Package 'fixedincome'

March 17, 2022

Title Fixed Income Models, Calculations, Data Structures and Instruments

Version 0.0.1

Depends R (>= 3.4.0)

License MIT + file LICENSE

Description Fixed income mathematics made easy. A rich set of functions that helps with calculations of interest rates and fixed income.

It has objects that abstract interest rates, compounding factors, day count rules,

forward rates and term structure of interest rates.

Many interpolation methods and parametric curve models commonly used by practitioners are implemented.

URL https://github.com/wilsonfreitas/R-fixedincome

BugReports https://github.com/wilsonfreitas/R-fixedincome/issues

Imports bizdays (>= 1.0.0), methods, graphics, stats, grDevices, utils

Suggests testthat (>= 3.0.0)

Collate ``fixedincome-internal.R" ``utils.R" ``term-class.R"

``daycount-class.R" ``compounding-class.R"

``interpolation-class.R" ``spotrate-class.R"

``spotratecurve-class.R" ``spotratecurve-interpolation.R"

``forwardrate-class.R" ``compound-method.R" ``hidden.R" ``zzz.R"

RoxygenNote 7.1.2

Encoding UTF-8

LazyData true

Config/testthat/edition 3

NeedsCompilation no

Author Wilson Freitas [aut, cre]

Maintainer Wilson Freitas <wilson.freitas@gmail.com>

Repository CRAN

Date/Publication 2022-03-17 20:20:02 UTC

R topics documented:

fixedincome-package	2
as.forwardrate	3
as.spotrate	4
as.spotratecurve	5
as.term	5
compound	6
$compounding \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	7
Compounding-class	8
datasets	8
daycount	9
Daycount-class	9
dib	10
diff,Term-method	10
fit_interpolation	11
forwardrate	12
ForwardRate-class	12
interpolation	13
Interpolation-class	13
interpolation-constructor	14
interpolation_error	15
maturities	16
parameters	17
prepare_interpolation	17
rates	18
shift	19
spotrate	20
SpotRate-class	20
spotrate-compare-method	21
spotratecurve	22
SpotRateCurve-class	23
spotratecurve-helpers	23
term	24
Term-class	25
toyears	25
	27
	21

fixedincome-package Fixed income models, calculations and data structures

Description

Index

The fixedincome package brings a set of functions that helps with the mathematics of interest rates and fixed income. It handles the interest rates and term structures of interest rates as objects and provides many methods to tackle specific issues like computing discount factors and forward rates, interpolate term structures, fit curve models and so much more. This package also supports methods and models commonly used by practitioners to do fixed income calculations.

as.forwardrate

Author(s)

Wilson Freitas <wilson.freitas@gmail.com>

References

Frank Fabozzi. Fixed Income Mathematics, Wiley, 1994. Bruce Tuckman. Fixed Income Securities, Wiley, 1994.

as.forwardrate Coerce objects to ForwardRate

Description

A ForwardRate object can be created from a SpotRate object and a SpotRateCurve.

Usage

```
as.forwardrate(x, ...)
## S3 method for class 'SpotRate'
as.forwardrate(x, terms, ...)
## S3 method for class 'SpotRateCurve'
as.forwardrate(x, ...)
```

Arguments

х	a SpotRate or a SpotRateCurve object.
	additional arguments
terms	a numeric with positive values representing terms or a Term object.

Value

A ForwardRate object created from another object, SpotRate or SpotRateCurve.

as.spotrate

Description

Coerce character objects to SpotRate class

Usage

```
as.spotrate(x, ...)
## S4 method for signature 'character'
as.spotrate(x, simplify = TRUE)
## S4 method for signature 'SpotRateCurve'
as.spotrate(x, ...)
```

Arguments

х	a character with SpotRate specification.
	additional arguments
simplify	a boolean indicating whether to simplify SpotRate creation or not. Defaults to TRUE.

Details

The character representation of a SpotRate is as follows:

"RATE COMPOUNDING DAYCOUNT CALENDAR"

where:

- RATE is a numeric value
- COMPOUNDING is one of the following: simple, discrete, continuous
- DAYCOUNT is a valid day count rule, pex. business/252, see Daycount.
- CALENDAR is the name of a bizdays calendar.

simplify check if compounding, daycount and calendar are the same for all given characters. If it is true the returned object is a SpotRate otherwise a list with SpotRate objects is returned.

