Package ‘esquisse’

January 7, 2022
Type Package

Title Explore and Visualize Your Data Interactively

Version 1.1.0

Description A 'shiny' gadget to create 'ggplot2' figures interactively with drag-and-
drop to map your variables to different aesthetics.
You can quickly visualize your data accordingly to their type, export in various formats,
and retrieve the code to reproduce the plot.

URL https://dreamrs.github.io/esquisse/,

https://github.com/dreamRs/esquisse

BugReports https://github.com/dreamRs/esquisse/issues
License GPL-3 | file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2

Imports datamods (>= 1.2.0), ggplot2 (>= 3.0.0), grDevices, htmltools
(>=0.5.0), jsonlite, phosphoricons, rlang (>= 0.3.1),
rstudioapi, scales, shiny (>= 1.1.0), shinyWidgets (>= 0.6.0)

Suggests officer, rvg, rio, testthat (>= 2.1.0), knitr, rmarkdown,
ggthemes, hrbrthemes

VignetteBuilder knitr

NeedsCompilation no

Author Fanny Meyer [aut],
Victor Perrier [aut, cre],
Ian Carroll [ctb] (Faceting support),
Xiangnan Dang [ctb] (Facets rows and cols, X/Y limits),
Nicolas Bevacqua [cph] (author of dragula JavaScript library),
Daybrush (Younkue Choi) [cph] (author of moveable JavaScript library),
Zeno Rocha [cph] (author of clipboard JavaScript library)

Maintainer Victor Perrier <victor.perrier@dreamrs.fr>
Repository CRAN
Date/Publication 2022-01-07 16:22:48 UTC

https://dreamrs.github.io/esquisse/
https://github.com/dreamRs/esquisse
https://github.com/dreamRs/esquisse/issues

2

R topi

build _aes

cs documented:

build_aes e 2
dragulalnput 3
dropInput 6
ESUISSE .+« « o o e e e e e e e e e e e e e e e e 8
esquisse-deprecated 9
ESQUISSE-EXPOIES . . . v v v e i e e e e e e e e e e e e e e e 9
esquisse-module L 9
ESUISSET « « ¢ v v v v v e e e e e e e e e e e e 13
ESQUISSEISEIVET . . . v v v v it e e e e e e e e e e e e e e e e e e e 14
ggeall . .o e e e e 15
geplot-OUtPUL L e e e e e e e e 18
geplot_to_ PPt e e 20
INPUL-COLOTS o o e e e e e e e e 21
match_geom_args L e e 26
module-chooseData L 27
module-coerce e 29
module-filterDF 29
potential_geoms e 30
run_module e 31
safe_ggplot e e e e 32
save-ggplot-module L. e 33
updateDragulalnput L. e 34
updateDroplnput L. e 36
which_pal_scale L 38
Index 41
build_aes Build aesthetics to use in a plot
Description

Build aesthetics to use in a plot

Usage
build_aes(data, ..., .list = NULL, geom = NULL)
Arguments
data Data to use in the plot.
Named list of aesthetics.
.list Alternative to . .. to use a preexisting named list.

geom Geom to use, according to the geom aesthetics may vary.

dragulalnput

Value

An expression

Examples

Classic
build_aes(iris, x = "Sepal.Width")
build_aes(iris, x = "Sepal.Width"”, y = "Sepal.Width")

Explicit geom : no change
build_aes(iris, x = "Species"”, geom = "bar")

Little trick if data is count data
df <- data.frame(
LET = c("A", "B"),
VAL = c(4, 7)
)
build_aes(df, x = "LET", y = "VAL", geom = "bar")

#e.g.

library(ggplot2)

ggplot(df) +
build_aes(df, x = "LET", y = "VAL", geom = "bar") +
geom_bar ()

dragulaInput Drag And Drop Input Widget

Description

Drag And Drop Input Widget

Usage

dragulalnput(
inputld,
label = NULL,
sourcelabel,
targetslLabels,
targetsIds = NULL,
choices = NULL,
choiceNames = NULL,
choiceValues = NULL,
selected = NULL,
status = "primary"”,
replace = FALSE,
copySource = TRUE,
badge = TRUE,

4 dragulalnput
ncolSource "auto”,
ncolGrid = NULL,
dragulaOpts = list(),
boxStyle = NULL,
width = NULL,
height = "100px”"
)
Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
sourcelabel Label display in the source box
targetsLabels Labels for each target element.
targetsIds Ids for retrieving values server-side, if NULL, the default, targetsLabels are
used after removing all not-alphanumeric characters.
choices List of values to select from (if elements of the list are named then that name

rather than the value is displayed to the user). If this argument is provided, then
choiceNames and choiceValues must not be provided, and vice-versa. The
values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

choiceNames, choiceValues

selected

status

replace

copySource

badge

ncolSource

ncolGrid
dragulaOpts
boxStyle
width
height

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of UI object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text.

Default selected values. Must be a 1ist with targetsIds as names.

If choices are displayed into a Bootstrap label, you can use Bootstrap status to
color them, or NULL.

When a choice is dragged in a target container already containing a choice, does
the later be replaced by the new one ?

When replace = TRUE, does elements in source must be copied or moved ?

Displays choices inside a Bootstrap badge. Use FALSE if you want to pass cus-
tom appearance with choiceNames.

Number of columns occupied by the source, default is "auto”, meaning full
TOW.

Number of columns used to place source and targets boxes, see examples.
Options passed to dragula JavaScript library.

CSS style string to customize source and target container.

Width of the input.

Height of each boxes, the total input height is this parameter X 2.

dragulalnput

Value

a Ul definition

Note

The output server-side is a list with two slots: source and targets.

See Also

updateDragulalInput() to update choices server-side.

