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fOptions-package Basic Option Valuation

Description

The Rmetrics "Options" package is a collection of functions to valuate basic options.

Details

Package: fOptions
Type: Package
Version: R 3.0.1
Date: 2014
License: GPL Version 2 or later
Copyright: (c) 1999-2014 Rmetrics Assiciation
URL: https://www.rmetrics.org

1 Introduction

The fOptions package provides function for pricing and evaluationg basic options.

2 Plain Vanilla Option

This section provides a collection of functions to valuate plain vanilla options. Included are func-
tions for the Generalized Black-Scholes option pricing model, for options on futures, some utility
functions, and print and summary methods for options.

GBS* the generalized Black-Scholes option
BlackScholesOption a synonyme for the GBSOption
Black76Option options on Futures
MiltersenSchwartzOption options on commodity futures

NDF, CND, CBND distribution functions

print print method for Options
summary summary method for Options

https://www.rmetrics.org
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3 Binomial Tree Options

This section offers a collection of functions to valuate options in the framework of the Binomial
tree option approach.

CRRBinomialTreeOption CRR Binomial Tree Option
JRBinomialTreeOption JR Binomial Tree Option
TIANBinomialTreeOption TIAN Binomial Tree Option
BinomialTreeOption Binomial Tree Option
BinomialTreePlot Binomial Tree Plot

4 Monte Carlo Options

In this section we provide functions to valuate options by Monte Carlo methods. The functions
include beside the main Monte Carlo Simulator, example functions to generate Monte Carlo price
paths and to compute Monte Carlo price payoffs.

sobolInnovations Example for scrambled Sobol innovations
wienerPath Example for a Wiener price path
plainVanillaPayoff Example for the plain vanilla option's payoff
arithmeticAsianPayoff Example for the arithmetic Asian option's payoff
MonteCarloOption Monte Carlo Simulator for options

5 Low Discrepancy Sequences

This section provides three types of random number generators for univorm and normal distributed
deviates. These area pseudo random number generator and a halton and sobol generator for low
discrepancy sequences.

runif.pseudo Uniform pseudo random numbers
rnorm.pseudo Normal pseudo random numbers

runif.halton Uniform Halton sequence
rnorm.halton Normal Halton sequence

runif.sobol Uniform scrambled Sobol sequence
rnorm.sobol Normal scrambled Sobol sequence

r
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6 Heston Nandi Garch Fit

Her we provide functions to model the GARCH(1,1) price paths which underly Heston and Nandi’s
option pricing model. The functions are:

hngarchSim simulates a Heston-Nandi Garch(1,1) process
hngarchFit fits parameters of a Heston Nandi Garch(1,1) model

hngarchStats returns true moments of the log-Return distribution

print.hngarch print method, \cr
summary.hngarch diagnostic summary

7 Heston Nandi Garch Options

This section comes with functions to valuate Heston-Nandi options. Provided are functions to
compute the option price and the delta and gamma sensitivities for call and put options.

HNGOption Heston-Nandi GARCH(1,1) option price
HNGGreeks Heston-Nandi GARCH(1,1) option sensitivities
HNGCharacteristics combines option prices and sensitivities

About Rmetrics

The fOptions Rmetrics package is written for educational support in teaching "Computational
Finance and Financial Engineering" and licensed under the GPL.

BasicAmericanOptions Valuation of Basic American Options

Description

A collection and description of functions to valuate basic American options. Approximative formu-
las for American calls are given for the Roll, Geske and Whaley Approximation, for the Barone-
Adesi and Whaley Approximation, and for the Bjerksund and Stensland Approximation.

The functions are:

RollGeskeWhaleyOption Roll, Geske and Whaley Approximation,
BAWAmericanApproxOption Barone-Adesi and Whaley Approximation,
BSAmericanApproxOption Bjerksund and Stensland Approximation.
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Usage

RollGeskeWhaleyOption(S, X, time1, Time2, r, D, sigma,
title = NULL, description = NULL)

BAWAmericanApproxOption(TypeFlag, S, X, Time, r, b, sigma,
title = NULL, description = NULL)

BSAmericanApproxOption(TypeFlag, S, X, Time, r, b, sigma,
title = NULL, description = NULL)

Arguments

b the annualized cost-of-carry rate, a numeric value; e.g. 0.1 means 10% pa.

D a single dividend with time to dividend payout t1.

description a character string which allows for a brief description.

r the annualized rate of interest, a numeric value; e.g. 0.25 means 25% pa.

S the asset price, a numeric value.

sigma the annualized volatility of the underlying security, a numeric value; e.g. 0.3
means 30% volatility pa.

Time the time to maturity measured in years, a numeric value.

time1, Time2 [RollGeskeWhaley*] - the first value measures time to dividend payout in years,
e.g. 0.25 denotes a quarter, and the second value measures time to maturity
measured in years, a numeric value; e.g. 0.5 means 6 months.

title a character string which allows for a project title.

TypeFlag a character string either "c" for a call option or a "p" for a put option.

X the exercise price, a numeric value.

Details

Roll-Geske-Whaley Option:

The function RollGeskeWhaleyOption valuates American calls on a stock paying a single dividend
with specified time to dividend payout according to the pricing formula derived by Roll, Geske and
Whaley (1977).

Approximations for American Options:

The function BSAmericanApproxOption valuates American calls or puts on an underlying asset for
a given cost-of-carry rate according to the quadratic approximation method due to Barone-Adesi
and Whaley (1987). The function BSAmericanApproxOption valuates American calls or puts on
stocks, futures, and currencies due to the approximation method of Bjerksund and Stensland (1993).

Value

RollGeskeWhaleyOption
BAWAmericanApproxOption
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return the option price, a numeric value.

BSAmericanApproxOption
returns a list with the following two elements: Premium the option price, and TriggerPrice the
trigger price.

