Package ‘fdaPDE’

May 15, 2020

Version 1.0-9
Date 2020-04-27

Title Statistical Analysis of Functional and Spatial Data, Based on
Regression with PDE Regularization

Maintainer Eleonora Arnone <eleonora.arnone@polimi.it>

Depends R (>=3.5.0), stats, grDevices, graphics, geometry, rgl,
Matrix, plot3D, plot3Drgl

LinkingTo RcppEigen

Suggests MASS, testthat

Description An implementation of regression models with partial differential regularizations, mak-
ing use of the Finite Element Method. The models efficiently handle data distributed over irregu-
larly shaped domains and can comply with various conditions at the boundaries of the do-
main. A priori information about the spatial structure of the phenomenon under study can be in-
corporated in the model via the differential regularization. See Sangalli, L.M., Ram-
say, J.O., Ramsay, T.O. (2013), Spatial spline regression models for an overview.

License CC BY-NC-SA 4.0

Copyright See the individual source files for copyrights information
NeedsCompilation yes

SystemRequirements C++11

RoxygenNote 7.0.2

Encoding UTF-8

Author Eardi Lila [aut],
Laura M. Sangalli [aut],
Eleonora Arnone [aut, cre],
Jim Ramsay [aut],
Luca Formaggia [aut],
Alessandra Colli [ctb],
Luca Colombo [ctb],
Carlo de Falco [ctb]

Repository CRAN
Date/Publication 2020-05-15 15:10:02 UTC

2

R topics documented:

Index

covs.testo L L
create FEM.basis
create.mesh.2.5D oL
createmesh.2Do
evalFEM
fdaPDE-deprecated
FEM
FPCAFEM
fstest
horseshoe2D
hub25D
image. FEM
plotFEM
plotmesh.2.5D
plotmesh.2D L.
quasicircle2Do Lo
quasicircle2Dareal
refinemesh2D
smooth FEM

covs.test

covs.test

Covariate test function for the horseshoe domain

Description

Implements a finite area test function the horseshoe domain.

Usage

covs.test(x, y)

Arguments

X,y

Value

Points at which to evaluate the test function.

Returns function evaluations.

create. FEM.basis 3

create.FEM.basis Create a FEM basis

Description

Sets up a Finite Element basis. It requires a mesh. 2D or mesh.2.5D object, as input. The basis’
functions are globally continuos functions, that are polynomials once restricted to a triangle in the
mesh. The current implementation includes linear finite elements (when order =1 in the input
mesh) and quadratic finite elements (when order = 2 in the input mesh).

Usage

create.FEM.basis(mesh)

Arguments
mesh A mesh.2D or mesh.2.5D object representing the domain triangulation. See
create.mesh.2D, create.mesh.2.5D.
Value

A FEMbasis object. This contains the mesh, along with some additional quantities:

e orderEither "1" or "2". Order of the Finite Element basis.
¢ nbasisScalar. The number of basis.

* transf_coordlt takes value only in the 2D case. It is a list of 4 vectors: difflx, diffly, diff2x
and diff2y. Each vector has length #triangles and encodes the information for the tranforma-
tion matrix that transforms the nodes of the reference triangle to the nodes of the i-th trian-
gle. The tranformation matrix for the i-th triangle has the form [diff1x[i] diff2x[i]; diff1y[i]
diff2y[i]].

* detJIt takes value only in the 2D case. A vector of length #triangles. The ith element con-

tains the determinant of the transformation from the reference triangle to the nodes of the i-th
triangle. Its value is also the double of the area of each triangle of the basis.

See Also

create.mesh.2D, create.mesh.2.5D

Examples

Upload the quasicircle2D data
data(quasicircle2D)

boundary_nodes = quasicircle2D$boundary_nodes
boundary_segments = quasicircle2D$boundary_segments
locations = quasicircle2D$locations

data = quasicircle2D$data

Create the 2D mesh

4 create.mesh.2.5D

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)
Plot it

plot(mesh)

Create the basis

FEMbasis = create.FEM.basis(mesh)

Upload the hub2.5D data

data(hub2.5D)

hub2.5D.nodes = hub2.5D$hub2.5D.nodes

hub2.5D.triangles = hub2.5D$hub2.5D.triangles

Create the 2.5D mesh

mesh = create.mesh.2.5D(nodes = hub2.5D.nodes, triangles = hub2.5D.triangles)
Plot it

plot(mesh)

Create the basis

FEMbasis = create.FEM.basis(mesh)

create.mesh.2.5D Create a mesh.2.5D object from the nodes locations and the connec-
tivty matrix

Description

Create a mesh. 2. 5D object from the nodes locations and the connectivty matrix

Usage

create.mesh.2.5D(nodes, triangles, order = 1)

Arguments
nodes A #nodes-by-3 matrix specifying the locations of each node.
triangles A #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) matrix,
specifying the indices of the nodes in each triangle.
order Either ’1’ or ’2’. It specifies wether each mesh triangle should be represented
by 3 nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and
midpoints). These are respectively used for linear (order = 1) and quadratic
(order = 2) Finite Elements. Default is order = 1.
Value

An object of the class mesh. 2. 5D with the following output:

* nnodesThe #nodes in the mesh.
* ntrianglesThe #triangles in the mesh.
* nodesA #nodes-by-3 matrix containing the x,y and z coordinate for each point of the mesh.

* trianglesA #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) matrix,
specifying the indices of the nodes in each triangle.

create.mesh.2D 5

» orderEither '1’ or ’2’. It specifies wether each mesh triangle should be represented by 3
nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and midpoints). It is passed
unchanged from the input.

Examples

library(fdaPDE)

Upload the hub2.5D the data

data(hub2.5D)

hub2.5D.nodes = hub2.5D$hub2.5D.nodes
hub2.5D.triangles = hub2.5D$hub2.5D.triangles

Create mesh from nodes and connectivity matrix:
mesh = create.mesh.2.5D(nodes = hub2.5D.nodes, triangles = hub2.5D.triangles)
plot(mesh)

create.mesh.2D Create a 2D triangular mesh

Description

This function is a wrapper of the Triangle library (http://www.cs.cmu.edu/~quake/triangle.html). It
can be used to create a triangulation of the domain of interest starting from a list of points, to be used
as triangles’ vertices, and a list of segments, that define the domain boundary. The resulting mesh is
a Constrained Delaunay triangulation. This is constructed in a way to preserve segments provided
in the input segments without splitting them. This imput can be used to define the boundaries of
the domain. If this imput is NULL, it generates a triangulation over the convex hull of the points. It
is also possible to create a mesh.2D from the nodes locations and the connectivity matrix.