Examples

library(shiny)
library(esquisse)

ui <- fluidPage(
tags$h2("Demo dragulalnput”),

tags$br(),
fluidRow(
column(
width = 6,
dragulalnput(

inputId = "dad1”,

label = "Default:"”,

sourcelLabel = "Source”,

targetsLabels = c("Target 1", "Target 2"),
choices = month.abb,

width = "100%"

)!
verbatimTextOutput(outputId = "resultl”),

tagssbr(),

dragulalnput(
inputId = "dad3”,
label = "On same row:",
sourceLabel = "Source”,
targetsLabels = c("Target 1", "Target 2"),
choices = month.abb,
width = "100%",
ncolSource = 1,
ncolGrid = 3
),
verbatimTextOutput(outputId = "result3”)

),

column(
width = 6,
dragulalnput(
inputld = "dad2",

6 droplnput

label = "Two rows:",
sourcelLabel = "Source”,
targetsLabels = c("x", "y", "color”, "fill"”, "size"”, "facet”),

choices = names(mtcars),
width = "100%",

ncolGrid = 3
)!
verbatimTextOutput(outputId = "result2"),
tagss$br(),
dragulalnput(
inputld = "dad4",
label = "Two rows not filled:",
sourcelLabel = "Source”,
targetsLabels = c("x", "y", "color", "fill", "size"),

choices = names(mtcars),
width = "100%",
ncolGrid = 3

))
verbatimTextOutput(outputId = "result4")

server <- function(input, output, session) {
output$resultl <- renderPrint(str(input$dadl))
output$result2 <- renderPrint(str(input$dad2))
output$result3 <- renderPrint(str(input$dad3))
output$result4 <- renderPrint(str(input$dad4))
3

if (interactive())
shinyApp(ui = ui, server = server)

dropInput Dropdown Input

Description

A dropdown menu for selecting a value.

droplnput 7

Usage

dropInput(
inputlId,
choicesNames,
choicesValues,
selected = NULL,
dropUp = FALSE,
dropWidth = NULL,
dropMaxHeight = NULL,
dropPreScrollable = FALSE,
btnClass = "btn-link”,
width = NULL

Arguments

inputId The input slot that will be used to access the value.
choicesNames A taglList of HTML tags to show in the dropdown menu.

choicesValues Vector corresponding to choicesNames for retrieving values server-side.

selected The initial selected value, must be an element of choicesValues, default to the
first item of choicesValues.
dropUp Open the menu above the button rather than below.
dropWidth Width of the dropdown menu.
dropMaxHeight Maximal height for the menu.
dropPreScrollable
Force scroll bar to appear in the menu.
btnClass Class for buttons in dropdown menu, default is "btn-1ink”, you can use for
example "btn-default” to display regular buttons.
width The width of the input.
See Also
updateDropInput
Examples

if (interactive()) {

library(shiny)
library(esquisse)

ui <- fluidPage(
tags$h2("Drop Input”),
dropInput(
inputId = "mydrop”,
choicesNames = taglList(
list(icon("home"), style = "width: 100px;"),

list(icon("flash"), style = "width: 100px;"),
list(icon("cogs"), style = "width: 10@0px;"),
list(icon("fire"), style = "width: 100px;"),
list(icon("users”), style = "width: 100px;"),
list(icon("info"), style = "width: 100px;")

)’

choicesValues = c("home"”, "flash", "cogs",
"fire", "users"”, "info"),

dropWidth = "220px"

),
verbatimTextOutput (outputId = "res")

)

server <- function(input, output, session) {
output$res <- renderPrint({
input$mydrop
»
}

shinyApp(ui, server)

esquisse Explore and Visualize Your Data Interactively

Description

A ’shiny’ gadget to create ’ggplot2’ figures interactively with drag-and-drop to map your variables
to different aesthetics. You can quickly visualize your data accordingly to their type, export in

various formats, and retrieve the code to reproduce the plot.

Author(s)

Fanny Meyer & Victor Perrier (@dreamRs_fr)
Examples

Not run:

esquisser()

launch esquisse with specific data:

esquisser(mtcars)

End(Not run)

esquisse-deprecated

esquisse-deprecated Deprecated functions

Description

Deprecated functions

Note
The following functions are deprecated and will be removed in next release:
* esquisserUI / esquisserServer: replaced by esquisse_ui / esquisse_server
e filterDF_UI/ filterDF: moved to package datamods

* chooseDataUI / chooseDataServer: moved to package datamods

* coercelUI / coerceServer: moved to package datamods

esquisse-exports esquisse exported operators and S3 methods

Description

esquisse exported operators and S3 methods

esquisse-module Esquisse module

Description

Use esquisse as a module in a Shiny application.

Usage

esquisse_ui(
id,
header = TRUE,
container = esquisseContainer(),
controls = c("labs"”, "parameters", "appearance", "filters"”, "code"),
insert_code = FALSE

esquisse_server(
id,
data_rv = NULL,

https://github.com/dreamRs/datamods
https://github.com/dreamRs/datamods
https://github.com/dreamRs/datamods

10 esquisse-module

default_aes = c("fill", "color"”, "size", "group”, "facet"),
import_from = c("env”, "file”, "copypaste”, "googlesheets"”)

)

esquisseContainer(width = "100%", height = "700px", fixed = FALSE)

Arguments

id Module ID.

header Logical. Display or not esquisse header.

container Container in which display the addin, default is to use esquisseContainer, see
examples. Use NULL for no container (behavior in versions <= 0.2.1). Must be a
function.

controls Controls menu to be displayed. Use NULL to hide all menus.

insert_code Logical, Display or not a button to insert the ggplot code in the current user
script (work only in RStudio).

data_rv A reactiveValues with at least a slot data containing a data. frame to use in
the module. And a slot name corresponding to the name of the data. frame.

default_aes Default aesthetics to be used, can be a character vector or reactive function
returning one.

import_from From where to import data, argument passed to datamods: : import_ui.

width, height The width and height of the container, e.g. "400px", or "100%"; see validateCssUnit.

fixed Use a fixed container, e.g. to use use esquisse full page. If TRUE, width and
height are ignored. Default to FALSE. It’s possible to use a vector of CSS unit of
length 4 to specify the margins (top, right, bottom, left).

