
Package ‘gRain’
April 3, 2022

Version 1.3.9

Title Graphical Independence Networks

Author Søren Højsgaard <sorenh@math.aau.dk>

Maintainer Søren Højsgaard <sorenh@math.aau.dk>

Description Probability propagation in graphical independence networks, also
known as Bayesian networks or probabilistic expert systems. Documentation
of the package is provided in vignettes included in the package and in
the paper by Højsgaard (2012, <doi:10.18637/jss.v046.i10>).
See 'citation(``gRain'')' for details.

License GPL (>= 2)

Depends R (>= 3.6.0), methods, gRbase (>= 1.8.6.6)

Suggests microbenchmark, knitr, testthat (>= 2.1.0)

Imports graph, Rgraphviz, igraph, stats4, magrittr, Rcpp (>= 0.11.1)

URL https://people.math.aau.dk/~sorenh/software/gR/

Encoding UTF-8

VignetteBuilder knitr

LinkingTo Rcpp (>= 0.11.1), RcppArmadillo, RcppEigen, gRbase

ByteCompile Yes

RoxygenNote 7.1.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-04-03 21:20:02 UTC

R topics documented:
chest . 2
components_extract . 3
components_gather . 5
cpt-update . 6
cptable . 7

1

https://doi.org/10.18637/jss.v046.i10
https://people.math.aau.dk/~sorenh/software/gR/

2 chest

evidence_object . 9
finding . 11
generics . 12
grain-main . 13
grain-simulate . 16
grain_compile . 17
grain_evidence . 18
grain_jevidence . 20
grain_predict . 22
grain_propagate . 23
grass . 25
load-save-hugin . 25
logical . 27
mendel . 28
querygrain . 29
repeatPattern . 30

Index 33

chest Chest clinic example

Description

Conditional probability tables for the chest clinic example.

Usage

data(chest_cpt)

Format

An object of class list of length 8.

Examples

'data' generated with the following code fragment
yn <- c("yes", "no")
a <- cptable(~asia, values=c(1,99),levels=yn)
t.a <- cptable(~tub|asia, values=c(5,95,1,99),levels=yn)
s <- cptable(~smoke, values=c(5,5), levels=yn)
l.s <- cptable(~lung|smoke, values=c(1,9,1,99), levels=yn)
b.s <- cptable(~bronc|smoke, values=c(6,4,3,7), levels=yn)
e.lt <- cptable(~either|lung:tub,values=c(1,0,1,0,1,0,0,1),levels=yn)
x.e <- cptable(~xray|either, values=c(98,2,5,95), levels=yn)
d.be <- cptable(~dysp|bronc:either, values=c(9,1,7,3,8,2,1,9), levels=yn)

grain(compileCPT(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))

components_extract 3

'data' generated from
chest_cpt <- list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)

data(chest_cpt)

components_extract Extract conditional probabilities and clique potentials from data.

Description

Extract list of conditional probability tables and list of clique potentials from data.

Usage

extractCPT(data_, graph, smooth = 0)

extractPOT(data_, graph, smooth = 0)

extractMARG(data_, graph, smooth = 0)

marg2pot(mg)

pot2marg(pt)

Arguments

data_ A named array or a dataframe.

graph A graphNEL object or a list or formula which can be turned into a graphNEL
object by calling ug or dag. For extractCPT, graph must be/define a DAG
while for extractPOT, graph must be/define undirected triangulated graph.

smooth See ’details’ below.

mg An object of class marg_rep

pt An object of class pot_rep

Details

If smooth is non-zero then smooth is added to all cell counts before normalization takes place.

Value

• extractCPT: A list of conditional probability tables.

• extractPOT: A list of clique potentials.

• extractMARG: A list of clique marginals.

4 components_extract

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

compileCPT, compilePOT, grain

Examples

Extract cpts / clique potentials from data and graph
specification and create network. There are different ways:

data(lizard, package="gRbase")

DAG: height <- species -> diam
daG <- dag(~species + height:species + diam:species)

UG : [height:species][diam:species]
uG <- ug(~height:species + diam:species)

pt <- extractPOT(lizard, ~height:species + diam:species)
cp <- extractCPT(lizard, ~species + height:species + diam:species)

pt
cp

Both specify the same probability distribution
tabListMult(pt) %>% as.data.frame.table
tabListMult(cp) %>% as.data.frame.table

Not run:
Bayesian networks can be created as
bn.uG <- grain(pt)
bn.daG <- grain(cp)

The steps above are wrapped into a convenience method which
builds a network from at graph and data.
bn.uG <- grain(uG, data=lizard)
bn.daG <- grain(daG, data=lizard)

End(Not run)

https://www.jstatsoft.org/v46/i10/

components_gather 5

components_gather Compile conditional probability tables / cliques potentials.

Description

Compile conditional probability tables / cliques potentials as a preprocessing step for creating a
graphical independence network

Usage

compileCPT(x, ..., forceCheck = TRUE)

compilePOT(x, ..., forceCheck = TRUE)

parse_cpt(xi)

Arguments

x To compileCPT x is a list of conditional probability tables; to compilePOT, x is
a list of clique potentials.