Usage

create.mesh.2D(nodes, nodesattributes = NA, segments = NA, holes = NA,
triangles = NA, order = 1, verbosity = 0)

Arguments

nodes A #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.

nodesattributes
A matrix with #nodes rows containing nodes’ attributes. These are passed un-
changed to the output. If a node is added during the triangulation process or
mesh refinement, its attributes are computed by linear interpolation using the at-
tributes of neighboring nodes. This functionality is for instance used to compute
the value of a Dirichlet boundary condition at boundary nodes added during the
triangulation process.

create.mesh.2D

segments A #segments-by-2 matrix. Each row contains the row’s indices in nodes of the

vertices where the segment starts from and ends to. Segments are edges that
are not splitted during the triangulation process. These are for instance used to
define the boundaries of the domain. If this is input is NULL, it generates a
triangulation over the convex hull of the points specified in nodes.

holes A #holes-by-2 matrix containing the x and y coordinates of a point internal to

each hole of the mesh. These points are used to carve holes in the triangulation,
when the domain has holes.

triangles A #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) ma-

trix. This option is used when a triangulation is already available. It specifies the
triangles giving the row’s indices in nodes of the triangles’ vertices and (when
nodes = 2) also if the triangles’ edges midpoints. The triangles’ vertices and
midpoints are ordered as described at
https://www.cs.cmu.edu/~quake/triangle.highorder.html. In this case the func-
tion create.mesh. 2D is used to produce a complete mesh.2D object.

order Either ’1’ or ’2’. It specifies wether each mesh triangle should be represented

by 3 nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and
midpoints). These are respectively used for linear (order = 1) and quadratic
(order = 2) Finite Elements. Default is order = 1.

verbosity This can be ’0’, ’1° or ’2’. It indicates the level of verbosity in the triangulation

process. When verbosity = 0 no message is returned during the triangulation.
When verbosity = 2 the triangulation process is described step by step by
displayed messages. Default is verbosity = 0.

An object of the class mesh.2D with the following output:

nodesA #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.

nodesmarkersA vector of length #nodes, with entries either "1’ or ’0’. An entry ’1” indicates
that the corresponding node is a boundary node; an entry ’0’ indicates that the corresponding
node is not a boundary node.

nodesattributesA matrix with #nodes rows containing nodes’ attributes. These are passed
unchanged from the input.

trianglesA #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) matrix.
This option is used when a triangulation is already available. It specifies the triangles giving
the indices in nodes of the triangles’ vertices and (when nodes = 2) also if the triangles’ edges
midpoints. The triangles’ vertices and midpoints are ordered as described at
https://www.cs.cmu.edu/~quake/triangle.highorder.html.

b}

segmentsmarkerA vector of length #segments with entries either 1’ or ’0’. An entry ’1’
indicates that the corresponding element in segments is a boundary segment; an entry ’0’
indicates that the corresponding segment is not a boundary segment.

edgesA #edges-by-2 matrix containing all the edges of the triangles in the output triangula-
tion. Each row contains the row’s indices in nodes, indicating the nodes where the edge starts
from and ends to.

eval. FEM 7

* edgesmarkersA vector of lenght #edges with entries either "1’ or ’0’. An entry ’1’ indicates
that the corresponding element in edge is a boundary edge; an entry 0’ indicates that the
corresponding edge is not a boundary edge.

* neighborsA #triangles-by-3 matrix. Each row contains the indices of the three neighbouring
triangles. An entry -1’ indicates that one edge of the triangle is a boundary edge.

* holesA #holes-by-2 matrix containing the x and y coordinates of a point internal to each hole
of the mesh. These points are used to carve holes in the triangulation, when the domain has
holes.

* orderEither 1’ or ’2’. It specifies wether each mesh triangle should be represented by 3
nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and midpoints). These are
respectively used for linear (order = 1) and quadratic (order = 2) Finite Elements.

See Also

refine.mesh. 2D, create.FEM.basis

Examples

library(fdaPDE)

Upload the quasicirle2D data

data(quasicircle2D)

boundary_nodes = quasicircle2D$boundary_nodes
boundary_segments = quasicircle2D$boundary_segments
locations = quasicircle2D$locations

data = quasicircle2D$data

Create mesh from boundary

if the domain is convex it is sufficient to call:

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations))
plot(mesh)

if the domain is not convex, pass in addition the segments the compose the boundary:
mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)

Create mesh from data locations (without knowing the boundary)

mesh = create.mesh.2D(nodes = locations)

plot(mesh)

In this case the domain is the convex hull of the data locations.

Do this only if you do not have any information about the shape of the domain of interest.

eval.FEM Evaluate a FEM object at a set of point locations

Description

It evaluates a FEM object at the specified set of locations or areal regions. The locations are used for
pointwise evaluations and incidence matrix for areal evaluations. The locations and the incidence
matrix cannot be both NULL or both provided.

8 eval. FEM

Usage
eval .FEM(FEM, locations = NULL, incidence_matrix = NULL)

Arguments
FEM A FEM object to be evaluated.
locations A 2-columns (in 2D) or 3-columns (in 2.5D) matrix with the spatial locations

where the FEM object should be evaluated.

incidence_matrix
In case of areal evaluations, the #regions-by-#elements incidence matrix defin-
ing the regions where the FEM object should be evaluated.

Value

A vector or a matrix of numeric evaluations of the FEM object. If the FEM object contains multi-
ple finite element functions the output is a matrix, and each row corresponds to the location (or
areal region) where the evaluation has been taken, while each column corresponds to the function
evaluated.

References

e Sangalli, L. M., Ramsay, J. O., & Ramsay, T. O. (2013). Spatial spline regression models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(4), 681-703.

* Azzimonti, L., Sangalli, L. M., Secchi, P., Domanin, M., & Nobile, F. (2015). Blood flow
velocity field estimation via spatial regression with PDE penalization. Journal of the American
Statistical Association, 110(511), 1057-1071.

Examples

library(fdaPDE)

Upload the horseshoe2D data

data(horseshoe2D)

boundary_nodes = horseshoe2D$boundary_nodes
boundary_segments = horseshoe2D$boundary_segments
locations = horseshoe2D$locations

Create the 2D mesh

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)

Create the FEM basis

FEMbasis = create.FEM.basis(mesh)

Compute the coeff vector evaluating the desired function at the mesh nodes

In this case we consider the fs.test() function introduced by Wood et al. 2008
coeff = fs.test(mesh$nodes[,1], mesh$nodes[,2])

Create the FEM object

FEMfunction = FEM(coeff, FEMbasis)

Evaluate the finite element function in the location (1,0.5)
eval.FEM(FEMfunction, locations = matrix(c(1, ©.5), ncol = 2))

Evaluate the mean of the finite element function over the fifth triangle of the mesh

fdaPDE-deprecated 9

incidence_matrix = matrix(@, ncol = nrow(mesh$triangles))
incidence_matrix[1,5] = 1
eval.FEM(FEMfunction, incidence_matrix = incidence_matrix)

fdaPDE-deprecated Deprecated Functions

Description

These functions are Deprecated in this release of fdaPDE, they will be marked as Defunct and
removed in a future version.