Value

A reactiveValues with 3 slots :

* code_plot : code to generate plot.
* code_filters : a list of length two with code to reproduce filters.

* data : data.frame used in plot (with filters applied).

Examples

Part of a Shiny app

library(shiny)
library(esquisse)

ui <- fluidPage(
tags$h1("Use esquisse as a Shiny module”),

radioButtons(
inputId = "data”,

esquisse-module 11

label = "Data to use:",
choices = c("iris"”, "mtcars"),
inline = TRUE
),
checkboxGroupInput(
inputId = "aes”,
label = "Aesthetics to use:",
choices = c(
"fill", "color"”, "size", "shape”,
"weight", "group”, "facet”, "facet_row", "facet_col”
),
selected = c("fill"”, "color"”, "size", "facet"),
inline = TRUE
),
esquisse_ui(
id = "esquisse”,
header = FALSE, # dont display gadget title
container = esquisseContainer(height = "700px")
)

server <- function(input, output, session) {
data_rv <- reactiveValues(data = iris, name = "iris")

observeEvent (input$data, {
if (input$data == "iris") {
data_rv$data <- iris
data_rv$name <- "iris"”
} else {
data_rv$data <- mtcars
data_rv$name <- "mtcars”
3
»

esquisse_server(
id = "esquisse”,
data_rv = data_rv,
default_aes = reactive(input$aes)

)

if (interactive())
shinyApp(ui, server)
Whole Shiny app

library(shiny)
library(esquisse)

12

Load some datasets in app environment
my_data <- data.frame(

varl = rnorm(100),

var2 = sample(letters[1:5], 100, TRUE)
)

ui <- fluidPage(
esquisse_ui(
id = "esquisse”,
container = esquisseContainer(fixed = TRUE)

server <- function(input, output, session) {

esquisse_server(id = "esquisse")

if (interactive())
shinyApp(ui, server)

You can also use a vector of margins for the fixed argument,
useful if you have a navbar for example

library(shiny)
library(esquisse)
library(datamods)

ui <- navbarPage(
title = "My navbar app”,

tabPanel (
title = "esquisse”,
esquisse_ui(
id = "esquisse”,

header = FALSE,
container = esquisseContainer(
fixed = c(55, 0, 0, 0)
)
)
)
)

server <- function(input, output, session) {

lauch import data modal

import_modal(
id = "import-data”,
from = c("env", "file", "copypaste"),
title = "Import data”

esquisse-module

esquisser 13

)

data_imported_r <- datamods::import_server("import-data")

data_rv <- reactiveValues(data = data.frame())

observeEvent(data_imported_r$data(), {
data_rv$data <- data_imported_r$data()
data_rv$name <- data_imported_r$name()

1))
esquisse_server(id = "esquisse”, data_rv = data_rv)
3

if (interactive())
shinyApp(ui, server)

esquisser An add-in to easily create plots with ggplot2

Description

Select data to be used and map variables to aesthetics to produce a chart, customize common ele-
ments and get code to reproduce the chart.

Usage
esquisser(
data = NULL,
controls = c("labs"”, "parameters", "appearance", "filters"”, "code"),
viewer = getOption(x = "esquisse.viewer”, default = "dialog")
)
Arguments
data adata.frame, you can pass a data. frame explicitly to the function, otherwise
you’ll have to choose one in global environment.
controls Controls menu to be displayed. Use NULL to hide all menus.
viewer Where to display the gadget: "dialog"”, "pane” or "browser” (see viewer).
Value

NULL. You can view code used to produce the chart, copy it or insert it in current script.

14 esquisserServer

Examples

if (interactive()) {

Launch with :

esquisser(iris)

If in RStudio it will be launched by default in dialog window
If not, it will be launched in browser

Launch esquisse in browser :
esquisser(iris, viewer = "browser")

You can set this option in .Rprofile :

options("esquisse.viewer” = "viewer")
or
options("esquisse.viewer” = "browser")

esquisse use shiny::runApp
see ?shiny::runApp to see options
available, example to use custom port:

options(”shiny.port” = 8080)

esquisser(iris, viewer = "browser")
3
esquisserServer Esquisse Shiny module
Description

DEPRECATED, see esquisse-module.

Usage

esquisserServer(
input,
output,
session,
data = NULL,
dataModule = c("GlobalEnv", "ImportFile"),

non

sizeDataModule = "m

esquisserUI(
id,
header = TRUE,
container = esquisseContainer(),
choose_data = TRUE,
insert_code = FALSE,

ggcall 15

disable_filters = FALSE
)

Arguments

input, output, session
Standards shiny server arguments.

data A reactiveValues with at least a slot data containing a data. frame to use in
the module. And a slot name corresponding to the name of the data. frame.

dataModule Data module to use, choose between "GlobalEnv" or "ImportFile".

sizeDataModule Size for the modal window for selecting data.

id Module’s id.

header Logical. Display or not esquisse header.

container Container in which display the addin, default is to use esquisseContainer, see
examples. Use NULL for no container (behavior in versions <= 0.2.1). Must be a
function.

choose_data Logical. Display or not the button to choose data.

insert_code Logical, Display or not a button to insert the ggplot code in the current user

script (work only in RStudio).

disable_filters
Logical. Disable the menu allowing to filter data used.

Value
A reactiveValues with 3 slots :
* code_plot : code to generate plot.

* code_filters : a list of length two with code to reproduce filters.

» data : data.frame used in plot (with filters applied).

