Package ‘filesstrings’

April 18, 2021
Type Package
Title Handy File and String Manipulation
Version 3.2.2
Maintainer Rory Nolan <rorynoolan@gmail.com>

Description This started out as a package for file and string
manipulation. Since then, the 'fs" and 'strex' packages emerged,
offering functionality previously given by this package (but it's done
better in these new ones). Those packages have hence almost pushed
'filesstrings' into extinction. However, it still has a small number
of unique, handy file manipulation functions which can be seen in the
vignette. One example is a function to remove spaces from all file
names in a directory.

License GPL-3
URL https://github.com/rorynolan/filesstrings

BugReports https://github.com/rorynolan/filesstrings/issues
Depends R (>= 3.5), stringr (>= 1.4)

Imports checkmate (>= 1.9.3), magrittr (>= 1.5), purrr (>= 0.3.0),
rlang (>= 0.3.3), strex (>= 1.4.1), stringi (>= 1.4.6), withr
(>=2.1.0)

Suggests covr, dplyr, knitr, rmarkdown, spelling, testthat (>= 2.1)
VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.1.1

NeedsCompilation no

Author Rory Nolan [aut, cre, cph] (<https://orcid.org/0000-0002-5239-4043>),
Sergi Padilla-Parra [ths] (<https://orcid.org/0000-0002-8010-9481>)

Repository CRAN
Date/Publication 2021-04-18 07:00:02 UTC

https://github.com/rorynolan/filesstrings
https://github.com/rorynolan/filesstrings/issues

2 all_equal

R topics documented:
all_equal e 2
before_last_dot 4
can_be_numeric L. e e e e e e e e e e 4
create_dir L. e e e e e e e e 5
CUITENCY .+ . v v v v e e e e et e e e e e e e e e e e e e e e 5
extend_char_vec e e 6
EXIract_ NON_NUIMETICS v v v v v e e e e e e e e e e e e e e e e 7
eXtract_nNumMDbETS e e e e e e e e e 9
filesStrings e 11
GIVE_EXE . . . o o e e e e e e 12
group_close e 12
locate_braces e 13
match_arg e e 13
move_flles e 14
nice_file nUMS e e 15
NICE_NUIMS .+ v v v v v o e e e e e e e e e e e e e e 16
nth_number_after mth e 16
nth_number_before_mth 22
PULIN_POS . . o o v o e e e e e e e e e e e e e e 27
remove_dir e e e 28
remove_filename_spaces e e e e 28
remove_quoted L e e e e e e e 29
rename_with_nums e 29
SINleize e e e e 30
str_after_nth L e e e 31
str_before_nth 31
strelem L e e e e 32
Str_elems e e 33
str_locate_nth e 33
str_paste_elems e e e e 34
str_split_by_nums e e 34
str_split_camel_case 36
SIE L0 _VEC . . o o v v e e e e e e e s 36
trim_anything e 37
unitize_dirs 37

Index 39

all_equal An alternative version of base::all.equal().

all_equal 3

Description

This function will return TRUE whenever base: :all.equal () would return TRUE, however it will
also return TRUE in some other cases:
 If ais given and b is not, TRUE will be returned if all of the elements of a are the same.

 If aisascalar and b is a vector or array, TRUE will be returned if every element in b is equal to
a.

» If a is a vector or array and b is a scalar, TRUE will be returned if every element in a is equal
to b.

This function ignores names and attributes (except for dim).

When this function does not return TRUE, it returns FALSE (unless it errors). This is unlike base: :all.equal().

Usage

all_equal(a, b = NULL)

Arguments

a A vector, array or list.

b Either NULL or a vector, array or list of length either 1 or length(a).
Value

TRUE if "equality of all" is satisfied (as detailed in "Description’ above) and FALSE otherwise.

Note

* This behaviour is totally different from base: :all.equal().

e There’s also dplyr::all_equal(), which is different again. To avoid confusion, always use
the full filesstrings::all_equal() and never library(filesstrings) followed by just
all_equal().

Examples

all_equal(l, rep(1, 3))

all_equal(2, 1:3)

all_equal(1:4, 1:4)

all_equal(1:4, c(1, 2, 3, 3))

all_equal(rep(1, 10))

all_equal(c(1, 88))

all_equal(1:2)

all_equal(list(1:2))

all_equal(1:4, matrix(1:4, nrow = 2)) # note that this gives TRUE

can_be numeric

before_last_dot Get the part of a string before the last period.

Description

See strex: :str_before_last_dot().

Usage

before_last_dot(string)

str_before_last_dot(string)

Arguments
string A character vector.
can_be_numeric Check if a string could be considered as numeric.
Description

See strex: :str_can_be_numeric().

