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Abstract

A multi-state model represents how an individual moves between multiple states in
continuous time. Survival analysis is a special case with two states, “alive” and “dead”.
Competing risks are a further special case, where there are multiple causes of death, that
is, one starting state and multiple possible destination states.

This vignette describes the two forms of multi-state or competing risks models that can
be implemented in flexsurv. Section 2 describes models based on cause-specific hazards.
Section 3 describes a less commonly-used approach based on mixture models. Cause-
specific hazards models tend to be faster to fit, whereas the parameters of the mixture
models are easier to interpret.

Keywords: multi-state models, multistate models, competing risks.

1. Overview

This vignette describes multi-state models for data where there are a series of event times
t1, . . . , tn for an individual, corresponding to changes of state. The last of these may be an
observed or right-censored event time. Note panel data are not considered here — that is,
observations of the state of the process at an arbitrary set of times (Kalbfleisch and Lawless
1985). In panel data, we do not necessarily know the time of each transition, or even whether
transitions of a certain type have occurred at all between a pair of observations. Multi-state
models for that type of data (and also exact event times) can be fitted with the msm package
for R (Jackson 2011), but are restricted to (piecewise) exponential event time distributions.
Knowing the exact event times enables much more flexible models, which flexsurv can fit.

The flexsurv package provides two general frameworks for multi-state modelling.

1. The most common framework is based on cause-specific hazards of competing risks.
This is an extension of standard survival modelling, and is explained in Section 2.

2. An alternative approach is based on mixture models. For example, suppose there are
three competing states that an individual in state r may move to next. People are
then classified into three mixture components, defined by the state the person moves
to. The probabilities of each next state, and the distribution of the time of moving to
each state, are estimated jointly. These quantities are easier to interpret than cause
specific hazards. This approach was originally described by Larson and Dinse (1985).
In Section 3 we explain how to implement it using the flexsurvmix function.
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2. Multi-state modelling using cause-specific hazards

Given that an individual is in state X(t) at time t, their next state, and the time of the
change, are governed by a set of transition intensities or transition hazards

qrs(t, z(t), Ft) = lim
δt→0

P(X(t + δt) = s|X(t) = r, z(t), Ft)/δt

for states r, s = 1, . . . , R, which for a survival model are equivalent to the hazard h(t). The
intensity represents the instantaneous risk of moving from state r to state s, and is zero if the
transition is impossible. It may depend on covariates z(t), the time t itself, and possibly also
the “history” of the process up to that time, Ft: the states previously visited or the length
of time spent in them.

Alternative time scales In semi-Markov (“clock-reset”) models, qrs(t) is defined as a
function of the time t since entry into the current state. Any software to fit survival models
can also fit this kind of multi-state model, as the following sections will explain.

In an inhomogeneous Markov model, t represents the time since the beginning of the process
(that is, a “clock-forward” scale is used), but the intensity qrs(t) does not depend further on
Ft. Again, standard survival modelling software can be used, with the additional requirement
that it can deal with left-truncation or counting process data, which survreg, for example,
does not currently support.

These approaches are equivalent for competing risks models, since there is at most one tran-
sition for each individual, so that the time since the beginning of the process equals the time
spent in the current state. Therefore no left-truncation is necessary.

Note also that in a clock-reset model, the time since the beginning of the process may enter
the model as a covariate. Likewise, in a clock-forward model, the time spent in the current
state may enter as a covariate, in which case the model is no longer Markov.

Example For illustration, consider a simple three-state example, previously studied by
Heng et al. (1998). Recipients of lung transplants are are risk of bronchiolitis obliterans
syndrome (BOS). This was defined as a decrease in lung function to below 80% of a baseline
value defined in the six months following transplant. A three-state “illness-death” model
represents the risk of developing BOS, the risk of dying before developing BOS, and the
risk of death after BOS. BOS is assumed to be irreversible, so there are only three allowed
transitions (Figure 1), each with an intensity function qrs(t).

2.1. Representing multi-state data as survival data

Andersen and Keiding (2002) and Putter et al. (2007) explain how to implement multi-state
models by manipulating the data into a suitable form for survival modelling software — an
overview is given here. For each permitted r → s transition in the multi-state model, there is
a corresponding “survival” (time-to-event) model, with hazard rates defined by qrs(t). For a
patient who enters state r at time tj , their next event at tj+1 is defined by the model structure
to be one of a set of competing events s1, . . . , snr . This implies there are nr corresponding
survival models for this state r, and

∑

r nr models over all states r. In the BOS example,
there are n1 = 2, n2 = 1 and n3 = 0 possible transitions from states 1, 2 and 3 respectively.
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No BOS

State 2:

BOS
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Death

Figure 1: Three-state multi-state model for bronchiolitis obliterans syndrome (BOS).

The data to inform the nr models from state r consists firstly of an indicator for whether
the transition to the corresponding state s1, . . . , snr is observed or censored at tj+1. If the
individual moves to state sk, the transitions to all other states in this set are censored at this
time. This indicator is coupled with:

• (for a semi-Markov model) the time elapsed dtj = tj+1 − tj from state r entry to state
s entry. The “survival” model for the r → s transition is fitted to this time.

• (for an inhomogeneous Markov model) the start and stop time (tj , tj+1), as in §??. The
r → s model is fitted to the right-censored time tj+1 from the start of the process, but is
conditional on not experiencing the r → s transition until after the state r entry time.
In other words, the r → s transition model is left-truncated at the state r entry time.

