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eigenboot eigenboot

Description

A parametric bootstrap procedure evaluated at an envelope estimator of the submodel mean-value
parameter vector τ that was obtained using reducing subspaces.

Usage

eigenboot(model, nboot, index, vectors, data,
quiet = FALSE, m = 100)

Arguments

model An aster model object

nboot The number of bootstrap iterations desired

index The indices denoting which components of the canonical parameter vector are
parameters of interest

vectors The indices denoting which reducing subspace of inverse Fisher information is
desired to construct envelope estimators

data An asterdata object

quiet A logical argument. If FALSE, the function displays how much time it takes to
run m iterations

m The length of the output interval

Details

This function implements the parametric bootstrap procedure given by the algorithm below with
respect to the mean-value parameterization. This parametric bootstrap generates resamples from
the distribution evaluated at an envelope estimator of τ . The user specifies which vectors are used
in order to construct envelope estimators using the reducing subspace approach. When one is us-
ing a partial envelope then this function constructs envelope estimators of υ where we write τ =
(γT , υT )T and υ corresponds to aster model parameters of interest. In applications, candidate re-
ducing subspaces are indices of eigenvectors of Σ̂υ,υ where Σ̂υ,υ is the part of Σ̂ corresponding to
our parameters of interest. When all of the components of τ are components of interest, then we
write Σ̂υ,υ = Σ̂. The algorithm is as follows:

1. Fit the aster model to the data and obtain τ̂ = (γ̂T , υ̂T ) and Σ̂ from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PĜυ̂ where PĜ
is the projection into the reducing subspace of Σ̂υ,υ specified by vectors.
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3. Perform a parametric bootstrap by generating resamples from the distribution evaluated at
υ̂env . For iteration b = 1, ..., B of the procedure:

(3a) Compute υ̂(b) and Σ̂
(b)
υ,υ from the aster model fit to the resampled data.

(3b) Obtain P (b)

Ĝ
as done in Step 2.

(3c) Store υ̂(b)env = P
(b)

Ĝ
υ̂(b).

A parametric bootstrap generating resamples from the distribution evaluated at the aster model MLE
is also conducted by this function.

Value

u The dimension of the envelope space assumed

table A table of output. The first two columns display the envelope estimator and
its bootstrapped standard error. The next two columns display the MLE and
its bootstrapped standard error. The last column displays the ratio of the stan-
dard error for the bootstrapped envelope estimator to the standard error for the
bootstrapped MLE.

S The bootstrap estimator of the variability of the partial envelope estimator.

S2 The bootstrap estimator of the variability of the MLE.

env.boot.out The realizations from the bootstrap procedure using envelope methodology.

MLE.boot.out The realizations from the bootstrap procedure using maximum likelihood esti-
mation.

References

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

Examples

## Not run: set.seed(13)
library(envlpaster)
library(aster2)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
target <- 5:9
indices <- c(1,2,4,5)
u <- length(indices)
nboot <- 2000; timer <- nboot/2
bar <- eigenboot(m1, nboot = nboot, index = target,

u = u, vectors = indices, data = data, m = timer)
bar
## End(Not run)
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eigenbootcanon eigenbootcanon

Description

A parametric bootstrap procedure evaluated at an envelope estimator of the submodel mean-value
parameter vector β that was obtained using reducing subspaces.

Usage

eigenbootcanon(model, nboot, index, vectors,
code, families, quiet = FALSE, m = 100)

Arguments

model An aster model object.

nboot The number of bootstrap iterations desired.

index The indices denoting which components of the canonical parameter vector are
parameters of interest.

vectors The indices denoting which reducing subspace of inverse Fisher information is
desired to construct envelope estimators.

code A vector of dimension equal to the number of nodes in the aster graph. This
vector specifies which exponential family in the families list labels each arrow
of the aster graphical structure.

families A list of family specifications.

quiet A logical argument. If FALSE, the function displays how much time it takes to
run m iterations.

m The length of the output interval.

Details

This function implements the parametric bootstrap procedure given by the algorithm below with
respect to the canonical parameterization. This parametric bootstrap generates resamples from the
distribution evaluated at an envelope estimator of β. The user specifies which vectors are used
in order to construct envelope estimators using the reducing subspace approach. When one is us-
ing a partial envelope then this function constructs envelope estimators of υ where we write β =
(γT , υT )T and υ corresponds to aster model parameters of interest. In applications, candidate re-
ducing subspaces are indices of eigenvectors of Σ̂−1υ,υ where Σ̂−1υ,υ is the part of Σ̂−1 corresponding
to our parameters of interest. When all of the components of β are components of interest, then we
write Σ̂−1υ,υ = Σ̂−1. The algorithm is as follows:

1. Fit the aster model to the data and obtain β̂ = (γ̂T , υ̂T ) and Σ̂−1 from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PĜυ̂ where PĜ
is the projection into the reducing subspace of Σ̂−1υ,υ specified by vectors.
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3. Perform a parametric bootstrap by generating resamples from the distribution evaluated at
υ̂env . For iteration b = 1, ..., B of the procedure:

(3a) Compute υ̂(b) and Σ̂
(b)−1

υ,υ from the aster model fit to the resampled data.

(3b) Obtain P (b)

Ĝ
as done in Step 2.

(3c) Store υ̂(b)env = P
(b)

Ĝ
υ̂(b).

A parametric bootstrap generating resamples from the distribution evaluated at the aster model MLE
is also conducted by this function.

Value

u The dimension of the envelope space assumed.

table A table of output. The first two columns display the envelope estimator and
its bootstrapped standard error. The next two columns display the MLE and
its bootstrapped standard error. The last column displays the ratio of the stan-
dard error for the bootstrapped envelope estimator to the standard error for the
bootstrapped MLE.