Note

For the module to display correctly, it is necessary to place it in a container with a fixed height.
Since version >= (.2.2, the container is added by default.

ggcall Generate code to create a ggplot?2

Description

Generate code to create a ggplot2

16 ggcall

Usage
ggcall(
data = NULL,
mapping = NULL,
geom = NULL,

geom_args = list(),
scales = NULL,
scales_args = list(),

coord = NULL,
labs = list(),
theme = NULL,
theme_args = list(),
facet = NULL,

facet_row = NULL,
facet_col = NULL,
facet_args = list(),

xlim = NULL,
ylim = NULL
)
Arguments
data Character. Name of the data. frame.
mapping List. Named list of aesthetics.
geom Character. Name of the geom to use (with or without "geom_").
geom_args List. Arguments to use in the geom.
scales Character vector. Scale(s) to use (with or without "scale_").
scales_args List. Arguments to use in scale(s), if scales is length > 1, must be a named list
with scales names.
coord Character. Coordinates to use (with or without "coord_").
labs List. Named list of labels to use for title, subtitle, x & y axis, legends.
theme Character. Name of the theme to use (with or without "theme_").
theme_args Named list. Arguments for theme.
facet Character vector. Names of variables to use in facet_wrap.
facet_row Character vector. Names of row variables to use in facet_grid.
facet_col Character vector. Names of col variables to use in facet_grid.
facet_args Named list. Arguments for facet_wrap.
x1im A vector of length 2 representing limits on x-axis.
ylim A vector of length 2 representing limits on y-axis.
Value

a call that can be evaluated with eval.

ggcall 17

Examples

Default:
ggcall()

With data and aes
ggcall("mtcars”, list(x = "mpg", y = "wt"))

Evaluate the call

library(ggplot2)
eval(ggcall("mtcars”, list(x = "mpg", y = "wt")))

With a geom:

ggcall(
data = "mtcars”,
mapping = list(x = "mpg", y = "wt"),
geom = "point”
)
With options
ggcall(
data = "mtcars”,
mapping = list(x = "hp", y = "cyl", fill = "color"),
geom = "bar”,
coord = "flip”,
labs = list(title = "My title"),
theme = "minimal”,
facet = c("gear"”, "carb"),
theme_args = list(legend.position = "bottom")
)
Theme
ggcall(
"mtcars”, list(x = "mpg"”, y = "wt"),
theme = "theme_minimal”,

theme_args = list(
panel.ontop = TRUE,
legend.title = rlang::expr(element_text(face = "bold"))

)
)
Theme from other package than ggplot2
ggcall(
"mtcars”, list(x = "mpg”, y = "wt"),
theme = "ggthemes: :theme_economist”
)

One scale
ggcall(
data = "mtcars”,
mapping = list(x = "mpg", y = "wt"”, color = "gsec"),

18 ggplot-output

geom = "point”,
scales = "color_distiller”,
scales_args = list(palette = "Blues")
)
Two scales
ggcall(
data = "mtcars”,
mapping = list(x = "mpg", y = "wt"”, color = "gsec”, size = "gsec"),
geom = "point”,
scales = c("color_distiller”, "size_continuous"),
scales_args = list(
color_distiller = list(palette = "Greens"),
size_continuous = list(range = c(1, 20))
)
)
ggplot-output Render ggplot module
Description

Display a plot on the client and allow to download it.

Usage

ggplot_output(
id,
width = "100%",
height = "400px",
downloads = downloads_labels(),

downloads_labels(
label = ph("download-simple"),

png = taglList(ph("image"), "PNG"),
pdf = taglList(ph("file-pdf"), "PDF"),
svg = taglList(ph("browsers"), "SVG"),

jpeg = tagList(ph("image"), "JPEG"),
pptx = taglList(ph("projector-screen”), "PPTX"),
more = taglList(ph("gear"), i18n("More options"))

render_ggplot(
id,
expr,

L

ggplot-output 19

env = parent.frame(),
quoted = FALSE,
filename = "export-ggplot”

)
Arguments

id Module ID.

width Width of the plot.

height Height of the plot.

downloads Labels for export options, use downloads_labels.
Parameters passed to shiny: :plotOutput() (ggplot_output)or shiny: :renderPlot()
(render_ggplot).

label Main label for export button

png, pdf, svg, jpeg, pptx
Labels to display in export menu, use NULL to disable specific format.

more Label for "more" button, allowing to launch export modal.

expr An expression that generates a ggplot object.

env The environment in which to evaluate expression.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save

an expression in a variable.

filename A string of the filename to export WITHOUT extension, it will be added accord-
ing to type of export.

Value

Server-side, a reactiveValues with the plot.

Examples

library(shiny)
library(ggplot2)
library(esquisse)

ui <- fluidPage(
tags$h2("ggplot output”),
selectInput(”var”, "Variable:", names(economics)[-11]),
ggplot_output(”"MYID"”, width = "600px")

)

server <- function(input, output, session) {

render_ggplot("MYID", {
ggplot(economics) +
geom_line(aes(date, !!sym(input$var))) +

20 ggplot_to_ppt

theme_minimal() +

labs(
title = "A cool chart made with ggplot2”,
subtitle = "that you can export in various format”
)
D)
}

if (interactive())
shinyApp(ui, server)

ggplot_to_ppt Utility to export ggplot objects to PowerPoint

Description

You can use the RStudio addin to interactively select ggplot objects, or directly pass their names to
the function.

Usage

ggplot_to_ppt(gg = NULL)

Arguments

gg character. Name(s) of ggplot object(s), if NULL, launch the Shiny gadget.

Value

Path to the temporary PowerPoint file.

Examples

Shiny gadget
if (interactive()) {

ggplot_to_ppt()

Or with an object's name

library(ggplot2)

p <- ggplot(iris) +
geom_point(aes(Sepal.Length, Sepal.Width))

ggplot_to_ppt("p")

}

input-colors

21

input-colors

Picker input to select color(s) or palette

Description

Select menu to view and choose a color or a palette of colors.