... Additional arguments; currently not used.

forceCheck Controls if consistency checks of the probability tables should be made.

xi cpt in some representation

Details

* `compileCPT` is relevant for turning a collection of
cptable's into an object from which a network can be built. For
example, when specification of a cpt is made with cptable then
the levels of the node is given but not the levels of the
parents. `compileCPT` checks that the levels of variables in
the cpt's are consistent and also that the specifications
define a dag.

* `compilePOT` is not of direct relevance for the
user for the moment. However, the elements of the input should
be arrays which define a chordal undirected graph and the
arrays should, if multiplied, form a valid probability density.

Value

A list with a class attribute.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

6 cpt-update

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

extractCPT, extractPOT, extractMARG

Examples

data(chest_cpt)
x <- compileCPT(chest_cpt)
class(x)
grain(x)

FIXME: compileCPT/compilePOT examples missing.

cpt-update Update components of Bayesian network

Description

Update components of Bayesian network.

Usage

setCPT(object, value)

S3 method for class 'cpt_grain'
setCPT(object, value)

Arguments

object A grain object.

value A named list, see examples below.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

grain, propagate, triangulate, rip, junctionTree

https://www.jstatsoft.org/v46/i10/
https://www.jstatsoft.org/v46/i10/

cptable 7

Examples

See the wet grass example at
https://en.wikipedia.org/wiki/Bayesian_network

yn <- c("yes", "no")
p.R <- cptable(~R, values=c(.2, .8), levels=yn)
p.S_R <- cptable(~S:R, values=c(.01, .99, .4, .6), levels=yn)
p.G_SR <- cptable(~G:S:R, values=c(.99, .01, .8, .2, .9, .1, 0, 1), levels=yn)

x <- compileCPT(p.R, p.S_R, p.G_SR)
x
wet.bn <- grain(x)

getgrain(wet.bn, "cpt")
getgrain(wet.bn, "cpt")$R
getgrain(wet.bn, "cpt")$S

Now update some cpt's
wet.bn2 <- setCPT(wet.bn, list(R=c(.3, .7), S=c(.1, .9, .7, .3)))

getgrain(wet.bn2, "cpt")$R
getgrain(wet.bn2, "cpt")$S

cptable Create conditional probability tables (CPTs)

Description

Creates conditional probability tables of the form p(v|pa(v)).

Usage

cptable(vpar, levels = NULL, values = NULL, normalize = TRUE, smooth = 0)

Arguments

vpar Specifications of the names in P(v|pa1,...pak). See section ’details’ for informa-
tion about the form of the argument.

levels See ’details’ below.

values Probabilities; recycled if necessary. Regarding the order, please see section ’de-
tails’ and the examples.

normalize See ’details’ below.

smooth See ’details’ below.

8 cptable

Details

If normalize=TRUE then the probabilities are normalized to sum to one for each configuration of
the parents.

If smooth is non–zero then zero entries of values are replaced with smooth before normalization
takes place.

Regarding the form of the argument vpar: To specify P (a|b, c) one may write ~a|b:c, ~a:b:c,
~a|b+c, ~a+b+c or c("a","b","c"). Internally, the last form is used. Notice that the + and :
operator is used as a separator only. The order of the variables IS important so the operators DO
NOT commute.

If a has levels a1,a2 and likewise for b and c then the order of values corresponds to the config-
urations (a1,b1,c1), (a2,b1,c1) (a1,b2,c1), (a2,b2,c1) etc. That is, the first variable varies
fastest. Hence the first two elements in values will be the conditional probabilities of a given
b=b1,c=c1.

Value

A cptable object (a numeric vector with various attributes).

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

andtable, ortable, extractCPT, compileCPT, extractPOT, compilePOT, grain, parray

Examples

See the wet grass example at
https://en.wikipedia.org/wiki/Bayesian_network

yn <- c("yes", "no")
p.R <- cptable(~R, values=c(.2, .8), levels=yn)
p.S_R <- cptable(~S:R, values=c(.01, .99, .4, .6), levels=yn)
p.G_SR <- cptable(~G:S:R, values=c(.99, .01, .8, .2, .9, .1, 0, 1), levels=yn)

or
ssp <- list(R=yn, S=yn, G=yn) # state space
p.R <- cptable(~R, values=c(.2, .8), levels=ssp)
p.S_R <- cptable(~S:R, values=c(.01, .99, .4, .6), levels=ssp)
p.G_SR <- cptable(~G:S:R, values=c(.99, .01, .8, .2, .9, .1, 0, 1), levels=ssp)

https://www.jstatsoft.org/v46/i10/

evidence_object 9

components above are "intermediate representations" and are turned into arrays with
wet.cpt <- compileCPT(p.R, p.S_R, p.G_SR)
wet.cpt
wet.cpt$S # etc

A Bayesian network is created with:
wet.bn <- grain(wet.cpt)