Value

A SpotRate object created from a string.

as.spotratecurve

Examples

```
as.spotrate(c(
   "0.06 simple actual/365 actual",
   "0.11 discrete business/252 actual"
))
```

as.spotratecurve *Coerce objects to spotratecurve*

Description

A SpotRateCurve can be created from a ForwardRate object.

Usage

```
as.spotratecurve(x, ...)
```

S3 method for class 'ForwardRate'
as.spotratecurve(x, refdate = Sys.Date(), ...)

Arguments

x	a ForwardRate object.
	additional arguments
refdate	the curve reference date.

Value

A SpotRateCurve object create from another object.

ć	as.term	Coerce a character to a Term

Description

as.term coerces a character vector to a Term object.

Usage

as.term(x, ...)

Arguments

x	a character to be coerced to a Term.
	additional arguments. Currently unused.

compound

Details

The string representation of the Term class follows the layout:

NUMBER UNITS

where units is one of: days, months, years.

Value

A Term object created from a string.

Examples

t <- as.term("6 months")</pre>

compound	Compound method	
----------	-----------------	--

Description

Computes the compounding (and discount) factor for spot rates and curves.

Usage

```
compound(x, t, val, ...)
discount(x, t, val, ...)
```

Arguments

х	can be a Compounding, a SpotRate, a SpotRateCurve, a ForwardRate and a character representing a Compounding.
t	represents the term to compound. Can be a numeric, a Term, a Date or even missing. See Details.
val	is the value of the spot rate to be compounded in the given term. Can be a numeric, a Date or missing. See Details.
	additional arguments.

Details

For Compounding classes the arguments t and val must be provided.

For a SpotRate class, if the t argument is numeric, representing the term to be compounded, the argument val must be a character with the units of the Term class. If otherwise t is a Term object, val is missing.

For SpotRateCurve and ForwardRate classes, that already have terms associated, t and val are missing.

discount() method is the inverse of compound: 1 / compound().

compounding

Value

A numeric value that represents the compounding factor for the given spot rate.

Examples

```
compound("simple", 2, 0.05)
compound("discrete", 2, 0.05)
compound("continuous", 2, 0.05)
spr <- spotrate(0.06, "simple", "actual/365", "actual")</pre>
compound(spr, 10, "days")
discount(spr, 10, "days")
t <- term(10, "days")
compound(spr, t)
discount(spr, t)
d1 <- Sys.Date()
d2 <- Sys.Date() + 10
compound(spr, d1, d2)
discount(spr, d1, d2)
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")</pre>
compound(curve)
discount(curve)
```

compounding Create Compounding class

Description

compound() creates a Compounding object in one of its subclasses: Simple, Discrete, Continuous.

Usage

```
compounding(x = c("simple", "discrete", "continuous"))
```

Arguments

Х

a character with the name of compounding regime: simple, discrete, continuous

Details

A Compounding object can be instanciated with the compounding function, passing a string with the name of one of the compounding regimes: simple, discrete, continuous.

Value

A subclass of Compounding object.

datasets

Examples

```
compounding("simple")
compounding("discrete")
compounding("continuous")
comp <- compounding("discrete")
compound(comp, 0.06, 2) # equals (1 + 0.06) ^ 2 = 1.1236
rates(comp, 1.1236, 2) # equals 0.06
```

Compounding-class Compounding class

Description

The Compounding class abstracts the compounding regime used to discount or compound a spot rate.

Details

There are 3 compoundings:

• simple for simple interest rate compounding

1 + rt

• discrete for compounded interest rate compounding

 $(1+r)^{t}$

• continuous for continuous interest rate compounding

exp(rt)

The Compounding class has 2 methods:

- compound to compound the spot rate for a given term.
- rates to compute the implied rate for a compound factor in a given term.

datasets Datasets

Description

Interest rate datasets

Details

ZeroCurveBRL Brazil's zero curve

8

daycount

Description

daycount creates a Daycount object. It accepts the following daycount rules: actual/365, actual/360, business/252.

