierScore, 2
cdf, 4
combine, 6
controlBMAgamma, 7
controlBMAgamma0, 9
controlBMAnormal, 11
crps, 12
ensembleBMA, 17
ensembleBMAgamma, 20
ensembleBMAgamma0, 22
ensembleBMAnormal, 24
fitBMA, 28
fitBMAgamma, 30
fitBMAgamma0, 32
fitBMAnormal, 34
MAE, 37
modelParameters, 38
pit, 39
pitHist, 41
plot.ensembleBMA, 43
plotProbcast, 45
quantileForecast, 51
trainingData, 56
verifPlot, 57
verifRankHist, 58
[.ensembleBMAgamma (ensembleBMAgamma), 20
[.ensembleBMAgamma0 (ensembleBMAgamma0), 22
[.ensembleBMAnormal (ensembleBMAnormal), 24
[.ensembleData (ensembleData), 26
binGrid (plotProbcast), 45
brierScore, 2, 19, 21, 23, 25
cdf, $4,19,21,23,25,30,31,33,35,52$
cdfBMAgamma (cdf), 4
cdfBMAgamma0 (cdf), 4
cdfBMAnormal (cdf), 4
combine, 6
combineCORE (combine), 6
controlBMAgamma, 7, 19, 21, 30, 31
controlBMAgamma0, 9, 19, 23, 30, 33
controlBMAnormal, 11, 19, 25, 30, 35
CRPS (crps), 12
crps, $12,19,21,23,25$
CRPS. default (crps), 12
crps.ensembleBMAbvnormal (crps), 12
crps.ensembleBMAgamma (crps), 12
crps.ensembleBMAgamma0 (crps), 12
crps.ensembleBMAnormal (crps), 12
crps.fitBMAbvnormal (crps), 12
crps.fitBMAgamma (crps), 12
crps.fitBMAgamma0 (crps), 12
crps.fitBMAnormal (crps), 12
crpsNormal (ensembleBMAnormal), 24
dataNA (ensembleData), 26
dataNobs (ensembleData), 26
dataObsLabels (ensembleData), 26
dataStartupSpeed (ensembleData), 26
dataVerifObs (ensembleData), 26
dateCheck, 14, 36, 60
ensBMAtest, 15
ensembleBMA, 3, 5, 6, 13, 17, 27, 30, 38, 41, 52, 57
ensembleBMAgamma, 8, 19, 20, 27, 31, 39
ensembleBMAgamma0, 10, 19, 22, 27, 33, 39
ensembleBMAnormal, 12, 19, 24, 27, 35, 39
ensembleData, $19,21,23,25,26,30,31,33$, 35, 42, 58, 59
ensembleFhour (ensembleData), 26
ensembleForecasts (ensembleData), 26
ensembleGroups (ensembleData), 26
ensembleItime (ensembleData), 26
ensembleMembers (ensembleData), 26
ensembleSize (ensembleData), 26
ensembleValidDates (ensembleData), 26
fitBMA, 5, 13, 28, 41, 52, 57
fitBMAgamma, $8,21,30,30,39$
fitBMAgamma0, 10, 23, 30, 32, 39
fitBMAnormal, 12, 25, 30, 34, 39
getDates (ensembleBMA), 17
getExchangeable (ensembleBMA), 17
getHH (dateCheck), 14
inverseLogit (fitBMAgamma), 30
julTOymdh, 15, 36, 60
MAE, 19, 21, 23, 25, 37
match2side (ensembleBMA), 17
matchDates (ensembleBMA), 17
matchEnsembleMembers (ensembleBMA), 17
matchEnsembleMembers.default
(ensembleData), 26
matchITandFH (ensembleData), 26
modelDates (ensembleBMA), 17
modelMembers (ensembleBMA), 17
modelParameters, $19,21,23,25,30,31,33$, 35, 38
pit, 39, 42, 58, 59
pitHist, 41, 41
plot.ensembleBMA, 43
plot.ensembleBMAgamma
(plot.ensembleBMA), 43
plot.ensembleBMAgamma0
(plot.ensembleBMA), 43
plot.ensembleBMAnormal
(plot.ensembleBMA), 43
plot.fitBMA (plot.ensembleBMA), 43
plot.fitBMAgamma (plot.ensembleBMA), 43
plot.fitBMAgamma0 (plot.ensembleBMA), 43
plot.fitBMAnormal (plot.ensembleBMA), 43
plotBMAgamma (plot.ensembleBMA), 43
plotBMAgamma0 (plot.ensembleBMA), 43
plotBMAnormal (plot.ensembleBMA), 43
plotProbcast, 45
prcpDJdata, 47
prcpFit, 48
prcpGrid, 50
prcpTestFit (ensBMAtest), 15
quantBMAgamma (quantileForecast), 51
quantBMAgamma0 (quantileForecast), 51
quantBMAnormal (quantileForecast), 51
quantileForecast, 5, 19, 21, 23, 25, 30, 31, 33, 35, 41, 46, 51
srft, 53
srftGrid, 54
startupSpeed (ensembleData), 26
tempTestFit (ensBMAtest), 15
trainingData, 56
verifPlot, 57
verifRankHist, 41, 42, 58
winsTestFit (ensBMAtest), 15
ymdhTOjul, 15, 36, 60

