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fromo-package Fast Robust Moments.

Description

Fast, numerically robust moments computations, along with computation of cumulants, running
means, etc.

Robust Moments

Welford described a method for ’robust’ one-pass computation of the standard deviation. By ’ro-
bust’, we mean robust to round-off caused by a large shift in the mean. This method was generalized
by Terriberry, and Bennett et. al. to the case of higher-order moments. This package provides those
algorithms for computing moments.

Generally we should find that the stock implementations of sd, skewness and so on are already
robust and likely using these algorithms under the hood. This package was written for a few reasons:

1. As an exercise to learn Rcpp.
2. Often I found I needed the first k moments. For example, when computing the Z-score, the

standard deviation and mean must be computed separately, which is inefficient. Similarly
Merten’s correction for the standard error of the Sharpe ratio uses the first four moments.
These are all computed as a side effect of computation of the kurtosis, but discarded by the
standard methods.
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Legal Mumbo Jumbo

fromo is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU Lesser General Public License for more details.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

This package was developed as an exercise in learning Rcpp.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

accessor Accessor methods.

Description

Access slot data from a centsums object.

Usage

sums(x)

## S4 method for signature 'centsums'
sums(x)

moments(x, type = c("central", "raw", "standardized"))

## S4 method for signature 'centsums'
moments(x, type = c("central", "raw", "standardized"))

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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Arguments

x a centsums object.

type the type of moment to compute.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

as.centcosums Coerce to a centcosums object.

Description

Convert data to a centcosums object.

Usage

as.centcosums(x, order=2, na.omit=TRUE)

## Default S3 method:
as.centcosums(x, order = 2, na.omit = TRUE)

Arguments

x a matrix.

order the order, defaulting to 2.

na.omit whether to remove rows with NA.

Details

Computes the raw cosums on data, and stuffs the results into a centcosums object.

Value

A centcosums object.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.
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Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

set.seed(123)
x <- matrix(rnorm(100*3),ncol=3)
cs <- as.centcosums(x, order=2)

as.centsums Coerce to a centsums object.

Description

Convert data to a centsums object.

Usage

as.centsums(x, order=3, na.rm=TRUE)

## Default S3 method:
as.centsums(x, order = 3, na.rm = TRUE)

Arguments

x a numeric, array, or matrix.

order the order, defaulting to length(sums)+1.

na.rm whether to remove NA.

Details

Computes the raw sums on data, and stuffs the results into a centsums object.

Value

A centsums object.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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Examples

set.seed(123)
x <- rnorm(1000)
cs <- as.centsums(x, order=5)

c.centcosums concatenate centcosums objects.

Description

Concatenate centcosums objects.

Usage

\method{c}{centcosums}(...)

Arguments

... centcosums objects

See Also

join_cent_cosums

c.centsums concatenate centsums objects.

Description

Concatenate centsums objects.

Usage

\method{c}{centsums}(...)

Arguments

... centsums objects

See Also

join_cent_sums
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cent2raw Convert between different types of moments, raw, central, standard-
ized.

Description

Given raw or central or standardized moments, convert to another type.

Usage

cent2raw(input)

Arguments

input a vector of the count, then the mean, then the 2 through k raw or central mo-
ments.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

centcosums-accessor Accessor methods.

Description

Access slot data from a centcosums object.

Usage

cosums(x)

## S4 method for signature 'centcosums'
cosums(x)

comoments(x, type = c("central", "raw"))

## S4 method for signature 'centcosums'
comoments(x, type = c("central", "raw"))
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Arguments

x a centcosums object.

type the type of moment to compute.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

centcosums-class centcosums Class.

Description

An S4 class to store (centered) cosums of data, and to support operations on the same.

Usage

## S4 method for signature 'centcosums'
initialize(.Object, cosums, order = NA_real_)

centcosums(cosums, order = NULL)

Arguments

.Object a centcosums object, or proto-object.

cosums the output of cent_cosums, say.

order the order, defaulting to 2.

Details

A centcosums object contains a multidimensional array (now only 2-diemnsional), as output by
cent_cosums.

Value

An object of class centcosums.

Slots

cosums a multidimensional array of the cosums.

order the maximum order. ignored for now.
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Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

See Also

cent_cosums

Examples

obj <- new("centcosums",cosums=cent_cosums(matrix(rnorm(100*3),ncol=3),max_order=2),order=2)

centsums-class centsums Class.

Description

An S4 class to store (centered) sums of data, and to support operations on the same.

Usage

## S4 method for signature 'centsums'
initialize(.Object, sums, order = NA_real_)

centsums(sums, order = NULL)

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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Arguments

.Object a centsums object, or proto-object.

sums a numeric vector.

order the order, defaulting to length(sums)+1.

Details

A centsums object contains a vector value of the data count, the mean, and the kth centered sum,
for k up to some maximum order.

Value

An object of class centsums.

Slots

sums a numeric vector of the sums.

order the maximum order.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

Examples

obj <- new("centsums",sums=c(1000,1.234,0.235),order=2)

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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cent_cosums Multivariate centered sums; join and unjoined.

Description

Compute, join, or unjoin multivariate centered (co-) sums.

Usage

cent_cosums(v, max_order = 2L, na_omit = FALSE)

cent_comoments(v, max_order = 2L, used_df = 0L, na_omit = FALSE)

join_cent_cosums(ret1, ret2)

unjoin_cent_cosums(ret3, ret2)

Arguments

v an m by n matrix, each row an independent observation of some n variate vari-
able.

max_order the maximum order of cosum to compute. For now this can only be 2; in the
future higher order cosums should be possible.

na_omit a boolean; if TRUE, then only rows of v with complete observations will be used.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.

ret1 a multdimensional array as output by cent_cosums.

ret2 a multdimensional array as output by cent_cosums.

ret3 a multdimensional array as output by cent_cosums.

Value

a multidimensional arry of dimension max_order, each side of length 1 + n. For the case currently
implemented where max_order must be 2, the output is a symmetric matrix, where the element
in the 1,1 position is the count of complete) rows of v, the 2:(n+1),1 column is the mean, and
the 2:(n+1),2:(n+1) is the co sums matrix, which is the covariance up to scaling by the count.
cent_comoments performs this normalization for you.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.
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Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

See Also

cent_sums

Examples

set.seed(1234)
x1 <- matrix(rnorm(1e3*5,mean=1),ncol=5)
x2 <- matrix(rnorm(1e3*5,mean=1),ncol=5)
max_ord <- 2L
rs1 <- cent_cosums(x1,max_ord)
rs2 <- cent_cosums(x2,max_ord)
rs3 <- cent_cosums(rbind(x1,x2),max_ord)
rs3alt <- join_cent_cosums(rs1,rs2)
stopifnot(max(abs(rs3 - rs3alt)) < 1e-7)
rs1alt <- unjoin_cent_cosums(rs3,rs2)
rs2alt <- unjoin_cent_cosums(rs3,rs1)
stopifnot(max(abs(rs1 - rs1alt)) < 1e-7)
stopifnot(max(abs(rs2 - rs2alt)) < 1e-7)

cent_sums Centered sums; join and unjoined.

