Package 'gTests'

December 6, 2017
Version 0.2
Date 2017-12-6
Title Graph-Based Two-Sample Tests
Author Hao Chen and Jingru Zhang
Maintainer Hao Chen hxchen@ucdavis.edu
Depends R (>= 3.0.1)
Imports ade4
Description Four graph-based tests are provided for testing whether two sam-ples are from the same distribution. It works for both continuous data and discrete data.
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-12-06 22:04:04 UTC
R topics documented:
counts1 2
counts2 2
counts3 2
dfs 3
ds1 3
ds2 3
ds3 3
E1 4
E2 4
E3 4
g.tests 4
g.tests_discrete 6
getComdist 8
getGraph 9
getMV_discrete 9
getR1R2 10
getR1R2_discrete 11
gTests 11
nnlink 12
nnlink Com 13
nnlink_K 13
permute_discrete 14
Index 15
counts1

Description

This is a K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples. The data is generated from two samples with mean shift.

Description

This is a K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples. The data is generated from two samples with spread difference.

```
    counts3
```

A matrix representing counts in the distinct values for the two samples

Description

This is a K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples. The data is generated from two samples with mean shift and spread difference.
dfs \quad Depth-first search

Description

One starts at the root and explores as far as possible along each branch before backtracking.

Usage

dfs(s, visited, adj)

Arguments

s
The root node.
visited
adj $\quad \mathrm{N}$ by N adjacent matrix.

See Also

getGraph

```
ds1 A distance matrix on the distinct values
```


Description

This is a K by K matrix, which is the distance matrix on the distinct values for counts1.

```
ds2
A distance matrix on the distinct values
```


Description

This is a K by K matrix, which is the distance matrix on the distinct values for counts2.
ds3 A distance matrix on the distinct values

Description

This is a K by K matrix, which is the distance matrix on the distinct values for counts3.

Description

This is a matrix with the number of rows the number of edges in the similarity graph and 2 columns. Each row records the subject indices of the two edges of in the similarity graph. The subject indices of sample 1 is $1: 100$, and the subject indices of sample 2 is $101: 250$.

Description

This is a matrix with the number of rows the number of edges in the similarity graph and 2 columns. Each row records the subject indices of the two edges of in the similarity graph. The subject indices of sample 1 is 1:100, and the subject indices of sample 2 is 101:250.

E3 An edge matrix representing a similarity graph

Description

This is a matrix with the number of rows the number of edges in the similarity graph and 2 columns. Each row records the subject indices of the two edges of in the similarity graph. The subject indices of sample 1 is $1: 100$, and the subject indices of sample 2 is 101:250.

```
    g.tests Graph-based two-sample tests
```


Description

This function provides four graph-based two-sample tests.

Usage

g.tests(E, sample1ID, sample2ID, test.type="all", maxtype.kappa = 1.14, perm=0)

Arguments

E
An edge matrix representing a similarity graph with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.
sample1ID The subject indices of sample 1.
sample2ID The subject indices of sample 2.
test.type The default value is "all", which means all four tests are performed: orignial edge-count test (Friedman and Rafsky (1979)), generalized edge-count test (Chen and Friedman (2016)), weighted edge-count test (Chen, Chen and Su (2016)) and maxtype edge-count tests (Zhang and Chen (2017)). Set this value to "original" or "o" to permform only the original edge-count test; set this value to "generalized" or " g " to perform only the generalized edge-count test; set this value to "weighted" or " w " to perform only the weighted edge-count test; and set this value to "maxtype" or " m " to perform only the maxtype edge-count tests.
maxtype.kappa The value of parameter(kappa) in the maxtype edge-count tests. The default value is 1.14 .
perm The number of permutations performed to calculate the p-value of the test. The default value is 0 , which means the permutation is not performed and only approximate p-value based on asymptotic theory is provided. Doing permutation could be time consuming, so be cautious if you want to set this value to be larger than 10,000 .

Value

test.statistic The test statistic.
pval.approx The approximated p-value based on asymptotic theory.
pval.perm The permutation p-value when argument 'perm' is positive.

References

Friedman J. and Rafsky L. Multivariate generalizations of the WaldWolfowitz and Smirnov twosample tests. The Annals of Statistics, 7(4):697-717, 1979.

Chen, H. and Friedman, J. H. A new graph-based two-sample test for multivariate and object data. Journal of the American Statistical Association, 2016.
Chen, H., Chen, X. and Su, Y. A weighted edge-count two sample test for multivariate and object data. Journal of the American Statistical Association, 2017.

Zhang, J. and Chen, H. Graph-based two-sample tests for discrete data.

