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add. image Adds an image to an existing plot.
Description
Adds an image to an existing plot. Simple arguments control the location and size.
Usage
add. image(xpos, ypos, z, adj.x = 0.5, adj.y = 0.5,
image.width = 0.15, image.height = NULL, col = tim.colors(256), ...)
Arguments
Xpos X position of image in user coordinates
ypos Y position of image in user coordinates
z Matrix of intensities comprising the image.
adj.x Location of image relative to x coordinate. Most common values are .5 (cen-
tered), O (right side of image at x) and 1 (left side of image at x). These are the
same conventions that are used for adj in positioning text.
adj.y Location of image relative to y coordinate. Same rules as adj. x
image.width Width of image as a fraction of the plotting region in horizontal direction.

image.height  Height of image as a fraction of the plotting region in horizontal direction. If

col

See Also

NULL height is scaled to make image pixels square.
Color table for image. Default is tim.colors.

Any other plotting arguments that are passed to the image function

image.plot, colorbar.plot, image, tim.colors
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Examples

plot( 1:10,
data( lennon)

1:10, type="n")

add.image( 5,4,lennon, col=grey( (0:256)/256))

# reference lines
xline( 5, col=2)
yline( 4,co0l=2)

#

# add lennon right in the corner beyond the plotting region

#

par(new=TRUE, plt=c(0,1,0,1), mar=c(0,0,0,0), usr=c(0,1,0,1))
add.image( 0,0, lennon, adj.x=0, adj.y=0)

arrow.plot

Adds arrows to a plot

Description

Adds arrows at specified points where the arrow lengths are scaled to fit on the plot in a reasonable
manner. A classic use of this function is to depict a vector field. At each point (x,y) we have a
vector with components (u,v). Like the arrows function this adds arrows to an existing plot.

Usage

arrow.plot(al, a2, u = NA, v = NA, arrow.ex = 0.05,
xpd = TRUE, true.angle = FALSE, arrowfun=arrows,...)

Arguments

al

a2

arrow. ex

xpd

The x locations of the tails of the arrows or a 2 column matrix giving the x and
y coordinates of the arrow tails.

The y locations of the tails of the arrows or a 2 column matrix giving the u and
v coordinates of the arrows.

The u components of the direction vectors if they are not specified in the al
argument

The v components of the direction vectors if they are not specified in the a2
argument

Controls the length of the arrows. The length is in terms of the fraction of the
shorter axis in the plot. So with a default of .05 20 arrows of maximum length
can line up end to end along the shorter axis.

If true does not clip arrows to fit inside the plot region, default is not to clip.
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true.angle If true preserves the true angle of the (u,v) pair on the plot. E.g. if (u,v)=(1,1)
then the arrow will be drawn at 45 degrees.

arrowfun The actual arrow function to use. The default is standard R arrows. However,
Tamas K Papp suggests p.arrows from sfsmisc which makes prettier arrows.

Graphics arguments passed to the arrows function that can can change the color
or arrow sizes. See help on this for details.

Details

This function is useful because (u,v) may be in very different scales from the locations (x,y). So
some careful scaling is needed to plot the arrows. The only tricky thing about this function is
whether you want the true angles on the plot. For overlaying a vector field on top of contours that
are the streamlines true.angle should be false. In this case you want u and v to be scaled in the same
way as the x and y variables. If the scaling is not the same then the arrows will not look like tangent
vectors to the streamlines. An application where the absolute angles are meaningful might be the
hands of a clock showing different times zones on a world map. Here true.angle=T is appropriate,
the clock hands should preserve the right angles.

See Also

arrows

Examples

#
# 20 random directions at 20 random points

x<- runif( 20)

y<- runif( 20)

u<- rnorm( 20)

v<- rnorm( 20)

plot( x,y)

arrow.plot( x,y,u,v) # a default that is unattractive

plot( x,y, type="n")

arrow.plot( x,y,u,v, arrow.ex=.2, length=.1, col='green', lwd=2)

# thicker lines in green, smaller heads and longer tails. Note length, col and lwd are
# options that the arrows function itself knows about.

as.image Creates image from irregular x,y,z

Description

Discretizes a set of 2-d locations to a grid and produces a image object with the z values in the right
cells. For cells with more than one Z value the average is used.
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Usage

as.image(Z, ind=NULL, grid=NULL, x=NULL,weights=rep(1, length(Z)),
na.rm=FALSE, nx=64, ny=64, boundary.grid=FALSE, nrow=NULL, ncol=NULL,

FUN = NULL)
Arguments

Z Values of image.

ind A matrix giving the row and column subscripts for each image value in Z. (Not
needed if x is specified.)

grid A list with components x and y of equally spaced values describing the centers
of the grid points. The default is to use nrow and ncol and the ranges of the data
locations (x) to construct a grid.

X Locations of image values. Not needed if ind is specified.

nrow Same as nx this is depreciated.

ncol Same as ny this is depreciated.

weights If two or more values fall into the same pixel a weighted average is used to
represent the pixel value. Default is equal weights.

na.rm If true NA’s are removed from the Z vector.

nx Number of grid point in X coordinate.

ny Number of grid points in Y coordinate.

boundary.grid If FALSE grid points are assumed to be the grid midpoints. If TRUE they are
the grid box boundaries.

FUN The function to apply to common values in a grid box. The default is a mean (or
weighted mean). If FUN is specified the weights are not used.

Details

The discretization is straightforward once the grid is determined. If two or more Z values have
locations in the same cell the weighted average value is taken as the value. The weights component
that is returned can be used to account for means that have different numbers (or precisions) of
observations contributing to the grid point averages. The default weights are taken to be one for
each observation. See the source code to modify this to get more information about coincident
locations. (See the call to fast.1way)

Value

An list in image format with a few more components. Components x and y are the grid values , z
is a nrow X ncol matrix with the Z values. NA’s are placed at cell locations where Z data has not
been supplied. Component ind is a 2 column matrix with subscripts for the locations of the values
in the image matrix. Component weights is an image matrix with the sum of the individual weights
for each cell. If no weights are specified the default for each observation is one and so the weights
will be the number of observations in each bin.
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See Also

image.smooth, image.plot, Krig.discretize, Krig.replicates

Examples

# convert precip data to 50X50 image
look<- as.image( RMprecip$y, x= RMprecip$x, nx=50, ny=50)
image.plot( look)

# reduced grid extent compared to the domain
gridList<- list( x = seq(-105,-101,length.out=10),

y = seq( 38, 42,length.out=10) )
look2<- as.image( RMprecip$y, x= RMprecip$x,grid=gridlList)
image.plot( look2)

# number of obs in each cell -- in this case equal to the
# aggregated weights because each obs had equal weight in the call

image.plot( look$x ,look$y, look$weights, col=terrain.colors(50))
# hot spot is around Denver

as.surface Creates an "surface" object from grid values.

Description

Reformats the vector from evaluating a function on a grid of points into a list for use with surface
plotting function. The list has the usual components X,y and z and is suitable for use with persp,
contour, image and image.plot.

Usage

as.surface(obj, z, location=NULL, order.variables="xy")

Arguments
obj A description of the grid used to evaluate the function. This can either be in
the form of a grid.list ( see help file for grid.list) or the matrix of grid of points
produced by make.surface.grid. In the later case obj is a matrix with the grid.list
as an attribute.
z The value of the function evaluated at the gridded points.
location A logical or two column matrix of indices indicating the location of the z values

within the image matrix.

order.variables
Either "xy" or "yx" specifies how the x and y variables used to evaluate the
function are matched with the x and y grids in the surface object.
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Details

This function was written to simply to go back and forth between a matrix of gridded values and
the stacked vector obtained by stacking columns. The main application is evaluating a function at
each grid point and then reforming the results for plotting. (See example below.)

If zimage is matrix of values then the input vector is c( zimage). To go from the stacked vector to
the matrix one needs the the nrow ncol and explains why grid information must also be specified.

Note that the z input argument must be in the order values in order of stacking columns of the image.
This is also the order of the grid points generated by make.surface.grid.

To convert irregular 2-d data to a surface object where there are missing cells see the function
as.image.

Value

A list of class surface. This object is a modest generalization of the list input format (x,y,z,) for the
S functions contour, image or persp.

X The grid values in the X-axis
y The grid values in the Y-axis
z A matrix of dimensions nrow= length of x and ncol= length of y with entries

being the grid point value reformatted from z.

See Also

grid.list, make.surface.grid, surface, contour, image.plot, as.image

Examples

# Make a perspective of the surface Z= X**2 -Y#x2
# Do this by evaluating quadratic function on a 25 X 25 grid

grid.1<-list( abcissa= seq( -2,2,,15), ordinate= seq( -2,2,,20))
xg<-make.surface.grid( grid.l)

# xg is a 300X2 matrix that has all pairs of X and Y grid values
z<- xg[,11*x2 - xg[,2]**2

# now fold z in the matrix format needed for persp
out.p<-as.surface( xg, z)

persp( out.p)
# also try plot( out.p) to see the default plot for a surface object
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BD Data frame of the effect of buffer compositions on DNA strand dis-
placement amplification. A 4-d regression data set with with replica-

tion. This is a useful test data set for exercising function fitting meth-
ods.

Description

The BD data frame has 89 rows and 5 columns. There are 89 runs with four buffer components
(KCL, MgCl12, KP04, dnTP) systematically varied in a space-filliing design. The response is the
DNA amplification rate.

Format

This data frame contains the following columns:

KCl Buffer component.

MgCl2 Buffer component.

KPO4 Buffer component.

dNTP Buffer component, deoxyribonucleotides.

Inya Exponential amplification rate on a log scale, i.e. the actual amplification rate.

Source

Thanks to Perry Haaland and Michael OConnell.

Becton Dickinson Research Center Research Triangle Park, NC

See Also

Tps

Examples

# fitting a DNA strand

# displacement amplification surface to various buffer compositions
fit<- Tps(BD[,1:4],BD$1lnya,scale.type="range")

surface(fit) # plots fitted surface and contours
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boxplot

Description

Plots boxplots of several groups of data and allows for placement at different horizontal or vertical
positions or colors. It is also flexible in the input object, accepting either a list or matrix.

Usage

bplot(x, by, pos=NULL, at = pos, add = FALSE, boxwex =

Arguments

X

by

pos

at
add

boxwex

x1lim

Details

0.8,x1im=NULL, ...)

Vector, matrix, list or data frame. A vector may be divided according to the
by argument. Matrices and data frames are separated by columns and lists by
components.

If x is a vector, an optional vector (either character or numerical) specifying the
categories to divide x into separate data sets. Boxplots are then made for each
group.

The boxplots will be plotted vertically (horizontally) and pos gives the x (y)
locations for their centers. If omitted the boxes are equally spaced at integer
values. This is the same as at in the boxplot function

Same as pos this is the name for this argument in the standard boxplot function.

If true, do not create a new plots just add the boxplots to a current plot. Note that
the pos argument may be useful in this case and should be in the user coordinates
of the parent plot.

A boxplot argument to control the width of the boxplot. It behaves a little dif-
ferent than as an argumetn passed directly to boxplot. To make this a gen-
eral function it is useful to scale this according to size of positions. Within
bplot this happens as boxwex<-boxwex* min(diff( sort( at))). and then the
scaled version of boxwex is now passed to boxplot.

Same as the usual argument used in plotting. The plotting limits for the x axis.

Other arguments to be passed to the boxplot function some handy favorites are:
names Labels for each boxplot. horizontallf TRUE draw boxplots horizontally
the default is false, produce vertical box plots. lwdWidth(s) of lines in box plots.
colColor(s) of bplots. See colors() for some choices.

This function was created as a complement to the usual S/R function for boxplots. The current
function makes it possible to put the boxplots at unequal x or y positions in a rational way using the
at or pos arguments. This is useful for visually grouping a large set of boxplots into several groups.
Also placement of the boxplots with respect to the axis can add information to the plot. Another
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aspect is the emphasis on data structures for groups of data. One useful feature is the by option to
break up the x vector into distinct groups.

Use axis(3) (axis(4)) to add an axis along the top (right side) or omit the category names and
draw on the bottom axis(1) (left side axis(2)).

The older bplot function drew the boxplots from scratch and if one needs to do this refer to the old
functions: describe.bplot,draw.bplot.obj,bplot.xy,bplot.obj

Finally to bin data into groups based on a continuous variable and to make bplots of each group see
bplot.xy.

See Also

bplot.xy

Examples

#

set.seed(123)

temp<- matrix( rnorm(12*8), ncol=12)

pos<- ¢(1:6,9, 12:16)*100

bplot(temp)

#

par(las=2)

bplot( temp, pos=pos, names=paste( "Data”,1:12, sep=""))
# add an axis along top for reference

axis(3)

#

# Xmas boxplots in pleasing red and green
bplot( temp, pos=pos, col=c("red4", "green4"))
# add an axis on top

axis( 3)

bplot.xy Boxplots for conditional distribution

Description

Draws boxplots for y by binning on x. This gives a coarse, but quick, representation of the condi-
tional distrubtion of [YIX] in terms of boxplots.

Usage

bplot.xy(x, y, N = 10, breaks = pretty(x, N, eps.correct = 1), plot=TRUE,
L)
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Arguments
X Vector to use for bin membership
y Vector to use for constructing boxplot statistics.
N Number of bins on x. Default is 10.
breaks Break points defining bin boundaries. These can be unequally spaced.
plot If FALSE just returns a list with the statistics used for plotting the box plots, bin
centers, etc. — More stuff than you can imagine!
Any other optional arguments passed to the standard boxplot function.
See Also

bplot, draw.bplot

Examples

# condition on swim times to see how run times vary
bplot.xy( minitri$swim, minitri$run, N=5)

# bivariate normal corr= .8
set.seed( 123)
x<-rnorm( 2000)
y<- .8*x + sqrt( 1- .8**2)xrnorm( 200)
#
bplot.xy(x,y)
#
bplot.xy( x,y, breaks=seq( -3, 3,,25) ,
xlim =c(-4,4), ylim =c(-4,4), col="grey80", lwd=2)
points( x,y,col=3, cex=.5)

Chicago ozone test data
Data set of ozone measurements at 20 Chicago monitoring stations.

Description

This data set used be named ozone but was changed to avoid conflict with other packages. The
Chicago03 data is a list of components, x and y. x component is longitude and latitude position
of each of the 20 Chicago monitoring stations, y is the average daily ozone values over the time
period 6/3/87-8/30/87. These data are used extensively for the test scripts and simple examples.
The lasting scientific value is probably minimal.
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Format

circulantEmbedding

This data set is a list containing the following components:

lon.lat Longitude-latitude positions of monitoring stations.

X An approximate Cartesian set of coordinates for the locations where the units are in miles. The
origin is in the center of the locations.

y Average daily ozone values over 1987 summer.

Source

AIRS, the EPA air quality data base.

See Also

Tps, Krig

Examples

fit<- Tps(Chicago03$x, Chicago03$y)
# fitting a surface to ozone measurements.
surface( fit, type="I")

circulantEmbedding Efficiently Simulates a Stationary 1 and 2D Gaussian random fields

Description

Simulates a stationary Gaussian random field on a regular grid with unit marginal variance. Makes
use of the efficient algorithm based on the FFT know as circulant embedding.

Usage
sim.rf(obj)

circulantEmbedding(obj)
circulantEmbeddingSetup(
grid, M = NULL, cov.function="stationary.cov", cov.args=NULL,delta=NULL,

>

Arguments

obj

A list (aka covariance object) that includes information about the covariance
function and the grid for evaluation. Usually this is created by a setup call to
Exp.image.cov, stationary.image.cov, matern.image.cov or other related covari-
ance functions for sim. rf (See details below.) or to circulantEmbeddingSetup
for circulantEmbedding
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grid A list describing the regular grid. length(grid) is the dimension of the field
(1D 2D etc) and each component are the regular locations in that dimension.

M A vector of dimensions to embed the field. Simulation will be exact if each M[i]
is larger than 2*length(grid). The default is to choose a power of 2 larger than
this minima bound.

cov.function A text string with the name of the stationary covariance function to use. Default
is stationary.cov and general function that takes advantage of some efficiency
in finding distances.

cov.args A list of arguments to include with the covariance function, Eg. aRange and
smoothness for the Matern.

delta If NULL the spatial domain is artifically doubled in size in all dimensions to
account for the periodic wrapping of the fft. If passed this is the amount to
extend the domain and can be less than double if a compact covariance function
is used.

For convenience any other arguments to pass to the covariance function.

Details

The functions circulantEmbedding and circulantEmbeddingSetup are more recent fields func-
tions, more easy to read, and recommended over sim.rf. sim.rf is limited to 2D fields while
circulantEmbedding can handle any number of dimensions and has some shortcuts to be efficient
for the 2D case.

The simulated field has the marginal variance that is determined by the covariance function for zero
distance. Within fields the exponential and matern set this equal to one ( e.g. Matern(0) ==1) so
that one simulates a random field with a marginal variance of one. For stationary.cov the marginal
variance is whatever Covariance (@) evaluates to and we recommend that alternative covariance
functions also be normalized so that this is one.

Of course if one requires a Gaussian field with different marginal variance one can simply scale the
result of this function. See the third example below.

Both sim.rf and circulantEmbedding take an object that includes some preliminary calculations
and so is more efficient for simulating more than one field from the same covariance.

The algorithm using an FFT known as circulant embedding, may not always work if the correlation
range is large. Specifically the weight function obtained from the FFT of the covariance field
will have some negative values. A simple fix is to increase the size of the domain so that the
correlation scale becomes smaller relative to the extent of the domain. Increasing the size can be
computationally expensive, however, and so this method has some limitations. But when it works
it is an exact simulation of the random field.

For a stationary model the covariance object ( or list) for circulantEmbedding should have min-
mally, the components: That is names( obj) should give "m" "grid" "M" "wght"

where m is the number of grid points in each dimension, grid is a list with components giving the
grid points in each coordinate. M is the size of the larger grid that is used for "embedding" and
simulation. Usually M = 2xm and results in an exact simulation of the stationary Gaussian field. The
default if M is not passed is to find the smallest power of 2 greater than 2*m. wght is an array from
the FFT of the covariance function with dimensions M. Keep in mind that for the final results only
the array that is within the indices 1: m[i] for each dimension i is retained. This can give a much
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larger intermediate array, however, in the computation. E.g. if m[1] = 100 and m[2]=200 by default
then M[1] = 256 and M[2] = 512. A 256 X 512 array is simluated with to get the 100 by 200 result.

The easiest way to create the object for simulation is to use circulantEmbeddingSetup.

For the older function sim.rf one uses the image based covariance functions with setup=TRUE to
create the list for simulation. See the example below for this usage.

The classic reference for this algorithm is Wood, A.T.A. and Chan, G. (1994). Simulation of Station-
ary Gaussian Processes in [0,1]"d . Journal of Computational and Graphical Statistics, 3, 409-432.
Micheal Stein and Tilman Gneiting have also made some additional contributions to the algortihms
and theory.

Value

sim.rf: A matrix with the random field values.
circulantEmbedding: An array according to the grid values specified in the setup.
circulantEmbeddingetup: A list with components

"m" "grid" "dx" "M" "wght” "call"

With the information needed to simulate the field.

See Also

stationary.cov, stationary.image.cov

Examples

#Simulate a Gaussian random field with an exponential covariance function,
#range parameter = 2.0 and the domain is [@,5]X [0,5] evaluating the
#field at a 100X100 grid.
grid<- list( x= seq( 0,5,,100), y= seq(9@,5,,100))
obj<- circulantEmbeddingSetup( grid, Covariance="Exponential”, aRange=.5)
set.seed( 223)
look<- circulantEmbedding( obj)
# Now simulate another ...
look2<- circulantEmbedding( obj)
# take a look at first two
set.panel(2,1)
image.plot( grid[[11], grid[[2]1], look)
title("simulated gaussian fields")
image.plot( grid[[1]], grid[[2]1], look2)
title("another realization ...")

# Suppose one requires an exponential, range = 2
# but marginal variance = 10 ( sigma in fields notation)

look3<- sqgrt( 1@)*circulantEmbedding( obj)

## Not run:
# an interesting 3D field

grid<- list( 1:40, 1:40, 1:16 )
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obj<- circulantEmbeddingSetup( grid,
cov.args=list( Covariance="Matern"”, aRange=2, smoothness=1.0)
)

# NOTE: choice of aRange is close to giving a negative weight array

set.seed( 122)

look<- circulantEmbedding( obj )

# look at slices in the 3rd dimension

set.panel( 4,4)

zr<- range( look)

par( mar=c(1,1,0,0))

for( k in 1:16){

image( grid[[1]1], grid[[2]1], look[,,k], zlim= zr, col=tim.colors(256),

axes=FALSE, xlab="", ylab="")
3

## End(Not run)

# same as first example using the older sim.rf

grid<- list( x= seq( 0,10,length.out=100) , y= seq( 0,10,length.out=100) )
obj<-Exp.image.cov( grid=grid, aRange=.75, setup=TRUE)

set.seed( 223)

look<- sim.rf( obj)

# Now simulate another ...

look2<- sim.rf( obj)

€02 Simulated global CO2 observations

Description

This is an example of moderately large spatial data set and consists of simulated CO2 concentrations
that are irregularly sampled from a lon/lat grid. Also included is the complete CO?2 field (CO2.true)
used to generate the synthetic observations.

Usage
data(C02)

Format
The format of CO2 is a list with two components:

* lon.lat: 26633x2 matrix of the longitude/latitude locations. These are a subset of a larger
lon/lat grid (see example below).
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* y: 26633 CO2 concentrations in parts per million.
The format of CO2. true is a list in "image" format with components:

* x longitude grid values.
* y latitude grid values.
* z an image matrix with CO2 concentration in parts per million

» mask a logical image that indicates with grid locations were selected for the synthetic data set
C02.

Details

This data was generously provided by Dorit Hammerling and Randy Kawa as a test example for the
spatial analysis of remotely sensed (i.e. satellite) and irregular observations. The synthetic data is
based on a true CO?2 field simulated from a geophysical, numerical model.

Examples

## Not run:

data(C02)

#

# A quick look at the observations with world map
quilt.plot( C02%$lon.lat, CO23%y)

world( add=TRUE)

# Note high concentrations in Borneo (biomass burning), Amazonia and
. Michigan (??7).

H

spatial smoothing using the wendland compactly supported covariance
see help( fastTps) for details
First smooth using locations and Euclidean distances
note taper is in units of degrees
out<-fastTps( CO2$lon.lat, CO2%y, aRange=4, lambda=2.0)
#summary of fit note about 7300 degrees of freedom
# associated with fitted surface
print( out)
# image plot on a grid (this takes a while)
surface( out, type="I", nx=300, ny=150)
# smooth with respect to great circle distance
out2<-fastTps( C02%$lon.lat, CO2%y, lon.lat=TRUE,lambda=1.5, aRange=4%68)
print(out2)
#surface( out2, type="I", nx=300, ny=150)

#
#
#
#

# these data are actually subsampled from a grid.
# create the image object that holds the data
#

temp<- matrix( NA, ncol=ncol(C02.true$z), nrow=nrow(CO2.true$z))
temp[ CO2.true$mask] <- CO2$y

# look at gridded object.
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image.plot(CO2.true$x,CO02.truedy, temp)

# to predict _exactly_ on this grid for the second fit;

# (this take a while)

look<- predictSurface( out2, grid.list=list( x=C02.true$x, y=CO2.true$y))
image.plot(look)

## End(Not run)

Colorado Monthly Meteorological Data
Monthly surface meterology for Colorado 1895-1997

Description

Source: These is a group of R data sets for monthly min/max temperatures and precipitation over
the period 1895-1997. It is a subset extracted from the more extensive US data record. Temperature
is in degrees C and precipitation is total monthly accumulation in millimeters. Note that minimum
(maximum) monthly tempertuare is the mean of the daily minimum (maximum) temperatures.

Data domain:

A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the boundary of Colorado com-
prises approximately 400 stations. Although there are additional stations reported in this domain,
stations that only report preicipitation or only report temperatures have been excluded. In addition
stations that have mismatches between locations and elevations from the two meta data files have
also been excluded. The net result is 367 stations that have colocated temperatures and precipitation.

Format
This group of data sets is organized with the following objects:

CO.info A data frame with columns: station id, elev, lon, lat, station name

CO.elev elevation in meters

CO.elevGrid An image object being elevation in meters on a 4 km grid covering Colorado.
CO.id alphanumeric station id codes

CO.loc locations in lon/lat

CO.Grid Just the grid.list used in the CO.elevGrid.

CO.ppt CO.tmax CO.tmin Monthly means as three dimensional arrays ( Year, Month, Station).
Temperature is in degrees C and precipitation in total monthly accumulation in millimeters.

CO.ppt.MAM CO.tmax.MAM CO.tmin.MAM Spring seasonal means (March, April,May) as
two dimensional arrays (Year, Station).

CO.MAM.ppt.climate CO.MAM.tmax.climate CO.MAM.tmin.climate Spring seasonal means
(March, April,May) means by station for the period 1960-1990. If less than 15 years are
present over this period an NA is recorded. No detreding or other adjustments have been
made for these mean estimates.
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Creation of data subset
Here is the precise R script used to create this data subset from the larger US monthly data set. This
parent, R binary file can be obtained by contacting Doug Nychka (nychka@mines.edu).

These technical details are not needed for casual use of the data — skip down to examples for some
R code that summarizes these data.

attach("RData.USmonthlyMet.bin")

#To find a subset that covers Colorado (with a bit extra):

indt<- UStinfo$lon< -101 & UStinfo$lon > -109.5
indt<- indt & UStinfo$lat<41.5 & UStinfo$lat>36.5

# check US(); points( UStinfo[indt,3:4])

#find common names restricting choices to the temperature names
tn<- match( UStinfo$station.id, USpinfo$station.id)
indt<- l!is.na(tn) & indt

# compare metadata locations and elevations.
# initial matches to precip stations

CO.id<- UStinfol[indt,1]

CO.names<- as.character(UStinfo[indt,5])
pn<- match( CO.id, USpinfo$station.id)

loc1<- cbind( UStinfo$lon[indt], UStinfo$lat[indt], UStinfo$elev[indt])
loc2<- cbind( USpinfo$lon[pnl, USpinfo$lat[pn], USpinfo$elevipnl)

abs(locl- loc2) -> temp
indbad<- temp[,1] > .02 | temp[,2]> .02 | temp[,3] > 100

# tolerance at 100 meters set mainly to include the CLIMAX station
# a high altitude station.

data.frame(CO.names[ indbad], loci1[indbad,], loc2[indbad,], temp[indbad,] )

# CO.names.indbad. X1 X2 X3 X1.1 X2.1 X3.1 X1.2 X2.2 X3.2
#1 ALTENBERN -108.38 39.50 1734 -108.53 39.58 2074 ©0.15 0.08 340
#2 CAMPO 7 S -102.57 37.02 1311 -102.68 37.08 1312 ©.11 0.06 1
#3 FLAGLER 2 NW -103.08 39.32 1519 -103.07 39.28 1525 0.01 0.04 6
#4 GATEWAY 1 SE -108.98 38.68 1391 -108.93 38.70 1495 0.05 0.02 104
#5 IDALIA -102.27 39.77 1211 -102.28 39.70 1208 0.01 0.07 3
#6 KARVAL -103.53 38.73 1549 -103.52 38.80 1559 0.01 0.07 10
#7 NEW RAYMER  -103.85 40.60 1458 -103.83 40.58 1510 0.02 0.02 52
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# modify the indt list to exclude these mismatches (there are 7 here)

badones<- match( CO0.id[indbad], UStinfo$station.id)
indt[ badones] <- FALSE

###H#H# now have working set of CO stations have both temp and precip
##### and are reasonably close to each other.

N<- sum( indt)

# put data in time series order instead of table of year by month.
CO.tmax<- UStmax[,,indt]

CO.tmin<- UStmin[,,indt]

C0O.id<- as.character(UStinfo[indt,1])
C0.elev<- UStinfolindt,2]

C0.loc <- UStinfo[indt,3:4]

CO.names<- as.character(UStinfo[indt,5])

CO.years<- 1895:1997

# now find precip stations that match temp stations
pn<- match( CO0.id, USpinfo$station.id)

# number of orphans

sum( is.na( pn))

pn<- pn[ !is.na( pn)]
CO.ppt<- USpptl,,pn]

# checks --- all should zero

ind<- match( CO.id[45], USpinfo$station.id)
mean( abs( c(USppt[,,ind]) - c(CO.ppt[,,451) ) , na.rm=TRUE)

ind<- match( C0.id[45], UStinfo$station.id)
mean( abs(c((UStmax[,,ind])) - c(CO.tmax[,,451)), na.rm=TRUE)

mean( abs(c((UStmin[,,ind])) - c(CO.tmin[,,45])), na.rm=TRUE)

# check order

ind<- match( CO.id, USpinfo$station.id)
sum( CO.id != USpinfo$station.id[ind])
ind<- match( CO.id, UStinfo$station.id)
sum( CO.id != UStinfo$station.id[ind])

# (345 (678) (91011) (121 2)
N<- ncol( CO.tmax)
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CO. tmax.MAM<- apply( CO.tmax[,3:5,1,c(1,3), "mean")
CO.tmin.MAM<- apply( CO.tmin[,3:5,],c(1,3), "mean")
CO.ppt.MAM<- apply( CO.ppt[,3:5,1,c(1,3), "sum")

# Now average over 1961-1990
ind<- CO.years>=1960 & CO.years < 1990

temp<- stats( CO.tmax.MAM[ind,])
CO.tmax.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,1, NA)

temp<- stats( CO.tmin.MAM[ind,])
CO.tmin.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,]1, NA)

CO.tmean.MAM.climate<- (CO.tmin.MAM.climate + CO.tmin.MAM.climate)/2

temp<- stats( CO.ppt.MAM[ind,])
CO.ppt.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA)

save( list=c( "CO.tmax", "CO.tmin", "CO.ppt",
"C0.id", "CO.loc","CO.years",
"CO.names"”,"CO.elev"”,
"CO.tmin.MAM", "CO.tmax.MAM", "CO.ppt.MAM",
"CO.tmin.MAM.climate"”, "CO.tmax.MAM.climate",
"CO.ppt.MAM.climate"”, "CO.tmean.MAM.climate"),
file="COmonthlyMet.rda")

Examples

data(COmonthlyMet)

#Spatial plot of 1997 Spring average daily maximum temps
quilt.plot( CO.loc,CO.tmax.MAM[103,] )

US( add=TRUE)

title( "Recorded MAM max temperatures (1997)")

# min and max temperatures against elevation

matplot( CO.elev, cbind( CO.tmax.MAM[103,], CO.tmin.MAM[103,]1),
pch="0", type="p",
col=c("red”, "blue"), xlab="Elevation (m)", ylab="Temperature (C)")

title("Recorded MAM max (red) and min (blue) temperatures 1997")

#Fitting a spatial model:
obj<- Tps(CO.loc,CO.tmax.MAM.climate, Z= CO.elev )
## Not run:
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out<- spatialProcess(C0O.loc,CO.tmax.MAM.climate,
smoothness=1.0, Z= CO.elev)

surface( out)

## End(Not run)

colorbar.plot

Adds color scale strips to an existing plot.

Description

Adds one or more color scales in a horizontal orientation, vertical orientation to an existing plot.

Usage

colorbar.plot(x, y, strip, strip.width = 0.1, strip.length = 4 * strip.width,
zrange = NULL, adj.x = 0.5, adj.y = 0.5, col = tim.colors(256),

horizontal = TRUE, ...)
Arguments
X X position of strip in user coordinates
y y position of strip in user coordinates
strip Either a vector or matrix giving the values of the color strip(s). If a matrix then

strip.width
strip.length

zrange

adj.x

adj.y

col

horizontal

strips are assumed to be the columns.
Width of strip as a fraction of the plotting region.

Length of strip as a function of the plotting region. Default is a pleasing 8 times
width.

If a vector these are the common limits used for assigning the color scale. De-
fault is to use the range of values in strip. If a two column matrix, rows are used
as the limits for each strip.

Location of strip relative to x coordinate. Most common values are .5 (centered),
0 (right end at x) and 1 (left end of at x). These are the same conventions that
are used for adj in positioning text.

Location of strip relative to y coordinate. Same rules as adj. x

Color table used for strip. Default is our favorite tim.colors being a scale from a
dark blue to dark red.

If TRUE draws strips horizontally. If FALSE strips are drawn vertically

optional graphical arguments that are passed to the image function.
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Details

This function draws the strips as a sequence of image plots added to the existing plot. The main
work is in creating a grid ( x,y) for the image that makes sense when superimposed on the plot.
Note that although the columns of strip are considered as separate strips these can be oriented either
horizontally or vertically based on the value of horizontal. The rows of zrange are essentially the
zlim argument passed to the image function when each strip is drawn.

Don’t forget to use locator to interactively determine positions. text can be used to label points
neatly in conjunction with setting adj.x and adj.y. Although this function is inefficient for placing
images at arbitrary locations on a plot the code can be easily adapted to do this.

This function was created to depict univariate posterior distribution on a map. The values are
quantiles of the distribution and the strips when added under a common color scale give an overall
impression of location and scale for several distributions.

Author(s)
Doug Nychka

See Also

image.plot, arrow.plot, add.image

Examples

# set up a plot but don't plot points and no "box"
plot( 1:10, (1:10)x1@, type="n", bty="n")
# of course this could be anything

y<- cbind( 1:15, (1:15)+25)

colorbar.plot( 2.5, 30, y)

points( 2.5,30, pch="+", cex=2, adj=.5)

# note that strip is still in 1:8 aspect even though plot has very
# different ranges for x and y.

# adding legend using image.plot

zr<- range( c( y))

image.plot( legend.only=TRUE, zlim= zr)

# see help(image.plot) to create more room in margin etc.

zr<- rbind( c(1,20), c(1,100)) # separate ranges for columns of y.
colorbar.plot( 5, 70, y, adj.x=0, zrange= zr)

# some reference lines to show placement

xline( 5, lty=2) # strip starts at x=5

yline(70, 1lty=2) # strip is centered around y=7 (because adj.y=.5 by default)

# many strips on common scale.

y<- matrix( 1:200, ncol=10)
colorbar.plot( 2, 75, y, horizontal=FALSE, col=rainbow(256))
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# Xmas strip

y<- cbind( rep( c(1,2),10))

y[15] <= NA # NA's should work

colorbar.plot( 6, 45, y, adj.y=1,col=c("red"”, "green"))
text(6,48,"Christmas strip”, cex=2)

# lennon thumbnail
# there are better ways to this ... see add.image for example.
data( lennon)
colorbar.plot( 7.5,22, lennon,
strip.width=.25, strip.length=.25, col=grey(seq( 0,1,,256)))

compactToMat Convert Matrix from Compact Vector to Standard Form

Description

compactToMat transforms a matrix from compact, vector form to a standard matrix. Only symmet-
ric matrices can be stored in this form, since a compact matrix is stored as a vector with elements
representing the upper triangle of the matrix. This function assumes the vector does not contain
diagonal elements of the matrix.

An example of a matrix stored in compact form is any matrix generated from the rdist function
with compact=TRUE.

Usage

compactToMat (compactMat, diagVal=0, lower.tri=FALSE, upper.tri=TRUE)

Arguments
compactMat A symmetric matrix stored as a vector containing elements for the lower-triangular
portion of the true matrix (and none of the diagonal elements), as returned by
rdist with compact=TRUE.
diagval A number to put in the diagonal entries of the output matrix.
lower.tri Whether or not to fill in the upper triangle of the output matrix
upper.tri Whether or not to fill in the lower triangle of the output matrix
Value

The standard form matrix represented by the input compact matrix

Author(s)

John Paige
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See Also

rdist, link{dist}

Examples

S HEEHHEHE
#Calculate distance matrix from compact form:
HHHHHHEREE

#make a distance matrix
distOut = rdist(1:5, compact=TRUE)
print(distOut)

#note that distOut is in compact form:
print(c(distOut))

#convert to standard matrix form:
distMat = compactToMat(distOut)

S
#fast computation of covariance matrix:
S

#generate 5 random points on [0,1]x[@,1] square
X = matrix(runif(10), nrow=5)

#get compact distance matrix
distOut = rdist(x, compact=TRUE)

#evaluate Exponential covariance with range=1. Note that

#Covariance function is only evaluated over upper triangle

#so time is saved.

diagVal = Exponential(@, range=1)

compactCovMat = Exponential(distOut, range=1)

upperCovMat = compactToMat(compactCovMat, diagVal)

lowerCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=FALSE)
fullCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=TRUE)
compactCovMat

lowerCovMat

upperCovMat

fullCovMat

Covariance functions  Exponential family, radial basis functions,cubic spline, compactly sup-
ported Wendland family and stationary covariances.

Description

Given two sets of locations these functions compute the cross covariance matrix for some covariance
families. In addition these functions can take advantage of spareness, implement more efficient
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multiplcation of the cross covariance by a vector or matrix and also return a marginal variance to be

consistent with calls by the Krig function.

stationary.cov and Exp.cov have additional arguments for precomputed distance matrices and
for calculating only the upper triangle and diagonal of the output covariance matrix to save time.
Also, they support using the rdist function with compact=TRUE or input distance matrices in com-

pact form, where only the upper triangle of the distance matrix is used to save time.

Note: These functions have been been renamed from the previous fields functions using "Exp’ in

place of ’exp’ to avoid conflict with the generic exponential function (exp(...))in R.

Usage

Exp.cov(x1, x2=NULL, aRange = 1, p=1, distMat = NA,
C = NA, marginal = FALSE, onlyUpper=FALSE, theta=NULL)

Exp.simple.cov(x1, x2, aRange =1, C=NA,marginal=FALSE, theta=NULL)

Rad.cov(x1, x2, p = 1, m=NA, with.log = TRUE, with.constant = TRUE,
C=NA,marginal=FALSE, derivative=0)

cubic.cov(x1, x2, aRange = 1, C=NA, marginal=FALSE, theta=NULL)

Rad.simple.cov(x1, x2, p=1, with.log = TRUE, with.constant = TRUE,
C = NA, marginal=FALSE)

stationary.cov(x1, x2=NULL, Covariance = "Exponential”, Distance = "rdist”,
Dist.args = NULL, aRange = 1, V = NULL, C = NA, marginal = FALSE,
derivative = 0, distMat = NA, onlyUpper = FALSE, theta=NULL, ...)

stationary.taper.cov(x1, x2, Covariance="Exponential”,
Taper="Wendland",
Dist.args=NULL, Taper.args=NULL,
aRange=1.0,V=NULL, C=NA, marginal=FALSE,
spam. format=TRUE, verbose=FALSE, theta=NULL,...)

wendland.cov(x1, x2, aRange = 1, V=NULL, k = 2, C = NA,
marginal =FALSE,Dist.args = list(method = "euclidean"),
spam.format = TRUE, derivative = @, verbose=FALSE, theta=NULL)

Arguments
x1 Matrix of first set of locations where each row gives the coordinates of a partic-
ular point.
X2 Matrix of second set of locations where each row gives the coordinatesof a par-
ticular point. If this is missing x1 is used.
aRange Range (or scale) parameter. This should be a scalar (use the V argument for other

scaling options). Any distance calculated for a covariance function is divided by

aRange before the covariance function is evaluated.

theta Old version of the aRange parameter. If passed will be copied to aRange.
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marginal

with.constant

with.log

Covariance

Distance

Taper

Dist.args

Taper.args
spam. format
k

derivative

verbose
distMat

Covariance functions

A matrix that describes the inverse linear transformation of the coordinates be-
fore distances are found. In R code this transformation is: x1 %*% t(solve(V))
Default is NULL, that is the transformation is just dividing distance by the scalar
value aRange. See Details below. If one has a vector of "aRange’s" that are the
scaling for each coordinate then just express this as V = diag(aRange) in the
call to this function.

A vector with the same length as the number of rows of x2. If specified the
covariance matrix will be multiplied by this vector.

If TRUE returns just the diagonal elements of the covariance matrix using the
x1 locations. In this case this is just 1.0. The marginal argument will trivial for
this function is a required argument and capability for all covariance functions
used with Krig.

Exponent in the exponential covariance family. p=1 gives an exponential and
p=2 gives a Gaussian. Default is the exponential form. For the radial basis
function this is the exponent applied to the distance between locations.

For the radial basis function p = 2m-d, with d being the dimension of the loca-
tions, is the exponent applied to the distance between locations. (m is a common
way of parametrizing this exponent.)

If TRUE includes complicated constant for radial basis functions. See the func-
tion radbad. constant for more details. The default is TRUE, include the con-
stant. Without the usual constant the lambda used here will differ by a constant
from spline estimators ( e.g. cubic smoothing splines) that use the constant.
Also a negative value for the constant may be necessary to make the radial basis
positive definite as opposed to negative definite.

If TRUE include a log term for even dimensions. This is needed to be a thin
plate spline of integer order.

Character string that is the name of the covariance shape function for the dis-
tance between locations. Choices in fields are Exponential, Matern

Character string that is the name of the distance function to use. Choices in
fields are rdist, rdist.earth

Character string that is the name of the taper function to use. Choices in fields
are listed in help(taper).

A list of optional arguments to pass to the Distance function.

A list of optional arguments to pass to the Taper function. aRange should always
be the name for the range (or scale) paremeter.

If TRUE returns matrix in sparse matrix format implemented in the spam pack-
age. If FALSE just returns a full matrix.

The order of the Wendland covariance function. See help on Wendland.

If nonzero evaluates the partials of the covariance function at locations x1. This
must be used with the "C" option and is mainly called from within a predict
function. The partial derivative is taken with respect to x1.

If TRUE prints out some useful information for debugging.

If the distance matrix between x1 and x2 has already been computed, it can be
passed via this argument so it won’t need to be recomputed.
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onlyUpper For internal use only, not meant to be set by the user. Automatically set to TRUE
by mKrigMLEJoint or mKrigMLEGrid if lambda.profile is set to TRUE, but set
to FALSE for the final parameter fit so output is compatible with rest of fields.

If TRUE, only the upper triangle and diagonal of the covariance matrix is com-
puted to save time (although if a non-compact distance matrix is used, the on-
lyUpper argument is set to FALSE). If FALSE, the entire covariance matrix is
computed. In general, it should only be set to TRUE for mKrigMLEJoint and
mKrigMLEGrid, and the default is set to FALSE so it is compatible with all of
fields.

Any other arguments that will be passed to the covariance function. e.g. smoothness
for the Matern.

Details

For purposes of illustration, the function Exp. cov.simple is provided in fields as a simple example
and implements the R code discussed below. List this function out as a way to see the standard
set of arguments that fields uses to define a covariance function. It can also serve as a template
for creating new covariance functions for the Krig and mKrig functions. Also see the higher level
function stationary.cov to mix and match different covariance shapes and distance functions.

A common scaling for stationary covariances: If x1 and x2 are matrices where nrow(x1)=m and
nrow(x2)=n then this function will return a mXn matrix where the (i,j) element is the covariance
between the locations x1[i,] and x2[j,]. The exponential covariance function is computed as
exp( -(D.ij)) where D.ij is a distance between x1[i,] and x2[j, ] but having first been scaled by
aRange. Specifically if aRange is a matrix to represent a linear transformation of the coordinates,
then let u= x1%*% t (solve( aRange)) and v= x2%*% t (solve(aRange)). Form the mXn distance
matrix with elements:

DLi,jl=sqgrt(sum( (uli,]-vlj,1)**x2)).

and the cross covariance matrix is found by exp(-D). The tapered form (ignoring scaling parame-
ters) is a matrix with i,j entry exp(-D[i, j1)*T(D[i, j]1). With T being a positive definite tapering
function that is also assumed to be zero beyond 1.

Note that if aRange is a scalar then this defines an isotropic covariance function and the functional
form is essentially exp(-D/aRange).

Implementation: The function r.dist is a useful FIELDS function that finds the cross Euclidean
distance matrix (D defined above) for two sets of locations. Thus in compact R code we have

exp(-rdist(u, v))
Note that this function must also support two other kinds of calls:

If marginal is TRUE then just the diagonal elements are returned (in R code diag( exp(-rdist(u,u))
).
If C is passed then the returned value is exp(-rdist(u,v)) %x% C.

Some details on particular covariance functions:

Radial basis functions (Rad.cov: The functional form is Constant* rdist(u, v)**p for odd dimen-
sions and Constant* rdist(u,v)**p * log( rdist(u,v) ) For an m th order thin plate spline in d
dimensions p= 2*m-d and must be positive. The constant, depending on m and d, is coded in
the fields function radbas. constant. This form is only a generalized covariance function — it



30 Covariance functions

is only positive definite when restricted to linear subspace. See Rad.simple. cov for a coding
of the radial basis functions in R code.

Stationary covariance stationary.cov: Here the computation is to apply the function Covari-

ance to the distances found by the Distance function. For example

Exp.cov(x1,x2,aRange=MyTheta)

and

stationary.cov( x1,x2,aRange=MyTheta,Distance= "rdist"”,Covariance="Exponential”)

are the same. This also the same as

stationary.cov( x1,x2,aRange=MyTheta,Distance= "rdist",Covariance="Matern", smoothness=.5).
Stationary tapered covariance stationary.taper.cov: The resulting cross covariance is the di-

rect or Shure product of the tapering function and the covariance. In R code given location
matrices, x1 and x2 and using Euclidean distance.

Covariance(rdist( x1,x2)/aRange)*Taper( rdist( x1,x2)/Taper.args$aRange)

By convention, the Taper function is assumed to be identically zero outside the interval [0,1].
Some efficiency is introduced within the function to search for pairs of locations that are
nonzero with respect to the Taper. This is done by the SPAM function nearest.dist. This
search may find more nonzero pairs than dimensioned internally and SPAM will try to increase
the space. One can also reset the SPAM options to avoid these warnings. For spam.format
TRUE the multiplication with the C argument is done with the spam sparse multiplication
routines through the "overloading" of the %*% operator.

About the FORTRAN: The actual function Exp.cov and Rad.cov call FORTRAN to make the
evaluation more efficient this is especially important when the C argument is supplied. So unfor-
tunately the actual production code in Exp.cov is not as crisp as the R code sketched above. See
Rad.simple.cov for a R coding of the radial basis functions.

Value

If the argument C is NULL the cross covariance matrix is returned. In general if nrow(x1)=m and
nrow(x2)=n then the returned matrix will be mXn. Moreover, if x1 is equal to x2 then this is the
covariance matrix for this set of locations.

If C is a vector of length n, then returned value is the multiplication of the cross covariance matrix
with this vector.

See Also

Krig, rdist, rdist.earth, gauss.cov, Exp.image.cov, Exponential, Matern, Wendland.cov, mKrig

Examples

# exponential covariance matrix ( marginal variance =1) for the ozone
#locations
out<- Exp.cov( ChicagoO3$x, aRange=100)

# out is a 20X20 matrix

out2<- Exp.cov( Chicago03$x[6:20,],Chicago03$x[1:2,], aRange=100)
# out2 is 15X2 matrix
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# Kriging fit where the nugget variance is found by GCV
# Matern covariance shape with range of 100.
#

fit<- Krig( Chicago03$x, ChicagoO3$y, Covariance="Matern"”, aRange=100,smoothness=2)

data( ozone2)

x<- ozone2$lon.lat
y<- ozone2$y[16,]
# Omit the NAs
good<- !is.na( y)
x<- x[good, ]

y<- y[good]

# example of calling the taper version directly
# Note that default covariance is exponential and default taper is
# Wendland (k=2).

stationary.taper.cov( x[1:3,]1,x[1:10,] , aRange=1.5, Taper.args= list(k=2,aRange=2.0,
dimension=2) )-> temp
# temp is now a tapered 3X10 cross covariance matrix in sparse format.

is.spam( temp) # evaluates to TRUE

# should be identical to
# the direct matrix product

temp2<- Exp.cov( x[1:3,1,x[1:10,], aRange=1.5) * Wendland(rdist(x[1:3,],x[1:10,1),
aRange= 2.0, k=2, dimension=2)
test.for.zero( as.matrix(temp), temp2)

# Testing that the "V" option works as advertized ...
x1<- x[1:20,]
x2<- x[1:10,]

V<- matrix( c(2,1,0,4), 2,2)
Vi<- solve( V)

ul<- t(Vi%x% t(x1))
u2<- t(Vi%x% t(x2))

look<- exp(-1*rdist(ul,u2))

look2<- stationary.cov( x1,x2, V= V)
test.for.zero( look, look2)

# Here is an example of how the cross covariance multiply works
# and lots of options on the arguments

Ctest<- rnorm(10)
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temp<- stationary.cov( x,x[1:10,], C= Ctest,
Covariance= "Wendland”,
k=2, dimension=2, aRange=1.5 )

# do multiply explicitly

temp2<- stationary.cov( x,x[1:10,],
Covariance= "Wendland”,
k=2, dimension=2, aRange=1.5 )%*% Ctest

test.for.zero( temp, temp2)

# use the tapered stationary version

# cov.args is part of the argument list passed to stationary.taper.cov
# within Krig.

# This example needs the spam package.

#
## Not run:
Krig(x,y, cov.function = "stationary.taper.cov”, aRange=1.5,
cov.args= list(Taper.args= list(k=2, dimension=2,aRange=2.0) )
) —> out2

# NOTE: Wendland is the default taper here.
## End(Not run)

# BTW this is very similar to

## Not run:

Krig(x,y, aRange= 1.5)-> out

## End(Not run)

CovarianceUpper Evaluate covariance over upper triangle of distance matrix

Description

Evaluates the covariance over the upper triangle of a distance matrix rather than over the entire
matrix to reduce computation time. Note that the chol function only requires the upper triangle of
the covariance matrix to perform the Cholesky decomposition.