Usage

R_mass(FEMbasis)
R_stiff(FEMbasis)

R_smooth.FEM.basis(
locations,
observations,
FEMbasis,
lambda,
covariates = NULL,
GCV

)

R_eval .FEM.basis(FEMbasis, locations, nderivs = matrix(0, 1, 2))
R_eval.FEM(FEM, locations)

smooth.FEM.basis(
locations = NULL,
observations,
FEMbasis,
lambda,
covariates = NULL,
BC = NULL,
GCV = FALSE,
CPP_CODE = TRUE

)

smooth.FEM.PDE.basis(
locations = NULL,
observations,
FEMbasis,
lambda,

10 fdaPDE-deprecated

PDE_parameters,
covariates = NULL,

BC = NULL,
GCV = FALSE,
CPP_CODE = TRUE

smooth.FEM.PDE.sv.basis(
locations = NULL,
observations,
FEMbasis,
lambda,
PDE_parameters,
covariates = NULL,

BC = NULL,
GCV = FALSE,
CPP_CODE = TRUE

create.MESH.2D(nodes, nodesattributes = NA, segments = NA, holes = NA,
triangles = NA, order = 1, verbosity = 0)

refine.MESH.2D(mesh, minimum_angle, maximum_area, delaunay, verbosity)

S3 method for class 'MESH2D'

plot(x, ...)

Arguments
FEMbasis A FEMbasis object describing the Finite Element basis, as created by create.FEM.basis.
locations A #observations-by-2 matrix where each row specifies the spatial coordinates of

the corresponding observations in the vector observations.

observations A #observations vector with the observed data values over the domain. The
locations of the observations can be specified with the locations argument.
Otherwise if only the vector of observations is given, these are consider to be
located in the corresponding node in the table nodes of the mesh. In this last
case, an NA value in the observations vector indicates that there is no observation
associated to the corresponding node.

lambda A scalar or vector of smoothing parameters.

covariates A #observations-by-#covariates matrix where each row represents the covariates
associated with the corresponding observed data value in observations.

GCV Boolean. If TRUE the following quantities are computed: the trace of the smooth-
ing matrix, the estimated error standard deviation, and the Generalized Cross
Validation criterion, for each value of the smoothing parameter specified in
lambda.

nderivs A vector of lenght 2 specifying the order of the partial derivatives of the bases
to be evaluated. The vectors’ entries can be 0,1 or 2, where 0 indicates that only
the basis functions, and not their derivatives, should be evaluated.

fdaPDE-deprecated

FEM

BC

CPP_CODE
PDE_parameters

nodes
nodesattributes

segments

holes

triangles

order

verbosity

mesh
minimum_angle
maximum_area

delaunay

11

A FEM object to be evaluated

vector with the Dirichlet boundary conditions to be applied.

Boolean, indicates whether C++ implementation ha sto be used or not.

A list specifying the parameters of the elliptic PDE in the regularizing term.

A #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.

A matrix with #nodes rows containing nodes’ attributes. These are passed un-
changed to the output. If a node is added during the triangulation process or
mesh refinement, its attributes are computed by linear interpolation using the at-
tributes of neighboring nodes. This functionality is for instance used to compute
the value of a Dirichlet boundary condition at boundary nodes added during the
triangulation process.

A #segments-by-2 matrix. Each row contains the row’s indices in nodes of the
vertices where the segment starts from and ends to. Segments are edges that
are not splitted during the triangulation process. These are for instance used to
define the boundaries of the domain. If this is input is NULL, it generates a
triangulation over the convex hull of the points specified in nodes.

A #holes-by-2 matrix containing the x and y coordinates of a point internal to
each hole of the mesh. These points are used to carve holes in the triangulation,
when the domain has holes.

A #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) ma-
trix. This option is used when a triangulation is already available. It specifies the
triangles giving the row’s indices in nodes of the triangles’ vertices and (when
nodes = 2) also if the triangles’ edges midpoints. The triangles’ vertices and
midpoints are ordered as described at
https://www.cs.cmu.edu/~quake/triangle.highorder.html. In this case the func-
tion create.MESH. 2D is used to produce a complete MESH2D object.

Either ’1’ or ’2’. It specifies wether each mesh triangle should be represented
by 3 nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and
midpoints). These are respectively used for linear (order = 1) and quadratic
(order = 2) Finite Elements. Default is order = 1.

This can be *0°, ’1” or ’2’. It indicates the level of verbosity in the triangulation
process. When verbosity = 0 no message is returned during the triangulation.
When verbosity = 2 the triangulation process is described step by step by
displayed messages. Default is verbosity = 0.

A MESH2D object representing the triangular mesh, created by create. MESH.2D.
A scalar specifying a minimun value for the triangles angles.
A scalar specifying a maximum value for the triangles areas.

A boolean parameter indicating whether or not the output mesh should satisfy
the Delaunay condition.

A MESH2D object defining the triangular mesh, as generated by create.Mesh.2D
or refine.Mesh.2D.

Arguments representing graphical options to be passed to par.

12 fdaPDE-deprecated

Value

A square matrix with the integrals of all the basis’ functions pairwise products. The dimension of
the matrix is equal to the number of the nodes of the mesh.

A square matrix with the integrals of all the basis functions’ gradients pairwise dot products. The
dimension of the matrix is equal to the number of the nodes of the mesh.

A list with the following quantities:

fit.FEM A FEM object that represents the fitted spatial field.
PDEmisfit.FEM A FEM object that represents the Laplacian of the estimated spatial field.

beta If covariates is not NULL, a vector of length #covariates with the regression co-
efficients associated with each covariate.

edf If GCV is TRUE, a scalar or vector with the trace of the smoothing matrix for
each value of the smoothing parameter specified in lambda.

stderr If GCV is TRUE, a scalar or vector with the estimate of the standard deviation of
the error for each value of the smoothing parameter specified in lambda.

GCV If GCV is TRUE, a scalar or vector with the value of the GCV criterion for each
value of the smoothing parameter specified in lambda.

A matrix of basis function values. Each row indicates the location where the evaluation has been
taken, the column indicates the basis function evaluated

A matrix of numeric evaluations of the FEM object. Each row indicates the location where the
evaluation has been taken, the column indicates the function evaluated.