S The bootstrap estimator of the variability of the partial envelope estimator.

S2 The bootstrap estimator of the variability of the MLE.

env.boot.out The realizations from the bootstrap procedure using envelope methodology.

MLE.boot.out The realizations from the bootstrap procedure using maximum likelihood esti-
mation.

References

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

Examples

## Not run: set.seed(13)
library(envlpaster)
library(aster2)
data(generateddata)
m1 <- aster(resp ~ 0 + varb + mass + timing,

fam = fam, pred = pred, varvar = varb, idvar = id,
root = root, data = redata)

target <- c(9:10)
nboot <- 2000; timer <- nboot/2
bar <- eigenbootcanon(m1, nboot = nboot, index = target,

vectors = c(2), u = 1, m = timer)
bar
## End(Not run)



6 fit.boot

fit.boot fit.boot

Description

A parametric bootstrap procedure evaluated at an envelope estimator of the submodel mean-value
parameter vector τ that was obtained using reducing subspaces.

Usage

fit.boot(model, nboot, index, vectors = NULL, u = NULL,
data, amat, newdata, modmat.new = NULL, renewdata = NULL,
fit.name = NULL, method = c("eigen","1d"), quiet = FALSE, m = 100)

Arguments

model An aster model object.

nboot The number of bootstrap iterations desired.

index The indices denoting which components of the canonical parameter vector are
parameters of interest.

vectors The indices denoting which reducing subspace of Fisher information is desired
to construct envelope estimators.

u The envelope model dimension.

data An asterdata object corresponding to the original data.

amat This object can either be an array or a matrix. It specifies a linear combination
of mean-value parameters that correspond to expected Darwinian fitness. See
the aster function help page in the original aster package for more details.

newdata A dataframe corresponding to hypothetical individuals in which expected Dar-
winian fitness is to be estimated.

modmat.new A model matrix corresponding to hypothetical individuals in which expected
Darwinian fitness is to be estimated.

renewdata A dataframe in long format corresponding to hypothetical individuals in which
expected Darwinian fitness is to be estimated.

fit.name An expression that appears in the name of the nodes that correspond to Dar-
winian fitness. This is only necessary if renewdata is not provided.

method The procedure used to obtain envelope estimators.

quiet A logical argument. If FALSE, the function displays how much time it takes to
run m iterations.

m The length of the output interval.
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Details

This function implements the parametric bootstrap procedure given by the algorithm presented be-
low with respect to the mean-value parameterization. This parametric bootstrap generates resamples
from the distribution evaluated at an envelope estimator of τ .

The user specifies which vectors are used in order to construct envelope estimators using the re-
ducing subspace approach. The user also specifies which method is to be used in order to calculate
envelope estimators. When one is using a partial envelope, then this function constructs envelope
estimators of υ where we write τ = (γT , υT )T and υ corresponds to aster model parameters of inter-
est. In applications, candidate reducing subspaces are indices of eigenvectors of Σ̂υ,υ where Σ̂υ,υ is
the part of Σ̂ corresponding to our parameters of interest. These indices are specified by vectors.
When all of the components of τ are components of interest, then we write Σ̂υ,υ = Σ̂. When data
is generated via the parametric bootstrap, it is the indices (not the original reducing subspaces) that
are used to construct envelope estimators constructed using the generated data. The algorithm using
reducing subspaces is as follows:

1. Fit the aster model to the data and obtain τ̂ = (γ̂T , υ̂T ) and Σ̂ from the aster model fit.
2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PĜυ̂ where PĜ

is the projection into the reducing subspace of Σ̂υ,υ specified by vectors.
3. Perform a parametric bootstrap by generating resamples from the distribution evaluated at
τ̂env = (γ̂T , υ̂Tenv)

T . For iteration b = 1, ..., B of the procedure:

(3a) Compute υ̂(b) and Σ̂
(b)
υ,υ from the aster model fit to the resampled data.

(3b) Obtain P (b)

Ĝ
as done in Step 2.

(3c) Compute υ̂(b)env = P
(b)

Ĝ
υ̂(b) and τ̂ (b)env = (γ̂(b)

T

, υ̂
(b)T

env )T .

(3d) Store h
(
τ̂
(b)
env

)
where h maps τ to the parameterization of Darwinian fitness as deter-

mined by amat.

The parametric bootstrap procedure which uses the 1-d algorithm to construct envelope estimators is
analogous to the above algorithm. To use the 1-d algorithm, the user specifies a candidate envelope
model dimension u and specifies method = "1d". A parametric bootstrap generating resamples
from the distribution evaluated at the aster model MLE is also conducted by this function.

Value

u The dimension of the envelope space assumed
table A table of output. The first two columns display the envelope estimator of

expected Darwinian fitness and its bootstrapped standard error. The next two
columns display the MLE of expected Darwinian fitness and its bootstrapped
standard error. The last column displays the ratio of the standard errors using
MLE to those using envelope estimation. Ratios greater than 1 indicate effi-
ciency gains obtained using envelope estimation.

S The bootstrap estimator of the variability of the partial envelope estimator.
S2 The bootstrap estimator of the variability of the MLE.
env.boot.out The realizations from the bootstrap procedure using envelope methodology.
MLE.boot.out The realizations from the bootstrap procedure using maximum likelihood esti-

mation.
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References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

Examples

## Not run: set.seed(13)
library(envlpaster)
library(aster2)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
target <- 5:9
indices <- c(1,2,4,5)
u <- length(indices)
nboot <- 2000; timer <- nboot/2
bar <- eigenboot(m1, nboot = nboot, index = target,

u = u, vectors = indices, data = data, m = timer)
bar
## End(Not run)

fit.boot.Efron fit.boot.Efron

Description

A parametric bootstrap procedure evaluated at an envelope estimator of the submodel mean-value
parameter vector τ that was obtained using reducing subspaces or the 1d algorithm.