Description

Compute, join, or unjoin centered sums.

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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Usage

cent_sums(v, max_order = 5L, na_rm = FALSE, wts = NULL,
check_wts = FALSE, normalize_wts = TRUE)

join_cent_sums(ret1, ret2)

unjoin_cent_sums(ret3, ret2)

Arguments

v a vector
max_order the maximum order of the centered moment to be computed.
na_rm whether to remove NA, false by default.
wts an optional vector of weights. Weights are ‘replication’ weights, meaning a

value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.

ret1 an ord + 1 vector as output by cent_sums consisting of the count, the mean,
then the k through ordth centered sum of some observations.

ret2 an ord + 1 vector as output by cent_sums consisting of the count, the mean,
then the k through ordth centered sum of some observations.

ret3 an ord + 1 vector as output by cent_sums consisting of the count, the mean,
then the k through ordth centered sum of some observations.

Value

a vector the same size as the input consisting of the adjusted version of the input. When there are
not sufficient (non-nan) elements for the computation, NaN are returned.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.
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Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

Examples

set.seed(1234)
x1 <- rnorm(1e3,mean=1)
x2 <- rnorm(1e3,mean=1)
max_ord <- 6L
rs1 <- cent_sums(x1,max_ord)
rs2 <- cent_sums(x2,max_ord)
rs3 <- cent_sums(c(x1,x2),max_ord)
rs3alt <- join_cent_sums(rs1,rs2)
stopifnot(max(abs(rs3 - rs3alt)) < 1e-7)
rs1alt <- unjoin_cent_sums(rs3,rs2)
rs2alt <- unjoin_cent_sums(rs3,rs1)
stopifnot(max(abs(rs1 - rs1alt)) < 1e-7)
stopifnot(max(abs(rs2 - rs2alt)) < 1e-7)

fromo-NEWS News for package ’fromo’:

Description

News for package ’fromo’

Version 0.2.1 (2019-01-29)

• fix memory leak for case where the mean only need be computed via a Welford object.

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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Version 0.2.0 (2019-01-12)

• add std_cumulants

• add running_sum, running_mean.

• Kahan compensated summation for these.

• Welford object under the hood.

• add weighted moments computation.

• add time-based running window computations.

• some speedups for obviously fast cases: no checking of NA, etc.

• move github figures to location CRAN understands.

Version 0.1.3 (2016-04-04)

• submit to CRAN

Initial Version 0.1.0 (2016-03-25)

• start work

running_apx_quantiles Compute approximate quantiles over a sliding window

Description

Computes cumulants up to some given order, then employs the Cornish-Fisher approximation to
compute approximate quantiles using a Gaussian basis.

Usage

running_apx_quantiles(v, p, window = NULL, wts = NULL, max_order = 5L,
na_rm = FALSE, min_df = 0L, used_df = 0, restart_period = 100L,
check_wts = FALSE, normalize_wts = TRUE)

running_apx_median(v, window = NULL, wts = NULL, max_order = 5L,
na_rm = FALSE, min_df = 0L, used_df = 0, restart_period = 100L,
check_wts = FALSE, normalize_wts = TRUE)

Arguments

v a vector

p the probability points at which to compute the quantiles. Should be in the range
(0,1).

window the window size. if given as finite integer or double, passed through. If NULL,
NA_integer_, NA_real_ or Inf are given, equivalent to an infinite window size.
If negative, an error will be thrown.
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wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

max_order the maximum order of the centered moment to be computed.

na_rm whether to remove NA, false by default.

min_df the minimum df to return a value, otherwise NaN is returned. This can be used
to prevent moments from being computed on too few observations. Defaults to
zero, meaning no restriction.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this param-
eter. Larger values mean fewer restarts and faster, though less accurate results.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.

Details

Computes the cumulants, then approximates quantiles using AS269 of Lee & Lin.

Value

A matrix, with one row for each element of x, and one column for each element of q.

Note

The current implementation is not as space-efficient as it could be, as it first computes the cumulants
for each row, then performs the Cornish-Fisher approximation on a row-by-row basis. In the future,
this computation may be moved earlier into the pipeline to be more space efficient. File an issue if
the memory footprint is an issue for you.

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.
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Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

See Also

t_running_apx_quantiles, running_cumulants, PDQutils::qapx_cf, PDQutils::AS269.

Examples

x <- rnorm(1e5)
xq <- running_apx_quantiles(x,c(0.1,0.25,0.5,0.75,0.9))
xm <- running_apx_median(x)

running_centered Compare data to moments computed over a sliding window.

Description

Computes moments over a sliding window, then adjusts the data accordingly, centering, or scaling,
or z-scoring, and so on.

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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Usage

running_centered(v, window = NULL, wts = NULL, na_rm = FALSE,
min_df = 0L, used_df = 1, lookahead = 0L, restart_period = 100L,
check_wts = FALSE, normalize_wts = FALSE)

running_scaled(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, lookahead = 0L, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

running_zscored(v, window = NULL, wts = NULL, na_rm = FALSE,
min_df = 0L, used_df = 1, lookahead = 0L, restart_period = 100L,
check_wts = FALSE, normalize_wts = TRUE)

running_sharpe(v, window = NULL, wts = NULL, na_rm = FALSE,
compute_se = FALSE, min_df = 0L, used_df = 1, restart_period = 100L,
check_wts = FALSE, normalize_wts = TRUE)

running_tstat(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

Arguments

v a vector

window the window size. if given as finite integer or double, passed through. If NULL,
NA_integer_, NA_real_ or Inf are given, equivalent to an infinite window size.
If negative, an error will be thrown.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

na_rm whether to remove NA, false by default.

min_df the minimum df to return a value, otherwise NaN is returned. This can be used
to prevent e.g. Z-scores from being computed on only 3 observations. Defaults
to zero, meaning no restriction, which can result in infinite Z-scores during the
burn-in period.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.
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lookahead for some of the operations, the value is compared to mean and standard deviation
possibly using ’future’ or ’past’ information by means of a non-zero lookahead.
Positive values mean data are taken from the future.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this param-
eter. Larger values mean fewer restarts and faster, though less accurate results.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.

compute_se for running_sharpe, return an extra column of the standard error, as computed
by Mertens’ correction.