Note

The functions implement the algorithms to valuate basic American options as described in Chapter
1.4 of Haug’s Option Guide (1997).

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Barone-Adesi G., Whaley R.E. (1987); Efficient Analytic Approximation of American Option Val-
ues, Journal of Finance 42, 301–320.

Bjerksund P., Stensland G. (1993); Closed Form Approximation of American Options, Scandinavian
Journal of Management 9, 87–99.

Geske R. (1979); A Note on an Analytical Formula for Unprotected American Call Options on
Stocks with known Dividends, Journal of Financial Economics 7, 63–81.

Haug E.G. (1997); The Complete Guide to Option Pricing Formulas, Chapter 1, McGraw-Hill, New
York.

Roll R. (1977); An Analytic Valuation Formula for Unprotected American Call Options on Stocks
with known Dividends, Journal of Financial Economics 5, 251–258.

Examples

## All the examples are from Haug's Option Guide (1997)

## CHAPTER 1.4: ANALYTICAL MODELS FOR AMERICAN OPTIONS

## Roll-Geske-Whaley American Calls on Dividend Paying
# Stocks [Haug 1.4.1]
RollGeskeWhaleyOption(S = 80, X = 82, time1 = 1/4,

Time2 = 1/3, r = 0.06, D = 4, sigma = 0.30)

## Barone-Adesi and Whaley Approximation for American
# Options [Haug 1.4.2] vs. Black76 Option on Futures:
BAWAmericanApproxOption(TypeFlag = "p", S = 100,

X = 100, Time = 0.5, r = 0.10, b = 0, sigma = 0.25)
Black76Option(TypeFlag = "c", FT = 100, X = 100,

Time = 0.5, r = 0.10, sigma = 0.25)

## Bjerksund and Stensland Approximation for American Options:
BSAmericanApproxOption(TypeFlag = "c", S = 42, X = 40,

Time = 0.75, r = 0.04, b = 0.04-0.08, sigma = 0.35)
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BinomialTreeOptions Binomial Tree Option Model

Description

A collection and description of functions to valuate options in the framework of the Binomial tree
option approach.

The functions are:

CRRBinomialTreeOption CRR Binomial Tree Option,
JRBinomialTreeOption JR Binomial Tree Option,
TIANBinomialTreeOption TIAN Binomial Tree Option,
BinomialTreeOption Binomial Tree Option,
BinomialTreePlot Binomial Tree Plot.

Usage

CRRBinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X,
Time, r, b, sigma, n, title = NULL, description = NULL)

JRBinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X,
Time, r, b, sigma, n, title = NULL, description = NULL)

TIANBinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X,
Time, r, b, sigma, n, title = NULL, description = NULL)

BinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X,
Time, r, b, sigma, n, title = NULL, description = NULL)

BinomialTreePlot(BinomialTreeValues, dx = -0.025, dy = 0.4,
cex = 1, digits = 2, ...)

Arguments

b the annualized cost-of-carry rate, a numeric value; e.g. 0.1 means 10% pa.
BinomialTreeValues

the return value from the BinomialTreeOption function.

cex a numerical value giving the amount by which the plotting text and symbols
should be scaled relative to the default.

description a character string which allows for a brief description.

digits an integer value, how many digits should be displayed in the option tree?

dx, dy numerical values, an offset fine tuning for the placement of the option values in
the option tree.

n number of time steps; an integer value.

r the annualized rate of interest, a numeric value; e.g. 0.25 means 25% pa.

S the asset price, a numeric value.



8 BinomialTreeOptions

sigma the annualized volatility of the underlying security, a numeric value; e.g. 0.3
means 30% volatility pa.

Time the time to maturity measured in years, a numeric value; e.g. 0.5 means 6
months.

title a character string which allows for a project title.

TypeFlag a character string either "ce", "ca" for an European or American call option or
a "pe", "pa" for a put option, respectively.

X the exercise price, a numeric value.

... arguments to be passed.

Details

CRR Binomial Tree Model:

Binomial models were first suggested by Cox, Ross and Rubinstein (1979), CRR, and then be-
came widely used because of its intuition and easy implementation. Binomial trees are constructed
on a discrete-time lattice. With the time between two trading events shrinking to zero, the evolution
of the price converges weakly to a lognormal diffusion. Within this mode the European options
value converges to the value given by the Black-Scholes formula.

JR Binomial Tree Model:

There exist many extensions of the CRR model. Jarrow and Rudd (1983), JR, adjusted the CRR
model to account for the local drift term. They constructed a binomial model where the first two
moments of the discrete and continuous time return processes match. As a consequence a probabil-
ity measure equal to one half results. Therefore the CRR and JR models are sometimes atrributed
as equal jumps binomial trees and equal probabilities binomial trees.

TIAN Binomial Tree Model:

Tian (1993) suggested to match discrete and continuous local moments up to third order.

Leisen and Reimer (1996) proved that the order of convergence in pricing European options for all
three methods is equal to one, and thus the three models are equivalent.

Value

The option price, a numeric value.

Note

Note, the BinomialTree and BinomialTreePlot are preliminary implementations.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.
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References

Broadie M., Detemple J. (1994); American Option Evaluation: New Bounds, Approximations, and
a Comparison of Existing Methods, Working Paper, Columbia University, New York.

Cox J., Ross S.A., Rubinstein M. (1979); Option Pricing: A Simplified Approach, Journal of Finan-
cial Economics 7, 229–263.

Haug E.G. (1997); The complete Guide to Option Pricing Formulas, McGraw-Hill, New York.

Hull J.C. (1998); Introduction to Futures and Options Markets, Prentice Hall, London.

Jarrow R., Rudd A. (1983); Option Pricing, Homewood, Illinois, 183–188.