Examples

```
# the "example" data contains three similarity graphs represted in the matrix form: E1, E2, E3.
data(example)
# E1 is an edge matrix representing a similarity graph.
# It is constructed on two samples with mean difference.
# Sample 1 indices: 1:100; sample 2 indices: 101:250.
```

```
g.tests(E1, 1:100, 101:250)
# E2 is an edge matrix representing a similarity graph.
# It is constructed on two samples with variance difference.
# Sample 1 indices: 1:100; sample 2 indices: 101:250.
g.tests(E2, 1:100, 101:250)
# E3 is an edge matrix representing a similarity graph.
# It is constructed on two samples with mean and variance difference.
# Sample 1 indices: 1:100; sample 2 indices: 101:250.
g.tests(E3, 1:100, 101:250)
## Uncomment the following line to get permutation p-value with 200 permutations.
# g.tests(E1, 1:100, 101:250, perm=200)
```

g.tests_discrete Graph-based two-sample tests for discrete data

Description

This function provides four graph-based two-sample tests for discrete data.

Usage

g.tests_discrete(E, counts, test.type = "all", maxtype.kappa = 1.14, perm = 0)

Arguments

E
An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.
counts A K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples.
test.type The default value is "all", which means all four tests are performed: the orignial edge-count test (Chen and Zhang (2013)), extension of the generalized edgecount test (Chen and Friedman (2016)), extension of the weighted edge-count test (Chen, Chen and $\mathrm{Su}(2016)$) and extension of the maxtype edge-count tests (Zhang and Chen (2017)). Set this value to "original" or "o" to permform only the original edge-count test; set this value to "generalized" or " g " to perform only extension of the generalized edge-count test; set this value to "weighted" or " w " to perform only extension of the weighted edge-count test; and set this value to "maxtype" or " m " to perform only extension of the maxtype edge-count tests.
maxtype.kappa The value of parameter(kappa) in the extension of the maxtype edge-count tests. The default value is 1.14 .
perm The number of permutations performed to calculate the p-value of the test. The default value is 0 , which means the permutation is not performed and only approximate p -value based on asymptotic theory is provided. Doing permutation could be time consuming, so be cautious if you want to set this value to be larger than 10,000 .

Value

test.statistic_a
The test statistic using 'average' method to construct the graph.
test.statistic_u
The test statistic using 'union' method to construct the graph.
pval.approx_a Using 'average' method to construct the graph, the approximated p-value based on asymptotic theory.
pval.approx_u Using 'union' method to construct the graph, the approximated p-value based on asymptotic theory.
pval.perm_a Using 'average' method to construct the graph, the permutation p-value when argument 'perm' is positive.
pval.perm_u Using 'union' method to construct the graph, the permutation p-value when argument 'perm' is positive.

References

Friedman J. and Rafsky L. Multivariate generalizations of the WaldWolfowitz and Smirnov twosample tests. The Annals of Statistics, 7(4):697-717, 1979.

Chen, H. and Zhang, N. R. Graph-based tests for two-sample comparisons of categorical data. Statistica Sinica, 2013.
Chen, H. and Friedman, J. H. A new graph-based two-sample test for multivariate and object data. Journal of the American Statistical Association, 2016.
Chen, H., Chen, X. and Su, Y. A weighted edge-count two sample test for multivariate and object data. Journal of the American Statistical Association, 2017.
Zhang, J. and Chen, H. Graph-based two-sample tests for discrete data.

Examples

```
# the "example_discrete" data contains three two-sample counts data
# represted in the matrix form: counts1, counts2, counts3
# and the corresponding distance matrix on the distinct values: ds1, ds2, ds3.
data(example_discrete)
# counts1 is a K by 2 matrix, where K is the number of distinct values.
# It specifies the counts in the K distinct values for the two samples.
# ds1 is the corresponding distance matrix on the distinct values.
# The data is generated from two samples with mean shift.
Knnl = 3
E1 = getGraph(counts1, ds1, Knnl, graph = "nnlink")
g.tests_discrete(E1, counts1)
```

```
# counts2 is a K by 2 matrix, where K is the number of distinct values.
# It specifies the counts in the K distinct values for the two samples.
# ds2 is the corresponding distance matrix on the distinct values.
# The data is generated from two samples with spread difference.
Kmst = 6
E2 = getGraph(counts2, ds2, Kmst, graph = "mstree")
g.tests_discrete(E2, counts2)
# counts3 is a K by 2 matrix, where K is the number of distinct values.
# It specifies the counts in the K distinct values for the two samples.
# ds3 is the corresponding distance matrix on the distinct values.
# The data is generated from two samples with mean shift and spread difference.
Knnl = 3
E3 = getGraph(counts3, ds3, Knnl, graph = "nnlink")
g.tests_discrete(E3, counts3)
## Uncomment the following line to get permutation p-value with 200 permutations.
# Knnl = 3
# E1 = getGraph(counts1, ds1, Knnl, graph = "nnlink")
# g.tests_discrete(E1, counts1, test.type = "all", maxtype.kappa = 1.31, perm = 300)
```

```
getComdist Get distance between two components
```


Description

This function calculates the distance between two components.