Usage

```
daycount(x, ...)
```

Arguments

Х	a character representing a daycount rule, like: business/252, actual/365, actual/360,
	additional arguments. Currently unused.

Value

A Daycount object.

Examples

dc <- daycount("actual/360")</pre>

Daycount-class Daycount class

Description

Daycount class helps adjusting the terms to compound interest rates. With annual rates it is necessary to convert periods of days or months to years units. The day count convention helps with that by defining the number of days of one year. Together with a calendar it defines the way the wordays are counted between two dates.

Details

Common day count rules are: actual/365, actual/360, business/252, 30/360, ...

Description

dib returns the days in base, that is the number of days used to define one year.

Usage

dib(x)

Arguments

x a Daycount object.

Details

The method dib returns the days in base for a daycount convention. Since we work with annual rates the days in base define the amount of days in a year used in the convention.

Value

A numeric with daycount's days in base, the number of days in a year used in the convention.

Examples

```
dc <- daycount("actual/360")
dib(dc)</pre>
```

diff, Term-method Calculate lagged differences of Term objects

Description

diff returns a Term vector with lagged differences.

Usage

S4 method for signature 'Term'
diff(x, lag = 1, ..., fill = NULL)

Arguments

х	a Term object.
lag	a numerix indicating which lag to use.
	additional arguments. Currently unused.
fill	a numeric value (or NA) to fill the empty created by applying diff to a Term object.

dib

fit_interpolation

Value

A new Term object with lagged differences of the given Term object.

Examples

```
t <- term(1:10, "months")
diff(t)</pre>
```

fit_interpolation Fit parametric interpolation functions

Description

Fits parametric interpolation functions like NelsonSiegel or NelsonSiegelSvensson.

Usage

```
fit_interpolation(object, x, ...)
```

Arguments

object	a Interpolation object with initial parameters set.
x	a SpotRateCurve object.
	additional arguments. Currently unused.

Value

A Interpolation object.

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
fit_interpolation(interp_nelsonsiegel(0.1, 0.01, 0.01, 0.01), curve)</pre>
```

forwardrate

Description

forwardrate() creates a ForwardRate object.

Usage

```
forwardrate(x, ...)
## S3 method for class 'numeric'
forwardrate(x, terms, compounding, daycount, calendar, .copyfrom = NULL, ...)
## S3 method for class 'SpotRateCurve'
forwardrate(x, t1 = NULL, t2 = NULL, ...)
```

Arguments

х	a numeric or a SpotRateCurve object.
	additional arguments.
terms	a numeric vector with positive values representing terms of the forward rates.
compounding	a character with the compouning name.
daycount	a character representing the daycount.
calendar	a calendar object.
.copyfrom	a SpotRate object that is used as reference to build the SpotRateCurve object.
t1	initial term
t2	final term

Value

A ForwardRate object.

The arguments t1 and t2 define initial and final term used to extract a ForwardRate from a SpotRateCurve.

ForwardRate-class ForwardRate class

Description

ForwardRate class abstracts a forward rate. It has an additional term, that reffers to the forward period used to compute the forward rate.

interpolation

Description

Sets and gets interpolation method to the SpotRateCurve.

Usage

interpolation(x, ...)

interpolation(x) <- value</pre>

Arguments

х	a SpotRateCurve object.
•••	additional arguments. Currently unused.
value	a Interpolation object.

Value

A Interpolatin object.

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
interpolation(curve) <- interp_flatforward()
interpolation(curve)</pre>
```

Interpolation-class Interpolation classes

Description

Classes that implement interpolation methods to be used with SpotRateCurve objects.

Details

- FlatForward
- Linear
- LogLinear
- NaturalSpline
- HermiteSpline
- MonotoneSpline
- NelsonSiegel
- NelsonSiegelSvensson

Every class that implement a interpolation method inherits the Interpolation class.

interpolation-constructor

Create Interpolation objects

Description

Functions to create intepolation objects.