Usage

colorPicker(

inputld,
label,
choices,

selected = NULL,

textColor
plainColor

"#000",

FALSE,

multiple = FALSE,

pickerOpts = list(),
width = NULL
)
updateColorPicker(
session = getDefaultReactiveDomain(),
inputld,
choices,
textColor = "#000",

plainColor = FALSE,

multiple
)

palettePicker(

inputld,
label,
choices,

FALSE

selected = NULL,

textColor = "#000",
plainColor = FALSE,
pickerOpts = list(),
width = NULL
)
updatePalettePicker(
session = getDefaultReactiveDomain(),
inputld,
choices,

selected = NULL,
textColor = "#000",

22 input-colors

plainColor = FALSE

)
Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
choices List of values to select from. Values must be valid Hex colors. If elements of
the list are named then that name rather than the value is displayed to the user.
selected The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.
textColor Color of the text displayed above colors, can be a vector of the same length as
choices.
plainColor Color the full space of the choice menu.
multiple Is selection of multiple items allowed?
pickerOpts Options for pickerInput.
width The width of the input : 'auto', 'fit', '100px', '75%".
session Shiny session.
Value

A select control that can be added to a UI definition.

Examples

colorPicker -------------------—---————————— -~

library(shiny)
library(esquisse)
library(scales)

ui <- fluidPage(
tags$h2("colorPicker examples”),
fluidRow(
column(
width = 3,
colorPicker(
inputId = "coll”,
label = "With a vector of colors:"”,
choices = brewer_pal(palette = "Dark2")(8)
),
verbatimTextOutput("res1"),
colorPicker(
inputld = "col5”,
label = "Update colors:",

input-colors

-1 (&),

choices = brewer_pal(palette = "Blues”, direction
textColor = "#FFF"
),
verbatimTextOutput("res5"),
radioButtons(
"update”, "Colors"”, c("Blues”, "Greens"”, "Reds"),
inline = TRUE
)
),
column(
width = 3,
colorPicker(
inputld = "col2",
label = "Change text color:",
choices = brewer_pal(palette = "Blues”)(8),
textColor = c("black”, "black”, "black”, "white",
"white", "white", "white”, "white")
),
verbatimTextOutput("res2")
),
column(
width = 3,
colorPicker(
inputId = "col3”,
label = "With a list of vector of colors:”,
choices = list(
"Blues” = brewer_pal(palette = "Blues”)(8),
"Reds" = brewer_pal(palette = "Reds”)(8),
"Greens" = brewer_pal(palette = "Greens")(8)
)
),
verbatimTextOutput("res3")
),
column(
width = 3,
colorPicker(
inputld = "col4",
label = "Plain color & multiple choices:",
choices = brewer_pal(palette = "Paired”)(8),
plainColor = TRUE,
multiple = TRUE,
pickerOpts = list(‘selected-text-format‘= "count > 3")
),

)
)
)

verbatimTextOutput("res4")

server <- function(input, output, session) {

output$resl <- renderPrint(input$coll)
output$res2 <- renderPrint(input$col2)
output$res3 <- renderPrint(input$col3)

23

24

input-colors

output$res4 <- renderPrint(input$cols)
output$res5 <- renderPrint(input$col5)

observeEvent (input$update, {
updateColorPicker(
inputld = "col5",
choices = brewer_pal(palette = input$update, direction = -1)(8),
textColor = "#FFF"

D
3

if (interactive()) {
shinyApp(ui, server)

}

palettePicker -----------------—----------

library(shiny)
library(esquisse)
library(scales)

ui <- fluidPage(
tags$h2("pickerColor examples”),

fluidRow(
column(
width = 4,
palettePicker(

inputld = "pall”,
label = "Select a palette:",
choices = list(
"Blues"” = brewer_pal(palette = "Blues”)(8),
"Reds"” = brewer_pal(palette = "Reds")(8)
)
),
verbatimTextOutput("res1"),
palettePicker(
inputld = "pal4”,
label = "Update palette:",
choices = list(
"Blues"” = brewer_pal(palette = "Blues”)(8),
"Reds"” = brewer_pal(palette = "Reds")(8)

)

),

verbatimTextOutput("res4"),

radioButtons(
"update”, "Palettes:", c("default”, "viridis", "brewer"),
inline = TRUE

)

)’

column(

input-colors

width =
palettePicker(
inputld = "pal2”,
label = "With a list of palette:”
choices = list(
"Viridis" = list(

"viridis” = viridis_pal(option = "viridis")(10),
"magma” = viridis_pal(option = "magma”)(10),
"inferno” = viridis_pal(option = "inferno"”)(10),
"plasma” = viridis_pal(option = "plasma”)(10),
"cividis"” = viridis_pal(option = "cividis")(10)

),

"Brewer” = list(
"Blues"” = brewer_pal(palette = "Blues”)(8),
"Reds"” = brewer_pal(palette = "Reds")(8),
"Paired” = brewer_pal(palette = "Paired”)(8),
"Set1" = brewer_pal(palette = "Set1")(8)

)

),
textColor = c(
rep("white”, 5), rep("black”, 4)

)
),
verbatimTextOutput("res2")
),
column(
width =
palettePicker(
inputld = "pal3”,
label = "With plain colors:”
choices = list(
"BrBG" = brewer_pal(palette = "BrBG")(8),
"PiYG" = brewer_pal(palette = "PiYG")(8),
"PRGn" = brewer_pal(palette = "PRGn")(8),
"PuOr"” = brewer_pal(palette = "PuOr")(8),
"RdBu” = brewer_pal(palette = "RdBu")(8),
"RdGy" = brewer_pal(palette = "RdGy")(8),
"RdY1Bu" = brewer_pal(palette = "RdY1Bu")(8),
"RdY1Gn" = brewer_pal(palette = "RdY1Gn")(8),
"Spectral” = brewer_pal(palette = "Spectral”)(8)
),
plainColor = TRUE,
textColor = "white"”
),
verbatimTextOutput("res3"”)
)

)
)

server <- function(input, output, session) {

output$resl <- renderPrint(input$pall)
output$res2 <- renderPrint(input$pal2)