Usage

can_be_numeric(string)

str_can_be_numeric(string)

Arguments

string A character vector.

create_dir 5

create_dir Create directories if they don’t already exist

Description

Given the names of (potential) directories, create the ones that do not already exist.

Usage

create_dir(...)

Arguments

The names of the directories, specified via relative or absolute paths. Duplicates
are ignored.

Value

Invisibly, a vector with a TRUE for each time a directory was actually created and a FALSE otherwise.
This vector is named with the paths of the directories that were passed to the function.

Examples
Not run:
create_dir(c("mydir", "yourdir”))
remove_dir(c("mydir”, "yourdir"))

End(Not run)

currency Get the currencies of numbers within a string.

Description

See strex: :str_extract_currencies().

Usage

str_extract_currencies(string)
extract_currencies(string)
str_nth_currency(string, n)

nth_currency(string, n)

6 extend _char vec

str_first_currency(string)
first_currency(string)
str_last_currency(string)

last_currency(string)

Arguments
string A character vector.
n A vector of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while n=1 and
n = 2 correspond to first and second, n = -1 and n = -2 correspond to last and
second-last. n = @ will return NA.
extend_char_vec Pad a character vector with empty strings.
Description

Extend a character vector by appending empty strings at the end.

Usage

extend_char_vec(char_vec, extend_by = NA, length_out = NA)

str_extend_char_vec(char_vec, extend_by = NA, length_out = NA)

Arguments
char_vec A character vector. The thing you wish to expand.
extend_by A non-negative integer. By how much do you wish to extend the vector?
length_out A positive integer. How long do you want the output vector to be?
Value

A character vector.

Examples

extend_char_vec(1:5, extend_by = 2)
extend_char_vec(c("a", "b"), length_out = 10)

extract_non_numerics

extract_non_numerics Extract non-numbers from a string.

Description

See strex: :str_extract_non_numerics()

Usage

extract_non_numerics(
string,
decimals = FALSE,
leading_decimals = decimals,

negs = FALSE,
sci = FALSE,
commas = FALSE

str_extract_non_numerics(
string,
decimals = FALSE,
leading_decimals = decimals,

negs = FALSE,

sci = FALSE,

commas = FALSE
)
nth_non_numeric(

string,

n)

decimals = FALSE,
leading_decimals = decimals,

negs = FALSE,
sci = FALSE,
commas = FALSE
)
str_nth_non_numeric(
string,
n,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE

first_non_numeric(
string,
decimals = FALSE,

leading_decimals = decimals,

negs = FALSE,
sci = FALSE,
commas = FALSE

)

str_first_non_numeric(
string,
decimals = FALSE,

leading_decimals = decimals,

negs = FALSE,
sci = FALSE,
commas = FALSE

)

last_non_numeric(
string,
decimals = FALSE,

leading_decimals = decimals,

negs = FALSE,
sci = FALSE,
commas = FALSE

)

str_last_non_numeric(
string,
decimals = FALSE,

leading_decimals = decimals,

extract_non_numerics

negs = FALSE,
sci = FALSE,
commas = FALSE

)

Arguments
string A string.
decimals Do you want to include the possibility of decimal numbers (TRUE) or not (FALSE,
the default).

leading_decimals

Do you want to allow a leading decimal point to be the start of a number?

negs Do you want to allow negative numbers? Note that double negatives are not
handled here (see the examples).

sci Make the search aware of scientific notation e.g. 2e3 is the same as 2000.

commas Allow comma separators in numbers (i.e. interpret 1,100 as a single number

(one thousand one hundred) rather than two numbers (one and one hundred)).

extract_numbers

A vector of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while n=1 and
n = 2 correspond to first and second, n = -1 and n = -2 correspond to last and
second-last. n = @ will return NA.

extract_numbers

Extract numbers from a string.

Description

See strex: :str_extract_numbers().

Usage

extract_numbers(

string,

decimals = FALSE,
leading_decimals = decimals,

negs = FALSE,
sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

)

str_extract_numbers(

string,

decimals = FALSE,
leading_decimals = decimals,

negs = FALSE,
sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

)

nth_number (
string,
n,

decimals = FALSE,
leading_decimals = decimals,

negs = FALSE,
sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

)

str_nth_number(
string,

10

n,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

first_number(
string,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

str_first_number(
string,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

last_number(
string,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

str_last_number(
string,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

extract_numbers

filesstrings 11

Arguments
string A string.
decimals Do you want to include the possibility of decimal numbers (TRUE) or not (FALSE,

the default).

leading_decimals
Do you want to allow a leading decimal point to be the start of a number?

negs Do you want to allow negative numbers? Note that double negatives are not
handled here (see the examples).