Usage

interp_flatforward()

interp_linear()

interp_loglinear()

```
interp_naturalspline()
```

interp_hermitespline()

interp_monotonespline()

interp_nelsonsiegel(beta1, beta2, beta3, lambda1)

interp_nelsonsiegelsvensson(beta1, beta2, beta3, beta4, lambda1, lambda2)

Arguments

beta1	a single numeric
beta2	a single numeric
beta3	a single numeric
lambda1	a single numeric
beta4	a single numeric
lambda2	a single numeric

14

Details

interp_flatforward creates a FlatForward interpolation object.

interp_linear creates a Linear interpolation object.

interp_loglinear creates a LogLinear interpolation object.

interp_naturalspline creates a NaturalSpline interpolation object.

interp_hermitespline creates a HermiteSpline interpolation object.

interp_monotonespline creates a MonotoneSpline interpolation object.

interp_nelsonsiegel creates a NelsonSiegel interpolation object. The arguments beta1, beta2, beta3, lambda1 are the paremeters of the Nelson-Siegel model for term structure.

interp_nelsonsiegelsvensson creates a NelsonSiegelSvensson interpolation object. The arguments beta1, beta2, beta3, beta4, lambda1, lambda2 are the paremeters of Svensson's extension to Nelson-Siegel the model for term structure.

Value

An Interpolation object. That object knows the interpolation method but doesn't have the data points. When the Interpolation is set to the curve with interpolation<- the interpolation engine is properly configured.

References

Charles R. Nelson and Andrew F. Siegel (1987), The Journal of Business Lars E.O. Svensson (1994), National Bureau of Economic Research

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
interpolation(curve) <- interp_flatforward()
curve[[1:10]]</pre>
```

interpolation_error Interpolation error

Description

Computes interpolation error as the root mean square error of differences between interpolated terms and SpotRateCurve values.

Usage

```
interpolation_error(x, ...)
```

Arguments

х	a SpotRateCurve object.
	additional arguments. Currently unused.
	The curve must have a interpolation set to compute the interpolation error. This is useful to evaluate parametric methods like NelsonSiegel and NelsonSiegelSvens-
	son.

Value

A numeric value with the root mean squared error between the curve data point and interpolated points.

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
interpolation(curve) <- interp_nelsonsiegel(
      0.1229, -0.0606, 0.1004, 1.9174
)
interpolation_error(curve)</pre>
```

maturities Get SpotRateCurve terms as Date objects

Description

Compute the SpotRateCurve terms as Date objects, according to the curve's reference date.

Usage

```
maturities(x)
```

Arguments

x a SpotRateCurve object.

Value

A vector of Date objects that represent the curve's terms and using curve's refdate as a starting point.

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
maturities(curve)</pre>
```

parameters

Description

Gets parameters of parametric interpolation models like NelsonSiegel and NelsonSiegelSvensson.

Usage

parameters(x, ...)

Arguments

х	a Interpolation object.
	additional arguments. Currently unused.

Value

A named vector with parameters of the models.

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
model <- fit_interpolation(interp_nelsonsiegel(0.1, 0.01, 0.01, 0.01), curve)
parameters(model)</pre>
```

prepare_interpolation Create the interpolation function

Description

Creates the interpolation function to a SpotRateCurve object.

Usage

```
prepare_interpolation(object, x, ...)
```

Arguments

object	a Interpolation object.
х	a SpotRateCurve object.
	additional arguments. Currently unused.
	This method is used internally when the interpolation is set to a curve. It uses the current state of the curve to build the interpolation function. This is similar to call approxfun and splinefun to create functions that perform interpolation of the given data points.
	This method shouldn't be directly called, it is for internal use only.

Value

A Interpolation object with the slot func properly defined. This slot is set with a function (closure) that executes the interpolation method.

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
prepare_interpolation(interp_flatforward(), curve)</pre>
```

rates

Implied rates

Description

Computes implied rates to compounding factors.

Usage

rates(x, t, val, ...)

Arguments

Х	a Compounding object or a character with the compounding name.
t	a numeric representing the term.
val	a numeric representing the compounding factor.
	additional arguments. Currently unused.

Details

If the x argument is a character with a valid compounding name (simple, discrete, continuous) the function instanciates a Compounding object and then computes the implied rate for the given compounding values and terms.

shift

Value

A numeric value that represents a spot rate.

Examples