25

26

output$res3 <- renderPrint(input$pal3)
output$res4 <- renderPrint(input$pals)

observeEvent (input$update, {
if (input$update == "default") {
updatePalettePicker(
inputld = "pal4”,
choices = list(
"Blues” = brewer_pal(palette = "Blues”)(8),
"Reds" = brewer_pal(palette = "Reds")(8)
)
)
} else if (input$update == "viridis") {
updatePalettePicker(
inputld = "pal4”,
choices = list(

"viridis" = viridis_pal(option = "viridis")(10),
"magma” = viridis_pal(option = "magma"”)(10),
"inferno" = viridis_pal(option = "inferno")(10),
"plasma” = viridis_pal(option = "plasma”)(10),
"cividis" = viridis_pal(option = "cividis")(10)
),
textColor = "#FFF"
)
} else if (input$update == "brewer") {
updatePalettePicker(

inputld = "pal4”,

choices = list(
"Blues"” = brewer_pal(palette = "Blues”)(8),
"Reds"” = brewer_pal(palette = "Reds")(8),
"Paired” = brewer_pal(palette = "Paired"”)(8),
"Set1" = brewer_pal(palette = "Set1")(8)

)

)
3
b))
3

if (interactive()) {
shinyApp(ui, server)

}

match_geom_args

match_geom_args Match list of arguments to arguments of geometry

Description

Match list of arguments to arguments of geometry

module-chooseData

Usage
match_geom_args(
geom,
args,
add_aes = TRUE,

mapping = list(),
envir = "ggplot2”

Arguments
geom Character. name of the geometry.
args Named list, parameters to be matched to the geometry arguments.
add_aes Add aesthetics parameters (like size, fill, ...).
mapping Mapping used in plot, to avoid setting fixed aesthetics parameters.
envir Package environment to search in.

Value
alist

Examples

List of parameters
params <- list(

bins = 30,

scale = "width",
adjust = 2,
position = "stack"”,
size = 1.6,

fill = "#112246"
)

Search arguments according to geom

match_geom_args(geom
match_geom_args(geom

match_geom_args(geom =

match_geom_args(geom
match_geom_args(geom

"histogram”, args = params)

"violin", args = params)

"bar", args = params, add_aes = FALSE)
"point"”, args = params)

"point"”, args = params, add_aes = FALSE)

27

module-chooseData

Module for choosing data.frame

Description

DEPRECATED, please see package datamods for similar features.

https://github.com/dreamRs/datamods

28 module-chooseData

Usage

chooseDatalI(id, label = "Data”, icon = "database"”, width = "100%", ...)

chooseDataServer (
input,
output,
session,
dataModule = c("GlobalEnv"”, "ImportFile"),
data = NULL,
name = NULL,
selectVars = TRUE,
selectedTypes = c("continuous”, "discrete”, "time"),
coerceVars = FALSE,
launchOnStart = TRUE,

n.on

size = "m
)
Arguments
id Module’s id.
label Label for button, passed to actionButton.
icon Icon to appears on the button, passed to actionButton.
width Width of button, passed to actionButton.

. Other arguments passed to actionButton
input, output, session
standards shiny server arguments.

dataModule Data module to use, choose between "GlobalEnv” (select ad data. frame from
Global environment) or "ImportFile” (import an external file supported by
import).

data A data. frame to use by default.

name Character, object’s name to use for data.

selectVars Display module to select variables, TRUE by default.

selectedTypes Type of variables selected by default in select variables module. Possible types
are "discrete”, "time"”, "continuous” and "id"”, by default "id" is dis-
carded.

coerceVars Display module to coerce variables between different class, TRUE by default.
launchOnStart Opens modal window when the application starts.

size Size for the modal window.

Value

a reactiveValues containing the data selected under slot data and the name of the selected
data. frame under slot name.

module-coerce 29

module-coerce Coerce data.frame’s columns module

Description

DEPRECATED, please see package datamods for similar features.

Usage

coerceUI(id)

coerceServer(input, output, session, data, reactiveValuesSlot = "data")
Arguments

id Module id. See callModule.

input, output, session
standards shiny server arguments.?

data A data.frame or a reactive function returning a data.frame ora reactivevalues
with a slot containing a data. frame (use reactiveValuesSlot to identify that
slot)

reactiveValuesSlot

If data is a reactivevalues, specify the name of the slot containing data.

Value

a reactiveValues with two slots: data original data.frame with modified columns, and names
column’s names with call to coerce method.

module-filterDF Shiny module to interactively filter a data. frame

Description

DEPRECATED, please see package datamods for similar features.

Usage
filterDF_UI(id, show_nrow = TRUE)

filterDF(
input,
output,
session,
data_table = reactive(),

https://github.com/dreamRs/datamods
https://github.com/dreamRs/datamods

30 potential_geoms

data_vars = shiny::reactive(NULL),
data_name = reactive("data"),
label_nrow = "Number of rows:",
drop_ids = TRUE,

picker = FALSE

)

Arguments
id Module id. See callModule.
show_nrow Show number of filtered rows and total.

input, output, session
standards shiny server arguments.

data_table reactive function returning a data. frame to filter.

data_vars reactive function returning a character vector of variable to use for filters.

data_name reactive function returning a character string representing data_table name.

label_nrow Text to display before the number of rows of filtered data / source data.

drop_ids Drop columns containing more than 90% of unique values, or than 50 distinct
values.

picker Use shinyWidgets: :pickerInput instead of shiny::selectizeInput (de-
fault).

Value

A list with 2 elements :

 data_filtered : reactive function returning data filtered.