sci Make the search aware of scientific notation e.g. 2e3 is the same as 2000.

commas Allow comma separators in numbers (i.e. interpret 1,100 as a single number
(one thousand one hundred) rather than two numbers (one and one hundred)).

leave_as_string

Do you want to return the number as a string (TRUE) or as numeric (FALSE, the
default)?

n A vector of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while n=1 and
n = 2 correspond to first and second, n = -1 and n = -2 correspond to last and
second-last. n = @ will return NA.

filesstrings filesstrings: handy file and string manipulation

Description

This started out as a package for file and string manipulation. Since then, the f's file manipula-
tion package and the strex string manipulation package emerged, offering functionality previously
given by this package (but slightly better). Those packages have hence almost pushed ’filesstrings’
into extinction. However, it still has a small number of unique, handy file manipulation functions
which can be seen in the vignette.. One example is a function to remove spaces from all file names
in a directory.

References

Rory Nolan and Sergi Padilla-Parra (2017). filesstrings: An R package for file and string manipula-
tion. The Journal of Open Source Software, 2(14). doi: 10.21105/j0ss.00260.

https://cran.r-project.org/package=filesstrings/vignettes/files.html
https://doi.org/10.21105/joss.00260

12 group_close

give_ext Ensure a file name has the intended extension.

Description

See strex::str_give_ext().

Usage

give_ext(string, ext, replace = FALSE)

str_give_ext(string, ext, replace = FALSE)

Arguments
string The intended file name.
ext The intended file extension (with or without the ".").
replace If the file has an extension already, replace it (or append the new extension
name)?
group_close Group together close adjacent elements of a vector.
Description

Given a strictly increasing vector (each element is bigger than the last), group together stretches
of the vector where adjacent elements are separated by at most some specified distance. Hence,
each element in each group has at least one other element in that group that is close to it. See the
examples.

Usage

group_close(vec_ascending, max_gap = 1)

Arguments

vec_ascending A strictly increasing numeric vector.

max_gap The biggest allowable gap between adjacent elements for them to be considered
part of the same group.

Value

A where each element is one group, as a numeric vector.

locate_braces

Examples

group_close(1:10, 1)
group_close(1:10, 0.5)
group_close(c(1, 2, 4, 10, 11, 14, 20, 25, 27), 3)

locate_braces Locate the braces in a string

Description

See strex::str_locate_braces().

Usage

locate_braces(string)

str_locate_braces(string)

Arguments
string A character vector
match_arg Argument Matching
Description

See strex: :match_arg().

Usage

match_arg(
arg,
choices = NULL,
index = FALSE,
several_ok = FALSE,
ignore_case = FALSE

str_match_arg(
arg,
choices = NULL,
index = FALSE,
several_ok = FALSE,
ignore_case = FALSE

14 move_files

Arguments
arg A character vector (of length one unless several_ok = TRUE).
choices A character vector of candidate values.
index Return the index of the match rather than the match itself?
several_ok Allow arg to have length greater than one to match several arguments at once?
ignore_case Ignore case while matching. If this is TRUE, the returned value is the matched
element of choices (with its original casing).
move_files Move files around.
Description

Move specified files into specified directories

Usage

move_files(files, destinations, overwrite = FALSE)

file.move(files, destinations, overwrite = FALSE)

Arguments

files A character vector of files to move (relative or absolute paths).
destinations A character vector of the destination directories into which to move the files.

overwrite Allow overwriting of files? Default no.

Details

If there are n files, there must be either 1 or n directories. If there is one directory, then all n files
are moved there. If there are n directories, then each file is put into its respective directory. This
function also works to move directories.

If you try to move files to a directory that doesn’t exist, the directory is first created and then the
files are put inside.
Value

Invisibly, a logical vector with a TRUE for each time the operation succeeded and a FALSE for every
fail.

nice_file_nums 15

Examples

Not run:

dir.create("dir")

files <- c("1litres_1.txt", "1litres_30.txt", "3litres_5.txt")
file.create(files)

file.move(files, "dir")

End(Not run)

nice_file_nums Make file numbers comply with alphabetical order

Description

If files are numbered, their numbers may not comply with alphabetical order, i.e. "file2.ext" comes
after "file10.ext" in alphabetical order. This function renames the files in the specified directory
such that they comply with alphabetical order, so here "file2.ext" would be renamed to "file02.ext".

Usage
nice_file_nums(dir = ".", pattern = NA)
Arguments
dir Path (relative or absolute) to the directory in which to do the renaming (default
is current working directory).
pattern A regular expression. If specified, files to be renamed are restricted to ones
matching this pattern (in their name).
Details

It works on file names with more than one number in them e.g. "fileOlpart3.ext" (a file with 2
numbers). All the file names that it works on must have the same number of numbers, and the
non-number bits must be the same. One can limit the renaming to files matching a certain pattern.
This function wraps nice_nums(), which does the string operations, but not the renaming. To see
examples of how this function works, see the examples in that function’s documentation.