Leisen D.P., Reimer M., (1996); Binomial Models for Option Valuation – Examining and Improving
Convergence, Applied Mathematical Finanace 3, 319–346.

Tian Y. (1993); A Modified Lattice Approach to Option Pricing, Journal of Futures Markets 13,
563–577.

Examples

## Cox-Ross-Rubinstein Binomial Tree Option Model:
# Example 14.1 from Hull's Book:
CRRBinomialTreeOption(TypeFlag = "pa", S = 50, X = 50,

Time = 5/12, r = 0.1, b = 0.1, sigma = 0.4, n = 5)
# Example 3.1.1 from Haug's Book:
CRRBinomialTreeOption(TypeFlag = "pa", S = 100, X = 95,

Time = 0.5, r = 0.08, b = 0.08, sigma = 0.3, n = 5)
# A European Call - Compare with Black Scholes:
CRRBinomialTreeOption(TypeFlag = "ce", S = 100, X = 100,

Time = 1, r = 0.1, b = 0.1, sigma = 0.25, n = 50)
GBSOption(TypeFlag = "c", S = 100, X = 100,

Time = 1, r = 0.1, b = 0.1, sigma = 0.25)@price

## CRR - JR - TIAN Model Comparison:
# Hull's Example as Function of "n":
par(mfrow = c(2, 1), cex = 0.7)
steps = 50
CRROptionValue = JROptionValue = TIANOptionValue =

rep(NA, times = steps)
for (n in 3:steps) {

CRROptionValue[n] = CRRBinomialTreeOption(TypeFlag = "pa", S = 50,
X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)@price

JROptionValue[n] = JRBinomialTreeOption(TypeFlag = "pa", S = 50,
X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)@price

TIANOptionValue[n] = TIANBinomialTreeOption(TypeFlag = "pa", S = 50,
X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)@price

}
plot(CRROptionValue[3:steps], type = "l", col = "red", ylab = "Option Value")
lines(JROptionValue[3:steps], col = "green")
lines(TIANOptionValue[3:steps], col = "blue")
# Add Result from BAW Approximation:
BAWValue = BAWAmericanApproxOption(TypeFlag = "p", S = 50, X = 50,

Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4)@price
abline(h = BAWValue, lty = 3)
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title(main = "Convergence")
data.frame(CRROptionValue, JROptionValue, TIANOptionValue)

## Plot CRR Option Tree:
# Again Hull's Example:
CRRTree = BinomialTreeOption(TypeFlag = "pa", S = 50, X = 50,

Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = 5)
BinomialTreePlot(CRRTree, dy = 1, cex = 0.8, ylim = c(-6, 7),

xlab = "n", ylab = "Option Value")
title(main = "Option Tree")

HestonNandiGarchFit Heston-Nandi Garch(1,1) Modelling

Description

A collection and description of functions to model the GARCH(1,1) price paths which underly He-
ston and Nandi’s option pricing model.

The functions are:

hngarchSim Simulates a Heston-Nandi Garch(1,1) process,
hngarchFit MLE for a Heston Nandi Garch(1,1) model,
hngarchStats True moments of the log-Return distribution,
print.hngarch Print method,
summary.hngarch Diagnostic summary.

Usage

hngarchSim(model, n, innov, n.start, start.innov, rand.gen, ...)
hngarchFit(x, model = list(lambda = -0.5, omega = var(x), alpha =

0.1 * var(x), beta = 0.1, gamma = 0, rf = 0), symmetric = TRUE,
trace = FALSE, title = NULL, description = NULL, ...)

hngarchStats(model)

## S3 method for class 'hngarch'
print(x, ...)
## S3 method for class 'hngarch'
summary(object, ...)

Arguments

description a brief description of the porject of type character.

innov [hngarchSim] -
is a univariate time series or vector of innovations to produce the series. If not
provided, innov will be generated using the random number generator specified



HestonNandiGarchFit 11

by rand.gen. Missing values are not allowed. By default the normal random
number generator will be used.

model a list of GARCH model parameters with the following entries: lambda, omega,
the constant coefficient of the variance equation, alpha the autoregressive coef-
ficient, beta the variance coefficient, gamma the asymmetry coefficient, and rf,
the risk free rate, numeric values.

n [hngarchSim] -
is the length of the series to be simulated. The default value is 1000.

n.start [hngarchSim] -
gives the number of start-up values to be discarded. The default value is 100.

object [summary] -
a fitted HN-GARCH(1,1) time series object of class "hngarch" as returned from
the function hngarchFit.

rand.gen [hngarchSim] -
is the function which is called to generate the innovations. Usually, rand.gen
will be a random number generator. Additional arguments required by the ran-
dom number generator rand.gen, usually the location, scale and/or shape pa-
rameter of the underlying distribution function, have to be passed through the
dots argument.

start.innov [hngarchSim] -
is a univariate time series or vector of innovations to be used as start up values.
Missing values are not allowed.

symmetric [hngarchFit] -
a logical, if TRUE a symmetric model is estimated, otherwise the parameters
are estimated for an asymmetric HN Garch(1,1) model.

title a character string which allows for a project title.

trace [hngarchFit] -
a logical value. Should the optimizarion be traced? If trace=FALSE, no tracing
is done of the iteration path.

x [hngarchFit] -
an univariate vector or time series.
[print] -
a fitted HN-GARCH(1,1) time series object of class "hngarch" as returned from
the function hngarchFit.

... additional arguments to be passed.

Details

Path Simulation:

The function hngarchSim simulates a Heston-Nandi Garch(1,1) process with structure parameters
specified through the list model(lambda, omega, alpha, beta, gamma, rf).

Parameter Estimation:
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The function hngarchFit estimates by the maximum log-likelihood approach the parameters ei-
ther for a symmetric or an asymmetric Heston-Nandi Garch(1,1) model from the log returns x of a
financial time series. For optimization R’s optim function is used. Additional optimization param-
eters may be passed throught the ... argument.