* code : reactiveValues with 2 slots : expr (raw expression to filter data) and dplyr (code
with dplyr pipeline).

potential_geoms Potential geometries according to the data

Description

Potential geometries according to the data

Usage
potential_geoms(data, mapping, auto = FALSE)

Arguments
data A data.frame
mapping List of aesthetic mappings to use with data.

auto Return only one geometry.

run_module

Value

A character vector

Examples

library(ggplot2)

One continuous variable
potential_geoms(

data = iris,

mapping = aes(x = Sepal.Length)
)

Automatic pick a geom
potential_geoms(
data = iris,
mapping = aes(x = Sepal.Length),
auto = TRUE
)

One discrete variable
potential_geoms(

data = iris,

mapping = aes(x = Species)

)

Two continuous variables
potential_geoms(

data = iris,

mapping = aes(x = Sepal.Length, y = Sepal.Width)
)

31

run_module Run module example

Description

DEPRECATED, please see package datamods for similar features.

Usage

run_module(module = c("filterDF", "chooseData”, "chooseData2", "coerce"))

Arguments

module Module for which to see a demo.

https://github.com/dreamRs/datamods

32 safe_ggplot

safe_ggplot Safely render a ggplot in Shiny application

Description

Safely render a ggplot in Shiny application

Usage

safe_ggplot(expr, data = NULL, session = shiny::getDefaultReactiveDomain())

Arguments
expr Code to produce a ggplot object.
data Argument passed to eval_tidy to evaluate expression.
session Session object to send notification to.

Value

Output of ggplot_build.

Examples

if (interactive()) {
library(shiny)
library(ggplot2)

ui <- fluidPage(
fluidRow(
column(
width = 3,
selectInput(
inputld = "var”,
label = "var:",
choices = c("Sepal.Width"”, "Do.Not.Exist")
)
),
column(
width = 9,
plotOutput(outputId = "plot"”)
)
)
)

server <- function(input, output, session) {

output$plot <- renderPlot({
p <- ggplot(iris) +
geom_point(aes_string("Sepal.Length”, input$var))

save-ggplot-module 33

safe_ggplot(p)
»

}

shinyApp(ui, server)

}

save-ggplot-module Save ggplot module

Description

Save a ggplot object in various format and resize it before saving.

Usage

save_ggplot_ui(

id,

Output_format = C(”png"’ llpdf‘ll’ ”svgll’ ijegll’ Hbmpll, llepsll’ lltiff‘”)
)

save_ggplot_modal(

id,

title = NULL,

output_format = c("png”, "pdf”, "svg”, "jpeg", "bmp", "eps”, "tiff")
)

save_ggplot_server(id, plot_rv)

Arguments

id Module ID.

output_format Output formats offered to the user.

title Modal’s title.

plot_rv A reactiveValues with a slot plot containing a ggplot object.
Value

No value. Use in UI & server of shiny application.

Examples

library(shiny)
library(ggplot2)
library(esquisse)

34 updateDragulalnput

ui <- fluidPage(
tags$h2("Save a ggplot"),

selectInput(”var”, "Variable:", names(economics)[-1]),
plotOutput(”plot”, width = "600px"),
actionButton(”save”, "Save this plot")

)
server <- function(input, output, session) {
rv <- reactiveValues(plot = NULL)

output$plot <- renderPlot({
rv$plot <- ggplot(economics) +
geom_line(aes(date, !!sym(input$var))) +
theme_minimal ()
rv$plot
D)

observeEvent (input$save, {
save_ggplot_modal("ID", "Save plot")
D)

save_ggplot_server("ID", rv)

}

if (interactive())
shinyApp(ui, server)

updateDragulalnput Update Dragula Input

Description

Update dragulaInput() widget server-side.

Usage

updateDragulalnput(
session,
inputlId,
choices = NULL,
choiceNames = NULL,
choiceValues = NULL,
selected = NULL,
selectedNames = NULL,
selectedValues = NULL,
badge = TRUE,
status = "primary"

updateDragulalnput 35

Arguments

session The session object passed to function given to shinyServer.

inputId The input slot that will be used to access the value.

choices List of values to select from (if elements of the list are named then that name
rather than the value is displayed to the user). If this argument is provided, then
choiceNames and choiceValues must not be provided, and vice-versa. The
values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

choiceNames List of names and values, respectively, that are displayed to the user in the app

and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of Ul object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text.

choiceValues List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of UI object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text.

selected Default selected values. Must be a 1ist with targetsIds as names.
selectedNames, selectedValues
Update selected items with custom names and values.

badge Displays choices inside a Bootstrap badge. Use FALSE if you want to pass cus-
tom appearance with choiceNames.

status If choices are displayed into a Bootstrap label, you can use Bootstrap status to
color them, or NULL.

Examples

if (interactive()) {

library("shiny")
library("esquisse")

ui <- fluidPage(
tags$h2("Update dragulalnput”),
radioButtons(
inputId = "update”,
label = "Dataset”,
choices = c("iris"”, "mtcars")
),
tagss$br(),
dragulalnput(

36

inputId = "myDad”,
sourceLabel = "Variables”,
targetsLabels = c("X", "y", "fill", "color", "size"),
choices = names(iris),
replace = TRUE, width = "400px", status = "success”

),

verbatimTextOutput(outputld = "result”)

)

server <- function(input, output, session) {
output$result <- renderPrint(str(input$myDad))

observeEvent (input$update, {
if (input$update == "iris") {
updateDragulalnput(
session = session,
inputId = "myDad"”,
choices = names(iris),

status = "success”
)
} else {
updateDragulalnput(

session = session,

inputId = "myDad”,

choices = names(mtcars)
}

}, ignorelnit

TRUE)

shinyApp(ui, server)

updateDropInput

updateDropInput Change the value of a drop input on the client

Description

Change the value of a drop input on the client

Usage

updateDropInput(session, inputld, selected = NULL, disabled = NULL)

updateDroplInput

Arguments
session The session object passed to function given to shinyServer.
inputId The id of the input object.
selected The initially selected value.
disabled Choices (choicesValues) to disable.
See Also
dropInput
Examples

if (interactive()) {

library(shiny)
library(esquisse)