Usage

fit.boot.Efron(model, nboot, index, vectors = NULL, dim = NULL,
data, amat, newdata, modmat.new = NULL, renewdata = NULL,
criterion = c("AIC","BIC","LRT"), alpha = 0.05, fit.name = NULL,
method = c("eigen","1d"), quiet = FALSE)

Arguments

model An aster model object.

nboot The number of bootstrap iterations desired.

index The indices denoting which components of the canonical parameter vector are
parameters of interest.

http://doi.org/10.1080/10618600.2015.1029577
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vectors The indices denoting which reducing subspace of Fisher information is desired
to construct envelope estimators. Must be specified if method = "eigen".

dim The dimension of the envelope space used to construct envelope estimators.
Must be specified if method = "1d".

data An asterdata object corresponding to the original data.

amat This object can either be an array or a matrix. It specifies a linear combination
of mean-value parameters that correspond to expected Darwinian fitness. See
the aster function help page in the original aster package for more details.

newdata A dataframe corresponding to hypothetical individuals in which expected Dar-
winian fitness is to be estimated.

modmat.new A model matrix corresponding to hypothetical individuals in which expected
Darwinian fitness is to be estimated.

renewdata A dataframe in long format corresponding to hypothetical individuals in which
expected Darwinian fitness is to be estimated.

criterion A model selection criterion of choice.

alpha The type 1 error rate desired for the LRT.

fit.name An expression that appears in the name of the nodes that correspond to Dar-
winian fitness. This is only necessary if renewdata is not provided.

method The procedure used to obtain envelope estimators.

quiet A logical argument. If FALSE, the function displays how much time it takes to
run m iterations.

Details

This function implements the first level of the parametric bootstrap procedure given by either Al-
gorithm 1 or Algorithm 2 in Eck (2015) with respect to the mean-value parameterization. This
is detailed in Steps 1 through 3d in the algorithm below. This parametric bootstrap generates re-
samples from the distribution evaluated at an envelope estimator of τ adjusting for model selection
volatility.

The user specifies a model selection criterion which selects vectors that construct envelope estima-
tors using the reducing subspace approach. The user also specifies which method is to be used in
order to calculate envelope estimators. When one is using a partial envelope, then this function con-
structs envelope estimators of υ where we write τ = (γT , υT )T and υ corresponds to aster model
parameters of interest. In applications, candidate reducing subspaces are indices of eigenvectors of
Σ̂υ,υ where Σ̂υ,υ is the part of Σ̂ corresponding to our parameters of interest. These indices are
specified by vectors. When all of the components of τ are components of interest, then we write
Σ̂υ,υ = Σ̂. When data is generated via the parametric bootstrap, it is the indices (not the original
reducing subspaces) that are used to construct envelope estimators constructed using the generated
data. The algorithm using reducing subspaces is as follows:

1. Fit the aster model to the data and obtain τ̂ = (γ̂T , υ̂T ) and Σ̂ from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PĜυ̂ where PĜ
is computed using reducing subspaces and selected via a model selection criterion of choice.

3. Perform a parametric bootstrap by generating resamples from the distribution of the aster
submodel evaluated at τ̂env = (γ̂T , υ̂Tenv)

T . For iteration b = 1, ..., B of the procedure:
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(3a) Compute τ̂ (b) and Σ̂
(b)
υ,υ from the aster model fit to the resampled data.

(3b) Build P (b)

Ĝ
using the indices of Σ̂

(b)
υ,υ that are selected using the same model selection

criterion as Step 2 to build Ĝ.

(3c) Compute υ̂(b)env = P
(b)

Ê
υ̂(b) and τ̂ (b)env =

(
γ̂(b)

T

, υ̂
(b)T

env

)T
.

(3d) Store τ̂ (b)env and g
(
τ̂
(b)
env

)
where g maps τ to the parameterization of Darwinian fitness.

4. After B steps, the bootstrap estimator of expected Darwinian fitness is the average of the
envelope estimators stored in Step 3d. This completes the first part of the bootstrap procedure.

5. We now proceed with the second level of bootstrapping at the bth stored envelope estimator
τ̂
(b)
env . For iteration k = 1, ...,K of the procedure:

(5a) Generate data from the distribution of the aster submodel evaluated at τ̂ (b)env .
(5b) Perform Steps 3a through 3d with respect to the dataset obtained in Step 5a.

(5c) Store τ̂ (b)
(k)

env and g
(
τ̂
(b)(k)

env

)
.

The parametric bootstrap procedure which uses the 1d algorithm to construct envelope estimators
is analogous to the above algorithm. To use the 1d algorithm, the user specifies method = "1d". A
parametric bootstrap generating resamples from the distribution evaluated at the aster model MLE
is also conducted by this function.

Value

env.boot.out Estimated expected Darwinian fitness from generated data obtained from Steps
3a-3d in the bootstrap procedure using the envelope estimator constructed using
reducing subspaces.

MLE.boot.out Estimated expected Darwinian fitness from generated data obtained from Steps
3a-3d in the bootstrap procedure using the MLE.

env.1d.boot.out

Estimated expected Darwinian fitness from generated data obtained from Steps
3a-3d in the bootstrap procedure using the envelope estimator constructed using
the 1d algorithm.

env.tau.boot Estimated mean-value parameter vectors from generated data obtained from
Steps 3a-3d in the bootstrap procedure using the envelope estimator constructed
using reducing subspaces.

