Package 'gLRTH'

January 22, 2018

Type Package
Title Genome-Wide Association and Linkage Analysis under Heterogeneity
Version 0.2.0
Description Likelihood ratio tests for genome-wide association and genome-wide linkage analysis under heterogeneity.
Depends R (>= 3.4.0)
License GPL-3
LazyData true
Suggests knitr, rmarkdown
RoxygenNote 6.0.1
NeedsCompilation no
Author Xiaoxia Han [aut, cre], Yongzhao Shao [aut]
Maintainer Xiaoxia Han <xh414@nyu.edu></xh414@nyu.edu>
Repository CRAN
Date/Publication 2018-01-22 13:34:44 UTC

R topics documented:

	gLRTH_A	2
	gLRTH_L	3
Index		5

gLRTH_A

The function for the likelihood ratio test for genome-wide association under genetic heterogeneity with genotype frequencies as input values

Description

We consider a binary trait and focus on detecting association with disease at a single locus with two alleles A and a. The likelihood ratio test is based on a binomial mixture model of J components $(J \ge 2)$ for diseased cases:

$$P_{\eta}(X_D = g) = \sum_{j=1}^{J} \alpha_j B_2(g, \theta_j), \ g = 0, 1, 2, \ J \ge 2, \ \sum_{j=1}^{J} \alpha_j = 1, \ \theta_j, \alpha_j \in (0, 1),$$

where $\eta = (\eta_j)_{j \leq J}, \eta_j = (\theta_j, \alpha_j)^T, j = 1, \dots, J, B_2(g, \theta_j)$ is the probability mass function for a binomial distribution $X \sim Bin(2, \theta_j)$, and $\theta_i = \theta_j$ if and only if i = j. θ_j is the probability of having the allele of interest on one chromosome for a subgroup of case j. In particular, J is likely to be quite large for many of the complex disease with genetic heterogeneity. Note that the LRT-H can be applied to association studies without the need to know the exact value of J while allowing $J \geq 2$.

Usage

gLRTH_A(n0, n1, n2, m0, m1, m2)

Arguments

n0	AA genotype frequency in case
n1	Aa genotype frequency in case
n2	aa genotype frequency in case
mØ	AA genotype frequency in control
m1	Aa genotype frequency in control
m2	aa genotype frequency in control

Value

The test statistic and asymptotic p-value for the likelihood ratio test for GWAS under genetic heterogeneity

Author(s)

Xiaoxia Han and Yongzhao Shao

References

Qian M., Shao Y. (2013) A Likelihood Ratio Test for Genome-Wide Association under Genetic Heterogeneity. Annals of Human Genetics, 77(2): 174-182.

gLRTH_L

Examples

gLRTH_A(n0=2940, n1=738, n2=53, m0=3601, m1=1173, m2=117)

gLRTH_L

The function for the likelihood ratio test for genetic linkage under transmission heterogeneity

Description

We consider a binary trait and focus on detecting a transmission heterogeneity at a single locus with two alleles A and a. We consider independent families each with one marker homozygous (AA) parent, one marker heterozygous parent (Aa) and two diseased children. This likelihood ratio test is to test transmission heterogeneity of preferential transmission of marker allele "a" to an affected child based on a binomial mixture model with J components $(J \ge 2)$,

$$P_{\eta}(X_D = g) = \sum_{j=1}^{J} \alpha_j B_2(g, \theta_j), \ g = 0, 1, 2, \ J \ge 2, \ \sum_{j=1}^{J} \alpha_j = 1, \ \theta_j, \alpha_j \in (0, 1),$$

where $\eta = (\eta_j)_{j \leq J}, \eta_j = (\theta_j, \alpha_j)^T, j = 1, \dots, J, B_2(g, \theta_j)$ is the probability mass function for a binomial distribution $X \sim Bin(2, \theta_j)$, and $\theta_i = \theta_j$ if and only if i = j. θ_j is the probability of transmission of the allele of interest in a subgroup of families j. In particular, J is likely to be quite large for many of the complex disease under transmission heterogeneity. Note that this LRT can be applied to genome-wide linkage analysis without the need to know the exact value of J while allowing $J \geq 2$.

Usage

gLRTH_L(n0, n1, n2)

Arguments

nØ	Number of affected sibling pairs both of which inherited A from their heterozy- gous parent Aa
n1	Number of affected sibling pairs which one inherited A and the other inherited a from their heterozygous parent Aa
n2	Number of affected sibling pairs both of which inherited a from their heterozy- gous parent Aa

Value

The test statistic and asymptotic p-value for the likelihood ratio test for linkage analysis under genetic heterogeneity

Author(s)

Xiaoxia Han and Yongzhao Shao

References

Shao Y. (2014) Linkage analysis, originally published in Encyclopedia of Quantitative Risk Analysis and Assessment, John Wiley & Sons, Ltd, USA, 2008, and republished in Wiley StatsRef: Statistics Reference Online 2014.

Examples

gLRTH_L(n0=100, n1=70, n2=30)

Index

gLRTH_A, 2 gLRTH_L, 3