Can also create arrays directly
Not run:
ssp <- list(R=yn, S=yn, G=yn) # state space
p.R <- c(.2, .8)
p.S_R <- c(.01, .99, .4, .6)
p.G_SR <- c(.99, .01, .8, .2, .9, .1, 0, 1)
dim(p.R) <- 2
dimnames(p.R) <- ssp["R"]
dim(p.S_R) <- c(2, 2)
dimnames(p.S_R) <- ssp[c("S", "R")]
dim(p.G_SR) <- c(2, 2, 2)
dimnames(p.G_SR) <- ssp[c("G", "S", "R")]

Arrays can be created (easier?) with parray() from gRbase
p.R <- parray("R", levels=ssp, values=c(.2, .8))
p.S_R <- parray(c("S", "R"), levels = ssp, values=c(.01, .99, .4, .6))
p.G_SR <- parray(~ G:S:R, levels = ssp, values=c(.99, .01, .8, .2, .9, .1, 0, 1))

End(Not run)

evidence_object Evidence objects

Description

Functions for defining and manipulating evidence.

Usage

new_ev(evi.list = NULL, levels)

is.null_ev(object)

S3 method for class 'grain_ev'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

setdiff_ev(ev1, ev2)

union_ev(ev1, ev2)

10 evidence_object

Arguments

evi.list A named list with evidence; see ’examples’ below.

levels A named list with the levels of all variables.

object Some R object.

x An evidence object.

row.names Not used.

optional Not used.

... Not used.

ev1, ev2 Evidence.

Details

Evidence is specified as a list. Internally, evidence is represented as a grain evidence object which
is a list with 4 elements.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

Examples

Define the universe

uni <- list(asia = c("yes", "no"), tub = c("yes", "no"), smoke = c("yes", "no"),
lung = c("yes", "no"), bronc = c("yes", "no"), either = c("yes", "no"),
xray = c("yes", "no"), dysp = c("yes", "no"))

e1 <- list(dysp="no", xray="no")
eo1 <- new_ev(e1, levels=uni)
eo1
as.data.frame(eo1)
eo1 %>% str

e1.2 <- list(dysp="no", xray=c(0, 1))
eo1.2 <- new_ev(e1.2, levels=uni)
eo1.2

Notice that in eo1.2, xray is not regarded as hard
evidence but as a weight on each level. Other than that, eo1.2
and eo1 are equivalent here. This is used in connection
with specifying likelihood evidence.

e2 <- list(dysp="yes", asia="yes")
eo2 <- new_ev(e2, uni)

If evidence 'e1' is already set in the network and new evidence
'e2' emerges, the evidence in the network must be updated. But
there is a conflict in that dysp="yes" in 'e1' and

finding 11

dysp="no" in 'e2'. The (arbitrary) convention is that
existsting evidence overrides new evidence so that the only new
evidence in 'e2' is really asia="yes".

To subtract existing evidence from new evidence we can do:
setdiff_ev(eo2, eo1)

Likewise the 'union' is
union_ev(eo2, eo1)

finding Set, retrieve, and retract finding in Bayesian network.

Description

Set, retrieve, and retract finding in Bayesian network. NOTICE: The functions described here are
kept only for backward compatibility; please use the corresponding evidence-functions in the future.

Usage

setFinding(object, nodes = NULL, states = NULL, flist = NULL, propagate = TRUE)

Arguments

object A "grain" object

nodes A vector of nodes

states A vector of states (of the nodes given by ’nodes’)

flist An alternative way of specifying findings, see examples below.

propagate Should the network be propagated?

Note

NOTICE: The functions described here are kept only for backward compatibility; please use the
corresponding evidence-functions in the future:

setEvidence() is an improvement of setFinding() (and as such setFinding is obsolete). Users
are recommended to use setEvidence() in the future.

setEvidence() allows to specification of "hard evidence" (specific values for variables) and likeli-
hood evidence (also known as virtual evidence) for variables.

The syntax of setEvidence() may change in the future.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

12 generics

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

setEvidence, getEvidence, retractEvidence, pEvidence, querygrain

Examples

setFindings
yn <- c("yes", "no")
a <- cptable(~asia, values=c(1,99),levels=yn)
t.a <- cptable(~tub+asia, values=c(5,95,1,99),levels=yn)
s <- cptable(~smoke, values=c(5,5), levels=yn)
l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)
e.lt <- cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),levels=yn)
x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)
chest.cpt <- compileCPT(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)
chest.bn <- grain(chest.cpt)

These two forms are equivalent
bn1 <- setFinding(chest.bn, nodes=c("chest", "xray"), states=c("yes", "yes"))
bn2 <- setFinding(chest.bn, flist=list(c("chest", "yes"), c("xray", "yes")))

getFinding(bn1)
getFinding(bn2)

pFinding(bn1)
pFinding(bn2)

bn1 <- retractFinding(bn1, nodes="asia")
bn2 <- retractFinding(bn2, nodes="asia")

getFinding(bn1)
getFinding(bn2)

pFinding(bn1)
pFinding(bn2)

generics gRain generics

https://www.jstatsoft.org/v46/i10/

grain-main 13

Description

Generic functions etc for the gRain package

Usage

nodeNames(x)

S3 method for class 'grain'
nodeNames(x)

nodeStates(x, nodes = nodeNames(x))

S3 method for class 'grain'
nodeStates(x, nodes = nodeNames(x))

universe(object, ...)