MLE.tau.boot Estimated mean-value parameter vectors from generated data obtained from
Steps 3a-3d in the bootstrap procedure using the MLE.

env.1d.tau.boot

Estimated mean-value parameter vectors from generated data obtained from
Steps 3a-3d in the bootstrap procedure using the envelope estimator constructed
using the 1d algorithm.

P.list A list of all estimated projections into the envelope space constructed from re-
ducing subspaces for Steps 3a-3d in the bootstrap procedure.

P.1d.list A list of all estimated projections into the envelope space constructed using the
1d algorithm for Steps 3a-3d in the bootstrap procedure.
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vectors.list A list of indices of eigenvectors used to build the projections in P.list. These in-
dices are selected using the user specified model selection criterion as indicated
in Steps 3a-3d in the bootstrap procedure.

u.1d.list A list of indices of eigenvectors used to build the projections in P.list. These in-
dices are selected using the user specified model selection criterion as indicated
in Steps 3a-3d in the bootstrap procedure.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

Eck, D.~J., Geyer, C.~J., and Cook, R.~D. (2016). Web-based Supplementary Materials for “En-
veloping the aster model.” in prep.

Efron, B. (2014). Estimation and Accuracy After Model Selection. JASA, 109:507, 991-1007.

Examples

### see Web-based Supplementary Materials for ``Enveloping the aster model.'' ###

generateddata A generated aster data set with 8 nodes

Description

Simulated data for an aster analysis.

Usage

data(generateddata)

Format

A dataframe with records for 400 organisms over 6 years. The description of objects included
follows:

redata The data frame in long form.

data The asterdata object.

vars Character vector giving the names of the variables in the graph.

t Indicates survival for each of the 6 years.

u Indicates flowering for each of the 6 years.

v Counts flower heads for each of the 6 years.

w Indicates seed production for each of the 6 years.

http://doi.org/10.1080/10618600.2015.1029577
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y Counts seeds for each of the 6 years.

z1 The first trait thought to be associated with Darwinian fitness.

z2 The second trait thought to be associated with Darwinian fitness.

get1Dderiv get1Dderiv

Description

The derivative of the objective function for the 1D-algorithm.

Usage

get1Dderiv(w,A,B)

Arguments

w A vector of length of p.

A A
√
n estimate of an estimator’s asymptotic covariance matrix.

B A
√
n estimate of the parameter associated with the space we are enveloping.

For our purposes this quantity is either the outer product of the MLE of the
mean-value submodel parameter vector with itself or the outer product of the
MLE of the canonical submodel parameter vector with itself.

Details

This function evaluates the derivative of the objective function for the 1D-algorithm at w, A, and B.
This is needed in order to reliably find the maximum of the 1D-algorithm objective function.

Value

dF The value of the derivative of the objective function for the 1D-algorithm evalu-
ated at w, A, and B.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

http://doi.org/10.1080/10618600.2015.1029577


get1Dini 13

Examples

## Not run: library(envlpaster)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
avar <- m1$fisher
beta <- m1$coef
U <- beta %o% beta
get1Dderiv(w = beta, A = avar, B = U)
## End(Not run)

get1Dini get1Dini

Description

Finds appropriate starting values for the 1D-algorithm.

Usage

get1Dini(A,B)

Arguments

A A
√
n estimate of an estimator’s asymptotic covariance matrix.

B A
√
n estimate of the parameter associated with the space we are enveloping.

For our purposes this quantity is either the outer product of the MLE of the
mean-value submodel parameter vector with itself or the outer product of the
MLE of the canonical submodel parameter vector with itself.

Details

The 1D-algorithm is sensitive to starting values. Maximizers of the 1D-algorithm objective function
are close to eigenvectors of A or (A+B). The vector, w, is the eigenvector of A or (A+B) which produces
the largest value of the 1D-algorithm objective function.

Value

w An appropriate starting value for the 1D-algorithm.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

http://doi.org/10.1080/10618600.2015.1029577
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Examples

## Not run: library(envlpaster)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
avar <- m1$fisher
beta <- m1$coef
U <- beta %o% beta
get1Dini(A = avar, B = U)
## End(Not run)

get1Dobj get1Dobj

Description

The objective function for the 1D-algorithm.

Usage

get1Dobj(w,A,B)

Arguments

w A vector of length of p.

A A
√
n estimate of an estimator’s asymptotic covariance matrix.

B A
√
n estimate of the parameter associated with the space we are enveloping. for

our purposes this quantity is either the outer product of the MLE of the mean-
value submodel parameter vector with itself or the outer product of the MLE of
the canonical submodel parameter vector with itself.

Details

This function evaluates the objective function for the 1D-algorithm at w, A, and B. The maximizer
of this objective function is desired for a problem specific A and B.

Value

Fw The value of the objective function for the 1D-algorithm evaluated at w, A, and
B.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

http://doi.org/10.1080/10618600.2015.1029577
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Examples

## Not run: library(envlpaster)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
avar <- m1$fisher
beta <- m1$coef
U <- beta %o% beta
get1Dobj(w = beta, A = avar, B = U)
## End(Not run)

manifold1Dplus manifold1Dplus

Description

The 1D algorithm

Usage

manifold1Dplus(M,U,u)

Arguments

M A
√
n estimate of an estimator’s asymptotic covariance matrix.

U A
√
n estimate of the parameter associated with the space we are enveloping.

For our purposes this quantity is either the outer product of the MLE of the
mean-value submodel parameter vector with itself or the outer product of the
MLE of the canonical submodel parameter vector with itself.

u The dimension of the envelope space assumed.

Details

This function calls get1Dobj, get1Dini, and get1Dderiv in order to find

max
w

[
log(wTMw) + log(wT (M + U)w)− 2 log(wTw)

]
using Polak-Ribiere conjugate gradient in optim. This maximization is conducted a total of u times
and at each iteration a vector belonging to the envelope space is returned. The vector returned at a
specific iteration is orthogonal to the vectors returned at previous iterations. When finished, a basis
matrix for the envelope space is returned.