```
rates("simple", 2, 1.1)
rates("discrete", 2, 1.1025)
rates("continuous", 2, 1.105170918)
comp <- compounding("discrete")
compound(comp, 0.06, 2) # equals (1 + 0.06) ^ 2 = 1.1236
rates(comp, 1.1236, 2) # equals 0.06</pre>
```

shift

Shift vectors

Description

Element wise shift of vectors by k positions.

Usage

shift(x, k = 1, ..., fill = NA)

Arguments

х	a vector object.
k	a numeric with the number of elements to shift the Term vector
	additional arguments. Currently unused.
fill	a numeric value (or NA) to fill the empty created by shifting a vector object.

Value

A shifted vector object of the same type of provided object.

Examples

shift(1:10, fill = 0)
t <- term(1:10, "months")
shift(t)</pre>

spotrate

Description

spotrate() function creates SpotRate objects.

Usage

```
spotrate(x, compounding, daycount, calendar, .copyfrom = NULL)
```

Arguments

Х	a numeric vector representing spot rate values.
compounding	a Compounding object.
daycount	a Daycount object.
calendar	a bizdays calendar.
.copyfrom	a SpotRate object used as reference to copy attributes.

Value

A SpotRate object.

Examples

```
spotrate(0.06, "continuous", "actual/365", "actual")
spotrate(c(0.06, 0.07, 0.08), "continuous", "actual/365", "actual")
```

SpotRate-class SpotRate class

Description

The SpotRate class abstracts the interst rate and has methods to handle many calculations on it.

Details

The SpotRate class fully specifies spot rates. It has:

- the spot rate values which are numeric values representing the rate.
- the compounding regime that specifies how to compound the spot rate. This is a Compounding object.
- the daycount rule to compute the compounding periods right adjusted to the spot rate frequency (which is annual).

• the calendar according to which the number of days are counted.

The SpotRate class is a numeric, that represents the interest rate and that has the slots: compounding, daycount and calendar.

The calendar slot is a bizdays calendar.

Note

The SpotRate objects are annual rates.

spotrate-compare-method

SpotRate comparison operations

Description

Comparison operations with SpotRate class SpotRate objects can be compared among themselves or with numeric variables.

Usage

```
## S4 method for signature 'SpotRate,SpotRate'
Compare(e1, e2)
## S4 method for signature 'SpotRate,numeric'
```

Compare(e1, e2)

```
## S4 method for signature 'numeric,SpotRate'
Compare(e1, e2)
```

Arguments

e1	a SpotRate object or a numeric
e2	a SpotRate object or a numeric

Value

A boolean logical object. The comparison with SpotRate objects only takes all fields into account. Comparing SpotRate against numeric values is equivalent to coerce the SpotRate object to numeric execute the operation, this is a syntax sugar for a shortcut that is commonly applied.

Examples

```
spr <- as.spotrate("0.06 simple actual/365 actual")
spr == 0.06</pre>
```

spotratecurve

Description

spotratecurve() S3 method createas a SpotRateCurve object. It is dispatched for numeric values, that represent spot rates and for SpotRate objects.

Usage

Arguments

Х	a numeric representing a spot rate value or a SpotRate object.
terms	a numeric vector with positive values representing the days of the term structure.
	additional arguments
refdate	the curve reference date.
compounding	a character with the compouning name.
daycount	a character representing the daycount.
calendar	a calendar object.
.copyfrom	a SpotRate object that is used as reference to build the SpotRateCurve object.

Value

A SpotRateCurve object.

SpotRateCurve-class

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
# access the term 11 days
curve[[11]]
# access the second element
curve[2]</pre>
```

SpotRateCurve-class SpotRateCurve class

Description

The SpotRateCurve class abstracts a term structure of SpotRate objects. The SpotRateCurve has a reference date (refdate slot), that is a mark to market date. The SpotRates are indexed to future dates according to its reference date and these future dates represent the terms of the SpotRateCurve.

Details

Once the SpotRateCurve object is built, any SpotRate can be accessed using indexing operations: [] positional indexing, [[]] term indexing.

The SpotRateCurve inherits SpotRate class and has three slots: terms that is a Term object, refdate and interpolation that defines the method used to interpolate the curve.

spotratecurve-helpers SpotRateCurve helpers

Description

Helpers methods that return parts of a SpotRateCurve object according to a given term.