S3 method for class 'grain'
universe(object, ...)

S3 method for class 'grainEvidence_'
varNames(x)

S3 method for class 'grain'
rip(object, ...)

S3 method for class 'cpt_spec'
vpar(object, ...)

S3 method for class 'cpt_grain'
vpar(object, ...)

Arguments

x, object A relevant object.

nodes Some nodes of the object.

... Additional arguments; currently not used.

grain-main Graphical Independence Network

Description

Creating grain objects (graphical independence network).

14 grain-main

Usage

grain(x, ...)

S3 method for class 'cpt_spec'
grain(x, control = list(), smooth = 0, compile = TRUE, details = 0, ...)

S3 method for class 'CPTspec'
grain(x, control = list(), smooth = 0, compile = TRUE, details = 0, ...)

S3 method for class 'pot_spec'
grain(x, control = list(), smooth = 0, compile = TRUE, details = 0, ...)

S3 method for class 'graphNEL'
grain(
x,
control = list(),
smooth = 0,
compile = TRUE,
details = 0,
data = NULL,
...

)

S3 method for class 'dModel'
grain(
x,
control = list(),
smooth = 0,
compile = TRUE,
details = 0,
data = NULL,
...

)

Arguments

x An argument to build an independence network from. Typically a list of condi-
tional probability tables, a DAG or an undirected graph. In the two latter cases,
data must also be provided.

... Additional arguments, currently not used.

control A list defining controls, see ’details’ below.

smooth A (usually small) number to add to the counts of a table if the grain is built from
a graph plus a dataset.

compile Should network be compiled.

details Debugging information.

data An optional data set (currently must be an array/table)

grain-main 15

Details

If ’smooth’ is non-zero then entries of ’values’ which a zero are replaced by the value of ’smooth’ -
BEFORE any normalization takes place.

Value

An object of class "grain"

Note

A change from earlier versions of this package is that grain objects are now compiled upon creation.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

cptable, compile.grain, propagate.grain, setFinding, setEvidence, getFinding, pFinding,
retractFinding, extractCPT, extractPOT, compileCPT, compilePOT

Examples

Asia (chest clinic) network created from conditional probability tables

yn <- c("yes", "no")
a <- cptable(~asia, values=c(1,99), levels=yn)
t.a <- cptable(~tub+asia, values=c(5,95,1,99), levels=yn)
s <- cptable(~smoke, values=c(5,5), levels=yn)
l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)
e.lt <- cptable(~either+lung+tub, values=c(1,0,1,0,1,0,0,1), levels=yn)
x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)
chest.cpt <- compileCPT(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)
chest.bn <- grain(chest.cpt)

Create network from data and graph specification.

There are different ways; see documentation in the "See all"
links.

data(lizard, package="gRbase")
DAG: height <- species -> diam
daG <- dag(~species + height:species + diam:species)

https://www.jstatsoft.org/v46/i10/

16 grain-simulate

UG : [height:species][diam:species]
uG <- ug(~height:species + diam:species)

bn.uG <- grain(uG, data=lizard)
bn.daG <- grain(daG, data=lizard)

grain-simulate Simulate from an independence network

Description

Simulate data from an independence network.

Usage

S3 method for class 'grain'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object An independence network.
nsim Number of cases to simulate.
seed An optional integer controlling the random number generatation.
... Not used.

Value

A data frame

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

Examples

tf <- system.file("huginex", "chest_clinic.net", package = "gRain")

chest <- loadHuginNet(tf, details=1)
simulate(chest,n=10)

chest2 <- setFinding(chest, c("VisitToAsia", "Dyspnoea"),
c("yes", "yes"))

simulate(chest2, n=10)

https://www.jstatsoft.org/v46/i10/

grain_compile 17

grain_compile Compile a graphical independence network (a Bayesian network)

Description

Compiles a Bayesian network. This means creating a junction tree and establishing clique poten-
tials; ; refer to the reference below for details.

Usage

S3 method for class 'grain'
compile(
object,
propagate = FALSE,
root = NULL,
control = object$control,
details = 0,
...

)

Arguments

object A grain object.

propagate If TRUE the network is also propagated meaning that the cliques of the junction
tree are calibrated to each other.

root A set of variables which must be in the root of the junction tree

control Controlling the compilation process.

details For debugging info. Do not use.

... Currently not used.

Value

A compiled Bayesian network; an object of class grain.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

grain, propagate, propagate.grain, triangulate, rip, junctionTree

https://www.jstatsoft.org/v46/i10/

18 grain_evidence

grain_evidence Set, update and remove evidence.

Description

Set, update and remove evidence.

Usage

setEvidence(
object,
nodes = NULL,
states = NULL,
evidence = NULL,
nslist = NULL,
propagate = TRUE,
details = 0

)

retractEvidence(object, nodes = NULL, propagate = TRUE)

absorbEvidence(object, propagate = TRUE)

pEvidence(object)

getEvidence(object)

evidence(object)

S3 method for class 'grain'
evidence(object)

evidence(object) <- value

S3 replacement method for class 'grain'
evidence(object) <- value

Arguments

object A "grain" object

nodes A vector of nodes; those nodes for which the (conditional) distribution is re-
quested.

states A vector of states (of the nodes given by ’nodes’)

evidence An alternative way of specifying findings (evidence), see examples below.

nslist deprecated

grain_evidence 19

propagate Should the network be propagated?

details Debugging information

value The evidence in the form of a named list or an evidence-object.