Diagnostic Analysis:

The function summary.hngarch performs a diagnostic analysis and recalculates conditional vari-
ances and innovations from the time series.

Calculation of Moments:

The function hngarchStats calculates the first four true moments of the unconditional log return
distribution for a stationary Heston-Nandi Garch(1,1) process with standard normally distributed
innovations. In addition the persistence and the expectation values of sigma to the power 2, 4, 6,
and 8 can be accessed.

Value

hngarchSim
returns numeric vector with the simulated time series points neglecting those from the first start.innov
innovations.

hngarchFit
returns list with two entries: The estimated model parmeters model, where model is a list of the
parameters itself, and llh the value of the log likelihood.

hngarchStats
returns a list with the following components: persistence, the value of the persistence, meansigma2,
meansigma4, meansigma6, meansigma8, the expectation value of sigma to the power of 2, 4, 6, and
8, mean, variance, skewness, kurtosis, the mean, variance, skewness and kurtosis of the log
returns.

summary.hngarch
returns list with the following elements: h, a numeric vector with the conditional variances, z, a
numeric vector with the innovations.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Heston S.L., Nandi S. (1997); A Closed-Form GARCH Option Pricing Model, Federal Reserve
Bank of Atlanta.
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Examples

## hngarchSim -
# Simulate a Heston Nandi Garch(1,1) Process:
# Symmetric Model - Parameters:
model = list(lambda = 4, omega = 8e-5, alpha = 6e-5,

beta = 0.7, gamma = 0, rf = 0)
ts = hngarchSim(model = model, n = 500, n.start = 100)
par(mfrow = c(2, 1), cex = 0.75)
ts.plot(ts, col = "steelblue", main = "HN Garch Symmetric Model")
grid()

## hngarchFit -
# HN-GARCH log likelihood Parameter Estimation:
# To speed up, we start with the simulated model ...
mle = hngarchFit(model = model, x = ts, symmetric = TRUE)
mle

## summary.hngarch -
# HN-GARCH Diagnostic Analysis:
par(mfrow = c(3, 1), cex = 0.75)
summary(mle)

## hngarchStats -
# HN-GARCH Moments:
hngarchStats(mle$model)

HestonNandiOptions Option Price for the Heston-Nandi Garch Option Model

Description

A collection and description of functions to valuate Heston-Nandi options. Included are functions
to compute the option price and the delta and gamma sensitivities for call and put options.

The functions are:

HNGOption Heston-Nandi GARCH(1,1) option price,
HNGGreeks Heston-Nandi GARCH(1,1) option sensitivities,
HNGCharacteristics option prices and sensitivities.

Usage

HNGOption(TypeFlag, model, S, X, Time.inDays, r.daily)
HNGGreeks(Selection, TypeFlag, model, S, X, Time.inDays, r.daily)
HNGCharacteristics(TypeFlag, model, S, X, Time.inDays, r.daily)
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Arguments

model a list of model parameters with the following entries: lambda, omega, alpha,
beta, and gamma, numeric values.

r.daily the daily rate of interest, a numeric value; e.g. 0.25/252 means about 0.001%
per day.

S the asset price, a numeric value.

Selection sensitivity to be computed, one of "delta", "gamma", "vega", "theta", "rho",
or "CoC", a string value.

Time.inDays the time to maturity measured in days, a numerical value; e.g. 5/252 means 1
business week.

TypeFlag a character string either "c" for a call option or a "p" for a put option.

X the exercise price, a numeric value.

Details

Option Values:

HNGOptioncalculates the option price, HNGGreeks allows to compute the option sensitivity Delta
or Gamma, and HNGcharacterisitics summarizes both in one function call.

Value

HNGOption
returns a list object of class "option" with $price denoting the option price, a numeric value, and
$call a character string which matches the function call.

HNGOGreeks
returns the option sensitivity for the selected Greek, either "delta" or "gamma"; a numeric value.

HNGCharacteristics
returns a list with the following entries:

premium the option price, a numeric value.

delta the delta sensitivity, a numeric value.

gamma the gamma sensitivity, a numeric value.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Heston S.L., Nandi S. (1997); A Closed-Form GARCH Option Pricing Model, Federal Reserve
Bank of Atlanta.
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Examples

## model -
# Define the Model Parameters for a Heston-Nandi Option:
model = list(lambda = -0.5, omega = 2.3e-6, alpha = 2.9e-6,

beta = 0.85, gamma = 184.25)
S = X = 100
Time.inDays = 252
r.daily = 0.05/Time.inDays
sigma.daily = sqrt((model$omega + model$alpha) /

(1 - model$beta - model$alpha * model$gamma^2))
data.frame(S, X, r.daily, sigma.daily)

## HNGOption -
# Compute HNG Call-Put and compare with GBS Call-Put:
HNG = GBS = Diff = NULL
for (TypeFlag in c("c", "p")) {

HNG = c(HNG, HNGOption(TypeFlag, model = model, S = S, X = X,
Time.inDays = Time.inDays, r.daily = r.daily)$price )

GBS = c(GBS, GBSOption(TypeFlag, S = S, X = X, Time = Time.inDays,
r = r.daily, b = r.daily, sigma = sigma.daily)@price) }

Options = cbind(HNG, GBS, Diff = round(100*(HNG-GBS)/GBS, digits=2))
row.names(Options) <- c("Call", "Put")
data.frame(Options)

## HNGGreeks -
# Compute HNG Greeks and compare with GBS Greeks:
Selection = c("Delta", "Gamma")
HNG = GBS = NULL
for (i in 1:2){

HNG = c(HNG, HNGGreeks(Selection[i], TypeFlag = "c", model = model,
S = 100, X = 100, Time = Time.inDays, r = r.daily) )

GBS = c(GBS, GBSGreeks(Selection[i], TypeFlag = "c", S = 100, X = 100,
Time = Time.inDays, r = r.daily, b = r.daily, sigma = sigma.daily) ) }

Greeks = cbind(HNG, GBS, Diff = round(100*(HNG-GBS)/GBS, digits = 2))
row.names(Greeks) <- Selection
data.frame(Greeks)

LowDiscrepancy Low Discrepancy Sequences

Description

A collection and description of functions to compute Halton’s and Sobol’s low discrepancy se-
quences, distributed in form of a uniform or normal distribution.