Value

A logical vector with a TRUE for each successful rename (should be all TRUEs) and a FALSE other-
wise.

16 nth_number_after_mth

Examples

Not run:

dir.create(”"NiceFileNums_test")

setwd("”"NiceFileNums_test")

files <- c("1litres_1.txt", "1litres_30.txt", "3litres_5.txt")
file.create(files)

nice_file_nums()

nice_file_nums(pattern = "\\.txt$")

setwd(”..")

dir.remove("NiceFileNums_test")

End(Not run)

nice_nums Make string numbers comply with alphabetical order

Description

See strex: :str_alphord_nums().

Usage

nice_nums(string)
str_nice_nums(string)
str_alphord_nums(string)

alphord_nums(string)

Arguments

string A character vector.

nth_number_after_mth Find the nth number after the mth occurrence of a pattern.

Description

See strex: :str_nth_number_after_mth().

nth_number_after_mth

Usage

nth_number_after_mth(

)

string,

pattern,

n,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_nth_number_after_mth(

)

string,

pattern,

n,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

nth_number_after_first(

)

string,

pattern,

n,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

nth_number_after_last(

string,

pattern,

n,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,

17

18

)

leave_as_string = FALSE

first_number_after_mth(

)

string,

pattern,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

last_number_after_mth(

)

string,

pattern,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

first_number_after_first(

)

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

first_number_after_last(

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

nth_number_after_mth

nth_number_after_mth

last_number_after_first(
string,
pattern,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

last_number_after_last(
string,
pattern,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

str_nth_number_after_first(
string,
pattern,
n,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

str_nth_number_after_last(
string,
pattern,
n,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE
)

str_first_number_after_mth(

20

)

string,

pattern,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_last_number_after_mth(

)

string,

pattern,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_first_number_after_first(

)

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_first_number_after_last(

)

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_last_number_after_first(

string,
pattern,

nth_number_after_mth

nth_number_after_mth 21

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

str_last_number_after_last(
string,
pattern,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)
Arguments

string A character vector.

pattern The pattern to look for.

The default interpretation is a regular expression, as described in stringi::about_search_regex.
To match a without regular expression (i.e. as a human would), use coll(). For
details see stringr: :regex().

n Vectors of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while 1 and 2
correspond to first and second, -1 and -2 correspond to last and second-last. @
will return NA.

m Vectors of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while 1 and 2
correspond to first and second, -1 and -2 correspond to last and second-last. @
will return NA.

decimals Do you want to include the possibility of decimal numbers (TRUE) or not (FALSE,

the default).
leading_decimals
Do you want to allow a leading decimal point to be the start of a number?

negs Do you want to allow negative numbers? Note that double negatives are not
handled here (see the examples).

sci Make the search aware of scientific notation e.g. 2e3 is the same as 2000.

commas Allow comma separators in numbers (i.e. interpret 1,100 as a single number

(one thousand one hundred) rather than two numbers (one and one hundred)).
leave_as_string

Do you want to return the number as a string (TRUE) or as numeric (FALSE, the
default)?

22

nth_number_before_mth

nth_number_before_mth Find the nth number before the mth occurrence of a pattern.

Description

See strex: :str_nth_number_before_mth().

Usage

nth_number_before_mth(

)

string,

pattern,

n,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_nth_number_before_mth(

)

string,

pattern,

n,

m7

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

nth_number_before_first(

string,

pattern,

n,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

nth_number_before_mth

nth_number_before_last(
string,
pattern,
n,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE
)

first_number_before_mth(
string,
pattern,
m,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE
)

last_number_before_mth(
string,
pattern,
m,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE
)

first_number_before_first(
string,
pattern,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

first_number_before_last(

24

)

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

last_number_before_first(

)

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

last_number_before_last(

)

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_nth_number_before_first(

)

string,

pattern,

n,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_nth_number_before_last(

string,
pattern,
n,

nth_number_before_mth

nth_number_before_mth

)

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_first_number_before_mth(

)

string,

pattern,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_last_number_before_mth(

)

string,

pattern,

m,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_first_number_before_first(

)

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

str_first_number_before_last(

string,

pattern,

decimals = FALSE,
leading_decimals = decimals,

25

26 nth_number_before_mth

negs = FALSE,

sci = FALSE,

commas = FALSE,
leave_as_string = FALSE

)

str_last_number_before_first(
string,
pattern,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)

str_last_number_before_last(
string,
pattern,
decimals = FALSE,
leading_decimals = decimals,
negs = FALSE,
sci = FALSE,
commas = FALSE,
leave_as_string = FALSE

)
Arguments

string A character vector.

pattern The pattern to look for.