An object of the class MESH2D with the following output:

nodes A #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.

nodesmarkers A vector of length #nodes, with entries either *1” or ’0’. An entry ’1’ indicates
that the corresponding node is a boundary node; an entry ’0’ indicates that the
corresponding node is not a boundary node.

nodesattributes
nodesattributes A matrix with #nodes rows containing nodes’ attributes. These
are passed unchanged to the output. If a node is added during the triangulation
process or mesh refinement, its attributes are computed by linear interpolation
using the attributes of neighboring nodes. This functionality is for instance used
to compute the value of a Dirichlet boundary condition at boundary nodes added
during the triangulation process.

triangles A #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) matrix.
This option is used when a triangulation is already available. It specifies the
triangles giving the indices in nodes of the triangles’ vertices and (when nodes
= 2) also if the triangles’ edges midpoints. The triangles’ vertices and midpoints
are ordered as described at
https://www.cs.cmu.edu/~quake/triangle.highorder.html.

segmentsmarker A vector of length #segments with entries either °1’ or ’0’. Anentry ’1” indicates
that the corresponding element in segments is a boundary segment; an entry (0’
indicates that the corresponding segment is not a boundary segment.

fdaPDE-deprecated 13

edges A #edges-by-2 matrix containing all the edges of the triangles in the output
triangulation. Each row contains the row’s indices in nodes, indicating the nodes
where the edge starts from and ends to.

edgesmarkers A vector of lenght #edges with entries either ’1’ or ’0’. An entry ’1’ indicates

that the corresponding element in edge is a boundary edge; an entry ’0’ indicates
that the corresponding edge is not a boundary edge.

neighbors A #triangles-by-3 matrix. Each row contains the indices of the three neighbour-
ing triangles. An entry -1’ indicates that one edge of the triangle is a boundary
edge.

holes A #holes-by-2 matrix containing the x and y coordinates of a point internal to

each hole of the mesh. These points are used to carve holes in the triangulation,
when the domain has holes.

order Either ’1” or ’2’. It specifies wether each mesh triangle should be represented
by 3 nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and
midpoints). These are respectively used for linear (order = 1) and quadratic
(order = 2) Finite Elements. Default is order = 1.

A MESH2D object representing the refined triangular mesh, with the following output:

nodes A #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.

nodesmarkers A vector of length #nodes, with entries either ’1” or ’0’. An entry ’1” indicates
that the corresponding node is a boundary node; an entry ’0’ indicates that the
corresponding node is not a boundary node.

nodesattributes
nodesattributes A matrix with #nodes rows containing nodes’ attributes. These
are passed unchanged to the output. If a node is added during the triangulation
process or mesh refinement, its attributes are computed by linear interpolation
using the attributes of neighboring nodes. This functionality is for instance used
to compute the value of a Dirichlet boundary condition at boundary nodes added
during the triangulation process.

triangles A #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) matrix.
This option is used when a triangulation is already available. It specifies the
triangles giving the row’s indices in nodes of the triangles’ vertices and (when
nodes = 2) also if the triangles’ edges midpoints. The triangles’ vertices and
midpoints are ordered as described at
https://www.cs.cmu.edu/~quake/triangle.highorder.html.

edges A #edges-by-2 matrix. Each row contains the row’s indices of the nodes where
the edge starts from and ends to.

edgesmarkers A vector of lenght #edges with entries either *1” or ’0’. An entry ’1’ indicates
that the corresponding element in edge is a boundary edge; an entry 0’ indicates
that the corresponding edge is not a boundary edge.

neighbors A #triangles-by-3 matrix. Each row contains the indices of the three neighbour-
ing triangles. An entry -1’ indicates that one edge of the triangle is a boundary
edge.

holes A #holes-by-2 matrix containing the x and y coordinates of a point internal to

each hole of the mesh. These points are used to carve holes in the triangulation,
when the domain has holes.

14 FEM

order Either ’1” or ’2’. It specifies wether each mesh triangle should be represented
by 3 nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and
midpoints). These are respectively used for linear (order = 1) and quadratic
(order = 2) Finite Elements. Default is order = 1.

FEM Define a surface or spatial field by a Finite Element basis expansion

Description

This function defines a FEM object.

Usage
FEM(coeff,FEMbasis)

Arguments
coeff A vector or a matrix containing the coefficients for the Finite Element basis ex-
pansion. The number of rows (or the vector’s length) corresponds to the number
of basis in FEMbasis. The number of columns corresponds to the number of
functions.
FEMbasis A FEMbasis object defining the Finite Element basis, created by create. FEM.basis.
Value

An FEM object. This contains a list with components coeff and FEMbasis.

Examples

library(fdaPDE)

Upload the horseshoe2D data

data(horseshoe2D)

boundary_nodes = horseshoe2D$boundary_nodes
boundary_segments = horseshoe2D$boundary_segments
locations = horseshoe2D$locations

Create the 2D mesh

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)
Create the FEM basis

FEMbasis = create.FEM.basis(mesh)

Compute the coeff vector evaluating the desired function at the mesh nodes

In this case we consider the fs.test() function introduced by Wood et al. 2008
coeff = fs.test(mesh$nodes[,1], mesh$nodes[,2])

Create the FEM object

FEMfunction = FEM(coeff, FEMbasis)

Plot it

plot (FEMfunction)

FPCA.FEM 15

FPCA.FEM Smooth Functional Principal Component Analysis

Description

This function implements a smooth functional principal component analysis for data defined over a
planar mesh, or a smooth manifold. For details on the model see Lila et al. 2016.

Usage

FPCA.FEM(locations = NULL, datamatrix, FEMbasis, lambda, nPC=1,
validation = NULL, NFolds = 5, GCVmethod = "Stochastic”, nrealizations = 100)

Arguments

locations A #observations-by-2 matrix in the 2D case and #observations-by-3 matrix in
the 2.5D case, where each row specifies the spatial coordinates x and y (and z in
2.5D) of the corresponding observation in the datamatrix. If the locations of
the observations coincide with (or are a subset of) the nodes of the mesh in the
FEMbasis, leave the parameter locations = NULL for a faster implementation.

datamatrix A matrix of dimensions #samples-by-#locations with the observed data values
over the domain for each sample. The datamatrix needs to have zero mean. If the
locations argument is left NULL the datamatrix has to be dimensions #samples-
by-#nodes where #nodes is the number of nodes of the mesh in the FEMbasis. In
this case, each observation is associated to the corresponding node in the mesh.
If the data are observed only on a subset of the mesh nodes, fill with NA the
values of the datamatrix in correspondence of unobserved data.

FEMbasis A FEMbasis object describing the Finite Element basis, as created by create.FEM.basis.
lambda A scalar or vector of smoothing parameters.
nPC An integer specifying the number of Principal Components to compute.

validation A string specifying the type of validation to perform. If 1ambda is a vector, it has
to be specified as "GCV" or "KFold"”. This parameter specify which method of
cross-validation is used to select the best parameter 1ambda among those values
of the smoothing parameter specified in lambda for each Principal Component.

NFolds This parameter is used only in case validation = "KFold". It is an integer
specifying the number of folds to use if the KFold cross-validation method for
the selection of the best parameter 1ambda is chosen. Default value is 5.

GCVmethod This parameter is considered only when validation = "GCV". It can be either
"Exact" or "Stochastic". If set to "Exact" the algoritm performs an exact (but
possibly slow) computation of the GCV index. If set to "Stochastic" the GCV is
approximated by a stochastic algorithm.

nrealizations The number of realizations to be used in the stochastic algorithm for the estima-
tion of GCV.