Details

Given the length n vector x, for a given index i, define x(i) as the vector of xi−window+1, xi−window+2, ..., xi,
where we do not run over the ’edge’ of the vector. In code, this is essentially x[(max(1,i-window+1)):i].
Then define µi, σi and ni as, respectively, the sample mean, standard deviation and number of non-
NA elements in x(i).

We compute output vector m the same size as x. For the ’centered’ version of x, we have mi =
xi − µi. For the ’scaled’ version of x, we have mi = xi/σi. For the ’z-scored’ version of x, we
have mi = (xi − µi)/σi. For the ’t-scored’ version of x, we have mi =

√
niµi/σi.

We also allow a ’lookahead’ for some of these operations. If positive, the moments are computed
using data from larger indices; if negative, from smaller indices. Letting j = i+lookahead: For the
’centered’ version of x, we have mi = xi−µj . For the ’scaled’ version of x, we have mi = xi/σj .
For the ’z-scored’ version of x, we have mi = (xi − µj)/σj .

Value

a vector the same size as the input consisting of the adjusted version of the input. When there are
not sufficient (non-nan) elements for the computation, NaN are returned.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

See Also

t_running_centered, scale

Examples

if (require(moments)) {
set.seed(123)
x <- rnorm(5e1)
window <- 10L
rm1 <- t(sapply(seq_len(length(x)),function(iii) {

xrang <- x[max(1,iii-window+1):iii]
c(sd(xrang),mean(xrang),length(xrang)) },
simplify=TRUE))

rcent <- running_centered(x,window=window)
rscal <- running_scaled(x,window=window)
rzsco <- running_zscored(x,window=window)
rshrp <- running_sharpe(x,window=window)
rtsco <- running_tstat(x,window=window)
rsrse <- running_sharpe(x,window=window,compute_se=TRUE)
stopifnot(max(abs(rcent - (x - rm1[,2])),na.rm=TRUE) < 1e-12)
stopifnot(max(abs(rscal - (x / rm1[,1])),na.rm=TRUE) < 1e-12)
stopifnot(max(abs(rzsco - ((x - rm1[,2]) / rm1[,1])),na.rm=TRUE) < 1e-12)
stopifnot(max(abs(rshrp - (rm1[,2] / rm1[,1])),na.rm=TRUE) < 1e-12)
stopifnot(max(abs(rtsco - ((sqrt(rm1[,3]) * rm1[,2]) / rm1[,1])),na.rm=TRUE) < 1e-12)
stopifnot(max(abs(rsrse[,1] - rshrp),na.rm=TRUE) < 1e-12)

rm2 <- t(sapply(seq_len(length(x)),function(iii) {
xrang <- x[max(1,iii-window+1):iii]
c(kurtosis(xrang)-3.0,skewness(xrang)) },
simplify=TRUE))

mertens_se <- sqrt((1 + ((2 + rm2[,1])/4) * rshrp^2 - rm2[,2]*rshrp) / rm1[,3])
stopifnot(max(abs(rsrse[,2] - mertens_se),na.rm=TRUE) < 1e-12)

}

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
https://www.semanticscholar.org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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running_sd3 Compute first K moments over a sliding window

Description

Compute the (standardized) 2nd through kth moments, the mean, and the number of elements over
an infinite or finite sliding window, returning a matrix.

Usage

running_sd3(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

running_skew4(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

running_kurt5(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

running_sd(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

running_skew(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

running_kurt(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
used_df = 1, restart_period = 100L, check_wts = FALSE,
normalize_wts = TRUE)

running_cent_moments(v, window = NULL, wts = NULL, max_order = 5L,
na_rm = FALSE, max_order_only = FALSE, min_df = 0L, used_df = 0,
restart_period = 100L, check_wts = FALSE, normalize_wts = TRUE)

running_std_moments(v, window = NULL, wts = NULL, max_order = 5L,
na_rm = FALSE, min_df = 0L, used_df = 0, restart_period = 100L,
check_wts = FALSE, normalize_wts = TRUE)

running_cumulants(v, window = NULL, wts = NULL, max_order = 5L,
na_rm = FALSE, min_df = 0L, used_df = 0, restart_period = 100L,
check_wts = FALSE, normalize_wts = TRUE)
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Arguments

v a vector

window the window size. if given as finite integer or double, passed through. If NULL,
NA_integer_, NA_real_ or Inf are given, equivalent to an infinite window size.
If negative, an error will be thrown.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

na_rm whether to remove NA, false by default.

min_df the minimum df to return a value, otherwise NaN is returned. This can be used
to prevent moments from being computed on too few observations. Defaults to
zero, meaning no restriction.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this param-
eter. Larger values mean fewer restarts and faster, though less accurate results.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.

max_order the maximum order of the centered moment to be computed.

max_order_only for running_cent_moments, if this flag is set, only compute the maximum order
centered moment, and return in a vector.

Details

Computes the number of elements, the mean, and the 2nd through kth centered (and typically
standardized) moments, for k = 2, 3, 4. These are computed via the numerically robust one-pass
method of Bennett et. al.

Given the length n vector x, we output matrixM whereMi,j is the order−j+1 moment (i.e. excess
kurtosis, skewness, standard deviation, mean or number of elements) of xi−window+1, xi−window+2, ..., xi.
Barring NA or NaN, this is over a window of size window. During the ’burn-in’ phase, we take fewer
elements.
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Value

Typically a matrix, where the first columns are the kth, k-1th through 2nd standardized, centered
moments, then a column of the mean, then a column of the number of (non-nan) elements in the
input, with the following exceptions:

running_cent_moments Computes arbitrary order centered moments. When max_order_only is
set, only a column of the maximum order centered moment is returned.

running_std_moments Computes arbitrary order standardized moments, then the standard devia-
tion, the mean, and the count. There is not yet an option for max_order_only, but probably
should be.

running_cumulants Computes arbitrary order cumulants, and returns the kth, k-1th, through the
second (which is the variance) cumulant, then the mean, and the count.

Note

the kurtosis is excess kurtosis, with a 3 subtracted, and should be nearly zero for Gaussian input.