In this form, the outcomes of two patients in the BOS data are

R> library(flexsurv)

R> bosms3[18:22, ]

An object of class 'msdata'

Data:

id from to Tstart Tstop years status trans

18 7 1 2 0.0000000 0.1697467 0.1697467 1 1

19 7 1 3 0.0000000 0.1697467 0.1697467 0 2

20 7 2 3 0.1697467 0.6297057 0.4599589 1 3

21 8 1 2 0.0000000 8.1615332 8.1615332 0 1

22 8 1 3 0.0000000 8.1615332 8.1615332 1 2

Each row represents an observed (status = 1) or censored (status = 0) transition time for
one of three time-to-event models indicated by the categorical variable trans (defined as a
factor). Times are expressed in years, with the baseline time 0 representing six months after
transplant. Values of trans of 1, 2, 3 correspond to no BOS→BOS, no BOS→death and
BOS→death respectively. The first row indicates that the patient (id 7) moved from state
1 (no BOS) to state 2 (BOS) at 0.17 years, but (second row) this is also interpreted as a
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censored time of moving from state 1 to state 3, potential death before BOS onset. This
patient then died, given by the third row with status 1 for trans 3. Patient 8 died before
BOS onset, therefore at 8.2 years their potential BOS onset is censored (fourth row), but
their death before BOS is observed (fifth row).

The mstate R package (de Wreede et al. 2010, 2011) has a utility msprep to produce data of
this form from “wide-format” datasets where rows represent individuals, and times of different
events appear in different columns. msm has a similar utility msm2Surv for producing the
required form given longitudinal data where rows represent state observations.

2.2. Multi-state model likelihood with cause-specific hazards

After forming survival data as described above, a multi-state model can be fitted by maximis-
ing the standard survival model likelihood (given at the start of the main flexsurv vignette),
l(θ|x) =

∏

i li(θ|xi), where x is the data, and i now indexes multiple observations for multiple
individuals. This can also be written as a product over the K =

∑

r nr transitions k, and the
mk observations j pertaining to the kth transition. The transition type will typically enter
this model as a categorical covariate — see the examples in the next section.

l(θ|x) =
K
∏

k=1

mk
∏

j=1

ljk(θ|xjk) (1)

Therefore if the parameter vector θ can be partitioned as (θ1| . . . |θK), independent compo-
nents for each transition k, the likelihood becomes the product of K independent transition-
specific likelihoods (Andersen and Keiding 2002). The full multi-state model can then be fitted
by maximising each of these independently, using K separate calls to a survival modelling
function such as flexsurvreg. This can give vast computational savings over maximising
the joint likelihood for θ with a single fit. For example, Ieva et al. (2015) used flexsurv to fit
a parametric multi-state model with 21 transitions and 84 parameters for over 30,000 obser-
vations, which was computationally impractical via the joint likelihood, whereas it only took
about a minute to perform 21 transition-specific fits.

On the other hand, if any parameters are constrained between transitions (e.g. if hazards are
proportional between transitions, or the effects of covariates on different transitions are the
same) then it is necessary to maximise the joint likelihood (1) with a single call.

2.3. Fitting parametric multi-state models with cause-specific hazards

Joint likelihood Three multi-state models are fitted to the BOS data using flexsurvreg,
firstly using a single likelihood maximisation for each model. The first two use the “clock-
reset” time scale. crexp is a simple time-homogeneous Markov model where all transition
intensities are constant through time, so that the clock-forward and clock-reset scales are
identical. The time to the next event is exponentially-distributed, but with a different rate qrs

for each transition type trans. crwei is a semi-Markov model where the times to BOS onset,
death without BOS and the time from BOS onset to death all have Weibull distributions, with
a different shape and scale for each transition type. cfwei is a clock-forward, inhomogeneous
Markov version of the Weibull model: the 1→2 and 1→3 transition models are the same, but
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the third has a different interpretation, now the time from baseline to death with BOS has a
Weibull distribution.

R> crexp <- flexsurvreg(Surv(years, status) ~ trans, data = bosms3,

+ dist = "exp")

R> crwei <- flexsurvreg(Surv(years, status) ~ trans + shape(trans),

+ data = bosms3, dist = "weibull")

R> cfwei <- flexsurvreg(Surv(Tstart, Tstop, status) ~ trans + shape(trans),

+ data = bosms3, dist = "weibull")

Semi-parametric equivalents The equivalent Cox models are also fitted using coxph from
the survival package. These specify a different baseline hazard for each transition type through
a function strata in the formula, so since there are no other covariates, they are essentially
non-parametric. Note that the strata function is not currently understood by flexsurvreg

— the user must say explicitly what parameters, if any, vary with the transition type, as in
crwei.

R> crcox <- coxph(Surv(years, status) ~ strata(trans), data = bosms3)

R> cfcox <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data = bosms3)

In all cases, if there were other covariates, they could simply be included in the model formula.
Typically, covariate effects will vary with the transition type, so that an interaction term
with trans would be included. Some post-processing might then be needed to combine the
main covariate effects and interaction terms into an easily-interpretable quantity (such as the
hazard ratio for the r, s transition). Alternatively, mstate has a utility expand.covs to expand
a single covariate in the data into a set of transition-specific covariates, to aid interpretation
(see de Wreede et al. 2011).

Transition-specific models In this small example, the joint likelihood can be maximised
easily with a single function call, but for larger models and datasets, this may be unfeasible. A
more computationally-efficient approach is to fit a list of transition-specific models, as follows.

R> mod_nobos_bos <- flexsurvreg(Surv(years, status) ~ 1, subset=(trans==1),

+ data = bosms3, dist = "weibull")

R> mod_nobos_death <- flexsurvreg(Surv(years, status) ~ 1, subset=(trans==2),

+ data = bosms3, dist = "weibull")

R> mod_bos_death <- flexsurvreg(Surv(years, status) ~ 1, subset=(trans==3),

+ data = bosms3, dist = "weibull")

We then define a matrix tmat describes the transition structure of the multi-state model , as
a matrix of integers whose r, s entry is i if the ith transition type is r, s, and has NAs on the
diagonal and where the r, s transition is disallowed.

R> tmat <- rbind(c(NA, 1, 2), c(NA, NA, 3), c(NA, NA, NA))

R> crfs <- fmsm(mod_nobos_bos, mod_nobos_death, mod_bos_death, trans = tmat)
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The three transition models are then grouped together, and the transition matrix is attached,
using the fmsm function. This constructs an R object, crfs, that fully describes the multistate
model.