16

Value

FPCA.FEM

A list with the following variables:

loadings.FEMA FEM object that represents the L"2-normalized functional loadings for each
Principal Component computed.

scoresA #samples-by-#PrincipalComponents matrix that represents the unnormalized scores
or PC vectors.

lambdaA vector of length #Principal Components with the values of the smoothing parameter
lambda chosen for that Principal Component.

variance_explainedA vector of length #PrincipalComponents where each value represent
the variance explained by that component.

cumsum_percentageA vector of length #PrincipalComponents containing the cumulative per-
centage of the variance explained by the first components.

References

Lila,

E., Aston, J.A.D., Sangalli, L.M., 2016a. Smooth Principal Component Analysis over two-

dimensional manifolds with an application to neuroimaging. Ann. Appl. Stat., 10(4), pp. 1854-
1879.

Examples

library(fdaPDE)

Load the hub data
data(hub2.5D)

hub2.
hub2.

mesh

5D.nodes = hub2.5D$hub2.5D.nodes
5D.triangles = hub2.5D$hub2.5D.triangles

= create.mesh.2.5D(nodes = hub2.5D.nodes, triangles = hub2.5D.triangles)

Create the Finite Element basis
FEMbasis = create.FEM.basis(mesh)
Create a datamatrix

datamatrix = NULL

for(ii in 1:50){

al
a2
a3

= rnorm(1, mean = 1, sd = 1)
= rnorm(1, mean = 1, sd = 1)
= rnorm(1, mean = 1, sd = 1)

func_evaluation = numeric(mesh$nnodes)
for (i in @:(mesh$nnodes-1)){

}

func_evaluation[i+1] = alx sin(2xpi*mesh$nodes[i+1,1])

+ o+

a2* sin(2xpixmesh$nodes[i+1,2])
a3* sin(2xpixmesh$nodes[i+1,3])

+
_

data = func_evaluation + rnorm(mesh$nnodes, mean = @, sd = 0.5)
datamatrix = rbind(datamatrix, data)

}

Compute the mean of the datamatrix and subtract it to the data

data_

bar = colMeans(datamatrix)

fs.test 17

data_demean = matrix(rep(data_bar,50), nrow=50, byrow=TRUE)

datamatrix_demeaned = datamatrix - data_demean
Set the smoothing parameter lambda
lambda = 0.00375
Estimate the first 2 Principal Components
FPCA_solution = FPCA.FEM(datamatrix = datamatrix_demeaned,
FEMbasis = FEMbasis, lambda = lambda, nPC = 2)

Plot the functional loadings of the estimated Principal Components
plot (FPCA_solution$loadings.FEM)

fs.test FELSPLINE test function

Description
Implements a finite area test function based on one proposed by Tim Ramsay (2002) proposed by
Simon Wood (2008).

Usage

fs.test(x, y, re = 0.1, r =0.5, 1 =3, b=1)

Arguments
X,y Points at which to evaluate the test function.
ro The test domain is a sort of bent sausage. This is the radius of the inner bend.
r The radius of the curve at the centre of the sausage.
1 The length of an arm of the sausage.
b The rate at which the function increases per unit increase in distance along the
centre line of the sausage.
Value

Returns function evaluations, or NAs for points outside the horseshoe domain.

References

* Ramsay, T. 2002. Spline smoothing over difficult regions. J.R.Statist. Soc. B 64(2):307-319

* Wood, S. N., Bravington, M. V., & Hedley, S. L. (2008). Soap film smoothing. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 70(5), 931-955.

18

hub2.5D

Examples

library(fdaPDE)

Upload the horseshoe2D data

data(horseshoe2D)

boundary_nodes = horseshoe2D$boundary_nodes
boundary_segments = horseshoe2D$boundary_segments
locations = horseshoe2D$locations

Create the 2D mesh

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)
Create the FEM basis

FEMbasis = create.FEM.basis(mesh)

Compute the coeff vector evaluating the desired function at the mesh nodes

In this case we consider the fs.test() function introduced by Wood et al. 2008
coeff = fs.test(mesh$nodes[,1], mesh$nodes[,2])

Create the FEM object

FEMfunction = FEM(coeff, FEMbasis)

Plot it

plot (FEMfunction)

horseshoe2D Horseshoe domain

Description

The boundary and interior nodes and connectivity matrix of a triangular mesh of the horseshoe
domain. This dataset can be used to create a MESH. 2D object with the function create.MESH. 2D.
The variables are:

* boundary_nodes. The nodes in the boundary.
* boundary_segments. The ssegments of the boundary.
* locations. The interior nodes of the mesh.

Usage

data(horseshoe2D)

hub2.5D Hub domain

Description

The nodes and connectivity matrix of a triangular mesh of a manifold representing a hub geometry.
This dataset can be used to create a MESH. 2. 5D object with the function create.MESH.2.5D. The
variables are:

* hub2.5D.nodes. The nodes of the mesh.

* hub2.5D.triangles. The triangles of the mesh.

image.FEM 19

Usage
data(hub2.5D)

image.FEM Image Plot of a 2D FEM object

Description

Image plot of a FEM object, generated by the function FEM or returned by smooth.FEM and FPCA.FEM.
Only FEM objects defined over a 2D mesh can be plotted with this method.

Usage
S3 method for class 'FEM'
image(x, num_refinements, ...)
Arguments
X A 2D-mesh FEM object.

num_refinements
A natural number specifying how many bisections should by applied to each
triangular element for plotting purposes. This functionality is useful where a
discretization with 2nd order Finite Element is applied.

Arguments representing graphical options to be passed to plot3d.

See Also
FEM plot.FEM

Examples

library(fdaPDE)

Upload the horseshoe2D data

data(horseshoe2D)

boundary_nodes = horseshoe2D$boundary_nodes
boundary_segments = horseshoe2D$boundary_segments
locations = horseshoe2D$locations

Create the 2D mesh

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)
Create the FEM basis

FEMbasis = create.FEM.basis(mesh)

Compute the coeff vector evaluating the desired function at the mesh nodes

In this case we consider the fs.test() function introduced by Wood et al. 2008

coeff = fs.test(mesh$nodes[,1], mesh$nodes[,2])

Create the FEM object

FEMfunction = FEM(coeff, FEMbasis)

20 plot. FEM

Plot the FEM function
image (FEMfunction)

plot.FEM Plot a FEM object

Description

Three-dimensional plot of a FEM object, generated by FEM or returned by smooth.FEM or FPCA.FEM.
If the mesh of the FEMbasis component is of class mesh. 2D both the 3rd axis and the color represent
the value of the coefficients for the Finite Element basis expansion (coeff component of the FEM

object).
Usage
S3 method for class 'FEM'
plot(x, num_refinements, ...)
Arguments
X A FEM object.

num_refinements
A natural number specifying how many bisections should be applied to each
triangular element for plotting purposes. This functionality is useful where a
discretization with 2nd order Finite Element is applied. This parameter can be
specified only when a FEM object defined over a 2D mesh is plotted.