Usage

first(x, t)
last(x, t)
closest(x, t)

Arguments

х	a SpotRateCurve object.
t	a Term object.
	first filters the first elements of the SpotRateCurve according to the given term.
	last filters the last elements of the SpotRateCurve according to the given term.
	closest selects the element of the SpotRateCurve that is the closest to the given
	term.

Value

A SpotRateCurve object that is a subset of the given curve. The elements returned are select according to the operation executed.

Examples

```
terms <- c(1, 11, 26, 27, 28)
rates <- c(0.0719, 0.056, 0.0674, 0.0687, 0.07)
curve <- spotratecurve(rates, terms, "discrete", "actual/365", "actual")
first(curve, "10 days")
last(curve, "10 days")
closest(curve, "10 days")</pre>
```

term

Create Term class

Description

term() creates a Term object.

Usage

```
term(x, ...)
## S3 method for class 'numeric'
term(x, units = "days", ...)
## S3 method for class 'Term'
term(x, ...)
## S3 method for class 'Date'
term(x, end_date, calendar, ...)
```

Term-class

Arguments

x	can be a numeric value representing the time period, a Term object, or the initial date for a period between two dates.
	additional arguments
units	one of the valid units: days, monts, years.
end_date	the final date for a period between two dates.
calendar	the calendar used to compute the amount of days for a period between two dates.

Value

A Term object.

Examples

```
term(6, "months")
if (require("bizdays")) {
   term(as.Date("2022-02-02"), as.Date("2022-02-23"), "Brazil/ANBIMA")
}
```

Term-class

Term class

Description

It is the time interval used in calculations with interest rates. The term class represents the period used to discount or compound a spot rate. It can be Term object or a DateRangeTerm which defines start and end dates and a calendar to count the amount of working days between these two dates.

toyears

Terms in years according to Daycount

Description

toyears returns a numeric representing a Term in years.

Usage

toyears(x, t, units)

Arguments

х	a Daycount object.
t	represents the term to compound. Can be a numeric, a Term, or a character representing a Term. See Details.
units	a character with the Term units. Can also be missing. See Details.

Details

toyears returns the given term in years, since we are assuming annual rates. The t argument can be a term instance, a string defining a term or a numeric. In the last alternative, the units argument must be provided with a valid Term units (days, months, years).

Value

A numeric with the value of the given Term in years.

Examples

```
dc <- daycount("actual/360")
toyears(dc, 10, "days")
t <- term(10, "months")
toyears(dc, t)</pre>
```

Index

* datasets datasets. 8 as.forwardrate.3 as.spotrate,4 as.spotrate,character-method (as.spotrate), 4 as.spotrate,SpotRateCurve-method (as.spotrate), 4 as.spotratecurve, 5 as.term, 5 as.term, character-method (as.term), 5 closest (spotratecurve-helpers), 23 closest,SpotRateCurve,character-method (spotratecurve-helpers), 23 closest,SpotRateCurve,Term-method (spotratecurve-helpers), 23 Compare, numeric, SpotRate-method (spotrate-compare-method), 21 Compare, SpotRate, numeric-method (spotrate-compare-method), 21 Compare,SpotRate,SpotRate-method (spotrate-compare-method), 21 compound, 6 compound,character,numeric,numeric-method (compound), 6 compound, Continuous, numeric, numeric-method (compound), 6 compound,Discrete,numeric,numeric-method (compound), 6 compound,ForwardRate,missing,missing-method (compound), 6 compound,Simple,numeric,numeric-method (compound), 6 compound, SpotRate, Date, Date-method (compound), 6 compound,SpotRate,numeric,character-method (compound), 6

compound,SpotRate,Term,missing-method (compound), 6 compound,SpotRateCurve,missing,missing-method (compound), 6 compounding, 7 Compounding-class, 8 Continuous, 7 Continuous-class (Compounding-class), 8 datasets, 8 DateRangeTerm-class (Term-class), 25 Daycount, 4 daycount, 9 Daycount-class, 9 dib, 10 dib, Daycount-method (dib), 10 diff, Term-method, 10 discount (compound), 6 discount, ForwardRate, missing, missing-method (compound), 6 discount,SpotRate,Date,Date-method (compound), 6 discount,SpotRate,numeric,character-method (compound), 6 discount,SpotRate,Term,missing-method (compound), 6 discount,SpotRateCurve,missing,missing-method (compound), 6 Discrete, 7 Discrete-class (Compounding-class), 8 first (spotratecurve-helpers), 23 first,SpotRateCurve,character-method (spotratecurve-helpers), 23 first,SpotRateCurve,Term-method (spotratecurve-helpers), 23 fit_interpolation, 11 fit_interpolation,NelsonSiegel,SpotRateCurve-method