The fmsm object can be supplied to the output and prediction functions described in the
subsequent sections, instead of a single flexsurvreg object. However, this approach is not
possible if there are constraints in the parameters across transitions, such as common covariate
effects.

Any parametric distribution can be employed in a multi-state model, just as for standard
survival models, with flexsurvreg. Spline models may also be fitted with flexsurvspline,
and if hazards are assumed proportional, they are expected to give similar results to the
Cox model. Since flexsurv version 2.0, different parametric families can be used for different
transitions, though in earlier versions, the same family had to be used.

2.4. Obtaining cumulative transition-specific hazards

Multi-state models can be characterised by their cumulative r → s transition-specific hazard
functions Hrs(t) =

∫ t
0

qrs(u)du. For semi-parametric multi-state models fitted with coxph, the
function msfit in mstate (de Wreede et al. 2010, 2011) provides piecewise-constant estimates
and covariances for Hrs(t). For the Cox models for the BOS data,

R> require("mstate")

Loading required package: mstate

R> mrcox <- msfit(crcox, trans = tmat)

R> mfcox <- msfit(cfcox, trans = tmat)

flexsurv provides an analogous function msfit.flexsurvreg to produce cumulative hazards
from fully-parametric multi-state models in the same format. This is a short wrapper around
summary.flexsurvreg(..., type = "cumhaz"), previously mentioned in §??. The differ-
ence from mstate’s method is that hazard estimates can be produced for any grid of times t,
at any level of detail and even beyond the range of the data, since the model is fully para-
metric. The argument newdata can be used in the same way to specify a desired covariate
category, though in this example there are no covariates in addition to the transition type.
The name of the (factor) covariate indicating the transition type can also be supplied through
the tvar argument, in this case it is the default, "trans".

R> tgrid <- seq(0, 14, by = 0.1)

R> mrwei <- msfit.flexsurvreg(crwei, t = tgrid, trans = tmat)

R> mrexp <- msfit.flexsurvreg(crexp, t = tgrid, trans = tmat)

R> mfwei <- msfit.flexsurvreg(cfwei, t = tgrid, trans = tmat)

These can be plotted (Figure 2) to show the fit of the parametric models compared to the
non-parametric estimates. Both models appear to fit adequately, though give diverging ex-
trapolations after around 6 years when the data become sparse. The Weibull clock-reset model
has an improved AIC of 1091, compared to 1099 for the exponential model. For the 2 → 3
transition, the clock-forward and clock-reset models give slightly different hazard trajectories.
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Figure 2: Cumulative hazards for three transitions in the BOS multi-state model (clock-
reset), under non-parametric, exponential and Weibull models. For the 2 → 3 transition, an
alternative clock-forward scale is shown for the non-parametric and Weibull models.

2.5. Prediction from parametric multi-state models with cause-specific haz-

ards

The transition probabilities of the multi-state model are the probabilities of occupying each
state s at time t > t0, given that the individual is in state r at time t0.

P (t0, t) = P(X(t) = s|X(t0) = r)

Markov models For a time-inhomogeneous Markov model, these are related to the tran-
sition intensities via the Kolmogorov forward equation

dP (t0, t)

dt
= P (t0, t)Q(t)

with initial condition P (t0, t0) = I (Cox and Miller 1965). This can be solved numerically,
as in Titman (2011). This is implemented in the function pmatrix.fs, using the deSolve

package (Soetaert et al. 2010). This returns the full transition probability matrix P (t0, t)
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from time t0 = 0 to a time or set of times t specified in the call. Under the Weibull model,
the probability of remaining alive and free of BOS is estimated at 0.3 at 5 years and 0.09 at
10 years:

R> pmatrix.fs(cfwei, t = c(5, 10), trans = tmat)

$`5`

[,1] [,2] [,3]

[1,] 0.3042199 0.2521696 0.4436105

[2,] 0.0000000 0.2804171 0.7195829

[3,] 0.0000000 0.0000000 1.0000000

$`10`

[,1] [,2] [,3]

[1,] 0.09117016 0.12047936 0.7883505

[2,] 0.00000000 0.06903846 0.9309615

[3,] 0.00000000 0.00000000 1.0000000

attr(,"nst")

[1] 3

Confidence intervals can be obtained by simulation from the asymptotic distribution of the
maximum likelihood estimates — see help(pmatrix.fs) for full details. A similar function
totlos.fs is provided to estimate the expected total amount of time spent in state s up to
time t for a process that starts in state r, defined as

∫ t
u=0

P (0, u)rsdu.

Semi-Markov models For semi-Markov models, the Kolmogorov equation does not apply,
since the transition intensity matrix Q(t) is no longer a deterministic function of t, but
depends on when the transitions occur between time t0 and t. Predictions can then be made
by simulation. The function sim.fmsm simulates trajectories from parametric semi-Markov
models by repeatedly generating the time to the next transition until the individual reaches
an absorbing state or a specified censoring time. This requires the presence of a function
to generate random numbers from the underlying parametric distribution — and is fast for
built-in distributions which use vectorised functions such as rweibull.

pmatrix.simfs calculates the transition probability matrix by using sim.fmsm to simu-
late state histories for a large number of individuals, by default 100000. Simulation-based
confidence-intervals are also available in pmatrix.simfs, at an extra computational cost, and
the expected total length of stay in each state is available from totlos.simfs.