The functions are:

runif.halton Uniform Halton sequence,
rnorm.halton Normal Halton sequence,
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runif.sobol Uniform scrambled Sobol sequence,
rnorm.sobol Normal scrambled Sobol sequence,
runif.pseudo Uniform pseudo random numbers,
norma.pseudo Normal pseudo random numbers.

Usage

runif.halton(n, dimension, init)
rnorm.halton(n, dimension, init)

runif.sobol(n, dimension, init, scrambling, seed)
rnorm.sobol(n, dimension, init, scrambling, seed)

runif.pseudo(n, dimension, init)
rnorm.pseudo(n, dimension, init)

Arguments

dimension an integer value, the dimension of the sequence. The maximum value for the
Sobol generator is 1111.

init a logical, if TRUE the sequence is initialized and restarts, otherwise not. By
default TRUE.

n an integer value, the number of random deviates.

scrambling an integer value, if 1, 2 or 3 the sequence is scrambled otherwise not. If 1, Owen
type type of scrambling is applied, if 2, Faure-Tezuka type of scrambling, is
applied, and if 3, both Owen+Faure-Tezuka type of scrambling is applied. By
default 0.

seed an integer value, the random seed for initialization of the scrambling process.
By default 4711. On effective if scrambling>0.

Details

Halton’s Low Discrepancy Sequences:

Calculates a matrix of uniform or normal deviated halton low discrepancy numbers.

Scrambled Sobol’s Low Discrepancy Sequences:

Calculates a matrix of uniform and normal deviated Sobol low discrepancy numbers. Optional
scrambling of the sequence can be selected.

Pseudo Random Number Sequence:

Calculates a matrix of uniform or normal distributed pseudo random numbers. This is a helpful
function for comparing investigations obtained from a low discrepancy series with those from a
pseudo random number.
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Value

All generators return a numeric matrix of size n by dimension.

Note

The global variables runif.halton.seed and runif.sobol.seed save the status to restart the
generators. Note, that only one instance of a generators can be run at the same time.

The ACM Algorithm 659 implemented to generate scrambled Sobol sequences is under the License
of the ACM restricted for academic and noncommerical usage. Please consult the ACM License
agreement included in the doc directory.

Author(s)

P. Bratley and B.L. Fox for the Fortran Sobol Algorithm 659,
S. Joe for the Fortran extension to 1111 dimensions,
Diethelm Wuertz for the Rmetrics R-port.

References

Bratley P., Fox B.L. (1988); Algorithm 659: Implementing Sobol’s Quasirandom Sequence Gener-
ator, ACM Transactions on Mathematical Software 14, 88–100.

Joe S., Kuo F.Y. (1998); Remark on Algorithm 659: Implementing Sobol’s Quaisrandom Seqence
Generator.

Examples

## *.halton -
par(mfrow = c(2, 2), cex = 0.75)
runif.halton(n = 10, dimension = 5)
hist(runif.halton(n = 5000, dimension = 1), main = "Uniform Halton",

xlab = "x", col = "steelblue3", border = "white")
rnorm.halton(n = 10, dimension = 5)
hist(rnorm.halton(n = 5000, dimension = 1), main = "Normal Halton",

xlab = "x", col = "steelblue3", border = "white")

## *.sobol -
runif.sobol(n = 10, dimension = 5, scrambling = 3)
hist(runif.sobol(5000, 1, scrambling = 2), main = "Uniform Sobol",

xlab = "x", col = "steelblue3", border = "white")
rnorm.sobol(n = 10, dimension = 5, scrambling = 3)
hist(rnorm.sobol(5000, 1, scrambling = 2), main = "Normal Sobol",

xlab = "x", col = "steelblue3", border = "white")

## *.pseudo -
runif.pseudo(n = 10, dimension = 5)
rnorm.pseudo(n = 10, dimension = 5)
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MonteCarloOptions Monte Carlo Valuation of Options

Description

A collection and description of functions to valuate options by Monte Carlo methods. The functions
include beside the main Monte Carlo Simulator, example functions to generate Monte Carlo price
paths and to compute Monte Carlo price payoffs.

The functions are:

sobolInnovations Example for scrambled Sobol innovations,
wienerPath Example for a Wiener price path,
plainVanillaPayoff Example for the plain vanilla option’s payoff,
arithmeticAsianPayoff Example for the arithmetic Asian option’s payoff,
MonteCarloOption Monte Carlo Simulator for options.

Usage

MonteCarloOption(delta.t, pathLength, mcSteps, mcLoops, init = TRUE,
innovations.gen, path.gen, payoff.calc, antithetic = TRUE,
standardization = FALSE, trace = TRUE, ...)