Usage
ExponentialUpper(distMat, range = 1, alpha = 1/range, theta = NULL)
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Arguments
distMat The distance matrix to evaluate the covariance over.
range Range parameter default is one. Note that the scale can also be specified through
the "aRange" scaling argument used in fields covariance functions)
alpha 1/range
theta Also the range parameter.
Value

The covariance matrix, where only the upper triangle is calculated.

Author(s)
John Paige

See Also

Exponential

Examples
set.seed(123)
#a distance matrix

coords = matrix(runif(10), ncol=2)
distMat = rdist(coords)

#compute covariance matrix, but only over the upper triangle
upperCov = ExponentialUpper(distMat, range=.1)

print(distMat)
print(upperCov)
cover.design Computes Space-Filling "Coverage" designs using Swapping Algo-
rithm
Description

Finds the set of points on a discrete grid (Candidate Set) which minimize a geometric space-filling
criterion. The strength of this method is that the candidate set can satisfy whatever constraints are
important for the problem.

Usage

cover.design(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL,
scale.type = "unscaled”, R.center, R.scale, P = -20, Q = 20,
start = NULL, DIST = NULL, return.grid = TRUE, return.transform =
TRUE, max.loop=20, verbose=FALSE)



Arguments

R

nd

nruns

nn

num.nn

fixed

scale. type

R.center
R.scale
P

start

cover.design

A matrix of candidate points to be considered in the design. Each row is a
separate point.

Number of points to add to the design. If points exist and are to remain in the
design (see "fixed" option), nd is the number of points to add. If no points are
fixed, nd is the design size.

The number of random starts to be optimized. Uses random starts unless "start"
is specified. If nruns is great than 1, the final results are the minimum.

Logical value specifying whether or not to consider only nearest neighbors in
the swapping algorithm. When nn=FALSE, then the swapping algorithm will
consider all points in the candidate space. When nn=TRUE, then the swapping
algorithm will consider only the num.nn closest points for possible swapping.
The default is to use nearest neighbors only (nn=TRUE).

Number of nearest-neighbors to search over. The default number is 100. If nn=F
then this argument will be ignore.

A matrix or vector specifying points to be forced into the experimental design.
If fixed is a matrix, it gives coordinates of the fixed points in the design. In this
case fixed must be a subset of R. If fixed is a vector, then fixed gives the row
numbers from the candidate matrix R that identify the fixed points. The number
of points to be generated, nd, is in addition to the number of points specified by
fixed.

A character string that tells how to scale the candidate matrix, R, before calcu-
lating distances. The default is "unscaled", no transformation is done. Another
option is "range" in which case variables are scaled to a [0,1] range before ap-
plying any distance functions. Use "unscaled" when all of the columns of R are
commensurate; for example, when R gives x and y in spatial coordinates. When
the columns of R are not in the same units, then it is generally thought that an ap-
propriate choice of scaling will provide a better design. This would be the case,
for example, for a typical process optimization. Other choices for scale.type are
"unit.sd", which scales all columns of R to have 0 mean and unit standard devia-
tion, and "user", which allows a user specified scaling (see R.center and R.scale
arguments).

A vector giving the centering values if scale.type=user.
A vector giving the scale values if scale.type=user.

The "p" exponent of the coverage criterion (see below). It affects how the dis-
tance from a point x to a set of design points D is calculated. P=1 gives average
distance. P=-1 gives harmonic mean distance. P=-Inf would give minimum dis-
tance (not available as a value). As P gets large and negative, points will tend to
be more spread out.

The "q" exponent of the coverage criterion (see below).It affects how distances
from all points not in the design to points in the design are averaged. When Q=1,
simple averaging of the distances is employed. Q=Inf (not available as a value)
in combination with P=-Inf would give a classical minimax design.

A matrix or vector giving the initial design from which to start optimization. If
start is a matrix, it gives the coordinates of the design points. In this case start



cover.design 35

must be a subset of the candidate set , R matrix. If start is a vector, then start
gives the row numbers of the initial design based on the rows of the candidate
matrix rows. The default is to use a random starting design.

DIST This argument is only for cover.design.S. A distance metric in the form of an S
function. Default is Euclidean distance (FIELDS rdist function) See details and
example below for the correct form.

return.grid Logical value that tells whether or not to return the candidate matrix as an at-
tribute of the computed design. The default is return.grid=T. If false this just re-
duces the returned object size. The candidate matrix is used by plot.spatial.design
if it is available.

return.transform
Logical value that tells whether or not to return the transformation attributes of
candidate set. The default is return.transform=T.

max . loop Maximum number of outer loops in algorithm. This is the maximum number of
passes through the design testing for swaps.
verbose If TRUE prints out debugging information.
Details

OTHER DISTANCE FUNCTIONS: You can supply an R/S-function to be used as the distance
metric. The expected calling sequence for this distance function is function( X1,X2){....} where X1
and X2 are matrices with coordinates as the rows. The returned value of this function should be the
pairwise distance matrix. If nrow( X1)=m and nrow( X2)=n then the function should return an m by
n matrix of all distances between these two sets of points. See the example for Manhattan distance
below.

The candidate set and DIST function can be flexible and the last example below using sample
correlation matrices is an example.

COVERAGE CRITERION: For nd design points in the set D and nc candidate points ci in the set
C, the coverage criteria is defined as:

M(D,C) = [sum(ci in C) [sum(di in D) (dist(di,ci)**P]**(Q/P)]**(1/Q)

Where P, less than 0, and Q, greater than 0, are parameters. The algorithm used in "cover.design" to
find the set of nd points in C that minimize this criterion is an iterative swapping algorithm which
will be described briefly. The resulting design is referred to as a "coverage design" from among the
class of space-filling designs. If fixed points are specified they are simply fixed in the design set and
are not allowed to be swapped out.

ALGORITHM: An initial set of nd points is chosen randomly if no starting configuration is pro-
vided. The nc x nd distance matrix between the points in C and the points in D is computed, and
raised to the power P. The "row sums" of this matrix are computed. Denote these as rs.i and the
vector of row sums as rs. Using rs, M(D,C) is computed as:

[sum i (rs.i)**(Q/P)]**(1/Q)

Note that if point d.i is "swapped" for point c.j, one must only recompute 1 column of the original
distance matrix, and 1 row. The row elements not in the ith column will be the same for all j and
so only need computing when the first swapping occurs for each d.i . Denote the sum of these off-i
elements as "newrow(i)". The index is i here since this is the same for all rows (j=1,...nc). Thus, for
each swap, the row sums vector is updated as
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rs(new) = rs(old) - column(i,old) + column(i,new)
And the jth element of rs(new) is replaced by:
rs(new)[j] = column(i,new)[k] + newrow(i)

Finally, M(D,C) is computed for this swap of the ith design point for the jth candidate point using
[2]. The point in C that when swapped produces the minimum value of M(D,C) replaces d.i. This is
done for all nd points in the design, and is iterated until M(D,C) does not change. When the nearest
neighbor option is selected, then the points considered for swapping are limited to the num.nn
nearest neighbors of the current design point.

STABILITY

The algorithm described above is guaranteed to converge. However, upon convergence, the solution
is sensitive to the initial configuration of points. Thus, it is recommended that multiple optimizations
be done (i.e. set nruns greater than 1 ). Also, the quality of the solution depends on the density of
the points on the region. At the same time, for large regions , optimization can be computationally

prohibitive unless the nearest neighbor option is employed.

Value

Returns a design object of class spatialDesign. Subscripting this object has the same effect as
subscripting the first component (the design). The returned list has the following components:

design The best design in the form of a matrix.

best.id Row numbers of the final design from the original candidate matrix, R.
fixed Row numbers of the fixed points from the original candidate matrix, R.
opt.crit Value of the optimality criterion for the final design.

start.design
start.crit
history

other.designs

Row numbers of the starting design from the original candidate matrix, R.
Value of the optimality criterion for the starting design.

The swapping history and corresponding values of the optimality criterion for
the best design.

The designs other than the best design generated when nruns is greater than 1.

other.crit The optimality criteria for the other designs when nrun is greate than 1.

DIST The distance function used in calculating the design criterion.

nn Logical value for nearest-neighbor search or not.

num. nn The number of nearest neighbor set.

grid The matrix R is returned if the argument return.grid=T.

transform The type of transformation used in scaling the data and the values of the center-
ing and scaling constants if the argument return.transform=T.

call The calling sequence.

P The parameter value for calculating criterion.

Q The parameter value for calculating criterion.

nhist The number of swaps performed.

nloop The number of outer loops required to reach convergence if nloop is less the

minimax.crit
max . loop

max.loop.
The minimax design criterion using DIST.

The maximum number of outer loops.
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References

Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990). Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26, 131-148. SAS/QC Software. Volume 2: Usage
and Reference. Version 6. First Edition (1995). "Proc Optex". SAS Institute Inc. SAS Campus
Drive,

See Also

rdist, rdist.earth

Examples

#i#

##

# first generate candidate set

set.seed(123) # setting seed so that you get the same thing I do!
test.df <- matrix( runif( 600), ncol=3)

testl.des<-cover.design(R=test.df,nd=10)

summary( testl.des)
plot( testl.des)

#
candidates<- make.surface.grid( list( seq( 0,5,,20), seq(9,5,,20)))
out<- cover.design( candidates, 15)

# find 10 more points keeping this original design fixed

out3<-cover.design( candidates, 10,fixed=out$best.id)
# see what happened

plot( candidates[,1:2], pch=".")
points( out$design, pch="x")
points( out3$design, pch="0")

# here is a strange graph illustrating the swapping history for the
# the first design. Arrows show the swap done
# at each pass through the design.

h<- out$history

cd<- candidates

plot( cd[,1:2], pch=".")

points( out$design, pch="0", col=2)
points( out$start.design, pch="x", col=5)

arrows(

cd[h(,2],1],
cd[h(,2],2],
cd[h(,3],1],
cd[h(,3],2],1length=.1)
text( cd[h[,2],11],
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cd[h(,2],2], h[,1], cex=1.0 )

#
# try this out using "Manhattan distance”
# ( distance following a grid of city streets)

dist.man<- function(x1,x2) {
d<- ncol( x1)
temp<- abs(outer( x1[,1]1, x2[,11,'-"))
for ( k in 2:d){
temp<- temp+abs(outer( x1[,k]1, x2[,k1,'-"))
}
temp }

# use the design from the Euclidean distance as the starting
#configuration.

cover.design( candidates, 15, DIST=dist.man, start= out3$best.id)-> out2
# this takes a while ...

plot( out2%$design)

points( out3$design, col=2)

# find a design on the sphere
#

candidates<- make.surface.grid( list( x=seq( -180,180,,20), y= seq( -85,
85,,20)))

out4<-cover.design( candidates, 15, DIST=rdist.earth)
# this takes a while

plot( candidates, pch="+", cex=2)
points(out4$design, pch="o0", cex=2, col="blue")

# covering based on correlation for 153 ozone stations
#
data( ozone2)

cor.mat<-cor( ozone2$y, use="pairwise")

cor.dist<- function( x1,x2)
{matrix( 1-cor.mat[ x1,x2], ncol=length(x2))}

#

# find 25 points out of the 153

# here the "locations” are just the index but the distance is

# determined by the correlation function.

#

out5<-cover.design(cbind(1:153),25, DIST= cor.dist, scale.type="unscaled")
plot( ozone2%$lon.lat, pch=".")

points( ozone2$lon.lat[out5%best.id,],pch="0", col=4)
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# this seems a bit strange probably due some funny correlation values

#

# reset panel
set.panel(1,1)

drape.plot

Perspective plot draped with colors in the facets.

Description

Function to produce the usual wireframe perspective plot with the facets being filled with different
colors. By default the colors are assigned from a color bar based on the z values. drape. color can
be used to create a color matrix different from the z matrix used for the wireframe.

Usage

drape.plot(x, y, z, z2=NULL, col = tim.colors(64), zlim = range(z, na.rm=TRUE),
zlim2 = NULL, add.legend = TRUE, horizontal = TRUE, theta = 30, phi = 20,

breaks=NA,

)

drape.color(z, col = tim.colors(64), zlim = NULL,breaks,
transparent.color = "white"”, midpoint=TRUE, eps=1e-8)

Arguments

X

y

z2

col

zlim

z1im2
add.legend

horizontal

theta
phi

grid values for x coordinate (or if x is a list the components x y and z are used.)
grid values for y coordinate
A matrix of z heights

A matrix of z values to use for coloring facets. If NULL then z is used for this
purpose
A color table for the z values that will be used for draping

the z limits for z these are used to set up the scale of the persp plot. This defaults
to range(z, na.rm=TRUE) as in persp

the z limits for z2 these are used to set up the color scale. This defaults to
If true a color strip is added as a legend.

If true color strip is put at bottom of the plot, if FALSE it is placed vertically on
the right side.

x-y rotation angle for perspective.

z-angle for perspective.

transparent.color

Color to use when given an NA in z
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midpoint If TRUE color scale is formed for midpoints of z obtained by averaging 4 cor-
ners.
breaks Numerical divisions for the color scale. If the default (NA) is N+1 equally

spaced points in the range z1im where N is the number of colors in col. This
is the argument has the same effect as used in the image and image.plot func-
tions.

eps Amount to inflate the range (1+/- eps) to inlude points on break endpoints.

Other arguments that will be passed to the persp function. The most common is
zlim the z limits for the 3-d plot and also the limits to set up the color scale. The
default for zlim is the range of z.

Details

The legend strip may obscure part of the plot. If so, add this as another step using image.plot.

When using drape. color just drop the results into the col argument of persp. Given this function
there are no surprises how the higher level drape.plot works: it calls drape.color followed by
persp and finally the legend strip is added with image.plot.

The color scales essentially default to the ranges of the z values. However, by specifying zlim and/or
zlim2 one has more control of how the perspective plot is scaled and the limits of the color scale
used to fill the facets. The color assignments are done by dividing up the zlim2 interval into equally
spaced bins and adding a very small inflation to these limits. The mean z2 values, comprising an
(M-1)X(N-1) matrix, for each facet are discretized to the bins. The bin numbers then become the
indices used for the color scale. If zlim?2 is not specified it is the range of the z2 matrix is used
to generate the ranges of the color bar. Note that this may be different than the range of the mean
facets. If z2 is not passed then z is used in its place and in this case the zlim2 or zlim argument can
used to define the color scale.

This kind of plot is also supported through the wireframe function in the lattice package. The
advantage of the fields version is that it uses the standard R graphics functions — and is written in R
code.

The drape plot is also drawn by the fields surface function with type="P".

Value

drape.plot If an assignment is made the projection matrix from persp is returned. This information
can be used to add additional 3-d features to the plot. See the persp help file for an example how
to add additional points and lines using the trans3d function and also the example below.

drape.color If dim( z) = M,N this function returns a list with components:

color.index An M-1)X(N-1) matrix (midpoint= TRUE) or MXN matrx (midpoint=FALSE)
where each element is a text string specifying the color.

breaks The breaks used to assign the numerical values in z to color categories.

Author(s)
D. Nychka
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See Also

image.plot, quilt.plot, persp, plot.surface, surface, lattice, trans3d

Examples

# an obvious choice:

# Dr. R's favorite New Zealand Volcano!
data( volcano)

M<- nrow( volcano)

N<- ncol( volcano)

x<- seq( 0,1,,M)

y<- seq( 0,1,,N)

pm<- drape.plot( x,y,volcano, col=terrain.colors(128))

# use different range for color scale and persp plot
# setting of border omits the mesh lines

drape.plot( x,y,volcano, col=topo.colors(128),zlim=c(@,300),
z1im2=c( 120,200), border=NA)

# note tranparent color for facets outside the zlim2 range

#The projection has been saved in pm

# add a point marking the summit

zsummit <- max( volcano)

ix<- row( volcano)[volcano==zsummit]

iy <- col( volcano)[volcano==zsummit]

uv <- trans3d( x[ix], y[iy],zsummit,pm)
points( uv, col="magenta", pch="+", cex=2)

# overlay volcano wireframe with gradient in x direction.

dz<- (
volcano[1:(M-1), 1:(N-1)] - volcano[2:(M), 1:(N-1)] +
volcano[1:(M-1), 2:(N)] - volcano[2: (M), 2:(N)]
)/2

# convert dz to a color scale:
zlim<- range( c( dz), na.rm=TRUE)
zcol<-drape.color( dz, zlim =zlim, col = viridis(64) )$color.index

# with these colors

persp( volcano, col=zcol, theta=30, phi=20,
border=NA, expand=.3 )

# add legend using image.plot function
image.plot( zlim=z1lim, legend.only =TRUE, horizontal =TRUE,
col= viridis(64))

41
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envelopePlot Add a shaded the region between two functions to an existing plot

Description

This function shades the region vertically between two functions, specified as pairs of x and y
vectors, and draws the functions in a darker shade. More formally, it shades all points (X,y) such
that f1(x) <y < f2(x) or f2(x) < y < f1(x). When both functions have the same group of x values,
the x values only need to be set once but y2 needs to be passed in by name. If the two functions
intersect, the vertical space between the functions will be shaded on both sides, as implied in the
definition above.

Usage

envelopePlot(x1, y1, x2 = x1, y2,

col ="thistle1” , lineCol = "thistle3”, ...)

Arguments

x1 The x coordinates for the first function (or possibly both functions).

y1 The y coordinates for the first function.

X2 The x coordinates for the second function.

y2 The y coordinates for the second function.

col The color to make the filling between the functions.

lineCol The color to make the lines representing the functions.

Additional arguments to the base R function polygon

Author(s)

Matt Iverson

Examples

x <- seq(@, 2*pi,, 100)

y1 <= cos(x)

y2 <- sin(x)

plot(x, y1, type="1")
envelopePlot(x, y1, y2=y2)

x1 <- c(0, 0.5, 1)

y1l <= c(0, 2, 1)

x2 <- c(o, 1)

y2 <- c(-1, @)

plot(x1, y1, type="1", ylim=c(-1, 2))
envelopePlot(x1, y1, x2, y2)
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Exponential, Matern, Radial Basis
Covariance functions

Description

Functional form of covariance function assuming the argument is a distance between locations.
As they are defined here, they are in fact correlation functions. To set the marginal variance (sill)
parameter, use the sigma argument in mKrig or Krig. To set the nugget variance, use te tau2
argument in mKrig or Krig.

Usage

Exponential(d, range = 1, alpha = 1/range, phi=1.0,theta = NULL)
Matern(d , range = 1,alpha=1/range, smoothness = 0.5,

nu= smoothness, phi=1.0)
Matern.cor.to.range(d, nu, cor.target=.5, guess=NULL,...)
RadialBasis(d,M,dimension, derivative = @)

Arguments

d Vector of distances or for Matern. cor.to.range just a single distance.

range Range parameter default is one. Note that the scale can also be specified through
the "aRange" scaling argument used in fields covariance functions)

alpha 1/range

theta Same as alpha

phi This parameter option is added to be compatible with older versions of fields
and refers to the marginal variance of the process. e.g. phix exp( -d/aRange)
is the exponential covariance for points separated by distance and range aRange.
Throughout fields this parameter is equivalent to sigma and it recommended that
sigma be used. If one is simulating random fields. See the help on sim.rf for
more details.

smoothness Smoothness parameter in Matern. Controls the number of derivatives in the
process. Default is 1/2 corresponding to an exponential covariance.

nu Same as smoothness

M Interpreted as a spline M is the order of the derivatives in the penalty.

dimension Dimension of function

cor.target Correlation used to match the range parameter. Default is .5.

guess An optional starting guess for solution. This should not be needed.

derivative If greater than zero finds the first derivative of this function.

Additional arguments to pass to the bisection search function.
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Details

Exponential:

exp( -d/range)

Matern:

con*(d\*nu) * besselK(d , nu)

Matern covariance function transcribed from Stein’s book page 31 nu==smoothness, alpha ==
1/range

GeoR parameters map to kappa==smoothness and phi == range check for negative distances
con is a constant that normalizes the expression to be 1.0 when d=0.

Matern.cor.to.range: This function is useful to find Matern covariance parameters that are compa-
rable for different smoothness parameters. Given a distance d, smoothness nu, target correlation
cor.target and range aRange, this function determines numerically the value of aRange so that

Matern( d,range=aRange,nu=nu) == cor.target
See the example for how this might be used.

Radial basis functions:

C.m,d rxx(2m-d) d- odd

C.m,d rxx(2m-d)1n(r) d-even

where C.m.d is a constant based on spline theory and r is the radial distance between points. See
radbas.constant for the computation of the constant. NOTE: Earlier versions of fields used
In(r"2) instead of In(r) and so differ by a factor of 2.

Value

For the covariance functions: a vector of covariances.

For Matern.cor.to.range: the value of the range parameter.

Author(s)

Doug Nychka

References
Stein, M.L. (1999) Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer,
New York.

See Also

stationary.cov, stationary.image.cov, Wendland,stationary.taper.cov rad.cov
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Examples

# a Matern correlation function

d<- seq( 0,10,,200)

y<- Matern( d, range=1.5, smoothness=1.0)
plot( d,y, type="1")

# Several Materns of different smoothness with a similar correlation
# range

# find ranges for nu = .5, 1.0 and 2.0
# where the correlation drops to .1 at a distance of 10 units.

r1<- Matern.cor.to.range( 10, nu=.5, cor.target=.1)
r2<- Matern.cor.to.range( 10, nu=1.0, cor.target=.1)
r3<- Matern.cor.to.range( 10, nu=2.0, cor.target=.1)

# note that these equivalent ranges
# with respect to this correlation length are quite different
# due the different smoothness parameters.

d<- seq( 0, 15,,200)

y<- cbind( Matern( d, range=rl1, nu=.5),
Matern( d, range=r2, nu=1.0),
Matern( d, range=r3, nu=2.0))

matplot( d, vy, type="1", 1lty=1, lwd=2)

xline( 10)
yline( .1)
fields fields - tools for spatial data
Description

fields is a collection of functions for curve and function fitting with an emphasis on spatial data
and spatial statistics. It was developed over 20+ years to provide easy to use but sophistciated tools
for analyzing spatial data, particularly that encountered in the environemental sciences. Please send
bugs and questions to Doug Nychka nychka@mines.edu. Positive comments are also welcome!

The major methods implemented include cubic and thin plate splines, universal Kriging and Krig-
ing for large data sets. A more modern terminology for Kriging is spatial process estimation with
covariance parameters determined by maximum likelihood and the uncertainty derived from as-
sumptions of a Gaussian process. Thoughout we try to include reasonable defaults in functions that
reflect our experience with analyzing spatial data. One main feature of the spatial methods is any
covariance function implemented in R code can be used for spatial prediction. Another important
feature is that fields will take advantage of compactly supported covariance functions in a seamless
way through the spam package. See library( help=fields) for a listing of all the fields contents.
We also recommend the thoughtful vignette created by Ashton Weins, Mitchell Krock, and Emma
Lilly (fieldsVignette.pdf) int the fields github repository.


https://github.com/dnychka/fieldsRPackage
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fields stives to have readable and tutorial code. Take a look at the source code for mKrig to see
how things work "under the hood" and how a linear algebra computation is overloaded to handle
sparse matrices and how an output is built up sequentially throughout a computation. The fields
source code is liberally commented. Unfortunately on loading this package, R will strip comments
from the source. However, you can go to CRAN fields page to download the latest "tarball" ( aka
Package Source) and unzip to get code with comments. We also keep the most recent version of
this package at the fields github repository. and for commented source go to the the subdirectory
fields/src. This may be a more recent version than what is posted to CRAN.

Major methods

* spatialProcess An easy to use method that fits a spatial process model ( e.g. Kriging) but
also estimates the key spatial parameters: nugget variance, sill variance and range by max-
imum likelihood. Default covariance model is a Matern covariance function. This function
and related functions called by this are the core methods in fields and have much flexibility.
spatialProcess allows one to supply a covariance function that is written in native R code.
See (stationary.cov) that includes several families of covariances including the Matern and
several distance metrics including great circle distance.

* Tps Thin Plate spline regression including GCV and REML estimates for the smoothing pa-
rameter.

* mKrig (micro Krig) and fastTps fast efficient Universal Kriging and spline-like functions,
that can take advantage of sparse covariance functions and thus handle very large numbers of
spatial locations. QTps A easy to use extension of thin plate splines for quantile and robust
surface fitting.

* mKrigMLEGrid and mKrigMLEJoint for maximum likelihood estimates of covariance param-
eters. These functions also handle replicate fields, assumed to be independent realizations, at
the same locations and can also take any covariate function function written in R following
the fields format

Other noteworthy functions

* vgramand vgram.matrix find variograms for spatial data (and with temporal replications.

* cover.design Generates space-filling designs where the distance function is expresed in R
code.

* Many convenient functions for working with image data and rationally (well, maybe rea-
sonably) creating and placing a color scale on plots: as.image, imagePlot, bubblePlot,
drape.plot,quilt.plot add. image, crop.image, half.image, average. image, designer.colors,
color.scale, in.poly See also grid.list for how fields works with grids and US and wor1ld
for adding a map quickly.

* sreg splint Fast 1-D cubic smoothing splines and interpolating cubic splines.

Generic functions that support the methods

plot - diagnostic plots of fit

summary- statistical summary of fit

print- shorter version of summary

surface- graphical display of fitted surface

predict- evaluation fit at arbitrary points

predictSE- prediction standard errors at arbitrary points.
sim.rf- Simulate a random fields on a 2-d grid.


https://cran.r-project.org/package=fields
https://github.com/dnychka/fieldsRPackage
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Getting Started
Try some of the examples from help files for Tps or spatialProcess.
Graphics tips

help( fields.hints) gives some R code tricks for setting up common legends and axes. And has
little to do with this package!

Testing See help(fields. tests) for testing fields.

Some fields datasets

* C02 Global satelite CO2 concentrations (simulated field)

* RCMexample Regional climate model output

* lennon Image of John Lennon

* COmonthlyMet Monthly mean temperatures and precip for Colorado

* RMelevation Digital elevations for the Rocky Mountain Empire

* ozone2 Daily max 8 hour ozone concentrations for the US midwest for summer 1987.

* PRISMelevation Digital elevations for the continental US at approximately 4km resolution
* NorthAmericanRainfall 50+ year average and trend for summer rainfall at 1700+ stations.
* rat.diet Small paired study on rat food intake over time.

* WorldBankC02 Demographic and carbon emission data for 75 countries and for 1999.

DISCLAIMER: The authors can not guarantee the correctness of any function or program in this
package.

Examples

## Not run:

# some air quality data, daily surface ozone measurements for the Midwest:
data(ozone?2)

x<-ozone2$lon.lat

y<- ozone2$y[16,] # June 18, 1987 , there are some missing values

# pixel plot of spatial data
quilt.plot( x,y)
US( add=TRUE) # add US map

# fitting a thin plate spline surface (always a good way to start)
fito<- Tps(x,y)

# fits a GCV thin plate smoothing spline surface to ozone measurements.
# Hey, it does not get any easier than this!

summary (fit@) #diagnostic summary of the fit
set.panel(2,2)
plot(fit@) # four diagnostic plots of fit and residuals.

# quick plot of predicted surface

set.panel()

surface(fit@) # contour/image plot of the fitted surface
US( add=TRUE, col="magenta”, lwd=2) # US map overlaid
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title("Daily max 8 hour ozone in PPB, June 18th, 1987")

HHH

fit2<- spatialProcess( x,y)

# a "Kriging" model. The covariance defaults to a Matern with smoothness 1.0.
# the nugget, sill and range parameters are found by maximum likelihood

# summary, plot, and surface also work for fit2 !

surface(fit2) # contour/image plot of the fitted surface

US( add=TRUE, col="magenta"”, lwd=2) # US map overlaid
title("Daily max 8 hour ozone in PPB, June 18th, 1987")

## End(Not run)

fields testing scripts
Testing fields functions

Description

Some of the basic methods in fields can be tested by directly implementing the linear algebra us-
ing matrix expressions and other functions can be cross checked within fields. These compar-
isons are done in the the R source code test files in the tests subdirectory of fields. The function
test. for.zero is useful for comparing the tests in a meaninful and documented way.

Usage

test.for.zero( xtest, xtrue, tol= 1.0e-8, relative=TRUE, tag=NULL)

Arguments
xtest Vector of target values
xtrue Vector of reference values
tol Tolerance to judge whether the test passes.
relative If true a relative error comparison is used. (See details below.)
tag A text string to be printed out with the test results as a reference
Details

IMPORTANT: If the R object test. for.zero. flag exists with any value (e.g. test.for.zero.flag
<-1) then when the test fails this function will also generate an error in addition to printing a mes-
sage. This option is added to insure that any test scripts will generate an error when any individual
test fails.

An example:
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> test.for.zero( 1:10, 1:10 + 1e-10, tag="First test")
Testing: First test
PASSED test at tolerance 1e-08

> test.for.zero( 1:10, 1:10 + 1e-10, tag="First test”, tol=1e-12)
Testing: First test
FAILED test value = 1.818182e-10 at tolerance 1le-12

> test.for.zero.flag <- 1

Testing: First test

FAILED test value = 1.818182e-10 at tolerance 1e-12

Error in test.for.zero(1:10, 1:10 + 1e-10, tag = "First test”, tol = 1e-12) :

The scripts in the tests subdirectory are

Krig.test.R: Tests basic parts of the Krig and Tps functions including replicated and weighted
observations.

Krig.se.test.R: Tests computations of standard errors for the Kriging estimate.

Krig.se.grid.test.R Tests approximate standard errors for the Krig function found by Monte Carlo
conditional simulation.

Krig.test. W.R Tests predictions and A matrix when an off diagonal observation weight matrix is
used.

Krig.se.W.R Tests standard errors when an off diagonal observation weight matrix is used.
spam.test.R Tests sparse matrix formats and linear algebra.

Wend.test.R Tests form for Wendland covariance family and its use of sparse matrix formats.
diag.multiply.test.R Tests special (efficient) version of matrix multiply for diagonal matrices.
evlpoly.test.R Tests evaluation of univariate and multivariate polynomial evaluation.

mKrig.test.R Tests the micro Krig function with and without sparse matrix methods.

To run the tests just attach the fields library and source the testing file. In the fields source code
these are in a subdirectory "tests". Compare the output to the "XXX.Rout.save" text file.

test.for.zero is used to print out the result for each individual comparison. Failed tests are
potentially bad and are reported with a string beginning

"FAILED test value = ... "

If the object test.for.zero.flag exists then an error is also generated when the test fails.
FORM OF COMPARISON: The actual test done is the sum of absolute differnces:
test value = sum( abs(c(xtest) -c( xtrue) ) ) /denom

Where denom is either mean( abs(c(xtrue))) for relative error or 1.0 otherwise.

Note the use of "c" here to stack any structure in xtest and xtrue into a vector.
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fields-stuff

fields-stuff

Fields supporting functions

Description

Some supporting functions that are internal to fields top level methods. Variants of these might be
found in the R base but these have been written for cleaner code or efficiency.

Usage

fields
fields
fields
fields

fields

Arguments

mat

digits

dcoef
coef
ptab
tag

Details

.duplicated.matrix(mat, digits = 8)
.mkpoly(x, m = 2, tag = "term")
.derivative.poly(x, m,dcoef)
.evlpoly( x, coef)

.evlpoly2( x, coef, ptab)

Arbitrary matrix for examining rows

Number of significant digits to use for comparing elements to determine duplci-
ate values.

Arbitrary matrix where rows are components of a multidimensional vector
The null space degree — results in a polynomial of degree (m-1)
Coefficients of a multidimensional polynomial

Polynomial coefficients.

Table of powers of different polnomial terms.

mkpoly fills in as columns names the higher order terms of the polynomial terms.
The tag is the text string prefix for thes column names and the powers of the
individual variables are appended. Default is just "terms".

fields.duplicated finds duplicate rows in a matrix. The digits arguments is the number of digits
that are considered in the comparison. The returned value is an array of integers from 1:M where M
is the number of unique rows and duplicate rows are referenced in the same order that they appear

as the rows of mat.

fields.mkpoly computes the complete matrix of all monomial terms up to degree (m-1). Each
row of x is are the componets of a vector. (The fields function mkpoly returns the number of these
terms.) In 2 dimensions with m=3 there 6 polynomial terms up to quadratic ( 3-1 =2) order and will
be returned as the matrix:
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cbind( 1, x[,1], x[,2], x[,17%*2, x[,1]*x[,2], x[,2]**2)

This function is used for the fixed effects polynomial or spatial drift used in spatial estimating
functions Krig, Tps and mKrig. The matrix ptab is a table of the powers in each term for each
variable and is included as an attribute to the matrix returned by this function. See the attr function
for extracting an attribute from an object.

ptab for the example above is

[,11 [,2]
[1,1] 0 0
[2,] 1 0
(3,1 0 1
[4,] 2 0
[5,] 1 1
(6,1 0 2

This information is used in finding derivatives of the polynomial is also used to create column names
for the terms that are of higher order than linear.

fields.deriviative.poly finds the partial derivative matrix of a multidimensional polynomial
of degree (m-1) at different vector values and with coefficients dcoef. This function has been
orgainzed to be a clean utility for the predicting the derivative of the estimated function from Krig
or mKrig. Within the fields context the polynomial itself would be evaluated as fields.mkpoly(
x,m)%*%dcoef. If x has d columns ( also the dimension of the polynomial) and n rows the partial
derivatives of this polynomial at the locations x can be organized in a nXd matrix. This is the object
returned by ths function.

evlpoly and evlpoly2 are FORTRAN based functions for evaluating univariate polynomials and
multivariate polynomials. The table of powers (ptab) needed for evlpoly?2 is the same format as that
returned my the fields.mkpoly function.

Author(s)

Doug Nychka

fields.grid Using MKrig for predicting on a grid.

Description
This is an extended example for using the sparse/fast interpolation methods in mKrig to evaluate a
Kriging estimate on a large grid.

Details

mKrig is a flexible function for surface fitting using a spatial process model. It can also exploit
sparse matrix methods forlarge data sets by using a compactly supported covariance. The example
below shows how ot evaluate a solution on a big grid. (Thanks to Jan Klennin for this example.)
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Examples

x<- RMprecip$x
y<- RMprecip$y

Tps( x,y)—-> obj

# make up an 80X8@ grid that has ranges of observations
# use same coordinate names as the x matrix

glist<- fields.x.to.grid(x, nx=80, ny=80) # this is a cute way to get a default grid that covers x

# convert grid list to actual x and y values ( try plot( Bigx, pch="."))
make.surface.grid(glist)-> Bigx

# include actual x locations along with grid.
Bigx<- rbind( x, Bigx)

# evaluate the surface on this set of points (exactly)
predict(obj, x= Bigx)-> Bigy
set the range for the compact covariance function

this will involve 1less than 20 nearest neighbors that have
nonzero covariance

ETE Ty

V<- diag(c( 2.5*(glist$lon[2]-glist$lon[1]),
2.5%x(glist$lat[2]-glist$lat[1]1)))
## Not run:
# this is an interplotation of the values using a compact
# but thin plate spline like covariance.
mKrig( Bigx,Bigy, cov.function="wendland.cov”, k=4, V=V,
lambda=0)->out2
# the big evaluation this takes about 45 seconds on a Mac G4 latop
predictSurface( out2, nx=400, ny=400)-> look

## End(Not run)

# the nice surface

## Not run:
surface( look)

US( add=TRUE, col="white")

## End(Not run)

fields.hints fields - graphics hints
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Description

Here are some technical hints for assembling multiple plots with common legends or axes and
setting the graphics parameters to make more readable figures. Also we an index to the defaultcol-
ors in R graphics and setting their definitions in LaTeX. All these hints use the standard graphics
environment.

Usage

fields.style()
fields.color.picker()

Details

fields.style is a simple function to enlarge the characters in a plot and set the colors. List this
out to modify the choices.

##Two examples of concentrating a panel of plots together

## to conserve the white space.

## see also the example in image.plot using split.screen.

## The basic trick is to use the oma option to reserve some space around the
## plots. Then unset the outer margins to use that room.

library( fields)

# some hokey image data
x<- 1:20

y<- 1:15

z<- outer( x,y,"+")
zr<- range( c(z))

# add common legend to 3X2 panel

par( oma=c(4,0,0,0))
set.panel( 3,2)
par( mar=c(1,1,0,0))

# squish plots together with just 1 space between
for ( k in 1:6){
image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)

3

par( oma=c(0,0,0,0))
image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

# you may have to play around with legend.mar and the oma settings to
# get enough space.
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#H
### also add some axes on the sides. in a lattice style
## note oma adds some more room at bottom.

par( oma=c(8,6,1,1))
set.panel( 3,2)
par( mar=c(1,1,0,0))

#H#
for ( k in 1:6){
image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)

box() # box around figure

# maybe draw an x axis
if( k %in% c(5,6) ){
axis( 1, cex.axis=1.5)
mtext( line=4, side=1, "Xstuff")}

# maybe draw a y axis

if( k %in% c(1,3,5) ){

axis( 2, cex.axis=1.5)

mtext( line=4, side=2, "Ystuff")}
1

# same trick of adding a legend strip.
par( oma=c(0,0,0,0))

image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

# reset panel
set.panel()

H#iHHE
# show colors
## the factory colors:

clab<- colors()

n<- length( clab)

N<- ceiling( sqrt(n) )
M<- N

temp<- rep( NA,MxN)
temp[1:n] <- 1:n

z<- matrix(temp, M,N)

image(seq(.5,M+.5, ,M+1), seq(.5,N+.5, ,N+1)
, z, col=clab, axes=FALSE, xlab="", ylab="")

fields.hints
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# see the function fields.color.picker() to locate colors

# dumping out colors by name for a latex document
# this creates text strings that are the LaTeX color definitions
# using the definecolor function.

# grab all of the R default colors
clab<- colors()

for( nn in clab){
temp<- signif(col2rgb(nn)/256, 3)

cat(
"\definecolor{",
nn, "}",
"{rgb3}{", temp[1],
", temp[2],
", temp[3],
"}", fill=TRUE , sep="")
3
# this loop prints out definitions such as
# \definecolor{yellowgreen}{rgh}{0.602,0.801,0.195}
# having loaded the color package in LaTeX
# defining this color
# use the construction {\color{yellowgreen} THIS IS A COLOR}
# to use this color in a talk or document.

=

this loop prints out all the colors in LaTeX language

# as their names and can be converted to a pdf for handy reference.

sink( "showcolors.tex")

clab<- colors()
for( nn in clab){
temp<- signif(col2rgb(nn)/256, 3)

cat(
"\definecolor{",
nn, n H’
"{rghb}{", temp[1],
",", temp[2],
",", temp[3],

"}", fill=TRUE , sep="")

cat( paste(”{ \color{",nn,"”} ", nn,"” $\bullet$ \\ }", sep=""),

£111=TRUE)

55
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sink()

grid list

flame

Response surface experiment ionizing a reagent

Description

The characteristics of an ionizing flame are varied with the intent of maximizing the intensity of
emitted light for lithuim in solution. Areas outside of the measurements are where the mixture may
explode! Note that the optimum is close to the boundary. Source of data is from a master’s level lab
experiment in analytical chemistry from Chuck Boss’s course at NCSU. <s-section name= "DATA

DESCRIPTION"> This is list with the following components

Arguments
X X is a 2 column matrix with the different Fuel and oxygen flow rates for the
burner.
y y is the response. The intensity of light at a particular wavelength indicative of
Lithium ions.
grid list Some simple functions for working with gridded data and the grid for-
mat (grid.list) used in fields.
Description

The object grid.list refers to a list that contains information for evaluating a function on a 2-
dimensional grid of points. If a function has more than two independent variables then one also
needs to specify the constant levels for the variables that are not being varied. This format is used
in several places in fields for functions that evaluate function estimates and plot surfaces. These
functions provide some default conversions among information and the gird.list. The function

discretize.image is a useful tool for "registering" irregular 2-d points to a grid.

Usage

makeMultiIndex (M)

parse.grid.list( grid.list, order.variables="xy")

fields.x.to.grid(x,nx=80, ny=80, xy=c(1,2))

fields.convert.grid( midpoint.grid )

discretize.image(x, m = 64, n = 64, grid = NULL,
expand = c(1 + 1e-08, 1 + 1e-08),
boundary.grid = FALSE, na.rm = TRUE)

make.surface.grid( grid.list)

unrollZGrid( grid.list, ZGrid)
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Arguments

M
grid.list

order.variables

nx

ny

na.rm
Xy
grid

expand

midpoint.grid
boundary.grid

ZGrid

Details
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An vector of integers.

No surprises here — a grid list! These can be unequally spaced.

If "xy" the x variable will be subsequently plotted as the horizontal variable. If
"yx" the x variable will be on the vertical axis.

A matrix of independent variables such as the locations of observations given to
Krig.

Number of grid points for x variable.

Number of grid points for y variable.

Number of grid points for x variable.

Number of grid points for y variable.

Remove missing values if TRUE

The column positions that locate the x and y variables for the grid.

A grid list!

A scalar or two column vector that will expand the grid beyond the range of the
observations.

Grid midpoints to convert to grid boundaries.

If TRUE interpret grid points as boundaries of grid boxes. If FALSE interpret
as the midpoints of the boxes.

An array or list form of covariates to use for prediction. This must match the
grid.list argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid
is an array then the first two indices are the x and y locations in the grid. The
third index, if present, indexes the covariates. e.g. For evaluation on a 10X15
grid and with 2 covariates. dim( ZGrid) ==¢(10,15,2). If ZGrid is a list
then the components x and y shold match those of grid.list and the z component
follows the shape described above for the no list case.

makeMultiIndex creates an expanded set of indices to referencce a regular grid. M are L integers
with product prodM Will create a prodM by L matrix that is all combinations of (1:M[i]) fori=1,2,
...L This is organized in the standard array ordering where the first column varies the fastest for M
=c¢( 3,2,4) the result will be a 24X3 matrix with the entries:

etc ...

and ending with
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2,2,4
3,2,4
All about grid lists:
The form of a grid.list is
list( var.namel=what1 ,var.name2=what2 , ... var.nameN=what3)

Here var.names are the names of the independent variables. The what options describe what should
be done with this variable when generating the grid. These should either an increasing sequence of
points or a single vaules. Obviously there should be only be two variables with sequences to define
a grid for a surface.

Most of time the gridding sequences are equally spaced and are easily generated using the seq
function. Also throughout fields the grid points are typically the midpoints of the grid rather the
grid box boundaries. However, these functions can handle unequally spaced grids and the logical
boundary.grid can indicate a grid being the box boundaries.

The variables in the list components are assumed to be in the same order as they appear in the data
matrix.

A useful function that expands the grid from the grid.list description into a full set of locations is
make.surface.grid and is just a wrapper around the R base function expand.grid. A typical
operation is to go from a grid.list to the set of grid locations. Evaluate a fucntion at these lcoations
and then reformat this as an image for plotting. Here is how to do this cleanly:

grid.list<- list( x= 1:10, y=1:15)

xg<- make.surface.grid(grid.list)

# look at a surface dependin on xg locations

z<- xgl[,1]1 + 2*xxg[,2]

out<- list( x=grid.list$x, y= grid.list$y, z=matrix( z, nrow=1@, ncol=15))
# now for example

image.plot( out)

The key here is that xg and matrix both organize the grid in the same order.
Some fields internal functions that support interpreting grid list format are:

fields.x.to.grid: Takes an "x" matrix of locations or independent variables and creates a rea-
sonable grid list. This is used to evaluate predicted surfaces when a grid list is not explicited given
to predictSurface. The variables (i.e. columns of x) that are not part of the grid are set to the median
values. The x grid values are nx equally spaced points in the range x[,xy[1]]. The y grid values
are ny equally spaced points in the range x[,xy[2]1].

parse.grid.list: Takes a grid list and returns the information in a more expanded list form that
is easy to use. This is used, for example, by predictSurface to figure out what to do!

fields.convert.grid: Takes a vector of n values assumed to be midpoints of a grid and returns
the n+1 boundaries. See how this is used in discretize.image with the cut function. This function
will handle unequally spaced grid values.

discretize.image: Takes a vector of locations and a 2-d grid and figures out to which boxes they
belong. The output matrix ind has the grid locations. If boundary.grid is FALSE then the grid list
(grid) is assumed to be grid midpoints. The grid boundaries are taken to be the point half way
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between these midpoints. The first and last boundaries points are determined by extrapolating so
that the first and last box has the midpoint in its center. (See the code in fields.convert.grid for
details.) If grid is NULL then midpoints are found from m and n and the range of the x matrix.

unrollZGrid Checks that the ZGrid object is compatible with th e grid.list and concatenates the
grid arrays into vectors. This version of the covariates are used the usual predict function.
See Also

as.surface, predictSurface, plot.surface, surface, expand.grid, as.image

Examples

#Given below are some examples of grid.list objects and the results
#when they are used with make.surface.grid. Note that
#make.surface.grid returns a matrix that retains the grid.list
#information as an attribute.

grid.1<- list( 1:3, 2:5)

make.surface.grid(grid.1l)

grid.l <- list( 1:3, 10, 1:3)

make.surface.grid(grid.1l)

#The next example shows how the grid.list can be used to
#control surface plotting and evaluation of an estimated function.
# first create a test function

set.seed( 124)

X<- 2*cbind( runif(30), runif(30), runif(30)) -1

dimnames( X)<- list(NULL, c(”X1","X2","X3"))
y<= X[,171**2 + X[,2]x*2 + exp(X[,3])

# fit an interpolating thin plate spline
out<- Tps( X,y)

grid.1<- list( X1= seq( 0,1,,20), X2=.5, X3=seq(0,1,,25))
surface( out, grid.list=grid.l)
# surface plot based on a 20X25 grid in X1 an X3

# over the square [0,2] and [0,2]
# holding X2 equal to 1.0.
#

# test of discretize to make sure points on boundaries are counted right
set.seed(123)

x<- matrix( runif(200), 100,2)

look<- discretize.image( x, m=2,n=2)

xc<- seq(min(x[,11), max(x[,11),,5)
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xc<- xc[2:4]
yc<- seq(min(x[,21), max(x[,21),,5)
yc<- yc[2:4]
grid <- 1list( x= xc, y= yc)
look2<- discretize.image( x, m=2,n=2)
table( look$index )
table( look2$index )
# indicator image of discretized locations
look<- discretize.image( RMprecip$x, m=15, n=15)
image.plot( look$grid$x, look$grid$y,look$hist )
# actual locations
points( RMprecip$x,col="magenta"”, pch=".")
image.cov Exponential, Matern and general covariance functions for 2-d gridded

locations.

Description

Given two sets of locations defined on a 2-d grid efficiently multiplies a cross covariance with
a vector. The intermediate compuations (the setup) can also be used for fast simulation of the
processes on a grid using the circulant embedding technique.

Usage

stationary.image.cov(indl, ind2, Y, cov.obj = NULL, setup = FALSE,

grid, M=NULL,N=NULL,cov.function="stationary.cov"”, delta = NULL, cov.args = NULL, ...

Exp.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...)

Rad.image.cov(ind1l, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...)

matern.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid,
M=NULL,N=NULL,aRange= 1.0, smoothness=.5, theta=NULL)

wendland. image.cov(ind1, ind2, Y, cov.obj = NULL,
setup = FALSE, grid, M = NULL, N = NULL, cov.args=NULL, ...)

Arguments

ind1 Matrix of indices for first set of locations this is a two column matrix where each
row is the row/column index of the image element. If missing the default is to
use all grid locations.
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ind2 Matrix of indices for second set of locations. If missing this is taken to be ind2.
If ind1 is missing ind2 is coerced to be all grid locations.
Y Vector to multiply by the cross covariance matrix. Y must be the same locations
as those referred to by ind2.
cov.args Any additional arguments or parameters to the covariance function.
cov.obj A list with the information needed to do the multiplication by convolutions. This

is usually found by using the returned list when setup=T.

Name of the (stationary) covariance function.

setup If true do not do the multiplication but just return the covariance object required
by this function.

delta A distance that indicates the range of the covariance when it has compact sup-
port. For example this is the aRange parameter in the Wendland covariance.

grid A grid list giving the X and Y grids for the image. (See example below.) This is
only required if setup is true.

M Size of x-grid used to compute multiplication (see notes on image.smooth for
details) by the FFT. If NULL, the default for M is the largest power of 2 greater
than or equal to 2*m where m= length( grid\$x). This will give an exact result
but smaller values of M will yield an approximate, faster result.

N Size of y-grid used to compute multiplication by the FFT.

aRange Scale parameter for Matern.

theta Same as aRange.

smoothness Smoothness parameter for Matern (.5=Exponential)

Any arguments to pass to the covariance function in setting up the covariance
object. This is only required if setup is TRUE. For stationary.image.cov
one can include V a matrix reflecting a rotation and scaling of coordinates. See
stationary.cov for details.

Details

This function was provided to do fast computations for large numbers of spatial locations and sup-
ports the conjugate gradient solution in krig.image. In doing so the observations can be irregular
spaced but their coordinates must be 2-dimensional and be restricted to grid points. (The function
as.image will take irregular, continuous coordinates and overlay a grid on them.)