Value

A list of tables with potentials.

Note

setEvidence() is an improvement of setFinding() (and as such setFinding is obsolete). Users
are recommended to use setEvidence() in the future.

setEvidence() allows to specification of "hard evidence" (specific values for variables) and likeli-
hood evidence (also known as virtual evidence) for variables.

The syntax of setEvidence() may change in the future.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

setFinding, getFinding, retractFinding, pFinding

Examples

data(chest_cpt)
chest.bn <- grain(compileCPT(chest_cpt))
chest.bn <- compile(chest.bn)

1) These two forms are identical
setEvidence(chest.bn, c("asia", "xray"), c("yes", "yes"))
setFinding(chest.bn, c("asia", "xray"), c("yes", "yes"))

2) Suppose we do not know with certainty whether a patient has
recently been to Asia. We can then introduce a new variable
"guess.asia" with "asia" as its only parent. Suppose
p(guess.asia=yes|asia=yes)=.8 and p(guess.asia=yes|asia=no)=.1
If the patient is e.g. unusually tanned we may set
guess.asia=yes and propagate.
##
This corresponds to modifying the model by the likelihood (0.8,
0.1) as

https://www.jstatsoft.org/v46/i10/

20 grain_jevidence

setEvidence(chest.bn, c("asia", "xray"), list(c(0.8, 0.1), "yes"))

3) Hence, the same result as in 1) can be obtained with
setEvidence(chest.bn, c("asia", "xray"), list(c(1, 0), "yes"))

4) An alternative specification using evidence is
setEvidence(chest.bn, evidence=list(asia=c(1, 0), xray="yes"))

grain_jevidence Set joint evidence in grain objects

Description

Setting and removing joint evidence in grain objects.

Usage

setJEvidence(object, evidence = NULL, propagate = TRUE, details = 0)

retractJEvidence(object, items = NULL, propagate = TRUE, details = 0)

new_jev(ev, levels)

Arguments

object A "grain" object.

evidence A list of evidence. Each element is a named array.

propagate Should evidence be absorbed once entered; defaults to TRUE.

details Amount of printing; for debugging.

items Items in the evidence list to be removed. Here, NULL means remove everything,
0 means nothing is removed. Otherwise items is a numeric vector.

ev A named list.

levels A named list.

Note

All the joint evidence functionality should be used with great care.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

grain_jevidence 21

Examples

data(chest_cpt)
chest.bn <- grain(compileCPT(chest_cpt))
chest.bn <- compile(chest.bn)

uni <- list(asia = c("yes", "no"), tub = c("yes", "no"),
smoke = c("yes", "no"), lung = c("yes", "no"),
bronc = c("yes", "no"), either = c("yes", "no"),
xray = c("yes", "no"), dysp = c("yes", "no"))

ev <- list(tabNew("asia", levels=uni, values=c(1,0)),
tabNew("dysp", levels=uni, values=c(1,0)),
tabNew(c("dysp","bronc"), levels=uni, values=c(.1, .2, .9, .8)))

chest.bn
chest.bn2 <- setJEvidence(chest.bn, evidence=ev)
chest.bn2

Notice: The evidence is defined on (subsets of) cliques of the junction tree
and therefore evidence can readily be absorbed:
getgrain(chest.bn, "rip")$cliques %>% str

On the other hand, below is evidence which is not defined cliques
of the junction tree and therefore evidence can not easily be
absorbed. Hence this will fail:

Not run:
ev.fail <- list(tab(c("dysp","smoke"), levels=uni, values=c(.1, .2, .9, .8)))
setJEvidence(chest.bn, evidence=ev.fail)

End(Not run)

Evidence can be removed with

retractJEvidence(chest.bn2) ## All evidence removed.
retractJEvidence(chest.bn2, 0) ## No evidence removed.
retractJEvidence(chest.bn2, 1:2) ## Evidence items 1 and 2 are removed.

Setting additional joint evidence to an object where joint
evidence already is set will cause an error. Hence this will fail:

Not run:
ev2 <- list(smoke="yes")
setJEvidence(chest.bn2, evidence=ev2)

End(Not run)

Instead we can do
new.ev <- c(getEvidence(chest.bn2), list(smoke="yes"))
chest.bn
setJEvidence(chest.bn, evidence=new.ev)

22 grain_predict

Create joint evidence object:
yn <- c("yes", "no")
db <- parray(c("dysp", "bronc"), list(yn, yn), values=c(.1, .2, .9, .8))
db
ev <- list(asia=c(1, 0), dysp="yes", db)

jevi <- new_jev(ev, levels=uni)
jevi

chest.bn3 <- setJEvidence(chest.bn, evidence=jevi)
evidence(chest.bn3)

grain_predict Make predictions from a probabilistic network

Description

Makes predictions (either as the most likely state or as the conditional distributions) of variables
conditional on finding (evidence) on other variables in an independence network.