Arguments

antithetic a logical flag, should antithetic variates be used? By default TRUE.

delta.t the time step interval measured as a fraction of one year, by default one day, i.e.
delta.t=1/360.

init a logical flag, should the random number generator be initialized? By default
TRUE.

innovations.gen

a user defined function to generate the innovations, this can be the normal
random number generator rnorm.pseudo with mean zero and variance one.
For the usage of low discrepancy sequences alternativey rnorm.halton and
rnorm.sobol can be called. The generator must deliver a normalized matrix
of innovations with dimension given by the number of Monte Carlo steps and
the path length. The first three arguments of the generator are the the number of
Monte Carlo steps mcSteps, the path length pathLength and the initialization
flag init. Optional arguments can be passed through the argument ..., e.g. the
type of scrambling for low discrepancy numbers.

mcLoops, mcSteps

the number of Monte Carlo loops and Monte Carlo Steps. In total mcLoops*mcSteps
samples are included in one MC simulation.

path.gen the user defined function to generate the price path. As the only input argument
serves the matrix of innovations, the option parameters must be available as
global variables.
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pathLength the length of the price path. This may be calculated as floor(Time/delta.t),
where Time denotes the time to maturation measured in years.

payoff.calc a user defined function to calculate the payoff of the option. As the only input
argument serves the path matrix as returned by the path generator. The option
parameters must be available as global variables.

standardization

a logical flag, should the innovations for one loop be standardized? By default
TRUE.

trace a logical flag, should the Monte Carlo simulation be traced? By default TRUE.

... additional arguments passed to the innovations generator.

Details

The Innovations:

The innovations must created by the user defined innovation generator. The Generator has to return
a numeric matrix of (random) innovations of size mcSteps times the pathLength. The example
section shows how to write sa function for scrambled Quasi Monte Carlo Sobol numbers. The
package comes with three generators rnorm.pseudo, rnorm.halton and rnorm.sobol which can
easily be used for simulations.

The Price Paths:

The user must provide a function which generates the price paths. In the example section the
function wienerPath creates a Wiener Monte Carlo path from random innovations. The Wiener
price path requires as input b, the annualized cost-of-carry rate, and sigma, the annualized volatility
of the underlying security, to compute the drift and variance of the path, these variables must be
globally defined.

The Payoff Function:

The user must also provide a function which computes the payoff value of the option. The example
sections show how to write payoff calculators for the plain vanilla option and for the arithmetic
Asian Option. As the only input argument the path matrix is required. Again, the option parameters
must be globally available.

The Monte Carlo Simulator:

The simulator is the heart of the Monte Carlo valuation process. This simulator performs mcLoops
Monte Carlo loops each with mcSteps Monte Carlo steps. In each loop the following steps are
done: first the innovation matrix is created from the specified innovation generator (usually build
from the normal pseudo random number or low discrepancy generators), then anththetic innovations
are added if desired (by default anththetic=TRUE), then the innovations can be standardized within
each loop (by default standardization=FALSE), and finally the average payoff of all samples in
the loop is computed. The simulation can be traced loop by loop setting the argument trace=TRUE.
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Value

The user defined innovation generator
returns a numeric matrix of (random) innovations to build the Monte Carlo Paths.

The user defined path generator
returns a numeric matrix of the Monte Carlo paths for the calculation of the option’s payoffs. To be
more precise, as an example the function returns for a Wiener process the matrix (b-sigma*sigma/2)*delta.t + sigma*sqrt(delta.t)*innovations,
where the first term corresponds to the drift and the second to the volatility.

The user defined payoff calculator,
returns the vector of the option’s payoffs calculated from the generated paths. As an example this be-
comes for an arithmetic Asian call option with a Wiener Monte Carlo path payoff = exp(-r*Time)*max(SM-X, 0)
where SM = mean(S*exp(cumsum(path))) and path denotes the MC price paths.

MonteCarloOption:
returns a vector with the option prices for each Monte Carlo loop.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Birge J.R. (1994); Quasi-Monte Carlo Approaches to Option Pricing, Department of Industrial and
Operations Engineering, Technical Report 94–19, University of Michigan.

Boyle P. (1977); Options: A Monte Carlo approach, Journal of Finance, 32, 323–338.

Glasserman P. (2004); Monte Carlo Methods in Financial Engineering, Springer-Verlag New York,
Inc., 596 pp.

Jaeckel P. (2002); Monte Carlo Methods in Finance, John Wiley and Sons Ltd, 222 pp.

Examples

## How to perform a Monte Carlo Simulation?

## First Step:
# Write a function to generate the option's innovations.
# Use scrambled normal Sobol numbers:
sobolInnovations <- function(mcSteps, pathLength, init, ...) {

# Create and return Normal Sobol Innovations:
rnorm.sobol(mcSteps, pathLength, init, ...)

}

## Second Step:
# Write a function to generate the option's price paths.
# Use a Wiener path:
wienerPath <- function(eps) {

# Note, the option parameters must be globally defined!
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# Generate and return the Paths:
(b-sigma*sigma/2)*delta.t + sigma*sqrt(delta.t)*eps

}

## Third Step:
# Write a function for the option's payoff

# Example 1: use the payoff for a plain Vanilla Call or Put:
plainVanillaPayoff <- function(path) {

# Note, the option parameters must be globally defined!
# Compute the Call/Put Payoff Value:
ST <- S*exp(sum(path))
if (TypeFlag == "c") payoff <- exp(-r*Time)*max(ST-X, 0)
if (TypeFlag == "p") payoff <- exp(-r*Time)*max(0, X-ST)
# Return Value:
payoff

}

# Example 2: use the payoff for an arithmetic Asian Call or Put:
arithmeticAsianPayoff <- function(path) {

# Note, the option parameters must be globally defined!
# Compute the Call/Put Payoff Value:
SM <- mean(S*exp(cumsum(path)))
if (TypeFlag == "c") payoff <- exp(-r*Time)*max(SM-X, 0)
if (TypeFlag == "p") payoff <- exp(-r*Time)*max(0, X-SM)
# Return Value:
payoff

}

## Final Step:
# Set Global Parameters for the plain Vanilla / arithmetic Asian Options:
TypeFlag <- "c"; S <- 100; X <- 100
Time <- 1/12; sigma <- 0.4; r <- 0.10; b <- 0.1