The default interpretation is a regular expression, as described in stringi::about_search_regex.
To match a without regular expression (i.e. as a human would), use coll(). For
details see stringr: :regex().

n Vectors of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while 1 and 2
correspond to first and second, -1 and -2 correspond to last and second-last. @
will return NA.

m Vectors of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while 1 and 2
correspond to first and second, -1 and -2 correspond to last and second-last. @
will return NA.

decimals Do you want to include the possibility of decimal numbers (TRUE) or not (FALSE,

the default).
leading_decimals
Do you want to allow a leading decimal point to be the start of a number?

put_in_pos 27

negs Do you want to allow negative numbers? Note that double negatives are not
handled here (see the examples).

sci Make the search aware of scientific notation e.g. 2e3 is the same as 2000.

commas Allow comma separators in numbers (i.e. interpret 1,100 as a single number

(one thousand one hundred) rather than two numbers (one and one hundred)).
leave_as_string

Do you want to return the number as a string (TRUE) or as numeric (FALSE, the
default)?

put_in_pos Put specified strings in specified positions in an otherwise empty char-
acter vector.

Description

Create a character vector with a set of strings at specified positions in that character vector, with the
rest of it taken up by empty strings.

Usage

put_in_pos(strings, positions)

str_put_in_pos(strings, positions)

Arguments
strings A character vector of the strings to put in positions (coerced by as.character if
not character already).
positions The indices of the character vector to be occupied by the elements of strings.
Must be the same length as strings or of length 1.
Value

A character vector.

Examples

put_in_pos(1:3, c(1, 8, 9))
put_in_pos(c("Apple”, "Orange"”, "County"), c(5, 7, 8))
put_in_pos(1:2, 5)

28 remove_filename_spaces

remove_dir Remove directories

Description

Delete directories and all of their contents.

Usage

remove_dir(...)

dir.remove(...)

Arguments

The names of the directories, specified via relative or absolute paths.

Value

Invisibly, a logical vector with TRUE for each success and FALSE for failures.

Examples

Not run:
sapply(c("mydir1”, "mydir2"), dir.create)
remove_dir(c("mydir1”, "mydir2"))

End(Not run)

remove_filename_spaces
Remove spaces in file names

Description

Remove spaces in file names in a specified directory, replacing them with whatever you want,

default nothing.
Usage
remove_filename_spaces(dir = ".", pattern = "", replacement = "")
Arguments
dir The directory in which to perform the operation.
pattern A regular expression. If specified, only files matching this pattern will be treated.
replacement What do you want to replace the spaces with? This defaults to nothing, another

sensible choice would be an underscore.

remove_quoted 29

Value

A logical vector indicating which operation succeeded for each of the files attempted. Using a
missing value for a file or path name will always be regarded as a failure.

Examples

Not run:

dir.create("RemoveFileNameSpaces_test")
setwd("RemoveFileNameSpaces_test")

files <- c("1litres 1.txt", "1litres 30.txt", "3litres 5.txt")
file.create(files)

remove_filename_spaces()

list.files()

setwd(”..")

dir.remove("RemoveFileNameSpaces_test")

End(Not run)

remove_quoted Remove the quoted parts of a string.

Description

See strex: :str_remove_quoted().

Usage

remove_quoted(string)

str_remove_quoted(string)

Arguments
string A character vector.
rename_with_nums Replace file names with numbers
Description

Rename the files in the directory, replacing file names with numbers only.

Usage

rename_with_nums(dir = ".", pattern = NULL)

30 singleize

Arguments
dir The directory in which to rename the files (relative or absolute path). Defaults
to current working directory.
pattern A regular expression. If specified, only files with names matching this pattern
will be treated.
Value

A logical vector with a TRUE for each successful renaming and a FALSE otherwise.

Examples

Not run:

dir.create("RenameWithNums_test")

setwd("”"RenameWithNums_test")

files <- c("1litres 1.txt", "1litres 30.txt", "3litres 5.txt")
file.create(files)

rename_with_nums()

list.files()

setwd(”..")

dir.remove("RenameWithNums_test")

End(Not run)

singleize Remove back-to-back duplicates of a pattern in a string.

Description

See strex: :str_singleize().

Usage

singleize(string, pattern)

str_singleize(string, pattern)

Arguments
string A character vector.
pattern The pattern to look for.

The default interpretation is a regular expression, as described in stringi::about_search_regex.

To match a without regular expression (i.e. as a human would), use coll(). For
details see stringr: :regex().

str_after_nth

31

str_after_nth

Text after the nth occurrence of pattern.