Usage

S3 method for class 'grain'
predict(
object,
response,
predictors = setdiff(names(newdata), response),
newdata,
type = "class",
...

)

Arguments

object A grain object

response A vector of response variables to make predictions on

predictors A vector of predictor variables to make predictions from. Defaults to all vari-
ables that are note responses.

newdata A data frame

type If "class", the most probable class is returned; if "distribution" the conditional
distrubtion is returned.

... Not used

grain_propagate 23

Value

A list with components

pred A list with the predictions

pFinding A vector with the probability of the finding (evidence) on which the prediction
is based

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

grain

Examples

data(chest_cpt)
data(chestSim500)

chest.bn <- grain(compileCPT(chest_cpt))
nd <- chestSim500[1:4]

predict(chest.bn, response="bronc", newdata=nd)
predict(chest.bn, response="bronc", newdata=nd, type="distribution")

grain_propagate Propagate a graphical independence network (a Bayesian network)

Description

Propagation refers to calibrating the cliques of the junction tree so that the clique potentials are
consistent on their intersections; refer to the reference below for details.

Usage

S3 method for class 'grain'
propagate(object, details = object$details, engine = "cpp", ...)

propagateLS(cqpotList, rip, initialize = TRUE, details = 0)

https://www.jstatsoft.org/v46/i10/

24 grain_propagate

Arguments

object A grain object
details For debugging info
engine Either "R" or "cpp"; "cpp" is the default and the fastest.
... Currently not used
cqpotList Clique potential list
rip A rip ordering
initialize Always true

Details

The propagate method invokes propagateLS which is a pure R implementation of the Lauritzen-
Spiegelhalter algorithm. The c++ based version is several times faster than the purely R based
version.

Value

A compiled and propagated grain object.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

grain, compile

Examples

yn <- c("yes","no")
a <- cptable(~asia, values=c(1,99), levels=yn)
t.a <- cptable(~tub+asia, values=c(5,95,1,99), levels=yn)
s <- cptable(~smoke, values=c(5,5), levels=yn)
l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)
e.lt <- cptable(~either+lung+tub, values=c(1,0,1,0,1,0,0,1), levels=yn)
x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)
chest.cpt <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
chest.bn <- grain(chest.cpt)
bn1 <- compile(chest.bn, propagate=FALSE)
bn2 <- propagate(bn1)
bn3 <- compile(chest.bn, propagate=TRUE)

https://www.jstatsoft.org/v46/i10/

grass 25

grass Wet grass example

Description

Conditional probability tables for the wet grass example.

Usage

data(grass_cpt)

Format

An object of class list of length 3.

Examples

'data' generated with the following code fragment
yn <- c("yes", "no")
p.R <- cptable(~R, values=c(.2, .8), levels=yn)
p.S_R <- cptable(~S:R, values=c(.01, .99, .4, .6), levels=yn)
p.G_SR <- cptable(~G:S:R, values=c(.99, .01, .8, .2, .9, .1, 0, 1), levels=yn)

grain(compileCPT(p.R, p.S_R, p.G_SR))

'data' generated from
grass_cpt <- list(p.R, p.S_R, p.G_SR)

data(grass_cpt)

load-save-hugin Load and save Hugin net files

Description

These functions can load a net file saved in the ’Hugin format’ into R and save a network in R as a
file in the ’Hugin format’.

Usage

loadHuginNet(file, description = NULL, details = 0)

saveHuginNet(gin, file, details = 0)

26 load-save-hugin

Arguments

file Name of HUGIN net file. Convenient to give the file the extension ’.net’

description A text describing the network, defaults to file

details Debugging information

gin An independence network

Value

An object of class grain.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

grain

Examples

Load HUGIN net file
tf <- system.file("huginex", "chest_clinic.net", package = "gRain")
chest <- loadHuginNet(tf, details=1)
chest

Save a copy
td <- tempdir()
saveHuginNet(chest, paste(td,"/chest.net",sep=''))

Load the copy
chest2 <- loadHuginNet(paste(td,"/chest.net",sep=''))

tf <- system.file("huginex", "golf.net", package = "gRain")
golf <- loadHuginNet(tf, details=1)

saveHuginNet(golf, paste(td,"/golf.net",sep=''))
golf2 <- loadHuginNet(paste(td,"/golf.net",sep=''))

https://www.jstatsoft.org/v46/i10/

logical 27

logical Conditional probability tables based on logical dependencies

Description

Generate conditional probability tables based on the logical expressions AND and OR.

Usage

booltab(vpa, levels = c(TRUE, FALSE), op = `&`)

andtab(vpa, levels = c(TRUE, FALSE))

ortab(vpa, levels = c(TRUE, FALSE))

andtable(vpa, levels = c(TRUE, FALSE))

ortable(vpa, levels = c(TRUE, FALSE))

Arguments

vpa Node and two parents; as a formula or a character vector.

levels The levels (or rather labels) of v, see ’examples’ below.

op A logical operator.