Returned value: If indl and ind2 are matrices where nrow(ind1)=m and nrow(ind2)=n then the
cross covariance matrix, Sigma is an mXn matrix (i,j) element is the covariance between the grid
locations indexed at ind1[i,] and ind2[j,]. The returned result is Sigma%*%Y. Note that one can
always recover the coordinates themselves by evaluating the grid list at the indices. e.g. cbind(
grid\$x[ ind1[,1]], grid\$y[ind1[,2])) will give the coordinates associated with ind1. Clearly it is
better just to work with ind1!

Functional Form: Following the same form as Exp.cov stationary.cov for irregular locations, the
covariance is defined as phi( D.ij) where D.ij is the Euclidean distance between x1[i,] and x2[j,] but
having first been scaled by aRange. Specifically,

D.ij = sqrt( sum.k (( x1[i,k] - x2[j,k]) /aRange[k])**2 ).

See Matern for the version of phi for the Matern family.
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Note that if aRange is a scalar then this defines an isotropic covariance function.

Implementation: This function does the multiplication on the full grid efficiently by a 2-d FFT. The
irregular pattern in Y is handled by padding with zeroes and once that multiplication is done only
the appropriate subset is returned.

As an example assume that the grid is 100X100 let big.Sigma denote the big covariance matrix
among all grid points ( If the parent grid is 100x100 then big.Sigma is 10K by 10K !) Here are the
computing steps:

temp<- matrix( 0, 100,100)
temp[ ind2] <- Y

temp2<- big.Sigma%*% temp
temp2[ind1]

Notice how much we pad with zeroes or at the end throw away! Here the matrix multiplication is
effected through convolution/FFT tricks to avoid creating and multiplying big.Sigma explicitly. It
is often faster to multiply the regular grid and throw away the parts we do not need then to deal
directly with the irregular set of locations.

Note: In this entire discussion Y is treated as vector. However if one has complete data then Y
can also be interpreted as a image matrix conformed to correspond to spatial locations. See the last
example for this distinction.

Value

A vector that is the multiplication of the cross covariance matrix with the vector Y.

See Also

smooth.2d, as.image, krig.image, stationary.cov

Examples

# multiply 2-d isotropic exponential with aRange=4 by a random vector

junk<- matrix(rnorm(100%100), 100,100)

cov.obj<- stationary.image.cov( setup=TRUE,
grid=list(x=1:100,y=1:100),aRange=8)

result<- stationary.image.cov(Y=junk,cov.obj=cov.obj)

image( matrix( result, 100,100)) # NOTE that is also a smoother!

# to do it again, no setup is needed

# e.g.

#  junk2<- matrix(rnorm(100x*x2, 100,100))

# result2<- stationary.image.cov(Y=junk2, cov.obj=cov.obj)

# generate a grid and set of indices based on discretizing the locations
# in the precip dataset

out<-as.image( RMprecip$y, x= RMprecip$x)
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ind1<- out$ind
grid<- list( x= out$x, y=out$y)

#
# discretized x locations to use for comparison
xd<- cbind( out$x[ out$ind[,1]], out$y[ out$ind[,2]] )

# setup to create cov.obj for exponential covariance with range= 1.25
cov.obj<- stationary.image.cov( setup=TRUE, grid=grid, aRange=1.25)

# multiply covariance matrix by an arbitrary vector
junk<-= rnorm(nrow( ind1))
result<- stationary.image.cov( ind1, ind1, Y= junk,cov.obj=cov.obj)

# The brute force way would be

#  result<- stationary.cov( xd, xd, aRange=1.25, C=junk)
# or

#  result<- stationary.cov( xd, xd, aRange=1.25) %*% junk
# both of these take much longer

# evaluate the covariance between all grid points and the center grid point
Y<- matrix(@,cov.obj$m, cov.objs$n)
Y[32,32]<- 1
result<- stationary.image.cov( Y= Y,cov.obj=cov.obj)
# covariance surface with respect to the grid point at (32,32)
#
# reshape "vector” as an image
temp<- matrix( result, cov.obj$m,cov.obj$n)
image.plot(cov.obj$grid$x,cov.obj$gridsy, temp)
# or persp( cov.obj$grid$x,cov.obj$grid$y, temp)

)

# check out the Matern
grid<- list( x= seq(-105,-99,,64), y= seq( 40,45,,64))
cov.obj<- matern.image.cov(
setup=TRUE, grid=grid, aRange=.55, smoothness=1.0)
Y<- matrix(0,64,64)
Y[16,161<- 1

result<- matern.image.cov( Y= Y,cov.obj=cov.obj)
temp<- matrix( result, cov.obj$m,cov.obj$n)
image.plot( cov.obj$grid$x,cov.obj$grids$y, temp)

# Note we have centered at the location (grid$x[16],grid$y[16]1) for this case
# wusing sim.rf to simulate an Matern field

look<- sim.rf( cov.obj)

image.plot( grid$x, grid$y, look)
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image.plot

Draws an image plot with a legend strip for the color scale based on
either a regular grid or a grid of quadrilaterals.

Description

This function combines the R image function with some automatic placement of a legend. This is
done by splitting the plotting region into two parts. Putting the image in one and the legend in the
other. After the legend is added the plot region is reset to the image plot. This function also allows
for plotting quadrilateral cells in the image format that often arise from regular grids transformed
with a map projection or a scaling and rotation of coordinates. See the example where this function
can create a similar graphic to the ggplot package. image.plot functionality has been frozen, see
the more recent function imagePlot which is backwardly compatible with this function.

## S3 method for class 'plot'

Usage
image(...,
horizontal
legend.mar

add = FALSE,

breaks= NULL, nlevel = 64, col = NULL,
= FALSE, legend.shrink = 0.9, legend.width
= ifelse(horizontal, 3.1, 5.1), legend.lab

1.2,
NULL,

legend.line= 2,
graphics.reset = FALSE, bigplot = NULL, smallplot = NULL,
legend.only = FALSE, 1lab.breaks = NULL,

axis.args
midpoint =

NULL, legend.args = NULL, legend.cex=1.0,
FALSE, border = NA,

lwd = 1,verbose = FALSE )

Arguments

add
bigplot

border

The usual arguments to the image function as x,y,or z or as a list with Xx,y,z as
components. One can also include a breaks argument for an unequal spaced
color scale with color scale boundaries at the breaks (see example below). If a
"quadrilateral grid", arguments must be explicitly x,y and z with x, and y being
matrices of dimensions equal to, or one more than, z giving the grid locations.
The basic concept is that the coordinates of x and y still define a grid but the
image cells are quadrilaterals rather than being restricted to rectangles. NOTE:
graphical argruments passed here will only have impact on the image plot. To
change the graphical defaults for the legend use the individual legend arguments
and/or legend. arg listed below.

If true add image and a legend strip to the existing plot.

Plot coordinates for image plot. If not passed these will be determined within
the function.

This only works if x and y are matrices — if NA the quadralaterals will have a
border color that is the same as the interior color. Otherwise this specifies the
color to use.
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breaks

col

graphics.reset

horizontal

lab.breaks

axis.args

legend.only

legend.args

legend. cex

legend.line

legend.mar

legend. lab

legend. shrink

legend.width

1wd

midpoint
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Break points in sorted order to indicate the intervals for assigning the colors.
Note that if there are nlevel colors there should be (nlevel+1) breakpoints. If
breaks is not specified (nlevel+1) equally spaced breaks are created where the
first and last bin have their midpoints at the minimum and maximum values in z
oratzlim.

Color table to use for image (See help file on image for details.). Default is
a pleasing range of 64 divisions suggested by Tim Hoar and is similar to the
MATLAB (TM) jet color scheme. Note that if breaks is specified there must be
one less color specified than the number of breaks.

If FALSE (default) the plotting region ( plt in par) will not be reset and one can
add more information onto the image plot. (e.g. using functions such as points
or lines.) If TRUE will reset plot parameters to the values before entering the
function.

If false (default) legend will be a vertical strip on the right side. If true the legend
strip will be along the bottom.

If breaks are supplied these are text string labels to put at each break value. This
is intended to label axis on a transformed scale such as logs.

Additional arguments for the axis function used to create the legend axis. (See
example below adding a log scaling.)

If TRUE just add the legend to a the plot in the plot region defined by the coor-
dinates in smallplot. In the absence of other information the range for the legend
is determined from the z1im argument.

Arguments for a complete specification of the legend label, e.g. if you need to
the rotate text or other details. This is in the form of list and is just passed to the
mtext function and you will need to give both the side and line arguments for
positioning. This usually will not be needed. (See example below.)

Character expansion to change size of the legend label.

Distance in units of character height (as in mtext) of the legend label from the
color bar. Make this larger if the label collides with the color axis labels.

Width in characters of legend margin that has the axis. Default is 5.1 for a
vertical legend and 3.1 for a horizontal legend.

Label for the axis of the color legend. Default is no label as this is usual evident
from the plot title.

Amount to shrink the size of legend relative to the full height or width of the
plot.

Width in characters of the legend strip. Default is 1.2, a little bigger that the
width of a character.

Line width of bordering lines around pixels. This might need to be set less than
1.0 to avoid visible rounding of the pixel corners.

This option for the case of unequally spaced grids with x and y being matrices
of grid point locations. If FALSE (default) the quadralaterals will be extended to
surround the z locations as midpoints. If TRUE z values will be averaged to yield
a midpoint value and the original grid points be used to define the quadralaterals.
(See help on poly.image for details). In most cases midpoint should be FALSE
to preserve exact values for z and let the grid polygons be modified.
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nlevel Number of color levels used in legend strip

smallplot Plot coordinates for legend strip. If not passed these will be determined within
the function. Be sure to leave room for the axis labels. For example, if the
legend is on the right side smallplot=c(.85,.9,0,1) will leave (.1 in plot
coordinates) for the axis labels to the right of the color strip. This argument
is useful for drawing a plot with the legend that is the same size as the plots
without legends.

verbose If TRUE prints intermediate information about setting up plots (for debugging).

Details

This is a function using the basic R graphics. The coding was done to make it easier for users to see
how this function works and to modify.

How this function works: The strategy for image.plot is simple, divide the plotting region into
two smaller regions bigplot and smallplot. The image goes in one and the legend in the other.
This way there is always room for the legend. Some adjustments are made to this rule by not
shrinking the bigplot if there is already room for the legend strip and also sticking the legend strip
close to the image plot. One can specify the plot regions explicitly by bigplot and smallplot if
the default choices do not work.(Note that these in figure coordinates. ) There may be problems
with small plotting regions in fitting both of these elements into the plot region and one may have
to change the default character sizes or margins to make things fit. Sometimes this function will not
reset the type of margins correctly and the "null" call par (mar = par("mar")) may help to fix this
issue.

The text is too small! This always seems to happen as one is rushing to finish a talk and the figures
have tiny default axis labels. Try just calling the function fields.style before plotting. List out
this function to see what is changed, however, all text is increased by 20% in size.

Why “image.plot' and not “image''? The R Base function image is very useful but it is awkward
to place a legend quickly. However, that said if you are drawing several image plots and want a
common legend use the image function and just just use image.plot to add the legend. See the
example in the help file. Note that you can use image to draw a bunch of images and then follow
with image.plot and legend.only=TRUE to add a common legend. (See examples below.)

Almost cloropleths too: It should be noted that this image function is slightly different than a
cloropleth map because the legend is assuming that a continous scale has been discretized into a
series of colors. To make the image.plot function as a cloropleth graphic one would of course use
the breaks option and for clarity perhaps code the different regions as different integer values. In
addition, for publication quality one would want to use the legend.args to add more descriptive
labels at the midpoints in the color strip.

Relationship of x, y and z: If the z component is a matrix then the user should be aware that this
function locates the matrix element z[i,j] at the grid locations (x[i], y[j]) this is very different than
simply listing out the matrix in the usual row column tabular form. See the example below for
details on the difference in formatting. What does one do if you do not really have the "z" values on
aregular grid? See the functions quilt.plot.Rd and as. image to discretise irregular observations
to a grid. If the values makes sense as points on a smooth surface see Tps and fastTps for surface

interpolation.

Adding separate color to indicate the grid box boundaries. Sometimes you want to show to the
grid box borders to emphasize this is not a smooth surface. To our knowledge there is no easy way
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to do this as an option in image. But if your image is formatted in the "poly image" style where x
and y are also matrices you can use the polyimage (see the border argument above) option to draw
in boundaries.

Grids with unequally spacing — quadrialteral pixels: If x and y are matrices that are a smooth
transformation of a regular grid then z[i,j] can be interperted as representing the average value in
a quadrilateral that is centered at x[i,j] and y[i,j] (midpoint TRUE). The details of how this cell is
found are buried in poly. image but it it essentially found using midpoints between the centers. If
midpoint is FALSE then x and y are interpreted as the corners of the quadrilateral cells. But what
about z? The four values of z are now averaged to represent a value at the midpoint of the cell and
this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded
output of geophysical models where the regular grid is defined according to one map projection but
the image plotting is required in another projection. Typically the regular grid becomes distorted
in a smooth way when this happens. See the regional climate example for a illustration of this
application. One can add border colors in this case easily because these choices are just passed onto
the polygon function.

Adding the pixel grid for rectangular images: For adding the grid of pixel borders to a rectangular
image try this example after calling image.plot.

dx <- x[2] - x[1]

dy <- y[2] - y[1]

xtemp<- seq( min( x)- dx/2, max(x)+ dx/2,
length.out = length(x) +1)

ytemp<- seq( min( y)- dy/2, max(y)+ dy/2,
length.out = length(y) +1)

xline( xtemp, col="grey", lwd=2)

yline( ytemp, col="grey”, lwd=2)

Here x and y here are the x and y grid values from the image list.

Fine tuning color scales: This function gives some flexibility in tuning the color scale to fit the
rendering of z values. This can either be specially designed color scale with specific colors ( see
help on designer.colors), positioning the colors at specific points on the [0,1] scale, or mapping
distinct colors to intervals of z. The examples below show how to do each of these. In addition, by
supplying lab.break strings or axis parameters one can annotate the legend axis in an informative
matter.

Adding just the legend strip: Note that to add just the legend strip all the numerical information
one needs is the z1im argument and the color table! See examples for tricks in positioning.

About color tables: We like tim.colors as a default color scale and so if this what you use this
can be omitted. Unfortunately this is not the default for the image function. Another important
color scale is viridis() from the viridis package. It seems that by and large everyone seems to
react postively to viridis — guess that is the point!

The topographic color scale (topo.colors) is also a close second showing our geophysical bias.
Users may find larry.colors useful for coding distinct regions in the style of a cloropleith map.
See also terrain.colors for a subset of the topo ones and designer.colors to "roll your own"
color table. One nice option in this last function is to fix color transitions at particular quantiles of
the data rather than at equally spaced intervals. For color choices see how the nlevels argument
figures into the legend and main plot number of colors. Also see the colors function for a listing
of all the colors that come with the R base environment.
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The details of placing the legend and dividing up the plotting real estate: It is surprising how
hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in de-
vice coordinates. The plot region is assumed to be [0,1]X[0,1] and plotting regions are defined as
rectangles within this square. We found these easier to work with than user coordinates.

legend.width and legend.mar are in units of character spaces. These units are helpful in thinking
about axis labels that will be put into these areas. To add more or less space between the legend and
the image plot alter the mar parameters. The default mar settings (5.1,5.1,5.1,2.1) leaves 2.1 spaces
for vertical legends and 5.1 spaces for horizontal legends.

There are always problems with default solutions to placing information on graphs but the choices
made here may be useful for most cases. The most annoying thing is that after using image.plot
and adding information the next plot that is made may have the slightly smaller plotting region
set by the image plotting. The user should set reset.graphics=TRUE to avoid the plotting size
from changing. The disadvantage, however, of resetting the graphics is that one can no longer add
additional graphics elements to the image plot. Note that filled.contour always resets the graphics
but provides another mechanism to pass through plotting commands. Apparently filled.contour,
while very pretty, does not work for multiple plots.

About setup and add legend functions These came about to create a scatterplot in Base R Graphics
where the points are colored with a color scale and the scale can be plotted as part of the figure See
bubblePlot for a version of this kind of figure. The function setuplLegend should be used first
to create enough space to add a color scale later. After plotting then addLegend will add the color
scale. Note that if the color scale has been created by the color.scale function the last call to this
function will use the color scale and limits created in color.scale.

In summary here is an example of using these functions with the colors in mind:

info<- setupLegend()

colTab<- rainbow(10)

plot( 1:10, 201:210, col=colTab, pch=16)
addLegend(info, col=colTab, zlim = c(1,10))

Here is one where four colors are mapped to specific values (ala image).

info<-setupLegend()

colTab= color.scale(201:210, rainbow(4))

plot( 1:10, 201:210, col=colTab, pch=16 )
addLegend(info, col=colTab, zlim = c(201,210) )

More complete graphics languages, such as that in ggplot, do not need such functions because the
entire graphics segment is parsed to create the complete figure. In this way room for a color scale
can be created automatically. The functions proposed here are a simple work around to create these
figures using base R graphics.

Other packages levelplot that is part of the lattice package has a very similar function to im-
age.plot and a formula syntax in the call. The geom_raster for setting up a graphics object within
ggplot is another alternative forr image plots with legends. See the last example to compare the
steps in creating an image plot using image.plot that is close to the ggplot version. Mostly this
involves resetting base graphics parameters using the par function.

Multiple images: By keeping the z1im argument the same across images one can generate the same
color scale. (See the image help file.) One useful technique for a panel of images is to just draw the
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images with good old image and then use image.plot to add a legend to the last plot. (See example
below for messing with the outer margins to make this work.) Usually a square plot (pty="s") done
in a rectangular plot region will have room for the legend stuck to the right side without any other
adjustments. See the examples below for more complicated arrangements of multiple image plots
and a summary legend. The reader is also referred to the package autoimage as a set of functions
in base to help with drawing multiple images and also more support for geographic coordinates.

Side Effects

After exiting, the plotting region may be changed to make it possible to add more features to the
plot. To be explicit, par()\$plt may be changed to reflect a smaller plotting region that has
accommodated room for the legend subplot.

If x1im and ylim are specified the pixels may overplot the axis lines. Just use the box function to
redraw them.
See Also

imagePlot, image,poly.image, filled.contour, quilt.plot, bubblePlot, plot.surface, add.image, color-
Bar, tim.colors, designer.colors

Examples
x<- 1:10
y<- 1:15

z<- outer( x,y,"+"
image.plot(x,y,z)

# or
obj<- list( x=x,y=y,z=z)
image.plot(obj, legend.lab="Sverdrups")

B s S R
# the next sequence of examples explain how to quickly

# adpat this basic plot to include morre features

# In another direction see the very last example where

# we use many of the setting in base R graphic to mimic a

# (beautiful) ggplot version.

HHHHHHARHEE A A
#

# add some points on diagonal using standard plot function
#(with some clipping beyond 10 anticipated)

points( 5:12, 5:12, pch="X", cex=3)
in general image.plot will reset the plot window so you
can add any feature that normally works in base R

e.g. lines, text, contour, boxplots,

adding breaks and distinct colors for intervals of z
with and without lab.breaks

od o o
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brk<- quantile( c(z))
image.plot(x,y,z, breaks=brk, col=rainbow(4))

# annotate legend strip with the break point values and add a label

image.plot(x,y,z, breaks=brk, col=rainbow(4),
lab.breaks=names(brk))

# compare to

zp <-quantile(c(z), c( .05, .1,.5, .9,.95))
image.plot(x,y,z,
axis.args=list( at=zp, labels=names(zp) ) )

# a log scaling for the colors

ticks<- ¢c( 1, 2,4,8,16,32)
image.plot(x,y,log(z), axis.args=list( at=log(ticks), labels=ticks))

see help file for designer.colors to generate a color scale that adapts to
quantiles of z.

Add some color scales together here is an example of 5 blues to white to 5 reds
with white being a specific size.
colorTable<- designer.colors(11, c( "blue”,"white"”, "red") )
# breaks with a gap of 10 to 17 assigned the white color

brks<- c(seq( 1, 10,,6), seq( 17, 25,,6))

image.plot( x,y,z,breaks=brks, col=colorTable)
#
#fat (5 characters wide) and short (50% of figure) color bar on the bottom
image.plot( x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE)

ETE TN

# adding a label with all kinds of additional arguments.
# use side=4 for vertical legend and side= 1 for horizontal legend
# to be parallel to axes. See help(mtext).

image.plot(x,y,z,
legend.args=1list( text="unknown units"”,
col="magenta"”, cex=1.5, side=4, line=2))

# and finally add some grid lines
dx <- x[2] - x[1]
dy <- y[2] - y[1]
xtemp<- seq( min( x)- dx/2, max(x)+ dx/2,
length.out = length(x) +1)
ytemp<- seq( min( y)- dy/2, max(y)+ dy/2,
length.out = length(y) +1)
xline( xtemp, col="grey"”, lwd=2)
yline( ytemp, col="grey”, lwd=2)

HHHEHHHEEEE A
#### example using an irregular quadrilateral grid

HHHEHHAAEEEE R A
data( RCMexample)
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image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,1])

ind<- 50:75 # make a smaller image to show bordering lines

image.plot( RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1],
border="grey50", lwd=2)

SEHHHHHHEHEEHE R R PR B EH RS HHEH R EEHBEHEEEHHEHE
###H# multiple images with a common legend

HHHHHAHHHHEEE AR AR AR
set.panel()

# Here is quick but quirky way to add a common legend to several plots.
# The idea is leave some room in the margin and then at the end
# overplot the legend in this margin

par(oma=c( 0,0,0,4)) # margin of 4 spaces width at right hand side
set.panel( 2,2) # 2X2 matrix of plots

# now draw all your plots using usual image command
for ( k in 1:4){
data<- matrix( rnorm(150), 10,15)
image( data, zlim=c(-4,4), col=tim.colors())
# and just for fun add a contour plot
contour( data, add=TRUE)
3

par(oma=c( 0,0,0,1))# reset margin to be much smaller.
image.plot( legend.only=TRUE, zlim=c(-4,4))

# image.plot tricked into plotting in margin of old setting
set.panel() # reset plotting device

Here is a more learned strategy to add a common legend to a panel of
plots consult the split.screen help file for more explanations.

For this example we draw two
images top and bottom and add a single legend color bar on the right side

o o R

# first divide screen into the figure region (left) and legend region (right)
split.screen( rbind(c(o, .8,0,1), c(.8,1,0,1)))

# now subdivide up the figure region into two parts
split.screen(c(2,1), screen=1)-> ind
zr<- range( 2,35)
# first image
screen( ind[1])
image( x,y,z, col=tim.colors(), zlim=zr)

# second image
screen( ind[2])
image( x,y,z+10, col=tim.colors(), zlim =zr)

71
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# move to skinny region on right and draw the legend strip
screen( 2)
image.plot( zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7),
col=tim.colors())

close.screen( all=TRUE)

# you can always add a legend arbitrarily to any plot;

# note that here the plot is too big for the vertical strip but the
# horizontal fits nicely.

plot( 1:10, 1:10)

image.plot( zlim=c(@,25), legend.only=TRUE)

image.plot( zlim=c(@,25), legend.only=TRUE, horizontal =TRUE)

# combining the wusual image function and adding a legend

# first change margin for some more room

## Not run:

par( mar=c(10,5,5,5))

image( x,y,z, col=topo.colors(64))

image.plot( zlim=c(0,25), nlevel=64,legend.only=TRUE, horizontal=TRUE,
col=topo.colors(64))

## End(Not run)
#

# adding a legend by automatically making room.
# and coloring points

info<- setuplLegend()

colTab<- rainbow(10)

plot( 201:210, 201:210, col=colTab, pch=16)

addLegend(info, col=colTab, zlim = c(201,210))
#

HHHEHHHEHE AR AR

#i##H# Comparison to ggplot

SRR R A

# the following example was created as way avoid doing more important
# things

# Note how close base graphics can get to reproducing the ggplot style.

## Not run:
library( viridis)
library(ggplot2)

x<- 1:20
y<- 1:24
z<- outer( x, y, "+")

# ggplot version
mesh<- expand.grid( x= x, y=y)
mesh$z <- c(z)
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ggplot( data=mesh, aes( x=x, y=y, fill=z)) +
geom_raster(interpolate= FALSE) +
scale_fill_continuous(type = "viridis"”) +
theme_bw()

# inflate range to give a margin around image
xr<- range(x) + c(-.08, .08)x diff( range(x))
yr<- range(y) + c(-.08, .08)* diff( range(y))

# changing these graphics parameters tends to push
# text closer to the axes.
par( mgp=c(1.5,.5,0),mar=c(2.5,2.5,.5,1), cex=.8)

image.plot(x,y,z,
col = viridis(128),

legend.shrink = .27,
xlim = xr,
ylim = yr,

legend.width = 1.5,

legend.mar = 3,
legend.args = list( text = "z",

cex = .8,
side = 3,
line = .5)
)
## End(Not run)
image.smooth Kernel smoother for irregular 2-d data

Description

Takes an image matrix and applies a kernel smoother to it. Missing values are handled using the
Nadaraya/Watson normalization of the kernel.

Usage

## S3 method for class 'smooth'

image(x, wght = NULL, dx = 1, dy
kernel.function = double.exp,
aRange = 1, grid = NULL, tol = 1e-08, xwidth = NULL, ywidth = NULL,
weights = NULL, theta=NULL, ...)

1,

setup.image.smooth(nrow = 64, ncol = 64, dx =1, dy = 1,
kernel.function = double.exp,
aRange = 1, xwidth = nrow * dx, ywidth = ncol * dx,
lambda=NULL, theta=NULL, ...)
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Arguments

X
wght
grid

dx
dy

kernel.function

aRange
theta
xwidth

ywidth
weights
tol

nrow
ncol
lambda

Details

image.smooth

A matrix image. Missing values can be indicated by NAs.
FFT of smoothing kernel. If this is NULL the default is to compute this object.

A list with x and y components. Each are equally spaced and define the rectan-
gular. ( see grid.list)

Grid spacing in x direction

Grid spacing in x direction

An R function that takes as its argument the squared distance between two points
divided by the bandwidth. The default is exp( -abs(x)) yielding a normal kernel

the bandwidth or scale parameter.
Same as aRange.

Amount of zero padding in horizontal dimension in units of the grid spacing. If
NULL the default value is equal to the width of the image the most conserva-
tive value but possibly inefficient for computation. Set this equal to zero to get
periodic wrapping of the smoother. This is useful to smooth a Mercator map
projection.

Same as xwidth but for the vertical dimension.
Weights to apply when smoothing.

Tolerance for the weights of the N-W kernel. This avoids kernel estimates that
are "far" away from data. Grid points with weights less than tol are set to NA.

X dimension of image in setting up smoother weights
Y dimension of image
Smoothing parameter if smoother is interpreted in a spline-like way.

Other arguments to be passed to the kernel function

The function works by taking convolutions using an FFT. The missing pixels are taken into ac-
count and the kernel smoothing is correctly normalized for the edge effects following the classical
Nadaraya-Watson estimator. For this reason the kernel doe snot have to be a desity as it is automat-
ically normalized when the kernel weight function is found for the data. If the kernel has limited
support then the width arguments can be set to reduce the amount of computation. (See example
below.) For multiple smoothing compute the fft of the kernel just once using setup.image. smooth
and pass this as the wght argument to image.smooth. this will save an FFT in computations.

Value

The smoothed image in R image format. ( A list with components X, y and z.) setup. image. smooth
returns a list with components W a matrix being the FFT of the kernel, dx, dy, xwidth and ywidth.

See Also

as.image, sim.rf, image.plot
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Examples

# first convert precip data to the 128X128 discretized image format ( with
# missing values to indicate where data is not observed)

#

out<- as.image( RMprecip$y, x= RMprecip$x, nx=128, ny=128)

# out$z is the image matrix

dx<- out$x[2]- out$x[1]
dy<- out$y[2] - out$y[1]

#
# grid scale in degrees and choose kernel bandwidth to be .25 degrees.

look<- image.smooth( out, aRange= .25)

# pass in a tophat kernel

topHat<- function( dd, h ){ ifelse( dd <= h*2, 1, @)}
## dd is the distance squared

look2<- image.smooth( out, kernel.function=topHat, h=.8)

image.plot(look)
points( RMprecip$x)
US( add=TRUE, col="grey", lwd=2)

# to save on computation, decrease the padding with zeroes
# only pad 32 grid points around the margins ofthe image.

look<- image.smooth(out$z, dx=dx, dy=dy, aRange= .25, xwidth=32#*dx,ywidth=32xdy)

# the range of these data is ~ 10 degrees and so

# with a padding of 32 grid points 32*( 10/128) = 2.5

# about 10 standard deviations of the normal kernel so there is still

# lots of room for padding

# a minimal choice might be xwidth = 4x(.25)= 1 4 SD for the normal kernel
# creating weighting object outside the call

# this is useful when one wants to smooth different data sets but on the
# same grid with the same kernel function

#

#

# random fields from smoothing white noise with this filter.

#

set.seed(123)

test.image<- matrix( rnorm(128%%x2),128,128)
dx<- .1

dy<- .8

wght<- setup.image.smooth( nrow=128, ncol=128, dx=dx, dy=dy,
aRange=.25, xwidth=2.5, ywidth=2.5)

#

look<- image.smooth( test.image, dx=dx, dy=dy, wght)
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# NOTE: this is the same as using

#

# image.smooth( test.image , 128,128), xwidth=2.5,

# ywidth=2.5, dx=dx,dy=dy, aRange=.25)

#

# but the call to image.smooth is faster because the fft of kernel
#  has been precomputed.

# periodic smoothing in the horizontal dimension

look<- image.smooth( test.image , xwidth=1.5,

ywidth=2.5, dx=dx,dy=dy, aRange=1.5)
look2<- image.smooth( test.image , xwidth=0,

ywidth=2.5, dx=dx,dy=dy, aRange=1.5)
# compare these two
set.panel( 1,2)
image.plot( look, legend.mar=7.1)
title("free boundaries")
image.plot( look2, legend.mar=7.1) # look for periodic continuity at edges!
title("periodic boundary in horizontal)
set.panel(1,1)

image2lz Some simple functions for subsetting images

Description

These function help in subsetting images or reducing its size by averaging adjecent cells.

Usage

crop.image(obj, loc=NULL,...)

which.max.matrix(z)

which.max.image(obj)

get.rectangle()

average.image(obj, Q=2)

half.image(obj)

in.poly( xd, xp, convex.hull=FALSE, inflation=1e-07)
in.poly.grid( grid.list,xp, convex.hull=FALSE, inflation=1e-07)

Arguments

obj A list in image format with the usual x,y defining the grid and z a matrix of
image values.
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loc A 2 column matrix of locations within the image region that define the sub-
set. If not specified then the image is plotted and the rectangle can be specified
interactively.

Q Number of pixels to average.

xd A 2 column matrix of locations that are the points to check for being inside a
polygon.

Xp A 2 column matrix of locations that are vertices of a polygon. The last point is

assumed to be connected to the first.
convex.hull If TRUE then the convex hull of xp is used instead of the polygon.

grid.list A list with components x and y specifing the 2-d grid values. (See help( grid.list)
for more details.)

inflation A small expansion factor to insure that points precisely on the boundaries and
vertices of the convex hull are included as members.

z A matrix of numerical values

Graphics arguments passed to image.plot. This is only relevant when loc is
NULL and the locator function is called via get.rectangle.

Details

If 1oc has more than 2 rows then the largest rectangle containing the locations is used.

crop.image Creates a subset of the image obj by taking using the largest rectangle in the locations
loc. This is useful if one needs to extract a image that is no bigger in extant than som edata
location. If locations are omitted the parent image is plotted and the locations from two mouse
clicks on the image. Returned value is an image with appropriate x,y and z components.

get.rectangle Given an image plots and waits for two mouse clicks that are returned.

which.max.image Returns a list with components x,y,z , and ind giving the location of the max-
imun and value of the maximum in the image based on the grid values and also on the indicies
of the image matrix.

average.image, half.image Takes passed image and averages the pixel values and adjusts the grid
to create an image that has a smaller number of elements. If Q=2 in average. image it has the
same effect as half. image but might be slower — if the original image is mXn then half image
will be an image (m/2)X(n/2). This begs the question what happens when m or n is odd or
when (m/Q) or (n/Q) are not integers. In either case the largest rows or columns are dropped.
(For large Q the function might be modified to drop about half the pixels at both edges.)

in.poly, in.poly.grid Determines whether the points xd,yd are inside a polygon or outside. Return
value is a logical vector with TRUE being inside or on boundary of polygon. The test expands
the polygon slightly in size (on the order of single precision zero) to include points that are
at the vertices. in.poly does not really depend on an image format however the grid ver-
sion in.poly.grid is more efficient for considering the locations on a regular grid See also
in.land.grid that is hard coded to work with the fields world map.

Author(s)
Doug Nychka



78 image2lz

See Also

drape.plot, image.plot, interp.surface, interp.surface.grid, in.land.grid

Examples

data(RMelevation)
# region defining Colorado Front Range

loc<- rbind( c(-106.5, 40.8),
c(-103.9, 37.5))

# extract elevations for just CO frontrange.
FR<- crop.image(RMelevation, loc)
image.plot( FR, col=terrain.colors(256))

which.max.image( FR)

# average cells 4 to 1 by doing this twice!
temp<- half.image( RMelevation)
temp<- half.image( temp)

# or in one step
temp<- average.image( RMelevation, Q=4)-> temp
image.plot( temp, col=terrain.colors(256))

# a polygon (no special meaning entered with just locator)

x1p<- c(

-106.2017, -104.2418, -102.9182, -102.8163, -102.8927, -103.3254, -104.7763,
-106.5581, -108.2889, -109.1035, -109.3325, -108.7980)

x2p<- c(
43.02978, 42.80732, 41.89727, 40.84566, 39.81427, 38.17618, 36.53810, 36.29542,
36.90211, 38.29752, 39.45025, 41.02767)

xp<- cbind( x1p,x2p)

image.plot( temp)
polygon( xp[,11, xp[,2]1, 1wd=2)

# find all grid points inside poly
fullset<- make.surface.grid( list( x= temp$x, y= temp$y))
ind<- in.poly( fullset,xp)

# take a look
plot( fullset, pch=".")
polygon( xp[,1], xp[,2], lwd=2)
points( fullset[ind,], pch="o0", col="red", cex=.5)

# masking out the image NA == white in the image plot
temp$z[!ind] <- NA
image.plot( temp)
polygon( xp[,1], xp[,2], lwd=2)
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# This is more efficient for large grids:
# because the large number of grid location ( xg above) is
# never explicitly created.

ind<- in.poly.grid( list( x= temp$x, y= temp$y), xp)

# now use ind in the same way as above to mask points outside of polygon

imagePlot Draws an image plot with a legend strip for the color scale based on
either a regular grid or a grid of quadrilaterals.

Description

This function combines the R image function with some automatic placement of a legend. It is
backwardly compatible with the older function image.plot. This function works by by splitting
the plotting region into two parts. Putting the image in one and the legend in the other. After the
legend is added the plot region is reset to the main image plot. This function also allows for plotting
quadrilateral cells in the image format that often arise from regular grids transformed with a map
projection or a scaling and rotation of coordinates. Finally, see the last example where this function
can create a similar graphic to the ggplot package but using all base R graphics. Two additional
functions are provided to add color scale to other kinds of figures.

Usage

imagePlot(..., add = FALSE, breaks = NULL, nlevel = 64, col =
NULL, horizontal = FALSE, legend.shrink = 0.9,
legend.width = 1.2, legend.mar = ifelse(horizontal,
3.1, 5.1), legend.lab = NULL, legend.line = 2,
graphics.reset = FALSE, bigplot = NULL, smallplot =
NULL, legend.only = FALSE, lab.breaks = NULL,
axis.args = NULL, legend.args = NULL, legend.cex = 1,
midpoint = FALSE, border = NA, lwd = 1,
lowerTriangle = FALSE,
upperTriangle = FALSE, verbose = FALSE)

colorBar(breaks, smallplot, colorTable, horizontal = FALSE,
lab.breaks, axis.args, legend.lab, legend.line = 2,
legend.args, legend.cex = 1, lowerTriangle = FALSE,
upperTriangle = NULL)

setupLegend( horizontal = FALSE,
legend.shrink = 0.9,
legend.width = 1.2,
legend.mar = ifelse(horizontal, 3.1, 5.1)
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addLegend(legendLayout, col, zlim, axis.args = NULL, legend.args

= NULL, legend.cex = 1, legend.lab = NULL, legend.line
= 2)

addColorBarTriangle(lowerColor=NULL,

Arguments

add

axis.args

bigplot

border

breaks

col

colorTable

graphics.reset

horizontal

lab.breaks

upperColor=NULL,
horizontal=TRUE)

The usual arguments to the image function as x,y,or z or as a list with x,y,z as
components. One can also include a breaks argument for an unequal spaced
color scale with color scale boundaries at the breaks (see example below). If a
"quadrilateral grid", arguments must be explicitly x,y and z with x, and y being
matrices of dimensions equal to, or one more than, z giving the grid locations.
The basic concept is that the coordinates of x and y still define a grid but the
image cells are quadrilaterals rather than being restricted to rectangles. NOTE:
graphical argruments passed here will only have impact on the image plot. To
change the graphical defaults for the legend use the individual legend arguments
and/or legend. arg listed below.

If true add image and a legend strip to the existing plot.

Additional arguments for the axis function used to create the legend axis. (See
example below adding a log scaling.)

Plot coordinates for image plot. If not passed these will be determined within
the function.

This only works if x and y are matrices — if NA the quadralaterals will have a
border color that is the same as the interior color. Otherwise this specifies the
color to use.

Break points in sorted order to indicate the intervals for assigning the colors.
Note that if there are nlevel colors there should be (nlevel+1) breakpoints. If
breaks is not specified (nlevel+1) equally spaced breaks are created where the
first and last bin have their midpoints at the minimum and maximum values in z
oratzlim.

Color table to use for image (See help file on image for details.). Default is
a pleasing range of 64 divisions suggested by Tim Hoar and is similar to the
MATLAB (TM) jet color scheme. Note that if breaks is specified there must be
one less color specified than the number of breaks.

The colors for the color scale — the same as col.

If FALSE (default) the plotting region ( plt in par) will not be reset and one can
add more information onto the image plot. (e.g. using functions such as points
or lines.) If TRUE will reset plot parameters to the values before entering the
function.

If FALSE (default) legend will be a vertical strip on the right side. If TRUE the
legend strip will be along the bottom.

If breaks are supplied these are text string labels to put at each break value. This
feature is useful, for example, to label the legend axis on a transformed scale
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legend.only

legend.args

legend. cex

legend.line

legend.mar

legend. lab

legend. shrink

legend.width

legendLayout
lowerColor

lowerTriangle

lwd

midpoint

nlevel

smallplot

upperColor
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such as logs. It is also used in the bubblePlot function to label the colors when
7 is categorical.

If TRUE just add the legend to a the plot in the plot region defined by the coor-
dinates in smallplot. In the absence of other information the range for the legend
is determined from the z1im argument.

Arguments for a complete specification of the legend label, e.g. if you need to
the rotate text or other details. This is in the form of list and is just passed to the
mtext function and you will need to give both the side and line arguments for
positioning. This usually will not be needed. (See example below.)

Character expansion to change size of the legend label.

Distance in units of character height (as in mtext) of the legend label from the
color bar. Make this larger if the label collides with the color axis labels.

Width in characters of legend margin that has the axis. Default is 5.1 for a
vertical legend and 3.1 for a horizontal legend.

Label for the axis of the color legend. Default is no label as this is usual evident
from the plot title.

Amount to shrink the size of legend relative to the full height or width of the
plot.

Width in characters of the legend strip. Default is 1.2, a little bigger that the
width of a character.

The list returned by setupLegend used to layout the legend after a plot is drawn.
The name of a color for the triangle added to the upper end of the color bar.

If TRUE a triangle will be added to the lower end of the color bar using the first
color in the color table. (i.e. the color of col[1]). If FALSE a normal color
strip will be drawn.

Line width of bordering lines around pixels. This might need to be set less than
1.0 to avoid visible rounding of the pixel corners.

This option is for the case of unequally spaced grids with x and y being matrices
of grid point locations. If FALSE (default) the quadralaterals will be extended
to surround the z locations as their midpoints. If TRUE z values will be av-
eraged to yield a midpoint value and the original grid points be used to define
the quadralaterals. (See help on poly.image for details). In most cases midpoint
should be FALSE to preserve exact values for z and let the grid polygons be
modified.

Number of color levels used in legend strip

Plot coordinates for legend strip. If not passed these will be determined within
the function. Be sure to leave room for the axis labels. For example, if the
legend is on the right side smallplot=c(.85,.9,0,1) will leave (.1 in plot
coordinates) for the axis labels to the right of the color strip. This argument
is useful for drawing a plot with the legend that is the same size as the plots
without legends.

The color for the triangle added to the upper end of the color bar.
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upperTriangle If TRUE a triangle added to the upper end of the color bar using the last color in
the color table. (i.e. the col argument). If FALSE a normal color strip will be

drawn.
verbose If TRUE prints intermediate information about setting up plots (for debugging).
zlim For addLegend, the range of color scale. Default is to use range set by most

recent call to color.scale

Details

This is a function using base R graphics. The coding was done to make it easier for users to see how
this function works and to modify. This will have the same functionaity as the older image.plot but
calls the colorBar function in place of direct coding in the main function. The functions colorBar
and addColorBarTriangle are used internally and included for completeness.

How this function works: The strategy for imagePlot is simple: divide the plotting region into
two smaller regions bigplot and smallplot. The image goes in one and the legend in the other.
This way there is always room for the legend. Some adjustments are made to this rule by not shrink-
ing the bigplot if there is already room for the legend strip and also sticking the legend strip close
to the image plot. The functionality has evolved over many uses of image plots for geophysical data
and the examples given below show the flexibility of this function. Also this function is backwardly
compatible with the older image.plot but includes adding endcap trianglesto the color bar to indi-
cate values beyond the range of the color scale. Also the function uses colorBar to add the legend
strip and perhaps this function is useful on its own in other applictions.

Figure real estate One can specify the plot regions explicitly by bigplot and smallplot if the
default choices do not work.(Note that these in figure coordinates. ) There may be problems with
small plotting regions in fitting both of these elements into the plot region and one may have to
change the default character sizes or margins to make things fit. Sometimes this function will not
reset the type of margins correctly and the "null" call par (mar = par(”mar"”)) may help to fix this
issue.

The text is too small! This always seems to happen as one is rushing to finish a talk and the figures
have tiny default axis labels. Try just calling the function fields.style before plotting. List out
this function to see what is changed, however, all text is increased by 20% in size.

Why “imagePlot" and not “image''? The R Base function image is very useful but it is awkward
to place a legend quickly. However, that said if you are drawing several image plots and want a
common legend use the image function and just just use imagePlot to add the legend. See the
example in the help file. Note that you can use image to draw a bunch of images and then follow
with imagePlot and legend.only=TRUE to add a common legend. (See examples below.)

Almost cloropleths too! This image function is slightly different than a cloropleth map because
the legend is assuming that a continous scale has been discretized into a series of colors. To use the
imagePlot function to create a cloropleth graphic involves an extra step of first recoding the image
matrix into a set of integers that correspond to the colors in the color table. With this new matrix
as the image plot use the legend.args list to place labels for each of the colors beside the color
strip. For example, if one has used N colors in col then the locations of the color strip run from 1
to N and one could place the N color labels at the positions (1:N) along the axis. Note that this two
step technique could also one adpated if one had a nonlinear color scale and wanted to identify the
values.

Relationship of x, y and z: If the z component is a matrix then the user should be aware that this
function locates the matrix element z[i,j] at the grid locations (x[i], y[j]) this is very different than
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simply listing out the matrix in the usual row column tabular form. See the example below for
details on the difference in formatting. What does one do if you do not really have the "z" values on
aregular grid? See the functions quilt.plot.Rd and as. image to discretise irregular observations
to a grid. If the values makes sense as points on a smooth surface see Tps and fastTps for surface

interpolation.

Adding separate color to indicate the grid box boundaries. Sometimes you want to show to the
grid box borders to emphasize this is not a smooth surface. To our knowledge there is no easy way
to do this as an option in image. But if your image is formatted in the "poly image" style where x
and y are also matrices you can use the polyimage (see the border argument above) option to draw
in boundaries.

Grids with unequally spacing — quadrialteral pixels: If x and y are matrices that are a smooth
transformation of a regular grid then z[i,j] can be interperted as representing the average value in
a quadrilateral that is centered at x[i,j] and y[i,j] (midpoint TRUE). The details of how this cell is
found are buried in poly. image but it it essentially found using midpoints between the centers. If
midpoint is FALSE then x and y are interpreted as the corners of the quadrilateral cells. But what
about z? The four values of z are now averaged to represent a value at the midpoint of the cell and
this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded
output of geophysical models where the regular grid is defined according to one map projection but
the image plotting is required in another projection. Typically the regular grid becomes distorted
in a smooth way when this happens. See the regional climate example for a illustration of this
application. One can add border colors in this case easily because these choices are just passed onto
the polygon function.

Adding the pixel grid for rectangular images: For adding the grid of pixel borders to a rectangular
image try this example after calling imagePlot.

dx <- x[2] - x[1]

dy <- y[2] - y[1]

xtemp<- seq( min( x)- dx/2, max(x)+ dx/2,
length.out = length(x) +1)

ytemp<- seq( min( y)- dy/2, max(y)+ dy/2,
length.out = length(y) +1)

xline( xtemp, col="grey"”, lwd=2)

yline( ytemp, col="grey”, lwd=2)

Here x and y here are the x and y grid values from the image list.

Fine tuning color scales: This function gives some flexibility in tuning the color scale to fit the
rendering of z values. This can either be specially designed color scale with specific colors ( see
help on designer.colors), positioning the colors at specific points on the [0,1] scale, or mapping
distinct colors to intervals of z. The examples below show how to do each of these. In addition, by
supplying lab.break strings or axis parameters one can annotate the legend axis in an informative
matter.

Adding just a legend strip/ color bar: Note that to add just the legend strip all the numerical infor-
mation one needs is the z1im argument and the color table! See examples for tricks in positioning.

About color tables: We like tim.colors(the default) as default color scales and so if this what
you use this can be omitted. Unfortunately this is not the default for the image function. Another
important color scale is viridis() from the viridis package. It seems that by and large everyone
seems to react postively to viridis — guess that is the point!
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The topographic color scale (topo.colors) is also a close second and also see snow.colors
showing our geophysical bias. Users may find larry.colors useful for coding distinct regions
in the style of a cloropleith map. See also terrain.colors for a subset of the topo ones and
designer.colors to "roll your own" color table. One nice option in this last function is to fix
color transitions at particular quantiles of the data rather than at equally spaced intervals. For color
choices see how the nlevels argument figures into the legend and main plot number of colors. Also
see the colors function for a listing of all the colors that come with the R base environment.

The details of placing the legend and dividing up the plotting real estate: It is surprising how
hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in de-
vice coordinates. The plot region is assumed to be [0,1]X[0,1] and plotting regions are defined as
rectangles within this square. We found these easier to work with than user coordinates.

legend.width and legend.mar are in units of character spaces. These units are helpful in thinking
about axis labels that will be put into these areas. To add more or less space between the legend and
the image plot alter the mar parameters. The default mar settings (5.1,5.1,5.1,2.1) leaves 2.1 spaces
for vertical legends and 5.1 spaces for horizontal legends.

There are always problems with default solutions to placing information on graphs but the choices
made here may be useful for most cases. The most annoying thing is that after using imagePlot
and adding information the next plot that is made may have the slightly smaller plotting region
set by the image plotting. The user should set reset.graphics=TRUE to avoid the plotting size
from changing. The disadvantage, however, of resetting the graphics is that one can no longer add
additional graphics elements to the image plot. Note that filled.contour always resets the graphics
but provides another mechanism to pass through plotting commands. Apparently filled.contour,
while very pretty, does not work for multiple plots.

About setup and add legend functions These came about to create a scatterplot in Base R Graphics
where the points are colored with a color scale and the scale can be plotted as part of the figure See
bubblePlot for a version of this kind of figure. The function setuplLegend should be used first
to create enough space to add a color scale later. After plotting then addLegend will add the color
scale. Note that if the color scale has been created by the color.scale function the last call to this
function will use the color scale and limits created in color.scale.

In summary here is an example of using these functions with the colors in mind:

info<- setupLegend()

colTab<- rainbow(10)

plot( 1:10, 201:210, col=colTab, pch=16)
addLegend(info, col=colTab, zlim = c(1,10))

Here is one where four colors are mapped to specific values (ala image).

info<-setupLegend()

colTab= color.scale(201:210, rainbow(4))

plot( 1:10, 201:210, col=colTab, pch=16 )
addLegend(info, col=colTab, zlim = c(201,210) )

More complete graphics languages, such as that in ggplot, do not need such functions because the
entire graphics segment is parsed to create the complete figure. In this way room for a color scale
can be created automatically. The functions proposed here are a simple work around to create these
figures using base R graphics.
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Other packages levelplot that is part of the lattice package has a very similar function to im-
agePlot and a formula syntax in the call. The geom_raster for setting up a graphics object within
ggplot is another alternative for image plots with legends. See the last example to compare the
steps in creating an image plot using imagePlot that is close to the ggplot version. Mostly this
involves resetting base graphics parameters using the par function but gives an appreciate of the
complexity built in the ggplot default graphic choices.

