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Abstract

We present a short tutorial and introduction to using the R package genlasso, which
is used for computing the solution path of the generalized lasso problem discussed in Tib-
shirani and Taylor (2011). Use cases of the generalized lasso include the fused lasso over
an arbitrary graph, and trend fitting of any given polynomial order. Our implementation
includes a function to solve the generalized lasso is its most general form, as well as special
functions to cover the fused lasso and trend filtering subproblems. The general implemen-
tation maintains and updates a matrix factorization to successively solve related linear
systems; the specialized implementations forego this update routine and exploit subprob-
lem structure, which improves both stability and speed of the computation. Standard
S3 methods such as plot, predict, and coef are also included to assist in studying the
output solution path objects.
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1. Introduction

A recent paper by Tibshirani and Taylor (2011) introduced the generalized lasso path algo-
rithm, which computes the solution path to the following optimization problem:

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1, (1)

where y ∈ Rn is a response vector, X ∈ Rn×p is a matrix of predictor variables, D ∈ Rm×p is
a penalty matrix, and λ ≥ 0 is a regularization parameter. In other words, the path algorithm
computes the solution β̂ = β̂(λ) as a function of the parameter λ. This is done by solving the
equivalent Lagrange dual problem,

û ∈ argmin
u∈Rm

‖XX+y − (X+)TDTu‖22 subject to ‖u‖∞ ≤ λ, (2)

where X ∈ Rn×p is assumed to have full column rank1 and X+ = (XTX)−1XT is the Moore-
Penrose generalized inverse of X. The relationship between the primal and dual solutions is

β̂ = (XTX)−1(XT y −DT û), (3)

and hence solving for û in (2) yields the solution β̂ in (1) via the above relationship. When
X = I, often called the “signal approximator” case, the dual and primal-dual relationship can

1If the predictor matrix X does not have full column rank (occurring, say, if p > n) then a small ridge
penalty can be added to the criterion in (1), and the problem can be subsequently rewritten as a generalized
lasso problem with a new full column rank predictor matrix.
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be simplified,

û ∈ argmin
u∈Rm

‖y −DTu‖22 subject to ‖u‖∞ ≤ λ, (4)

and

β̂ = y −DT û. (5)

The dual problem (4), and more generally (2) when X 6= I, is “easier” to consider because
loosely speaking the non-differentiable box constraint is free of any linear transformation.
Computing the solution path of (5) (and of (3)) essentially reduces to solving several linear
systems that differ by one more or one less variable. This is much like the lasso solution path.
See Tibshirani and Taylor (2011) for details.

The problem (1) is solvable at a fixed value of λ (or a fixed sequence of λ values) by several
convex optimization tools, both open source and proprietary. The novelty here is that the
solution is computed for all values of the tuning parameter λ simultaneously. Perhaps not
surprisingly, computation of the full path does not scale as efficiently as does computation at
individual λ values. The purpose of this package is not to provide a solver for large scale gen-
eralized lasso problems, but instead to deliver the entire solution path when computationally
amenable.

There are three main functions: genlasso, fusedlasso, and trendfilter. The first function
computes the solution path of any problem of the general form (1); the latter two are spe-
cialized functions designed to compute the solution path of the fused lasso and trend filtering
subproblems, respectively (additionally, wrapper functions fusedlasso1d and fusedlasso2d

are available to fit the fused lasso over 1d and 2d grids, respectively). These latter func-
tions should be used whenever possible, as they provide a significant improvement in both
computational efficiency and numerical stability.

This vignette is intended to get new users quickly up to speed on using the genlasso package
for statistical modelling. Sections 2–4 give short code snippets for common use cases of the
package, solving fused lasso problems, trend filtering problems, and using cross-validation. We
discuss the details of the various implementation strategies used in this package, as well as
provide empirical results on computationally accuracy and run times of the various strategies
to help assist users in deciding what problems can and cannot be reasonably solved with the
path algorithm, in a seperate paper Arnold and Tibshirani (2016).

2. The standard lasso

As a first toy example to using the genlasso package, we show how to compute the solution
path of the usual lasso optimization problem. (This is intended as an example only, and we
do not recommend this strategy for solving lasso problems!)

We first generate some data, consisting of a predictor matrix X with 10 variables and 100
observations generated by independent draws from a standard normal distribution. The
response vector y is made to be a noisy version of the first column of the data matrix X:

> library("genlasso")

> set.seed(1)

> n = 100

> p = 10
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> X = matrix(rnorm(n*p), ncol=p)

> y = X[,1] + rnorm(n)

In order to write the standard lasso as a generalized lasso problem (1), we construct a penalty
matrix D equal to the 10-dimensional identity matrix:

> D = diag(1,p)

Now we can run the path solution for the (generalized) lasso:

> out = genlasso(y, X=X, D=D)

Like the lm function in the stats package, the output of the generalized lasso has a compact
standard plot output. It gives the function call information as well as the length of the
computed path:

> out

Call:

genlasso(y = y, X = X, D = D)

Output:

Path model with 10 total steps.

More information about each step, including an unbiased estimate of the degrees of freedom
of the fit and the residual sum of squares, can be obtained by printing the summary of the
output:

> summary(out)

df lambda rss

0 68.365 160.66

1 12.054 104.79

2 10.694 104.09

3 8.803 102.87

4 6.307 101.30

5 6.153 101.21

6 4.870 100.44

7 2.630 99.37

8 2.325 99.26

9 0.582 98.88

A simple plot of the solution path can be produced by calling the plot function on the output
object:

> plot(out)
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Each color shows a coordinate of the solution path over λ, Note that as λ increases, all
coordinates of the primal solution are quickly shrunken to zero, except the first coordinate,
drawn in red.