Details

Regarding the form of the argument vpa: To specify P (a|b, c) one may write ~a|b+c or ~a+b+c or
~a|b:c or ~a:b:c or c("a","b","c"). Internally, the last form is used. Notice that the + and :
operator are used as separators only. The order of the variables is important so + and : DO NOT
commute.

Value

An array.

Note

andtable and ortable are aliases for andtab and ortab and are kept for backward compatibility.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

https://www.jstatsoft.org/v46/i10/

28 mendel

See Also

cptable

Examples

Logical OR:

A variable v is TRUE if either of its parents pa1 and pa2 are TRUE:
ortab(c("v", "pa1", "pa2")) %>% ftable(row.vars="v")
TRUE and FALSE can be recoded to e.g. yes and no:
ortab(c("v", "pa1", "pa2"), levels=c("yes", "no")) %>% ftable(row.vars="v")

Logical AND:

Same story here:
andtab(c("v", "pa1", "pa2")) %>% ftable(row.vars="v")
andtab(c("v", "pa1", "pa2"), levels=c("yes", "no")) %>% ftable(row.vars="v")

Combined approach

booltab(c("v", "pa1", "pa2"), op=`&`) %>% ftable(row.vars="v") ## AND
booltab(c("v", "pa1", "pa2"), op=`|`) %>% ftable(row.vars="v") ## OR

booltab(~v + pa1 + pa2, op=`&`) %>% ftable(row.vars="v") ## AND
booltab(~v + pa1 + pa2, op=`|`) %>% ftable(row.vars="v") ## OR

mendel Mendelian segregation

Description

Generate conditional probability table for mendelian segregation.

Usage

mendel(allele, names = c("child", "father", "mother"))

Arguments

allele A character vector.

names Names of columns in dataframe.

Note

No error checking at all on the input.

querygrain 29

Examples

Inheritance of the alleles "y" and "g"

men <- mendel(c("y","g"), names=c("ch", "fa", "mo"))
men

querygrain Query a network

Description

Query an independence network, i.e. obtain the conditional distribution of a set of variables -
possibly (and typically) given finding (evidence) on other variables.

Usage

querygrain(
object,
nodes = nodeNames(object),
type = "marginal",
evidence = NULL,
exclude = TRUE,
normalize = TRUE,
result = "array",
details = 0

)

Arguments

object A grain object.

nodes A vector of nodes; those nodes for which the (conditional) distribution is re-
quested.

type Valid choices are "marginal" which gives the marginal distribution for each
node in nodes; "joint" which gives the joint distribution for nodes and "conditional"
which gives the conditional distribution for the first variable in nodes given the
other variables in nodes.

evidence An alternative way of specifying findings (evidence), see examples below.

exclude If TRUE then nodes on which evidence is given will be excluded from nodes (see
above).

normalize Should the results be normalized to sum to one.

result If "data.frame" the result is returned as a data frame (or possibly as a list of
dataframes).

details Debugging information

30 repeatPattern

Value

A list of tables with potentials.

Note

setEvidence() is an improvement of setFinding() (and as such setFinding is obsolete). Users
are recommended to use setEvidence() in the future.

setEvidence() allows to specification of "hard evidence" (specific values for variables) and likeli-
hood evidence (also known as virtual evidence) for variables.

The syntax of setEvidence() may change in the future.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

setEvidence, getEvidence, retractEvidence, pEvidence

Examples

testfile <- system.file("huginex", "chest_clinic.net", package = "gRain")
chest <- loadHuginNet(testfile, details=0)
qb <- querygrain(chest)
qb

lapply(qb, as.numeric) # Safe
sapply(qb, as.numeric) # Risky

repeatPattern Create repeated patterns in Bayesian networks

Description

Repeated patterns is a useful model specification short cut for Bayesian networks

Usage

repeatPattern(plist, instances, unlist = TRUE)

https://www.jstatsoft.org/v46/i10/

repeatPattern 31

Arguments

plist A list of conditional probability tables. The variable names must have the form
name[i] and the i will be substituted by the values given in instances below.

instances A vector of distinct integers

unlist If FALSE the result is a list in which each element is a copy of plist in which
name[i] are substituted. If TRUE the result is the result of applying unlist().

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal
of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.

See Also

grain, compileCPT

Examples

Example: Markov chain
yn <- c("yes", "no")

Specify p(x0)
x.0 <- cptable(~x0, values=c(1, 9), levels=yn)

Specify transition density
x.x <- cptable(~x[i]|x[i-1], values=c(1, 99, 2, 98), levels=yn)

Pattern to be repeated
pat <- list(x.x)

rep.pat <- repeatPattern(pat, instances=1:5)
cpt <- compileCPT(c(list(x.0), rep.pat))
mc <- grain(cpt)

if (interactive()) iplot(mc)

Example: Hidden markov model: The x[i]'s are unobserved, the
y[i]'s can be observed.

yn <- c("yes", "no")

Specify p(x0)
x.0 <- cptable(~x0, values=c(1, 9), levels=yn)