Multiple images single color bar: By keeping the z1im argument the same across images one
can generate the same color scale. (See the image help file.) One useful technique for a panel of
images is to just draw the images with good old image and then use imagePlot to add a legend
to the last plot. (See example below for messing with the outer margins to also make this work.)
Moreover, a square plot (pty="s") done in a rectangular plot region will have room for the legend
stuck to the right side without any other adjustments. See the examples below for more complicated
arrangements of multiple image plots and a summary color bar. The reader is also referred to the
package autoimage as a set of functions in base to help with drawing multiple images and also
more support for geographic coordinates.

Side Effects

After exiting, the plotting region may be changed to make it possible to add more features to the
plot. To be explicit, par()\$plt may be changed to reflect a smaller plotting region that has
accommodated room for the legend subplot.

If x1im and ylim are specified the pixels may overplot the axis lines. Just use the box function to
redraw them.

See Also

image, poly.image, filled.contour, quilt.plot, plot.surface, add.image, colorbar.plot, tim.colors, de-
signer.colors

Examples

x<- 1:10

y<- 1:15

z<- outer( x,y,"+")
imagePlot(x,y,z)

# or
obj<- list( x=x,y=y,z=z)
imagePlot(obj, legend.lab="Sverdrups")

# to test add some points on diagonal using standard plot function
# (with some clipping beyond 10 anticipated)

points( 5:12, 5:12, pch="X", cex=3)
in general imagePlot will reset the plot window so you

can add any feature that normally works in base R
e.g. lines, text, contour, boxplots,

ETE Ty
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HHHEHHAREERE R R R
# the next sequence of examples explain how to quickly

# adapt this basic plot to include more features
HEHHHHHHEEHEHEHEEEEH A HEHHBHEEHHEHHHHHREEEEHEEEEEHHEHHEERERE
#

# adding explicit breaks and distinct colors for intervals of z

brk<- quantile(c(z), c(o, .1,.25, .5, .75, .9, 1.9))
imagePlot(x,y,z, breaks=brk, col=topo.colors(6))

# last bins are depicted as end triangles on the color bar.
imagePlot(x,y,z, breaks=brk, col=topo.colors(6),
lowerTriangle=TRUE, upperTriangle=TRUE)

NOTE: the image function does not use -Inf and Inf for the breaks argument
and so if one wants the triangles at ends to indicate values beyond the
range of the color bar one has to create the breaks "by hand” when the

two outer bins will define the values for the triangles.

* % R

# annotate legend strip with the break point values and add a label
imagePlot(x,y,z, breaks=brk, col=rainbow(6),
lab.breaks=names(brk))

# compare to default color scale and special labels on color bar

zp <-quantile(c(z), c( .05, .1,.25, .5,.75, .9,.95))
imagePlot(x,y, z,
axis.args=list( at=zp, labels=names(zp) ) )

# a log scaling for the colors

ticks<- c( 1, 2,4,8,16,32)
imagePlot(x,y,log(z), axis.args=list( at=log(ticks), labels=ticks))

see help(designer.colors) to generate a color scale that adapts to

quantiles of z.

Add some color scales together here is an example of5 blues to white to 5 reds
with white being a specific size.

H oH H H

colorTable<- designer.colors(11, c( "blue”,"white”, "red") )

# breaks with a gap of 10 to 17 assigned the white color
brks<- c(seq( 1, 10,,6), seq( 17, 25,,6))
imagePlot( x,y,z,breaks=brks, col=colorTable)
#
#fat (5 characters wide) and short (50% of figure) color bar on the bottom
imagePlot( x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE)

# adding a label and all kinds of additional arguments to color bar
# use side=4 for vertical legend and side= 1 for horizontal legend

# to be parallel to axes. See help(mtext).

imagePlot(x,y,z,
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legend.args=1list( text="unknown units”,
col="magenta"”, cex=1.5, side=4, line=2))

# and finally add some grid lines
dx <- x[2] - x[1]
dy <- y[2] - y[1]
xtemp<- seq( min( x)- dx/2, max(x)+ dx/2,
length.out = length(x) +1)
ytemp<- seq( min( y)- dy/2, max(y)+ dy/2,
length.out = length(y) +1)
xline( xtemp, col="grey"”, lwd=2)
yline( ytemp, col="grey”, lwd=2)

HHHHHHAAEEE A
#### example using an irregular quadrilateral grid

HHHEHHAEEEEE R R A
data( RCMexample)

imagePlot( RCMexample$x, RCMexample$y, RCMexample$z[,,1]1)

ind<- 50:75 # make a smaller image to show bordering lines

imagePlot( RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1],
border="grey50", lwd=2)

AR
#### multiple images with a common legend
B S S s s
set.panel()

# Here is quick but quirky way to add a common legend to several plots.
# The idea is leave some room in the margin and then at the end
# overplot the legend in this margin

par(oma=c( 0,0,0,4)) # margin of 4 spaces width at right hand side
set.panel( 2,2) # 2X2 matrix of plots

# now draw all your plots using usual image command
for ( k in 1:4){
data<- matrix( rnorm(150), 10,15)
image( data, zlim=c(-4,4), col=tim.colors())
# and just for fun add a contour plot
contour( data, add=TRUE)
3

par(oma=c( 0,0,0,1))# reset margin to be much smaller.
imagePlot( legend.only=TRUE, zlim=c(-4,4))

# imagePlot tricked into plotting in margin of old setting
set.panel() # reset plotting device
#

# Here is a more learned strategy to add a common legend to a panel of
# plots. Consult the split.screen help file for more explanations.

87
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# For this example we draw two
# images top and bottom and add a single legend color bar on the right side

# first divide screen into the figure region (left) and legend region (right)
split.screen( rbind(c(0, .8,0,1), c(.8,1,0,1)))

# now subdivide up the figure region into two parts
split.screen(c(2,1), screen=1)-> ind
zr<- range( 2,35)
# first image
screen( ind[1])
image( x,y,z, col=tim.colors(), zlim=zr)

# second image
screen( ind[21)
image( x,y,z+10, col=tim.colors(), zlim =zr)

# move to skinny region on right and draw the legend strip
screen( 2)
imagePlot( zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7),
col=tim.colors())

close.screen( all=TRUE)

# you can always add a legend arbitrarily to any plot;

# note that here the plot is too big for the vertical strip but the
# horizontal fits nicely.

plot( 1:10, 1:10)

imagePlot( zlim=c(@,25), legend.only=TRUE)

imagePlot( z1lim=c(@,25), legend.only=TRUE, horizontal =TRUE)

# combining the wusual image function and adding a legend

# first change margin for some more room

## Not run:

par( mar=c(10,5,5,5))

image( x,y,z, col=topo.colors(64))

imagePlot( zlim=c(0,25), nlevel=64,legend.only=TRUE,
horizontal=TRUE,
col=topo.colors(64))

## End(Not run)
#
# adding a legend by automatically making room.
# and coloring points
info<- setuplLegend()
colTab<- rainbow(10)
plot( 201:210, 201:210, col=colTab, pch=16)
addLegend(info, col=colTab, zlim = c(201,210))

HHHEHHARHEE A A
#i##H# Comparison to ggplot
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HEHHHHHHEEEEHEHEEEEHEHHHEHEEEHEHEEEE R B

The following example was created as way avoid doing more important
things

Note how close base graphics can get to reproducing the ggplot style.
and how a first cut imagePlot(x,y,z, col = viridis(128) ) is probably
acceptable in most cases for fast EDA

Surprisingly the hardest feature is to add the grey gird lines behind
the image. I (DWN) don't know how to do it!

e R

## Not run:
library( viridis)
library( ggplot2)

x<- 1:20
y<- 1:24
z<- outer( x, y, "+")

# ggplot version
mesh<- expand.grid( x= x, y=y)
mesh$z <- c(z)
ggplot( data=mesh, aes( x=x, y=y, fill=z)) +
geom_raster(interpolate= FALSE) +
scale_fill_continuous(type = "viridis") +
theme_bw()
# reset to a single plot
set.panel()

# inflate range to give a margin around image
xr<- range(x) + c(-.08, .08)* diff( range(x))
yr<- range(y) + c(-.08, .08)x diff( range(y))

# changing these graphics parameters tends to push
# text closer to the axes.

par( mgp=c(1.5,.5,0), mar=c(2.5,2.5,.5,1), cex=.8)

imagePlot(x,y, z,

col = viridis(128),
legend.shrink = .27,

xlim = xr,

ylim = yr,

legend.width = 1.5,
legend.mar = 3,
legend.args = list( text = "z",
cex = .8,

side = 3,
line

1
($2]
~

## End(Not run)
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interp.surface Fast bilinear interpolator from a grid.

Description
Uses bilinear weights to interpolate values on a rectangular grid to arbitrary locations or to another
grid.

Usage

interp.surface(obj, loc)
interp.surface.grid(obj, grid.list)

Arguments
obj A list with components x,y, and z in the same style as used by contour, persp,
image etc. x and y are the X and Y grid values and z is a matrix with the
corresponding values of the surface
loc A matrix of (irregular) locations to interpolate. First column of loc isthe X
coordinates and second is the Y’s.
grid.list A list with components x and y describing the grid to interpolate. The grids do
not need to be equally spaced.
Details

Here is a brief explanation of the interpolation: Suppose that the location, (locx, locy) lies in be-
tween the first two grid points in both x an y. That is locx is between x1 and x2 and locy is between
yl and y2. Let ex= (11-x1)/(x2-x1) ey= (12-y1)/(y2-y1). The interpolant is

(1-ex)(1-ey)*z11 + (1- ex)(ey)*z12 + (ex)(1-ey)*z21 + ( ex)(ey)*z22
Where the z’s are the corresponding elements of the Z matrix.

Note that bilinear interpolation can produce some artifacts related to the grid and not reproduce
higher behavior in the surface. For, example the extrema of the interpolated surface will always
be at the parent grid locations. There is nothing special about about interpolating to another grid,
this function just includes a for loop over one dimension and a call to the function for irregular
locations. It was included in fields for convenience. since the grid format is so common.

See also the akima package for fast interpolation from irrgeular locations. Many thanks to Jean-
Olivier Irisson for making this code more efficient and concise.
Value

An vector of interpolated values. NA are returned for regions of the obj\$z that are NA and also for
locations outside of the range of the parent grid.
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See Also

image.smooth, as.surface, as.image, image.plot, krig.image,Tps

Examples

#
# evaluate an image at a finer grid
#

data( lennon)
# create an example in the right list format like image or contour
obj<- list( x= 1:20, y=1:20, z= lennon[ 201:220, 201:220])

set.seed( 123)

# lots of random points

N<- 500

loc<- cbind( runif(N)*20, runif(N)*20)

z.new<- interp.surface( obj, loc)

# compare the image with bilinear interpolation at scattered points
set.panel(2,2)

image.plot( obj)

quilt.plot( loc, z.new)

# sample at 100X100 equally spaced points on a grid
grid.list<- list( x= seq( 1,20,,100), y= seq( 1,20,,100))
interp.surface.grid( obj, grid.list)-> look

# take a look

set.panel(2,2)

image.plot( obj)
image.plot( look)

Krig Kriging surface estimate

Description

Fits a surface to irregularly spaced data. The Kriging model assumes that the unknown function is
a realization of a Gaussian random spatial processes. The assumed model is additive Y = P(x) +
Z(X) + e, where P is a low order polynomial and Z is a mean zero, Gaussian stochastic process with
a covariance that is unknown up to a scale constant. The main advantages of this function are the
flexibility in specifying the covariance as an R language function and also the supporting functions
plot, predict, predictSE, surface for subsequent analysis. Krig also supports a correlation model
where the mean and marginal variances are supplied.
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Usage
Krig(x, Y, cov.function = "stationary.cov”, lambda = NA, df
= NA, GCV = FALSE, Z = NULL, cost = 1, weights = NULL,
m = 2, nstep.cv = 200, scale.type = "user”, x.center =

rep(@, ncol(x)), x.scale = rep(1, ncol(x)), sigma =
NA, tau2 = NA, method = "REML", verbose = FALSE,
null.function = "Krig.null.function”, wght.function =
NULL, offset = @, na.rm = TRUE, cov.args = NULL,
chol.args = NULL, null.args = NULL, wght.args = NULL,
W = NULL, give.warnings = TRUE, mean.obj = NA, sd.obj
= NA, ...)

## S3 method for class 'Krig'
fitted(object,...)

## S3 method for class 'Krig'
coef(object,...)

resid.Krig(object,...)

Arguments
chol.args Arguments to be passed to the cholesky decomposition in Krig.engine.fixed.
The default if NULL, assigned at the top level of this function, is list( pivot=FALSE).
This argument is useful when working with the sparse matrix package.
cov.args A list with the arguments to call the covariance function. (in addition to the

locations)

cov.function  Covariance function for data in the form of an R function (see Exp.simple.cov
as an example). Default assumes that correlation is an exponential function
of distance. See also stationary.cov for more general choice of covariance
shapes. exponential. cov will be faster if only the exponential covariance form
is needed.

cost Cost value used in GCV criterion. Corresponds to a penalty for increased num-
ber of parameters. The default is 1.0 and corresponds to the usual GCV function.

df The effective number of parameters for the fitted surface. Conversely, N- df,
where N is the total number of observations is the degrees of freedom associated
with the residuals. This is an alternative to specifying lambda and much more
interpretable. NOTE: GCV argument defaults to TRUE if this argument is used.

GCV If TRUE matrix decompositions are done to allow estimating lambda by GCV or
REML and specifying smoothness by the effective degrees of freedom. So the
GCYV switch does more than just supply a GCV estimate. Also if lambda or df
are passed the estimate will be evaluated at those values, not at the GCV/REML
estimates of lambda. If FALSE Kriging estimate is found under a fixed lambda
model.
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give.warnings

lambda

method
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nstep.cv

null.args
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sd.obj
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If TRUE warnings are given in gcv grid search limits. If FALSE warnings are
not given. Best to leave this TRUE! This argument is set ot FALSE if warn is
less than zero in the top level, R options function. See options()$warn

Smoothing parameter that is the ratio of the error variance (tau**2) to the scale
parameter of the covariance function (sigma). If omitted this is estimated by
GCYV ( see method below).

Determines what "smoothing" parameter should be used. The default is to es-
timate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure
error and REML. The differences are explained below.

Object to predict the mean of the spatial process. This used in when fitting a
correlation model with varying spatial means and varying marginal variances.
(See details.)

A polynomial function of degree (m-1) will be included in the model as the drift
(or spatial trend) component. The "m" notation is from thin-plate splines where
m is the derivative in the penalty function. With m=2 as the default a linear
model in the locations will be fit a fixed part of the model.

If TRUE NAs will be removed from the y vector and the corresponding rows of
x — with a warning. If FALSE Krig will just stop with a message. Once NAs are
removed all subsequent analysis in fields does not use those data.

Number of grid points for the coarse grid search to minimize the GCV RMLE
and other related criteria for finding lambda, the smoothing parameter. Default
is 200, fairly large to avoid some cases of closely spaced local minima. Eval-
uations of the GCV and related objective functions are cheap given the matrix
decompositions described below.

Extra arguments for the null space function null. function. If fields.mkpoly
is passed as null. function then this is set to a list with the value of m. So the
default is use a polynomial of degree m-1 for the null space (fixed part) of the
model.

An R function that creates the matrices for the null space model. The default is
fields.mkpoly, an R function that creates a polynomial regression matrix with all
terms up to degree m-1. (See Details)

The offset to be used in the GCV criterion. Default is 0. This would be used
when Krig is part of a backfitting algorithm and the offset is other model degrees
of freedom from other regression components.

Scale factor for covariance.

This is a character string among: "range", "unit.sd", "user", "unscaled". The
independent variables and knots are scaled to the specified scale.type. By default
no scaling is done. This usuall makes sense for spatial locations. Scale type of
"range" scales the data to the interval (0,1) by forming (x-min(x))/range(x) for
each x. Scale type of "unit.sd" Scale type of "user" allows specification of an
x.center and x.scale by the user. The default for "user" is mean O and standard
deviation 1. Scale type of "unscaled" does not scale the data.

Object to predict the marginal standard deviation of the spatial process.

Variance of the errors, often called the nugget variance. If weights are specified
then the error variance is tau2 divided by weights. Note that lambda is defined
as the ratio tau2/sigma.
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verbose If true will print out all kinds of intermediate stuff. Default is false, of course as
this is used mainly for debugging.

weights Weights are proportional to the reciprocal variance of the measurement error.

The default is equal weighting i.e. vector of unit weights.

wght.function An R function that creates a weights matrix to the observations. This is only
needed if the weight matirx has off diagonal elements. The default is NULL
indicating that the weight matrix is a diagonal, based on the weights argument.

(See details)

W The observation weight matrix.

wght.args Optional arguments to be passed to the weight function (wght.function) used to
create the observation weight matrix.

X Matrix of independent variables. These could the locations for spatial data or
the indepedent variables in a regression.

x.center Centering values to be subtracted from each column of the x matrix.

x.scale Scale values that are divided into each column after centering.

Y Vector of dependent variables. These are the values of the surface (perhaps with

measurement error) at the locations or the dependent response in a regression.

Z A vector of matrix of covariates to be include in the fixed part of the model. If
NULL (default) no addtional covariates are included.

Optional arguments that appear are assumed to be additional arguments to the
covariance function. Or are included in methods functions (resid, fitted, coef) as
a required argument.

object A Krig object

Details

This function produces a object of class Krig. With this object it is easy to subsequently predict
with this fitted surface, find standard errors, alter the y data ( but not x), etc.

The Kriging model is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k

where ".k" means subscripted by k, Y is the dependent variable observed at location x.k, P is a low
order polynomial, Z is a mean zero, Gaussian field with covariance function K and e is assumed to
be independent normal errors. The estimated surface is the best linear unbiased estimate (BLUE)
of f(x)=P(x) + Z(x) given the observed data. For this estimate K, is taken to be sigma*cov.function
and the errors have variance tau**2. In more conventional geostatistical terms sigma is the "sill"
if the covariance function is actually a correlation function and tau**2 is the nugget variance or
measure error variance (the two are confounded in this model.) If the weights are given then the
variance of e.k is tau**2/ weights.k . In the case that the weights are specified as a matrix, W, using
the wght.function option then the assumed covariance matrix for the errors is tau**2 Wi, where Wi
is the inverse of W. It is straightforward to show that the estimate of f only depends on tau and sigma
through the ratio lambda = tau**2/ sigma. This parameter, termed the smoothing parameter plays
a central role in the statistical computations within Krig. See also the help for thin plate splines,
(Tps) to get another perspective on the smoothing parameter.

This function also supports a modest extension of the Generalized Kriging model to include other
covariates as fixed regression type components. In matrix form Y =Zb + F + E where Z is a matrix
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of covariates and b a fixed parameter vector, F the vector of function values at the observations
and E a vector of errors. The The Z argument in the function is the way to specify this additional
component.

If the parameters sigma and tau2 are omitted in the call, then they are estimated in the following way.
If lambda is given, then tau?2 is estimated from the residual sum of squares divided by the degrees of
freedom associated with the residuals. Rho is found as the difference between the sums of squares
of the predicted values having subtracted off the polynomial part and tau2. These estimates are
the MLE’s under Gaussian assumptions on the process and errors. If lambda is also omitted is it
estimated from the data using a variety of approaches and then the values for tau and sigma are
found in the same way from the estimated lambda.

A useful extension of a stationary correlation to a nonstationary covariance is what we term a
correlation model. If mean and marginal standard deviation objects are included in the call. Then
the observed data is standardized based on these functions. The spatial process is then estimated
with respect to the standardized scale. However for predictions and standard errors the mean and
standard deviation surfaces are used to produce results in the original scale of the observations.

The GCV function has several alternative definitions when replicate observations are present or if
one uses a reduced set knots. Here are the choices based on the method argument:

GCV: leave-one-out GCV. But if there are replicates it is leave one group out. (Wendy and Doug
prefer this one.)

GCV.one: Really leave-one-out GCV even if there are replicate points. This what the old tps
function used in FUNFITS.

rmse: Match the estimate of tau**2 to a external value ( called rmse)

pure error: Match the estimate of tau®*2 to the estimate based on replicated data (pure error estimate
in ANOVA language).

GCV.model: Only considers the residual sums of squares explained by the basis functions.

REML: The process and errors are assumed to the Gaussian and the likelihood is concentrated (or
profiled) with respect to lambda. The MLE of lambda is found from this criterion. Restricted means
that the likelihood is formed from a linear transformation of the observations that is orthogonal to
the column space of P(x).

WARNING: The covariance functions often have a nonlinear parameter(s) that often control the
strength of the correlations as a function of separation, usually referred to as the range parameter.
This parameter must be specified in the call to Krig and will not be estimated.

Value

A object of class Krig. This includes the predicted values in fitted.values and the residuals in
residuals. The results of the grid search to minimize the generalized cross validation function are
returned in gcv.grid.

The coef.Krig function only returns the coefficients, "d", associated with the fixed part of the model
(also known as the null space or spatial drift).

call Call to the function
y Vector of dependent variables.
X Matrix of independent variables.

weights Vector of weights.
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knots
transform
np

nt
matrices

gcv.grid

lambda.est

cost

m

eff.df
fitted.values
residuals
lambda

yname
cov.function
beta

d

Locations used to define the basis functions.

List of components used in centering and scaling data.
Total number of parameters in the model.

Number of parameters in the null space.

List of matrices from the decompositions (D, G, u, X, qr.T).

Matrix of values from the GCV grid search. The first column is the grid of
lambda values used in the search, the second column is the trace of the A matrix,
the third column is the GCV values and the fourth column is the estimated value
of tau conditional on the vlaue of lambda.

A table of estimated smoothing parameters with corresponding degrees of free-
dom and estimates of tau found by different methods.

Cost value used in GCV criterion.

Order of the polynomial space: highest degree polynomial is (m-1). This is a
fixed part of the surface often referred to as the drift or spatial trend.

Effective degrees of freedom of the model.
Predicted values from the fit.
Residuals from the fit.

Value of the smoothing parameter used in the fit. Lambda is defined as tau**2/sigma.
See discussion in details.

Name of the response.
Covariance function of the model.
Estimated coefficients in the ridge regression format

Estimated coefficients for the polynomial basis functions that span the null space

fitted.values.null

trace

c
coefficients
just.solve
tauHat

tau2

sigma

mean.var

best.model

References

Fitted values for just the polynomial part of the estimate

Effective number of parameters in model.

Estimated coefficients for the basis functions derived from the covariance.
Same as the beta vector.

Logical describing if the data has been interpolated using the basis functions.
Estimated standard deviation of the measurement error (nugget effect).
Estimated variance of the measurement error (tauHat**2).

Scale factor for covariance. COV(h(x),h(x)) = sigmaxcov.function(x,x) If
the covariance is actually a correlation function then sigma is also the "sill".

Normalization of the covariance function used to find sigma.

Vector containing the value of lambda, the estimated variance of the measure-
ment error and the scale factor for covariance used in the fit.

See "Additive Models" by Hastie and Tibshirani, "Spatial Statistics" by Cressie and the FIELDS

manual.
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See Also

summary.Krig, predict.Krig, predictSE.Krig, predictSurfaceSE, predictSurface, plot.Krig, surface.Krig

Examples

# a 2-d example
# fitting a surface to ozone
# measurements. Exponential covariance, range parameter is 20 (in miles)

fit <- Krig(Chicago03$x, Chicago03$y, aRange=20)

summary( fit) # summary of fit

set.panel( 2,2)

plot(fit) # four diagnostic plots of fit
set.panel()

surface( fit, type="C") # look at the surface

# predict at data
predict( fit)

# predict using 7.5 effective degrees of freedom:
predict( fit, df=7.5)

# predict on a grid ( grid chosen here by defaults)
out<- predictSurface( fit)
surface( out, type="C") # option "C" our favorite

# predict at arbitrary points (10,-10) and (20, 15)
xnew<- rbind( c( 10, -10), c( 20, 15))
predict( fit, xnew)

# standard errors of prediction based on covariance model.
predictSE( fit, xnew)

# surface of standard errors on a default grid
predictSurfaceSE( fit)-> out.p # this takes some time!
surface( out.p, type="C")
points( fit$x)

## Not run:
# Using another stationary covariance.
# smoothness is the shape parameter for the Matern.

fit <- Krig(Chicago03$x, ChicagoO3$y,
Covariance="Matern"”, aRange=10, smoothness=1.0)
summary( fit)

#
# Roll your own: creating very simple user defined Gaussian covariance
#
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test.cov <- function(x1,x2,aRange,marginal=FALSE,C=NA){
# return marginal variance
if( marginal) { return(rep( 1, nrow( x1)))}

# find cross covariance matrix
temp<- exp(-(rdist(x1,x2)/aRange)*x2)
if( is.na(C[11)){
return( temp)}
else{
return( temp%*%C)}
}
#
# use this and put in quadratic polynomial fixed function

fit.flame<- Krig(flame$x, flame$y, cov.function="test.cov", m=3, aRange=.5)

#

# note how range parameter is passed to Krig.

# BTW: GCV indicates an interpolating model (nugget variance is zero)
# This is the content of the warning message.

# take a look ...
surface(fit.flame, type="I")

## End(Not run)

Thin plate spline fit to ozone data using the radial
basis function as a generalized covariance function

p=2 is the power in the radial basis function (with a log term added for
even dimensions)
If m is the degree of derivative in penalty then p=2m-d
where d is the dimension of x. p must be greater than 0.
In the example below p = 2*x2 - 2 = 2

T T N I

out<- Krig( Chicago03$x, Chicago03$y,cov.function="Rad.cov",
m=2,p=2,scale.type="range")

# See also the Fields function Tps
# out should be identical to Tps( Chicago03%$x, ChicagoO3$y)
#

## Not run:

#

#

# explore some different values for the range and lambda using GCV
data(ozone2)
aRange <- seq(200,600,,40)
GCV<- matrix( NA, 40,80)
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# the loop
for( k in 1:40){
# call to Krig with different ranges
# also turn off warnings for GCV search
# to avoid lots of messages. (not recommended in general!)
obj<-Krig( ozone2$lon.lat,ozone2$y[16,],
cov.function="stationary.cov",
aRange=aRange[k],
Covariance="Matern”, smoothness=1.0,
Distance="rdist.earth”, nstep.cv=80,
give.warnings=FALSE, na.rm=TRUE)
GCV[k, J<-obj$gecv.gridl, 3]
}
# get lambda grid from looping
k<=1
lam<- Krig( ozone2$lon.lat,ozone2$y[16,],
cov.function="stationary.cov",
aRange=aRange[k],
Covariance="Matern”, smoothness=.5,
Distance="rdist.earth”, nstep.cv=80,
give.warnings=FALSE, na.rm=TRUE)$gcv.grid[,1]
matplot( logl@(lam), t(GCV),type="1",61ty=1)

## End(Not run)

Krig.Amatrix Smoother (or "hat") matrix relating predicted values to the dependent
(Y) values.

Description

For a fixed value of the smoothing parameter or the covariance function some nonparametric curve
estimates are linear functions of the observed data. This is a intermediate level function that com-
putes the linear weights to be applied to the observations to estimate the curve at a particular point.
For example the predicted values can be represented as Ay where A is an N X N matrix of coeffi-
cients and Y is the vector of observed dependent variables. For linear smoothers the matrix A may
depend on the smoothing parameter ( or covariance function and the independent variables (X) but
NOT on Y.

Usage
Krig.Amatrix(object, x@ = object$x, lambda=NULL,
eval.correlation.model = FALSE,...)
Arguments

Output object from fitting a data set using a FIELD regression method. Currently
this is supported only for Krig ( and Tps) functions.

A Krig object produced by the Krig ( or Tps) function.
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gbject Locations for prediction default is the observation locations.

lambda Value of the smoothing parameter.

eval.correlation.model
This applies to a correlation model where the observations have been standard-
ized — e.g. y standardized = (yraw - mean) / (standard deviation). If TRUE the
prediction in the correlation scale is transformed by the standard deviation and
mean to give a prediction in the raw scale. If FALSE predictions are left in the
correlation scale.

Other arguments that can used by predict.Krig.

Details

The main use of this function is in finding prediction standard errors.

For the Krig ( and Tps) functions the A matrix is constructed based on the representation of the
estimate as a generalized ridge regression. The matrix expressions are explained in the references
from the FIELDS manual. For linear regression the matrix that gives predicted values is often
referred to as the "hat" matrix and is useful for regression diagnostics. For smoothing problems
the effective number of parameters in the fit is usually taken to be the trace of the A matrix. Note
that while the A matrix is usually constructed to predict the estimated curve at the data points
Amatrix.Krig does not have such restrictions. This is possible because any value of the estimated
curve will be a linear function of Y.

The actual calculation in this function is simple. It invovles loop through the unit vectors at each
observation and computation of the prediction for each of these delta functions. This approach
makes it easy to handle different options such as including covariates.

Value

A matrix where the number of rows is equal to the number of predicted points and the number of
columns is equal to the length of the Y vector.

References

Nychka (2000) "Spatial process estimates as smoothers."

See Also
Krig, Tps, predict.Krig

Examples

# Compute the A matrix or "hat"” matrix for a thin plate spline
# check that this gives the same predicted values

tps.out<-Tps( Chicago03$x, ChicagoO3$y)

A<-Krig.Amatrix( tps.out, Chicago03$x)

test<- A%*%Chicago033$y

# now compare this to predict( tps.out) or tps.out$fitted.values
# they should be the same

stats( test- tps.out$fitted.values)
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Krig.null.function Default function to create fixed matrix part of spatial process model.

Description

Constructs a matrix of terms representing a low order polynomial and binds additional columns due
to covariates ( the Z matrix)

Usage

Krig.null.function(x, Z = NULL, drop.Z = FALSE, m)

Arguments
X Spatial locations
z Other covariates to be associated with each location.
drop.Z If TRUE only the low order polynomial part is created.
m The polynomial order is (m-1).

Details

This function can be modified to produce a different fixed part of the spatial model. The arguments
X, Z and drop.Z are required but other arguments can be passed as part of a list in null.args in the
call to Krig.

Value

A matrix where the first columns are the polynomial terms and the following columns are from Z.

Author(s)

Doug Nychka

See Also

Krig
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Krig.replicates Collapse repeated spatial locations into unique locations

Description
In case that several observations are available for a single spatial location find the group means and
replicate variability

Usage

Krig.replicates(out = NULL, x, y, Z = NULL, weights = rep(1,
length(y)), digits = 8, verbose = FALSE)

Arguments
out A list with components X, y, weights, and possibily Z.
X Spatial locations.
y Spatial observations
Z Spatial covariates.
weights Weights proportional to reciprocal varainces of observations.
digits Number of significant digits to consider in determing a replicate location.
verbose If TRUE print out details for debugging.
Details

This function figures out which locations are the same and within the function fast.1way use tapply
to find replicate group means and standard deviations. NOTE: it is assumed the Z covariates are
unique at the locations. Currently these functions can not handle a model with common spatial
locations but different values for the Z covariates.

Value

A list with components:

yM Data at unique locations and where more than one observation is available this
is the mean of the replicates.

xM Unique spatial locations.

weightsM Weights matching the unique lcoations proportional to reciprocal variances This
is found as a combination of the original weights at each location.

M Values of the covariates at the unique Icoations.

uniquerows Index for unique rows of x.

tauHat.rep, tauHat.pure.error
Standard deviation of pure error estimate based on replicate groups (and adjust-
ing for possibly different weights.)

rep.info Integer tags indicating replicate groups.
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Author(s)

Douglas Nychka

Examples

#tcreate some spatial replicates

set.seed( 123)

x0<- matrix( runif(10*2), 10,2)

x<- x0[ c(rep(1,3), 2:8, rep( 9,5),10) , 1
y<- rnorm( 16)

out<- Krig.replicates( x=x, y=y)
# compare

# out$yM[1] ; mean( y[1:3])

# out$yM[9] ; mean( y[11:15])

# mean( y[ out$rep.info==9])

KrigFindLambda Finds profile likelihood and GCV estimates of smoothing parameters
for splines and Kriging.

Description

This is a secondary function that will use the computed Krig object and find various estimates of
the smoothing parameter lambda. These are several different flavors of cross-validation, a moment
matching strategy and the profile likelihood. This function can also be used independently with
different data sets (the y’s) if the covariates ( the x’s) are the same and thus reduce the computation.

Usage

KrigFindLambda(

out, lambda.grid = NA, cost = 1, nstep.cv = 200, rmse
= NA, verbose = FALSE, tol = 1e-05, offset = 0, y =
NULL, give.warnings = TRUE)

gcv.sreg (
out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse =
NA, offset = @, trmin = NA, trmax = NA, verbose =

FALSE, tol = 1e-05, give.warnings = TRUE)
Arguments
out A Krig or sreg object.
lambda.grid Grid of lambdas for coarse search. The default is equally spaced on effective

degree of freedom scale.
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cost
nstep.cv
rmse
verbose
tol
offset

y

give.warnings

trmin

trmax

Details

KrigFindLambda

Cost used in GCV denominator

Number of grid points in coarse search.

Target root mean squared error to match with the estimate of tau**2

If true prints intermediate results.

Tolerance in delcaring convergence of golden section search or bisection search.
Additional degrees of freedom to be added into the GCV denominator.

A new data vector to be used in place of the one associated with the Krig object
(obj)

If FALSE will suppress warnings about grid search being out of range for vari-
ous estimates based on GCV and REML.

Minimum value of lambda for grid search specified in terms of effective degrees
of freedom.

Maximum value for grid search.

This function finds several estimates of the smoothing parameter using first a coarse grid search
followed by a refinement using a minimization ( in the case of GCV or maximum likelihood) or
bisection in the case of mathcing the rmse. Details of the estimators can be found in the help file
for the Krig function.

The Krig object passed to this function has some matrix decompostions that facilitate rapid compu-
tation of the GCV and ML functions and do not depend on the independent variable. This makes
it possible to compute the Krig object once and to reuse the decompostions for multiple data sets.
(But keep in mind if the x values change then the object must be recalculated.) The example below
show show this can be used for a simulation study on the variability for estimating the smoothing

parameter.

Value

A list giving a summary of estimates and diagonostic details with the following components:

gcv.grid

lambda.est

Author(s)
Doug Nychka

A matrix describing results of the coarse search rows are values of lambda and
the columns are lambda= value of smoothing parameter, trA=effective degrees
of freedom, GCV=Usual GCV criterion, GCV.one=GCV criterion leave-one-
out, GCV.model= GCV based on average response in the case of replicates,
tauHat= Implied estimate of tau , -Log Profile= negative log of profiel likelihood
for the lambda.

Summary table of all estimates Rows index different types of estimates: GCV,
GCV.model, GCV.one, RMSE, pure error, -Log Profile and the columns are the
estimated values for lambda, trA, GCV, tauHat.
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See Also

Krig, Tps, predict.Krig

Examples

#
Tps( Chicago03$x, Chicago03$y)-> obj # default is to find lambda by GCV
summary( obj)

KrigFindLambda( obj)-> out
print( out$lambda.est) # results agree with Tps summary

sreg( rat.diet$t, rat.diet$trt)-> out

gcv.sreg( out, tol=1e-10) # higher tolerance search for minimum
## Not run:

# a simulation example

x<- seq( 0,1,,150)

f<=  xx*2x( 1-x)

f<- f/sqrt( var( f))

set.seed(123) # let's all use the same seed
tau<- .1
y<- f + rnorm( 150)*tau

Tps( x,y)-> obj # create Krig object
hold<- hold2<- matrix( NA, ncol=6, nrow=200)

for( k in 1:200){
# look at GCV estimates of lambda
# new data simulated
y<- f + rnorm(150)*tau
# save GCV estimates
lambdaTable<- KrigFindLambda(obj, y=y, give.warnings=FALSE)$lambda.est
hold[k,J<- lambdaTable[1,]
hold2[k,]<- lambdaTable[6,]
3
matplot( cbind(hold[,2], hold2[,2]),cbind( hold[,4],hold2[,4]),
xlab="estimated eff. df"”, ylab="tau hat"”, pch=16, col=c("orange3"”, "green2"), type="p")
yline( tau, col="grey"”, lwd=2)

## End(Not run)

lennon Gray image of John Lennon.
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Description

A 256X256 image of John Lennon. Try:
image(lennon,col=grey(seq(@,1,,256)) )

minitri Mini triathlon results

Description

Results from a mini triathlon sponsored by Bud Lite, held in Cary, NC, June 1990. Times are in
minutes for the male 30-34 group. Man was it hot and humid! (DN)
The events in order were swim: (1/2 mile) bike: (15 miles) run: (4 miles)

<s-section name= "DATA DESCRIPTION"> This is a dataframe. Row names are the place within
this age group based on total time.

Arguments
swim swim times
bike bike times
run run times
mKrig "micro Krig" Spatial process estimate of a curve or surface, "kriging"
with a known covariance function.
Description

This is a simple version of the Krig function that is optimized for large data sets, sparse linear
algebra, and a clear exposition of the computations. Lambda, the smoothing parameter must be
fixed. This function is called higher level functions for maximum likelihood estimates of covariance
paramters.

Usage

mKrig(x, y, weights = rep(1, nrow(x)), Z = NULL,
cov.function = "stationary.cov”, cov.args = NULL,
lambda = NA, m = 2, chol.args = NULL, find.trA = TRUE,
NtrA = 20, iseed = NA, na.rm = FALSE,
collapseFixedEffect = TRUE, tau = NA, sigma2 = NA,
)

## S3 method for class 'mKrig'

predict( object, xnew=NULL,ynew=NULL, grid.list = NULL,

derivative=0,
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Z=NULL ,drop.Z=FALSE, just.fixed=FALSE,
collapseFixedEffect = object$collapseFixedEffect, ...)

## S3 method for class 'mKrig'

summary (object,

)

## S3 method for class 'mKrig'

print( x, digits=4,... )
## S3 method for class 'mKrigSummary'
print( x, digits=4,... )

mKrig.coef(object, y, collapseFixedEffect=TRUE)

mKrig.trace( object, iseed, NtrA)

mKrigCheckXY(x, y, weights, Z, na.rm)

Arguments

collapseFixedEffect

chol.args

cov.args
cov.function

derivative

digits
drop.Z

find.trA

grid.list

iseed

just.fixed

If replicated fields are given to mKrig (i.e. y has more than one column) there
is the choice of estimating the fixed effect coefficients (d in the returned object)
separately for each replicate or pooling across replicates and deriving a single
estimate. If collapseFixedEffect is TRUE (default) the estimates are pooled.

A list of optional arguments (pivot, nnzR) that will be used with the call to
the cholesky decomposition. Pivoting is done by default to make use of sparse
matrices when they are generated. This argument is useful in some cases for
sparse covariance functions to reset the memory parameter nnzR. (See example
below.)

A list of optional arguments that will be used in calls to the covariance function.
The name, a text string of the covariance function.

If zero the surface will be evaluated. If not zero the matrix of partial derivatives
will be computed.

Number of significant digits used in printed output.

If true the fixed part will only be evaluated at the polynomial part of the fixed
model. The contribution from the other covariates will be omitted.

If TRUE will estimate the effective degrees of freedom using a simple Monte
Carlo method. This will add to the computational burden by approximately
NtrA solutions of the linear system but the cholesky decomposition is reused.

A grid.list to evaluate the surface in place of specifying arbitrary locations.

Random seed (using set.seed(iseed)) used to generate iid normals for Monte
Carlo estimate of the trace. Set this to an integer to insure the same random
draws are used to compute the approximate trace and be consistent across dif-
ferent values of the covariance parameters.

If TRUE only the predictions for the fixed part of the model will be evaluted.
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lambda Smoothing parameter or equivalently the ratio between the nugget and process
varainces.
m The degree of the polynomial used in the fixed part. This is follows the thin plate

spline convention that the degree is m-1. Default is m=2 for a linear function,
m=1 a constant and, as an quick logical switch, m=0 will result in no fixed part
in the spatial model.

na.rm If TRUE NAs in y are omitted along with corresonding rows of x.

NtrA Number of Monte Carlo samples for the trace. But if NtrA is greater than or
equal to the number of observations the trace is computed exactly.

object Object returned by mKrig. (Same as "x" in the print function.)

sigma2 Value of the process variance.

tau Value of the measurment error standard deviation.

weights Precision ( 1/variance) of each observation

X Matrix of unique spatial locations (or in print or surface the returned mKrig
object.)

xnew Locations for predictions.

y Vector or matrix of observations at spatial locations, missing values are not al-

lowed! Or in mKrig.coef a new vector of observations. If y is a matrix the
columns are assumed to be independent replicates of the spatial field. I.e. obser-
vation vectors generated from the same covariance and measurment error model
but independent from each other.

ynew New observation vector. mKrig will reuse matrix decompositions and find the
new fit to these data.

Z Linear covariates to be included in fixed part of the model that are distinct from
the default low order polynomial in x. (NOTE the order of the polynomial de-
termined by m)

InmKrig and predict additional arguments that will be passed to the covariance
function.

Details

This function is an abridged version of Krig and uses a more direct computation for the linear
algebra that faciliates compactly supported covariance functions. The m stand for micro and done
for a fixed lambda parameter and other covariance parameters (e.g. aRange) and for unique spatial
locations. This is also the basic computational element of the top level spatialProcess function
for finding MLEs. See the source code for a commented version that described the computation.

These restrictions simplify the code for reading. Note that also little checking is done and the
spatial locations are not transformed before the estimation. Because most of the operations are
linear algebra this code has been written to handle multiple data sets. Specifically, if the spatial
model is the same except for different observed values (the y’s), one can pass y as a matrix and
the computations are done efficiently for each set. The likelihood across all replicates is combined
and denoted with FULL at the end. Also not the collapseFixedEffects switch to determine if
the regression part is found seperately for each replicate or combined into a single model. Note
that this is not a multivariate spatial model — just an efficient computation over several data vectors
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without explicit looping. A big difference in the computations is that an exact expression for the
trace of the smoothing matrix is (trace A(lambda)) is computationally expensive and a Monte Carlo
approximation is supplied instead.

See predictSE.mKrig for prediction standard errors and sim.mKrig.approx to quantify the un-
certainty in the estimated function using conditional simulation.

predict.mKrig will evaluate the derivatives of the estimated function if derivatives are supported
in the covariance function. For example the wendland.cov function supports derivatives.

summary.mKrig creates a list of class mKrigSummary along with a table of standard errors for the
fixed linear parameters.

print.mKrigSummary prints the mKrigSummary object and adds some more explanation about the
model and results

print.mKrig prints a summary for the mKrig object that the combines the summary and print
methods.

mKrig.coef finds the "d" and "c" coefficients represent the solution using the previous cholesky
decomposition for a new data vector. This is used in computing the prediction standard error in pre-
dictSE.mKTrig and can also be used to evalute the estimate efficiently at new vectors of observations
provided the locations and covariance remain fixed.

Sparse matrix methods are handled through overloading the usual linear algebra functions with
sparse versions. But to take advantage of some additional options in the sparse methods the list
argument chol.args is a device for changing some default values. The most important of these
is nnzR, the number of nonzero elements anticipated in the Cholesky factorization of the postive
definite linear system used to solve for the basis coefficients. The sparse of this system is essentially
the same as the covariance matrix evalauted at the observed locations. As an example of resetting
nzR to 450000 one would use the following argument for chol.args in mKrig:

chol.args=list(pivot=TRUE,memory=1list(nnzR= 450000))

mKrig.trace This is an internal function called by mKrig to estimate the effective degrees of free-
dom. The Kriging surface estimate at the data locations is a linear function of the data and can be
represented as A(lambda)y. The trace of A is one useful measure of the effective degrees of freedom
used in the surface representation. In particular this figures into the GCV estimate of the smoothing
parameter. It is computationally intensive to find the trace explicitly but there is a simple Monte
Carlo estimate that is often very useful. If E is a vector of iid N(0,1) random variables then the
trace of A is the expected value of t(E)AE. Note that AE is simply predicting a surface at the data
location using the synthetic observation vector E. This is done for NtrA independent N(0,1) vectors
and the mean and standard deviation are reported in the mKrig summary. Typically as the number
of observations is increased this estimate becomse more accurate. If NtrA is as large as the number
of observations (np) then the algorithm switches to finding the trace exactly based on applying A to
np unit vectors.

Value
summary A named array with the values of covariance parameters and log likelihoods.
beta Coefficients of the polynomial fixed part and if present the covariates (Z).To

determine which is which the logical vector ind.drift also part of this object is
TRUE for the polynomial part.

c.coef Coefficients of the nonparametric part.
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nt
np
nZ
ind.drift

lambda. fixed
X

knots

mKrig

Dimension of fixed part.
Dimension of c.coef.
Number of columns of Z covariate matrix (can be zero).

Logical vector that indicates polynomial coefficients in the d coefficients vector.
This is helpful to distguish between polynomial part and the extra covariates
coefficients associated with Z.

The fixed lambda value
Spatial locations used for fitting.

The same as x

cov.function.name

args
m
chol.args
call

Name of covariance function used.

A list with all the covariance arguments that were specified in the call.
Order of fixed part polynomial.

A list with all the cholesky arguments that were specified in the call.

A copy of the call to mKrig.

non.zero.entries

1nDetCov

Omega

qr.VT, Mc

Number of nonzero entries in the covariance matrix for the process at the obser-
vation locations.

Log determinant of the covariance matrix for the observations having factored
out sigma.

GLS covariance for the estimated parameters in the fixed part of the model (d
coefficients0.

QR and cholesky matrix decompositions needed to recompute the estimate for
new observation vectors.

fitted.values, residuals

eff.df

trA.info

GCV
GCV.info

Author(s)

Usual predictions from fit.

Estimate of effective degrees of freedom. Either the mean of the Monte Carlo
sample or the exact value.

If NtrA ids less than np then the individual members of the Monte Carlo sample
and sd(trA.info)/ sqrt(NtrA) is an estimate of the standard error. If NtrA is
greater than or equal to np then these are the diagonal elements of A(lamdba).

Estimated value of the GCV function.
Monte Carlo sample of GCV functions

Doug Nychka, Reinhard Furrer, John Paige

References

https://github.com/dnychka/fieldsRPackage

See Also

Krig, surface.mKrig, Tps, fastTps, predictSurface, predictSE.mKrig, sim.mKrig.approx, mKrig.grid
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Examples

# Midwest ozone data ‘'day 16' stripped of missings
data( ozone2)
y<- ozone2$y[16,]
good<- l!is.na( y)
y<-y[good]
x<- ozone2$lon.lat[good, ]
# nearly interpolate using defaults (Exponential covariance range = 2.0)
# see also mKrigMLEGrid to choose lambda by maxmimum likelihood
out<- mKrig( x,y, aRange = 2.0, lambda=.01)
out.p<- predictSurface( out)
surface( out.p)

H+

NOTE this should be identical to
# Krig( x,y, aRange=2.0, lambda=.01)

HHHHHHAREEE A R R

# an example using a "Z" covariate and the Matern family

# again see mKrigMLEGrid to choose parameters by MLE.

data(COmonthlyMet)

yCO<- CO.tmin.MAM.climate

good<- !is.na( yCO)

yC0<-yCO[good]

xCO<- CO0.loc[good, ]

Z<- C0.elev[good]

out<- mKrig( xCO,yCO, Z=Z, cov.function="stationary.cov", Covariance="Matern”,
aRange=4.0, smoothness=1.0, lambda=.1)

set.panel(2,1)

# quilt.plot with elevations

quilt.plot( xCO, predict(out))

# Smooth surface without elevation linear term included

surface( out)

set.panel()

HHHEHHHEEEEA AR AR AR
# here is a series of examples with bigger datasets
# using a compactly supported covariance directly

set.seed( 334)

N<- 1000

x<- matrix( 2*(runif(2*N)-.5),ncol=2)

y<= sin( 1.8xpi*x[,11)*sin( 2.5%xpi*x[,2]1) + rnorm( 1000)=*.1

look2<-mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.2,
lambda=.1)

# take a look at fitted surface
predictSurface(look2)-> out.p
surface( out.p)
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E T T S

# The
#
#
#

this works because the number of nonzero elements within distance aRange

less than the default maximum allocated size of the

sparse covariance matrix.

see options() for the default values. The names follow the convention
spam.arg where arg is the name of the spam component

e.

g. spam.nearestdistnnz

following will give a warning for aRange=.9 because

allocation for the covariance matirx storage is too small.
Here aRange controls the support of the covariance and so
indirectly the number of nonzero elements in the sparse matrix

## Not run:
look2<- mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.9, lambda=.1)

## End(Not run)

# The

warning resets the memory allocation for the covariance matrix

# according the to values options(spam.nearestdistnnz=c(416052,400))'
# this is inefficient becuase the preliminary pass failed.