Arguments representing graphical options to be passed to plot3d.

See Also
FEM, image.FEM

Examples

library(fdaPDE)

Upload the horseshoe2D data

data(horseshoe2D)

boundary_nodes = horseshoe2D$boundary_nodes
boundary_segments = horseshoe2D$boundary_segments
locations = horseshoe2D$locations

Create the 2D mesh

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)
Create the FEM basis

FEMbasis = create.FEM.basis(mesh)

Compute the coeff vector evaluating the desired function at the mesh nodes

In this case we consider the fs.test() function introduced by Wood et al. 2008

coeff = fs.test(mesh$nodes[,1], mesh$nodes[,2])

plot.mesh.2.5D 21

Create the FEM object
FEMfunction = FEM(coeff, FEMbasis)

Plot the FEM function
plot (FEMfunction)

plot.mesh.2.5D Plot a mesh.2.5D object

Description

Plot the triangulation of a mesh. 2. 5D object, generated by create.mesh.2.5D

Usage

S3 method for class 'mesh.2.5D'
plot(x, ...)

Arguments

X A mesh.2.5D object generated by create.mesh.2.5D.

Arguments representing graphical options to be passed to par.

Examples

library(fdaPDE)

Upload the hub2.5D the data

data(hub2.5D)

hub2.5D.nodes = hub2.5D$hub2.5D.nodes
hub2.5D.triangles = hub2.5D$hub2.5D.triangles

Create mesh
mesh = create.mesh.2.5D(nodes = hub2.5D.nodes, triangles = hub2.5D.triangles)
plot(mesh)

plot.mesh.2D Plot a mesh.2D object

Description

Plot a mesh.2D object, generated by create.mesh.2D or refine.mesh. 2D.

Usage

S3 method for class 'mesh.2D'
plot(x, ...)

22 quasicircle2D

Arguments
X A mesh. 2D object defining the triangular mesh, as generated by create.mesh.2D
or refine.mesh. 2D.
Arguments representing graphical options to be passed to par.
Examples
library(fdaPDE)

Upload the quasicirle2D data

data(quasicircle2D)

boundary_nodes = quasicircle2D$boundary_nodes
boundary_segments = quasicircle2D$boundary_segments
locations = quasicircle2D$locations

data = quasicircle2D$data

Create mesh
mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)

Plot the mesh
plot(mesh)

quasicircle2D Quasicircle2D domain

Description

The boundary and interior nodes and connectivity matrix of a triangular mesh of a quasicircular
domain, together with a non-stationary field observed over the nodes of the mesh. This dataset can
be used to create a MESH. 2D object with the function create.MESH. 2D and to test the smooth. FEM
function. The variables are:

* boundary_nodes. The nodes in the boundary.

* boundary_segments. The ssegments of the boundary.

* locations. The interior nodes of the mesh.

e data. The vector of observations.

Usage

data(quasicircle2D)

quasicircle2Dareal 23

quasicircle2Dareal Quasicircle2Dareal domain

Description

The mesh of a quasicircular domain, together with a non-stationary field observed over seven circu-
lar subdomains and the incindence matrix defining the subdomains used by Azzimonti et. al 2015.
This dataset can be used to test the smooth.FEM function for areal data. The variables are:

* incidence_matrix. The 7-by-630 incidence matrix.
¢ data. The vector of observations.
¢ mesh. The mesh for areal data.

Usage

data(quasicircle2Dareal)

References

Azzimonti, L., Sangalli, L. M., Secchi, P., Domanin, M., & Nobile, F. (2015). Blood flow velocity
field estimation via spatial regression with PDE penalization. Journal of the American Statistical
Association, 110(511), 1057-1071.

refine.mesh.2D Refine a 2D triangular mesh

Description

This function refines a Constrained Delaunay triangulation into a Conforming Delaunay triangula-
tion. This is a wrapper of the Triangle library (http://www.cs.cmu.edu/~quake/triangle.html). It can
be used to refine a mesh previously created with create.mesh.2D. The algorithm can add Steiner
points (points through which the segments are splitted) in order to meet the imposed refinement
conditions.

Usage

refine.mesh.2D(mesh, minimum_angle, maximum_area, delaunay, verbosity)

Arguments

mesh A mesh.2D object representing the triangular mesh, created by create.mesh.2D.
minimum_angle A scalar specifying a minimun value for the triangles angles.
maximum_area A scalar specifying a maximum value for the triangles areas.

delaunay A boolean parameter indicating whether or not the output mesh should satisfy
the Delaunay condition.

verbosity This can be ’0’, ’1” or *2’. It indicates the level of verbosity in the triangulation
process.

24

Value

refine.mesh.2D

A mesh.2D object representing the refined triangular mesh, with the following output:

See Also

nodesA #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.

nodesmarkersA vector of length #nodes, with entries either "1’ or ’0’. An entry ’1’ indicates
that the corresponding node is a boundary node; an entry ’0’ indicates that the corresponding
node is not a boundary node.

nodesattributesnodesattributes A matrix with #nodes rows containing nodes’ attributes.
These are passed unchanged to the output. If a node is added during the triangulation process
or mesh refinement, its attributes are computed by linear interpolation using the attributes of
neighboring nodes. This functionality is for instance used to compute the value of a Dirichlet
boundary condition at boundary nodes added during the triangulation process.

trianglesA #triangles-by-3 (when order = 1) or #triangles-by-6 (when order = 2) matrix.

edgesA #edges-by-2 matrix. Each row contains the row’s indices of the nodes where the edge
starts from and ends to.

edgesmarkersA vector of lenght #edges with entries either *1’ or ’0’. An entry ’1’ indicates
that the corresponding element in edge is a boundary edge; an entry ’0’ indicates that the
corresponding edge is not a boundary edge.

neighborsA #triangles-by-3 matrix. Each row contains the indices of the three neighbouring
triangles. An entry ’-1’ indicates that one edge of the triangle is a boundary edge.

holesA #holes-by-2 matrix containing the x and y coordinates of a point internal to each hole
of the mesh. These points are used to carve holes in the triangulation, when the domain has
holes.

orderEither "1’ or ’2’. It specifies wether each mesh triangle should be represented by 3
nodes (the triangle’ vertices) or by 6 nodes (the triangle’s vertices and midpoints). These are
respectively used for linear (order = 1) and quadratic (order = 2) Finite Elements.

create.mesh. 2D, create.FEM.basis

Examples

library(fdaPDE)

Upload the quasicircle2D data
data(quasicircle2D)

boundary_nodes = quasicircle2D$boundary_nodes
boundary_segments = quasicircle2D$boundary_segments
locations = quasicircle2D$locations

data

= quasicircle2D$data

Create mesh from boundary:

mesh

= create.mesh.2D(nodes = boundary_nodes, segments = boundary_segments)

plot(mesh)

Refine the mesh with the maximum area criterion:
finemesh = refine.mesh.2D(mesh = mesh, maximum_area = 0.1)
plot(finemesh)

smooth.FEM 25

Refine the mesh with the minimum angle criterion:
finemesh2 = refine.mesh.2D(mesh = mesh, minimum_angle = 30)
plot(finemesh2)

smooth.FEM Spatial regression with differential regularization

Description

This function implements a spatial regression model with differential regularization. The regular-
izing term involves a Partial Differential Equation (PDE). In the simplest case the PDE involves
only the Laplacian of the spatial field, that induces an isotropic smoothing. When prior information
about the anisotropy or non-stationarity is available the PDE involves a general second order linear
differential operator with possibly space-varying coefficients. The technique accurately handle data
distributed over irregularly shaped domains. Moreover, various conditions can be imposed at the
domain boundaries.