R> pmatrix.simfs(crwei, trans = tmat, t = 5)

R> pmatrix.simfs(crwei, trans = tmat, t = 10)

Prediction via mstate Alternatively, predictions can be made by supplying the cumulative
transition-specific hazards, calculated with msfit.flexsurvreg, to functions in the mstate

package.
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For Markov models, the solution to the Kolmogorov equation (e.g., Aalen et al. 2008) is given
by a product integral, which can be approximated as

P (t0, t) =
m−1
∏

i=0

{I + Q(ti)dt}

where a fine grid of times t0, t1, . . . , tm = t is chosen to span the prediction interval, and
Q(ti)dt is the increment in the cumulative hazard matrix between times ti and ti+1. Q may
also depend on other covariates, as long as these are known in advance. In mstate, these can be
calculated with the probtrans function, applied to the cumulative hazards returned by msfit.
For Cox models, the time grid is naturally defined by the observed survival times, giving the
Aalen-Johansen estimator (Andersen et al. 1993). Here, the probability of remaining alive
and free of BOS is estimated at 0.27 at 5 years and 0.17 at 10 years.

R> ptc <- probtrans(mfcox, predt = 0, direction = "forward")[[1]]

R> round(ptc[c(165, 193),], 3)

time pstate1 pstate2 pstate3 se1 se2 se3

165 4.999 0.273 0.294 0.433 0.037 0.039 0.040

193 9.873 0.174 0.040 0.786 0.040 0.022 0.045

For parametric models, using a similar discrete-time approximation was suggested by Cook
and Lawless (2014). This is achieved by passing the object returned by msfit.flexsurvreg

to probtrans in mstate. It can be made arbitrarily accurate by choosing a finer resolution
for the grid of times when calling msfit.flexsurvreg.

R> ptw <- probtrans(mfwei, predt = 0, direction = "forward")[[1]]

R> round(ptw[ptw$time %in% c(5, 10),], 3)

time pstate1 pstate2 pstate3 se1 se2 se3

51 5 0.300 0.254 0.446 0.033 0.034 0.037

101 10 0.089 0.119 0.792 0.027 0.033 0.041

pstate1–pstate3 are close to the first rows of the matrices returned by pmatrix.fs. The
discrepancy from the Cox model is more marked at 10 years when the data are more sparse
(Figure 2). A finer time grid would be required to achieve a similar level of accuracy to
pmatrix.fs for the point estimates, at the cost of a slower run time than pmatrix.fs.
However, an advantage of probtrans is that standard errors are available more cheaply.

For semi-Markov models, mstate provides the function mssample to produce both simulated
trajectories and transition probability matrices from semi-Markov models, given the esti-
mated piecewise-constant cumulative hazards (Fiocco et al. 2008), produced by msfit or
msfit.flexsurvreg, though this is generally less efficient than pmatrix.simfs. In this
example, 1000 samples from mssample give estimates of transition probabilities that are ac-
curate to within around 0.02. However with pmatrix.simfs, greater precision is achieved by
simulating 100 times as many trajectories in a shorter time.
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R> mssample(mrcox$Haz, trans = tmat, clock = "reset", M = 1000,

+ tvec = c(5, 10))

R> mssample(mrwei$Haz, trans = tmat, clock = "reset", M = 1000,

+ tvec = c(5, 10))

2.6. Next-state probabilities

In a multi-state situation we are usually interested in the probability that a person in one
state will move to a specific state next, rather than to the other competing states. In the
BOS example we might want to estimate the probability that a patient will die before getting
BOS, or get BOS before dying. In a mixture multi-state model (Section 3), these are explicit
parameters of the model. In a multi-state model parameterised by cause-specific hazards,
these probabilities are related to the hazards through the Kolmogorov forward equation.

To obtain these, we consider the full multi-state model as a set of competing risks submodels.
There is one submodel for each state a person can transition from (the "transient" states of
the model). In the BOS example, there is one submodel for the transitions from no BOS
(with two competing risks: BOS and death), and a second submodel for the single transition
from BOS to death.

The probability that the the next state after r is s can then be obtained in practice as the
transition probability P (X(t) = s|X(t0) = r), under the submodel for transient state r, for a
very large time t. pmatrix.fs can be used for this.

R> tmat_nobos <- rbind("No BOS"=c(NA,1,2),

+ "BOS"=c(NA,NA,NA),"Death"=c(NA,NA,NA))

R> crfs_nobos <- fmsm(mod_nobos_bos, mod_nobos_death, trans = tmat_nobos)

R> pmatrix.fs(crfs_nobos, from=1, t=100000)["No BOS",c("BOS","Death")]

BOS Death

0.7177376 0.2822624

In a time-homogeneous Markov model, i.e. where the times from state r to state s are all
exponentially distributed with a constant rate λrs, the probability that the next state after
r is s is simply λrs/

∑

u λru, where the sum is taken over all possible next states after r. We
can check the result from pmatrix.fs agrees with this:

R> modexp_nobos_bos <- flexsurvreg(Surv(years, status) ~ 1, subset=(trans==1),

+ data = bosms3, dist = "exponential")

R> modexp_nobos_death <- flexsurvreg(Surv(years, status) ~ 1, subset=(trans==2),

+ data = bosms3, dist = "exponential")

R> crfs_nobos <- fmsm(modexp_nobos_bos, modexp_nobos_death, trans=tmat_nobos)

R> pmatrix.fs(crfs_nobos, from=1, t=100000)["No BOS",c("BOS","Death")]

BOS Death

0.7802948 0.2197052



Christopher Jackson, MRC Biostatistics Unit 11

R> rate12 <- modexp_nobos_bos$res["rate","est"]

R> rate13 <- modexp_nobos_death$res["rate","est"]

R> rate12 / (rate12 + rate13)

[1] 0.7802948

2.7. Distribution of the time to the next state

Under the cause-specific hazards model, the time until the next observed transition can be
considered to equal the minimum of a set of latent times — one latent time for each potential
transition whose cause-specific hazard defines the multi-state model.

The distribution of this time is not generally known analytically, given a set of parametric
distributions defining the cause-specific hazards. For example, if there were two compet-
ing latent event times T1, T2 with cause-specific hazards distributed as Gamma(a1, b1) and
Weibull(a2, b2) respectively, then the equivalent mixture model would be specified by the con-
ditional distributions of T1|T1 < T2 and T2|T1 > T2, which wouldn’t have a standard form.
Instead this time can be computed using simulation, via sim.fmsm.