Specify transition density
x.x <- cptable(~x[i]|x[i-1], values=c(1, 99, 2, 98), levels=yn)

https://www.jstatsoft.org/v46/i10/

32 repeatPattern

Specify emission density
y.x <- cptable(~y[i]|x[i], values=c(10, 90, 20, 80), levels=yn)

The pattern to be repeated
pat <- list(x.x, y.x)

Repeat pattern and create network
rep.pat <- repeatPattern(pat, instances=1:5)
cpt <- compileCPT(c(list(x.0), rep.pat))
hmm <- grain(cpt)
hmm

if (interactive()) iplot(hmm)

Index

∗ datasets
chest, 2
grass, 25

∗ models
cpt-update, 6
cptable, 7
finding, 11
grain-main, 13
grain-simulate, 16
grain_compile, 17
grain_evidence, 18
grain_predict, 22
grain_propagate, 23
querygrain, 29
repeatPattern, 30

∗ utilities
components_extract, 3
components_gather, 5
cpt-update, 6
finding, 11
grain_compile, 17
grain_evidence, 18
grain_propagate, 23
load-save-hugin, 25
logical, 27
querygrain, 29

absorbEvidence (grain_evidence), 18
andtab (logical), 27
andtable, 8
andtable (logical), 27
as.data.frame.grain_ev

(evidence_object), 9

booltab (logical), 27

chest, 2
chest_cpt (chest), 2
compile, 24
compile.cpt_grain (grain_compile), 17

compile.grain, 15
compile.grain (grain_compile), 17
compile.pot_grain (grain_compile), 17
compileCPT, 4, 8, 15, 31
compileCPT (components_gather), 5
compilePOT, 4, 8, 15
compilePOT (components_gather), 5
components_extract, 3
components_gather, 5
cpt-update, 6
cptable, 7, 15, 28

evidence (grain_evidence), 18
evidence<- (grain_evidence), 18
evidence_object, 9
extractCPT, 6, 8, 15
extractCPT (components_extract), 3
extractMARG, 6
extractMARG (components_extract), 3
extractPOT, 6, 8, 15
extractPOT (components_extract), 3

finding, 11

generics, 12
getEvidence, 12, 30
getEvidence (grain_evidence), 18
getFinding, 15, 19
getFinding (finding), 11
grain, 4, 6, 8, 17, 23, 24, 26, 31
grain (grain-main), 13
grain-main, 13
grain-simulate, 16
grain.cpt_spec (grain-main), 13
grain.CPTspec (grain-main), 13
grain.dModel (grain-main), 13
grain.graphNEL (grain-main), 13
grain.pot_spec (grain-main), 13
grain_compile, 17
grain_evidence, 18

33

34 INDEX

grain_jevidence, 20
grain_predict, 22
grain_propagate, 23
grass, 25
grass_cpt (grass), 25

is.null_ev (evidence_object), 9

junctionTree, 6, 17

load-save-hugin, 25
loadHuginNet (load-save-hugin), 25
logical, 27

marg2pot (components_extract), 3
mendel, 28

new_ev (evidence_object), 9
new_jev (grain_jevidence), 20
nodeNames (generics), 12
nodeStates (generics), 12

ortab (logical), 27
ortable, 8
ortable (logical), 27

parray, 8
parse_cpt (components_gather), 5
parse_cpt, (components_gather), 5
parse_cpt.default (components_gather), 5
parse_cpt.xtabs,parse_cpt.cptable_class,

(components_gather), 5
pEvidence, 12, 30
pEvidence (grain_evidence), 18
pFinding, 15, 19
pFinding (finding), 11
pot2marg (components_extract), 3
predict.grain (grain_predict), 22
print.grain_ev (evidence_object), 9
print.grain_jev (grain_jevidence), 20
propagate, 6, 17
propagate.grain, 15, 17
propagate.grain (grain_propagate), 23
propagateLS (grain_propagate), 23
propagateLS__ (grain_propagate), 23

qgrain (querygrain), 29
querygrain, 12, 29

repeatPattern, 30

retractEvidence, 12, 30
retractEvidence (grain_evidence), 18
retractFinding, 15, 19
retractFinding (finding), 11
retractJEvidence (grain_jevidence), 20
rip, 6, 17
rip.grain (generics), 12

saveHuginNet (load-save-hugin), 25
setCPT (cpt-update), 6
setdiff_ev (evidence_object), 9
setEvidence, 12, 15, 30
setEvidence (grain_evidence), 18
setFinding, 15, 19
setFinding (finding), 11
setJEvidence (grain_jevidence), 20
simulate.grain (grain-simulate), 16
subset.grain_ev (evidence_object), 9

triangulate, 6, 17

union_ev (evidence_object), 9
universe (generics), 12

varNames.grain_ev (evidence_object), 9
varNames.grainEvidence_ (generics), 12
vpar.cpt_grain (generics), 12
vpar.cpt_spec (generics), 12

	chest
	components_extract
	components_gather
	cpt-update
	cptable
	evidence_object
	finding
	generics
	grain-main
	grain-simulate
	grain_compile
	grain_evidence
	grain_jevidence
	grain_predict
	grain_propagate
	grass
	load-save-hugin
	logical
	mendel
	querygrain
	repeatPattern
	Index