Description

See strex::str_after_nth().

Usage

str_after_nth(string, pattern, n)

after_nth(string, pattern, n)

str_after_first(string, pattern)

after_first(string, pattern)

str_after_last(string, pattern)

after_last(string, pattern)

Arguments

string

pattern

A character vector.

The pattern to look for.
The default interpretation is a regular expression, as described in stringi::about_search_regex.

To match a without regular expression (i.e. as a human would), use coll(). For
details see stringr: :regex().

A vector of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while n=1 and
n = 2 correspond to first and second, n = -1 and n = -2 correspond to last and
second-last. n = @ will return NA.

str_before_nth

Text before the nth occurrence of pattern.

Description

See strex: :str_before_nth().

32 str_elem
Usage

str_before_nth(string, pattern, n)

before_nth(string, pattern, n)

str_before_first(string, pattern)

before_first(string, pattern)

str_before_last(string, pattern)

before_last(string, pattern)

Arguments
string A character vector.
pattern The pattern to look for.
The default interpretation is a regular expression, as described in stringi::about_search_regex.
To match a without regular expression (i.e. as a human would), use coll(). For
details see stringr: :regex().
n A vector of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while n=1 and
n = 2 correspond to first and second, n = -1 and n = -2 correspond to last and
second-last. n = @ will return NA.
str_elem Extract a single character from a string, using its index.
Description

See strex: :str_elem().
Usage

str_elem(string, index)

elem(string, index)

Arguments

string A character vector.

index An integer. Negative indexing is allowed as in stringr::str_sub().

str_elems 33

str_elems Extract several single elements from a string.

Description

See strex::str_elems().

Usage

str_elems(string, indices, byrow = TRUE)

elems(string, indices, byrow = TRUE)

Arguments
string A character vector.
indices A vector of integerish values. Negative indexing is allowed as in stringr: :str_sub().
byrow Should the elements be organised in the matrix with one row per string (byrow
= TRUE, the default) or one column per string (byrow = FALSE). See examples if
you don’t understand.
str_locate_nth Get the indices of the nth instance of a pattern.
Description

See strex::str_locate_nth().

Usage

str_locate_nth(string, pattern, n)
locate_nth(string, pattern, n)
str_locate_first(string, pattern)
locate_first(string, pattern)
str_locate_last(string, pattern)

locate_last(string, pattern)

34 str_split_by_nums

Arguments
string A character vector.
pattern The pattern to look for.
The default interpretation is a regular expression, as described in stringi::about_search_regex.
To match a without regular expression (i.e. as a human would), use coll(). For
details see stringr: :regex().
n A vector of integerish values. Must be either length 1 or have length equal to
the length of string. Negative indices count from the back: while n=1 and
n = 2 correspond to first and second, n = -1 and n = -2 correspond to last and
second-last. n = @ will return NA.
str_paste_elems Extract bits of a string and paste them together.
Description

See strex::str_paste_elems().

Usage
str_paste_elems(string, indices, sep = "")
paste_elems(string, indices, sep = "")
Arguments
string A character vector.
indices A vector of integerish values. Negative indexing is allowed asin stringr: :str_sub().
sep A string. The separator for pasting string elements together.
str_split_by_nums Split a string by its numeric characters.
Description

See strex::str_split_by_numbers().

str_split_by_nums

Usage

str_split_by_nums(
string,
decimals = FALSE,
leading_decimals =
negs = FALSE,
sci = FALSE,
commas = FALSE

)

split_by_nums(
string,
decimals = FALSE,
leading_decimals =
negs = FALSE,
sci = FALSE,
commas = FALSE

)

split_by_numbers(
string,
decimals = FALSE,
leading_decimals =
negs = FALSE,
sci = FALSE,
commas = FALSE

)

str_split_by_numbers(
string,
decimals = FALSE,
leading_decimals =
negs = FALSE,
sci = FALSE,
commas = FALSE

Arguments

FALSE,

FALSE,

FALSE,

FALSE,

string A string.

35

decimals Do you want to include the possibility of decimal numbers (TRUE) or not (FALSE,
the default).

leading_decimals

Do you want to allow a leading decimal point to be the start of a number?

negs Do you want to allow negative numbers? Note that double negatives are not

handled here (see the examples).

sci Make the search aware of scientific notation e.g. 2e3 is the same as 2000.

36 str_to_vec

commas Allow comma separators in numbers (i.e. interpret 1,100 as a single number
(one thousand one hundred) rather than two numbers (one and one hundred)).

str_split_camel_case Split a string based on CamelCase

Description

See strex::str_split_camel_case().