(fit_interpolation), 11

fit_interpolation,NelsonSiegelSvensson,SpotRattegLurveamecthasks (Interpolation-class), (fit_interpolation), 11 13 fixedincome (fixedincome-package), 2 maturities, 16 fixedincome-package, 2 MonotoneSpline-class FlatForward-class (Interpolation-class), 13 (Interpolation-class), 13 forwardrate, 12 NaturalSpline-class ForwardRate-class, 12 (Interpolation-class), 13 NelsonSiegel, 11, 16, 17 HermiteSpline-class NelsonSiegel-class (Interpolation-class), 13 (Interpolation-class), 13 NelsonSiegelSvensson, 11, 16, 17 interp_flatforward NelsonSiegelSvensson-class (interpolation-constructor), 14 (Interpolation-class), 13 interp_hermitespline parameters, 17 (interpolation-constructor), 14 parameters, NelsonSiegel-method interp_linear (parameters), 17 (interpolation-constructor), 14 parameters, NelsonSiegelSvensson-method interp_loglinear (parameters), 17 (interpolation-constructor), 14 prepare_interpolation, 17 interp_monotonespline prepare_interpolation,FlatForward,SpotRateCurve-method (interpolation-constructor), 14 (prepare_interpolation), 17 interp_naturalspline prepare_interpolation,HermiteSpline,SpotRateCurve-method (interpolation-constructor), 14 (prepare_interpolation), 17 interp_nelsonsiegel prepare_interpolation,Linear,SpotRateCurve-method (interpolation-constructor), 14 (prepare_interpolation), 17 interp_nelsonsiegelsvensson prepare_interpolation,LogLinear,SpotRateCurve-method (interpolation-constructor), 14 (prepare_interpolation), 17 interpolation, 13 prepare_interpolation,MonotoneSpline,SpotRateCurve-method interpolation, SpotRateCurve-method (prepare_interpolation), 17 (interpolation), 13 prepare_interpolation,NaturalSpline,SpotRateCurve-method Interpolation-class, 13 (prepare_interpolation), 17 interpolation-constructor, 14 prepare_interpolation,NelsonSiegel,SpotRateCurve-method interpolation <- (interpolation), 13 (prepare_interpolation), 17 interpolation<-,SpotRateCurve,Interpolation-method</pre> prepare_interpolation, NelsonSiegelSvensson, SpotRateCurve-m (interpolation), 13 (prepare_interpolation), 17 interpolation<-,SpotRateCurve,NULL-method</pre> (interpolation), 13 rates, 18 interpolation_error, 15 rates, character, numeric, numeric-method interpolation_error,SpotRateCurve-method (rates), 18 (interpolation_error), 15 rates, Continuous, numeric, numeric-method (rates), 18 last (spotratecurve-helpers), 23 rates,Discrete,numeric,numeric-method last,SpotRateCurve,character-method (rates), 18 (spotratecurve-helpers), 23 rates,Simple,numeric,numeric-method

last,SpotRateCurve,Term-method
 (spotratecurve-helpers), 23

Linear-class (Interpolation-class), 13

shift, 19

(rates), 18

28

INDEX

```
shift,numeric-method(shift),19
shift,Term-method(shift),19
Simple, 7
Simple-class(Compounding-class), 8
spotrate, 20
SpotRate-class, 20
spotrate-compare-method, 21
spotratecurve, 22
SpotRateCurve-class, 23
spotratecurve-helpers, 23
term, 24
Term-class, 25
toyears, 25
toyears,Daycount,character,missing-method
        (toyears), 25
toyears,Daycount,numeric,character-method
        (toyears), 25
toyears,Daycount,Term,missing-method
        (toyears), 25
```

ZeroCurveBRL (datasets), 8