The function simfinal_fmsm wraps sim.fmsm to summarise the distribution of the time to
each absorbing state in a multi-state model, conditionally on that state occurring. If this is
applied to a competing-risks submodel for state r of a multi-state model, this simply produces
the time to the next state in the full model, since the absorbing states of the submodel define
the potential next states after state r.

This is done here to calculate the mean, median and interquartile range for the time to
BOS (given survival) and the time to death (given no BOS before death). The function also
produces estimates of the probability of each of these states, though as we saw in Section 2.6,
this is available more efficiently via pmatrix.fs. Note the number of simulated individuals
M can be increased for more accuracy, and optionally the B argument can be supplied to
obtain simulation-based confidence intervals around the estimates.

R> crfs_nobos <- fmsm(mod_nobos_bos, mod_nobos_death, trans = tmat_nobos)

R> simfinal_fmsm(crfs_nobos, probs = c(0.25, 0.5, 0.75), M=10000)

# A tibble: 10 x 3

state quantity val

<chr> <chr> <dbl>

1 BOS 25% 0.793

2 BOS 50% 2.26

3 BOS 75% 4.85

4 BOS mean 3.46

5 BOS prob 0.716

6 Death 25% 2.44

7 Death 50% 4.70

8 Death 75% 8.03

9 Death mean 5.81

10 Death prob 0.284
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2.8. Obtaining probabilities of, and times to, a final absorbing state

As the previous section mentioned, simfinal_fmsm can be applied to any multi-state model
with an absorbing state, to estimate the distribution of the time from the start of the process to
the absorbing state. If there are multiple absorbing states, it can also estimate the probability
that the individual ends up in each one. For the BOS model, there is only one absorbing
state, death, so the function returns a probability of 1 that the patient will eventually die,
and summaries of the distribution of the time from transplant to death.

R> simfinal_fmsm(crfs, probs = c(0.25, 0.5, 0.75), M=10000)

# A tibble: 5 x 3

state quantity val

<chr> <chr> <dbl>

1 State 3 25% 3.19

2 State 3 50% 5.67

3 State 3 75% 9.06

4 State 3 mean 6.70

5 State 3 prob 1

simfinal_fmsm requires a semi-Markov multi-state model, or a simple competing risks model,
constructed through fmsm. Though for a simple competing risks model, pmatrix.fs can be
used to get the probability of each competing state, as in 2.6.

3. Multi-state modelling using mixtures

3.1. Definitions

A “mixture” multi-state model, first described for competing risks models by Larson and
Dinse (1985) is described in terms of:

• the probability πrs that the next state after state r is state s

• the distribution of the time Trs from state r entry to state s entry, given that the next
state after r is state s.

In other words, the transition intensity is defined by

qrs(t) =

{

q∗
rs(t) if Ir = s

0 if Ir 6= s

where Ir is a latent categorical variable that determines which transition will happen next
for an individual in state r, governed by probabilities πr,s = P (Ir = s), with

∑

s∈Sr
πr,s = 1

over the potential next state Sr after state r. The transition intensity q∗
rs(t) is defined by

the hazard function of a parametric distribution that governs the time Srs from state r entry
until the transition to state s, given that this is the transition that occurs.
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The mixture model describes a mechanism where the transition that happens is determined
“in advance" at time zero, whereas in the cause-specific hazards model, the risks of different
events “compete" with each other as time proceeds. However, in practice, both models can
represent situations where individuals can experience any of the competing events. In the
mixture model, we only specify a distribution for the time to the event that happens first
among the competing risks, and do not model events that don’t occur. As discussed by Cox
(1959), if the time-to-event distributions are specified correctly in both frameworks, then they
can both represent the same process. In practice however, they will differ. As discussed in
Section 2.7, given a particular parametric form for a set of cause-specific hazards, the form of
the distribution for the minimum of the potential event times, the one that actually happens,
won’t be available. The main advantage of the mixture model is that it is parameterised in
terms of quantities that have an easy, direct interpretation.

In the mixture model, we specify a parametric distribution with density fr,s(|θr,s) (and CDF
Fr,s()) for the time of transition to state s for a person in state r, conditionally on this
transition being the one that occurs. We have data consisting of state transitions, indexed
by j, experienced by individuals i. This can either be

• an exact transition time: {yi,j , ri,j , si,j , δi,j = 1}, where a transition to state si,j is known
to occur at a time yi,j after entry to state ri,j .

• right censoring {yi,j , ri,j , δi,j = 2}, where an individual’s follow-up ends while they are
in state ri,j , at time yi,j after entering this state, thus the next state and the time of
transition to it are unknown.

Therefore, for an exact time of transition to a known state si,j , i.e. δi,j = 1, the likelihood
contribution is simply

li,j = πri,jsi,j
fri,j ,si,j

(yi,j |θri,j ,si,j
)

For observations j of right-censoring at yi,j , the state that the person will move to, and the
time of that transition, is unknown. Thus it is unknown which of the distributions fr,s the
transition time will obey, and the likelihood contribution is of the form of a mixture model,
that sums over the set Sr of potential next states after r:

li,j =
∑

s∈Sr

πri,js(1 − Fri,j ,s(yi,j |θri,j ,s))

3.2. Data for mixture competing risks models

The required data format for the mixture model is shown for the BOS data in the object
bosmx3. This has

• one row for each observed event time

• one row for each “end of follow-up" time where we know an individual was still at risk
of making a transition, but we don’t know which transition will occur.
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Recall that in the data bosms3 used to implement the cause-specific hazards model, a indi-
vidual “censored" at time t contributed a row in the data for each of the events that might
have occurred after t. The difference from bosmx3 is that for these individuals, bosmx3 only
has one row per “censored" individual. For example, patient 5 is censored at 11 years, when
they were still at risk of either BOS or death. Also we do not include censoring times for
events competing with events that were observed, e.g. when patient 4 below got BOS (state
2) at year 2, thus were “censored" at the same time for the transition from state 1 (no BOS)
to state 3 (death).