Value

G A
√
n estimator of the basis matrix for the envelope subspace. This matrix has

u columns
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References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.
Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

Examples

## Not run: library(envlpaster)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
avar <- m1$fisher
beta <- m1$coef
U <- beta %o% beta
manifold1Dplus(M = avar, U = U, u = 1)
## End(Not run)

matpower matpower

Description

Raises a matrix to a power.

Usage

matpower(a,alpha)

Arguments

a An n× n matrix
alpha The power which to raise the matrix to.

Value

ai The matrix raised to the desired power

Examples

## Not run: library(envlpaster)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
avar <- m1$fisher
matpower(a = avar, alpha = -1)
## End(Not run)

http://doi.org/10.1080/10618600.2015.1029577
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Mguttatus Mguttatus

Description

A dataset with observed characteristics on 2313 Mimulus guttatus flowers.

Usage

data(Mguttatus)

Format

A dataset with observed characteristics on 2313 Mimulus guttatus flowers. The description of
objects included follows:

Mguttatus.redata The data frame in long form.

Mguttatus The asterdata object.

quantities The quantities required to fit the aster model. The components not described in the aster
help section are described below.

fit The indices of nodes in the Mguttatus.redata dataset that correspond to Darwinian fitness.

gen_bac The genetic background of the M. guttatus flower.

site The field site of the M. guttatus flower.

inversion The inversion orientation of the M. guttatus flower.

ecotype The ecotype of the M. guttatus flower.

References

Lowry, D.~B. and Willis, J.~H. (2010). A Widespread Chromosomal Inversion Polymorphism
Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation.
PLoS Biol, 8(9): e1000500. doi:~10.1371/journal.pbio.1000500.

projection projection

Description

Computes a projection into the column space of a user specified matrix.

Usage

projection(a)

http://doi.org/10.1371/journal.pbio.1000500
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Arguments

a An n×m matrix

Value

pa The projection into the column space of a

Examples

## Not run: library(envlpaster)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
avar <- m1$fisher
projection(a = avar)
## End(Not run)

scanner scanner

Description

A diagnostic assessing the potential benefits of envelope methodology for a particular aster model.

Usage

scanner(M, coef, u)

Arguments

M A
√
n estimate of an estimator’s asymptotic covariance matrix.

coef The MLE of the parameter of interest.

u The dimension of the envelope space assumed.

Details

This function provides users with a rough diagnostic for the performance of an envelope estimator
at a specific dimension. We can see how close a particular potential envelope estimator is to the
MLE as well as the proportion of variation that will be discarded when using envelope estimation.
This amount of variation discarded is optimistic since it does not account for variability associated
with estimating the projection into the envelope space.
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Value

indices The indices of the u most relevant eigenvectors of M to the construction of coef.

table An output table. The first column is the projection of coef into the space
spanned by the eigenvectors given by the indices.

G The u most relevant eigenvectors of M to the construction of coef.

prop the sum of the remaining eigenvalues of M divided by the sum of all of the eigen-
values of M.

Examples

## Not run: library(envlpaster)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
avar <- m1$fisher
beta <- m1$coef
scanner(M = avar, coef = beta, u = 1)
## End(Not run)

secondboot secondboot

Description

A parametric bootstrap procedure evaluated at an envelope estimator of the submodel mean-value
parameter vector τ that was obtained using eigenstructures or the 1d algorithm.

Usage

secondboot(k, nboot2, out, model, index, data, amat,
newdata, method = c("eigen","1d"))

Arguments

k The index of the top level parametric bootstrap procedure conducted by fit.boot.Efron
that the second level of bootstrapping is being applied to.

nboot2 The bootstrap sample size for the second level of parametric bootstrapping.

out The output of fit.boot.Efron.

model An aster model object.

index The indices denoting which components of the canonical parameter vector are
parameters of interest.

data An asterdata object corresponding to the original data.
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amat This object can either be an array or a matrix. It specifies a linear combination
of mean-value parameters that correspond to expected Darwinian fitness. See
the aster function help page in the original aster package for more details.

newdata A dataframe corresponding to hypothetical individuals in which expected Dar-
winian fitness is to be estimated.

method The procedure used to obtain envelope estimators.

Details

This function implements the second level of the parametric bootstrap procedure given by either
Algorithm 1 or Algorithm 2 in Eck (2015) with respect to the mean-value parameterization. This
is detailed in Steps 4 through 5c in the algorithm below. At iteration b, this parametric bootstrap
generates resamples from the distribution evaluated at the envelope estimator (τ̂ (b)env) of τ . In this
case, the selected indices producing the eigenstructure which was used to construct the envelope
estimator τ̂ (b)env are used to construct envelope estimators for the generated data. These resamples
are used to estimate the variability of τ̂ (b)env . The algorithm using eigenstructures is as follows:

1. Fit the aster model to the data and obtain τ̂ = (γ̂T , υ̂T ) and Σ̂ from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PĜυ̂ where PĜ
is computed using eigenstructures and selected via a model selection criterion of choice.

3. Perform a parametric bootstrap by generating resamples from the distribution of the aster
submodel evaluated at τ̂env = (γ̂T , υ̂Tenv)

T . For iteration b = 1, ..., B of the procedure:

(3a) Compute τ̂ (b) and Σ̂
(b)
υ,υ from the aster model fit to the resampled data.

(3b) Build P (b)

Ĝ
using the indices of Σ̂

(b)
υ,υ that are selected using the same model selection

criterion as Step 2 to build Ĝ.