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

As this code may add and remove observations, numerical imprecision may result in negative esti-
mates of squared quantities, like the second or fourth moments. We do not currently correct for this
issue, although it may be somewhat mitigated by setting a smaller restart_period. In the future
we will add a check for this case. Post an issue if you experience this bug.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html
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org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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Examples

x <- rnorm(1e5)
xs3 <- running_sd3(x,10)
xs4 <- running_skew4(x,10)

if (require(moments)) {
set.seed(123)
x <- rnorm(5e1)
window <- 10L
kt5 <- running_kurt5(x,window=window)
rm1 <- t(sapply(seq_len(length(x)),function(iii) {

xrang <- x[max(1,iii-window+1):iii]
c(moments::kurtosis(xrang)-3.0,moments::skewness(xrang),
sd(xrang),mean(xrang),length(xrang)) },

simplify=TRUE))
stopifnot(max(abs(kt5 - rm1),na.rm=TRUE) < 1e-12)

}

xc6 <- running_cent_moments(x,window=100L,max_order=6L)

running_sum Compute sums or means over a sliding window.

Description

Compute the mean or sum over an infinite or finite sliding window, returning a vector the same size
as the input.

Usage

running_sum(v, window = NULL, wts = NULL, na_rm = FALSE,
restart_period = 10000L, check_wts = FALSE)

running_mean(v, window = NULL, wts = NULL, na_rm = FALSE, min_df = 0L,
restart_period = 10000L, check_wts = FALSE)

Arguments

v a vector.

window the window size. if given as finite integer or double, passed through. If NULL,
NA_integer_, NA_real_ or Inf are given, equivalent to an infinite window size.
If negative, an error will be thrown.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
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the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

na_rm whether to remove NA, false by default.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this parame-
ter. Larger values mean fewer restarts and faster, though potentially less accurate
results. Unlike in the computation of even order moments, loss of precision is
unlikely to be disastrous, so the default value is rather large.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

min_df the minimum df to return a value, otherwise NaN is returned, only for the means
computation. This can be used to prevent moments from being computed on too
few observations. Defaults to zero, meaning no restriction.

Details

Computes the mean or sum of the elements, using a Kahan’s Compensated Summation Algorithm,
a numerically robust one-pass method.

Given the length n vector x, we output matrixM whereMi,1 is the sum or mean of xi−window+1, xi−window+2, ..., xi.
Barring NA or NaN, this is over a window of size window. During the ’burn-in’ phase, we take fewer
elements. If fewer than min_df for running_mean, returns NA.

Value

A vector the same size as the input.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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Examples

x <- rnorm(1e5)
xs <- running_sum(x,10)
xm <- running_mean(x,100)

sd3 Compute first K moments

Description

Compute the (standardized) 2nd through kth moments, the mean, and the number of elements.

Usage

sd3(v, na_rm = FALSE, wts = NULL, sg_df = 1, check_wts = FALSE,
normalize_wts = TRUE)

skew4(v, na_rm = FALSE, wts = NULL, sg_df = 1, check_wts = FALSE,
normalize_wts = TRUE)

kurt5(v, na_rm = FALSE, wts = NULL, sg_df = 1, check_wts = FALSE,
normalize_wts = TRUE)

cent_moments(v, max_order = 5L, used_df = 0L, na_rm = FALSE, wts = NULL,
check_wts = FALSE, normalize_wts = TRUE)

std_moments(v, max_order = 5L, used_df = 0L, na_rm = FALSE, wts = NULL,
check_wts = FALSE, normalize_wts = TRUE)

cent_cumulants(v, max_order = 5L, used_df = 0L, na_rm = FALSE,
wts = NULL, check_wts = FALSE, normalize_wts = TRUE)

std_cumulants(v, max_order = 5L, used_df = 0L, na_rm = FALSE,
wts = NULL, check_wts = FALSE, normalize_wts = TRUE)

http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
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https://doi.org/10.1145/363707.363723
https://en.wikipedia.org/w/index.php?title=Kahan_summation_algorithm&oldid=777164752
https://en.wikipedia.org/w/index.php?title=Kahan_summation_algorithm&oldid=777164752
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Arguments

v a vector

na_rm whether to remove NA, false by default.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

sg_df the number of degrees of freedom consumed in the computation of the variance
or standard deviation. This defaults to 1 to match the ‘Bessel correction’.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.

max_order the maximum order of the centered moment to be computed.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.

Details

Computes the number of elements, the mean, and the 2nd through kth centered standardized mo-
ment, for k = 2, 3, 4. These are computed via the numerically robust one-pass method of Bennett
et. al. In general they will not match exactly with the ’standard’ implementations, due to differences
in roundoff.

These methods are reasonably fast, on par with the ’standard’ implementations. However, they will
usually be faster than calling the various standard implementations more than once.

Moments are computed as follows, given some values xi and optional weights wi, defaulting to 1,
the weighted mean is computed as

µ =

∑
i xiwi∑
wi

.

The weighted kth central sum is computed as

µ =
∑
i

(xi − µ)k wi.

Let n =
∑

i wi be the sum of weights (or number of observations in the unweighted case). Then
the weighted kth central moment is computed as that weighted sum divided by the adjusted sum
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weights:

µk =

∑
i (xi − µ)

k
wi

n− ν
,

where ν is the ‘used df’, provided by the user to adjust the denominator. (Typical values are 0 or
1.) The weighted kth standardized moment is the central moment divided by the second central
moment to the k/2 power:

µ̃k =
µk

µ
k/2
2

.

The (centered) rth cumulant, for r ≥ 2 is then computed using the formula of Willink, namely

κr = µr −
r−2∑
j=0

(
r − 1

j

)
µjκr − j.

The standardized rth cumulant is the rth centered cumulant divided by µr/2
2 .

Value

a vector, filled out as follows:

sd3 A vector of the (sample) standard devation, mean, and number of elements (or the total weight
when wts are given).

skew4 A vector of the (sample) skewness, standard devation, mean, and number of elements (or
the total weight when wts are given).

kurt5 A vector of the (sample) excess kurtosis, skewness, standard devation, mean, and number of
elements (or the total weight when wts are given).

cent_moments A vector of the (sample) kth centered moment, then k − 1th centered moment, ...,
then the variance, the mean, and number of elements (total weight when wts are given).

std_moments A vector of the (sample) kth standardized (and centered) moment, then k − 1th, ...,
then standard devation, mean, and number of elements (total weight).

cent_cumulants A vector of the (sample) kth (centered, but this is redundant) cumulant, then the
k− 1th, ..., then the variance (which is the second cumulant), then the mean, then the number
of elements (total weight).

std_cumulants A vector of the (sample) kth standardized (and centered, but this is redundant)
cumulant, then the k−1th, ..., down to the third, then the variance, the mean, then the number
of elements (total weight).