Usage

str_split_camel_case(string, lower = FALSE)

split_camel_case(string, lower = FALSE)

Arguments
string A character vector.
lower Do you want the output to be all lower case (or as is)?
str_to_vec Convert a string to a vector of characters
Description

See strex::str_to_vec().

Usage

str_to_vec(string)

to_vec(string)

Arguments

string A character vector.

trim_anything 37

trim_anything Trim something other than whitespace

Description

See strex::str_trim_anything().

Usage

trim_anything(string, pattern, side = "both")

str_trim_anything(string, pattern, side = "both")

Arguments
string A character vector.
pattern The pattern to look for.
The default interpretation is a regular expression, as described in stringi::about_search_regex.
To match a without regular expression (i.e. as a human would), use coll(). For
details see stringr::regex().
side Which side do you want to trim from? "both” is the default, but you can also
have just either "left” or "right” (or optionally the shortened "b", "1" and
n r Il).
unitize_dirs Put files with the same unit measurements into directories
Description

Say you have a number of files with "5min" in their names, number with "10min" in the names, a
number with "15min" in their names and so on, and you’d like to put them into directories named
"Smin", "10min", "15min" and so on. This function does this, but not just for the unit "min", for

any unit.
Usage
unitize_dirs(unit, pattern = NULL, dir = ".")
Arguments
unit The unit upon which to base the categorizing.
pattern If set, only files with names matching this pattern will be treated.

dir In which directory do you want to perform this action (defaults to current)?

38 unitize_dirs

Details

This function takes the number to be the last number (as defined in nth_number ()) before the first
occurrence of the unit name. There is the option to only treat files matching a certain pattern.

Value

Invisibly TRUE if the operation is successful, if not there will be an error.

Examples

Not run:

dir.create("UnitDirs_test")

setwd("UnitDirs_test")

files <- c("1litres_1.txt", "1litres_3.txt", "3litres.txt”, "5litres_1.txt")
file.create(files)

unitize_dirs("litres”, "\\.txt")

setwd(”..")

dir.remove("UnitDirs_test")

End(Not run)

Index

after_first (str_after_nth), 31
after_last (str_after_nth), 31
after_nth (str_after_nth), 31
all_equal, 2

alphord_nums (nice_nums), 16
as.character, 27

base::all.equal(), 2, 3
before_first (str_before_nth), 31
before_last (str_before_nth), 31
before_last_dot, 4

before_nth (str_before_nth), 31

can_be_numeric, 4
coll(), 21, 26, 30-32, 34, 37
create_dir, 5

currency, 5

dir.remove (remove_dir), 28
dplyr::all_equal(), 3

elem (str_elem), 32

elems (str_elems), 33
extend_char_vec, 6
extract_currencies (currency), 5
extract_non_numerics, 7
extract_numbers, 9

file.move (move_files), 14
filesstrings, 11

filesstrings-package (filesstrings), 11

first_currency (currency), 5
first_non_numeric
(extract_non_numerics), 7
first_number (extract_numbers), 9
first_number_after_first
(nth_number_after_mth), 16
first_number_after_last
(nth_number_after_mth), 16
first_number_after_mth
(nth_number_after_mth), 16

39

first_number_before_first
(nth_number_before_mth), 22

first_number_before_last
(nth_number_before_mth), 22

first_number_before_mth
(nth_number_before_mth), 22

give_ext, 12
group_close, 12

last_currency (currency), 5
last_non_numeric
(extract_non_numerics), 7
last_number (extract_numbers), 9
last_number_after_first
(nth_number_after_mth), 16
last_number_after_last
(nth_number_after_mth), 16
last_number_after_mth
(nth_number_after_mth), 16
last_number_before_first
(nth_number_before_mth), 22
last_number_before_last
(nth_number_before_mth), 22
last_number_before_mth
(nth_number_before_mth), 22
locate_braces, 13
locate_first (str_locate_nth), 33
locate_last (str_locate_nth), 33
locate_nth (str_locate_nth), 33

match_arg, 13
move_files, 14

nice_file_nums, 15
nice_nums, 16
nice_nums(), 15
nth_currency (currency), 5

nth_non_numeric (extract_non_numerics),

7

40

nth_number (extract_numbers), 9
nth_number (), 38
nth_number_after_first
(nth_number_after_mth), 16
nth_number_after_last
(nth_number_after_mth), 16
nth_number_after_mth, 16
nth_number_before_first
(nth_number_before_mth), 22
nth_number_before_last
(nth_number_before_mth), 22
nth_number_before_mth, 22