Usage

getComdist(g1,g2, distance)

Arguments

g1 The distinct values in Component 1.
g2 The distinct values in Component 2.
distance \quad A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.

See Also

getGraph

```
    getGraph Construct similarity graph
```


Description

This function provides two methods to construct the similarity graph.

Usage

getGraph(counts, mydist, K, graph.type = "mstree")

Arguments

counts A K by 2 matrix, where K is the number of distinct values. It specifies the counts in the K distinct values for the two samples.
mydist A K by K matrix, which is the distance matrix on the distinct values.
K Set the value of k in " $k-M S T$ " or " $k-N N L$ " to construct the similarity graph.
graph.type Specify the type of the constructing graph. The default value is "mstree", which means constructing the minimal spanning tree as the similarity graph. Set this value to "nnlink" to construct the similarity graph by the nearest neighbor link method.

Value

E An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

See Also

g.tests_discrete

```
getMV_discrete Get intermediate results for g.tests_discrete function
```


Description

This function calculates means and variances of R1 and R2 quantities using 'average' method and 'union' method to construct the graph.

Usage

getMV_discrete(E, vmat)

Arguments

E
An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.
vmat A K by 2 matrix, where K is the number of distinct values with at least one observation in either group. It specifies the counts in the K distinct values for the two samples.

See Also

> g.tests_discrete

```
getR1R2
```

Get intermediate results for g.tests function

Description

This function calculates R1 and R2 quantities.

Usage

getR1R2(E, G1)

Arguments

E
A matrix with the number of rows the number of edges in the similarity graph and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

G1 The subject indices of sample 1 .

See Also

g.tests

Description

This function calculates R1 and R2 quantities using 'average' method and 'union' method to construct the graph.

Usage

getR1R2_discrete(E, vmat)

Arguments

E
An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.
vmat A K by 2 matrix, where K is the number of distinct values with at least one observation in either group. It specifies the counts in the K distinct values for the two samples.

See Also

g.tests_discrete
gTests Graph-Based Two-Sample Tests

Description

This package includes four graph-based two-sample tests under the continuous setting and the discrete setting.

Author(s)

Hao Chen and Jingru Zhang
Maintainer: Hao Chen (hxchen@ucdavis.edu)

References

Friedman J. and Rafsky L. (1979). Multivariate generalizations of the WaldWolfowitz and Smirnov two-sample tests. The Annals of Statistics 7(4):697-717.

Chen, H. and Zhang, N. R. (2013). Graph-based tests for two-sample comparisons of categorical data. Statistica Sinica 23:1479-1503.
Chen, H. and Friedman, J. H. (2017). A new graph-based two-sample test for multivariate and object data. Journal of the American Statistical Association, 112:517, 397-409.

Chen, H., Chen, X. and Su, Y. (2017). A weighted edge-count two sample test for multivariate and object data. Journal of the American Statistical Association.
Zhang, J. and Chen, H. (2017). Graph-based two-sample tests for discrete data. arXiv:1711.04349

See Also

g.tests g.tests_discrete getGraph

$$
\text { nnlink } \quad \text { Construct similarity graph by 1-NNL }
$$

Description

This function provides the edges of the similarity graph constructed by 1-NNL.

Usage

nnlink(distance)

Arguments

distance A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.

Value

E An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

See Also

getGraph
nnlink_Com Get components by nearest neighbor link algorithm

Description

This function obtains components based on the nearest neighbor link algorithm.

Usage

nnlink_Com(distance)

Arguments

distance A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.

```
See Also
    getGraph
    nnlink_K Construct similarity graph by k-NNL
```


Description

This function provides the edges of the similarity graph constructed by k-NNL.

Usage

nnlink_K(distance,K)

Arguments

distance A K by K matrix, which is the distance matrix on the distinct values and K is the number of distinct values with at least one observation in either group.
$\mathrm{K} \quad$ Set the value of k in " $\mathrm{k}-\mathrm{NNL}$ " to construct the similarity graph.

Value

E An edge matrix representing a similarity graph on the distinct values with the number of edges in the similarity graph being the number of rows and 2 columns. Each row records the subject indices of the two ends of an edge in the similarity graph.

See Also

getGraph

Description

This function permutes the observations maintaining the two sample sizes unchaged.

Usage

permute_discrete(vmat)

Arguments

vmat A K by 2 matrix, where K is the number of distinct values with at least one observation in either group. It specifies the counts in the K distinct values for the two samples.

See Also

g.tests_discrete

Index

```
counts1,2
counts2,2
counts3,2
dfs, }
ds1,3
ds2,3
ds3,3
E1,4
E2,4
E3,4
g.tests, 4, 10, 12
g.tests_discrete, 6, 9-12, 14
getComdist,8
getGraph, 3, 8, 9, 12, 13
getMV_discrete,9
getR1R2, 10
getR1R2_discrete, 11
gTests,11
nnlink,12
nnlink_Com, 13
nnlink_K,13
permute_discrete, 14
```