Note

The first centered (and standardized) moment is often defined to be identically 0. Instead cent_moments
and std_moments returns the mean. Similarly, the second standardized moments defined to be iden-
tically 1; std_moments instead returns the standard deviation. The reason is that a user can always
decide to ignore the results and fill in a 0 or 1 as they need, but could not efficiently compute the
mean and standard deviation from scratch if we discard it. The antepenultimate element of the out-
put of std_cumulants is not a one, even though that ‘should’ be the standardized second cumulant.

The antepenultimate element of the output of cent_moments, cent_cumulants and std_cumulants
is the variance, not the standard deviation. All other code return the standard deviation in that place.
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The kurtosis is excess kurtosis, with a 3 subtracted, and should be nearly zero for Gaussian input.

The term ’centered cumulants’ is redundant. The intent was to avoid possible collision with existing
code named ’cumulants’.

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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Willink, R. "Relationships Between Central Moments and Cumulants, with Formulae for the Central
Moments of Gamma Distributions." Communications in Statistics - Theory and Methods, 32 no 4
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Examples

x <- rnorm(1e5)
sd3(x)[1] - sd(x)
skew4(x)[4] - length(x)
skew4(x)[3] - mean(x)
skew4(x)[2] - sd(x)
if (require(moments)) {

skew4(x)[1] - skewness(x)
}

# check 'robustness'; only the mean should change:
kurt5(x + 1e12) - kurt5(x)
# check speed
if (require(microbenchmark) && require(moments)) {

dumbk <- function(x) { c(kurtosis(x) - 3.0,skewness(x),sd(x),mean(x),length(x)) }

http://people.xiph.org/~tterribe/notes/homs.html
http://people.xiph.org/~tterribe/notes/homs.html
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http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/standard_deviation.html
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation
https://doi.org/10.1081/STA-120018823
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set.seed(1234)
x <- rnorm(1e6)
print(kurt5(x) - dumbk(x))
microbenchmark(dumbk(x),kurt5(x),times=10L)

}
y <- std_moments(x,6)
cml <- cent_cumulants(x,6)
std <- std_cumulants(x,6)

# check that skew matches moments::skewness
if (require(moments)) {

set.seed(1234)
x <- rnorm(1000)
resu <- fromo::skew4(x)

msku <- moments::skewness(x)
stopifnot(abs(msku - resu[1]) < 1e-14)

}

# check skew vs e1071 skewness, which has a different denominator
if (require(e1071)) {

set.seed(1234)
x <- rnorm(1000)
resu <- fromo::skew4(x)

esku <- e1071::skewness(x,type=3)
nobs <- resu[4]
stopifnot(abs(esku - resu[1] * ((nobs-1)/nobs)^(3/2)) < 1e-14)

# similarly:
resu <- fromo::std_moments(x,max_order=3,used_df=0)
stopifnot(abs(esku - resu[1] * ((nobs-1)/nobs)^(3/2)) < 1e-14)

}

show Show a centsums object.

Description

Displays the centsums object.

Usage

show(object)

## S4 method for signature 'centsums'
show(object)
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Arguments

object a centsums object.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

set.seed(123)
x <- rnorm(1000)
obj <- as.centsums(x, order=5)
obj

t_running_apx_quantiles

Compute approximate quantiles over a sliding time window

Description

Computes cumulants up to some given order, then employs the Cornish-Fisher approximation to
compute approximate quantiles using a Gaussian basis.

Usage

t_running_apx_quantiles(v, p, time = NULL, time_deltas = NULL,
window = NULL, wts = NULL, lb_time = NULL, max_order = 5L,
na_rm = FALSE, min_df = 0L, used_df = 0, restart_period = 100L,
variable_win = FALSE, wts_as_delta = TRUE, check_wts = FALSE,
normalize_wts = TRUE)

t_running_apx_median(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, max_order = 5L, na_rm = FALSE,
min_df = 0L, used_df = 0, restart_period = 100L, variable_win = FALSE,
wts_as_delta = TRUE, check_wts = FALSE, normalize_wts = TRUE)
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Arguments

v a vector of data.

p the probability points at which to compute the quantiles. Should be in the range
(0,1).

time an optional vector of the timestamps of v. If given, must be the same length as
v. If not given, we try to infer it by summing the time_deltas.

time_deltas an optional vector of the deltas of timestamps. If given, must be the same length
as v. If not given, and wts are given and wts_as_delta is true, we take the wts
as the time deltas. The deltas must be positive. We sum them to arrive at the
times.

window the window size, in time units. if given as finite integer or double, passed
through. If NULL, NA_integer_, NA_real_ or Inf are given, and variable_win
is true, then we infer the window from the lookback times: the first window is in-
finite, but the remaining is the deltas between lookback times. If variable_win
is false, then these undefined values are equivalent to an infinite window. If
negative, an error will be thrown.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

lb_time a vector of the times from which lookback will be performed. The output should
be the same size as this vector. If not given, defaults to time.

max_order the maximum order of the centered moment to be computed.

na_rm whether to remove NA, false by default.

min_df the minimum df to return a value, otherwise NaN is returned. This can be used
to prevent moments from being computed on too few observations. Defaults to
zero, meaning no restriction.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this param-
eter. Larger values mean fewer restarts and faster, though less accurate results.

variable_win if true, and the window is not a concrete number, the computation window be-
comes the time between lookback times.

wts_as_delta if true and the time and time_deltas are not given, but wts are given, we take
wts as the time_deltas.
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check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.

Details

Computes the cumulants, then approximates quantiles using AS269 of Lee & Lin.

Value

A matrix, with one row for each element of x, and one column for each element of q.

Time Windowing

This function supports time (or other counter) based running computation. Here the input are the
data xi, and optional weights vectors, wi, defaulting to 1, and a vector of time indices, ti of the
same length as x. The times must be non-decreasing:

t1 ≤ t2 ≤ . . .

It is assumed that t0 = −∞. The window, W is now a time-based window. An optional set of
lookback times are also given, bj , which may have different length than the x and w. The output
will correspond to the lookback times, and should be the same length. The jth output is computed
over indices i such that

bj −W < ti ≤ bj .

For comparison functions (like Z-score, rescaling, centering), which compare values of xi to local
moments, the lookbacks may not be given, but a lookahead L is admitted. In this case, the jth
output is computed over indices i such that

tj −W + L < ti ≤ tj + L.