# the

following call completes the computation in "one pass”

# without a warning and without having to reallocate more memory.

options( spam.nearestdistnnz=c(416052,400))
look2<- mKrig( x,y, cov.function="wendland.cov", k=2,

ETE T

aRange=.9, lambda=1e-2)

as a check notice that

print( look2)
reports the number of nonzero elements consistent with the specifc allocation
increase in spam.options

# new data set of 1500 locations
set.seed( 234)
N<- 1500
x<- matrix( 2x(runif(2*N)-.5),ncol=2)
y<- sin( 1.8xpixx[,1]1)*sin( 2.5xpi*x[,2]1) + rnorm( N)*.0Q1
## Not run:
# the following is an example of where the allocation (for nnzR)

# for
# the
#

the cholesky factor is too small. A warning is issued and
allocation is increased by 25

look2<- mKrig( x,y,

cov.function="wendland.cov"” k=2, aRange=.1, lambda=1e2 )

## End(Not run)
# to avoid the warning
look2<-mKrig( x,y,

cov.function="wendland.cov"”, k=2, aRange=.1,
lambda=1e2, chol.args=list(pivot=TRUE, memory=1list(nnzR= 450000)))

mKrig
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#
#

fiting multiple data sets

#\dontrun{

#

#}

y1<= sin( 1.8*pi*x[,1]1)*sin( 2.5*pi*x[,2]) + rnorm( N)*.01

y2<- sin( 1.8*pixx[,11)*sin( 2.5*pi*x[,2]) + rnorm( N)*.01

Y<- cbind(y1,y2)

look3<- mKrig( x,Y,cov.function="wendland.cov”, k=2, aRange=.1,
lambda=1e2 )

note slight difference in summary because two data sets have been fit.

print( look3)

## Not run:
A

#

T E EEE R

**

o O

finding a good choice for aRange as a taper

Suppose the target is a spatial prediction using roughly 50 nearest neighbors
(tapering covariances is effective for roughly 20 or more in the situation of
interpolation) see Furrer, Genton and Nychka (2006).
take a look at a random set of 100 points to get idea of scale
and saving computation time by not looking at the complete set
of points
NOTE: This could also be done directly using the FNN package for finding nearest
neighbors
set.seed(223)
ind<- sample( 1:N,100)
hold<- rdist( x[ind,], x)
dd<- apply( hold, 1, quantile, p= 50/N )
dguess<- max(dd)
dguess is now a reasonable guess at finding cutoff distance for
50 or so neighbors
full distance matrix excluding distances greater than dguess
hold2<- nearest.dist( x, x, delta= dguess )
here is trick to find the number of nonsero rows for a matrix in spam format.
hold3<- diff( hold2@rowpointers)
min( hold3) = 43 which we declare close enough. This also counts the diagonal
So there are a minimum of 42 nearest neighbors ( median is 136)
see table( hold3) for the distribution
now the following will use no less than 43 - 1 nearest neighbors
due to the tapering.

mKrig( x,y, cov.function="wendland.cov",k=2, aRange=dguess,
lambda=1e2) -> 1look2

## End(Not run)

AR

#
#

use precomputed distance matrix

## Not run:

y1<= sin( 1.8*pi*x[,1]1)*sin( 2.5*pi*x[,2]) + rnorm( N)*.01
y2<- sin( 1.8*pixx[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.0Q1

113
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Y<- cbind(y1,y2)

#precompute distance matrix in compact form

distMat = rdist(x, compact=TRUE)

look3<- mKrig( x,Y,cov.function="stationary.cov”, aRange=.1,
lambda=1e2, distMat=distMat )

#precompute distance matrix in standard form

distMat = rdist(x)

look3<- mKrig( x,Y,cov.function="stationary.cov"”, aRange=.1,
lambda=1e2, distMat=distMat )

## End(Not run)

mKrigMLE Maximizes likelihood for the process marginal variance (sigma) and
nugget standard deviation (tau) parameters (e.g. lambda) over a many
covariance models or covariance parameter values.

Description

These function are designed to explore the likelihood surface for different covariance parameters
with the option of maximizing over tau and sigma. They used the mKrig base are designed for
computational efficiency.

Usage

mKrigMLEGrid(x, y, weights = rep(1, nrow(x)), Z = NULL,
mKrig.args = NULL,

cov.function = "stationary.cov”,
cov.args = NULL,
na.rm = TRUE,
par.grid = NULL,
reltol = 1e-06,
REML = FALSE,
GCV = FALSE,

optim.args = NULL,
cov.params.start = NULL,
verbose = FALSE,

iseed = NA)

mKrigMLEJoint(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args
= NULL, na.rm = TRUE, cov.function = "stationary.cov”,
cov.args = NULL, cov.params.start = NULL, optim.args =
NULL, reltol = 1e-06, parTransform = NULL, REML =
FALSE, GCV = FALSE, hessian = FALSE, iseed = 303,
verbose = FALSE)

profileCI(obj, parName, CIlevel = 0.95, REML = FALSE)
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mKrigJointTemp.

Arguments

capture.env

CIlevel
cov.function

cov.args
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fn(parameters, mKrig.args, cov.args, parTransform,
parNames, REML = FALSE, GCV = FALSE, verbose =
verbose, capture.env)

For the ML objective function the frame to save the results of the evaluation.
This should be the environment of the function calling optim.

Confidence level.
The name, a text string, of the covariance function.

The arguments that would also be included in calls to the covariance function
to specify the fixed part of the covariance model. This is the form of a list
E.g.cov.args=1list( aRange = 3.5)

cov.params.start

hessian

iseed

mKrig.args

na.rm

optim.args

parameters

par.grid

A list of initial starts for covariance parameters to perform likelihood maxi-
mization. The list contains the names of the parameters as well as the values.
It usually makes sense to optimize over the important lambda parameter (tau’2/
sigma”2) is most spatial applications and so if 1ambda is omitted then the com-
ponent lambda = .5 is added to this list.

If TRUE return the BFGS approximation to the hessian matrix at convergence.

Sets the random seed in finding the approximate Monte Carlo based GCV func-
tion and the effective degrees of freedom. This will not effect random number
generation outside these functions.

A list of additional parameters to supply to the mKrig function. E.g. mKrig.args=
list(m=1) to set the regression function to be a constant function.

mKrig function that are distinct from the covariance model. For example mKrig.args=
list(m=1) will set the polynomial to be just a constant term (degree = m - 1

=0). Use mKrig.args=1list(m=0) to omit a fixed model and assume the
observations have an expectation of zero.

Remove NAs from data.

Additional arguments that would also be included in calls to the optim function
in joint likelihood maximization. If NULL, this will be set to use the "BFGS-
" optimization method. See optim for more details. The default value is:

optim.args = list(method = "BFGS",control=1list(fnscale = -1,ndeps = rep(log(1

Note that the first parameter is lambda and the others are the covariance pa-
rameters in the order they are given in cov.params.start. Also note that
the optimization is performed on a transformed scale (based on the function
parTransform ), and this should be taken into consideration when passing ar-
guments to optim.

The parameter values for evaluate the likelihood.

A list or data frame with components being parameters for different covariance
models. A typical component is "aRange" comprising a vector of scale param-
eters to try. If par.grid is "NULL" then the covariance model is fixed at values
that are given in . ...

. 1), length(
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obj List returnerd from mKrigMLEGrid
parName Name of parameter to find confidence interval.
parNames Names of the parameters to optimize over.

parTransform A function that maps the parameters to a scale for optimization or effects the
inverse map from the transformed scale into the original values. See below for
more details.

reltol Optim BFGS comvergence criterion.

REML If TRUE use REML instead of the full log likelihood.

GCV NOT IMPLEMENTED YET! A placeholder to implement optimization using
an approximate cross-validation criterion.

verbose If TRUE print out interesting intermediate results.

weights Precision ( 1/variance) of each observation

X Matrix of unique spatial locations (or in print or surface the returned mKrig
object.)

y Vector or matrix of observations at spatial locations, missing values are not al-

lowed! Or in mKrig.coef a new vector of observations. If y is a matrix the
columns are assumed to be independent observations vectors generated from
the same covariance and measurment error model.

Z Linear covariates to be included in fixed part of the model that are distinct from
the default low order polynomial in x

Details

The observational model follows the same as that described in the Krig function and thus the two
primary covariance parameters for a stationary model are the nugget standard deviation (tau) and
the marginal variance of the process (sigma). It is useful to reparametrize as sigma and lambda
= tau”2/sigma. The likelihood can be maximized analytically over sigma and the parameters in
the fixed part of the model, this estimate of sigma can be substituted back into the likelihood to
give a expression that is just a function of lambda and the remaining covariance parameters. This
operation is called concentrating the likelhood by maximizing over a subset of parameters

For these kind of computations there has to be some device to identify parameters that are fixed
and those that are optimized. For mKrigMLEGrid and mKrigMLEJoint the list cov.args should
have the fixed parameters. For example this is how to fix a lambda value in the model. The list
cov.params.start should be list with all parameters to optimize. The values for each component
are use as the starting values. This is how the optim function works.

These functions may compute the effective degrees of freedomn ( see mKrig.trace ) using the
random tace method and so need to generate some random normals. The iseed arguement can
be used to set the seed for this with the default being the seed 303. Note that the random number
generation internal to these functions is coded so that it does not effect the random number stream
outside these function calls.

For mKrigMLEJoint the default transformation of the parameters is set up for a log/exp transforma-
tion:

parTransform <- function(ptemp, inv = FALSE) {
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if (Yinv) {

log(ptemp)

else {

exp(ptemp)

mKrigMLEGrid returns a list with the components:

summary

par.grid

call

A matrix with each row giving the results of evaluating the likelihood for each
covariance model.

The par.grid argument used. A matrix where rows are the combination of pa-
rameters considered.

The calling arguments to this function.

mKrigMLEJoint returns a list with components:

summary

InLike.eval

optimResults

par.MLE

parTransform

Author(s)

A vector giving the MLEs and the log likelihood at the maximum

A table containing information on all likelihood evaluations performed in the
maximization process.

The list returned from the optim function. Note that the parameters may be
transformed values.

The maximum likelihood estimates.

The transformation of the parameters used in the optimziation.

Douglas W. Nychka, John Paige

References

https://github.com/dnychka/fieldsRPackage

See Also

mKrig Krig stationary.cov optim

Examples

## Not run:

#perform joint likelihood maximization over lambda and aRange.
# NOTE: optim can get a bad answer with poor initial starts.

data(ozone2)

s<- ozone2$lon.lat
z<- ozone2$y[16,]
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#

#
#

#

#

ETE T

mKrigMLE

gridList<- list( aRange = seq( .4,1.0,length.out=20),
lambda = 10**seq( -1.5,0,length.out=20)
)
par.grid<- make.surface.grid( gridList)
out<- mKrigMLEGrid( s,z, par.grid=par.grid,
cov.args= list(smoothness=1.0,
Covariance="Matern" )
)
outP<- as.surface( par.grid, out$summary[,"lnProfileLike.FULL"])
image.plot( outP$x, logl@(outP$y),outP$z,
xlab="aRange", ylab="log10 lambda")

# End(Not run)

## Not run:

N<- 50

set.seed(123)

x<- matrix(runif(2*N), N,2)

aRange<- .2

Sigma<- Matern( rdist(x,x)/aRange , smoothness=1.0)

Sigma.5<- chol( Sigma)

tau<- .1

# 250 independent spatial data sets but a common covariance function
# -- there is little overhead in

# MLE across independent realizations and a good test of code validity.
M<-250

F.true<- t( Sigma.5) %*% matrix( rnorm(N*M), N,M)

Y<- F.true + taux matrix( rnorm(NxM), N,M)

find MLE for lambda with grid of ranges
and smoothness fixed in Matern
par.grid<- list( aRange= seq( .1,.35,,8))
objlb<- mKrigMLEGrid( x,Y,
cov.args = list(Covariance="Matern", smoothness=1.0),

cov.params.start=1ist( lambda = .5),
par.grid = par.grid
)

objlb$summary # take a look

profile over aRange

plot( par.grid$aRange, objlb$summary[,"lnProfilelLike.FULL"],
type="b", log="x")

# End(Not run)

## Not run:

m=0 is a simple switch to indicate _no_ fixed spatial drift

(the default and highly recommended is linear drift, m=2).

However, m=0 results in MLEs that are less biased, being the correct model
-- in fact it nails it !

objla<- mKrigMLEJoint(x,Y,
cov.args=list(Covariance="Matern”, smoothness=1.0),
cov.params.start=1list(aRange =.5, lambda = .5),
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mKrig.args= list( m=0))

test.for.zero( objla$summary[”tau”], tau, tol=.007)
test.for.zero( objla$summary[”aRange"”], aRange, tol=.015)

## End(Not run)

HHHHHHEREEEH A R R
# A bootstrap example

# Here is a example of a more efficient (but less robust) bootstrap using
# mKrigMLEJoint and tuned starting values

HHHHHHARHEEH A AR
## Not run:

data( ozone2)

obj<- spatialProcess( ozone2$lon.lat,ozone2$y[16,] )

#iHHHEHHE boot strap
set.seed(123)
M<- 25
# create M indepedent copies of the observation vector
ySynthetic<- simSpatialData( obj, M)
bootSummary<- NULL

aRangeMLE<- obj$summary["aRange"]
lambdaMLE<- obj$summary["lambda"]

for( k in 1:M){
cat( k, " ")
# here the MLEs are found using the easy top level level wrapper
# see mKrigMLEJoint for a more efficient strategy
out <- mKrigMLEJoint(obj$x, ySynthetic[, k],
weights = obj$weights,
mKrig.args = obj$mKrig.args,
cov.function = obj$cov.function.name,
cov.args = obj$cov.args,
cov.params.start = list( aRange = aRangeMLE,
lambda = lambdaMLE)
)
newSummary<- out$summary
bootSummary<- rbind( bootSummary, newSummary)

}
cat( " ", fill=TRUE )
obj$summary

stats( bootSummary)

## End(Not run)
## Not run:
#perform joint likelihood maximization over lambda, aRange, and smoothness.
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#note: finding smoothness is not a robust optimiztion

# can get a bad answer with poor initial guesses.

obj2<- mKrigMLEJoint(x,Y,
cov.args=list(Covariance="Matern"),

cov.params.start=1list( aRange = .18,
smoothness = 1.1,
lambda = .08),

)

#look at lnLikelihood evaluations

obj2$summary

#compare to REML

obj3<- mKrigMLEJoint(x,Y,
cov.args=list(Covariance="Matern"),

cov.params.start=1list(aRange = .18,
smoothness = 1.1,
lambda = .08),

, REML=TRUE)

obj3$summary

## End(Not run)
## Not run:
#look at InLikelihood evaluations

# check convergence of MLE to true fit with no fixed part

#

obj4<- mKrigMLEJoint(x,Y,
mKrig.args= list( m=0),
cov.args=list(Covariance="Matern"”, smoothness=1),
cov.params.start=1list(aRange=.2, lambda=.1),

REML=TRUE)
#look at InLikelihood evaluations
obj4$summary
# nails it!

## End(Not run)

NorthAmericanRainfall Observed North American summer precipitation from the historical
climate network.

Description

Average rainfall in tenths of millimeters for the months of June, July and August for the period
1950-2010. Data is based on 1720 stations located in North America.

Format

"nn "o

The format is a list with components: "longitude" "latitude" "precip" "elevation" "precipSE" "trend"
"trendSE" "type" "x.s" "sProjection" with elevation in meters, longitude as (-180,180), latitude as
(-90, 90) and precipitaion in 1/10 mm ( precip/254 converts to inches of rainfall)
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precip is the intercept for 1980.5 when a straight line least squares regression is fit to each station’s
record. SE is the companion standard error from the least squares fit. If the station is complete, then
precip and precipSE will just be the mean and standard deviation adjusted for a linear trend.
The estimated trend trend and and its standard error trendSE are also included. Also due to the
centering, for complete data the intercept and trend estimate will be uncorrelated. The component
type indicates whether the station has been "adjusted” (see below) or is still in "unadjusted” form.

x.s is a useful transformation of locations into stereographic coordinates that reduces the inflation
of North Canada due to the usual lon/lat coordinates. Specifically it is found by:

library(mapproj)

xStereo<- mapproject( NorthAmericanRainfall$lon,NorthAmericanRainfall$lat, projection="stereographi
NorthAmericanRainfall$x.s<- cbind( xStereo$x, xStereo$y)

NorthAmericanRainfall$projection<- .Last.projection

Use NorthAmericanRainfall$orientation to access the stereographic projection orientation.

Source

The monthly data used to construct this summary was generously provided by Xuebin Zhang, how-
ever, the orignal source is freely available as the Global Historical Climate Network Version 2
Precipitation quality controlled, curated and served by the US National Center for Environmental
Information. The adjusted data from this archive has been modified from its raw form to make the
record more homogenous. Heterogenities can come from a variety of sources such as a moving
the station a short distance or changes in instruments. See the National Centers for Envrionmental
Information then Access Data and then GHCN.

Examples

data(NorthAmericanRainfall)

x<- cbind(NorthAmericanRainfall$longitude, NorthAmericanRainfall$latitude)
y<- NorthAmericanRainfall$precip

quilt.plot( x,y)

world( add=TRUE)

Zstat<- NorthAmericanRainfall$trend / NorthAmericanRainfall$trendSE
quilt.plot( x, Zstat)

of fGridwWeights Weights to predict off grid locations from a rectangular grid using
nearest neighbors and Kriging.

Description

Based on a stationary Gaussian process model creates a sparse matrix to predict off grid values
(aka interpoltate) from an equally spaced rectangular grid. The sparsity comes about because only
a fixed number of neighboring grid points (np) are used in the prediction. The prediction variance
is also give in the returned object. This function is used as the basis for approximate conditional
simulation for large spatial datasets.
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Usage

of fGridWeights(s, gridList, np = 2, mKrigObject = NULL, Covariance = NULL,
covArgs = NULL, aRange = NULL, sigma2 = NULL, giveWarnings = TRUE,
debug=FALSE)

Arguments
s Off grid spatial locations
gridList A list as the gridList format ( x and y components) that describes the rectagular
grid. The grid must have at least np extra grid points beyond the range of the
points in s
np Number of nearest neighbor grid points to use for prediction. np = 1 will use the

4 grid points that bound the off grid point. np = 2 will be a 4X4 subgrid with the
middle grid box containing the off gird point. In general there will be (2*np) *2
neighboring points uses.

mKrigObject The output object (aka list) from either mKrig or spatialProcess. This has the
information about the covariance function used to do the Kriging. The following
items are coded in place of not supplying this object. See the example below for
more details.

Covariance The stationary covariance function (taking pairwise distances as its first argu-
ment.)

covArgs If mKrigObject is not specified a list giving any additional arguments for the
covariance function.

aRange The range parameter.

sigma2 Marginal variance of the process.

giveWarnings If TRUE will warn if two or more observations are in the same grid box. See
details below.

debug If TRUE returns intermediate calculations and structures for debugging and
checking.

Details

This function creates the interpolation weights taking advantage of some efficiency in the covariance
function being stationary, use of a fixed configuration of nearest neighbors, and Kriging predictions
from a rectangular grid.

The returned matrix is in spam sparse matrix format. See example below for the "one-liner" to
make the prediction once the weights are computed. Although created primarily for conditional
simulation of a spatial process this function is also useful for interpolating to off grid locations from
a rectangular field.

The interpolation errors are also computed based on the nearest neighbor predictions. This is re-
turned as a sparse matrix in the component SE. If all observations are in different grid boxes then
SE is diagonal and agrees with the square root of the component predctionVariance but if mul-
tiple observations are in the same grid box then SE has blocks of upper triangular matrices that
can be used to simulate the prediction error dependence among observations in the same grid box.
Explicitly if obj is the output object and there are nObs observations then
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error <- 0bj$SE%*% rnorm( nObs)

will simulate a prediction error that includes the dependence. Note that in the case that there all
observations are in separate grid boxes this code line is the same as

error <- sqgrt(obj$predictionVariance)*rnorm( nObs)

It is always true that the prediction variance is given by diag( obj$SE%*% t( obj$SE)).

The user is also referred to the testing scripts of fGridWeights.test.R and of fGridWeights. testNEW.Rin
tests where the Kriging predictions and standard errorsa are computed explicitly and tested against
the sparse matrix computation. This is helpful in defining exactly what is being computed.

Value
B A sparse matrix that is of dimension mXn with m the number of locations (rows)
in s and n being the total number of grid points. n = length(gridList$x)*length(gridList$y)
predictionVariance
A vector of length as the rows of s with the Kriging prediction variance based
on the nearest neighbor prediction and the specified covariance function.
SE A sparse matrix that can be used to simulate dependence among prediction errors
for observations in the same grid box. (See explanation above.)
Author(s)

Douglas Nychka and Maggie Bailey

See Also

interp.surface

Examples

# an M by M grid
M<- 400
xGrid<- seq( -1, 1, length.out=M)
gridlList<- list( x= xGrid,
y= xGrid
)
np<- 3
n<- 100
# sample n locations but avoid margins
set.seed(123)
s<- matrix( runif(nx2, xGrid[(np+1)1,xGrid[(M-np)1),
n, 2)

obj<- offGridWeights( s, gridList, np=3,
Covariance="Matern",
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aRange = .1, sigma2= 1.0,
covArgs= list( smoothness=1.0)
)

# make the predictions by obj$B%*%c(y)

# where y is the matrix of values on the grid

# try it out on a simulated Matern field

CEobj<- circulantEmbeddingSetup( gridList,
cov.args=list(
Covariance="Matern”,

aRange = .1,
smoothness=1.0)
)

set.seed( 333)
Z<- circulantEmbedding(CEobj)

#

# Note that grid values are "unrolled” as a vector
# for multiplication

# predOffGrid<- obj$B%x% c( Z)

predOffGrid<- obj$B%*% c( Z)

set.panel( 1,2)

zr<- range( c(2))

image.plot(gridList$x, gridList$y, Z, zlim=zr)
bubblePlot( s[,1]1,s[,2], z= predOffGrid , size=.5,
highlight=FALSE, zlim=zr)

set.panel()

ozone2 Daily 8-hour ozone averages for sites in the Midwest

Description

The response is 8-hour average (surface) ozone ( from 9AM-4PM) measured in parts per billion
(PPB) for 153 sites in the midwestern US over the period June 3,1987 through August 31, 1987,
89 days. This season of high ozone corresponds with a large modeling experiment using the EPA
Regional Oxidant Model.

Usage

data(ozone2)

Format

nen

The data list has components: <s-args> <s-arg name="y"> a §9X153 matrix of ozone values. Rows
are days and columns are the sites. </s-arg> </s-arg name="lon.lat"> Site locations in longitude
and latitude as a 153X2 table </s-arg> <s-arg name="chicago.subset"> Logical vector indicating
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stations that form teh smaller Chicagoland subset. (see FIELDS ozone data set) </s-arg> </s-args>
<s-section name="Reference"> Nychka, D., Cox, L., Piegorsch, W. (1998) Case Studies in Envi-
ronmental Statistics Lecture Notes in Statistics, Springer Verlag, New York

Examples

data( ozone2)

# pairwise correlation among all stations
# ( See cover.design to continue this example)
cor.mat<- cor( ozone2$y, use="pairwise")

#raw data image for day number 16

good<- !is.na( ozone2$y[16,]1)

out<- as.image( ozone2$y[16,good], x=ozone2$lon.lat[good,])
image.plot( out)

plot.Krig Diagnostic and summary plots of a Kriging, spatialProcess or spline
object.

Description

Plots a series of four diagnostic plots that summarize the fit.

Usage

## S3 method for class 'Krig'
plot(x, digits=4, which= 1:4,...)
## S3 method for class 'sreg'

plot(x, digits = 4, which = 1:4, ...)
Arguments
X A Krig or an sreg object
digits Number of significant digits for the RMSE label.
which A vector specifying by number which of the four plots to draw. 1:4 plots all
four.

Optional graphics arguments to pass to each plot.
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Details

This function creates four summary plots of the Krig or sreg object. The default is to put these on
separate pages. However if the screen is already divided in some other fashion the plots will just
be added according to that scheme. This option is useful to compare to compare several different
model fits.

The first is a scatterplot of predicted value against observed.

The second plot is "standardized" residuals against predicted value. Here we mean that the residuals
are divided by the GCV estimate for tau and multiplied by the square root of any weights that have
been specified. In the case of a "correlation model" the residuals are also divided by the marginal
standard deviation from this model.

The third plot are the values of the GCV function against the effective degrees of freedom. When
there are replicate points several versions of the GCV function may be plotted. GCV function is
with respect to the standardized data if a correlation model is specified. A vertical line indicates the
minimium found.

For Krig and sreg objects the fourth plot is a histogram of the standardized residuals. For sreg if
multiple lambdas are given plotted are boxplots of the residuals for each fit.

For spatialProcess object the fourth plot is the profile likelihood for the aRange parameter. Points
are the actual evaluated log likelihoods and the dashed line is just a spline interpolation to help with
visualization.

See Also

Krig, spatialProcess, summary.Krig, Tps, set.panel

Examples

data( ozone2)

x<- ozone2$lon.lat

y<- ozone2$y[16,]
fit1<-Krig(x,y, aRange=200)
# fitting a surface to ozone
# measurements

set.panel( 2,2)

plot(fit1)

# fit rat data
fit3<-sreg(rat.diet$t,rat.diet$con)
set.panel(2,2)

plot(fit3)

set.panel(1,1) # reset graphics window.
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plot.surface

Plots a surface

Description

Plots a surface object in several different ways to give 3-d information e.g. a contour plots, perspec-

tive plots.

Usage

## S3 method for class 'surface'

plot(x, main =
ylab = NUL
labcex =

Arguments

X

main

type

zlab
xlab
ylab
levels

graphics.reset

zlim
labcex

add.legend

See Also

NULL, type = "C", zlab = NULL, xlab = NULL,
L, levels = NULL, zlim = NULL, graphics.reset = NULL,
0.6, add.legend=TRUE, ...)

A surface object. At the minimum a list with components X,y and z in the same
form as the input list for the standard contour, persp or image functions. This
can also be an object from predictSurface.

Title for plot.

nn

type="p" for a perspective/drape plot (see drape.plot), type="1" for an image plot
with a legend strip (see image.plot), type="c" draws a contour plot, type="C" is
the "I" option but with contours lines added. type="b" gives both "p" and "C" as
a 2X1 panel

z-axes label

x-axes label

y-axes labels

Vector of levels to be passed to contour function.

Reset to original graphics parameters after function plotting. Default is to reset
if type ="b" but not for the single plot options.

Sets z limits on perspective plot.
Label sizes for axis labeling etc.
If TRUE adds a legend to the draped perspective plot

Other graphical parameters that are passed along to either drape.persp or im-
age.plot

surface, predictSurface, as.surface, drape.plot, image.plot
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Examples

x<- seq( -2,2,,80)
y<- seq( -2,2,,80)
# a lazy way to create some test image
z<- outer( x,y, "+"

# create basic image/surface object
obj<- list(x=x, y=y,z=z)

# basic contour plot
# note how graphical parameters appropriate to contour are passed
plot.surface( obj, type="c", col="red")

# using a fields function to fit a surface and evaluate as surface object.
fit<- Tps( BD[,1:4], BD$lnya) # fit surface to data

# surface of variables 2 and 3 holding 1 and 4 fixed at their median levels
out.p<-predictSurface(fit, xy=c(2,3))

plot.surface(out.p) # surface plot

poly.image Image plot for cells that are irregular quadrilaterals.

Description

Creates an image using polygon filling based on a grid of irregular quadrilaterals. This function is
useful for a regular grid that has been transformed to another nonlinear or rotated coordinate system.
This situation comes up in lon-lat grids created under different map projections. Unlike the usual
image format this function requires the grid to be specified as two matrices x and y that given the
grid x and y coordinates explicitly for every grid point.

Usage

poly.image(x, y, z, col = tim.colors(64), breaks, transparent.color = "white”,
midpoint = FALSE, zlim = range(z, na.rm = TRUE),
xlim = range(x), ylim = range(y), add = FALSE, border=NA,lwd.poly=1,...)

poly.image.regrid(x)

Arguments
X A matrix of the x locations of the grid.
y A matrix of the y locations of the grid.

Values for each grid cell. Can either be the value at the grid points or interpreted
as the midpoint of the grid cell.

col Color scale for plotting.
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breaks Numerical breaks to match to the colors. If missing breaks are equally spaced
on the range z1im.

transparent.color
Color to plot cells that are outside the range specified in the function call.

midpoint Only relevant if the dimensions of x,y, and z are the same. If TRUE the z values
will be averaged and then used as the cell midpoints. If FALSE the x/y grid will
be expanded and shifted to represent grid cells corners. (See poly.image.regrid.)

zlim Plotting limits for z.

xLlim Plotting limits for x.

ylim Plotting limits for y.

add If TRUE will add image onto current plot.

border Color of the edges of the quadrilaterals, the default is no color.

lwd.poly Line width for the mesh surface. i.e. the outlines of the quadrilateral facets.
This might have to be set smaller than one if rounded corners on the facets are
visible.

If add is FALSE, additional graphical arguments that will be supplied to the plot
function.

Details

This function is straightforward except in the case when the dimensions of x,y, and z are equal. In
this case the relationship of the values to the grid cells is ambigious and the switch midpoint gives
two possible solutions. The z values at 4 neighboring grid cells can be averaged to estimate a new
value interpreted to be at the center of the grid. This is done when midpoint is TRUE. Alternatively
the full set of z values can be retained by redefining the grid. This is accomplisehd by finding the
midpoints of x and y grid points and adding two outside rows and cols to complete the grid. The
new result is a new grid that is is (M+1)X (N+1) if z is MXN. These new grid points define cells
that contain each of the original grid points as their midpoints. Of course the advantage of this
alternative is that the values of z are preserved in the image plot; a feature that may be important for
some uses.

The function image.plot uses this function internally when image information is passed in this
format and can add a legend. In most cases just use image.plot.

The function poly. image.regrid does a simple averaging and extrapolation of the grid locations to
shift from midpoints to corners. In the interior grid corners are found by the average of the 4 closest
midpoints. For the edges the corners are just extrapolated based on the separation of nieghboring
grid cells.

Author(s)
Doug Nychka

See Also

image.plot
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Examples

data(RCMexample)

set.panel( 1,2)

par(pty="s")

# plot with grid modified

poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1])

# use midpoints of z
poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1],midpoint=TRUE)

set.panel()
# an example with quantile breaks

brk<- quantile( RCMexample$z[,,1]1, c( @, .9,.95,.99,1.0) )
poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1], breaks=brk, col=
rainbow(4))

# images are very similar.
set.panel()

# Regridding of x and y
11<- poly.image.regrid( RCMexample$x)
12<- poly.image.regrid( RCMexample$y)

# test that this works
i<- 1:10
plot( 11[i,i], 12[i,i])
points( RCMexample$x[i,i], RCMexample$y[i,i],col="red")

predict.Krig Evaluation of Krig spatial process estimate.

Description

Provides predictions from the Krig spatial process estimate at arbitrary points, new data (Y) or other
values of the smoothing parameter (lambda) including a GCV estimate.

Usage

## S3 method for class 'Krig'

predict(

object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed
= FALSE, lambda = NA, df = NA, model = NA,
eval.correlation.model = TRUE, y = NULL, yM = NULL,
verbose = FALSE, ...)
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predictDerivative.Krig(object, x = NULL, verbose = FALSE,...)

## S3 method for class 'Tps'
predict(object, ... )

## S3 method for class 'fastTps'
predict(object, xnew = NULL, grid.list = NULL, ynew = NULL,
derivative = @, Z = NULL, drop.Z = FALSE, just.fixed =

FALSE, xy = c(1, 2), ...)
Arguments
derivative The degree of the derivative to be evauated. Default is O (evaluate the function
itself), 1 is supported by some covariance functions, Higher derivatives are not
supported in this version and for mKrig.
df Effective degrees of freedom for the predicted surface. This can be used in place

of lambda ( see the function Krig.df.to.lambda)

eval.correlation.model
If true ( the default) will multiply the predicted function by marginal sd’s and add
the mean function. This usually what one wants. If false will return predicted
surface in the standardized scale. The main use of this option is a call from Krig
to find MLE’s of sigma and tau2

grid.list A grid.list specfiying a grid of locations to evaluate the fitted surface.

just.fixed Only fixed part of model is evaluated

lambda Smoothing parameter. If omitted, out\$lambda will be used. (See also df and
gcv arguments)

model Generic argument that may be used to pass a different lambda.

object Fit object from the Krig, Tps, mKrig, or fastTps functions.

verbose Print out all kinds of intermediate stuff for debugging

Xy The column positions that locate the x and y variables for evaluating on a grid.

This is mainly useful if the surface has more than 2 dimensions.

y Evaluate the estimate using the new data vector y (in the same order as the old
data). This is equivalent to recomputing the Krig object with this new data but
is more efficient because many pieces can be reused. Note that the x values are
assumed to be the same.

X Matrix of x values on which to evaluate the kriging surface. If omitted, the data
x values, i.e. out\$x will be used.

xnew Same as x above.
ynew Same as y above.
yM If not NULL evaluate the estimate using this vector as the replicate mean data.

That is, assume the full data has been collapsed into replicate means in the same
order as xM. The replicate weights are assumed to be the same as the original
data. (weightsM)
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Z Vector/Matrix of additional covariates to be included in fixed part of spatial
model

drop.Z If TRUE only spatial fixed part of model is evaluated. i.e. Z covariates are not
used.

Other arguments passed to covariance function. In the case of fastTps these are
the same arguments as predict.mKrig. This argument is usually not needed.

Details

The main goal in this function is to reuse the Krig object to rapidly evaluate different estimates.
Thus there is flexibility in changing the value of lambda and also the independent data without
having to recompute the matrices associated with the Krig object. The reason this is possible is that
most on the calculations depend on the observed locations not on lambda or the observed data. Note
the version for evaluating partial derivatives does not provide the same flexibility as predict.Krig
and makes some assumptions about the null model (as a low order polynomial) and can not handle
the correlation model form.

Value

Vector of predicted responses or a matrix of the partial derivatives.

See Also

Krig, predictSurface gcv.Krig

Examples

Krig(Chicago03$x,Chicago03$y, aRange=50) ->fit
predict( fit) # gives predicted values at data points should agree with fitted.values
# in fit object

# predict at the coordinate (-5,10)
x0<- cbind( -5,10) # has to be a 1X2 matrix
predict( fit,x= x0)

# redoing predictions at data locations:
predict( fit, x=Chicago03$x)

# only the fixed part of the model
predict( fit, just.fixed=TRUE)

# evaluating estimate at a grid of points
grid<- make.surface.grid( list( seq( -40,40,,15), seq( -40,40,,15)))
look<- predict(fit,grid) # evaluate on a grid of points

# some useful graphing functions for these gridded predicted values
out.p<- as.surface( grid, look) # reformat into $x $y $z image-type object
contour( out.p)

# see also the functions predictSurface and surface
# for functions that combine these steps
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# refit with 10 degrees of freedom in surface
look<- predict(fit,grid, df=15)

# refit with random data
look<- predict( fit, grid, y= rnorm( 20))

# finding partial derivatives of the estimate
#
# find the partial derivatives at observation locations
# returned object is a two column matrix.
# this does not make sense for the exponential covariance
# but can illustrate this with a thin plate spline with
# a high enough order ( i.e. need m=3 or greater)
#
data(ozone2)
# the 16th day of this ozone spatial dataset

fito<- Tps( ozone2$lon.lat, ozone2$y[16,]1, m=3)
look1<- predictDerivative.Krig( fit@)
# for extra credit compare this to
look2<- predictDerivative.Krig( fit@, x=ozone2$lon.lat)
# (why are there more values in look2)

predictSE Standard errors of predictions for Krig spatial process estimate

Description

Finds the standard error ( or covariance) of prediction based on a linear combination of the observed
data. The linear combination is usually the "Best Linear Unbiased Estimate" (BLUE) found from
the Kriging equations. This statistical computation is done under the assumption that the covariance
function is known.

Usage

predictSE(object, ...)

## S3 method for class 'Krig'

predictSE(object, x = NULL, cov = FALSE, verbose = FALSE,...)

## S3 method for class 'mKrig'

predictSE(object, xnew = NULL, Z = NULL, verbose = FALSE, drop.Z
= FALSE, ...)
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Arguments
drop.Z If FALSE find standard error without including the additional spatial covariates
described by Z. If TRUE find full standard error with spatial covariates if they
are part of the model.
object A fitted object that can be used to find prediction standard errors. This is usually
from fitting a spatial model to data. e.g. a Krig or mKrig object.
xnew Points to compute the predict standard error or the prediction cross covariance
matrix.
X Same as xnew — points to compute the predict standard error or the prediction
Cross covariance matrix.
cov If TRUE the full covariance matrix for the predicted values is returned. Make
sure this will not be big if this option is used. ( e.g. 50X50 grid will return a
matrix that is 2500X2500!) If FALSE just the marginal standard deviations of
the predicted values are returned. Default is FALSE — of course.
verbose If TRUE will print out various information for debugging.
These additional arguments passed to the predictSE function.
Z Additional matrix of spatial covariates used for prediction. These are used to
determine the additional covariance contributed in teh fixed part of the model.
Details

The predictions are represented as a linear combination of the dependent variable, Y. Call this LY.
Based on this representation the conditional variance is the same as the expected value of (P(x) +
Z(X) - LY)**2. where P(x)+Z(x) is the value of the surface at x and LY is the linear combination
that estimates this point. Finding this expected value is straight forward given the unbiasedness of
LY for P(x) and the covariance for Z and Y.

In these calculations it is assumed that the covariance parameters are fixed. This is an approximation
since in most cases they have been estimated from the data. It should also be noted that if one
assumes a Gaussian field and known parameters in the covariance, the usual Kriging estimate is the
conditional mean of the field given the data. This function finds the conditional standard deviations
(or full covariance matrix) of the fields given the data.

There are two useful extensions supported by this function. Adding the variance to the estimate of
the spatial mean if this is a correlation model. (See help file for Krig) and calculating the variances
under covariance misspecification. The function predictSE.KrigA uses the smoother matrix (
A(lambda) ) to find the standard errors or covariances directly from the linear combination of the
spatial predictor. Currently this is also the calculation in predictSE.Krig although a shortcut is
used predictSE.mKrig for mKrig objects.

Value

A vector of standard errors for the predicted values of the Kriging fit.

See Also

Krig, predict.Krig, predictSurfaceSE
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Examples

#
# Note: in these examples predictSE will default to predictSE.Krig using
# a Krig object

fit<- Krig(Chicago03$x,Chicago03$y,cov.function="Exp.cov”, aRange=10) # Krig fit
predictSE.Krig(fit) # std errors of predictions at obs.

# make a grid of X's
xg<-make.surface.grid(
list(East.West=seq(-27,34,,20),North.South=seq(-29,35,,20)))
out<- predictSE(fit,xg) # std errors of predictions

#at the grid points out is a vector of length 400
#reshape the grid points into a 20X20 matrix etc.

out.p<-as.surface( xg, out)
surface( out.p, type="C")

# this is equivalent to the single step function
# (but default is not to extrapolation beyond data
# out<- predictSurfaceSE( fit)

# image.plot( out)

predictSurface Evaluates a fitted function or the prediction error as a surface that is
suitable for plotting with the image, persp, or contour functions.

Description

Evaluates a a fitted model or the prediction error on a 2-D grid keeping any other variables constant.
The resulting object is suitable for use with functions for viewing 3-d surfaces.

Usage

## Default S3 method:
predictSurface(object, grid.list = NULL,
extrap = FALSE, chull.mask = NA, nx = 80, ny = 80,
xy = c(1,2), verbose = FALSE, ...)

## S3 method for class 'fastTps'

predictSurface(object, grid.list = NULL,
extrap = FALSE, chull.mask = NA, nx = 80, ny = 80,
xy = c(1,2), verbose = FALSE, ...)
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## S3 method for class 'Krig'
predictSurface(object, grid.list = NULL, extrap = FALSE, chull.mask = NA,
nx = 80, ny = 80, xy = c(1, 2), verbose = FALSE, ZGrid = NULL,

drop.Z = FALSE, just.fixed=FALSE, ...)

## S3 method for class 'mKrig'
predictSurface(object, ...)

## Default S3 method:

predictSurfaceSE(object, grid.list = NULL, extrap = FALSE, chull.mask =
NA, nx = 80, ny = 80, xy = c(1, 2), verbose = FALSE,
ZGrid = NULL, just.fixed = FALSE, ...)

## S3 method for class 'surface'
predict(object,...)

Arguments

object An object from fitting a function to data. In fields this is usually a Krig, mKrig,
or fastTps object.

grid.list A list with as many components as variables describing the surface. All com-
ponents should have a single value except the two that give the grid points for
evaluation. If the matrix or data frame has column names, these must appear in
the grid list. See the grid.list help file for more details. If this is omitted and the
fit just depends on two variables the grid will be made from the ranges of the
observed variables. (See the function fields.x.to.grid.)

extrap Extrapolation beyond the range of the data. If FALSE (the default) the predictions
will be restricted to the convex hull of the observed data or the convex hull
defined from the points from the argument chull.mask. This function may be
slightly faster if this logical is set to TRUE to avoid checking the grid points
for membership in the convex hull. For more complicated masking a low level
creation of a bounding polygon and testing for membership with in.poly may
be useful.

chull.mask Whether to restrict the fitted surface to be on a convex hull, NA’s are assigned
to values outside the convex hull. chull.mask should be a sequence of points
defining a convex hull. Default is to form the convex hull from the observations
if this argument is missing (and extrap is false).

nx Number of grid points in X axis.
ny Number of grid points in Y axis.

Xy A two element vector giving the positions for the "X" and "Y" variables for the
surface. The positions refer to the columns of the x matrix used to define the
multidimensional surface. This argument is provided in lieu of generating the
grid list. If a 4 dimensional surface is fit to data then xy=c(2,4) will evaluate
a surface using the second and fourth variables with variables 1 and 3 fixed at
their median values. NOTE: this argument is ignored if a grid.list argument is
passed.

drop.Z If TRUE the fixed part of model depending on covariates is omitted.
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just.fixed If TRUE the nonparametric surface is omitted.

Any other arguments to pass to the predict function associated with the fit object.
Some of the usual arguments for several of the fields fitted objects include:

ynew New values of y used to reestimate the surface.
Z A matrix of covariates for the fixed part of model.

ZGrid An array or list form of covariates to use for prediction. This must match the
grid.list argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid
is an array then the first two indices are the x and y locations in the grid. The
third index, if present, indexes the covariates. e.g. For evaluation on a 10X15
grid and with 2 covariates. dim( ZGrid) ==¢(10,15,2). If ZGrid is a list
then the components x and y shold match those of grid.list and the z component
follows the shape described above for the no list case.

verbose If TRUE prints out some imtermediate results for debugging.

Details

This function creates the right grid using the grid.list information or the attribute in xg, calls the
predict function for the object with these points and also adding any extra arguments passed in the
. section, and then reforms the results as a surface object (as.surface). To determine the what
parts of the prediction grid are in the convex hull of the data the function in.poly is used. The
argument inflation in this function is used to include a small margin around the outside of the
polygon so that point on convex hull are included. This potentially confusing modification is to
prevent excluding grid points that fall exactly on the ranges of the data. Also note that as written
there is no computational savings for evaluting only the convex subset compared to the full grid.

predictSurface.fastTps is a specific version ( m=2, and k=2) that can be much more efficient
because it takes advantage of a low level FORTRAN call to evaluate the Wendland covariance
function. Use predictSurface or predict for other choices of m and k.

predictSurface.Krig is designed to also include covariates for the fixed in terms of grids. Due to
similarity in output and the model. predictSurface.mKrig just uses the Krig method.

NOTE: predict.surface has been depreciated and just prints out a warning when called.

Value

The usual list components for making contour and perspective plots (x,y,z) along with labels for the
x and y variables. For predictSurface.derivative the component z is a three dimensional array
with nx, ny, 2.

See Also

Tps, Krig, predict, grid.list, make.surface.grid, as.surface, surface, in.poly
Examples
fit<- Tps( BD[,1:4], BD$1lnya) # fit surface to data

# evaluate fitted surface for first two
# variables holding other two fixed at median values
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out.p<- predictSurface(fit)
surface(out.p, type="C")

#
# plot surface for second and fourth variables
# on specific grid.

glist<- list( KCL=29.77, MgCl2= seq(3,7,,25), KP04=32.13,
dNTP=seq( 250,1500, ,25))

out.p<- predictSurface(fit, glist)
surface(out.p, type="C")

out.p<- predictSurfaceSE(fit, glist)
surface(out.p, type="C")

print.Krig Print kriging fit results.

Description

Prints the results from a fitting a spatial process estimate (Krig)

Usage

## S3 method for class 'Krig'
print(x,digits=4,...)

Arguments
X Object from Krig function.
digits Number of significant digits in printed output. Default is 4.
Other arguments to print.
Value

Selected summary results from Krig.

See Also

print, summary.Krig, Krig

Examples

fit<- Krig(Chicago03$x,Chicago03$y, aRange=100)
print(fit) # print the summary
fit # this will work too
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pushpin Adds a "push pin" to an existing 3-d plot

Description

Adds to an existing 3-d perspective plot a push pin to locate a specific point.

Usage
pushpin( x,y,z,p.out, height=.05,col="black”,text=NULL,adj=-.1,cex=1.0,...)

Arguments
X x location
y y location
z location
p.out Projection information returned by persp
height Height of pin in device coordinates (default is about 5% of the vertical distance
).
col Color of pin head.
text Optional text to go next to pin head.
adj Position of text relative to pin head.
cex Character size for pin head and/or text
Additional graphics arguments that are passed to the text function.
Details

See the help(text) for the conventions on the adj argument and other options for placing text.

Author(s)
Doug Nychka

See Also

drape.plot,persp

Examples

# Dr. R's favorite New Zealand Volcano!
data( volcano)
M<- nrow( volcano)
N<- ncol( volcano)
x<- seq( 0,1,,M)
y<- seq( 0,1,,N)
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drape.plot( x,y,volcano, col=terrain.colors(128))-> pm
max( volcano)-> zsummit
xsummit<- x[ row( volcano)[volcano==zsummit]]

ysummit<- y[ col( volcano)[volcano==zsummit]]

pushpin( xsummit,ysummit,zsummit,pm, text="Summit")

gsreg Quantile or Robust spline regression

Description

Uses a penalized likelihood approach to estimate the conditional quantile function for regression
data. This method is only implemented for univariate data. For the pairs (X,Y) the conditional
quantile, f(x), is P( Y<f(x)| X=x) = alpha. This estimate is useful for determining the envelope
of a scatterplot or assessing departures from a constant variance with respect to the independent
variable.

Usage

gsreg(x, y, lam = NA, maxit = 50, maxit.cv = 10, tol =
1e-07, offset = @, sc = sqrt(var(y)) * 1e-05, alpha =
0.5, wt = rep(1, length(x)), cost = 1, nstep.cv = 80,
hmin = NA, hmax = NA, trmin = 2 x 1.05, trmax = 0.95
* length(unique(x)))

Arguments
X Vector of the independent variable in y = f(x) + ¢
y Vector of the dependent variable
lam Values of the smoothing parameter. If omitted is found by GCV based on the
the quantile criterion
maxit Maximum number of iterations used to estimate each quantile spline.
maxit.cv Maximum number of iterations to find GCV minimum.
tol Tolerance for convergence when computing quantile spline.
cost Cost value used in the GCV criterion. Cost=1 is the usual GCV denominator.
offset Constant added to the effective degrees of freedom in the GCV function.
sc Scale factor for rounding out the absolute value function at zero to a quadratic.

Default is a small scale to produce something more like quantiles. Scales on the
order of the residuals will result is a robust regression fit using the Huber weight
function. The default is le-5 of the variance of the Y’s. The larger this value
the better behaved the problem is numerically and requires fewer iterations for
convergence at each new value of lambda.
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alpha
wt

nstep.cv
hmin
hmax

trmin

trmax

Details

141

Quantile to be estimated. Default is find the median.

Weight vector default is constant values. Passing nonconstant weights is a pretty
strange thing to do.

Number of points used in CV grid search
Minimum value of log( lambda) used for GCV grid search.
Maximum value of log( lambda) used for GCV grid search.

Minimum value of effective degrees of freedom in model used for specifying
the range of lambda in the GCV grid search.

Maximum value of effective degrees of freedom in model used for specifying
the range of lambda in the GCV grid search.

This is an experimental function to find the smoothing parameter for a quantile or robust spline using
a more appropriate criterion than mean squared error prediction. The quantile spline is found by
an iterative algorithm using weighted least squares cubic splines. At convergence the estimate will

also be a weighted

natural cubic spline but the weights will depend on the estimate. Alternatively

at convergence the estimate will be a least squares spline applied to the empirical psuedo data.
The user is referred to the paper by Oh and Nychka ( 2002) for the details and properties of the
robust cross-validation using empirical psuedo data. Of course these weights are crafted so that the
resulting spline is an estimate of the alpha quantile instead of the mean. CV as function of lambda
can be strange so it should be plotted.

Value

trmin trmax

See Also

sreg

Examples

Define the minimum and maximum values for the CV grid search in terms of
the effective number of parameters. (see hmin, hmax) Object of class gsreg with
many arguments similar to a sreg object. One difference is that cv.grid has five
columns the last being the number of iterations for convergence at each value of
lambda.

# fit a CV quantile spline

fit50<- gsreg(rat.diet$t,rat.diet$con)

# (default is .5 so this is an estimate of the conditional median)
# control group of rats.

plot( fit50)

predict( fit50)

# predicted values at data points
xg<- seq(0,110,,50)

plot( fit50%$x, fit50%y)

lines( xg, predict( fit50, xg))
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# A robust fit to rat diet data

#

SC<- .5% median(abs((rat.diet$con- median(rat.diet$con))))
fit.robust<- gsreg(rat.diet$t,rat.diet$con, sc= SC)

plot( fit.robust)

The global GCV function suggests little smoothing so

try the local

minima with largest lambda instead of this default value.

one should should consider redoing the three quantile fits in this
example after looking at the cv functions and choosing a good value for
#lambda

# for example

lam<- fit50@%$cv.grid[,1]

tr<- fit50%cv.grid[,2]

# lambda close to df=6

lambda. good<- max(lam[tr>=6])
fit50.subjective<-gsreg(rat.diet$t,rat.diet$con, lam= lambda.good)
fit10<-gsreg(rat.diet$t,rat.diet$con, alpha=.1, nstep.cv=200)
fit90<-gsreg(rat.diet$t,rat.diet$con, alpha=.9, nstep.cv=200)

# spline fits at 50 equally spaced points

sm<- cbind(

% 3 o

predict( fit1e, xg),
predict( fit50.subjective, xg),predict( fit50, xg),
predict( fit90, xg))

# and now zee data ...

plot( fit50%$x, fit50%$y)

# and now zee quantile splines at 10% 50% and 90%.

#

matlines( xg, sm, col=c( 3,3,2,3), 1lty=1) # the spline

QTps Robust and Quantile smoothing using a thin-plate spline

Description

This function uses the standard thin plate spline function Tps and a algorithm based on psuedo data
to compute robust smoothers based on the Huber weight function. By modifying the symmetry
of the Huber function and changing the scale one can also approximate a quantile smoother. This
function is experimental in that is not clear how efficient the psuedo-data algorithm is acheiving
convergence to a solution.