(3c) Compute υ̂(b)env = P
(b)

Ê
υ̂(b) and τ̂ (b)env =

(
γ̂(b)

T

, υ̂
(b)T

env

)T
.

(3d) Store τ̂ (b)env and g
(
τ̂
(b)
env

)
where g maps τ to the parameterization of Darwinian fitness.

4. After B steps, the bootstrap estimator of expected Darwinian fitness is the average of the
envelope estimators stored in Step 3d. This completes the first part of the bootstrap procedure.

5. We now proceed with the second level of bootstrapping at the bth stored envelope estimator
τ̂
(b)
env . For iteration k = 1, ...,K of the procedure:

(5a) Generate data from the distribution of the aster submodel evaluated at τ̂ (b)env .
(5b) Perform Steps 3a through 3d with respect to the dataset obtained in Step 5a.

(5c) Store τ̂ (b)
(k)

env and g
(
τ̂
(b)(k)

env

)
.

When the second level of bootstrapping is completed for all b = 1, ..., B then this function reports
the standard deviation of the bootstrapped envelope estimator of expected Darwinian fitness. In this
case, the bootstrap procedure accounts for model selection volatility. The bootstrapped envelope
estimator is

µ̂g =
1

B

B∑
b=1

g(τ̂ (b)env)
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where g(τ̂
(b)
env) are the stored envelope estimators of expected Darwinian fitness in the env.boot.out

matrix included in the output of fit.boot.Efron. The standard deviation of the bootstrapped en-
velope estimator of expected Darwinian fitness is

B∑
b=1

[
ĉov

(b)T
V̂ −1ĉov

(b)
]
/B

where ĉov(b) = B(b)TC(b)/K and V̂ = B(b)T B(b)/K. The matrix B(b) ∈ RK×p has rows given by

τ̂ (b)
(k)

env −
K∑
k=1

τ̂ (b)
(k)

env /K

and the matrix C(b) ∈ RK×d has columns given by

g
(
τ (b)

(k)

env

)
− g

(
τ (b)env

)
.

For more details, see Efron (2014) and Eck (2015). The parametric bootstrap procedure which uses
the 1d algorithm to construct envelope estimators is analogous to the above algorithm. To use the
1d algorithm, the user specifies method = "1d" instead of method = "eigen".

Value

sd.Efron The estimated standard deviation (sd) for estimated expected Darwinian fitness
where is estimation is conducted using envelope methodology. This sd accounts
for model selection volatility. An eigenvalue decomposition using eigen is used
internally to calculate this quantity.

cov A components needed to construct sd.Efron if other numerical methods are
desired.

V A components needed to construct sd.Efron if other numerical methods are
desired.

MLE.tau.boot.subsample

A components needed to construct sd.Efron if other numerical methods are
desired.

est.env.subsample

A components needed to construct sd.Efron if other numerical methods are
desired.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

Eck, D.~J., Geyer, C.~J., and Cook, R.~D. (2016). Web-based Supplementary Materials for “En-
veloping the aster model.” in prep.

Efron, B. (2014). Estimation and Accuracy After Model Selection. JASA, 109:507, 991-1007.

http://doi.org/10.1080/10618600.2015.1029577
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Examples

### Web-based Supplementary Materials for ``Enveloping the aster model.'' ###

selection selection

Description

Finds the envelope eigenspace or dimension that is favored using AIC, BIC, or the LRT at a specified
size.

Usage

selection(parm, index, model, data = NULL, alpha = 0.05,
type = c("canonical","mean-value"), method = c("eigen","1d"))

Arguments

parm The MLE of the parameter of interest.

index The indices denoting which components of the canonical parameter vector are
parameters of interest.

model An aster model object.

data An asterdata object.

alpha The desired size of the LRT.

type The parameterization of the aster model in which envelope methods are being
applied.

method The procedure used to obtain envelope estimators.

Details

This function provides the user with the envelope model dimension or indices of the eigenspace fa-
vored by AIC, BIC, and the likelihood ratio test of size alpha. There are four possible combinations
of outputs. They are:

1. The specification of method = "eigen" and type = "mean-value" provides the user with
the indices of the eigenspace of estimated Fisher information used to construct an envelope
estimator for τ favored by AIC, BIC, and the LRT of size alpha.

2. The specification of method = "eigen" and type = "canonical" provides the user with
the indices of the eigenspace of estimated Fisher information used to construct an envelope
estimator for β favored by AIC, BIC, and the LRT of size alpha.

3. The specification of method = "1d" and type = "mean-value" provides the user with the
envelope model dimension used to construct an envelope estimator for τ favored by AIC, BIC,
and the LRT of size alpha.
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4. The specification of method = "1d" and type = "canonical" provides the user with the
envelope model dimension used to construct an envelope estimator for β favored by AIC, BIC,
and the LRT of size alpha.

When one is interested in envelope model dimensions or eigenspaces with respect to β, then an
asterdata object does not need to be specified. On the other hand, an asterdata is needed in
order to map the estimated τ to its corresponding β value. This is necessary because of the interface
(or lack thereof) between current aster and aster2 software. The way in which aster model
log likelihoods are evaluated is incorporated in aster software and changing parameterizations is
carried out using aster2 software.

Value

aic The eigenspace or envelope model dimension favored using AIC.

bic The eigenspace or envelope model dimension favored using BIC.