If the times are not given, ‘deltas’ may be given instead. If δi are the deltas, then we compute the
times as

ti =
∑

1≤j≤i

δj .

The deltas must be the same length as x. If times and deltas are not given, but weights are given
and the ‘weights as deltas’ flag is set true, then the weights are used as the deltas.

Some times it makes sense to have the computational window be the space between lookback times.
That is, the jth output is to be computed over indices i such that

bj−1 −W < ti ≤ bj .

This can be achieved by setting the ‘variable window’ flag true and setting the window to null.
This will not make much sense if the lookback times are equal to the times, since each moment
computation is over a set of a single index, and most moments are underdefined.
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Note

The current implementation is not as space-efficient as it could be, as it first computes the cumulants
for each row, then performs the Cornish-Fisher approximation on a row-by-row basis. In the future,
this computation may be moved earlier into the pipeline to be more space efficient. File an issue if
the memory footprint is an issue for you.

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

See Also

running_apx_quantiles, t_running_cumulants, PDQutils::qapx_cf, PDQutils::AS269.

Examples

x <- rnorm(1e5)
xq <- t_running_apx_quantiles(x,c(0.1,0.25,0.5,0.75,0.9),

time=seq_along(x),window=200,lb_time=c(100,200,400))

xq <- t_running_apx_median(x,time=seq_along(x),window=200,lb_time=c(100,200,400))
xq <- t_running_apx_median(x,time=cumsum(runif(length(x),min=0.5,max=1.5)),

window=200,lb_time=c(100,200,400))

# weighted median?
wts <- runif(length(x),min=1,max=5)
xq <- t_running_apx_median(x,wts=wts,wts_as_delta=TRUE,window=1000,lb_time=seq(1000,10000,by=1000))
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# these should give the same answer:
xr <- running_apx_median(x,window=200);
xt <- t_running_apx_median(x,time=seq_along(x),window=199.99)

t_running_centered Compare data to moments computed over a time sliding window.

Description

Computes moments over a sliding window, then adjusts the data accordingly, centering, or scaling,
or z-scoring, and so on.

Usage

t_running_centered(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, na_rm = FALSE, min_df = 0L, used_df = 1, lookahead = 0,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_scaled(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, na_rm = FALSE, min_df = 0L, used_df = 1, lookahead = 0,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_zscored(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, na_rm = FALSE, min_df = 0L, used_df = 1, lookahead = 0,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_sharpe(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, compute_se = FALSE,
min_df = 0L, used_df = 1, restart_period = 100L, variable_win = FALSE,
wts_as_delta = TRUE, check_wts = FALSE, normalize_wts = TRUE)

t_running_tstat(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, compute_se = FALSE,
min_df = 0L, used_df = 1, restart_period = 100L, variable_win = FALSE,
wts_as_delta = TRUE, check_wts = FALSE, normalize_wts = TRUE)

Arguments

v a vector of data.

time an optional vector of the timestamps of v. If given, must be the same length as
v. If not given, we try to infer it by summing the time_deltas.
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time_deltas an optional vector of the deltas of timestamps. If given, must be the same length
as v. If not given, and wts are given and wts_as_delta is true, we take the wts
as the time deltas. The deltas must be positive. We sum them to arrive at the
times.

window the window size, in time units. if given as finite integer or double, passed
through. If NULL, NA_integer_, NA_real_ or Inf are given, and variable_win
is true, then we infer the window from the lookback times: the first window is in-
finite, but the remaining is the deltas between lookback times. If variable_win
is false, then these undefined values are equivalent to an infinite window. If
negative, an error will be thrown.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

na_rm whether to remove NA, false by default.

min_df the minimum df to return a value, otherwise NaN is returned. This can be used
to prevent e.g. Z-scores from being computed on only 3 observations. Defaults
to zero, meaning no restriction, which can result in infinite Z-scores during the
burn-in period.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.

lookahead for some of the operations, the value is compared to mean and standard deviation
possibly using ’future’ or ’past’ information by means of a non-zero lookahead.
Positive values mean data are taken from the future. This is in time units, and so
should be a real.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this param-
eter. Larger values mean fewer restarts and faster, though less accurate results.

variable_win if true, and the window is not a concrete number, the computation window be-
comes the time between lookback times.

wts_as_delta if true and the time and time_deltas are not given, but wts are given, we take
wts as the time_deltas.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.
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lb_time a vector of the times from which lookback will be performed. The output should
be the same size as this vector. If not given, defaults to time.

compute_se for running_sharpe, return an extra column of the standard error, as computed
by Mertens’ correction.

Details

Given the length n vector x, for a given index i, define x(i) as the elements of x defined by the sliding
time window (see the section on time windowing). Then define µi, σi and ni as, respectively, the
sample mean, standard deviation and number of non-NA elements in x(i).

We compute output vector m the same size as x. For the ’centered’ version of x, we have mi =
xi − µi. For the ’scaled’ version of x, we have mi = xi/σi. For the ’z-scored’ version of x, we
have mi = (xi − µi)/σi. For the ’t-scored’ version of x, we have mi =

√
niµi/σi.

We also allow a ’lookahead’ for some of these operations. If positive, the moments are computed
using data from larger indices; if negative, from smaller indices.

Value

a vector the same size as the input consisting of the adjusted version of the input. When there are
not sufficient (non-nan) elements for the computation, NaN are returned.

Time Windowing

This function supports time (or other counter) based running computation. Here the input are the
data xi, and optional weights vectors, wi, defaulting to 1, and a vector of time indices, ti of the
same length as x. The times must be non-decreasing:

t1 ≤ t2 ≤ . . .

It is assumed that t0 = −∞. The window, W is now a time-based window. An optional set of
lookback times are also given, bj , which may have different length than the x and w. The output
will correspond to the lookback times, and should be the same length. The jth output is computed
over indices i such that

bj −W < ti ≤ bj .

For comparison functions (like Z-score, rescaling, centering), which compare values of xi to local
moments, the lookbacks may not be given, but a lookahead L is admitted. In this case, the jth
output is computed over indices i such that

tj −W + L < ti ≤ tj + L.

If the times are not given, ‘deltas’ may be given instead. If δi are the deltas, then we compute the
times as

ti =
∑

1≤j≤i

δj .

The deltas must be the same length as x. If times and deltas are not given, but weights are given
and the ‘weights as deltas’ flag is set true, then the weights are used as the deltas.
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Some times it makes sense to have the computational window be the space between lookback times.
That is, the jth output is to be computed over indices i such that

bj−1 −W < ti ≤ bj .