Usage

QTps(x, Y, ..., f.start = NULL, psi.scale =NULL, C =1, alpha =0.5, Niterations = 100,
tolerance = 0.001, verbose = FALSE)
QSreg(x, Y, lambda = NA, f.start = NULL, psi.scale = NULL,
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C =1, alpha = 0.5, Niterations = 100, tolerance = 0.001,
verbose = FALSE)

Arguments

X Locations of observations.

Y Observations

lambda Value of the smoothing parameter. If NA found by an approximate corss-validation
criterion.

Any other arguments to pass to the Tps function, which are then passed to the
Krig function. give.warnings =FALSE can be used to turn off pesky warnings
when not important (see example below).

C Scaling for huber robust weighting function. (See below.) Usually it is better to
leave this at 1 and just modify the scale psi.scale according to the size of the
residuals.

f.start The initial value for the estimated function. If NULL then the constant function
at the median of Y will be used. NOTE: This may not be a very good starting
vector and a more robust method would be to use a local robust smoother.

psi.scale The scale value for the Huber function. When C=1, this is the point where the
Huber weight function will change from quadratic to linear. Default is to use the
scale . @5*mad(Y) and C=1 . Very small scales relative to the size of the residuals
will cause the estimate to approximate a quantile spline. Very large scales will
yield the ordinary least squares spline.

alpha The quantile that is estimated by the spline. Default is .5 giving a median. Equiv-
alently this parameter controls the slope of the linear wings in the Huber function
2*alpha for the positive wing and 2*(1-alpha) for the negative wing.

Niterations Maximum number of interations of the psuedo data algorithm

tolerance Convergence criterion based on the relative change in the predicted values of the
function estimate. Specifically if the criterion mean(abs(f.hat.new -f.hat))/mean(abs(f.hat))
is less than tolerance the iterations re stopped.

verbose If TRUE intermediate results are printed out.

Details

These are experimental functions that use the psuedo-value algorithm to compute a class of robust
and quantile problems. QTps use the Tps function as its least squares base smoother while QSreg
uses the efficient sreg for 1-D cubic smoothing spline models. Currently for the 1-d spline problem
we recommend using the (or at least comparing to ) the old qsreg function. QSreg was created to
produce a more readable version of the 1-d method that follows the thin plate spline format.

The Thin Plate Spline/ Kriging model through fields is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e k
with the goal of estimating the smooth function: f(x)= P(x) + Z(x)

The extension in this function is that e.k can be heavy tailed or have outliers and one would still
like a robust estimate of f(x). In the quantile approximation (very small scale parameter) f(x) is an
estimate of the alpha quantile of the conditional distribution of Y given x.
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The algorithm is iterative and involves at each step tapering the residuals in a nonlinear way. Let
psi.wght be this tapering function then given an initial estimate of f, f.hat the new data for smoothing
is

Y.psuedo<-f.hat + psi.scalex psi.wght( Y -f.hat,psi.scale=psi.scale,alpha=alpha) A
thin plate spline is now estimated for these data and a new prediction for f is found. This new vector
is used to define new psuedo values. Convergence is achieved when the the subsequent estimates of
f.hat do not change between interations. The advantage of this algorithm is at every step a standard
"least squares" thin plate spline is fit to the psuedo data. Because only the observation vector is
changing at each iteration Some matrix decompositions need only be found once and the compu-
tations at each subsequent iteration are efficient. At convergence there is some asymptotic theory
to suggest that the psuedo data can be fit using the least squares spline and the standard smoothing
techinques are valid. For example one can consider looking at the cross-validation function for the
psuedo-data as a robust version to select a smoothing parameter. This approach is different from
the weighted least squared algorithm used in the gsreg function. Also gsreg is only designed to
work with 1-d cubic smoothing splines.

The "sigma" function indicating the departure from a pure quadratic loss function has the definition

gsreg.sigma<-function(r, alpha = 0.5, C = 1)
temp<- ifelse( r< @, ((1 - alpha) * r*2)/C , (alpha *x r*2)/0C)
temp<- ifelse( r >C, 2 * alpha * r - alpha * C, temp)
temp<- ifelse( r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp)
temp

The derivative of this function "psi" is

gsreg.psi<- function(r, alpha = 0.5, C = 1)
temp <- ifelse( r < @, 2x(1-alpha)* r/C, 2*alpha * r/C )
temp <- ifelse( temp > 2xalpha, 2*alpha, temp)
temp <- ifelse( temp < -2%(1-alpha), -2*%(1-alpha), temp)
temp

Note that if C is very small and if alpha = .5 then psi will essentially be 1 for r > 0 and -1 for r <
0. The key feature here is that outside a ceratin range the residual is truncated to a constant value.
This is similar to the Windsorizing operation in classical robust statistics.

Another advantage of the psuedo data algotrithm is that at convergence one can just apply all the
usual generic functions from Tps to the psuedo data fit. For example, predict, surface, print, etc.
Some additional components are added to the Krig/Tps object, however, for information about the
iterations and original data. Note that currently these are not reported in the summaries and printing
of the output object.

Value

A Krig object with additional components:

yraw Original Y values

conv.info A vector giving the convergence criterion at each iteration.
conv.flag If TRUE then convergence criterion was less than the tolerance value.
psi.scale Scaling factor used for the psi.wght function.

value Value of alpha.
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Author(s)
Doug Nychka

References

Oh, Hee-Seok, Thomas CM Lee, and Douglas W. Nychka. "Fast nonparametric quantile regression
with arbitrary smoothing methods." Journal of Computational and Graphical Statistics 20.2 (2011):
510-526.

See Also

qgsreg

Examples

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]

# Smoothing fixed at 50 df
look1<- QTps( x,y, psi.scale= 15, df= 50)

## Not run:
# Least squares spline (because scale is so large)
look2<- QTps( x,y, psi.scale= 100, df= 50)
#
y.outlier<- vy
# add in a huge outlier.
y.outlier[58]<- 1e5
look.outlieri<- QTps( x,y.outlier, psi.scale= 15, df= 50,
give.warnings= FALSE)
# least squares spline.
look.outlier2<- QTps( x,y.outlier, psi.scale=100 , df= 50,
give.warnings= FALSE)

set.panel(2,2)

surface( look1)

title("robust spline")

surface( look2)

title("least squares spline”)

surface( look.outlierl, zlim=c(0,250))
title("robust spline w/outlier")
points( rbind(x[58,]), pch="+"

surface( look.outlier2, zlim=c(@,250))
title("least squares spline w/outlier”)
points( rbind(x[58,]), pch="+"
set.panel()

## End(Not run)
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# some quantiles
look50 <- QTps( x,y, psi.scale=.5,)
look75 <- QTps( x,y,f.start= look50%$fitted.values, alpha=.75)

# a simulated example that finds some different quantiles.

## Not run:
set.seed(123)
N<- 400

x<- matrix(runif( N), ncol=1)
true.g<- x *(1-x)*2

true.g<- true.g/ mean( abs( true.g))
y<- true.g + .2%rnorm( N )

look® <- QTps( x,y, psi.scale=10, df= 15)
look50 <- QTps( x,y, df=15)
look75 <- QTps( x,y,f.start= look50%$fitted.values, df=15, alpha=.75)

## End(Not run)

## Not run:

# this example tests the quantile estimate by Monte Carlo

# by creating many replicate points to increase the sample size.
# Replicate points are used because the computations for the

# spline are dominated by the number of unique locations not the
# total number of points.

set.seed(123)

N<- 80

M<- 200

x<- matrix( sort(runif( N)), ncol=1)

x<- matrix( rep( x[,1]1,M), ncol=1)

true.g<- x *(1-x)*2

true.g<- true.g/ mean( abs( true.g))

errors<- .2x(rexp( N*M) -1)

y<- c(matrix(true.g, ncol=M, nrow=N) + .2 * matrix( errors, ncol=M, nrow=N))

look® <- QTps( x,y, psi.scale=10, df= 15)
look50 <- QTps( x,y, df=15)
look75 <- QTps( x,y, df=15, alpha=.75)

bplot.xy(x,y, N=25)

xg<- seq(0,1,,200)

lines( xg, predict( look@d, x=xg), col="red")
lines( xg, predict( look50, x=xg), col="blue")
lines( xg, predict( look75, x=xg), col="green")

## End(Not run)

## Not run:

# A comparison with qsreg
gsreg.fit50<- gsreg(rat.diet$t,rat.diet$con, sc=.5)
lam<- qgsreg.fit50%$cv.grid[,1]
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df<- gsreg.fit50%cv.grid[,2]
M<- length(lam)
CV<-rep( NA, M)
M<- length( df)
fhat.old<- NULL
for ( k in M:1){
temp.obj<- QTps(rat.diet$t,rat.diet$con, f.start=fhat.old, psi.scale=.5, tolerance=1e-6,
verbose=FALSE, df= df[k],
give.warnings=FALSE)
# avoids warnings from Krig search on lambda
cat(k, " ")
CV[k] <- temp.obj$Qinfo$CV.psuedo
fhat.old<- temp.obj$fitted.values
}
plot( df, CV, type="1", lwd=2)
# psuedo data estimate
points( gsreg.fit50%$cv.grid[,c(5,6)], col="blue")
# alternative CV estimate via reweighted LS
points( gsreg.fit50%$cv.grid[,c(2,3)], col="red")

## End(Not run)

quilt.plot Useful plots for visualizing irregular spatial data.

Description

Given a vector of z values associated with 2-d locations this function produces an image-like plot
where the locations are discretized to a grid and the z values are coded as a color level from a color
scale.

Usage

quilt.plot(x, y, z, nx = 64, ny = 64, grid = NULL,
add. legend=TRUE,add=FALSE, nlevel=64,
col = tim.colors(nlevel),
nrow=NULL, ncol=NULL,FUN =
NULL, plot=TRUE, na.rm=FALSE,
boundary.grid = FALSE, ...)

bubblePlot(x, y, z, col = viridis::viridis(256),
z1im=NULL, horizontal = FALSE,
legend.cex = 1, legend.lab = NULL, legend.line = 2,
legend.shrink = 0.9, legend.width = 1.2, legend.mar =
ifelse(horizontal, 3.1, 5.1), axis.args = NULL,
legend.args = NULL, size = 1, add = FALSE,
legendLayout = NULL, highlight = TRUE, highlight.color



148

Arguments

X

nlevel

nx
ny

nrow

ncol

grid

add. legend
add

col

boundary.grid

plot
FUN
na.rm

size

zlim

horizontal

highlight

highlight.color

legend. cex

quilt.plot

= "grey30", ...)

A vector of the x coordinates of the locations -or- a a 2 column matrix of the x-y
coordinates.

A vector of the y coordinates -or- if the locations are passed in x the z vector

Values of the variable to be plotted. For bubblePlot if a character or factor will
be assigned colors based on the order of appearance.

Number of color levels.

Number of grid boxes in x if a grid is not specified.
Number of grid boxes in y.

Depreciated, same as nx.

Depreciated same as ny.

A grid in the form of a grid list.

If TRUE a legend color strip is added

If FALSE add to existing plot.

Color function or the color scale for the image, the default is the tim.colors
function — a pleasing spectrum for quilt.plot and the modern and versitle viridis
for bubblePlot

If FALSE the passed grid is considered to be the midpoints of the grid cells. If
TRUE then these are assumed to define corners and the number of boxes is one
less in each dimension.

If FALSE just returns the image object instead of plotting it.

The function to apply to values that are common to a grid box. The default is to
find the mean. (see as.image).

If FALSE NAs are not removed from zand so a grid box even one of these values
may be an NA. (See details below.)

Size of bubble dots in cex units. Can be a vector to procduce different size points
in the scatterplot.

Numerical range to determine the colorscale. If omitted the range of z is used.

for quilt.plot arguments to be passed to the image.plot function. For bubble-
Plot arguments to be passed to the plot function if add=FALSE, the default and
to the points function if add=TRUE.

If false (default) legend will be a vertical strip on the right side. If true the legend
strip will be along the bottom.

If TRUE will add a circle around the "bubble" in the color highlight.color.

Color of circle, default is a darker grey.

Character expansion to change size of the legend label.
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legend. lab Label for the axis of the color legend. Default is no label as this is usual evident
from the plot title.

legend.line Distance in units of character height (same as in mtext) of the legend label from
the color bar. Make this larger if the label collides with the color axis labels.

legend.mar Width in characters of legend margin that has the axis. Default is 5.1 for a
vertical legend and 3.1 for a horizontal legend.

legend.shrink Amount to shrink the size of legend relative to the full height or width of the
plot.

legend.width ~ Width in characters of the legend strip. Default is 1.2, a little bigger that the
width of a character.

axis.args A list giving additional arguments for the axis function used to create the legend
axis. (See examples in image.plot.)

legend.args The nuclear option: arguments for a complete specification of the legend label,
e.g. if you need to the rotate text or other details. This is in the form of a list and
is just passed to the mtext function and you will need to give both the side and
line arguments for positioning. This usually will not be needed. (See examples
in image.plot .)

legendLayout The list returned by setupLegend that has the legend information about posi-
tioning.

Details

quilt.plot This function combines the discretization to an image by the function as. image and is
then graphed by image.plot. By default, locations that fall into the same grid box will have their
z values averaged. This also means that observations that are NA will result in the grid box average
also being NA and can produce unexpected results because the NA patterns can dominate the figure.
If you are unsure of the effect try na.rm = TRUE for a comparison.

A similar function exists in the lattice package and produces spiffy looking plots. The advantage of
this fields version is that it uses the standard R graphics functions and is written in R code. Also,
the aggregation to average values for z values in the same grid box allows for different choices of
grids. If two locations are very close, separating them could result in very small boxes.

Legend placement is never completely automatic. Place the legend independently for more con-
trol, perhaps using image.plot in tandem with split.screen or enlarging the plot margin See
help(image.plot) for examples of this function and these strategies.

bubblePlot Why was this function was written for fields? Certainly ggplot has many options for this
kind of figure. To quote Tim Hoar a gifted data scientist and software engineer at NCAR: "because
we could". It is a crisp implementation of this type of plot using lower level fields functions. The
user may choose simply to use the source code as the basis for a more detailed function. However,
this is also a quick plot to introduce in teaching.

This function is experimental in the sense it explores setting out a plotting region in advance of the
actual plotting using R base graphics. See the functions setupLegend and addLegend for more
details. Other graphics approaches in R such as ggplot determine the plotting regions and layout
based on having the entire figure specification at hand. Although this a comprehensive solution it
also seems overkill to just add a lone color bar to annotate a plot. Moreover, and the graphics lower
level functions to add the color bar legend are already available from the image.plot functio.
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Author(s)
D.Nychka

See Also

as.image, discretize.image, image.plot, lattice, persp, drape.plot,

Examples

data( ozone2)
# plot 16 day of ozone data set

quilt.plot( ozone2$lon.lat, ozone2$y[16,]1)
US( add=TRUE, col="grey"”, lwd=2)

bubblePlot( ozone2$lon.lat, ozone2$y[16,] )
US( add=TRUE, col="magenta"”, lwd=2)

# colors based on a factor or character vector
O3Levels<- cut( ozone2$y[16,], c( 0,40,60,80,Inf),
labels=c("low","bckgrd”,"med”, "high"))

table( O3Levels)

bubblePlot( ozone2$lon.lat, O3Levels )

US( add=TRUE, col="magenta", lwd=2)

### adding a common legend strip "by hand”
## to a panel of plots
## and a custom color table

coltab<- two.colors( 256, middle="grey50" )

par( oma=c( 0,0,0,5)) # save some room for the legend
set.panel(2,2)
zr<- range( ozone2$y, na.rm=TRUE)

for( k in 1:4){

quilt.plot( ozone2$lon.lat, ozone2$y[15+k,], add.legend=FALSE,
zlim=zr, col=coltab, nx=40, ny=40)

US( add=TRUE)

3

par( oma=c(0,0,0,1))

image.plot(zlim=zr,legend.only=TRUE, col=coltab)

# may have to adjust number of spaces in oma to make this work.

# adding some grid lines and using the boundary.grid option

# note that in this case grid boxes drawn to match lon/lats
data( ozone2)

lon<- ozone2$lon.lat[,1]

lat<- ozone2$lon.lat[,2]

z<- ozone2$y[16,]

gridList<- list( x=-94 :-81,
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y= 36:45 )

quilt.plot( lon, lat, z, grid= gridlList, boundary.grid = TRUE,
col=viridis(256) )

# add some gird lines

xline( gridList$x , col="grey”, lwd=1, lty=1)

yline( gridList$y, col="grey", lwd=1, lty=2)

rat.diet Experiment studying an appetite supressant in rats.

Description

The ‘rat.diet’ data frame has 39 rows and 3 columns. These are data from a study of an appetite

supressant given to young rats. The suppressant was removed from the treatment group at around

60 days. The responses are the median food intake and each group had approximately 10 animals.
Usage

data(rat.diet)

Format
This data frame contains the following columns:
t Time in days

con Median food intake of the control group

trt Median food intake of the treatment group

RCMexample 3-hour precipitation fields from a regional climate model

Description

These are few model output fields from the North American Regional Climate Change and Assess-
ment Program (NARCCAP). The images are transformed surface precipitation fields simulated by
the WRFP regional climate model (RCM) over North Amreica forced by observation data. The
fields are 3 hour precipitation for 8 time periods in January 1, 1979. The grid is unequally spaced
in longitude and latitude appropriate projection centered on the model domain.The grid points are
nearly equally spaced in great circle distance due to this projection. Precipitation is in a log 10 scale
where values smaller than 4.39e-5 ( the .87 quantile) have been been set to this value. Longitudes
have been shifted from the original coordinates (0-360) to the range (-180-180) that is assumed by
the R map function.
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Usage

data(RCMexample)

Format

The format is a list of three arrays:

e x: 123X101 matrix of the longitude locations
 y: 123X101 matrix of the latitude locations

e 7: 123X101X8 transformed matrix of precipitation

Spatial units are degrees with longitude being -180,180 with the prime meridian at 0. Precipitation
is log 10 of cm / 3 hour period.

Details

This is primarily an example of a regular grid that is not equally spaced and is due to transforming an
equally spaced grid from one map projection into longitude latitude coordinates. This model is one
small part of an extension series of numerical experiments the North American Regional Climate
Change and Assessment Program (NARCCAP). NARCCAP has used 4 global climate models and
observational data to supply the atmospheric boundery conditions for 6 different regional climate
models. In the current data the forcing is the observations derived from the NCEP reanalysis data
and is for Janurary 1, 1979. The full simulation runs for 20 years from this starting date. See the
NARCCAP web page for more information about these data.

To facilatate a better representation of these fields the raw precipitation values have been trans-
formed to the log scale with all values below 4.39E-5 cm/3 hours set to this lower bound.

Examples

data(RCMexample)
# second time period

image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,2])
world( add=TRUE, 1lwd=2, col="grey")

rdist Euclidean distance matrix or vector

Description

Given two sets of locations rdist and fields.rdist.near computes the full Euclidean distance
matrix among all pairings or a sparse version for points within a fixed threshhold distance. rdist.vec
computes a vector of pairwise distances between corresponding elements of the input locations and
is used in empirical variogram calculations.
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Usage
rdist(x1, x2 = NULL, compact = FALSE)
fields.rdist.near(x1,x2, delta, max.points= NULL, mean.neighbor = 50)

rdist.vec(x1, x2)

Arguments

x1 Matrix of first set of locations where each row gives the coordinates of a partic-
ular point.

X2 Matrix of second set of locations where each row gives the coordinates of a
particular point. If this is not passed or given as NULL x1 is used.

compact Whether or not to return a distance matrix in compact form inheriting class
“dist” (as returned by the dist function in base R). Only values for one triangle
of the symmetric distance matrix are returned. This saves time evaluating the
returned matrix and the covariance. Note that this option is ignored when x2 is
not NULL.

delta Threshhold distance. All pairs of points that separated by more than delta in
distance are ignored.

max.points Size of the expected number of pairs less than or equal to delta. The default is

set to the nrow(x1)*mean.neighbor.

mean.neighbor  Sets the temp space for max.points

Details

More about fields.rdist.near:

The sparse version is designed to work with the sparse covariance functions in fields and anticipates
that the full matrix, D is too large to store. The argument max.points is set as a default to nrow(
x1)*100 and allocates the space to hold the sparse elements. In case that there are more points that
are within delta the function stops with an error but lists the offending rows. Just rerun the function
with a larger choice for max.points

It possible that for certain x1 points there are no x2 points within a distance delta. This situation
will cause an error if the list is converted to spam format.

Returned values

Let D be the mXn distance matrix, with m= nrow(x1) and n=nrow( x2). The elements are the
Euclidean distances between the all locations x1[i,] and x2[j,]. That is,

D.ij = sqrt( sum.k (( x1[i,k] - x2[3,k]) **2).

rdist The distance matrix D is returned.

fields.rdist.near The elements of D that are less than or equal to delta are returned in the form
of a list.

List components:

ind Row and column indices of elements
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ra (Distances ( D.ij)

da Dimensions of full distance matrix.

This is a simple sparse format that can be manipulated by several fields functions. E.g. ind2spam
will convert this list to the format used by the spam sparse matrix package. ind2full will convert
this to an ordinary matrix with zeroes.

Author(s)

Doug Nychka, John Paige

See Also

stationary.cov, Exp.cov, rdist.earth, dist, ind2spam, ind2full

Examples

out<- rdist( Chicago03$x)
# out is a 20X20 matrix.

out2<- rdist( Chicago03$x[1:5,], Chicago03$x[11:20,1)
#out2 is a 5X10 matrix

set.seed(123)
x1<- matrix( runif( 20%2), 20,2)
x2<- matrix( runif( 15%2), 15,2)

out3<- fields.rdist.near( x1,x2, delta=.5)
# out3 is a sparse structure in list format

# or to "save" work space decrease size of temp array
out3<- fields.rdist.near( x1,x2, delta=.5,max.points=20%15)

# explicitly reforming as a full matrix
temp<- matrix( NA, nrow=out3$dal1], ncol= out3$dal2])
temp[ out3$ind] <- out3$ra

# or justuse

temp<- spind2full( out3)
image( temp)

# this is identical to
temp2<- rdist( x1,x2)
temp2[ temp2<= .5] <- NA

#compute pairwise distance vector
x1 =1:10

x2 = seq(from=10, to=1)
rdist.vec(x1, x2)
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#calculate output matrix in compact form:
distOut = rdist(1:10, compact=TRUE)
distOut

as.vector(distOut)

rdist.earth Great circle distance matrix or vector

Description

Given two sets of longitude/latitude locations, rdist.earth computes the Great circle (geographic)
distance matrix among all pairings and rdist.earth.vec computes a vector of pairwise great circle
distances between corresponding elements of the input locations using the Haversine method and is
used in empirical variogram calculations.

Usage

rdist.earth(x1, x2, miles = TRUE, R = NULL)
RdistEarth(x1, x2=NULL, miles=TRUE, R=NULL)
rdist.earth.vec(x1, x2, miles = TRUE, R = NULL)

Arguments

x1 Matrix of first set of lon/lat coordinates first column is the longitudes and second
is the latitudes.

X2 Matrix of second set of lon/lat coordinates first column is the longitudes and
second is the latitudes. If missing or NULL x1 is used.

miles If true distances are in statute miles if false distances in kilometers.

R Radius to use for sphere to find spherical distances. If NULL the radius is either
in miles or kilometers depending on the values of the miles argument. If R=1
then distances are of course in radians.

Details

Surprisingly the distance matrix is computed efficiently in R by dot products of the direction cosines.
This is the calculation in rdist.earth. Thanks to Qing Yang for pointing this out a long time ago.
A more efficient version has been implemented in C with the R function RdistEarth by Florian
Gerber who has also experimented with parallel versions of fields functions. The main advantage
of RdistEarth is the largely reduce memory usage. The speed seems simillar to rdist.earth. As
Florian writes:

"The current fields::rdist.earth() is surprisingly fast. In the case where only the argument "x1’ is
specified, the new C implementation is faster. In the case where *x1° and *x2’ are given, fields::rdist.earth()
is a bit faster. This might be because fields::rdist.earth() does not check its input arguments and uses

a less complicated (probably numerically less stable) formula.”



156 registeringCode

Value

The great circle distance matrix if nrow(x1)=m and nrow( x2)=n then the returned matrix will be
mXn.

Author(s)

Doug Nychka, John Paige, Florian Gerber

See Also

rdist, stationary.cov, fields.rdist.near

Examples

data(ozone2)
out<- rdist.earth ( ozone2$%$lon.lat)
#out is a 153X153 distance matrix

out2<- RdistEarth ( ozone2$%$lon.lat)
all.equal(out, out2)

upper<- col(out)> row( out)
# histogram of all pairwise distances.
hist( outl[upperl)

#get pairwise distances between first 10 and second 10 lon/lat points
x1 = ozone2$lon.lat[1:10,]

x2 = ozone2$lon.lat[11:20,]

dists = rdist.earth.vec(x1, x2)

print(dists)

registeringCode Information objects that register C and FORTRAN functions.

Description

These are objects of class CallRoutine or FortranRoutine and also NativeSymbolInfo They
provide information for compiledfunctions called with .Call, or .Fortran. Ordinarily one would
not need to consult these and they are used to make the search among dynamically loaded libraries
(in particular the fields library) have less ambiguity and also be faster. These are created when the
package/library is loaded are have their definitions from the compliation of init.c in the package
source (src) directory.

Format

The format is a list with components:

name The (registration ?) name of the C function.
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address See NativeSymbolInfo.
dll Dynamically linked library information.

numParameters Number of calling arguments in function.

Details

addToDiagC adds diagonal elements to a matrix. See codemKrig.

ExponentialUpperC Fills in upper triangle of a matrix with the exponential covariance function.
See ExponentialUpper

compactToMatC Converts compact format to full matrix format. See compactToMat.
multebC Mulitplies a vector/matrix with an exponential covariance function. See exp.cov
multwendlandg This has been mysteriously included but it is not a function!

mltdrb Evaluates the derivatives of thin plate sline radial basis functions. See rad. cov.
RdistC Euclidean distance function between sets of coordinates. See rdist.
distMatHaversin Used in RdistEarth.

distMatHaversin2 Used in RdistEarth.

See package_native_routine_registration_skeleton for the utility used to create these data
objects.

It is not clear why these routines have been flagged as needing documentation while other routines
have not.
References

For background on registering C, C++ and Fortran functions see 5.4 of Writing R Extensions. For
this package refer to the C code in src/intit.c as an example.

Examples
print(addToDiagC)
ribbon.plot Adds to an existing plot, a ribbon of color, based on values from a
color scale, along a sequence of line segments.
Description

Given a series of 2-d points and values at these segments, the function colors the segments according
to a color scale and the segment values. This is essentially an image plot restricted to line segments.

Usage

ribbon.plot(x,y,z,zlim=NULL, col=tim.colors(256),
transparent.color="white",...)
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Arguments
X x locations of line segments
y y locations of line segments
z Values associated with each segment.
zlim Range for z values to determine color scale.
col Color table used for strip. Default is our favorite tim.colors being a scale from a

dark blue to dark red.

transparent.color
Color used for missing values. Default is that missing values make the ribbon
transparent.

Optional graphical arguments that are passed to the segment plotting function.
A favorite is Iwd to make a broad ribbon.

Details

Besides possible 2-d applications, this function is useful to annotate a curve on a surface using
colors. The values mapped to acolor scheme could indicate a feature other than the height of the
surface. For example, this function could indicate the slope of the surface.

Author(s)
Doug Nychka

See Also

image.plot, arrow.plot, add.image, colorbar.plot

Examples

plot( c(-1.5,1.5),c(-1.5,1.5), type="n")

temp<- list( x= seq( -1,1,,40), y= seq( -1,1,,40))
temp$z <- outer( temp$x, temp$y, "+"

contour( temp, add=TRUE)

t<- seq( 90,.5,,50)
y<- sin( 2*pix*t)
x<- cos( pixt)
z<- X ty

ribbon.plot( x,y,z, 1lwd=10)
persp( temp, phi=15, shade=.8, col="grey")-> pm

trans3d( x,y,z,pm)-> uv
ribbon.plot( uv$x, uv$y, z**2,1lwd=5)
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RMprecip Monthly total precipitation (mm) for August 1997 in the Rocky Moun-
tain Region and some gridded 4km elevation data sets (m).

Description

RMprecip is a useful spatial data set of moderate size consisting of 806 locations. PRISMelevation
and RMelevation are gridded elevations for the continental US and Rocky Mountain region at 4km
resolution. Note that the gridded elevations from the PRISM data product are different than the
exact station elevations. (See example below.)

Format

The data set RMprecip is a list containing the following components:

x Longitude-latitude position of monitoring stations. Rows names are station id codes consistent
with the US Cooperative observer network. The ranges for these coordinates are [-111, -99]
for longitude and [35,45] for latitude.

elev Station elevation in meters.

y Monthly total precipitation in millimeters. for August, 1997

The data sets PRISMelevation and RMelevation are lists in the usual R grid format for images and
contouring

They have the following components:

x Longitude grid at approximately 4km resolution
y Latitude grid at approximately 4km resolution

Z Average elevation for grid cell in meters

These elevations and the companion grid formed the basis for the 103-Year High-Resolution Precip-
itation Climate Data Set for the Conterminous United States ( see https://prism.oregonstate.
edu/documents/PRISM_downloads_FTP.pdf and also archived at the National Climate Data Cen-
ter. This work is authored by Chris Daly https://prism.oregonstate.edu and his PRISM group
but had some contribution from the Geophysical Statistics Project at NCAR and is an interpolation
of the observational data to a 4km grid that takes into account topography such as elevation and
aspect.

Details

Contact Doug Nychka for the binary file RData.USmonthlyMet.bin and information on its source.

# explicit source code to create the RMprecip data
dir <= "" # include path to data file
load(paste(dir, "RData.USmonthlyMet.bin", sep="/")
#year.id<- 1963- 1895

year.id<- 103


https://prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf
https://prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf
https://prism.oregonstate.edu
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#pptAUG63<- USppt[ year.id,8,]

loc<- cbind(USpinfo$lon, USpinfo$lat)

xr<- c(-111, -99)

yr<- c( 35, 45)

station.subset<- (loc[,1]>=xr[1]) & (loc[,1] <= xr[2]1) & (loc[,21>=yr[1]) & (loc[,2]1<=yr[2])
ydata<- USppt[ year.id,8,station.subset]

ydata <- ydatax10 # cm -> mm conversion

xdata<- loc[station.subset,]

dimnames(xdata)<- list( USpinfo$station.id[station.subset], c( "lon", "lat"))
xdata<- data.frame( xdata)

good<- !is.na(ydata)

ydata<- ydatal[good]

xdata<- xdatal[good, ]

test.for.zero.flag<- 1
test.for.zero( unlist(RMprecip$x), unlist(xdata), tag="locations")
test.for.zero( ydata, RMprecip$y, "values")

Examples
# this data set was created the
# historical data taken from
# Observed monthly precipitation, min and max temperatures for the coterminous US
# 1895-1997
# NCAR_pinfill
# see the Geophysical Statistics Project datasets page for the supporting functions
# and details.

# plot

quilt.plot(RMprecip$x, RMprecip$y)

US( add=TRUE, col=2, 1lty=2)

# comparison of station elevations with PRISM gridded values
data(RMelevation)

interp.surface( RMelevation, RMprecip$x)-> test.elev

plot( RMprecip$elev, test.elev, xlab="Station elevation”,
ylab="Interpolation from PRISM grid")

abline( 0,1,col="blue")

# some differences with high elevations probably due to complex
# topography!

#
# view of Rockies looking from theSoutheast

save.par<- par(no.readonly=TRUE)

par( mar=c(0,0,0,0))
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# fancy use of persp with shading and lighting.
persp( RMelevation, theta=75, phi= 15,
box=FALSE, axes=FALSE, xlab="", ylab="",
border=NA,
shade=.95, 1lphi= 10, ltheta=80,
col= "wheat4",
scale=FALSE, expand=.00025)

# reset graphics parameters and a more conventional image plot.
par( save.par)

image.plot(RMelevation, col=topo.colors(256))

US( add=TRUE, col="grey"”, lwd=2)

title("PRISM elevations (m)")

set.panel Specify a panel of plots

Description

Divides up the graphics window into a matrix of plots.

Usage

set.panel(m=1, n=1, relax=FALSE)

Arguments
m Number of rows in the panel of plots
n Number of columns in the panel.
relax If true and the par command is already set for multiple plots, then the set.panel
command is ignored. The default is relax set to false.
Details

After set.panel is called, the graphics screen is reset to put plots according to a m X n table. Plotting
starts in the upper left hand corner and proceeds row by row. After m x n plots have been drawn,
the next plot will erase the window and start in the 1,1 position again. This function is just a
repackaging for specifying the mfrow argument to par. Setting up a panel of plots is a quick way to
change the aspect ratio of the graph (ratio of height to width) or the size. For example, plotting 2
plots to a page produces a useful size graph for including in a report. You can print out the graphs
at any stage without having to fill up the entire window with plots. This function, except for the
"relax" option is equivalent to the S sequence: par( mfrow=c(m,n)).

Side Effects

The function will echo your choice of m and n to the terminal.
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See Also

par

Examples

set.panel(5,2) #divide screen to hold 10 plots where there are 5 rows
#and 2 columns

plot( 1:10)

plot( 2:8)

set.panel() #reset screen to one plot per screen

sim.spatialProcess Conditional simulation of a spatial process

Description

Generates exact (or approximate) random draws from the conditional distribution of a spatial pro-
cess given specific observations. This is a useful way to characterize the uncertainty in the predicted
process from data. This is known as conditional simulation in geostatistics or generating an ensem-
ble prediction in the geosciences. sim.Krig.grid can generate a conditional sample for a large regular
grid but is restricted to stationary correlation functions.

Usage

sim.spatialProcess(object, xp, M = 1, verbose = FALSE, ...)
simSpatialData(object, M = 1, verbose = FALSE)

simLocal .mKrig(mKrigObject,
predictionGridList = NULL,
simulationGridList = NULL,

gridRefinement = 1,

np = 2,
M=1,
nx = 80,
ny = 80,

verbose = FALSE,
delta = NULL, giveWarnings = TRUE,
cel)
sim.mKrig.approx(mKrigObject, predictionPoints = NULL,

predictionPointsList = NULL, simulationGridList =
NULL, gridRefinement = 5, gridExpansion = 1 + 1e-07, M
=1, nx = 40, ny = 40, nxSimulation = NULL,
nySimulation = NULL, delta = NULL, verbose = FALSE,...)

sim.Krig(object, xp, M = 1, verbose = FALSE, ...)
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sim.Krig.approx(object, grid.list = NULL, M = 1, nx = 40, ny = 40,

verbose = FALSE, extrap = FALSE,...)

Arguments

delta If the covariance has compact support the simulation method can take advan-
tage of this. This is the amount of buffer added for the simulation domain in the
circulant embedding method. A minimum size would be aRange for the Wend-
land but a multiple of this maybe needed to obtain a positive definite circulant
covariance function.

extrap If FALSE conditional process is not evaluated outside the convex hull of obser-
vations.

grid.list Grid information for evaluating the conditional surface as a grid.list.

gridRefinement Amount to increase the number of grid points for the simulation grid.

gridExpansion Amount to increase the size of teh simulation grid. This is used to increase the
simulation domain so that the circulant embedding algorithm works.

giveWarnings If true will warn when more than one observation is in a grid box. This is instead
of giving an error and stopping.

mKrigObject An mKrig Object (or spatialProcess object)

M Number of draws from conditional distribution.

np Degree of nearest neighbors to use. Default np=2 uses 16 points in a 4X4 grid
for prediction of the off grid point.

nx Number of grid points in prediction locations for x coordinate.

ny Number of grid points in prediction locations for x coordinate.

nxSimulation Number of grid points in the circulant embedding simulation x coordinate.

nySimulation  Number of grid points in the circulant embedding simulation x coordinate.

object A Krig object.

predictionGridList
A grid list specifying the grid locations for the conditional samples.

predictionPoints
A matrix of locations defining the points for evaluating the predictions.

predictionPointsList
A grid.list defining the rectangular grid for evaluating the predictions.

simulationGridList
A gridlist describing grid for simulation. If missing this is created from the
range of the locations, nx, ny, gridRefinement, and gridExpansion or from
the range and and nxSimulation, nySimulation.

Xp Same as predictionPoints above.
Any other arguments to be passed to the predict function. Usually this is the Z
or drop.Z argument when there are additional covariates in the fixed part of the
model. (See example below.)

verbose If true prints out intermediate information.
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Details

These functions generate samples from an unconditional or conditional multivariate (spatial) dis-
tribution, or an approximate one. The unconditional simulation function, simSpatialData, is a
handy way to generate synthetic observations from a fitted model. Typically one would use these
for a parametric bootstrap. The functions that simulate conditional distributions are much more
involved in their coding. They are useful for describing the uncertainty in predictions using the
estimated spatial process under Gaussian assumptions. An important assumption throughout these
functions is that all covariance parameters are fixed at their estimated or prescribed values from the
passed object. Although these functions might be coded up easily by the users these versions have
the advantage that they take the mKrig, spatialProcess or Krig objects as a way to specify the
model in an unambiguous way.

Given a spatial process h(x)= P(x) + g(x) observed at
Yk =Z(xk)d +P(x.k) + g(x.k) + ek

where P(x) is a low order, fixed polynomial and g(x) a Gaussian spatial process and Z(x.k) is a vector
of covariates that are also indexed by space (such as elevation). Z(x.k)d is a linear combination of
the the covariates with the parameter vector d being a component of the fixed part of the model and
estimated in the usual way by generalized least squares.

With Y=Y.1, ..., Y.N, the goal is to sample the conditional distribution of the process.
[h(x) | Y ] or the full prediction Z(x)d + h(x)

For fixed a covariance this is just a multivariate normal sampling problem. sim.Krig.standard
samples this conditional process at the points xp and is exact for fixed covariance parameters.
sim.Krig.grid also assumes fixed covariance parameters and does approximate sampling on a
grid.

The outline of the algorithm is

0) Find the spatial prediction at the unobserved locations based on the actual data. Call this h.hat(x)
and this is the conditional mean.

1) Generate an unconditional spatial process and from this process simluate synthetic observations.

2) Use the spatial prediction model ( using the true covariance) to estimate the spatial process at
unobserved locations.

3) Find the difference between the simulated process and its prediction based on synthetic observa-
tions. Call this e(x).

4) h.hat(x) + e(x) is a draw from [h(x) | Y ].

The approximations come int step 1). Here the field at the observation locations is approximated
using interpolation from the nearest grid points.

sim.spatialProcess Follows this algorithm exactly. For the case of an addtional covariate this
of course needs to be included. For a model with covariates use drop.Z=TRUE for the function to
ignore prediction using the covariate and generate conditional samples for just the spatial process
and any low order polynomial. Finally, it should be noted that this function will also work with an
mKrig object because the essential prediction information in the mKrig and spatialProcess objects
are the same. The naming is through convenience.

sim.Krig Also follows this algorithm exactly but for the older Krig object. Note the inclusion of
drop.Z=TRUE or FALSE will determine whether the conditional simulation includes the covariates
Z or not. (See example below.)
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simNN.mKrig

sim.Krig.approx and sim.mKrig.approx evaluate the conditional surface on grid and simulates
the values of h(x) off the grid using bilinear interpolation of the four nearest grid points. Because
of this approximation it is important to choose the grid to be fine relative to the spacing of the
observations. The advantage of this approximation is that one can consider conditional simulation
for large grids — beyond the size possible with exact methods. Here the method for simulation is
circulant embedding and so is restricted to stationary fields. The circulant embedding method is
known to fail if the domain is small relative to the correlation range. The argument gridExpansion
can be used to increase the size of the domain to make the algorithm work.

Value

sim.Krig and sim.spatialProcess a matrix with rows indexed by the locations in xp and columns
being the M independent draws.

sim.Krig.approx a list with components x, y and z. x and y define the grid for the simulated field
and z is a three dimensional array with dimensions c(nx,ny,M) where the first two dimensions
index the field and the last dimension indexes the draws.

sim.mKrig.approx a list with predictionPoints being the locations where the field has been
simulated.If these have been created from a grid list that information is stored in the attributes of
predictionPoints. Ensemble is a matrix where rows index the simulated values of the field and
columns are the different draws, call is the calling sequence. Not that if predictionPoints has
been omitted in the call or is created beforehand using make. surface.grid it is easy to reformat
the results into an image format for ploting using as.surface. e.g. if simOut is the output object
then to plot the 3rd draw:

imageObject<- as.surface(simOut$PredictionGrid, simOut$Ensemble[,3] )
image.plot( imageObject)
Author(s)
Doug Nychka

See Also

sim.rf, Krig, spatialProcess

Examples

## 10 member ensemble for the 03 data

## Not run:

data( "ozone2")

mKrigObject<- spatialProcess( ozone2%$lon.lat, ozone2$y[16,],
smoothness=.5)

nx<- 65
ny<- 65

xGridList<- fields.x.to.grid( mKrigObject$x, nx=nx, ny=ny)
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xGrid<- make.surface.grid( xGridList)

allTime@<- system.time(

look@<- sim.spatialProcess(mKrigObject, xp= xGrid, M=10)
)
print( allTime®)

## Local simulation with extra refinement of the grid for embedding

## and same grid size for prediction

## this runs much faster compared to exact method above

## as nx, ny are increased e.g. nx= 128, ny=128 is dramatic difference

allTime<- system.time(
look<- simLocal.mKrig(mKrigObject, M=10,nx=nx, ny=ny,
gridRefinement = 3,
np=3)
)
print( allTime)
print( look$timing)

## End(Not run)

## Not run:

## A simple example for setting up a bootstrap

## M below should be

## set to much larger sample size ( e.g. M <- 200) for better
## statistics

data( ozone2)

obj<- spatialProcess( ozone2$lon.lat,ozone2$y[16,] )
aHat<- obj$summary["”aRange"]

lambdaHat<- obj$summary["lambda"]

#iHHHAEHE boot strap

create M independent copies of the observation vector
here we just grab the model information from the
spatialProcess object above.

However, one could just create the list
obj<- list( x= ozone2$lon.lat,
cov.function.name="stationary.cov",

summary= c( tau= 9.47, sigma2= 499.79, aRange= .700),
cov.args= list( Covariance="Matern", smoothness=1.0),
weights= rep( 1, nrow(ozone2$lon.lat) )

)

Here summary component has the parameters

tau, sigma2 and aRange

and cov.args component has the remaining ones.

N T

set.seed(223)
M<- 25
ySynthetic<- simSpatialData( obj, M)

sim.spatialProcess
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bootSummary<- NULL

for( k in 1:M){
cat( k, " ")
# here the MLEs are found using the easy top level level wrapper
# see mKrigMLEJoint for a more efficient strategy
newSummary<- spatialProcess(obj$x,ySynthetic[,k],
cov.params.start= list(
aRange = aHat,
lambda = lambdaHat)
)$summary
bootSummary<- rbind( bootSummary, newSummary)
}
cat( fill= TRUE)
# the results and 95
stats( bootSummary )

obj$summary
tmpBoot<- bootSummary[,c(”lambda”, "aRange") ]
confidencelnterval <- apply(tmpBoot, 2,
quantile, probs=c(0.025,0.975) )
# compare to estimates used as the "true" parameters
obj$summary[2:5]
print( t(confidencelnterval) )
# compare to confidence interval using large sample theory
print( obj$CITable)

## End(Not run)

## Not run:
# conditional simulation with covariates
# colorado climate example
data(COmonthlyMet)
fit1E<- spatialProcess(C0O.loc,CO.tmin.MAM.climate, Z=CO.elev )
# conditional simulation at missing data
good<- !is.na(CO.tmin.MAM.climate )
infill<- sim.spatialProcess( fitl1E, xp=CO.loc[!good,],
Z= CO.elev[!good], M= 10)
# get an elevation grid ... NGRID<- 50 gives a nicer image but takes longer
NGRID <- 25
# get elevations on a grid
COGrid<- list( x=seq( -109.5, -101, ,NGRID), y= seq(39, 41.5,,NGRID) )
COGridPoints<- make.surface.grid( COGrid)
# elevations are a bilinear interpolation from the 4km
# Rocky Mountain elevation fields data set.
data( RMelevation)
COElevGrid<- interp.surface( RMelevation, COGridPoints )
# NOTE call to sim.spatialProcess treats the grid points as just a matrix
# of locations the plot has to "reshape” these into a grid
# to use with image.plot
SEout<- sim.spatialProcess( fit1E, xp=COGridPoints, Z= COElevGrid, M= 30)
# for just the smooth surface in lon/lat
# SEout<- sim.spatialProcess( fitl1E, xp=COGridPoints, drop.Z=TRUE, M= 30)
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# in practice M should be larger to reduce Monte Carlo error.
surSE<- apply( SEout, 2, sd )
image.plot( as.surface( COGridPoints, surSE))
points( fit1E$x, col="magenta”, pch=16)

## End(Not run)

data( ozone2)
set.seed( 399)
# fit to day 16 from Midwest ozone data set.
out<- Krig( ozone2$lon.lat, ozone2$y[16,], Covariance="Matern”,
aRange=1.0, smoothness=1.0, na.rm=TRUE)

# NOTE aRange =1.0 is not the best choice but
# allows the sim.rf circulant embedding algorithm to
# work without increasing the domain.

#six missing data locations
xp<- ozone2$lon.lat[ is.na(ozone2$y[16,]1),]

# 5 draws from process at xp given the data
# this is an exact calculation
sim.Krig( out,xp, M=5)-> sim.out

# Compare: stats(sim.out)[3,] to Exact: predictSE( out, xp)
# simulations on a grid

# NOTE this is approximate due to the bilinear interpolation
# for simulating the unconditional random field.

# also more grids points ( nx and ny) should be used

sim.Krig.approx(out,M=5, nx=20,ny=20)-> sim.out

# take a look at the ensemble members.

predictSurface( out, grid= list( x=sim.out$x, y=sim.out$y))-> look
zr<- c( 40, 200)

set.panel( 3,2)

image.plot( look, zlim=zr)

title("mean surface"”)
for ( k in 1:5){

sim.spatialProcess

image( sim.out$x, sim.out$y, sim.out$z[,,k], col=tim.colors(), zlim =zr)

3

## Not run:

data( ozone2)

y<- ozone2$y[16,]
good<- !is.na( y)
y<-y[good]
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x<- ozone2$lon.lat[good, ]

03.fit<- mKrig( x,y, Covariance="Matern"”, aRange=.5,smoothness=1.0, lambda= .01 )

set.seed(122)

03.sim<- sim.mKrig.approx( 03.fit, nx=100, ny=100, gridRefinement=3, M=5 )

set.panel(3,2)

surface( 03.fit)

for ( k in 1:5){

image.plot( as.surface( 03.sim$predictionPoints, 03.sim$Ensemble[,k]) )

3

# conditional simulation at missing data

xMissing<- ozone2$lon.lat[!good, ]

03.sim2<- sim.mKrig.approx( 03.fit, xMissing, nx=80, ny=80,
gridRefinement=3, M=4 )

## End(Not run)
## Not run:
#An example for fastTps:
data(ozone2)
y<- ozone2$y[16,]
good<- lis.na( y)
y<-y[good]
x<- ozone2$lon.lat[good, ]
030bj<- fastTps( x,y, aRange=1.5 )
# creating a quick grid list based on ranges of locations
grid.list<- fields.x.to.grid( 030bj$x, nx=100, ny=100)
# controlling the grids
xR<- range( x[,1], na.rm=TRUE)
yR<- range( x[,2], na.rm=TRUE)
simulationGridList<- list( x= seq(xR[1],xR[2],,400),
y= seq( yR[11,yR[2], ,400))
# very fine localized prediction grid
03GridList<- list( x= seq( -90.5,-88.5,,200), y= seq( 38,40,,200))
03Sim<- sim.mKrig.approx( 030bj, M=5, predictionPointsList=03GridList,
simulationGridList = simulationGridList)

## End(Not run)

smooth.2d Kernel smoother for irregular 2-d data

Description

An approximate Nadaraya Watson kernel smoother is obtained by first discretizing the locations to
a grid and then using convolutions to find and to apply the kernel weights. The main advantage of
this function is a smoother that avoids explicit looping.

Usage

smooth.2d(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL,
x = NULL, nrow = 64, ncol = 64, surface = TRUE, cov.function =
gauss.cov, Mwidth = NULL, Nwidth = NULL, ...)