LRT The eigenspace or envelope model dimension favored using the LRT of size
alpha.

out The output table of all model selection criteria for all envelope estimators con-
sidered.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

Examples

## Not run:
set.seed(13)
library(envlpaster)
library(aster2)
data(generateddata)
m.null <- aster(resp ~ 0 + varb, fam = fam, pred = pred,
varvar = varb, idvar = id, root = root, data = redata)

m1 <- aster(resp ~ 0 + varb + mass + timing,
fam = fam, pred = pred, varvar = varb, idvar = id,
root = root, data = redata)

m2 <- aster(resp ~ 0 + varb + mass + timing +
I(mass^2) + I(timing^2) + I(mass*timing),
fam = fam, pred = pred, varvar = varb, idvar = id,
root = root, data = redata)

anova.table <- anova(m.null,m1,m2); anova.table
beta <- m1$coef
a <- grepl( "offsp", names(beta))
a <- a + grepl( "surviv", names(beta))
b <- which(a == 1)
target <- c(1:length(beta))[-b]
nnode <- ncol(m1$x)

http://doi.org/10.1080/10618600.2015.1029577
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data.aster <- asterdata(data, vars, pred, rep(0,nnode),
fam, families = list("bernoulli", "poisson",
fam.zero.truncated.poisson()))

selection(parm = beta, index = target, model = m1,
data = data.aster, alpha = 0.05, type = "canonical",
method = "eigen")

## End(Not run)

simdata30nodes A generated aster data set with 30 nodes

Description

Simulated data for an aster analysis. Loads 7 objects.

Usage

data(simdata30nodes)

Format

The data frame with records for 3000 organisms over 10 years. The dataset corresponding to our
aster analysis. The following four descriptions explain the elements of this dataset.

u Indicates survival for each of the 10 years.

w Counts offspring for each of the 10 years.

v Indicates if w > 0 for each of the 10 years.

z A covariate of potential interest, 10 in total.

variables Character vector giving the names of the variables in the graph.

root The root data. For aster.default an nind by nnode matrix, for aster.formula an nind * nnode
vector.

modmat An nind by nnode by ncoef three-dimensional array, the model matrix. aster.formula
constructs such a modmat from its formula, the data frame data, and the variables in the
environment of the formula.

formula Necessary for changing to class aster.formula.

xlevels Necessary for changing to class aster.formula.

terms Necessary for changing to class aster.formula.

simdata30nodes.asterdata An object of class asterdata corresponding to simdata30nodes.
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Details

This object contains an aster data set in wide form, an object of class asterdata corresponding to
the original data set, and vectors specifying the graphical structure of the aster model.

There are 3000 simulated individuals in this aster analysis. Our data is generated in two parts. The
first part follows Technical report 671 (TR 671) on Charlie Geyer’s Aster Models for Life History
Analysis webpage. For our data, nind = 3000, ntime = 10, psurv = 0.95, prepr = 0.7,
mpois = 1, and the seed is set at set.seed(13) which is different from the original simulation
setup.

We follow the model construction in TR 671 through out6. We then generate a new dataset from the
aster model where the components of the submodel mean-value parameter vector τ corresponding
to Darwinian fitness is in the space spanned by the first, second, and fourth eigenvectors of Fisher
information.

References

Geyer, C. J. and Shaw, R. G. (2009). Model Selection in Estimation of Fitness Landscapes. Tech-
nical Report No. 671. School of Statistics, University of Minnesota. http://conservancy.umn.
edu/handle/11299/56219.

targetboot targetboot

Description

A parametric bootstrap procedure evaluated at an envelope estimator of the submodel mean-value
parameter vector τ that was obtained using the 1D algorithm.

Usage

targetboot(model, nboot, index, u, data,
quiet = FALSE, m = 100)

Arguments

model An aster model object

nboot The number of bootstrap iterations desired

index The indices denoting which components of the canonical parameter vector are
parameters of interest

u The dimension of the envelope space assumed

data An asterdata object

quiet A logical argument. If FALSE, the function displays how much time it takes to
run m iterations

m The length of the output interval

http://conservancy.umn.edu/handle/11299/56219
http://conservancy.umn.edu/handle/11299/56219
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Details

This function implements the parametric bootstrap procedure given by the algorithm below with
respect to the mean-value parameterization. This parametric bootstrap generates resamples from
the distribution evaluated at an envelope estimator of τ . Envelope estimators are constructed using
the 1D algorithm at a user-specified envelope model dimension u. When one is using a partial
envelope then this function constructs envelope estimators of υ where we write τ = (γT , υT )T

and υ corresponds to aster model parameters of interest. In the sample, the 1D algorithm uses
M = Σ̂υ,υ and U = τ̂ τ̂T as inputs where Σ̂υ,υ is the part of Σ̂ corresponding to our parameters of
interest. When all of the components of τ are components of interest, then we write Σ̂υ,υ = Σ̂. The
algorithm is as follows:

1. Fit the aster model to the data and obtain τ̂ = (γ̂T , υ̂T ) and Σ̂ from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PÊ υ̂ where PÊ
is obtained from the 1D algorithm.

3. Perform a parametric bootstrap by generating resamples from the distribution evaluated at
υ̂env . For iteration b = 1, ..., B of the procedure:

(3a) Compute υ̂(b) and Σ̂
(b)
υ,υ from the aster model fit to the resampled data.

(3b) Obtain P (b)

Ê
as done in Step 2.

(3c) Store υ̂(b)env = P
(b)

Ê
υ̂(b).

A parametric bootstrap generating resamples from the distribution evaluated at the aster model MLE
is also conducted by this function.

Value

u The dimension of the envelope space assumed

table A table of output. The first two columns display the envelope estimator and
its bootstrapped standard error. The next two columns display the MLE and
its bootstrapped standard error. The last column displays the ratio of the stan-
dard error for the bootstrapped envelope estimator to the standard error for the
bootstrapped MLE.

S The bootstrap estimator of the variability of the partial envelope estimator.

S2 The bootstrap estimator of the variability of the MLE.

env.boot.out The realizations from the bootstrap procedure using envelope methodology.