The process of transforming the cause-specific dataset to the mixture dataset is shown below.
Multiple censoring records, for different destination states, are condensed to a single censoring
record. Each row of bosmx3 then corresponds to a transition. A new column called event is
created, which should be a factor that identifies the terminal event of the transition, which
takes the value NA in cases of censoring where the transition that will happen is unknown.
Columns not needed for the mixture model are removed. Informative labels for the factor
levels of event are added to identify the states.

R> bosms3[bosms3$id %in% c(4,5),]

An object of class 'msdata'

Data:

id from to Tstart Tstop years status trans

10 4 1 2 0.000000 2.086242 2.086242 1 1

11 4 1 3 0.000000 2.086242 2.086242 0 2

12 4 2 3 2.086242 12.120465 10.034223 1 3

13 5 1 2 0.000000 10.976044 10.976044 0 1

14 5 1 3 0.000000 10.976044 10.976044 0 2

R> bosmx3 <- bosms3

R> bosmx3$Tstart <- bosmx3$Tstop <- bosmx3$trans <- NULL

R> bosmx3 <- bosmx3[!(bosmx3$status==0 & duplicated(paste(bosmx3$id, bosmx3$from))),]

R> bosmx3$event <- ifelse(bosmx3$status==0, NA, bosmx3$to)

R> bosmx3$event <- factor(bosmx3$event, labels=c("BOS","Death"))

R> bosmx3$to <- NULL

R> bosmx3[bosmx3$id %in% c(4,5),]

An object of class 'msdata'

Data:

id from years status event

10 4 1 2.086242 1 BOS

12 4 2 10.034223 1 Death

13 5 1 10.976044 0 <NA>
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3.3. Fitting mixture competing risks models

The flexsurvmix function fits a mixture model to competing risks data. To fit a full multi-
state mixture model, we fit one mixture competing risks model for each transient state in the
multi-state structure. The models are then grouped together (Section 3.5) to form the full
multi-state model.

The mixture model for the event following transplant (BOS or death before BOS, the 1-2
and 1-3 transitions in the multi-state structure) is fitted as follows. A Weibull distribution
is fitted for the time to BOS given BOS onset, and an exponential distribution is fitted for
the time to death given death before BOS onset. These distributions are specified in the
dists argument. The same distributions as in flexsurvreg are supported (including custom
distributions, in the same way).

R> bosfs <- flexsurvmix(Surv(years, status) ~ 1, event=event,

+ data=bosmx3[bosmx3$from==1,],

+ dists = c(BOS="weibull", Death="exponential"))

R> bosfs

Call:

flexsurvmix(formula = Surv(years, status) ~ 1, data = bosmx3[bosmx3$from ==

1, ], event = event, dists = c(BOS = "weibull", Death = "exponential"))

Estimates:

component dist terms est est.t se

1 BOS prob1 0.5889 NA 0.210

2 Death prob2 0.4111 -0.3596 0.210

3 BOS weibull shape 1.0474 0.0463 0.100

4 BOS weibull scale 2.5689 0.9435 0.155

5 Death exponential rate 0.0784 -2.5454 0.207

Log-likelihood = -401.4207, df = 4

AIC = 810.8414

The printed results object shows the two event probabilities πrs in the first two rows, and the
parameters of the time-to-event distributions in the remaining rows. The maximum likelihood
estimates are in column est, and estimates on a (multinomial) logit or log transformed scale
are in column est.t, with standard errors on the transformed scale in se.

Covariates can be included on the event probabilities through multinomial logistic regression.
For illustration, we just simulate some fake covariate data in the variable x. The log odds
ratio for this covariate on the odds of death (with the first category, BOS here, always taken
as the baseline) is shown in the row with terms labelled prob2(x).

R> set.seed(1)

R> bosmx3$x <- rnorm(nrow(bosmx3),0,1)

R> bosfsp <- flexsurvmix(Surv(years, status) ~ 1, event=event,

+ data=bosmx3[bosmx3$from==1,],

+ dists = c(BOS="weibull", Death="exponential"),
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+ pformula = ~ x)

R> bosfsp

Call:

flexsurvmix(formula = Surv(years, status) ~ 1, data = bosmx3[bosmx3$from ==

1, ], event = event, dists = c(BOS = "weibull", Death = "exponential"),

pformula = ~x)

Estimates:

component dist terms est est.t

1 BOS prob1 0.5837 NA

2 Death prob2 0.4163 -0.3378

3 Death prob2(x) -0.1221 -0.1221

4 BOS weibull shape 1.0530 0.0516

5 BOS weibull scale 2.5336 0.9296

6 Death exponential rate 0.0779 -2.5523

se

1 0.205

2 0.205

3 0.183

4 0.099

5 0.150

6 0.204

Log-likelihood = -401.1932, df = 5

AIC = 812.3865

Covariates may also be included on any parameter of any time-to-event distribution, as in
flexsurvreg. If the covariate is named on the right hand side of the Surv formula in the
first argument, then it is included on the location parameter of all distributions.

R> bosfst <- flexsurvmix(Surv(years, status) ~ x, event=event,

+ data=bosmx3[bosmx3$from==1,],

+ dists = c(BOS="weibull", Death="exponential"))

The first argument may be a list of formulae, to indicate that different covariates are included
on the location parameter for different events.