170 smooth.2d

Arguments

Y A vector of data to be smoothed

ind Row and column indices that correspond to the locations of the data on regular
grid. This is most useful when smoothing the same locations many times. (See
also the x argument.)

weight.obj An object that has the FFT of the convolution kernel and other information ( i.e.
the result from calling this with setup=TRUE).

setup If true creates a list that includes the FFT of the convolution kernel. In this case
the function will return this list. Default is false.

grid A list with components x and y being equally spaced values that define the grid.
Default are integers 1:nrow, 1:ncol. If x is given the ranges will be used to define
the grid.

X Actual locations of the Y values. Not needed if ind is specified.

nrow Number of points in the horizontal (x) axis of the grid. Not needed if grid is
specified the default is 64

ncol Number of points in the vertical (y) axis of the grid. Not needed if grid list is
specified the default is 64

surface If true (the default) a surface object is returned suitable for use by image, persp

or contour functions. If false then just the nrowXncol matrix of smoothed values
is returned.

cov. function S function describing the kernel function. To be consistent with the other spatial
function this is in the form of a covariance function. The only assumption is that
this be stationary. Default is the (isotropic) Gaussian.

Nwidth The size of the padding regions of zeroes when computing the (exact) convolu-
tion of the kernel with the data. The most conservative values are 2*nrow and
2*ncol, the default. If the kernel has support of say 2L+1 grid points then the
padding region need only be of size L+1.

Mwidth See Nwidth.

Parameters that are passed to the smoothing kernel. ( e.g. the scale parameter
aRange for the exponential or gaussian)

Details

The irregular locations are first discretized to a regular grid ( using as.image) then a 2d- FFT is
used to compute a Nadaraya-Watson type kernel estimator. Here we take advantage of two features.
The kernel estimator is a convolution and by padding the regular by zeroes where data is not ob-
sevred one can sum the kernel over irregular sets of locations. A second convolutions to find the
normalization of the kernel weights.

The kernel function is specified by an function that should evaluate with the kernel for two matrices
of locations. Assume that the kernel has the form: K( u-v) for two locations u and v. The function
given as the argument to cov.function should have the call myfun( x1,x2) where x1 and x2 are
matrices of 2-d locations if nrow(x1)=m and nrow( x2)=n then this function should return a mXn
matrix where the (i,j) element is K( x1[i,]- x2[j,]). Optional arguments that are included in the ...
arguments are passed to this function when it is used. The default kernel is the Gaussian and the
argument aRange is the bandwidth. It is easy to write other other kernels, just use Exp.cov.simple
as a template.



spam2lz 171

Value

Either a matrix of smoothed values or a surface object. The surface object also has a component
’ind’ that gives the subscripts of the image matrix where the data is present.

Examples

# Normal kernel smooth of the precip data with bandwidth of .5 ( degree)
#
look<- smooth.2d( RMprecip$y, x=RMprecip$x, aRange=.25)

# finer resolution used in computing the smooth

look3<-smooth.2d( RMprecip$y, x=RMprecip$x, aRange=.25, nrow=256,
ncol=256,Nwidth=32,

Mwidth=32)

# if the width arguments were omitted the padding would create a

# 512X 512 matrix with the data filled in the upper 256X256 part.

# with a bandwidth of .25 degrees the normal kernel is essentially zero
# beyond 32 grid points from its center ( about 6 standard deviations)
#

# take a look:

#set.panel(2,1)

#image( look3, zlim=c(-8,12))
#points( RMprecip$x, pch=".")
#image( look, zlim =c(-8,12))
#points( RMprecip$x, pch=".")

# bandwidth changed to .25, exponential kernel
look2<- smooth.2d( RMprecip$y, x=RMprecip$x, cov.function=Exp.cov,aRange=.25)
#

spam2lz Conversion of formats for sparse matrices

Description

Some supporting functions that are internal to fields top level methods. These are used to convert
between the efficient but opaque format used by spam and more easily checked format based directly
on the row and column indices of non zero elements.

Usage
spind2full(obj)

spam2full(obj)
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spind2spam(obj, add.zero.rows=TRUE)

spam2spind(obj)

Arguments

obj Either a list with the sparse index components (spind) or an obj of class spam.

add.zero.rows If TRUE an entire row is zero add a hard zero value to the element in the first
column for each zero row. The spam format requires at least one element in
each row to have an explicit value. It is OK if this value is zero but one must be
specified.

Details

The differencee in formats is best illustarted by an example:

A 4X5 sparse matrix:

(,11 [,21 [,31 L,4]1L,5]
[1,] 1 9 0 o 33

[2,] 0 0 0 26 34
[3,] 3 11 o 27 35
[4,] 0 12 20 0 36
spind format is a list with components "ind", "ra" and "da" here is how the matrix above would be
encoded:
ind
I
[1,111
2,112
(3,115
[4,1 2 4
(5,125
[6,]1 31
(7,132
[8,1 3 4
(9,135
[10,]1 4 2
[11,] 4 3
[12,] 45
da
[1]1 45
ra

[11 1 9332634 31127 3512 20 36
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non non

spam format is an S4 class with slot names "entries", "colindices", "rowpointers" and "dimension".
entries

[11193326343 112735122036

colindices

[11125451245235

rowpointers

[111461013

dimension

[1145

The row pointers are the position in the array of entries where the next row starts.

NOTE: It is possible for the spind format to have a missing row of all zeroes but this not allowed in
spam format and produces an error message.

Author(s)
Doug Nychka

See Also

as.spam

spatialProcess Estimates a spatial process model.

Description

For a given covariance function estimates the covariance parameters by maximum likelihood and
then evaluates the spatial model with these estimated parameters. The returned object can be used
for spatial prediction, conditional simulation, and profiling the likelihood function. For fixed values
of the covariance parameters this process estimate is also known as Kriging.

Usage

spatialProcess(x, y, weights = rep(1, nrow(x)), Z = NULL,
mKrig.args = NULL,
cov.function = NULL,
cov.args = NULL,
parGrid = NULL,
reltol = le-4,

na.rm = TRUE,
verbose = FALSE,
REML = FALSE,

cov.params.start = NULL,
gridN = 5,
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## S3 method fo
summary (object,
## S3 method fo

print(x, digits =

## S3 method fo
print(x, digits
## S3 method fo
plot(x, digits

spatialProcess

profileLambda = FALSE,

profileARange = FALSE,

profileGridN = 15,
gridARange = NULL,
gridLambda = NULL,

CILevel= .95,
iseed = 303,
o))
r class 'spatialProcess'
L)
r class 'spatialProcess'
4, ...)
r class 'spatialProcessSummary'
=4, ...)

r class 'spatialProcess'

= 4, which = 1:4, ...)

spatialProcessSetDefaults(x, cov.function, cov.args, cov.params.start, parGrid,

mKrig.args, extraArgs = NULL, gridN = 5, verbose =
FALSE)

confidencelntervalMLE( obj, CILevel, verbose=FALSE)

profileMLE (obj

Arguments

X

y
weights
YA

CILevel

cov.args

cov.function

, parName, parGrid=NULL, gridN=15,
cov.params.start=NULL, GCV=FALSE, REML=FALSE,
verbose=FALSE)

Observation locations
Observation values
Weights for the error term (nugget) in units of reciprocal variance.

A matrix of extra covariates for the fixed part of spatial model. E.g. elevation
for fitting climate data over space.

Confidence level for intervals for the estimated parameters.

A list specifying parameters and other components of the covariance function.
Default is not extra arguments required.] (But see the next item.).

A character string giving the name of the covariance function for the spatial
component. If NULL, the default, this is filled in as stationary. cov and then if
cov.argsisalso NULL thisis filledinas list(Covariance = "Matern”,smoothness
=1.0) by the spatialProcessSetDefaults function.

cov.params.start

A list where the names are parameter names that appear in the covariance func-
tion. The values of each component are assumed to be the starting values when
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optimizing to find MLEs. If lambda does not appear as additional argument
when calling spatialProcess it is added internally to this list with the starting
value .5.

digits Number of significant digits in printed summary

extraArgs Extra arguments passed using the ...device in R. Typically these are extra co-
variance parameters specified in spatialProcess and then passed to spatialProcessSetDefaults

GCV A future argument not currently implemented. If TRUE will find parameters by
minimizing an approximate generalized cross-validation function.

gridARange A grid for profiling over the range parameter. If omitted, default is based on a
grid of profileGridN points centered at the MLE.

gridLambda A grid for profiling over lambda.

gridN Number of grid points for intital fgrid search to find starting values.

na.rm If TRUE NAs are removed from the data.

mKrig.args Arguments as a list passed to the mKrig function. For example use mKrig.args=list(
m = 1) to set the fixed part of the model to just a constant function , or 0 to omit
any fixed part. (The default is m=2 a linear function, which is recommend for
most data analysis.) See mKrig for more details.

obj A spatialProcess object returned from the spatialProcess function.

object See obj.

parGrid A data frame with the values of covariance parameters to use as an initial grid
search for starting values.

parName Text string that is the name of the parameter to profile .

profileARange If TRUE profile likelihood on aRange. Default is TRUE if aRange is omitted.

profileGridN  Number of grid points to use for profiling.

profileLambda If TRUE profile likelihood on lambda. This takes extra time and is not necessary
so the default is FALSE.

reltol Relative tolerance used in optim for convergence.

REML If TRUE the parameters are found by restricted maximum likelihood.

verbose If TRUE print out intermediate information for debugging.

iseed A seed to fix the random number stream used to compute the effective degrees
of freedom using the random trace method. Setting this seed will not affect any
random numnber generation outside this function.
Any other arguments that will be passed to the mKrig function and interpreted as
additional arguments to the covariance function. This is a lazy way of specifying
these. E.g. aRange =.1 will set the covariance argument aRange to .1.

which The vector 1:4 or any subset of 1:4, giving the plots to draw. See the description

of these plots below.
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Details

This function makes many choices for the user in terms of defaults and it is important to be aware
of these. The spatial model is

Yk= P(x.k) + Z(x.K)%*%beta2 + g(x.k) + ek

where ".k" means subscripted by k, Y.k is the dependent variable observed at location x.k. P is
a low degree polynomial (default is a linear function in the spatial coordinates, m=2 ) and Z is a
matrix of covariates (optional) that enter as a linear model the fixed part. g is a mean zero, Gaussian
stochastic process with a marginal variance of sigma and a scale (or range) parameter, aRange. The
measurement errors, e.k, are assumed to be uncorrelated, normally distributed with mean zero and
standard deviation tau. If weights are supplied then the variance of e is assumed to be tau*2/
weights. The polynomial if specified and extra covariates define the fixed part of this spatial model
and the coefficients are found by generalized least squares (GLS).

Perhaps the most important aspect of this function is that the range parameter (aRange), nugget
(tau**2) and process variance (sigma) parameters for the covariance are estimated by maximum
likelihood and this is the model that is then used for spatial prediction. Geostatistics usually refers
to tau”2 + sigma”2 as the "sill" and often these parameters are estimated by variogram fitting rather
than maximum likelihood. To be consistent with spline models and to focus on the key part of
model we reparametrize as lambda= tau**2/ sigma”2 and sigma. Thinking about h as the spatial
signal and e as the noise 1/lambda can be interpreted as the "signal to noise " ratio in this spatial
context.(See also the comparison with fitting the geoR model in the examples section.)

For an isotropic covariance function, the likelihood and the cross-validation function can be con-
centrated to only depend on lambda and aRange and so in reporting the optimization of these two
criterion we focus on this form of the parameters. Once lambda and aRange are found, the MLE
for sigma has a closed form and of course then tau is then determined from lambda and sigma. The
estimates of the coefficients for the fixed part of the model, determined by GLS, will also be the
MLEs.

Often the lambda parameter is difficult to interpret when covariates and a linear function of the
coordinates is included and also when the range becomes large relative to the size of the spatial
domain. For this reason it is convenient to report the effective degrees of freedom (also referred
to trA in R code and the output summaries) associated with the predicted surface or curve. This
measure has a one-to-one relationship with lambda and is easier to interpret. For example an eff
degrees of freedom that is very small suggests that the surface is well represented by a low order
polynomial. Degrees of freedom close to the number of locations indicates a surface that is close to
interpolating the observations and suggests a small or zero value for the nugget variance.

The default covariance model is assumed to follow a Matern with smoothness set to 1.0. This is
implemented using the stationary.cov covariance that can take a argument for the form of the
covariance, a sill and range parameters and possibly additional parameter might control the shape.

See the example below how to switch to another model. (Note that the exponential is also part of
the Matern family with smoothness set to .5. )

The parameter estimation is done by MLESpatialProcess and the returned list from this function
is added to the Krig output object that is returned by this function. The estimate is a version of
maximum likelihood where the observations are transformed to remove the fixed linear part of the
model. If the user just wants to fix the range parameter aRange then Krig can be used.

NOTE: The defaults for the optim function used in MLESpatialProcess are:
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list(method = "BFGS",
control=list(fnscale

_‘I’

ndeps = rep(log(1.1),length(cov.params.start)+1),
reltol = reltol,
maxit = 20))

There is always a hazard in providing a simple to use method that makes many default choices
for the spatial model. As in any analysis be aware of these choices and try alternative models and
parameter values to assess the robustness of your conclusions. Also examine the residuals to check
the adequacy of the fit. See the examples below for some help in how to do this easily in fields.
Also see quilt.plot to get an quick plot of a spatial field to discern obvious spatial patterns.

summary method forms a list of class spatialProcessSummary that has a subset of information
from the output object and also creates a table of the estimates of the linear parameters in the fixed
part of the model. With replicated fields there is an option to estimate different linear parameters
for each field ( collapseFixedEffect = FALSE ) and in this case a table is not created because
there is more than one estimate. See (Omega and fixedEffectsCov) in the mKrig object to build
the standard errors.

plot method provides potentially four diagnostic plots of the fit.Use the which to pick and choose
among them or use set.panel to see them all. The third and fourth plots, however, are only
available if the profile computations been done. If lambda is profiled (LambdaProfile is not NULL )
the third plot is the profile log likelihood for lambda and with the GCV function on a second vertical
scale. This is based on the grid evaluations in the component lambdaProfile\$MLEProfilelLambda
. The fourth plot is a profile log likelihood trace for aRange based on aRangeProfile\$MLEProfilelLambda.

print method prints the spatialProcessSummary object of the fit, adding some details and expla-
nations.

spatialProcessSetDefaults This is a useful way to fill in defaults for the function in one place. The
main choices are choosing the Matern family, smoothness and a default fixed model (aka spatial
drift). The grids for profiling are also created if they have not been supplied.

Value
An object of classes mKrig and SpatialProcess. The difference from mKrig are some extra com-
ponents. The more useful ones are listed below

MLESummary A named array that has the fixed and estimated parameters along with likelihood
values and some optim info.

profileSummaryLambda and profileSummaryARange The output list from mKrigMLEGrid for
searching over over a grid of lambda and aRange.

CITable Approximate confidence intervals based on the inverse hessian of the log likelihood func-
tion.

MLEInfo A list that has a full documentation of the maximization including all parameters and
likelihood values that were tried by the optim function.

InitialGridSearch Results from initial grid search to get good starting values for lambda and/or
aRange.

Author(s)
Doug Nychka
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See Also

Tps, mKrigMLEGrid, mKrigMLEJoint, plot.Krig, predict. mKrig, predictSE.mKrig

Examples

data( ozone2)

#
#

#

o o oH H

e R E E E R

X is a two column matrix where each row is a location in lon/lat
coordinates

x<- ozone2$lon.lat

y is a vector of ozone measurements at day 16. Note some missing values.
y<- ozone2$y[16,]

artifically reduce size of data for a quick example to pass CRAN ...

x<- x[1:75,]

y<- y[1:75]

lots of default choices made here -- see gridN to increase

the number of points in grid searches for MLEs

without specifying lambda or aRange both are found in a robust

way uses grid searches

profiling over lambda and aRange 1is not reuqired but completes the full
example. Omit this for a faster computation.

obj<- spatialProcess( x, y, profileLambda=TRUE, profileARange=TRUE)

summary of model
summary ( obj)

diagnostic plots
set.panel(2,2)
plot(obj)

plot 1 data vs. predicted values
plot 2 residuals vs. predicted
plot 3 criteria to select the smoothing
parameter lambda = tau”*2 / sigma
the x axis has log1@ lambda
Note that here the GCV function is minimized
while the log profile likelihood is maximzed.
plot 4 the log profile likelihood used to
determine range parameter aRange.

set.panel()

#

predictions on a grid

surface( obj, xlab="longitude"”, ylab="latitude")

US( add=TRUE, col="grey"”, lwd=2)

title("Predicted ozone (in PPB) June 18, 1987 ")

#(see also predictSurface for more control on evaluation grid, predicting

#

#

outside convex hull of the data. and plotting)

prediction standard errors, note two steps now to generate

spatialProcess
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# and then plot surface

look<- predictSurfaceSE( obj)

surface( look, xlab="longitude"”, ylab="latitude")
points( x, col="magenta")

title("prediction standard errors (PPB)")

# here 1is a sanity check -- call spatialProcess with the MLEs found
# above, better get the same predictions!

objTest<- spatialProcess( x, vy,
lambda=obj$MLESummary["lambda"],
aRange=obj$MLESummary["aRange"]
)

test.for.zero(objTest$fitted.values, obj$fitted.values,
tag="sanity check” )

## Not run:
HHHHEHHHEHHE A

# working with covariates and filling in missing station data

# using an ensemble method

# see the example under help(sim.spatialProcess) to see how to
# handle a conditional simulation on a grid of predictions with
# covariates.

data(COmonthlyMet)

fit1E<- spatialProcess(C0.loc,CO.tmin.MAM.climate, Z=CO.elev,
profileLambda=TRUE, profileARange=TRUE
)
set.panel( 2,2)
plot( fit1E)

set.panel(1,2)

# plots of the fitted surface and surface of prediction standard errors
out.p<-predictSurface( fitl1E, grid.list=C0.Grid,
ZGrid= CO.elevGrid, extrap=TRUE)

imagePlot( out.p, col=larry.colors())

US(add=TRUE, col="grey")

contour( CO.elevGrid, add=TRUE, levels=seq(1000,3000,,5), col="black")
title("Average Spring daily min. temp in CO")

out.p2<-predictSurfaceSE( fitl1E, grid.list=C0.Grid,
ZGrid= CO.elevGrid,
extrap=TRUE, verbose=FALSE)

imagePlot( out.p2, col=larry.colors())
US(add=TRUE, col="grey")

points( fit1E$x, pch=".")
title("Prediction SE")

set.panel()

## End(Not run)
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## Not run:
AR AR
# conditional simulation
HHHHHHARHEE A
# first a small application at missing data
notThere<- is.na(CO.tmin.MAM.climate )
Xxp <- CO.loc[notThere,]
Zp <- CO.elev[notThere]
infill<- sim.spatialProcess( fitl1E, xp=xp,
Z= Zp, M= 10)
dim( infill)

interpretation is that these infilled values are all equally plausible
given the observations and also given the estimated covariance model

EXTRA CREDIT: standardize the infilled values to have

conditional mean and variance from the exact computations

e.g. predict( fit1E, xp=CO.loc[!good,], Z= CO.elev[!good])

and predictSE(fit1E, xp=C0.loc[!good,], Z= CO.elev[!good])
with these standardization one would still preserve the correlations
among the infilled values that is also important for considering them as a
multivariate prediction.

P N

H+

conditional simulation on a grid but not using the covariate of elevation

fit2<- spatialProcess(CO.loc,CO.tmin.MAM.climate,
gridARange= seq(.25, 2.0, length.out=10)
)
# note larger range parameter
# create 2500 grid points using a handy fields function
gridList <- fields.x.to.grid( fit2$x, nx=50,ny=50)
xGrid<- make.surface.grid( gridlList)
ensemble<- sim.spatialProcess( fit2, xp=xGrid, M = 6)
# this is an "n*3" computation so increasing the grid size
can slow things down for computation
# The 6 ensemble members
set.panel( 3,2)
for( k in 1:6){
imagePlot( as.surface( xGrid, ensemblelk,]))
}
set.panel()

H+

## End(Not run)

## Not run:
## changing the covariance model.

data(ozone?2)

x<- ozone2$lon.lat
y<- ozone2$y[16,]
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# a comparison to using an exponential and Wendland covariance function
# and great circle distance -- just to make range easier to interpret.
obj <- spatialProcess( x, vy,

Distance = "rdist.earth")
obj2<- spatialProcess( x, Yy,
cov.args = list(Covariance = "Exponential”),
Distance = "rdist.earth” )
obj3<- spatialProcess( x, Yy,
cov.args = list(Covariance = "Wendland"”,
dimension = 2,
k =2),
Distance = "rdist.earth”)
# obj2 could be also be fit using the argument:
# cov.args = list(Covariance = "Matern”, smoothness=.5)

#
# Note very different range parameters - BTW these are in miles
# but similar nugget variances.
rbind( Whittle= obj$summary,
Exp= obj2$summary,
Wendland= obj3$summary

)

# since the exponential is Matern with smoothness == .5 the first two

# fits can be compared in terms of their likelihoods

# the 1n likelihood value is slightly higher for obj verses obj2 (-613.9 > -614.9)
# these are the _negative_ log 1likelihoods so suggests a preference for the

# smoothness = 1.0 (Whittle) model

#

# does it really matter in terms of spatial prediction?

set.panel( 3,1)

surface( obj)

US( add=TRUE)

title("Matern sm= 1.0")

surface( obj2)

US( add=TRUE)

title("Matern sm= .5")

surface( obj3)

US( add=TRUE)

title("Wendland k =2")

# prediction standard errors

# these take a while because prediction errors are based
# directly on the Kriging weight matrix

# see mKrig for an alternative.

set.panel( 2,1)

out.p<- predictSurfaceSE( obj, nx=40,ny=40)
surface( out.p)

US( add=TRUE)

title("Matern sm= 1.0")

points( x, col="magenta")

#

out.p<- predictSurfaceSE( obj, nx=40,ny=40)
surface( out.p)

US( add=TRUE)
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points( x, col="magenta")
title("Matern sm= .5")
set.panel(1,1)
## End(Not run)
## Not run:
### comparison with GeoR
data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
good<-!is.na(y)
x1<- x[good, ]
y1<- y[good]
# spatialProcess takes longer because of grid search on aRange.
obj<- spatialProcess( x1, y1,
mKrig.args = list(m=1),
smoothness = .5)
library( geoR)
ml.n <- likfit(coords= x1, data=yl, ini = c(570, 3), nug = 50)
# compare to
stuffFields<- obj$MLESummary[c("1nProfileLike.FULL",
"aRange"”,"tau","sigma2")]
stuffGeoR<- c( ml.n$loglik, ml.n$phi, sqrt(ml.n$nugget),
ml.n$sigmasq)
test.for.zero( max(stuffFields/stuffGeoR), 1, tol=.004)
## End(Not run)
splint Cubic spline interpolation
Description
A fast, FORTRAN based function for cubic spline interpolation.
Usage
splint(x, y, xgrid, wt = NULL, derivative = @, lam = @, df =
NA, lambda = NULL, nx = NULL, digits = 8)
Arguments

xgrid

The x values that define the curve or a two column matrix of x and y values.

The y values that are paired with the x’s.

The grid to evaluate the fitted cubic interpolating curve.
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derivative Indicates whether the function or a a first or second derivative should be evalu-
ated.

wt Weights for different obsrevations in the scale of reciprocal variance.

lam Value for smoothing parameter. Default value is zero giving interpolation.

lambda Same as 1am just to make this easier to remember.

df Effective degrees of freedom. Default is to use lambda =0 or a df equal to the
number of observations.

nx If not NULL this should be the number of points to evaluate on an equally spaced
grid in the range of x

digits Number of significant digits uused to determine what is a replicate x value.

Details

Fits a piecewise interpolating or smoothing cubic polynomial to the x and y values. This code is
designed to be fast but does not many options in sreg or other more statistical implementations. To
make the solution well posed the the second and third derivatives are set to zero at the limits of the
x values. Extrapolation outside the range of the x values will be a linear function.

It is assumed that there are no repeated x values; use sreg followed by predict if you do have
replicated data.

Value

A vector consisting of the spline evaluated at the grid values in xgrid.

References

See Additive Models by Hastie and Tibshriani.

See Also
sreg, Tps

Examples
x<- seq( @, 120,,200)

# an interpolation
splint(rat.diet$t, rat.diet$trt,x )->y

plot( rat.diet$t, rat.diet$trt)

lines( x,y)

#( this is weird and not appropriate!)

# the following two smooths should be the same

splint( rat.diet$t, rat.diet$con,x, df= 7)-> yi

# sreg function has more flexibility than splint but will
# be slower for larger data sets.
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sreg( rat.diet$t, rat.diet$con, df= 7)-> obj
predict(obj, x)-> y2

# in fact predict.sreg interpolates the predicted values using splint!
# the two predicted lines (should) coincide

lines( x,y1, col="red",lwd=2)
lines(x,y2, col="blue", lty=2,1lwd=2)

sreg Cubic smoothing spline regression

Description

Fits a cubic smoothing spline to univariate data. The amount of smoothness can be specified or
estimated from the data by GCV. <!-brief description—>

Usage

sreg(x, y, lambda = NA, df = NA, offset = @, weights =
rep(1, length(x)), cost = 1, nstep.cv = 80, tol =
1e-05, find.diagA = TRUE, trmin = 2.01, trmax = NA,
lammin = NA, lammax = NA, verbose = FALSE, do.cv =
TRUE, method = "GCV", rmse = NA, na.rm = TRUE, digits
= 8)

## S3 method for class 'sreg'

predict(object, x, derivative = @, model = 1,...)
Arguments
X Vector of x value
y Vector of y values
lambda Single smoothing parameter or a vector of values . If omitted smoothing param-

eter estimated by GCV. NOTE: lam here is equivalent to the value lambda*N in
Tps/Krig where N is the number of unique observations. See example below.

object An sreg object.

derivative Order of deriviatve to evaluate. Must be 0,1, or 2.

df Amount of smoothing in term of effective degrees of freedom for the spline
offset an offset added to the term cost*degrees of freedom in the denominator of the

GCV function. (This would be used for adjusting the df from fitting other mod-
els such as in back-fitting additive models.)

model Specifies which model parameters to use.
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weights A vector that is proportional to the reciprocal variances of the errors.

cost Cost value to be used in the GCV criterion.

nstep.cv Number of grid points of smoothing parameter for GCV grid search.

tol Tolerance for convergence in minimizing the GCV or other criteria to estimate
the smoothing parameter.

find.diagA If TRUE calculates the diagonal elements of the smoothing matrix. The effective
number of degrees of freedom is the sum of these diagonal elements. Default
is true. This requires more stores if a grid of smoothing parameters is passed. (
See returned values below.)

trmin Sets the minimum of the smoothing parameter range for the GCV grid search in
terms of effective degrees of freedom.

trmax Sets the maximum of the smoothing parameter range for the GCV grid search
in terms of effective degrees of freedom. If NA the range is set to .99 of number
of unique locations.

lammin Same function as trmin but in the lambda scale.

lammax Same function as trmax but in the lambda scale.

verbose Print out all sorts of debugging info. Default is falseof course!

do.cv Evaluate the spline at the GCV minimum. Default is true.

method A character string giving the method for determining the smoothing parameter.
Choices are "GCV", "GCV.one", "GCV.model", "pure error", "RMSE". Default
is "GCV".

rmse Value of the root mean square error to match by varying lambda.

na.rm If TRUE NA’s are removed from y before analysis.

digits Number of significant digits used to determine replicate x values.
Other optional arguments to pass to the predict function.

Details

MODEL: The assumed model is Y.k=f(x.k) +e.k where e.k should be approximately normal and
independent errors with variances tau**2/w.k

ESTIMATE: A smoothing spline is a locally weighted average of the y’s based on the relative
locations of the x values. Formally the estimate is the curve that minimizes the criterion:

(1/n) sum(k=1,n) w.k( Yk - f( X.k))**2 + lambda R(f)

where R(f) is the integral of the squared second derivative of f over the range of the X values.
Because of the inclusion of the (1/n) in the sum of squares the lambda parameter in sreg corresponds
to the a value of lambda*n in the Tps function and in the Krig function.

The solution to this minimization is a piecewise cubic polynomial with the join points at the unique
set of X values. The polynomial segments are constructed so that the entire curve has continuous
first and second derivatives and the second and third derivatives are zero at the boundaries. The
smoothing has the range [0,infinity]. Lambda equal to zero gives a cubic spline interpolation of the
data. As lambda diverges to infinity ( e.g lambda =1e20) the estimate will converge to the straight
line estimated by least squares.

The values of the estimated function at the data points can be expressed in the matrix form:
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predicted values= A(lambda)Y

where A is an nXn symmetric matrix that does NOT depend on Y. The diagonal elements are the
leverage values for the estimate and the sum of these (trace(A(lambda)) can be interpreted as the
effective number of parameters that are used to define the spline function. IF there are replicate
points the A matrix is the result of finding group averages and applying a weighted spline to the
means. The A matrix is also used to find "Bayesian" confidence intervals for the estimate, see the
example below.

CROSS-VALIDATION:The GCV criterion with no replicate points for a fixed value of lambda is
(1/n)(Residual sum of squares)/((1-(tr(A)-offset)*cost + offset)/n)**2,

Usually offset =0 and cost =1. Variations on GCV with replicate points are described in the docu-
mentation help file for Krig. With an appropriate choice for the smoothing parameter, the estimate
of tau**2 is found by (Residual sum of squares)/tr(A).

COMPUTATIONS: The computations for 1-d splines exploit the banded structure of the matrices
needed to solve for the spline coefficients. Banded structure also makes it possible to get the diago-
nal elements of A quickly. This approach is different from the algorithms in Tps and tremendously
more efficient for larger numbers of unique x values ( say > 200). The advantage of Tps is getting
"Bayesian" standard errors at predictions different from the observed x values. This function is
similar to the S-Plus smooth.spline. The main advantages are more information and control over
the choice of lambda and also the FORTRAN source code is available (css.f).

See also the function splint which is designed to be a bare bones but fast smoothing spline.

Value

Returns a list of class sreg. Some of the returned components are

call Call to the function

yM Vector of dependent variables. If replicated data is given these are the replicate
group means.

XM Unique x values matching the y’s.

weights Proportional to reciprocal variance of each data point.

weightsM Proportional to reciprocal pooled variance of each replicated mean data value
xM).

X Original x data.

y Original y data.

method Method used to find the smoothing parameter.

pure.ss Pure error sum of squares from replicate groups.

tauHat.pure.error
Estimate of tau from replicate groups.

tauHat.GCV Estimate of tau using estimated lambda from GCV minimization
trace Effective degrees of freedom for the spline estimate(s)
gev.grid Values of trace, GCV, tauHat. etc. for a grid of smoothing parameters. If lambda

(or df) is specified those values are used.

lambda.est Summary of various estimates of the smoothing parameter
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lambda If lambda is specified the passed vector, if missing the estimated value.

residuals Residuals from spline(s). If lambda or df is specified the residuals from these
values. If lambda and df are omitted then the spline having estimated lambda.
This will be a matrix with as many columns as the values of lambda.

fitted.values Matrix of fitted values. See notes on residuals.

predicted A list with components x and y. x is the unique values of xraw in sorted order.
y is a matrix of the spline estimates at these values.
eff.df Same as trace.
diagA Matrix containing diagonal elements of the smoothing matrix. Number of columns

is the number of lambda values. WARNING: If there is replicated data the di-
agonal elements are those for the smoothing the group means at the unique x
locations.

See Also

Krig, Tps, splint

Examples

# fit a GCV spline to

# control group of rats.

fit<- sreg(rat.diet$t,rat.diet$con)
summary( fit)

set.panel(2,2)
plot(fit) # four diagnostic plots of fit
set.panel()

predict( fit) # predicted values at data points

xg<- seq(0,110,,50)

sm<-predict( fit, xg) # spline fit at 50 equally spaced points
der.sm<- predict( fit, xg, deriv=1) # derivative of spline fit
set.panel( 2,1)

plot( fit$x, fit$y) # the data

lines( xg, sm) # the spline

plot( xg,der.sm, type="1") # plot of estimated derivative
set.panel() # reset panel to 1 plot

# the same fit using the thin plate spline numerical algorithms
# sreg does not scale the obs so instruct Tps not to sacel either
# this will make lambda comparable within factor of n.

fit.tps<-Tps( rat.diet$t,rat.diet$con, scale="unscaled")
summary( fit.tps)

# compare sreg and Tps results to show the adjustment to lambda.

predict( fit)-> look
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predict( fit.tps, lambda=fit$lambda*fit$N)-> look2
test.for.zero( look, look2) # silence means it checks to 1e-8

# finding approximate standard errors at observations
SE<- fit$tauHat.GCVxsqrt(fit$diagA)

# compare to predictSE( fit.tps) differences are due to
# slightly different lambda values and using tauHat.MLE instad of tauHat.GCV
#

# 95% pointwise prediction intervals
Zvalue<- qgnorm(.0975)

upper<- fit$fitted.values + Zvaluex SE
lower<- fit$fitted.values - Zvaluex SE
#

# conservative, simultaneous Bonferroni bounds
#

ZBvalue<- gnorm(1- .025/fit$N)

upperB<- fit$fitted.values + ZBvaluex SE
lowerB<- fit$fitted.values - ZBvaluex SE
#

# take a look

plot( fit$x, fit$y, type="n")

envelopePlot(fit$x, lowerB,fit$x, upperB, col = "grey90",
lineCol="grey")

envelopePlot (fit$x, lower,fit$x, upper, lineCol="grey")

lines( fit$predicted, col="red"”,lwd=2)

points( fit$x, fit$y,pch=16)

title( "95 pct pointwise and simultaneous intervals”)

# or try the more visually honest not connecting points
plot( fit$x, fit$y, type="n")

segments( fit$x, lowerB, fit$x, upperB, col="grey", lwd=3)
segments( fit$x, lower, fit$x, upper, col="thistle3", lwd=6)
lines( fit$predicted, lwd=2,col="red")

points( fit$x, fit$y,pch=16)

title( "95 pct pointwise and simultaneous intervals”)

set.panel( 1,1)

stats Calculate summary statistics

Description

Various summary statistics are calculated for different types of data.
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Usage

stats(x, by)

Arguments
X The data structure to compute the statistics. This can either be a vector, matrix
(data sets are the columns), or a list (data sets are the components).
by If x is a vector, an optional vector (either character or numerical) specifying the
categories to divide x into separate data sets.
Details

Stats breaks x up into separate data sets and then calls describe to calculate the statistics. Statis-
tics are found by columns for matrices, by components for a list and by the relevent groups when
a numeric vector and a by vector are given. The default set of statistics are the number of (non-
missing) observations, mean, standard deviation, minimum, lower quartile, median, upper quartile,
maximum, and number of missing observations. If any data set is nonnumeric, missing values are
returned for the statistics. The by argument is a useful way to calculate statistics on parts of a data
set according to different cases.

Value

A matrix where rows index the summary statistics and the columns index the separate data sets.

See Also

stats.bin, stats.bplot, describe

Examples

#Statistics for 8 normal random samples:
zork<- matrix( rnorm(200), ncol=8)
stats(zork)

zork<- rnorm( 200)
id<- sample( 1:8, 200, replace=TRUE)
stats( zork, by=id)

stats.bin Bins data and finds some summary statistics.

Description

Cuts up a numeric vector based on binning by a covariate and applies the fields stats function to
each group
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Usage

stats.bin(x, y, N = 10, breaks = NULL)

Arguments
X Values to use to decide bin membership
y A vector of data
N Number of bins. If the breaks is missing there are N bins equally spaced on the
range of x.
breaks The bin boundaries. If there are N+1 of these there will be N bins. The bin
widths can be unequal.
Value

A list with several components. stats is a matrix with columns indexing the bins and rows being
summary statistics found by the stats function. These are: number of obs, mean, sd, min, quartiles,
max and number of NA’s. (If there is no data for a given bin, NA’s are filled in. ) breaks are the
breaks passed to the function and centers are the bin centers.

See Also

bplot, stats

Examples

u<- rnorm( 2000)

v<- rnorm( 2000)

Xx<- u

y<- .7%xu + sqrt(1-.7*%*2)*v

look<- stats.bin( x,y)
look$stats["Std.Dev.",]

data( ozone2)
# make up a variogram day 16 of Midwest daily ozone ...
look<- vgram( ozone2$lon.lat, c(ozone2$y[16,]), lon.lat=TRUE)

# break points
brk<- seq( 0, 250,,40)

out<-stats.bin( look$d, look$vgram, breaks=brk)

# plot bin means, and some quantiles Q1, median, Q3

matplot( out$centers, t(out$stats[ c("mean”, "median”,”Q1", "Q3"),1),
type="1",1ty=c(1,2,2,2), col=c(3,4,3,4), ylab="ozone PPB")
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summary .Krig Summary for Krig or spatialProcess estimated models.

Description

Creates a list of summary results including estimates for the nugget variance (tau) and the smooth-
ing parameter (lambda). This list is usually printed using a "print.summary" function for nice
formatting.

Usage

## S3 method for class 'Krig'
summary(object, digits=4,...)

Arguments
object A Kirig or spatialProcess object.
digits Number of significant digits in summary.
Other arguments to summary
Details

This function is a method for the generic function summary for class Krig. The results are formatted
and printed using print.summary.Krig.

Value

Gives a summary of the Krig object. The components include the function call, number of observa-
tions, effective degrees of freedom, residual degrees of freedom, root mean squared error, R-squared
and adjusted R-squared, log10(lambda), cost, GCV minimum and a summary of the residuals.

See Also

Krig, summary, print.summary.Krig, summary.spatialProcess

Examples

fit<- Krig(Chicago03$x, Chicago03$y, aRange=100)
summary (fit) # summary of fit
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summary . ncdf Summarizes a netCDF file handle

Description

Provides a summary of the variable names and sizes from the handle returned from netCDF file.

Usage
## S3 method for class 'ncdf'
summary (object,...)
Arguments
object The "handle" returned by the read.ncdf function from the ncdf package.

Other arguments to pass to this function. Currently, no other arguments are used.

Details

This function is out of place in fields but was included because often large geophysical data sets
are in netCDF format and the ncdf R package is also needed. To date the summary capability in
the ncdf package is limited and this function is used to supplement it use. The function is also a a
useful device to see how the ncdf object is structured.

Author(s)
D. Nychka

See Also
ncdf

supportsArg Tests if function supports a given argument

Description

Tests if the given function supports the given argument. Commonly used in fields code for deter-
mining if a covariance function supports precomputation of the distance matrix and evaluation of
the covariance matrix over only the upper triangle.

Usage

supportsArg(fun=stationary.cov, arg)
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Arguments
fun The function tested for support for whether it supports the argument arg as input
arg The argument to check if fun supports using as input

Details

Currently only stationary.cov and Exp.cov support evaluation of the covariance matrix over the
upper triangle (and diagonal) only via the onlyUpper argument and distance matrix precomputation
via the distMat argument.

Value

A logical indicating whether the given function supports use of the given argument

Author(s)

John Paige

See Also

stationary.cov, Exp.cov These covariance functions have the onlyUpper option allowing the
user to evaluate the covariance matrix over the upper triangle and diagonal only and to pass a
precomputed distance matrix

Examples

B

#Test covariance function to see if it supports evaluation of
#covariance matrix over upper triangle only

HHHHHH

supportsArg(Rad.cov, "distMat")
supportsArg(Rad.cov, "onlyUpper")
supportsArg(stationary.cov, "distMat”)
supportsArg(stationary.cov, "onlyUpper")
supportsArg(Exp.cov, "distMat")
supportsArg(Exp.cov, "onlyUpper")

surface.Krig Plots a surface and contours

Description

Creates different plots of the fitted surface of a Krig object. This is a quick way to look at the fitted
function over reasonable default ranges.
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Usage

surface.Krig

## S3 method for class 'Krig'

surface(object,

grid.list = NULL, extrap = FALSE,

graphics.reset = NULL, xlab = NULL, ylab = NULL, main
= NULL, zlab = NULL, zlim = NULL, levels = NULL, type
= "C", nx = 80, ny = 80, col = viridis(256), ...)

## S3 method for class 'mKrig'

surface(

object, grid.list = NULL, extrap = FALSE,

Arguments

object
grid.list

extrap

graphics.reset
type

main
x1lab
ylab
zlab
zlim
levels
nx

ny

col

Details

graphics.reset = NULL, xlab = NULL, ylab = NULL, main
NULL, zlab = NULL, zlim = NULL, levels = NULL, type
= "C", nx = 80, ny = 80, col = viridis(256), ...)

A Krig object or an mKrig object.

A list with as many components as variables describing the surface. All com-
ponents should have a single value except the two that give the grid points for
evaluation. If the matrix or data frame has column names, these must appear in
the grid list. If grid.list is missing an the surface has just two dimensions the
grid is based on the ranges of the observed data.

Extrapolation beyond the range of the data. If false only the convex hull of the
observations is plotted. Default is false.
Reset to original graphics parameters after function plotting.

nn

Type of plot as a character. "p" perspective plot (persp). "c" contour plot (con-
tour). "b" a two panel figure with perspective and contour plots. "I" image plot
with legend strip (image.plot). "C" image plot with contours overlaid. Image
with contour is the default.

Title of plot

x axis label

y axis label

z axis label if "p" or "b" type is used.

Z limits passed to persp

Contour levels passed to contour.

Number of grid points to evaluate surface on the horizontal axis (the x-axis).
Number of grid points to evaluate surface on the vertical axis (the y-axis).
Color scale.

Any other plotting options.

This function is essentially a combination of predictSurface and plot.surface. It may not always
give a great rendition but is easy to use for checking the fitted surface. The default of extrap=F is
designed to discourage looking at the estimated surface outside the range of the observations.

NOTE: that any Z covariates will b edropped and only the spatial part of the model will be evaluated.
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See Also

Krig predictSurface, plot.surface, image.plot

Examples

fit<-

Krig(Chicago0O3$x,Chicago03$y, aRange=30) # krig fit

#Image plot of surface with nice, smooth contours and shading

surface(fit, type="C", nx=128, ny=128)

The Engines: Basic linear algebra utilities and other computations supporting the
Krig function.
Description
These are internal functions to Krig that compute the basic matrix decompositions or solve the linear

systems needed to evaluate the Krig/Tps estimate. Others listed below do some simple housekeep-
ing and formatting. Typically they are called from within Krig but can also be used directly if passed
a Krig object list.

Usage
Krig.engine.default(out, verbose = FALSE)
Krig.engine.fixed( out, verbose=FALSE, lambda=NA)
Krig.coef(out, lambda = out$lambda, y = NULL, yM = NULL, verbose = FALSE)
Krig.make.u(out, y = NULL, yM = NULL, verbose = FALSE)
Krig.check.xY(x, Y,Z, weights, na.rm, verbose = FALSE)
Krig.transform.xY(obj, knots, verbose = FALSE)
Krig.make.W( out, verbose=FALSE)
Krig.make.Wi ( out, verbose=FALSE)
Arguments
out A complete or partial Krig object. If partial it must have all the information
accumulated to this calling point within the Krig function.
obj Same as out.
verbose If TRUE prints out intermediate results for debugging.
lambda Value of smoothing parameter "hard wired" into decompositions. Default is NA,
i.e. use the value in out\$lambda.
y New y vector for recomputing coefficients. OR for %d*% a vector or matrix.
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yM New y vector for recomputing coefficients but the values have already been col-
lapsed into replicate group means.

Y raw data Y vector

X raw X matrix of spatial locations OR In the case of %d*%, y is either a matrix or

a vector. As a vector, y, is interpreted to be the elements of a digaonal matrix.

weights Raw weights vector passed to Krig
Z Raw vector or matrix of additional covariates.
na.rm NA action logical values passed to Krig
knots Raw knots matrix passed to Krig

Details
ENGINES:

The engines are the code modules that handle the basic linear algebra needed to computed the esti-
mated curve or surface coefficients. All the engine work on the data that has been reduced to unique
locations and possibly replicate group means with the weights adjusted accordingly. All information
needed for the decomposition are components in the Krig object passed to these functions.

Krig.engine.default finds the decompositions for a Universal Kriging estimator by simultane-
ously diagonalizing the linear system system for the coefficients of the estimator. The main advan-
tage of this form is that it is fairly stable numerically, even with ill-conditioned covariance matrices
with lambda > 0. (i.e. provided there is a "nugget" or measure measurement error. Also the eigen-
decomposition allows for rapid evaluation of the likelihood, GCV and coefficients for new data
vectors under different values of the smoothing parameter, lambda.

Krig.engine.knots This code has been omitted from verisions >= 12.0. See 11.6 too recover this
functionality.

Finds the decompositions in the case that the covariance is evaluated at arbitrary locations
possibly different than the data locations (called knots). The intent of these decompositions is
to facilitate the evaluation at different values for lambda.

Krig.engine.fixed are specific decomposition based on the Cholesky factorization assuming that
the smoothing parameter is fixed. This is the only case that works in the sparse matrix. Both knots
and the full set of locations can be handled by this case. The difference between the "knots" engine
above is that only a single value of lambda is considered in the fixed engine.

OTHER FUNCTIONS:

Krig.coef Computes the "c" and "d" coefficients to represent the estimated curve. These coeffi-
cients are used by the predict functions for evaluations. Krig.coef can be used outside of the call to
Krig to recompute the fit with different Y values and possibly with different lambda values. If new
y values are not passed to this function then the yM vector in the Krig object is used. The internal
function Krig. ynew sorts out the logic of what to do and use based on the passed arguments.

Krig.make.u Computes the "u" vector, a transformation of the collapsed observations that allows
for rapid evaluation of the GCV function and prediction. This only makes sense when the decom-
position is WBW or DR, i.e. an eigen decomposition. If the decompostion is the Cholesky based
then this function returns NA for the u component in the list.

Krig.check.xY Checks for removes missing values (NAs).
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Krig.cor.Y This code has been omitted from verisions >= 12.0. See 11.6 too recover this func-
tionality.

Krig.transform.xY Finds all replicates and collapse to unique locations and mean response and
pooled variances and weights. These are the XM, yM and weightsM used in the engines. Also scales
the x locations and the knots according to the transformation.

Krig.make.WandKrig.make.Wi These functions create an off-diagonal weight matrix and its sym-
metric square root or the inverse of the weight matrix based on the information passed to Krig. If
out$nondiag is TRUE W is constructed based on a call to the passed function wght.function along
with additional arguments. If this flag is FALSE then W is just diag(out$weightsM) and the
square root and inverse are computed directly.

%d*% Is a simple way to implement efficient diagonal multiplications. x%d*%y is interpreted to
mean diag(x)%*% y if x is a vector. If X is a matrix then this becomes the same as the usual matrix
multiplication.

Returned Values

ENGINES:

The returned value is a list with the matrix decompositions and other information. These are incor-
porated into the complete Krig object.

Common to all engines:

decomp Type of decomposition
nt dimension of T matrix

np number of knots

Krig.engine.default:

u Transformed data using eigenvectors.

D Eigenvalues

G Reduced and weighted matrix of the eigenvectors
qr.T QR decomposition of fixed regression matrix

V The eigenvectors
Krig.engine.fixed:

d estimated coefficients for the fixed part of model

¢ estimated coefficients for the basis functions derived from the covariance function.
Using all data locations

qr.VT QR decomposition of the inverse Cholesky factor times the T matrix.
MC Cholesky factor

Using knot locations

qr.Treg QR decomposition of regression matrix modified by the estimate of the nonparametric ( or
spatial) component.
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lambda.fixed Value of lambda used in the decompositions

OTHER FUNCTIONS:

Krig.coef

yM Y values as replicate group means

tauHat.rep Sample standard deviation of replicates

tauHat.pure.error Same as tauHat.rep

pure.ss Pure error sums of squares based on replicates

¢ The "c" basis coefficients associated with the covariance or radial basis functions.

d The "d" regression type coefficients that are from the fixed part of the model or the linear null
space.

u When the default decomposition is used the data vector transformed by the orthogonal matrices.
This facilitates evaluating the GCV function at different values of the smoothing parameter.

Krig.make.W

W The weight matrix

W2 Symmetric square root of weight matrix
Krig.make.Wi

Wi The inverse weight matrix

W2i Symmetric square root of inverse weight matrix

Author(s)
Doug Nychka

See Also

Krig, Tps
Examples

Krig( Chicago03$x, Chicago0O3%y, aRange=100)-> out
Krig.engine.default( out)-> stuff

# compare "stuff” to components in out$matrices
lookl1<- Krig.coef( out)

look1%c

# compare to out$c

look2<- Krig.coef( out, yM = ChicagoO3$y)

look2$c
# better be the same even though we pass as new data!
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tim.colors Some useful color tables for images and tools to handle them.

Description

Several color scales useful for image plots: a pleasing rainbow style color table patterned after that
used in Matlab by Tim Hoar and also some simple color interpolation schemes between two or more
colors. There is also a function that converts between colors and a real valued vector.

Usage
tim.colors(n = 64, alpha=1.0)

larry.colors()
snow.colors(n=256, alpha=1)

two.colors(n=256, start="darkgreen"”, end="red”, middle="white",
alpha=1.0)

designer.colors( n=256, col= c("darkgreen”, "white”, "darkred”), x=
seq(@,1,, length(col)) ,alpha=1.0)

color.scale(z, col = tim.colors, NC = 256, zlim = NULL,
transparent.color = "white", eps = 1e-08)

fieldsPlotColors( col,...)

