Package 'extlasso'

February 19, 2015
Type Package
Title Maximum penalized likelihood estimation with extended lassopenalty
Version 0.2
Date 2014-19-08
Author B N Mandal mandal.stat@gmail.com and Jun Ma jun.ma@mq.edu.au
Maintainer B N Mandal mandal.stat@gmail.com
Depends R (>= 3.1.1)
Description The package estimates coefficients of extended LASSO penalized linear regres-sion and generalized linear models. Currently lasso and elastic net penalized linear regres-sion and generalized linear models are considered. The package currently utilizes an accurate ap-proximation of L1 penalty and then a modified Jacobi algorithm to estimate the coeffi-
cients. There is provision for plotting of the solutions and predictions of coefficients at given val-ues of lambda. The package also contains functions for cross validation to select a suit-able lambda value given the data. The package also provides a function for estima-tion in fused lasso penalized linear regression.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-08-19 07:54:21
R topics documented:
coef.extlasso 2
cv.extlasso 3
extlasso 4
fusedlasso 6
plot.extlasso 8
predict.extlasso 9
Index 11

```
coef.extlasso Extract coefficients from a fitted extlasso object
```


Description

The function returns the coefficients from a fitted extlasso object

Usage

\#\# S3 method for class 'extlasso'
coef(object,...)

Arguments

object
A 'extlasso' object obtained using 'extlasso' function.
... Not used

Value

Estimated coefficients for different lambdas starting from maximum value of lambda to minimum value of lambda

Author(s)

B N Mandal and Jun Ma

References

Mandal, B.N. and Jun Ma, (2014). A Jacobi-Armijo Algorithm for LASSO and its Extensions.

Examples

```
x=matrix(rnorm(100*30),100,30)
y=sample(c(0,1),100,replace=TRUE)
g1=extlasso(x,y,family="binomial")
coef(g1)
x=matrix(rnorm(100*30),100,30)
y=rnorm(100)
g1=extlasso(x,y,family="normal")
coef(g1)
```

cv. extlasso	k-fold cross validation for penalized generalized linear models for nor-
	mal/binomial/poisson family

Description

The function does k -fold cross validation for selecting best value of regularization parameter.

Usage

cv.extlasso(x,y,family=c("binomial", "normal", "poisson"), k=5,
nlambda=50, tau=1, plot=TRUE, errorbars=TRUE)

Arguments

$\mathrm{x} \quad \mathrm{x}$ is matrix of order n x p where n is number of observations and p is number of predictor variables. Rows should represent observations and columns should represent predictor variables.
$y \quad y$ is a vector of response variable of order $\mathrm{n} x 1$.
family family is either "normal" or "binomial" or "poisson".
$k \quad$ Number of folds for cross validation. Default is $k=5$.
nlambda Number of lambda values to be used for cross validation. Default is nlambda=50.
tau Elastic net parameter, $0 \leq \tau \leq 1$ in elastic net penalty $\lambda\left\{\tau\|\beta\|_{1}+(1-\right.$ $\tau) \|$ beta $\left.\|_{2}^{2}\right\}$. Default tau $=1$ corresponds to LASSO penalty.
plot if TRUE, produces a plot of cross validated prediction mean squared errors/ deviances against lambda. Default is TRUE.
errorbars If TRUE, error bars are drawn in the plot. Default is TRUE.

Value

Produces a plot and returns a list with following components:
lambda Value of lambda for which average cross validation error is minimum
pmse A vector of average cross validation errors for various lambda values
lambdas A vector of lambda values used in cross validation
se A vector containing standard errors of cross validation errors

Note

This function uses prediction means squared errors for normal family and deviance for binomial and poisson family.

Author(s)

B N Mandal and Jun Ma

References

Mandal, B.N. and Jun Ma, (2014). A Jacobi-Armijo Algorithm for LASSO and its Extensions.

Examples

```
#normal family
x=matrix(rnorm(100*30),100,30)
y=rnorm(100)
cv.extlasso(x,y,family="normal",k=5)
#binomial family
x=matrix(rnorm(100*30),100,30)
y=sample(c(0,1),100, replace=TRUE)
cv.extlasso(x,y,family="binomial",k=5)
#poisson family
x=matrix(rnorm(100*30),100,30)
y=sample(c(1:5),100,replace=TRUE)
cv.extlasso(x,y,family="poisson",k=5)
```


Description

The function computes coefficients of a penalized generalized linear model for normal/binomial/poisson family using modified Jacobi Algorithm for a sequence of lambda values. Currently lasso and elastic net penalty are supported.