R> flexsurvmix(list(Surv(years, status) ~ x,

+ Surv(years, status) ~ 1),

+ event=event, data=bosmx3[bosmx3$from==1,],

+ dists = c(BOS="weibull", Death="exponential"))

Call:

flexsurvmix(formula = list(Surv(years, status) ~ x, Surv(years,

status) ~ 1), data = bosmx3[bosmx3$from == 1, ], event = event,
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dists = c(BOS = "weibull", Death = "exponential"))

Estimates:

component dist terms est est.t se

1 BOS prob1 0.5979 NA 0.227

2 Death prob2 0.4021 -0.3967 0.227

3 BOS weibull shape 1.0373 0.0366 0.103

4 BOS weibull scale 2.6705 0.9823 0.172

5 BOS weibull x -0.0981 -0.0981 0.132

6 Death exponential rate 0.0802 -2.5238 0.215

Log-likelihood = -401.1442, df = 5

AIC = 812.2884

An argument anc is used to supply covariates on ancillary parameters (e.g. shape parameters).
This must be a list of length matching the number of competing events, each component
being a named list in the format used for the anc argument in flexsurvreg. If there are no
covariates for a particular component, just specify a null formula on the location parameter
(as below, rate=~1).

R> flexsurvmix(Surv(years, status) ~ 1,

+ event=event, data=bosmx3[bosmx3$from==1,],

+ dists = c(BOS="weibull", Death="exponential"),

+ anc = list(BOS=list(shape=~x),

+ Death=list(rate=~1)))

Call:

flexsurvmix(formula = Surv(years, status) ~ 1, data = bosmx3[bosmx3$from ==

1, ], event = event, dists = c(BOS = "weibull", Death = "exponential"),

anc = list(BOS = list(shape = ~x), Death = list(rate = ~1)))

Estimates:

component dist terms est est.t se

1 BOS prob1 0.5898 NA 0.208

2 Death prob2 0.4102 -0.3633 0.208

3 BOS weibull shape 1.0413 0.0405 0.100

4 BOS weibull scale 2.5657 0.9422 0.152

5 BOS weibull shape(x) 0.0514 0.0514 0.102

6 Death exponential rate 0.0787 -2.5419 0.206

Log-likelihood = -401.2939, df = 5

AIC = 812.5877

3.4. Predictions from mixture competing risks models

A few functions have been supplied to extract estimates and confidence intervals for inter-
pretable quantities, for given covariate values. Here we extract estimates of various quantities
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for covariate values of x=0 and x=1. These values are provided in a data frame nd that will
be supplied as the newdata argument to various extractor functions.

The first extractor function probs_flexsurvmix gives the fitted event probabilities, by event
and covariate value. This is applied here to the fitted model bosfsp that included a covariate
on the event probabilities. All these functions take an argument B which specifies the number
of samples to use for calculating bootstrap-like confidence limits — increase this for more
accurate limits.

R> nd <- data.frame(x=c(0,1))

R> probs_flexsurvmix(bosfsp, newdata=nd, B=50)

# A tibble: 4 x 5

x event val lower upper

<dbl> <chr> <dbl> <dbl> <dbl>

1 0 BOS 0.584 0.482 0.680

2 0 Death 0.416 0.320 0.518

3 1 BOS 0.613 0.494 0.696

4 1 Death 0.387 0.304 0.506

mean_flexsurvmix extracts the mean time to each event conditionally on that event occur-
ring, from the mean of the fitted time-to-event distribution. quantile_flexsurvmix extracts
the quantiles of these distributions, e.g. the interquartile range in this example summarises
the variability between individuals for this time.

R> mean_flexsurvmix(bosfst, newdata=nd)

event x val

1 BOS 0 2.562386

1.1 Death 0 13.005489

2 BOS 1 2.410818

2.1 Death 1 9.429885

R> quantile_flexsurvmix(bosfst, B=50, newdata=nd, probs=c(0.25, 0.5, 0.75))

event p x val lower upper

1 BOS 0.25 0 0.7898311 0.5850319 1.113396

2 BOS 0.25 1 0.7431118 0.4994530 1.124525

1.1 BOS 0.50 0 1.8345086 1.3328861 2.365270

2.1 BOS 0.50 1 1.7259954 1.1782982 2.542817

1.2 BOS 0.75 0 3.5644760 2.4455657 4.836203

2.2 BOS 0.75 1 3.3536334 2.3152695 4.937997

1.3 Death 0.25 0 3.7414461 2.7042976 5.657102

2.3 Death 0.25 1 2.7128089 1.7079124 4.659759

1.1.1 Death 0.50 0 9.0147182 6.5157911 13.630340

2.1.1 Death 0.50 1 6.5362984 4.1150798 11.227320

1.2.1 Death 0.75 0 18.0294365 13.0315822 27.260679

2.2.1 Death 0.75 1 13.0725968 8.2301596 22.454640
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p_flexsurvmix extracts the probability of being in each of the states at a time t in the
future, shown for t = 5, 10 here. The startname argument supplies an informative name to
the “starting" state that the model bosfst describes transitions from.

R> p_flexsurvmix(bosfst, t=c(5, 10), B=10, startname="No BOS")

# A tibble: 6 x 6

t x state val lower upper

<dbl> <dbl> <chr> <dbl> <dbl> <dbl>

1 5 0 No BOS 0.360 0.317 0.411

2 5 0 BOS 0.510 0.446 0.558

3 5 0 Death 0.130 0.102 0.187

4 10 0 No BOS 0.199 0.142 0.251

5 10 0 BOS 0.582 0.517 0.626

6 10 0 Death 0.219 0.176 0.287

3.5. Forming a mixture multi-state model

We supplement the mixture model for the event following state 1 (no BOS) with a second
model bosfst_bos for the events following BOS (the other transient state in the multi-state
model). Although this is fitted with flexsurvmix, there is only one potential next state after
BOS, which is death, so internally this just fits a standard survival model using flexsurvreg.