This can be achieved by setting the ‘variable window’ flag true and setting the window to null.
This will not make much sense if the lookback times are equal to the times, since each moment
computation is over a set of a single index, and most moments are underdefined.

Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

References

Terriberry, T. "Computing Higher-Order Moments Online." http://people.xiph.org/~tterribe/
notes/homs.html

J. Bennett, et. al., "Numerically Stable, Single-Pass, Parallel Statistics Algorithms," Proceedings
of IEEE International Conference on Cluster Computing, 2009. https://www.semanticscholar.
org/paper/Numerically-stable-single-pass-parallel-statistics-Bennett-Grout/a83ed72a5ba86622d5eb6395299b46d51c901265

Cook, J. D. "Accurately computing running variance." http://www.johndcook.com/standard_
deviation.html

Cook, J. D. "Comparing three methods of computing standard deviation." http://www.johndcook.
com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation

See Also

running_centered, scale
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t_running_sd3 Compute first K moments over a sliding time-based window

Description

Compute the (standardized) 2nd through kth moments, the mean, and the number of elements over
an infinite or finite sliding time based window, returning a matrix.

Usage

t_running_sd3(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L, used_df = 1,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_skew4(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L, used_df = 1,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_kurt5(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L, used_df = 1,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_sd(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L, used_df = 1,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_skew(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L, used_df = 1,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_kurt(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L, used_df = 1,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_cent_moments(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, max_order = 5L, na_rm = FALSE,
max_order_only = FALSE, min_df = 0L, used_df = 0,
restart_period = 100L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE, normalize_wts = TRUE)

t_running_std_moments(v, time = NULL, time_deltas = NULL, window = NULL,
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wts = NULL, lb_time = NULL, max_order = 5L, na_rm = FALSE,
min_df = 0L, used_df = 0, restart_period = 100L, variable_win = FALSE,
wts_as_delta = TRUE, check_wts = FALSE, normalize_wts = TRUE)

t_running_cumulants(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, max_order = 5L, na_rm = FALSE,
min_df = 0L, used_df = 0, restart_period = 100L, variable_win = FALSE,
wts_as_delta = TRUE, check_wts = FALSE, normalize_wts = TRUE)

Arguments

v a vector of data.
time an optional vector of the timestamps of v. If given, must be the same length as

v. If not given, we try to infer it by summing the time_deltas.
time_deltas an optional vector of the deltas of timestamps. If given, must be the same length

as v. If not given, and wts are given and wts_as_delta is true, we take the wts
as the time deltas. The deltas must be positive. We sum them to arrive at the
times.

window the window size, in time units. if given as finite integer or double, passed
through. If NULL, NA_integer_, NA_real_ or Inf are given, and variable_win
is true, then we infer the window from the lookback times: the first window is in-
finite, but the remaining is the deltas between lookback times. If variable_win
is false, then these undefined values are equivalent to an infinite window. If
negative, an error will be thrown.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

lb_time a vector of the times from which lookback will be performed. The output should
be the same size as this vector. If not given, defaults to time.

na_rm whether to remove NA, false by default.
min_df the minimum df to return a value, otherwise NaN is returned. This can be used

to prevent moments from being computed on too few observations. Defaults to
zero, meaning no restriction.

used_df the number of degrees of freedom consumed, used in the denominator of the
centered moments computation. These are subtracted from the number of ob-
servations.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this param-
eter. Larger values mean fewer restarts and faster, though less accurate results.
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variable_win if true, and the window is not a concrete number, the computation window be-
comes the time between lookback times.

wts_as_delta if true and the time and time_deltas are not given, but wts are given, we take
wts as the time_deltas.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.

normalize_wts a boolean for whether the weights should be renormalized to have a mean value
of 1. This mean is computed over elements which contribute to the moments, so
if na_rm is set, that means non-NA elements of wts that correspond to non-NA
elements of the data vector.

max_order the maximum order of the centered moment to be computed.

max_order_only for running_cent_moments, if this flag is set, only compute the maximum order
centered moment, and return in a vector.

Details

Computes the number of elements, the mean, and the 2nd through kth centered (and typically
standardized) moments, for k = 2, 3, 4. These are computed via the numerically robust one-pass
method of Bennett et. al.

Given the length n vector x, we output matrix M where Mi,j is the order − j + 1 moment (i.e.
excess kurtosis, skewness, standard deviation, mean or number of elements) of some elements xi
defined by the sliding time window. Barring NA or NaN, this is over a window of time width window.

Value

Typically a matrix, where the first columns are the kth, k-1th through 2nd standardized, centered
moments, then a column of the mean, then a column of the number of (non-nan) elements in the
input, with the following exceptions:

t_running_cent_moments Computes arbitrary order centered moments. When max_order_only
is set, only a column of the maximum order centered moment is returned.

t_running_std_moments Computes arbitrary order standardized moments, then the standard de-
viation, the mean, and the count. There is not yet an option for max_order_only, but probably
should be.

t_running_cumulants Computes arbitrary order cumulants, and returns the kth, k-1th, through the
second (which is the variance) cumulant, then the mean, and the count.

Time Windowing

This function supports time (or other counter) based running computation. Here the input are the
data xi, and optional weights vectors, wi, defaulting to 1, and a vector of time indices, ti of the
same length as x. The times must be non-decreasing:

t1 ≤ t2 ≤ . . .

It is assumed that t0 = −∞. The window, W is now a time-based window. An optional set of
lookback times are also given, bj , which may have different length than the x and w. The output
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will correspond to the lookback times, and should be the same length. The jth output is computed
over indices i such that

bj −W < ti ≤ bj .

For comparison functions (like Z-score, rescaling, centering), which compare values of xi to local
moments, the lookbacks may not be given, but a lookahead L is admitted. In this case, the jth
output is computed over indices i such that

tj −W + L < ti ≤ tj + L.

If the times are not given, ‘deltas’ may be given instead. If δi are the deltas, then we compute the
times as

ti =
∑

1≤j≤i

δj .

The deltas must be the same length as x. If times and deltas are not given, but weights are given
and the ‘weights as deltas’ flag is set true, then the weights are used as the deltas.

Some times it makes sense to have the computational window be the space between lookback times.
That is, the jth output is to be computed over indices i such that

bj−1 −W < ti ≤ bj .

This can be achieved by setting the ‘variable window’ flag true and setting the window to null.
This will not make much sense if the lookback times are equal to the times, since each moment
computation is over a set of a single index, and most moments are underdefined.

Note

the kurtosis is excess kurtosis, with a 3 subtracted, and should be nearly zero for Gaussian input.