Usage

extlasso(x,y,family=c("normal","binomial","poisson"), intercept=TRUE, normalize=TRUE, tau=1, alpha=1e-12, eps=1e-6, tol=1e-6, maxiter=1e5, nstep=100, min.lambda=1e-4)

Arguments

x
y
family family should be one of these: "normal","binomial","poisson"
intercept If TRUE, model includes intercept, else the model does not have intercept.
normalize If TRUE, columns of x matrix are normalized with mean 0 and norm 1 prior to fitting the model. The coefficients at end are returned on the original scale. Default is normalize = TRUE.

tau	Elastic net parameter, $0 \leq \tau \leq 1$ in elastic net penalty $\lambda \tau\\|\beta\\|_{1}+(1-\tau)\\|\beta\\|_{2}^{2}$. Default tau $=1$ corresponds to LASSO penalty.
alpha	The quantity in approximating $\left.\left\|\beta_{j}\right\|=\sqrt{(} \beta_{j}^{2}+\alpha\right)$ Default is alpha $=1 \mathrm{e}-12$.
eps	A value which is used to set a coefficient to zero if coefficients value is within - eps to + eps. Default is eps $=1 \mathrm{e}-6$.
tol	Tolerance criteria for convergence of solutions. Default is tol = 1e-6. maxiter
Maximum number of iterations permissible for solving optimization problem for a particular lambda. Default is 10000. Rarely you need to change this to higher value.	
nstep	Number of steps from maximum value of lambda to minimum value of lambda. Default is nstep $=100$.
min.lambda	Minimum value of lambda. Default is min.lambda=1e-4.

Value

An object of class 'extlasso' with following components:
beta0 A vector of order nstep of intercept estimates. Each value denote an estimate for a particular lambda. Corresponding lambda values are available in 'lambdas' element of the 'extlasso' object.
coef A matrix of order nstep x p of slope estimates. Each row denotes solution for a particular lambda. Corresponding lambda values are available in 'lambdas' element of the 'extlasso' object. Here p is number of predictor variables.
lambdas Sequence of lambda values for which coefficients are obtained
L1norm L1norm of the coefficients
norm.frac Fractions of norm computed as L1 norm at current lambda divided by maximum L1 norm
lambda.iter Number of iterations used for different lambdas
of.value Objective function values
normx Norm of x variables

Author(s)

B N Mandal and Jun Ma

References

Mandal, B.N. and Jun Ma, (2014). A Jacobi-Armijo Algorithm for LASSO and its Extensions.

Examples

```
#LASSO
x=matrix(rnorm(100*30),100,30)
y=rnorm(100)
g1=extlasso(x,y,family="normal")
plot(g1)
```

```
plot(g1,xvar="lambda")
#Elastic net
g2=extlasso(x,y,family="normal",tau=0.6)
plot(g2)
plot(g2,xvar="lambda")
#Ridge regression
g3=extlasso(x,y,family="normal",tau=0)
plot(g3)
plot(g3,xvar="lambda")
#L1 penalized GLM for binomial family
x=matrix(rnorm(100*30),100,30)
y=sample(c(0,1),100,replace=TRUE)
g1=extlasso(x,y,family="binomial")
plot(g1)
plot(g1,xvar="lambda")
#Elastic net with GLM with binomial family
g2=extlasso(x,y,family="binomial",tau=0.8)
plot(g2)
plot(g2,xvar="lambda")
```

fusedlasso Fused lasso penalized linear regression

Description

The function computes coefficients of a fused lasso penalized linear regression model using modified Jacobi gradient descent Algorithm for a pair of lambda1 and lambda2 values.

Usage

fusedlasso ($x, y, l a m b d a 1, l a m b d a 2$, intercept=TRUE, normalize=TRUE, alpha $=1 \mathrm{e}-6$, eps $=1 \mathrm{e}-6$, tol $=1 \mathrm{e}-8$, maxiter=1e5)

Arguments

x
y
lambda1
lambda2
intercept
x is a matrix of order $n x p$ where n is number of observations and p is number of predictor variables. Rows should represent observations and columns should represent predictor variables.
y is a vector of response variable of order $\mathrm{n} \times 1$.
The value of lambdal
The value of lambda2
If TRUE, model includes intercept, else the model does not have intercept.

```
normalize If TRUE, columns of x matrix are normalized with mean 0 and norm 1 prior to fitting the model. The coefficients at end are returned on the original scale. Default is normalize = TRUE.
alpha The quantity in approximating |\beta| = \sqrt{}{(}\mp@subsup{\beta}{}{2}+\alpha) Default is alpha =1e-12.
eps A value which is used to set a coefficient to zero if coefficients value is within -
    eps to + eps. Default is eps = 1e-6.
tol Tolerance criteria for convergence of solutions. Default is tol = 1e-6.
maxiter Maximum number of iterations permissible for solving optimization problem
    for a particular lambda. Default is 10000. Rarely you need to change this to
    higher value.
```


Value

An object of class 'extlasso' with following components:

intercept	Value of intercept: TRUE or FALSE as used in input
coef	A vector of order $(p+1)$ if intercept is TRUE, first element being estimates of in- tercept or a vector of order p if intercept is FALSE. Here p is number of predictor variables.
lambda1	The value of lambda1 lambda2
The value of lambda2	
lambda.iter	L1norm of the coefficients
of.value	Number of iterations Objective function value

Author(s)

B N Mandal and Jun Ma

References

Mandal, B.N. and Jun Ma, (2014). A Jacobi-Armijo Algorithm for LASSO and its Extensions.