myChoices <- taglList(
list(icon("home"), style = "width: 100px;"),
list(icon("flash”), style = "width: 100px;"),
list(icon("cogs"), style = "width: 100px;"),
list(icon("fire"), style = "width: 1@0px;"),
list(icon("users"”), style = "width: 100px;"),
list(icon("info"), style = "width: 100px;")

ui <- fluidPage(
tags$h2("Update Drop Input”),

fluidRow(

column(
width = 6,
dropInput(

inputId = "mydrop”,
choicesNames = myChoices,

choicesValues = c("home”, "flash”, "cogs", "fire"”, "users", "info"),
dropWidth = "220px"
),
verbatimTextOutput (outputId = "res")
),
column(
width = 6,
actionButton("home"”, "Select home"),
actionButton(”flash”, "Select flash"),
actionButton(”cogs”, "Select cogs"),
actionButton("fire"”, "Select fire"),
actionButton("users”, "Select users"),
actionButton(”info", "Select info"),
checkboxGroupInput(

inputId = "disabled"”,
label = "Choices to disable”,

38

choices = c("home"”, "flash”, "cogs", "fire", "users”, "info")

)Y

actionButton("disable”, "Disable")

)
)
)

server <- function(input, output, session) {

output$res <- renderPrint({
input$mydrop
»

observeEvent (input$home, {
updateDropInput(session, "mydrop”,

D

observeEvent (input$flash, {
updateDropInput(session, "mydrop”,

1)

observeEvent (input$cogs, {
updateDropInput(session, "mydrop”,

1)

observeEvent (input$fire, {
updateDropInput(session, "mydrop”,

1)

observeEvent (input$users, {
updateDropInput(session, "mydrop”,

1)

observeEvent (input$info, {
updateDropInput(session, "mydrop”,

byl

observeEvent(input$disable, {
if (!is.null(input$disabled)) {

"home")

"flash")

"cogs")

"fire")

"users")

"info")

which_pal_scale

updateDropInput(session, "mydrop”, disabled = input$disabled)
} else {
updateDropInput(session, "mydrop”, disabled = character(9))
}
»
}
shinyApp(ui, server)
3
which_pal_scale Automatically select appropriate color scale
Description

Automatically select appropriate color scale

which_pal_scale 39

Usage
which_pal_scale(
mapping,
palette = "ggplot2”,
data = NULL,
fill_type = c("continuous”, "discrete"),
color_type = c("continuous”, "discrete"),
reverse = FALSE
)
Arguments
mapping Aesthetics used in ggplot.
palette Color palette.
data An optional data. frame to choose the right type for variables.

fill_type, color_type
Scale to use according to the variable used in fill/color aesthetic : "discrete”
or "continuous”. Ignored if data is provided: it will be guessed from data.

reverse Reverse colors order or not.

Value

alist

Examples

library(ggplot2)

Automatic guess according to data
which_pal_scale(
mapping = aes(fill = Sepal.Length),
palette = "ggplot2”,
data = iris
)
which_pal_scale(
mapping = aes(fill = Species),
palette = "ggplot2”,
data = iris

Explicitly specify type
which_pal_scale(
mapping = aes(color = variable),
palette = "Blues”,
color_type = "discrete”

)

40 which_pal_scale

Both scales
which_pal_scale(
mapping = aes(color = varl, fill = var2),
palette = "Blues”,
color_type = "discrete”,
fill_type = "continuous”

Index

actionButton, 28
build_aes, 2

callModule, 29, 30

chooseDataServer (module-chooseData), 27
chooseDataUI (module-chooseData), 27
coerceServer (module-coerce), 29
coerceUI (module-coerce), 29

colorPicker (input-colors), 21

datamods: :import_ui, 10
downloads_labels (ggplot-output), 18
dragulalnput, 3

dragulalnput(), 34

dropInput, 6, 37

esquisse, 8

esquisse-deprecated, 9
esquisse-exports, 9
esquisse-module, 9

esquisse_server (esquisse-module), 9
esquisse_ui (esquisse-module), 9
esquisseContainer (esquisse-module), 9
esquisser, 13

esquisserServer, 14

esquisserUI (esquisserServer), 14
eval_tidy, 32

facet_grid, 16

facet_wrap, 16

filterDF (module-filterDF), 29
filterDF_UI (module-filterDF), 29

ggcall, 15

ggplot-output, 18
ggplot_build, 32

ggplot_output (ggplot-output), 18
ggplot_to_ppt, 20

i18n (esquisse-exports), 9

41

import, 28
input-colors, 21

match_geom_args, 26
module-chooseData, 27
module-coerce, 29

module-esquisse (esquisserServer), 14
module-filterDF, 29

palettePicker (input-colors), 21
ph (esquisse-exports), 9
pickerInput, 22
potential_geoms, 30

reactive, 30
reactiveValues, 28, 30
render_ggplot (ggplot-output), 18
run_module, 31

safe_ggplot, 32

save-ggplot-module, 33

save_ggplot_modal (save-ggplot-module),
33

save_ggplot_server
(save-ggplot-module), 33

save_ggplot_ui (save-ggplot-module), 33

set_i18n (esquisse-exports), 9

shiny: :plotOutput(), 19

shiny: :renderPlot(), 19

shiny::selectizeInput, 30

shinyWidgets: :pickerInput, 30

theme, 16

updateColorPicker (input-colors), 21
updateDragulalnput, 34
updateDragulalnput(), 5
updateDropInput, 7, 36
updatePalettePicker (input-colors), 21

validateCssUnit, /0

42 INDEX

viewer, 13

which_pal_scale, 38

	build_aes
	dragulaInput
	dropInput
	esquisse
	esquisse-deprecated
	esquisse-exports
	esquisse-module
	esquisser
	esquisserServer
	ggcall
	ggplot-output
	ggplot_to_ppt
	input-colors
	match_geom_args
	module-chooseData
	module-coerce
	module-filterDF
	potential_geoms
	run_module
	safe_ggplot
	save-ggplot-module
	updateDragulaInput
	updateDropInput
	which_pal_scale
	Index