Usage

smooth.FEM(locations = NULL, observations, FEMbasis, lambda,
covariates = NULL, PDE_parameters=NULL, incidence_matrix = NULL,
BC = NULL, GCV = FALSE, GCVmethod = "Stochastic"”, nrealizations = 100)

Arguments

locations A #observations-by-2 matrix in the 2D case and #observations-by-3 matrix in
the 2.5D case, where each row specifies the spatial coordinates x and y (and
z in 2.5D) of the corresponding observation in the vector observations. If
the locations of the observations coincide with (or are a subset of) the nodes of
the mesh in the FEMbasis, leave the parameter locations = NULL for a faster
implementation.

observations A vector of length #observations with the observed data values over the domain.
If the locations argument is left NULL the vector of the observations have to
be of length #nodes of the mesh in the FEMbasis. In this case, each observation
is associated to the corresponding node in the mesh. If the observations are
observed only on a subset of the mesh nodes, fill with NA the values of the vector
observations in correspondence of unobserved data.

FEMbasis A FEMbasis object describing the Finite Element basis, as created by create.FEM.basis.
lambda A scalar or vector of smoothing parameters.
covariates A #observations-by-#covariates matrix where each row represents the covariates

associated with the corresponding observed data value in observations and
each column is a different covariate.

PDE_parameters A list specifying the parameters of the PDE in the regularizing term. Default
is NULL, i.e. regularization is by means of the Laplacian (stationary, isotropic
case). If the coefficients of the PDE are constant over the domain PDE_parameters
must contain:

26 smooth.FEM

* K, a 2-by-2 matrix of diffusion coefficients. This induces an anisotropic
smoothing with a preferential direction that corresponds to the first eigen-
vector of the diffusion matrix K;

* b, a vector of length 2 of advection coefficients. This induces a smoothing
only in the direction specified by the vector b;

* ¢, a scalar reaction coefficient. c induces a shrinkage of the surface to zero.
If the coefficients of the PDE are space-varying PDE_parameters must contain:

* K, a function that for each spatial location in the spatial domain (indicated
by the vector of the 2 spatial coordinates) returns a 2-by-2 matrix of dif-
fusion coefficients. The function must support recycling for efficiency rea-
sons, thus if the input parameter is a #point-by-2 matrix, the output should
be an array with dimensions 2-by-2-by-#points.

* b, a function that for each spatial location in the spatial domain returns
a vector of length 2 of transport coefficients. The function must support
recycling for efficiency reasons, thus if the input parameter is a #point-by-2
matrix, the output should be a matrix with dimensions 2-by-#points;

* ¢, a function that for each spatial location in the spatial domain returns
a scalar reaction coefficient. The function must support recycling for ef-
ficiency reasons, thus if the input parameter is a #point-by-2 matrix, the
output should be a vector with length #points;

* u, a function that for each spatial location in the spatial domain returns a
scalar reaction coefficient. u induces a reaction effect. The function must
support recycling for efficiency reasons, thus if the input parameter is a
#point-by-2 matrix, the output should be a vector with length #points.

For 2.5D, only the Laplacian is available (PDE_parameters=NULL).

incidence_matrix
A #regions-by-#triangles matrix where the element (i,j) equals 1 if the j-th tri-
angle is in the i-th region and O otherwise. This is needed only for areal data. In
case of pointwise data, this parameter is set to NULL.

BC A list with two vectors: BC_indices, a vector with the indices in nodes of
boundary nodes where a Dirichlet Boundary Condition should be applied; BC_values,
a vector with the values that the spatial field must take at the nodes indicated in
BC_indices.

GCV Boolean. If TRUE the following quantities are computed: the trace of the smooth-
ing matrix, the estimated error standard deviation, and the Generalized Cross
Validation criterion, for each value of the smoothing parameter specified in
lambda.

GCVmethod This parameter is considered only when GCV=TRUE. It can be either "Exact" or
"Stochastic". If set to "Exact" the algoritm performs an exact (but possibly slow)
computation of the GCV index. If set to "Stochastic" the GCV is approximated
by a stochastic algorithm.

nrealizations This parameter is considered only when GCV=TRUE and GCVmethod = "Stochastic”.
It is a positive integer that represents the number of uniform random variables
used in stochastic GCV computation.

smooth.FEM 27

Value
A list with the following variables:

» fit.FEMA FEM object that represents the fitted spatial field.
* PDEmisfit.FEMA FEM object that represents the Laplacian of the estimated spatial field.

* betalf covariates is not NULL, a matrix with number of rows equal to the number of covariates
and numer of columns equal to length of lambda. The jth column represents the vector of
regression coefficients when the smoothing parameter is equal to 1lambdalj].

» edfIf GCV is TRUE, a scalar or vector with the trace of the smoothing matrix for each value of
the smoothing parameter specified in lambda.

e stderrlf GCV is TRUE, a scalar or vector with the estimate of the standard deviation of the
error for each value of the smoothing parameter specified in lambda.

* GCVIf GCV is TRUE, a scalar or vector with the value of the GCV criterion for each value of
the smoothing parameter specified in 1ambda.

References

e Sangalli, L. M., Ramsay, J. O., Ramsay, T. O. (2013). Spatial spline regression models. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 75(4), 681-703.

* Azzimonti, L., Sangalli, L. M., Secchi, P., Domanin, M., Nobile, F. (2015). Blood flow ve-
locity field estimation via spatial regression with PDE penalization. Journal of the American
Statistical Association, 110(511), 1057-1071.