paste_elems (str_paste_elems), 34
put_in_pos, 27

remove_dir, 28
remove_filename_spaces, 28
remove_quoted, 29
rename_with_nums, 29

singleize, 30
split_by_numbers (str_split_by_nums), 34
split_by_nums (str_split_by_nums), 34
split_camel_case
(str_split_camel_case), 36
str_after_first (str_after_nth), 31
str_after_last (str_after_nth), 31
str_after_nth, 31
str_alphord_nums (nice_nums), 16
str_before_first (str_before_nth), 31
str_before_last (str_before_nth), 31
str_before_last_dot (before_last_dot), 4
str_before_nth, 31
str_can_be_numeric (can_be_numeric), 4
str_elem, 32
str_elems, 33
str_extend_char_vec (extend_char_vec), 6
str_extract_currencies (currency), 5
str_extract_non_numerics
(extract_non_numerics), 7
str_extract_numbers (extract_numbers), 9
str_first_currency (currency), 5
str_first_non_numeric
(extract_non_numerics), 7
str_first_number (extract_numbers), 9
str_first_number_after_first
(nth_number_after_mth), 16

INDEX

str_first_number_after_last
(nth_number_after_mth), 16
str_first_number_after_mth
(nth_number_after_mth), 16
str_first_number_before_first
(nth_number_before_mth), 22
str_first_number_before_last
(nth_number_before_mth), 22
str_first_number_before_mth
(nth_number_before_mth), 22
str_give_ext (give_ext), 12
str_last_currency (currency), 5
str_last_non_numeric
(extract_non_numerics), 7
str_last_number (extract_numbers), 9
str_last_number_after_first
(nth_number_after_mth), 16
str_last_number_after_last
(nth_number_after_mth), 16
str_last_number_after_mth
(nth_number_after_mth), 16
str_last_number_before_first
(nth_number_before_mth), 22
str_last_number_before_last
(nth_number_before_mth), 22
str_last_number_before_mth
(nth_number_before_mth), 22
str_locate_braces (locate_braces), 13
str_locate_first (str_locate_nth), 33
str_locate_last (str_locate_nth), 33
str_locate_nth, 33
str_match_arg (match_arg), 13
str_nice_nums (nice_nums), 16
str_nth_currency (currency), 5
str_nth_non_numeric
(extract_non_numerics), 7
str_nth_number (extract_numbers), 9
str_nth_number_after_first
(nth_number_after_mth), 16
str_nth_number_after_last
(nth_number_after_mth), 16
str_nth_number_after_mth
(nth_number_after_mth), 16
str_nth_number_before_first
(nth_number_before_mth), 22
str_nth_number_before_last
(nth_number_before_mth), 22
str_nth_number_before_mth

INDEX

(nth_number_before_mth), 22
str_paste_elems, 34
str_put_in_pos (put_in_pos), 27
str_remove_quoted (remove_quoted), 29
str_singleize (singleize), 30
str_split_by_numbers
(str_split_by_nums), 34
str_split_by_nums, 34
str_split_camel_case, 36
str_to_vec, 36
str_trim_anything (trim_anything), 37
strex::match_arg(), 13
strex::str_after_nth(), 31/
strex: :str_alphord_nums(), 16
strex: :str_before_last_dot(), 4
strex::str_before_nth(), 3/
strex: :str_can_be_numeric(), 4
strex::str_elem(), 32
strex::str_elems(), 33
strex: :str_extract_currencies(), 5
strex: :str_extract_non_numerics(), 7
strex: :str_extract_numbers(), 9
strex::str_give_ext(), 12
strex::str_locate_braces(), 13
strex: :str_locate_nth(), 33
strex::str_nth_number_after_mth(), 16
strex: :str_nth_number_before_mth(), 22
strex: :str_paste_elems(), 34
strex: :str_remove_quoted(), 29
strex: :str_singleize(), 30
strex::str_split_by_numbers(), 34
strex::str_split_camel_case(), 36
strex::str_to_vec(), 36
strex::str_trim_anything(), 37
stringi::about_search_regex, 21, 26,
30-32, 34, 37
stringr::regex(), 21, 26, 30-32, 34, 37
stringr::str_sub(), 32-34

to_vec (str_to_vec), 36
trim_anything, 37

unitize_dirs, 37

41

	all_equal
	before_last_dot
	can_be_numeric
	create_dir
	currency
	extend_char_vec
	extract_non_numerics
	extract_numbers
	filesstrings
	give_ext
	group_close
	locate_braces
	match_arg
	move_files
	nice_file_nums
	nice_nums
	nth_number_after_mth
	nth_number_before_mth
	put_in_pos
	remove_dir
	remove_filename_spaces
	remove_quoted
	rename_with_nums
	singleize
	str_after_nth
	str_before_nth
	str_elem
	str_elems
	str_locate_nth
	str_paste_elems
	str_split_by_nums
	str_split_camel_case
	str_to_vec
	trim_anything
	unitize_dirs
	Index