# Do the Asian Simulation with scrambled random numbers:
mc <- MonteCarloOption(delta.t = 1/360, pathLength = 30, mcSteps = 5000,

mcLoops = 50, init = TRUE, innovations.gen = sobolInnovations,
path.gen = wienerPath, payoff.calc = arithmeticAsianPayoff,
antithetic = TRUE, standardization = FALSE, trace = TRUE,
scrambling = 2, seed = 4711)

# Plot the MC Iteration Path:
par(mfrow = c(1, 1))
mcPrice <- cumsum(mc)/(1:length(mc))
plot(mcPrice, type = "l", main = "Arithmetic Asian Option",

xlab = "Monte Carlo Loops", ylab = "Option Price")

# Compare with Turnbull-Wakeman Approximation:
if(FALSE) { # ... requires(fExoticOptions)

TW <- TurnbullWakemanAsianApproxOption(
TypeFlag = "c", S = 100, SA = 100, X = 100,
Time = 1/12, time = 1/12, tau = 0 , r = 0.1,
b = 0.1, sigma = 0.4)$price
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print(TW)
} else

TW <- 2.859122

abline(h = TW, col = 2)

PlainVanillaOptions Valuation of Plain Vanilla Options

Description

A collection and description of functions to valuate plain vanilla options. Included are functions for
the Generalized Black-Scholes option pricing model, for options on futures, some utility functions,
and print and summary methods for options.

The functions are:

GBS* the generalized Black-Scholes option,
BlackScholesOption a synonyme for the GBSOption,
Black76Option options on Futures,
MiltersenSchwartzOption options on commodity futures,
NDF, CND, CBND distribution functions,
print print method for Options,
summary summary method for Options.

Usage

GBSOption(TypeFlag, S, X, Time, r, b, sigma,
title = NULL, description = NULL)

GBSGreeks(Selection, TypeFlag, S, X, Time, r, b, sigma)
GBSCharacteristics(TypeFlag, S, X, Time, r, b, sigma)
GBSVolatility(price, TypeFlag, S, X, Time, r, b, tol, maxiter)
BlackScholesOption(...)

Black76Option(TypeFlag, FT, X, Time, r, sigma,
title = NULL, description = NULL)

MiltersenSchwartzOption(TypeFlag, Pt, FT, X, time, Time,
sigmaS, sigmaE, sigmaF, rhoSE, rhoSF, rhoEF, KappaE, KappaF,
title = NULL, description = NULL)

NDF(x)
CND(x)
CBND(x1, x2, rho)

## S4 method for signature 'fOPTION'
show(object)
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## S3 method for class 'fOPTION'
summary(object, ...)

## S3 method for class 'option'
print(x, ...)
## S3 method for class 'option'
summary(object, ...)

Arguments

b the annualized cost-of-carry rate, a numeric value; e.g. 0.1 means 10% pa.

description a character string which allows for a brief description.

FT [Black76*][MiltersenSchwartz*] -
the futures price, a numeric value.

KappaE, KappaF [MiltersenSchwartz*] -
the speed of mean reversion of the forward interest rate (E), the speed of mean
reversion of the convenience yield (F), a numeric value.

maxiter, tol [GBSVolatility*] -
the maximum number of iterations and the tolerance to compute the root of the
GBS volatility equation, see uniroot.

object an object of class "option".

price [GBSVolatility*] -
the price of the GBS option, a numerical value.

Pt [MiltersenSchwartz*] -
the zero coupon bond that expires on the option maturity; a numeric value.

r the annualized rate of interest, a numeric value; e.g. 0.25 means 25% pa.
rhoSE, rhoSF, rhoEF

[MiltersenSchwartz*] -
the correlations between the spot commodity price and the future convenience
yield (SE), between the spot commodity price and the forward interest rate (SF),
between the forward interest rate and the future convenience yield (EF), a nu-
meric value.

S the asset price, a numeric value.

Selection [GBSGreeks] -
sensitivity to be computed, one of "delta", "gamma", "vega", "theta", "rho",
or "CoC", a string value.

sigma the annualized volatility of the underlying security, a numeric value; e.g. 0.3
means 30% volatility pa.

sigmaS, sigmaE, sigmaF

[MiltersenSchwartz*] -
numeric values, the annualized volatility of the spot commodity price (S), of
the future convenience yield (E), and of the forward interest rate (F), e.g. 0.25
means 25% pa.

time, Time the time to maturity measured in years, a numeric value.
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title a character string which allows for a project title.
TypeFlag a character string either "c" for a call option or a "p" for a put option.
x, x1, x2, rho [NDF][CND][CBND] -

the function argument x for the normal distribution function NDF and the cu-
mulated normal distribution CND. The arguments for the bivariate function are
named x1 and x2; rho is the correlation coefficient.
[print] -
the object x to be printed.

X a numeric value, the exercise price.
... arguments to be passed.

Details

Generalized Black Scholes Options:

GBSOption calculates the option price, GBSGreeks calculates option sensitivities delta, theta, vega,
rho, lambda and gamma, and GBScharacterisitics does both. GBSVolatility computes the im-
plied volatility.
Note, that setting b = r we get Black and Scholes’ stock option model, b = r-q we get Merton’s
stock option model with continuous dividend yield q, b = 0 we get Black’s futures option model,
and b = r-rf we get Garman and Kohlhagen’s currency option model with foreign interest rate rf.

Options on Futures:

The Black76Option pricing formula is applicable for valuing European call and European put
options on commodity futures. The exact nature of the underlying commodity varies and may be
anything from a precious metal such as gold or silver to agricultural products.
The Miltersen Schwartz Option model is a three factor model with stochastic futures prices,
term structures and convenience yields, and interest rates. The model is based on lognormal dis-
tributed commodity prices and normal distributed continuously compounded forward interest rates
and future convenience yields.