MLE.boot.out The realizations from the bootstrap procedure using maximum likelihood esti-
mation.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

http://doi.org/10.1080/10618600.2015.1029577
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Examples

## Not run: set.seed(13)
library(envlpaster)
library(aster2)
data(simdata30nodes)
data <- simdata30nodes.asterdata
nnode <- length(vars)
xnew <- as.matrix(simdata30nodes[,c(1:nnode)])
m1 <- aster(xnew, root, pred, fam, modmat)
target <- 5:9
indices <- c(1,2,4,5)
u <- length(indices)
nboot <- 2000; timer <- nboot/2
bar <- targetboot(m1, nboot = nboot, index = target,

u = u, data = data, m = timer)
bar
## End(Not run)

targetbootcanon targetbootcanon

Description

A parametric bootstrap procedure evaluated at an envelope estimator of the submodel canonical
parameter vector β that was obtained using the 1D algorithm.

Usage

targetbootcanon(model, nboot, index, u,
code, families, quiet = FALSE, m = 100)

Arguments

model An aster model object.

nboot The number of bootstrap iterations desired.

index The indices denoting which components of the canonical parameter vector are
parameters of interest.

u The dimension of the envelope space assumed.

code A vector of dimension equal to the number of nodes in the aster graph. This
vector specifies which exponential family in the families list labels each arrow
of the aster graphical structure.

families A list of family specifications.

quiet A logical argument. If FALSE, the function displays how much time it takes to
run m iterations.

m The length of the output interval.
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Details

This function implements the parametric bootstrap procedure given by the algorithm below with
respect to the canonical parameterization. This parametric bootstrap generates resamples from the
distribution evaluated at an envelope estimator of β. Envelope estimators are constructed using
the 1D algorithm at a user-specified envelope model dimension u. When one is using a partial
envelope then this function constructs envelope estimators of υ where we write τ = (γT , υT )T

and υ corresponds to aster model parameters of interest. In the sample, the 1D algorithm uses
M = Σ̂−1υ,υ and U = β̂β̂T as inputs where Σ̂−1υ,υ is the part of Σ̂−1 corresponding to our parameters
of interest. When all of the components of τ are components of interest, then we write Σ̂−1υ,υ = Σ̂−1.
The algorithm is as follows:

1. Fit the aster model to the data and obtain τ̂ = (γ̂T , υ̂T ) and Σ̂−1 from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PÊ υ̂ where PÊ
is obtained from the 1D algorithm.

3. Perform a parametric bootstrap by generating resamples from the distribution evaluated at
υ̂env . For iteration b = 1, ..., B of the procedure:

(3a) Compute υ̂(b) and Σ̂
(b)−1

υ,υ from the aster model fit to the resampled data.

(3b) Obtain P (b)

Ê
as done in Step 2.

(3c) Store υ̂(b)env = P
(b)

Ê
υ̂(b).

A parametric bootstrap generating resamples from the distribution evaluated at the aster model MLE
is also conducted by this function.

Value

u The dimension of the envelope space assumed.

table A table of output. The first two columns display the envelope estimator and
its bootstrapped standard error. The next two columns display the MLE and
its bootstrapped standard error. The last column displays the ratio of the stan-
dard error for the bootstrapped envelope estimator to the standard error for the
bootstrapped MLE.

S The bootstrap estimator of the variability of the partial envelope estimator.

S2 The bootstrap estimator of the variability of the MLE.

env.boot.out The realizations from the bootstrap procedure using envelope methodology.

MLE.boot.out The realizations from the bootstrap procedure using maximum likelihood esti-
mation.

References

Cook, R.D. and Zhang, X. (2014). Foundations for Envelope Models and Methods. JASA, In Press.

Cook, R.D. and Zhang, X. (2015). Algorithms for Envelope Estimation. Journal of Computational
and Graphical Statistics, Published online. doi:~10.1080/10618600.2015.1029577.

Eck, D. J., Geyer, C. J., and Cook, R. D. (2016). Enveloping the aster model. in prep.

http://doi.org/10.1080/10618600.2015.1029577
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Examples

## Not run: set.seed(13)
library(envlpaster)
library(aster2)
data(generateddata)
m1 <- aster(resp ~ 0 + varb + mass + timing,

fam = fam, pred = pred, varvar = varb, idvar = id,
root = root, data = redata)

target <- c(9:10)
nboot <- 2000; timer <- nboot/2
bar <- targetbootcanon(m1, nboot = nboot, index = target,

u = 1, m = timer)
bar
## End(Not run)



Index

∗Topic datasets
generateddata, 11
Mguttatus, 17
simdata30nodes, 24

data (generateddata), 11

eigenboot, 2
eigenbootcanon, 4

fit.boot, 6
fit.boot.Efron, 8
formula (simdata30nodes), 24

generateddata, 11
get1Dderiv, 12
get1Dini, 13
get1Dobj, 14

manifold1Dplus, 15
matpower, 16
Mguttatus, 17
modmat (simdata30nodes), 24

projection, 17

quantities (Mguttatus), 17

redata (generateddata), 11
root (simdata30nodes), 24

scanner, 18
secondboot, 19
selection, 22
simdata30nodes, 24

targetboot, 25
targetbootcanon, 27
terms (simdata30nodes), 24

variables (simdata30nodes), 24
vars (generateddata), 11

xlevels (simdata30nodes), 24

30


	eigenboot
	eigenbootcanon
	fit.boot
	fit.boot.Efron
	generateddata
	get1Dderiv
	get1Dini
	get1Dobj
	manifold1Dplus
	matpower
	Mguttatus
	projection
	scanner
	secondboot
	selection
	simdata30nodes
	targetboot
	targetbootcanon
	Index