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

As this code may add and remove observations, numerical imprecision may result in negative esti-
mates of squared quantities, like the second or fourth moments. We do not currently correct for this
issue, although it may be somewhat mitigated by setting a smaller restart_period. In the future
we will add a check for this case. Post an issue if you experience this bug.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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See Also

running_sd3.

Examples

x <- rnorm(1e5)
xs3 <- t_running_sd3(x,time=seq_along(x),window=10)
xs4 <- t_running_skew4(x,time=seq_along(x),window=10)
# but what if you only cared about some middle values?
xs4 <- t_running_skew4(x,time=seq_along(x),lb_time=(length(x) / 2) + 0:10,window=20)

t_running_sum Compute sums or means over a sliding time window.

Description

Compute the mean or sum over an infinite or finite sliding time window, returning a vector the same
size as the lookback times.

Usage

t_running_sum(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L,
restart_period = 10000L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE)

t_running_mean(v, time = NULL, time_deltas = NULL, window = NULL,
wts = NULL, lb_time = NULL, na_rm = FALSE, min_df = 0L,
restart_period = 10000L, variable_win = FALSE, wts_as_delta = TRUE,
check_wts = FALSE)
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Arguments

v a vector.

time an optional vector of the timestamps of v. If given, must be the same length as
v. If not given, we try to infer it by summing the time_deltas.

time_deltas an optional vector of the deltas of timestamps. If given, must be the same length
as v. If not given, and wts are given and wts_as_delta is true, we take the wts
as the time deltas. The deltas must be positive. We sum them to arrive at the
times.

window the window size, in time units. if given as finite integer or double, passed
through. If NULL, NA_integer_, NA_real_ or Inf are given, and variable_win
is true, then we infer the window from the lookback times: the first window is in-
finite, but the remaining is the deltas between lookback times. If variable_win
is false, then these undefined values are equivalent to an infinite window. If
negative, an error will be thrown.

wts an optional vector of weights. Weights are ‘replication’ weights, meaning a
value of 2 is shorthand for having two observations with the corresponding v
value. If NULL, corresponds to equal unit weights, the default. Note that weights
are typically only meaningfully defined up to a multiplicative constant, meaning
the units of weights are immaterial, with the exception that methods which check
for minimum df will, in the weighted case, check against the sum of weights. For
this reason, weights less than 1 could cause NA to be returned unexpectedly due
to the minimum condition. When weights are NA, the same rules for checking
v are applied. That is, the observation will not contribute to the moment if the
weight is NA when na_rm is true. When there is no checking, an NA value will
cause the output to be NA.

lb_time a vector of the times from which lookback will be performed. The output should
be the same size as this vector. If not given, defaults to time.

na_rm whether to remove NA, false by default.

min_df the minimum df to return a value, otherwise NaN is returned, only for the means
computation. This can be used to prevent moments from being computed on too
few observations. Defaults to zero, meaning no restriction.

restart_period the recompute period. because subtraction of elements can cause loss of preci-
sion, the computation of moments is restarted periodically based on this parame-
ter. Larger values mean fewer restarts and faster, though potentially less accurate
results. Unlike in the computation of even order moments, loss of precision is
unlikely to be disastrous, so the default value is rather large.

variable_win if true, and the window is not a concrete number, the computation window be-
comes the time between lookback times.

wts_as_delta if true and the time and time_deltas are not given, but wts are given, we take
wts as the time_deltas.

check_wts a boolean for whether the code shall check for negative weights, and throw an
error when they are found. Default false for speed.
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Details

Computes the mean or sum of the elements, using a Kahan’s Compensated Summation Algorithm,
a numerically robust one-pass method.

Given the length n vector x, we output matrix M where Mi,1 is the sum or mean of some elements
xi defined by the sliding time window. Barring NA or NaN, this is over a window of time width
window.

Value

A vector the same size as the lookback times.

Time Windowing

This function supports time (or other counter) based running computation. Here the input are the
data xi, and optional weights vectors, wi, defaulting to 1, and a vector of time indices, ti of the
same length as x. The times must be non-decreasing:

t1 ≤ t2 ≤ . . .

It is assumed that t0 = −∞. The window, W is now a time-based window. An optional set of
lookback times are also given, bj , which may have different length than the x and w. The output
will correspond to the lookback times, and should be the same length. The jth output is computed
over indices i such that

bj −W < ti ≤ bj .

For comparison functions (like Z-score, rescaling, centering), which compare values of xi to local
moments, the lookbacks may not be given, but a lookahead L is admitted. In this case, the jth
output is computed over indices i such that

tj −W + L < ti ≤ tj + L.

If the times are not given, ‘deltas’ may be given instead. If δi are the deltas, then we compute the
times as

ti =
∑

1≤j≤i

δj .

The deltas must be the same length as x. If times and deltas are not given, but weights are given
and the ‘weights as deltas’ flag is set true, then the weights are used as the deltas.

Some times it makes sense to have the computational window be the space between lookback times.
That is, the jth output is to be computed over indices i such that

bj−1 −W < ti ≤ bj .

This can be achieved by setting the ‘variable window’ flag true and setting the window to null.
This will not make much sense if the lookback times are equal to the times, since each moment
computation is over a set of a single index, and most moments are underdefined.
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Note

The moment computations provided by fromo are numerically robust, but will often not provide
the same results as the ’standard’ implementations, due to differences in roundoff. We make every
attempt to balance speed and robustness. User assumes all risk from using the fromo package.

Note that when weights are given, they are treated as replication weights. This can have subtle
effects on computations which require minimum degrees of freedom, since the sum of weights will
be compared to that minimum, not the number of data points. Weight values (much) less than 1 can
cause computations to return NA somewhat unexpectedly due to this condition, while values greater
than one might cause the computation to spuriously return a value with little precision.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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Examples

x <- rnorm(1e5)
xs <- t_running_sum(x,time=seq_along(x),window=10)
xm <- t_running_mean(x,time=cumsum(runif(length(x))),window=7.3)
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unconcatenate centcosums objects.

Description

Unconcatenate centcosums objects.
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Usage

## S4 method for signature 'centcosums,centcosums'
x %-% y

Arguments

x a centcosums objects

y a centcosums objects

See Also

unjoin_cent_cosums

%-% unconcatenate centsums objects.

Description

Unconcatenate centsums objects.

Usage

x %-% y

## S4 method for signature 'centsums,centsums'
x %-% y

Arguments

x a centsums objects

y a centsums objects

See Also

unjoin_cent_sums
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