Examples

```
n=50
p=100
rho=0
beta=rep(0,p)
beta[1:20]=1
beta[11:15]=2
beta[25]=3
beta[41:45]=1
x=matrix(rnorm(n*p),n,p)
y=x%*%beta+rnorm(n,0,0.5)
f1<-fusedlasso(x,y,lambda1=0.1, lambda2=1)
plot(beta,col="blue", type="b", pch=1,ylim=range(beta,f1$coef))
lines(f1$coef,type="b",lty=1,col="black")
legend("topright",pch=1,lty=1,merge=TRUE,text.col=c("blue", "black"),legend=c("True", "Fitted"))
```

```
plot.extlasso Plot of regularization path
```


Description

Produces a plot of entire regularization path from a 'extlasso' object obtained using 'extlasso' function.

Usage

\#\# S3 method for class 'extlasso'
plot(x,xvar=c("lambda","L1norm","fraction of norm"),...)

Arguments

X
xvar

A 'extlasso' object obtained using 'extlasso' function.
What should be on x-axis? xvar="lambda" produces a plot of regularization path with respect to lambda, xvar="L1norm" produces a plot of regularization path with respect to L1 norm of coefficients and xvar="fraction of norm" produces a plot of regularization path with respect to fraction of norm of coefficients. Default is xvar="L1norm".
.. Optional graphical parameters to matplot() function

Value

A plot of regularization path is produced.

Author(s)

B N Mandal and Jun Ma

References

Mandal, B.N. and Jun Ma, (2014). A Jacobi-Armijo Algorithm for LASSO and its Extensions.

Examples

```
x=matrix(rnorm(100*30),100,30)
y=rnorm(100)
g1=extlasso(x,y,family="normal")
plot(g1)
plot(g1,xvar="lambda")
x=matrix(rnorm(100*30),100,30)
y=sample(c(0,1),100,replace=TRUE)
g1=extlasso(x,y,family="binomial")
plot(g1)
plot(g1,xvar="lambda")
```


predict.extlasso
 Prediction of coefficients of a penalized linear regression or general-

 ized linear models
Description

The function computes estimated coefficients value at a given lambda or L1 norm or fraction of norm using a 'extlasso' object obtained using 'extlasso' function.

Usage

\#\# S3 method for class 'extlasso'
predict(object, mode=c("fraction", "norm", "lambda"), at=0, . .)

Arguments

object A 'extlasso' object obtained using 'extlasso' function.
mode If mode="lambda", prediction is made for a given lambda, if mode="norm", prediction is made for a given L1 norm and if mode="fraction", prediction is made for a fraction of norm value. Default is mode="lambda"
at \quad A value at which prediction is to be made. Default is at $=0$.
... Not used. Other arguments to predict.

Value

A vector of estimated coefficients of length p or $\mathrm{p}+1$ at the given value of lambda or L 1 norm or fraction of norm, depending on intercept=TRUE or FALSE in 'extlasso' object. Here p is number of predictor variables.

Author(s)

B N Mandal and Jun Ma

References

Mandal, B.N. and Jun Ma, (2014). A Jacobi-Armijo Algorithm for LASSO and its Extensions.

Examples

```
x=matrix(rnorm(100*30),100,30)
y=sample(c(0,1),100,replace=TRUE)
g1=extlasso(x,y,family="binomial")
predict(g1,mode="lambda",at=0.1)
predict(g1,mode="L1norm",at=1)
predict(g1,mode="fraction",at=0.5)
x=matrix(rnorm(100*30),100,30)
y=rnorm(100)
g1=extlasso(x,y,family="normal")
```

predict(g1,mode="lambda", at=0.09)
predict(g1,mode="L1norm", at=0.6)
predict(g1,mode="fraction", at=0.8)

Index

```
*Topic Crossvalidation
    cv.extlasso, 3
*Topic Elastic net
    extlasso,4
    plot.extlasso,8
*Topic Fused LASSO
    fusedlasso, }
*Topic Generalized linear models
    plot.extlasso,8
*Topic Generalized linear model
        extlasso,4
*Topic Gradient descent
    fusedlasso,6
    plot.extlasso, 8
*Topic Jacobi
    fusedlasso,6
    plot.extlasso,8
*Topic L1 norm
    plot.extlasso, 8
*Topic L1 penalty
    extlasso,4
*Topic LASSO
    extlasso,4
    plot.extlasso, 8
*Topic Penalized
    fusedlasso,6
    plot.extlasso,8
*Topic Regression
    extlasso,4
    fusedlasso,6
    plot.extlasso,8
*Topic Regularization
    extlasso,4
*Topic Regularized
    fusedlasso,6
    plot.extlasso,8
*Topic Ridge regression
    extlasso,4
coef.extlasso,2
```


cv.extlasso, 3

extlasso, 4
fusedlasso, 6
plot.extlasso, 8
predict.extlasso, 9

