Package 'etrunct'

July 4, 2016

Type Package
Title Computes Moments of Univariate Truncated t Distribution
Version 0.1
Author Matthew Stephens
Maintainer Matthew Stephens <mstephens@uchicago.edu>
Description Computes moments of univariate truncated t distribution.
There is only one exported function, e_trunct(), which should be seen for details.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 5.0.1
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-04 09:12:55

R topics documented:

	e_trunct	 	• •		•	•	 •	•	 •	•	 •	•		• •	•		•	•	 •	•	 •	1
Index																						3

e_trunct

Compute moments of univariate truncated t distribution

Description

Compute moments of univariate truncated t distribution

Usage

e_trunct(a, b, df, r)

Arguments

а	the left end of the truncation interval
b	the right end of the truncation interval
df	the degrees of freedom of the t distribution
r	the degree of moment to compute

Details

This function computes the r-th moment of the univariate t distribution on df degrees of freedom, truncated to the interval (a,b). If parameters are vectors then the r[i]th moment is computed for each (a[i],b[i],v[i]) The methods are based on results in O'Hagan (1973) and work for df>r. Otherwise NaN is returned.

References

O'Hagan, A. (1973) Bayes estimation of a convex quadratic. Biometrika 60 (3).

Examples

 $e_trunct(-3,3,3,2)$ # second moment of t distribution on 3df truncated to (-3,3) $e_trunct(-2,2,4,1)$ # first moment, should be 0 by symmetry

 $e_trunct(c(-3,-2),c(3,2),c(3,4),c(2,1))$ # the function is vectorized

Index

 $e_trunct, 1$