Package 'extraBinomial'

February 19, 2015

Type Package
Title Extra-binomial approach for pooled sequencing data
Version 2.1
Date 2012-07-09
Author Xin Yang, Chris Wallace
Maintainer Xin Yang <xin.yang@cimr.cam.ac.uk></xin.yang@cimr.cam.ac.uk>
Description This package tests for differences in minor allele frequency between groups and is based on an extra-binomial variation model for pooled sequencing data.
License GPL-3
Repository CRAN
Date/Publication 2012-07-09 15:39:12
NeedsCompilation no

R topics documented:

	extraBinomial-package	1 2
Index		5

extraBinomial-package Extra-binomial approach for pooled sequencing data

Description

This package tests for differences in minor allele frequency between groups and is based on extrabinomial variation model for pooled sequencing data.

Details

Package:	extraBinomial
Type:	Package
Version:	2.1
Date:	2012-07-09
License:	GPL-3

To use the function exbio, simply define two matrices R, R.alt with the same dimensions (rows index SNPs and columns index pools), a vector cc indicating the case and control status, number of chromosomes (n) and then do: exbio(R, R.alt, cc, n) to yield the estimated allele frequencies and p-value based on extra-binomial model.

Author(s)

Xin Yang, Chris Wallace

Maintainer: Xin Yang <xin.yang@cimr.cam.ac.uk>

References

Yang et al. "Extra-binomial variation approach for analysis of pooled DNA sequencing data", under review.

exbio

Extra-binomial approach for pooled sequencing data

Description

This function tests for differences in minor allele frequency between groups and is based on extrabinomial variation model for pooled sequencing data.

Usage

```
exbio(R, R.alt, cc, n, tol = 0.001, a.start = 1, b.start = 1, max.it = 1000, digits = NULL, model.maf =
```

Arguments

R	A matrix with rows indexed by SNPs and columns by pools. The entries are counts of allele 1.
R.alt	A similarly formatted matrix containing the counts of allele 2.
сс	A case/control indicator vector with length = number of pools containing 0s (control pool) and 1s (case pool).
n	Number of chromosomes (twice the number of subjects) in each pooled sample.
tol	Maximum difference between coefficient values in successive glm before we can stop, the default=0.001.

exbio

a.start	An initial value for the parameter a in linear regression, the default=1.
b.start	An initial value for the parameter b in linear regression, the default=1.
max.it	Maximum iterations, the default=1000.
digits	How many significant digits are to be used for allele frequency and p-value. The default, 'NULL', uses 'getOption(digits)'.
model.maf	A logical value indicating whether to allow the modelled error structure to depend on allele frequency (the default) or just read depth. The default=TRUE.

Details

R and R.alt contain the read counts for the major allele and the alternative allele respectively and are required to have the same dimension.

The extra-binomial model defined: E(R/N)=p, Var(R/N)=p(1-p)(a/n+b/N) when N=R+R.alt

We denote: W=1/(a/n+b/N), which may be interpreted as the adjusted depth of pool j for SNP i. Given the expected quantities: E(r2)=1/W=a/n+b/N, the parameters a and b can be estimated by linear regression of r2 on 1/N, giving a/n as the intercept and b as the slope. If model.maf=TRUE, $W=1/(a/n+b/N+b2*p+b3*p^2)$ and two additional parameters (b2 and b3) are estimated. This regression is carried out using generalized linear model (GLM) by first adopting Gaussian errors to estimate a relatively good start value of a and b, and then using these start values to do GLM with gamma errors and identity link because both a and b are positive.

Since the estimated allele frequency p depends on a and b, the calculations are carried out iteratively.

A chi-square test is performed on a 2*2 table using the weighted allele counts to calculate the p-value.

Value

A list containing the following components:

result	a data.frame with three columns: the first shows the minor allele frequency of controls; the second shows the minor allele frequency of cases; the third shows the p-value. Each row stands for a SNP.
parameters	a character vector indicating the values of the parameters a and b (and b2, b3 if model.maf=TRUE) in the linear regression and and the times of iteration.

Author(s)

Xin Yang, Chris Wallace

References

Yang et al. "Extra-binomial variation approach for analysis of pooled DNA sequencing data", under review.

Examples

```
R<-matrix(c(1409,1530,1490,1630,924,998,1000,1012),nrow=2,ncol=4,byrow=TRUE)
R.alt<-matrix(c(170,210,192,209,13,14,30,38),nrow=2,ncol=4,byrow=TRUE)
cc<-c(0,0,1,1)
n=96
exbio(R, R.alt, cc, n, max.it = 100, digits=3)
##=> p.value = 9.91e-01 for SNP1 and 4.01e-11 for SNP2,
##so association for SNP2 is established, but not for SNP1.
```

Index

*Topic **package** extraBinomial-package, 1

exbio, 2 extraBinomial (extraBinomial-package), 1 extraBinomial-package, 1