Examples

library(fdaPDE)

No prior information about anysotropy/non-stationarity (laplacian smoothing)
data(horseshoe2D)

boundary_nodes = horseshoe2D$boundary_nodes

boundary_segments = horseshoe2D$boundary_segments

locations = horseshoe2D$locations

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)
FEMbasis = create.FEM.basis(mesh)

lambda = 10*-1

no covariate

data = fs.test(mesh$nodes[,1], mesh$nodes[,2]) + rnorm(nrow(mesh$nodes), sd = 0.5)

solution = smooth.FEM(observations = data, FEMbasis = FEMbasis, lambda = lambda)
plot(solution$fit.FEM)

with covariates

covariate = covs.test(mesh$nodes[,1], mesh$nodes[,2])

data = fs.test(mesh$nodes[,1], mesh$nodes[,2]) +
2*covariate + rnorm(nrow(mesh$nodes), sd = 0.5)

solution = smooth.FEM(observations = data, covariates = covariate,
FEMbasis = FEMbasis, lambda = lambda)

28

smooth.FEM

beta estimate:
solution$beta

non-parametric estimate:
plot(solution$fit.FEM)

Choose lambda with GCV:

lambda = 10*(-2:2)

solution = smooth.FEM(observations = data,
covariates = covariate,
FEMbasis = FEMbasis,
lambda = lambda,
GCV = TRUE)

bestLambda = lambda[which.min(solution$GCV)]

Smoothing with prior information about anysotropy/non-stationarity and boundary conditions

See Azzimonti et al. for reference to the current exemple
data(quasicircle2D)

boundary_nodes = quasicircle2D$boundary_nodes
boundary_segments = quasicircle2D$boundary_segments
locations = quasicircle2D$locations

data = quasicircle2D$data

mesh = create.mesh.2D(nodes = rbind(boundary_nodes, locations), segments = boundary_segments)
FEMbasis = create.FEM.basis(mesh)
lambda = 10*-2

Set the PDE parameters
R=2.8
K1 = 0.1
K2 = 0.2
beta = 0.5
K_func<-function(points)
{
output = array(@, c(2, 2, nrow(points)))
for (i in 1:nrow(points))
output[,,i] = 10*rbind(c(points[i,2]%2 + Klxpoints[i,1]*2 +
K2*(R*2 - points[i,1]*2 - points[i,2]*2),
(K1-1)*points[i,1]*points[i,2]),
c((K1-1)*points[i,1]*points[i, 2],
points[i,1]1%2 + Klxpoints[i,2]%2 +
K2x(R"2 - points[i,1]*2 - points[i,2]*2)))
output
3

b_func<-function(points)
{
output = array(@, c(2, nrow(points)))
for (i in 1:nrow(points))
output[,i] = 10*beta*c(points[i,1],points[i,2])
output
3

smooth.FEM

c_func<-function(points)

{

rep(c(@), nrow(points))
}
u_func<-function(points)
{

rep(c(@), nrow(points))
3

PDE_parameters = list(K = K_func, b = b_func, ¢ = c_func, u = u_func)

Set the boundary conditions

BC = NULL

BC$BC_indices = which(mesh$nodesmarkers == 1) # b.c. on the complete boundary
BC$BC_values = rep(@,length(BC$BC_indices)) # homogeneus b.c.

Since the data locations are a subset of the mesh nodes for a faster solution use:
dataNA = rep(NA, FEMbasis$nbasis)
dataNA[mesh$nodesmarkers == @] = data

solution = smooth.FEM(observations = dataNA,
FEMbasis = FEMbasis,
lambda = lambda,
PDE_parameters = PDE_parameters,
BC = BC)
plot(solution$fit.FEM)
image(solution$fit.FEM)

###H# Smoothing with areal data ####

See Azzimonti et al. for reference to the current exemple
data(quasicircle2Dareal)

incidence_matrix = quasicircle2Dareal$incidence_matrix

data = quasicircle2Dareal$data

mesh = quasicircle2Dareal$mesh

FEMbasis = create.FEM.basis(mesh)
lambda = 10%-4

Set the PDE parameters
R=2.8
K1 =
K2 =
beta 5
K_func<-function(points)
{
output = array(@, c(2, 2, nrow(points)))
for (i in T1:nrow(points))
output[,,i] = 10*rbind(c(points[i,2]*2 + Kl*points[i,1]%2 +
K2x(R*2 - points[i,1]*2 - points[i,2]*2),
(K1-1)*points[i,1]*points[i,2]),
c((K1-1)*points[i,1]*points[i,2],
points[i,1]%2 + Klxpoints[i,2]*2 +
K2x(R*2 - points[i,1]%2 - points[i,2]*2)))

N © ©

N
.2
0.

29

30

smooth.FEM

output
3

b_func<-function(points)
{
output = array(@, c(2, nrow(points)))
for (i in 1:nrow(points))
output[,i] = 10*xbeta*c(points[i,1],points[i,2])

output
}
c_func<-function(points)
{

rep(c(@), nrow(points))
3
u_func<-function(points)
{

rep(c(@), nrow(points))
3

PDE_parameters = list(K = K_func, b = b_func, ¢ = c_func, u = u_func)

Set the boundary conditions

BC = NULL

BC$BC_indices = which(mesh$nodesmarkers == 1) # b.c. on the complete boundary
BC$BC_values = rep(@,length(BC$BC_indices)) # homogeneus b.c.

solution = smooth.FEM(observations = data,
incidence_matrix = incidence_matrix,
FEMbasis = FEMbasis,
lambda = lambda,
PDE_parameters = PDE_parameters,
BC = BC)
plot(solution$fit.FEM)
image(solution$fit.FEM)

Index

covs. test, 2
create.FEM.basis, 3,7, 10, 14, 15, 24, 25
create.mesh.2.5D, 3,4
create.MESH.2D, /]
create.MESH. 2D (fdaPDE-deprecated), 9
create.mesh.2D, 3,5, 23, 24

eval.FEM, 7

fdaPDE-deprecated, 9
FEM, 14, 19, 20
FPCA.FEM, 15
fs.test, 17

horseshoe2D, 18
hub2.5D, 18

image.FEM, 19, 20

par, 11,21, 22

plot.FEM, 719, 20

plot.mesh.2.5D, 21
plot.mesh.2D, 21

plot.MESH2D (fdaPDE-deprecated), 9
plot3d, 19, 20

quasicircle2D, 22
quasicircle2Dareal, 23

R_eval .FEM (fdaPDE-deprecated), 9

R_mass (fdaPDE-deprecated), 9

R_smooth.FEM.basis (fdaPDE-deprecated),
9

R_stiff (fdaPDE-deprecated), 9

refine.MESH. 2D (fdaPDE-deprecated), 9

refine.mesh. 2D, 7, 23

smooth.FEM, 25

smooth.FEM.basis (fdaPDE-deprecated), 9

smooth.FEM.PDE.basis
(fdaPDE-deprecated), 9

smooth.FEM.PDE.sv.basis
(fdaPDE-deprecated), 9

31

	covs.test
	create.FEM.basis
	create.mesh.2.5D
	create.mesh.2D
	eval.FEM
	fdaPDE-deprecated
	FEM
	FPCA.FEM
	fs.test
	horseshoe2D
	hub2.5D
	image.FEM
	plot.FEM
	plot.mesh.2.5D
	plot.mesh.2D
	quasicircle2D
	quasicircle2Dareal
	refine.mesh.2D
	smooth.FEM
	Index