Miltersen Schwartz Options:

The MiltersenSchwartzOption function allows for pricing options on commodity futures. The
model is a three factor model with stochastic futures prices, term structures of convenience yields,
and interest rates. The model is based on lognormal distributed commodity prices and normal dis-
tributed continuously compounded forward interest rates and futures convenience yields.

Distribution Functions:

The functions NDF, CND, and CBND compute vlues for the Normal density functions, for the normal
probability function, and for the bivariate normal probability functions. The functions are imple-
mented as described in the book of E.G. Haug.

Print and Summary Method:
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Thes are two methods to print and sumarize an object of class "fOPTION" or of "option". The
second is used for the older class representation.

Value

GBSOption
BlackScholesOption
returns an object of class "fOption".

GBSGreeks
returns the option sensitivity for the selected Greek, a numeric value.

GBSCharacteristics
returns a list with the following entries: premium, the option price, delta, the delta sensitivity,
gamma, the gamma sensitivity, theta, the theta sensitivity, vega, the vega sensitivity, rho, the rho
sensitivity, lambda, the lambda sensitivity.

GBSVolatility
returns the GBS option implied volatility for a given price.

Black76Option,
MiltersenSchwartzOption
return an object of class "fOption".

The option valuation programs return an object of class "fOPTION" with the following slots:

@call the function call.

@parameters a list with the input parameters.

@price a numeric value with the value of the option.

@title a character string with the name of the test.

@description a character string with a brief description of the test.

Note

The functions implement algorithms to valuate plain vanilla options and to compute option Greeks
as described in Chapter 1 of Haug’s Option Guide (1997).

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Black F., Scholes M. (1973); The Pricing of Options and Corporate Liabilities, Journal of Political
Economy 81, 637–654.

Haug E.G. (1997); The Complete Guide to Option Pricing Formulas, Chapter 1, McGraw-Hill, New
York.



26 PlainVanillaOptions

Hull J.C. (1998); Introduction to Futures and Options Markets, Prentice Hall, London.

Miltersen K., Schwartz E.S. (1998); Pricing of Options on Commodity Futures with Stochastic
Term Structuures of Convenience Yields and Interest Rates, Journal of Financial and Quantitative
Analysis 33, 33–59.

Examples

## All the examples are from Haug's Option Guide (1997)

## CHAPTER 1.1: ANALYTICAL FORMULAS FOR EUROPEAN OPTIONS:

## Black Scholes Option [Haug 1.1.1]
GBSOption(TypeFlag = "c", S = 60, X = 65, Time = 1/4, r = 0.08,

b = 0.08, sigma = 0.30)

## European Option on a Stock with Cash Dividends [Haug 1.1.2]
S0 = 100; r = 0.10; D1 = D2 = 2; t1 = 1/4; t2 = 1/2
S = S0 - 2*exp(-r*t1) - 2*exp(-r*t2)
GBSOption(TypeFlag = "c", S = S, X = 90, Time = 3/4, r = r, b = r,

sigma = 0.25)

## Options on Stock Indexes [Haug 1.2.3]
GBSOption(TypeFlag = "p", S = 100, X = 95, Time = 1/2, r = 0.10,

b = 0.10-0.05, sigma = 0.20)

## Option on Futures [Haug 1.1.4]
FuturesPrice = 19
GBSOption(TypeFlag = "c", S = FuturesPrice, X = 19, Time = 3/4,

r = 0.10, b = 0, sigma = 0.28)

## Currency Option [Haug 1.1.5]
r = 0.06; rf = 0.08
GBSOption(TypeFlag = "c", S = 1.5600, X = 1.6000,

Time = 1/2, r = 0.06, b = 0.06-0.08, sigma = 0.12)

## Delta of GBS Option [Haug 1.3.1]
GBSGreeks(Selection = "delta", TypeFlag = "c", S = 105, X = 100,

Time = 1/2, r = 0.10, b = 0, sigma = 0.36)

## Gamma of GBS Option [Haug 1.3.3]
GBSGreeks(Selection = "gamma", TypeFlag = "c", S = 55, X = 60,

Time = 0.75, r = 0.10, b = 0.10, sigma = 0.30)

## Vega of GBS Option [Haug 1.3.4]
GBSGreeks(Selection = "vega", TypeFlag = "c", S = 55, X = 60,

Time = 0.75, r = 0.10, b = 0.10, sigma = 0.30)

## Theta of GBS Option [Haug 1.3.5]
GBSGreeks(Selection = "theta", TypeFlag = "p", S = 430, X = 405,
Time = 0.0833, r = 0.07, b = 0.07-0.05, sigma = 0.20)

## Rho of GBS Option [Haug 1.3.5]
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GBSGreeks(Selection = "rho", TypeFlag = "c", S = 72, X = 75,
Time = 1, r = 0.09, b = 0.09, sigma = 0.19)

## CHAPTER 1.3 OPTIONS SENSITIVITIES:

## The Generalized Black Scholes Option Formula
GBSCharacteristics(TypeFlag = "p", S = 1.5600, X = 1.6000,

Time = 1, r = 0.09, b = 0.09, sigma = 0.19)

## CHAPTER 1.5: RECENT DEVELOPMENTS IN COMMODITY OPTIONS

## Miltersen Schwartz Option vs. Black76 Option on Futures:
MiltersenSchwartzOption(TypeFlag = "c", Pt = exp(-0.05/4), FT = 95,

X = 80, time = 1/4, Time = 1/2, sigmaS = 0.2660, sigmaE = 0.2490,
sigmaF = 0.0096, rhoSE = 0.805, rhoSF = 0.0805, rhoEF = 0.1243,
KappaE = 1.045, KappaF = 0.200)

Black76Option(TypeFlag = "c", FT = 95, X = 80, Time = 1/2, r = 0.05,
sigma = 0.266)
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