Arguments

alpha The transparency of the color — 1.0 is opaque and 0 is transparent. This is useful
for overlays of color and still being able to view the graphics that is covered.

n Number of color levels. The setting n=64 is the orignal definition.

start Starting color for lowest values in color scale

end Ending color.

middle Color scale passes through this color at halfway

col A list of colors (names or hex values) to interpolate. But for the color.scale
function this can be also be a function that returns NC colors when called with
just the NC argument.

X Positions of colors on a [0,1] scale. Default is to assume that the x values are
equally spacesd from O to 1.

z Real vector to encode in a color table.

zlim Range to use for color scale. Default is the range(z) inflated by 1- eps and

1+eps.
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transparent.color
Color value to use for NA’s or values outside z1im

eps A small inflation of the range to avoid the boundary values of z being coded as
NAs.
NC The number of colors to return from calling the function passed in the col argu-

ment. This is only used if col is a function.

Additional plotting arguments to codeimage.plot

Details

The color in R can be represented as three vectors in RGB coordinates and these coordinates are
interpolated separately using a cubic spline to give color values that intermediate to the specified
colors.

Ask Tim Hoar about tim. colors! He is a Mattlab black belt and this is his favorite scale in that sys-
tem. two.colors is really about three different colors. For other colors try fields.color.picker
to view possible choices. start="darkgreen",end="azure4" are the options used to get a nice
color scale for rendering aerial photos of ski trails. (See https://github.com/dnychka/MJProject.)
larry.colorsisa 13 color palette used by Larry McDaniel (retired software engineer from NCAR)
and is particularly useful for visualizing fields of climate variables.

snow.colors is the scale used by Will Klieber’s team for visualizing snow cover from remotely
sensed data products. See the commented code for the script as to how how this was formed from
an orignal raw 256 level scale. Note the that first color in this table is grey and is desigend to
represent the minimum value of the range ( e.g. 0). If the image in in percent snow cover then
z1lim=c(@,100) would make sense as a range to fit grey pixels to zero and white to 100 percent.

designer.color is the master function for the other scales. It can be useful if one wants to cus-
tomize the color table to match quantiles of a distribution. e.g. if the median of the data is at .3 with
respect to the range then set x equal to ¢(0,.3,1) and specify two colors to provide a transtion that
matches the median value. In fields language this function interpolates between a set of colors at
locations x. While you can be creative about these colors just using another color scale as the basis
is easy. For example

designer.color( 256, rainbow(4),x=c(9,.2,.8,1.0))

leaves the choice of the colors to Dr. R after a thunderstorm. See also colorBrewer to choose
sequences of colors that form a good palette.

color.scale assigns colors to a numerical vector in the same way as the image function. This is
useful to kept the assigment of colors consistent across several vectors by specifiying a common
zlimrange.

plotColorScale A simple function to plot a vector of colors to examine their values.

Value

A vector giving the colors in a hexadecimal format, two extra hex digits are added for the alpha
channel.

See Also

topo.colors, terrain.colors, image.plot, quilt.plot, grey.scale, fields.color.picker
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Examples

tim.colors(10)
# returns an array of 10 character strings encoding colors in hex format

# e.g. (red, green, blue) values of (16,255, 239)
#  translates to "#10FFEF”

# rgb( 16/255, 255/255, 239/255, alpha=.5)

# gives  "#1OFFEF80" note extra "alpha channel”

# view some color table choices
set.panel( 4,1)

fieldsPlotColors( tim.colors())
title("tim.colors”)
fieldsPlotColors( larry.colors())
title("larry.colors")
fieldsPlotColors( two.colors())
title("two.colors")
fieldsPlotColors( snow.colors())
title("snow.colors")

# a bubble plot with some transparency for overlapping dots
set.seed(123)
loc<- matrix( rnorm( 200), 100,2)
Z<- loc[,1] + loc[,2]
colorMap<- color.scale( Z, col=tim.colors(10, alpha=.8))
par( mar=c(5,5,5,5)) # extra room on right for color bar
plot( loc, col=colorMap, pch=16, cex=2)
# add a color scale
image.plot(legend.only=TRUE, zlim=range( Z), col=tim.colors(10))

# using tranparency without alpha the image plot would cover points

obj<- list( x= 1:8, y=1:10, z= outer( 1:8, 1:10, "+") )
plot( 1:10,1:10)

image (obj, col=two.colors(alpha=.5), add=TRUE)

coltab<- designer.colors(col=c("blue”, "grey"”, "green"),
x=c( 9,.3,1) )

image( obj, col= coltab )

# peg colors at some desired quantiles of data.

# NOTE need @ and 1 for the color scale to make sense
x<- quantile( c(obj$z), c(0,.25,.5,.75,1.0) )

# scale these to [0,1]

zr<- range( c(obj$z))

x<- (x-zr[11)/ (zr[2] - zr[1]1)

coltab<- designer.colors(256,rainbow(5), x)
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image( obj$z, col= coltab )
# see image.plot for adding all kinds of legends

set.panel()

Tps

Thin plate spline regression

Description

Fits a thin plate spline surface to irregularly spaced data. The smoothing parameter is chosen by
generalized cross-validation. The assumed model is additive Y = f(X) +e where f(X) is a d dimen-
sional surface. This is the classic nonparametric curve/surface estimate pioneered in statistics by
Grace Wahba. This function also works for just a single dimension and is a special case of a Gaus-
sian process estimate as the range parameter in the Matern family increases to infinity. (Kriging).

A "fast" version of this function uses a compactly supported Wendland covariance and sparse linear
algebra for handling larger datta sets. Although a good approximation to Tps for sufficiently large
aRange its actual form is very different from the textbook thin-plate definition.

Usage

Tps(x, Y, m = NULL, p = NULL, scale.type = "range"”, lon.lat = FALSE,

miles

fastTps(x, Y,

Arguments

X

scale. type

m = NULL, p

= TRUE, method = "GCV", GCV = TRUE, ...)

NULL, aRange, lon.lat = FALSE,
FALSE, REML = FALSE,theta=NULL, ...)

find.trA

Matrix of independent variables. Each row is a location or a set of independent
covariates.

Vector of dependent variables.

A polynomial function of degree (m-1) will be included in the model as the drift
(or spatial trend) component. Default is the value such that 2m-d is greater than
zero where d is the dimension of x.

Polynomial power for Wendland radial basis functions. Default is 2m-d where
d is the dimension of x.

The independent variables and knots are scaled to the specified scale.type. By
default the scale type is "range", whereby the locations are transformed to the
interval (0,1) by forming (x-min(x))/range(x) for each x. Scale type of "user"
allows specification of an x.center and x.scale by the user. The default for "user"
is mean O and standard deviation 1. Scale type of "unscaled" does not scale the
data.
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aRange

lon.lat

method

GCV

miles

find.trA

REML

theta
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The tapering range that is passed to the Wendland compactly supported co-
variance. The covariance (i.e. the radial basis function) is zero beyond range
aRange. The larger aRange the closer this model will approximate the standard
thin plate spline.

If TRUE locations are interpreted as lognitude and latitude and great circle dis-
tance is used to find distances among locations. The aRange scale parameter for
fast.Tps (setting the compact support of the Wendland function) in this case is
in units of miles (see example and caution below).

Determines what "smoothing" parameter should be used. The default is to es-
timate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure
error and REML. The differences are explained in the Krig help file.

If TRUE the decompositions are done to efficiently evaluate the estimate, GCV
function and likelihood at multiple values of lambda.

If TRUE great circle distances are in miles if FALSE distances are in kilometers

If TRUE will estimate the effective degrees of freedom using a simple Monte
Carlo method (random trace). This will add to the computational burden by ap-
proximately NtrA solutions of the linear system but the cholesky decomposition
is reused.

If TRUE find the MLE for lambda using restricted maximum likelihood instead
of the full version.

Same as aRange.

For Tps any argument that is valid for the Krig function. Some of the main ones
are listed below.

For fastTps any argument that is suitable for the mKrig function see help on
mKTrig for these choices. The most common would be 1ambda fixing the value
of this parameter (tau2/sigma”2), Z linear covariates or mKrig.args=1list(
m=1) setting the regression model to be just a constant function.

Arguments for Tps:

lambda Smoothing parameter that is the ratio of the error variance (tau**2) to
the scale parameter of the covariance function. If omitted this is estimated
by GCV.

Z Linear covariates to be included in fixed part of the model that are distinct
from the default low order polynomial in x

df The effective number of parameters for the fitted surface. Conversely, N-
df, where N is the total number of observations is the degrees of freedom
associated with the residuals. This is an alternative to specifying lambda
and much more interpretable.

cost Cost value used in GCV criterion. Corresponds to a penalty for increased
number of parameters. The default is 1.0 and corresponds to the usual GCV.

weights Weights are proportional to the reciprocal variance of the measurement
error. The default is no weighting i.e. vector of unit weights.

nstep.cv Number of grid points for minimum GCV search.

x.center Centering values are subtracted from each column of the x matrix.
Must have scale.type="user".
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x.scale Scale values that divided into each column after centering. Must have
scale.type="user".

sigma Scale factor for covariance.

tau2 Variance of errors or if weights are not equal to 1 the variance is tau**2/weight.
verbose If true will print out all kinds of intermediate stuff.

mean.obj Object to predict the mean of the spatial process.

sd.obj Object to predict the marginal standard deviation of the spatial process.

null.function An R function that creates the matrices for the null space model.
The default is fields.mkpoly, an R function that creates a polynomial regres-
sion matrix with all terms up to degree m-1. (See Details)

offset The offset to be used in the GCV criterion. Default is 0. This would be
used when Krig/Tps is part of a backfitting algorithm and the offset has to
be included to reflect other model degrees of freedom.

Details

Both of these functions are special cases of using the Krig and mKrig functions. See the help on
each of these for more information on the calling arguments and what is returned. Tps makes use
of the stable computations via eigen decompositions in Krig. fastTps follows the more standard
computations for spatial statistics centered around the Cholesky decomposition in mKrig.

A thin plate spline is the result of minimizing the residual sum of squares subject to a constraint that
the function have a certain level of smoothness (or roughness penalty). Roughness is quantified by
the integral of squared m-th order derivatives. For one dimension and m=2 the roughness penalty
is the integrated square of the second derivative of the function. For two dimensions the roughness
penalty is the integral of

(Dxx(£))**22 + 2(Dxy(f))**2 + (Dyy(f))**22

(where Duv denotes the second partial derivative with respect to u and v.) Besides controlling the
order of the derivatives, the value of m also determines the base polynomial that is fit to the data.
The degree of this polynomial is (m-1).

The smoothing parameter controls the amount that the data is smoothed. In the usual form this
is denoted by lambda, the Lagrange multiplier of the minimization problem. Although this is an
awkward scale, lambda = 0 corresponds to no smoothness constraints and the data is interpolated.
lambda=infinity corresponds to just fitting the polynomial base model by ordinary least squares.

This estimator is implemented by passing the right generalized covariance function based on radial
basis functions to the more general function Krig. One advantage of this implementation is that
once a Tps/Krig object is created the estimator can be found rapidly for other data and smoothing
parameters provided the locations remain unchanged. This makes simulation within R efficient (see
example below). Tps does not currently support the knots argument where one can use a reduced
set of basis functions. This is mainly to simplify the code and a good alternative using knots would
be to use a valid covariance from the Matern family and a large range parameter.

CAUTION about lon.1lat=TRUE: The option to use great circle distance to define the radial basis
functions (lon.lat=TRUE) is very useful for small geographic domains where the spherical geom-
etry is well approximated by a plane. However, for large domains the spherical distortion be large
enough that the basis function no longer define a positive definite system and Tps will report a nu-
merical error. An alternative is to switch to a three dimensional thin plate spline the locations being
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the direction cosines. This will give approximate great circle distances for locations that are close
and also the numerical methods will always have a positive definite matrices.

Here is an example using this idea for RMprecip and also some examples of building grids and
evaluating the Tps results on them:

# a useful function:
dircos<- function(x1){
coslatl <- cos((x1[, 2] * pi)/180)
sinlatl <- sin((x1[, 2] * pi)/180)
coslonl <- cos((x1[, 1] * pi)/180)
sinlonl <- sin((x1[, 1] * pi)/180)
cbind(coslonl*coslatl, sinlonl*coslatl, sinlat1)}
# fit in 3-d to direction cosines
out<- Tps(dircos(RMprecip$x),RMprecip$y)
xg<-make.surface.grid(fields.x.to.grid(RMprecip$x))
fhat<- predict( out, dircos(xg))
# coerce to image format from prediction vector and grid points.
out.p<- as.surface( xg, fhat)
surface( out.p)
# compare to the automatic
out@<- Tps(RMprecip$x,RMprecip$y, lon.lat=TRUE)
surface(out®)

The function fastTps is really a convenient wrapper function that calls spatialProcess with a
suitable Wendland covariance function. This means one can use all the additional functions for
prediction and simulation built for the spatialProcess and mKrig objects.

This is function is experimental, however, and some care needs to exercised in specifying the sup-
port aRange and power ( p) which describes the polynomial behavior of the Wendland at the origin.
Note that unlike Tps the locations are not scaled to unit range and this can cause havoc in smoothing
problems with variables in very different units. So rescaling the locations x<-scale(x) is a good
idea for putting the variables on a common scale for smoothing. A conservative rule of thumb is
to make aRange large enough so that about 50 nearest neighbors are within this distance for every
observation location.

This function does have the potential to approximate estimates of Tps for very large spatial data
sets. See wendland.cov and help on the SPAM package for more background. Also, the function
predictSurface. fastTps has been made more efficient for the case of k=2 and m=2.

See also the mKrig function for handling larger data sets and also for an example of combining Tps
and mKrig for evaluation on a huge grid.

Value

A list of class Krig. This includes the fitted values, the predicted surface evaluated at the observa-
tion locations, and the residuals. The results of the grid search minimizing the generalized cross
validation function are returned in gcv.grid. Note that the GCV/REML optimization is done even if
lambda or df is given. Please see the documentation on Krig for details of the returned arguments.
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References
See "Nonparametric Regression and Generalized Linear Models" by Green and Silverman. See
"Additive Models" by Hastie and Tibshirani.

See Also
Krig, mKrig, spatialProcess, sim.spatialProcess, summary.Krig, predict.Krig, predictSE.Krig,
predictSurface, predictSurface.fastTps, plot.Krig, surface.Krig, sreg

Examples
#2-d example
fit<- Tps(Chicago03$x, Chicago03$y) # fits a surface to ozone measurements.
set.panel(2,2)
plot(fit) # four diagnostic plots of fit and residuals.

set.panel()

# summary of fit and estiamtes of lambda the smoothing parameter
summary (fit)

surface( fit) # Quick image/contour plot of GCV surface.
# NOTE: the predict function is quite flexible:
look<- predict( fit, lambda=2.0)
# evaluates the estimate at lambda =2.0 _not_ the GCV estimate
# it does so very efficiently from the Krig fit object.
look<- predict( fit, df=7.5)

# evaluates the estimate at the lambda values such that
the effective degrees of freedom is 7.5

ETS

# compare this to fitting a thin plate spline with

# lambda chosen so that there are 7.5 effective

# degrees of freedom in estimate

# Note that the GCV function is still computed and minimized
# but the lambda values used correpsonds to 7.5 df.

fit1<- Tps(Chicago03$x, Chicago03$y,df=7.5)
set.panel(2,2)
plot(fit1) # four diagnostic plots of fit and residuals.
# GCV function (lower left) has vertical line at 7.5 df.
set.panel()

# The basic matrix decompositions are the same for
# both fit and fit1 objects.

# predict( fitl) is the same as predict( fit, df=7.5)
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# predict( fitl1, lambda= fit$lambda) is the same as predict(fit)

# predict onto a grid that matches the ranges of the data.

out.p<-predictSurface( fit)
image( out.p)

# the surface function (e.g. surface( fit)) essentially combines
# the two steps above

# predict at different effective
# number of parameters
out.p<-predictSurface( fit,df=10)

## Not run:
# predicting on a grid along with a covariate
data( COmonthlyMet)
predicting average daily minimum temps for spring in Colorado
NOTE to create an 4km elevation grid:
data(PRISMelevation); CO.elevl <- crop.image(PRISMelevation, CO.loc )
then use same grid for the predictions: CO.Grid1<- CO.elevi[c("x","y")]
obj<- Tps( CO.loc, CO.tmin.MAM.climate, Z= CO.elev)
out.p<-predictSurface( obj,
grid.list=C0.Grid, ZGrid= CO.elevGrid)
image.plot( out.p)
US(add=TRUE, col="grey")
contour( CO.elevGrid, add=TRUE, levels=c(2000), col="black")

ETRE T

## End(Not run)

## Not run:

#A 1-d example with confidence intervals
out<-Tps( rat.diet$t, rat.diet$trt) # lambda found by GCV
out
plot( out$x, out$y)
xgrid<- seq( min( out$x), max( out$x),,100)
fhat<- predict( out,xgrid)
lines( xgrid, fhat,)

SE<- predictSE( out, xgrid)
lines( xgrid,fhat + 1.96*% SE, col="red"”, lty=2)
lines(xgrid, fhat - 1.96%SE, col="red"”, 1lty=2)

H

compare to the ( much faster) B spline algorithm
# sreg(rat.diet$t, rat.diet$trt)

# Here is a 1-d example with 95 percent CIs where sreg would not
work:
# sreg would give the right estimate here but not the right CI's
x<- seq( 0,1,,8)
y<- sin(3*x)
out<-Tps( x, y) # lambda found by GCV
plot( out$x, out$y)

H+
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H+

% o

Tps

xgrid<- seq( min( out$x), max( out$x),,100)
fhat<- predict( out,xgrid)

lines( xgrid, fhat, lwd=2)

SE<- predictSE( out, xgrid)

lines( xgrid,fhat + 1.96*% SE, col="red"”, lty=2)
lines(xgrid, fhat - 1.96%SE, col="red"”, 1lty=2)

## End(Not run)

# More involved example adding a covariate to the fixed part of model
## Not run:

set.panel( 1,3)

# without elevation covariate

out@<-Tps( RMprecip$x,RMprecip$y)
surface( out®)
US( add=TRUE, col="grey")

# with elevation covariate

out<- Tps( RMprecip$x,RMprecip$y, Z=RMprecip$elev)

# NOTE: out$d[4] is the estimated elevation coefficient
# it is easy to get the smooth surface separate from the elevation.

out.p<-predictSurface( out, drop.Z=TRUE)
surface( out.p)
US( add=TRUE, col="grey")

# and if the estimate is of high resolution and you get by with

a simple discretizing -- does not work in this case!
quilt.plot( out$x, out$fitted.values)

the exact way to do this is evaluate the estimate

on a grid where you also have elevations

An elevation DEM from the PRISM climate data product (4km resolution)
data(RMelevation)

grid.list<- list( x=RMelevation$x, y= RMelevation$y)

fit.full<- predictSurface( out, grid.list, ZGrid= RMelevation)

# this is the linear fixed part of the second spatial model:
# lon,lat and elevation

fit.fixed<- predictSurface( out, grid.list, just.fixed=TRUE,
ZGrid= RMelevation)

# This is the smooth part but also with the linear lon lat terms.

fit.smooth<-predictSurface( out, grid.list, drop.Z=TRUE)

set.panel( 3,1)

fit@<- predictSurface( out@, grid.list)
image.plot( fit@)

title(" first spatial model (w/o elevation)")
image.plot( fit.fixed)
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title(" fixed part of second model (lon,lat,elev linear model)")
US( add=TRUE)

image.plot( fit.full)

title("full prediction second model")

set.panel()

## End(Not run)
H###
### fast Tps

m=2  p= 2m-d= 2

#
#
# Note: aRange = 3 degrees is a very generous taper range.

# Use some trial aRange value with rdist.nearest to determine a
# a useful taper. Some empirical studies suggest that in the

# interpolation case in 2 d the taper should be large enough to
# about 20 non zero nearest neighbors for every location.

out2<- fastTps( RMprecip$x,RMprecip$y,m=2, aRange=3.0,
profileLambda=FALSE)

note that fastTps produces a object of classes spatialProcess and mKrig

so one can use all the

the overloaded functions that are defined for these classes.

predict, predictSE, plot, sim.spatialProcess

summary of what happened note estimate of effective degrees of

freedom

profiling on lambda has been turned off to make this run quickly

but it is suggested that one examines the the profile likelihood over lambda

% B o H O

print( out2)

## Not run:
set.panel( 1,2)
surface( out2)

#

# now use great circle distance for this smooth

# Here "aRange"” for the taper support is the great circle distance in degrees latitude.
# Typically for data analysis it more convenient to think in degrees. A degree of

# latitude is about 68 miles (111 km).

#

fastTps( RMprecip$x,RMprecip$y,m=2, lon.lat=TRUE, aRange= 210 ) -> out3

print( out3) # note the effective degrees of freedom is different.

surface(out3)

set.panel()

## End(Not run)
## Not run:

#

# simulation reusing Tps/Krig object
#
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fit<- Tps( rat.diet$t, rat.diet$trt)
true<- fit$fitted.values

N<- length( fit$y)

temp<- matrix( NA, ncol=50, nrow=N)
tau<- fit$tauHat.GCV

for ( k in 1:50){

ysim<- true + tau* rnorm(N)
temp[,k]<- predict(fit, y= ysim)

3

matplot( fit$x, temp, type="1")

## End(Not run)

#

#4-d example

fit<- Tps(BD[,1:4],BD$1lnya,scale.type="range")

# plots fitted surface and contours
# default is to hold 3rd and 4th fixed at median values

surface(fit)

transformx Linear transformation

Description

Linear transformation of each column of a matrix. There are several choices of the type of centering
and scaling.

Usage
transformx (x, scale.type = "unit.sd”, x.center, x.scale)
Arguments
X Matrix with columns to be transformed.
scale.type Type of transformation the default is "unit.sd": subtract the mean and divide
by the standard deviation. Other choices are "unscaled" (do nothing), "range"
(transform to [0,1]),"user" (subtract a supplied location and divide by a scale).
x.center A vector of centering values to subtract from each column.

x.scale A vector of scaling values to subtract from each column.
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Details

After deciding what the centering and scaling values should be for each column of x, this function
just calls the standard utility scale. This function was created partly to attach the transformation
information as attributes to the transformed matrix. It is used in Krig, cover.design, krig.image etc.
to transform the independent variables.

Value

A matrix whose columns have between transformed. This matrix also has the attributes: scale.type,
x.center and y.center with the transformation information.
See Also

scale

Examples

#
newx<-transformx( Chicago03$x, scale.type="range")

us Plot of the US with state boundaries

Description

Plots quickly, medium resolution outlines of the US with the states and bodies of water. A simple
wrapper for the map function from the maps package.

Usage
us( ...)
Arguments
These are the arguments that are passed to the map function from the maps
package.
Details

The older version of this function (fields < 6.7.2) used the FIELDS dataset US.dat for the coordi-
nates. Currenty this has been switched to use the maps package.

See Also

world
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Examples

# Draw map in device color # 3
US( col=3)

US.dat Outline of coterminous US and states.

Description

This data set is used by the fields function US to draw a map. It is the medium resolution outline
that is produced by drawing the US from the maps package.

vgram Traditional or robust variogram methods for spatial data

Description

vgram computes pairwise squared differences as a function of distance. Returns an S3 object of
class "vgram" with either raw values or statistics from binning. crossCoVGram is the same as
vgram but differences are taken across different variables rather than the same variable.

plot.vgramand boxplotVGram create lineplots and boxplots of vgram objects output by the vgram
function. boxplotVGram plots the base R boxplot function, and plots estimates of the mean over
the boxplot.

The getVGMean function returns the bin centers and means of the vgram object based on the bin
breaks provided by the user.

Usage

vgram(loc, y, id = NULL, d = NULL, lon.lat = FALSE,
dmax = NULL, N = NULL, breaks = NULL,
type=c("variogram”, "covariogram”, "correlogram"))

crossCoVGram(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE,
dmax = NULL, N = NULL, breaks = NULL,
type=c("cross-covariogram”, "cross-correlogram"))

boxplotVGram(x, N=1@, breaks = pretty(x$d, N, eps.correct = 1), plot=TRUE, plot.args, ..

## S3 method for class 'vgram'
plot(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), add=FALSE, ...)

getVGMean(x, N = 10, breaks = pretty(x$d, N, eps.correct = 1))

>
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Arguments

loc Matrix where each row is the coordinates of an observed point of the field

y Value of the field at locations

loci Matrix where each row is the coordinates of an observed point of field 1

loc2 Matrix where each row is the coordinates of an observed point of field 2

y1 Value of field 1 at locations

y2 Value of field 2 at locations

id A 2 column matrix that specifies which variogram differnces to find. If omit-
ted all possible pairing are found. This can used if the data has an additional
covariate that determines proximity, for example a time window.

d Distances among pairs indexed by id. If not included distances from from di-
rectly from loc.

lon.lat If true, locations are assumed to be longitudes and latitudes and distances found
are great circle distances (in miles see rdist.earth). Default is FALSE.

dmax Maximum distance to compute variogram.

N Number of bins to use. The break points are found by the pretty function and
so ther may not be exactly N bins. Specify the breaks explicity if you want
excalty N bins.

breaks Bin boundaries for binning variogram values. Need not be equally spaced but
must be ordered.

X An object of class "vgram" (an object returned by vgram)

add If TRUE, adds empirical variogram lineplot to current plot. Otherwise creates
new plot with empirical variogram lineplot.

plot If TRUE, creates a plot, otherwise returns variogram statistics output by bplot. xy.

plot.args Additional arguments to be passed to plot.vgram.

type One of "variogram", "covariogram", "correlogram", "cross-covariogram", and
"cross-correlogram". vgram supports the first three of these and crossCoVGram
supports the last two.

Additional argument passed to plot for plot.vgramorto bplot. xy for boxplotVGram.
Value

vgram and crossCoVGram return a "vgram" object containing the following values:

vgram Variogram or covariogram values

d Pairwise distances

call Calling string

stats Matrix of statistics for values in each bin. Rows are the summaries returned

by the stats function or describe. If not either breaks or N arguments are not
supplied then this component is not computed.

centers Bin centers.

If boxplotVGram is called with plot=FALSE, it returns a list with the same components as returned
by bplot.xy
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References

See any standard reference on spatial statistics. For example Cressie, Spatial Statistics

Author(s)

John Paige, Doug Nychka

See Also

vgram.matrix, bplot.xy, bplot

Examples

#

# compute variogram for the midwest ozone field day 16
# (BTW this looks a bit strange!)

#

data( ozone2)

good<- !is.na(ozone2$y[16,1)

x<- ozone2$lon.lat[good, ]

y<- ozone2$y[16,good]

look<-vgram( x,y, N=15, lon.lat=TRUE) # locations are in lon/lat so use right
#distance

# take a look:

plot(look, pch=19)

#lines(look$centers, look$stats["mean”,], col=4)

brk<- seq( @, 250,, (25 + 1) ) # will give 25 bins.
## or some boxplot bin summaries

boxplotVGram(look, breaks=brk, plot.args=list(type="0"))
plot(look, add=TRUE, breaks=brk, col=4)

#

# compute equivalent covariogram, but leave out the boxplots
#

look<-vgram( x,y, N=15, lon.lat=TRUE, type="covariogram")
plot(look, breaks=brk, col=4)

#

# compute equivalent cross-covariogram of the data with itself

#(it should look almost exactly the same as the covariogram of

#the original data, except with a few more points in the

#smallest distance boxplot and points are double counted)

#

look = crossCoVGram(x, x, y, y, N=15, lon.lat=TRUE, type="cross-covariogram")
plot(look, breaks=brk, col=4)
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vgram.matrix

Computes a variogram from an image

Description

Computes a variogram for an image taking into account different directions and returning summary
information about the differences in each of these directions.

Usage

vgram.matrix(dat, R = NULL, dx = NULL, dy = NULL)

## S3 method for class 'vgram.matrix'

plot(x,...)

Arguments

dat

dx

dy

Details

Either a matrix spacing of rows and columns are assumed to have the same
distance or a list in image format with components x, y and z.

Maximum radius for finding variogram differences assuming that the grid points
are spaced one unit a part. Default is go out to a radius of 5*max ( c(dx,dy) ).

The spacing of grid points on the X axis. This is used to calculate the correct
distance between grid points. If dx is not equal to dy then the collapse argument
must be FALSE. If an image object is passed and dx and dy are not specified
they will be calculated from the x and y components of the image list.

The spacing of grid points on the Y axis. See additional notes for dx.
Returned object from vgram.matrix

Arguments for image.plot

For the "full" case the statistics can summarize departures from isotropy by separating the variogram
differences according to orientation. For small R this runs efficiently because the differences are
found by sub-setting the image matrix.

For example, suppose that a row of the ind matrix is (2,3). The variogram value associated with
this row is the mean of the differences (1/2)*(X(i,j)- X(i+2,j+3))**2 for all i and j. (Here X(.,.) are
the values for the spatial field.) In this example d= sqrt(13) and there will be another entry with the
same distance but corresponding to the direction (3,2). plot.vgram.matrix attempts to organize all
the different directions into a coherent image plot.

Value

An object of class vgram.matrix with the following components: d, a vector of distances for the
differences, and vgram, the variogram values. This is the traditional variogram ignoring direction.
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d.full, a vector of distances for all possible shifts up distance R, ind, a two column matrix giving
the x and y increment used to compute the shifts, and vgram.full, the variogram at each of these
separations. Also computed is vgram.robust, Cressie’s version of a robust variogram statistic.

Also returned is the component N the number of differences found for each separation csae.

See Also

vgram

Examples

# variogram for Lennon image.
data(lennon)
out<-vgram.matrix( lennon)

plot( out$d, out$vgram, xlab="separation distance”, ylab="variogram")
# image plot of vgram values by direction.

# look at different directions
out<-vgram.matrix( lennon, R=8)

plot( out$d, out$vgram)
# add in different orientations
points( out$d.full, out$vgram.full, col="red")

#image plot of variogram values for different directions.
set.panel(1,1)

plot.vgram.matrix( out)

# John Lennon appears remarkably isotropic!

Wendland Wendland family of covariance functions and supporting numerical
functions

Description

Computes the compactly supported, stationatry Wendland covariance function as a function ofdis-
tance. This family is useful for creating sparse covariance matrices.

Usage

Wendland(d, aRange = 1, dimension, k,derivative=0, phi=NA, theta=NULL)

Wendland2.2(d, aRange=1, theta=NULL)
Wendland.beta(n,k)

wendland.eval(r, n, k, derivative = 0)
fields.pochup(q, k)
fields.pochdown(q, k)
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fields.D(f,name,order = 1)

Arguments

d

aRange
theta
dimension
n

k
derivative

phi

r
q
.f_’
name

order

Details

Distances between locations. Or for wendland.coef the dimension of the loca-
tions.

Scale for distances. This is the same as the range parameter.
Same as aRange.

Dimension of the locations

Dimension for computing Wendland polynomial coefficients
Order of covariance function.

Indicates derivative of covariance function

Depreciated argument will give stop if not an NA. (Formerly the scale factor to
multiply the function. Equivalent to the marginal variance or sill if viewed as a
covariance function.)

Real value in [0,1] to evaluate Wendland function.
Order of Pochhammer symbol

Numerical expression to differentiate.

Variable with which to take derivative.

Order of derivative.

This is the basic function applied to distances and called by the wendland.cov function. It can
also be used as the Covariance or Taper specifications in the more general stationary.cov and sta-
tion.taper.cov functions. The proofs and construction of the Wendland family of positive definite
functions can be found in the work of Wendland(1995). ( H. Wendland. Piecewise polynomial ,
positive definite and compactly supported radial functions of minimal degree. AICM 4(1995), pp

389-396.)

The Wendland covariance function is a positive polynomial on [0,aRange] and zero beyond aRange.
It is further normalized in these fields functions to be 1 at 0. The parameter k detemines the smooth-
ness of the covariance at zero. The additional parameter n or dimension is needed because the
property of positive definitness for radial functions depends on the dimension being considered.

The polynomial terms of the Wenland function. are computed recursively based on the values of k
and dimension in the function wendland. eval. The matrix of coefficients found by Wendland.beta
is used to weight each polynomial term and follows Wendland’s original construction of these func-
tions. The recursive definition of the Wendland coefficients depends on Pochhammer symbols akin
to binomial coefficients:
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fields.pochup(q,k) calculates the Pochhammer symbol for rising factorial q(q+1)(q+2)...(q+k-1)
and

fields.pochdown(q,k) calculates the Pochhammer symbol for falling factorial q(q-1)(g-2)...(q-
k+1).

Derivatives are found symbolically using a recursive modification of the base function D (fields.D)
and then evaluated numerically based on the polynomial form.

A specific example of the Wendland family is Wendland2.2 (k=2, dimension=2). This is included
mainly for testing but the explicit formula may also be enlightening.

Value

A vector of the covariances or its derivative.

Author(s)
Doug Nychka, Ling Shen

See Also

wendland.cov, stationary.taper.cov

Examples

dt<- seq( 0,1.5,, 200)

y<- Wendland( dt, k=2, dimension=2)
plot( dt, y, type="1")

# should agree with

y.test<- Wendland2.2( dt)
points( dt, y.test)

# second derivative
plot( dt, Wendland( dt, k=4, dimension=2, derivative=2), type="1")

# a radial basis function using the Wendland the "knot" is at (.25,.25)
gl<- list( x= seq( -1,1,,60), y = seq( -1,1,,60) )

bigD<- rdist( make.surface.grid( gl), matrix( c(.25,.25), nrow=1))
RBF<- matrix(Wendland( bigD, k=2, dimension=2), 60,60)

# perspective with some useful settings for shading.
persp( gl$x, gl$y, RBF, theta =30, phi=20, shade=.3, border=NA, col="grey90")
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world Plot of the world

Description

Plots quickly, medium resolution outlines of large land masses. This is a simple wrapper for the
map function from the maps package.

Usage

world(...)

world.land( ...)
world.color( ... )
in.land.grid(...)

Arguments

Same arguments used by the map function from the maps package.

Details

See the longstanding maps package for documentation on this function. The functions world.land,
world.color and in.land.grid have been depreciated but can be recovered from versions of fields
6.7.1 or older.

See Also

US, in.poly, in.poly.grid

Examples

## Not run:

world()

# add the US

US( add=TRUE,col="blue")

world( fill=TRUE) # land filled in black
## Western Europe
world( xlim=c(-10,18),ylim=c(36,60),fill=TRUE, col="darkgreen”,

border="greenl1")

## End(Not run)



220 WorldBankCO2

WorldBankCO02 Carbon emissions and demographic covariables by country for 1999.

Description

These data are a small subset of the demographic data compiled by the World Bank. The data has
been restricted to 1999 and to countries with a population larger than 1 million. Also, only countries
reporting all the covariables are included.

Usage
data(WorldBankC02)

Format

This a 75X5 matrix with the row names identifying countries and columns the covariables: "GDP.cap”
"Pop.mid"” "Pop.urb” "C02.cap" "Pop”

* GDP.cap: Gross domestic product (in US dollars) per capita.

» Pop.mid: percentage of the population within the ages of 15 through 65.
* Pop.urb: Precentage of the population living in an urban environment

* CO2.cap: Equivalent CO2 emmissions per capita

* Pop: Population

Reference

Romero-Lankao, P, J. L. Tribbia and D. Nychka (2008) Development and greenhouse gas emissions
deviate from the modernization theory and convergence hypothesis. Cli- mate Research 38, 17-29.

Creating dataset

Listed below are scripts to create this data set from spread sheet on the World Bank CDs:

## read in comma delimited spread sheet
read.csv("climatedemo.csv", stringsAsFactors=FALSE)->hold
## convert numbers to matrix of data
Ddata<- as.matrix( hold[,5:51] )
Ddata[Ddata==".."] <- NA
## still in character form parse as numeric
Ddata<- matrix( as.numeric( Ddata), nrow=1248, ncol=ncol( Ddata),
dimnames=1ist( NULL, format( 1960:2006) ))
## these are the factors indicating the different variables
### unique( Fac) gives the names of factors
Fac<- as.character( hold[,1])
years<- 1960:2006
# create separate tables of data for each factor
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temp<- unique( Fac)
## also subset Country id and name
Country.id<- as.character( hold[Fac== temp[1],3])
Country<- as.character( hold[Fac== temp[1],41)
Pop<- Ddatal Fac== temp[2],]
C02<- Ddatal[ Fac== temp[1],]
Pop.mid<- Ddata[ Fac== temp[3],]
GDP.cap<- Ddatal[ Fac== temp[4],]
Pop.urb<- Ddatal[ Fac== temp[5],]
C02.cap<- C02/Pop
dimnames( Pop)<- list( Country.id,format(years))
dimnames( C02)<- list( Country.id,format(years))
dimnames( Pop.mid)<- list( Country.id,format(years))
dimnames( Pop.urb)<- list( Country.id,format(years))
dimnames( C02.cap)<- list( Country.id,format(years))
# delete temp data sets
rm( temp)
rm( hold)
rm( Fac)
# define year to do clustering.
yr<- "1999"
# variables for clustering combined as columns in a matrix
temp<-cbind( GDP.cap[,yrl], Pop.mid[,yr], Pop.urb[,yr],C02[,yr]l,Popl,yrl)
# add column names and figure how many good data rows there are.
dimnames( temp)<-list( Country, c("GDP.cap","Pop.mid","Pop.urb”,
"C02.cap”, "Pop"))
good<-complete.cases(temp)
good<- good & Pop[,yr] > 10e6
# subset with only the complete data rows
WorldBankC02<- temp[good, ]
save(WorldBankC02, file="WorldBankC02.rda")

Examples

data(WorldBankC02)
plot( WorldBankCO2[,"GDP.cap"”], WorldBankCO2[,"C02.cap”], log="xy")

xline Draw a vertical line

Description

Adds vertical lines in the plot region.

Usage

xline(x, ...)
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Arguments
X Values on x axis specifying location of vertical lines.
Any ploting options for abline.
See Also

yline, abline
Examples

plot( 1:10)
xline( 6.5, col=2)

world( col=3)

yline( seq( -80,80,10),col=4, lty=2)
xline( seq( -180,180,10),col=4,1ty=2)
yline( @, 1lwd=2, col=4)

yline Draw horizontal lines

Description

Adds horizontal lines in the plot region.

Usage
yline(y, ...)
Arguments
y Values on y axis specifying location of vertical lines.
Any ploting options for abline.
See Also

xline, abline

Examples

world( col=3)

yline( seq( -80,80,10),col=4, 1lty=2)
xline( seq( -180,180,10),col=4,1ty=2)
yline( @, lwd=2, col=4)
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NorthAmericanRainfall, 120
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add. image, 4
bplot, 11
bplot.xy, 12
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drape.plot, 39
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fields.hints, 52
image.plot, 64
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imagePlot, 79
plot.surface, 127
pushpin, 139
quilt.plot, 147
ribbon.plot, 157
set.panel, 161

us, 211

world, 219

* manip

as.image, 6
as.surface, 8
transformx, 210

* matrix

compactToMat, 25

* misc

fields testing scripts, 48
grid list, 56

* smooth

image.smooth, 73
gsreg, 140
smooth.2d, 169
splint, 182
sreg, 184

Tps, 202

* spatial

circulantEmbedding, 14
Covariance functions, 26
cover.design, 33
Exponential, Matern, Radial Basis,
43
fields-stuff, 50
image.cov, 60
interp.surface, 90
Krig, 91
Krig.Amatrix, 99
Krig.null.function, 101
Krig.replicates, 102
KrigFindLambda, 103
mKrig, 106



224

mKrigMLE, 114
of fGridWeights, 121
plot.Krig, 125
poly.image, 128
predict.Krig, 130
predictSE, 133
predictSurface, 135
print.Krig, 138
QTps, 142
rdist, 152
rdist.earth, 155
sim.spatialProcess, 162
spam2lz, 171
spatialProcess, 173
summary .Krig, 191
surface.Krig, 193
The Engines:, 195
vgram, 212
vgram.matrix, 215
Wendland, 216

* univar
stats, 188
stats.bin, 189

%d*% (The Engines:), 195

add. image, 4, 46, 69
addColorBarTriangle (imagePlot), 79
addLegend, 149

addLegend (imagePlot), 79
addToDiagC (registeringCode), 156
arrow.plot, 5

as.image, 6, 46

as.surface, 8

average.image, 46

average.image (image2lz), 76

BD, 10

boxplotVGram (vgram), 212
bplot, 11, 214

bplot.xy, 12,214
bubblePlot, 68, 69, 84
bubblePlot (quilt.plot), 147

Chicago ozone test data, 13

Chicago03 (Chicago ozone test data), 13

circulantEmbedding, 14

circulantEmbeddingSetup
(circulantEmbedding), 14

INDEX

CO.elev (Colorado Monthly
Meteorological Data), 19

CO.elevGrid (Colorado Monthly
Meteorological Data), 19

C0.Grid (Colorado Monthly
Meteorological Data), 19

CO.id (Colorado Monthly Meteorological
Data), 19
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Meteorological Data), 19
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CO. tmax (Colorado Monthly
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CO.tmean.MAM.climate (Colorado Monthly
Meteorological Data), 19

CO.tmin (Colorado Monthly
Meteorological Data), 19

CO.years (Colorado Monthly
Meteorological Data), 19

C02, 17,47

coef.Krig (Krig), 91

color.scale, 46

color.scale (tim.colors), 199

Colorado Monthly Meteorological Data,
19

colorBar, 69

colorBar (imagePlot), 79

colorbar.plot, 23

COmonthlyMet, 47

COmonthlyMet (Colorado Monthly
Meteorological Data), 19

compactToMat, 25

compactToMatC (registeringCode), 156

confidencelntervalMLE (spatialProcess),
173

Covariance functions, 26

CovarianceUpper, 32

cover.design, 33, 46

crop.image, 46

crop.image (image2lz), 76

crossCoVGram (vgram), 212

cubic.cov (Covariance functions), 26

designer.colors, 46, 69
designer.colors (tim.colors), 199
discretize.image (grid list), 56
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dist, 154

distMatHaversin (registeringCode), 156
distMatHaversin2 (registeringCode), 156
drape.color (drape.plot), 39
drape.plot, 39, 46

envelopePlot, 42

Exp.cov, 154, 193

Exp.cov (Covariance functions), 26

Exp.image.cov (image.cov), 60

Exp.simple.cov (Covariance functions),
26

Exponential, 33

Exponential (Exponential, Matern,
Radial Basis), 43

Exponential, Matern, Radial Basis, 43

ExponentialUpper (CovarianceUpper), 32

ExponentialUpperC (registeringCode), 156

fastTps, 46

fastTps (Tps), 202

fields, 45

fields testing scripts, 48

fields-package (fields), 45

fields-stuff, 50

fields.color.picker (fields.hints), 52

fields.convert.grid (grid list), 56

fields.D (Wendland), 216

fields.derivative.poly (fields-stuff),
50

fields.duplicated.matrix
(fields-stuff), 50

fields.evlpoly (fields-stuff), 50

fields.evlpoly2 (fields-stuff), 50

fields.grid, 51

fields.hints, 52

fields.mkpoly (fields-stuff), 50

fields.pochdown (Wendland), 216

fields.pochup (Wendland), 216

fields.rdist.near, 156

fields.rdist.near (rdist), 152

fields.style (fields.hints), 52

fields.tests (fields testing scripts),
48

fields.x.to.grid (grid list), 56

fieldsPlotColors (tim.colors), 199

filled.contour, 69

fitted.Krig (Krig), 91

flame, 56
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gcv.sreg (KrigFindLambda), 103
get.rectangle (image21z), 76
getVGMean (vgram), 212

grid list, 56

grid.list, 46

grid.list (grid list), 56

half.image, 46
half.image (image2lz), 76

image, 69

image. cov, 60
image.plot, 64, 79, 149
image.smooth, 73
image2lz, 76
imagePlot, 46, 64, 69, 79
in.land.grid (world), 219
in.poly, 46

in.poly (image2lz), 76
interp.surface, 90, 123

Krig, 91, 105, 117, 195, 198, 206
Krig.Amatrix, 99

Krig.check.xY (The Engines:), 195
Krig.coef (The Engines:), 195
Krig.engine.default (The Engines:), 195
Krig.engine.fixed (The Engines:), 195
Krig.make.u (The Engines:), 195
Krig.make.W (The Engines:), 195
Krig.make.Wi (The Engines:), 195
Krig.null.function, 101
Krig.replicates, 102
Krig.transform.xY (The Engines:), 195
KrigFindLambda, 103

larry.colors (tim.colors), 199
lennon, 47, 105

make.surface.grid (grid list), 56

makeMultiIndex (grid list), 56

Matern (Exponential, Matern, Radial
Basis), 43

matern.image.cov (image.cov), 60

minitri, 106

mKrig, 46, 106, 117, 175, 206

mKrig.grid, 7110

mKrig.grid (fields.grid), 51

mKrig.trace, 116

mKrigCheckXY (mKrig), 106
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mKrigJointTemp.fn (mKrigMLE), 114
mKrigMLE, 114

mKrigMLEGrid, 46, 178

mKrigMLEGrid (mKrigMLE), 114
mKrigMLEJoint, 46, 178
mKrigMLEJoint (mKrigMLE), 114

mltdrb (registeringCode), 156
multebC (registeringCode), 156
multwendlandg (registeringCode), 156

NativeSymbolInfo, 156, 157
NorthAmericanRainfall, 47, 120

of fGridWeights, 121

optim, 115-117

ozone (Chicago ozone test data), 13
ozone2, 47, 124

parse.grid.list (grid list), 56
plot.Krig, 125, 178, 206
plot.spatialProcess (spatialProcess),
173
plot.sreg (plot.Krig), 125
plot.surface, 69, 127
plot.vgram (vgram), 212
plot.vgram.matrix (vgram.matrix), 215
poly.image, 69, 128
predict.fastTps (predict.Krig), 130
predict.Krig, 105, 130, 206
predict.mKrig, 178
predict.mKrig (mKrig), 106
predict.sreg (sreg), 184
predict.surface (predictSurface), 135
predict.Tps (predict.Krig), 130
predictDerivative.Krig (predict.Krig),
130
predictSE, 46, 133
predictSE.Krig, 206
predictSE.mKrig, 178
predictSEUsingKrigA (predictSE), 133
predictSurface, 135, 206
predictSurface.fastTps, 206
predictSurfaceSE (predictSurface), 135
print.Krig, 138
print.mKrig (mKrig), 106
print.mKrigSummary (mKrig), 106
print.spatialProcess (spatialProcess),
173

INDEX

print.spatialProcessSummary

(spatialProcess), 173
PRISMelevation, 47
PRISMelevation (RMprecip), 159
profileCI (mKrigMLE), 114
profileMLE (spatialProcess), 173
pushpin, 139

QSreg (QTps), 142
gsreg, 140
QTps, 46, 142
quilt.plot, 46, 69, 147

Rad.cov (Covariance functions), 26

Rad. image. cov (image.cov), 60

Rad.simple.cov (Covariance functions),
26

RadialBasis (Exponential, Matern,
Radial Basis), 43

rat.diet, 47, 151

RCMexample, 47, 151

rdist, 26, 152, 156

rdist.earth, 154, 155, 213

RdistC (registeringCode), 156

RdistEarth (rdist.earth), 155

registeringCode, 156

resid.Krig (Krig), 91

ribbon.plot, 157

RMelevation, 47

RMelevation (RMprecip), 159

RMprecip, 159

set.panel, 161

setup.image.smooth (image.smooth), 73

setuplLegend, 149

setupLegend (imagePlot), 79

sim.Krig (sim.spatialProcess), 162

sim.mKrig.approx (sim.spatialProcess),
162

sim.rf, 43,46

sim.rf (circulantEmbedding), 14

sim.spatialProcess, 162, 206

simLocal.mKrig (sim.spatialProcess), 162

simSpatialData (sim.spatialProcess), 162

smooth.2d, 169

snow.colors, 84

snow.colors (tim.colors), 199

spam2full (spam2lz), 171

spam2lz, 171
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spam2spind (spam21z), 171

spatialProcess, 46, 108, 173, 206

spatialProcessSetDefaults
(spatialProcess), 173

spind2full (spam2lz), 171

spind2spam (spam21z), 171

splint, 46, 182

sreg, 46, 141, 184, 206

stationary.cov, 16, 46, 117, 154, 156, 193

stationary.cov (Covariance functions),
26

stationary.image.cov, 16

stationary.image.cov (image.cov), 60

stationary. taper.cov (Covariance
functions), 26

stats, 188

stats.bin, 189

summary.Krig, 191, 206

summary .mKrig (mKrig), 106

summary . ncdf, 192

summary.spatialProcess
(spatialProcess), 173

supportsArg, 192

surface, 46

surface.Krig, 193, 206

surface.mKrig (surface.Krig), 193

test.for.zero (fields testing scripts),
48

The Engines:, 195

tim.colors, 69, 199

topo.colors, 84

Tps, 46, 105, 178, 198, 202

transformx, 210

two.colors (tim.colors), 199

unrollZGrid (grid list), 56
us, 46, 211
US.dat, 212

vgram, 46,212, 216
vgram.matrix, 46, 214, 215

Wendland, 216

wendland.cov (Covariance functions), 26
wendland.eval (Wendland), 216

wendland. image.cov (image.cov), 60
Wendland2.2 (Wendland), 216
which.max.image (image2lz), 76

227

which.max.matrix (image2lz), 76
world, 46, 219
WorldBankC02, 47, 220

xline, 221

yline, 222
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