The two mixture models are then coupled together using the fmixmsm function, which returns
an object containing the entire multi-state model, here named bosfmix. This object contains
attributes listing the potential pathways that an individual can take through the states. These
pathways are identified automatically by naming the arguments to fmixmsm with the label of
the state that each model describes transitions from — here the first model bosfst describes
transitions from “No BOS" and the second describes transitions from BOS. (Note we redefine
the event factor so that empty levels are dropped)

R> bdat <- bosmx3[bosmx3$from==2,]

R> bdat$event <- factor(bdat$event)

R> bosfst_bos <- flexsurvmix(Surv(years, status) ~ x, event=event, data=bdat,

+ dists = c(Death="exponential"))

R> bosfmix <- fmixmsm("No BOS"=bosfst, "BOS"=bosfst_bos)

Now we can predict outcomes from the full multi-state model. All these functions work by
simulating a large population of individuals from the model, by default M=10000, so increase
this for more accuracy. A cut-off time t=1000 is also applied to the simulated data that
assumes people have all reached the absorbing state by this time – increase this if necessary.
These functions currently require models to have at least one absorbing state, and no “cycles"
in their transition structure.

The function ppath_fmixmsm returns the probability of following each of the potential path-
ways through the model. For this example, they are the same for both covariate values x=0

and x=1. Setting final=TRUE aggregates the pathway probabilities by the final (absorbing)
state, returning the probability of ending in each of the potential final states, which is trivially
1 in this case for the single absorbing state of death.
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R> ppath_fmixmsm(bosfmix, B=20)

final pathway val lower upper

1 Death No BOS-BOS-Death 0.5917815 0.5313479 0.6827631

2 Death No BOS-Death 0.4082185 0.3172369 0.4686521

R> ppath_fmixmsm(bosfmix, B=20, final=TRUE)

final val lower upper

1 Death 1 1 1

To estimate the mean time to the final state for individuals following each pathway, use
meanfinal_fmixmsm, and for the quantiles of the distribution of this time over individuals
(by default the median and a 95% interval), use qfinal_fmixmsm. Supplying final=TRUE

in these functions summarises the mean time to the final state, averaged over all potential
pathways (according to the probability of following those pathways). Again, covariate values
can be supplied in the newdata argument if needed.

R> meanfinal_fmixmsm(bosfmix, B=10)

final pathway val lower upper

1 Death No BOS-BOS-Death 6.368014 5.963077 7.831323

2 Death No BOS-Death 13.005489 9.218586 15.975117

R> qfinal_fmixmsm(bosfmix, B=10)

pathway probs val lower upper

1 No BOS-BOS-Death 0.025 0.7519363 0.6641109 0.9695770

2 No BOS-BOS-Death 0.500 5.3042370 4.7615652 6.9108963

3 No BOS-BOS-Death 0.975 17.6039946 16.0993207 24.3280645

4 No BOS-Death 0.025 0.3192801 0.2237027 0.3978458

5 No BOS-Death 0.500 9.1410207 6.2659597 11.0128012

6 No BOS-Death 0.975 47.3588137 33.6342476 57.8299514

R> meanfinal_fmixmsm(bosfmix, B=10, final=TRUE)

final val lower upper

1 Death 9.077554 7.925123 11.52372

3.6. Goodness of fit checking

The fit of mixture competing risks models can be checked by comparing predictions of the
state occupancy probabilities (as returned by p_flexsurvmix) with nonparametric estimates
of these quantities (Aalen and Johansen 1978). This is only supported for models with
no covariates or only factor covariates (where subgroup-specific predictions are compared
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with stratified nonparametric estimates). The function ajfit_flexsurvmix derives these
estimates from both the mixture model and the Aalen-Johansen method, and collects them
in a tidy data frame ready for plotting, e.g. with the ggplot2 package.

The mixture models fit nicely here. A start argument is supplied to give an informative
label to the starting state in the plots. Note we are plotting not probability of being in a
state at time t, but the probability of having made the respective transition — here we are
checking the competing risks submodels one at time.

R> aj <- ajfit_flexsurvmix(bosfs, start="No BOS")

R> bosfs_bos <- flexsurvmix(Surv(years, status) ~ 1, event=event, data=bdat,

+ dists = c(Death="exponential"))

R> aj2 <- ajfit_flexsurvmix(bosfs_bos, start="BOS")

R> library(ggplot2)

R> ggplot(aj, aes(x=time, y=val, lty=model, col=state)) +

+ geom_line() +

+ xlab("Years after transplant") + ylab("Probability of having moved to state")
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R> ggplot(aj2, aes(x=time, y=val, lty=model, col=state)) +

+ xlab("Years after transplant") + ylab("Probability of having moved to state") +

+ geom_line()
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Checking against Aalen-Johansen estimates is also supported for cause-specific hazards models
that are grouped together using fmsm. Thus we can compare cause-specific hazards and
mixture models that have been fitted to the same data. We do this here for the fmsm object
crfs_nobos created in Section 2.6.

R> library(dplyr)

R>

R> aj3 <- ajfit_fmsm(crfs_nobos) %>%

+ filter(model=="Parametric") %>%

+ mutate(model = "Cause specific hazards") %>%

+ mutate(state = factor(state, labels=c("No BOS","BOS","Death"))) %>%

+ full_join(aj)

R>

R> ggplot(aj3, aes(x=time, y=val, lty=model, col=state)) +

+ xlab("Years after transplant") + ylab("Probability of having moved to state") +

+ geom_line()
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4. Comparison of frameworks for parametric multi-state modelling

As the mixture model is described by the probabilities of observable events and the times
to those events, it is somewhat easier to interpret then the cause-specific hazards model.
While those quantities can be computed under the cause-specific hazards model, they require
potentially-expensive simulation. An advantage of the cause-specific hazards model is that it
tends to be faster to fit, if the transition-specific models are fitted independently.

Another competing-risks modelling framework not implemented here is typically referred to
as subdistribution hazard modelling — essentially covariate effects are applied to the proba-
bilities of occupying different states at time t, rather than to the cause-specific hazards. This
leads to covariate effects that are easier to interpret compared to, e.g. cause-specific hazard
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ratios. The method has been implemented semiparametrically (Fine and Gray 1999) and
parametrically (Lambert et al. 2017).

A further framework referred to as “vertical" modelling (Nicolaie et al. 2010) involves fac-
torising the joint distribution of events and event times as P (time)P (event|time), whereas
the mixture modelling framework uses P (event)P (time|event).
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