Finally, it is easy to extract the coefficients β for a particular value (or values) of λ. Here we
calculate the coefficients for the tuning parmeter λ =

√
n log(p), as is suggested for model

selection consistency by recent theory:

> coef(out, lambda=sqrt(n*log(p)))

$beta

15.174

[1,] 6.562310e-01

[2,] 5.583701e-17

[3,] 3.926975e-17

[4,] -6.339336e-17

[5,] 7.858477e-17

[6,] -3.960272e-17

[7,] -3.699918e-17

[8,] 4.592585e-17

[9,] -6.083313e-17

[10,] 9.324401e-17
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$lambda

[1] 15.17427

$df

[1] 1

This is reassuring, as it essentially recovers the true model from which we had simulated
the data. Also, as expected, the lasso has somewhat underestimated the magnitude of the
nonzero coefficient due to the shrinking nature of the `1 penalty.

3. The fused lasso

3.1. The 1d fused lasso

A simple example of a problem which fits naturally into the generalized lasso structure is
the 1d fused lasso. In the common signal approximator case, X = I, we assume that the
observed data y = (y1, . . . yn) ∈ Rn is generated from a process whose mean changes at only
a smaller number of locations, when ordered sequentially from 1 to n. The goal is hence to
find a piecewise constant vector of coefficients, of course, fitting well to y. This is done by
solving the following minimization problem:

β̂ = argmin
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−1∑
i=1

|βi+1 − βi|, (6)

which is a version of (1) with D equal to the matrix of first differences:

D =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
. . .

0 0 0 . . . −1 1

 . (7)

We generate a data set with four change points:

> set.seed(1)

> n = 100

> i = 1:n

> y = (i > 20 & i < 30) + 5*(i > 50 & i < 70) +

+ rnorm(n, sd=0.1)

Now to fit the 1d fused lasso, we simply call the fusedlasso1d function (and we pass no X
matrix, with indicates that X = I):

> out = fusedlasso1d(y)

An alternative method would be to call the genlasso function with argument D=getD1d(n),
where getD1d is a convenience function to construct the first difference matrix in (7). However,
this is much less efficient and less numerically stable, and it is highly recommended to use
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the speciality implementations fusedlasso (wrappers fusedlasso1d and fusedlasso2d) and
trendfilter whenever possible.

The model output works essentially the same as that produced by the genlasso function
discussed in Section 2, giving printing, summaries, and coefficients in the exactly the same
way. Additionally, a new plot function is available to show how the piecewise constant model
fits the data at specified values of λ:

> plot(out, lambda=1)
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The estimate at λ = 1 fits the data fairly well, and also provides a good estimate of the
change point locations. To retrieve coordinate plots as in Section 2, use the plot function
with argument style="path".

3.2. The 2d fused lasso and arbitrary graphs

The 1d fused lasso can be extended to an arbitrary graph structure, where the absolute
difference between the coefficients between neighboring nodes is penalized:

β̂ = argmin
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
∑

(i,j)∈E

|βi − βj |, (8)
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where E is the edge set of the graph. Note that this is still a generalized lasso problem
(1), with the penalty matrix D still a difference matrix between the appropriate pairs of
coefficients. In the graph framework, underlying the 1d fused lasso is the chain graph, or 1d
grid. Another common structure is the 2d grid, and with this underlying graph problem (8)
is called the 2d fused lasso, a technique used for image denoising.

We generate data in the form of a 16 by 16 grid of points; the mean of the data is equal to 2
for points within a distance of 4 from the middle of the grid, and 1 for all other points.

> set.seed(1)

> y = matrix(runif(256), 16, 16)

> i = (row(y) - 8.5)^2 + (col(y) - 8.5)^2 <= 4^2

> y[i] = y[i] + 1

To compute the solution path of this problem, we call the fusedlasso2d function:

> out = fusedlasso2d(y)

Since the input data y is a matrix, the function knows the dimensions of the 2d grid. Otherwise
we could specify the dimensions as inputs to the function call, dim1 and dim2. We can extract
5 solutions along the solution path (evenly spaced on the log scale):

> co = coef(out, nlam=5)

and plotting them, along with the original data y (in the top-left corner), gives a rough
understanding of what the solution path looks like:

y λ = 1.734 λ = 0.540

λ = 0.168 λ = 0.052 λ = 0.016
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We can see that the algorithm does a pretty good job of finding the region with a different
mean, particularly for the 2nd largest value of λ displayed in the plot. With more regulariza-
tion, the entire image is assigned a constant coefficient; with less, the coefficients are overly
noisy.

Finally, it is possible to specify a generic underlying graph for the fused lasso problem. The
function fusedlasso (for which both fusedlasso1d and fusedlasso2d simply act as wrap-
pers) takes either a generic difference matrix D—i.e., a matrix such that each row contains
a single −1 and 1 and all 0s otherwise—or an igraph graph object from the igraph pack-
age (Csardi and Nepusz 2006). The function fusedlasso (as well as fusedlasso1d and
fusedlasso2d) also takes an optional argument X in the case that a non-identity predictor
matrix X should be included. As with the genlasso, the predictor matrix X should have full
column rank; however, this is not check here, for efficiency.

3.3. Sparse fused lasso and soft-thresholding

A common variant of the fused lasso employs an additional `1 penalty on the coefficients
themselves; e.g., the signal approximator fused lasso problem in (8) can be extended as in

β̂ = argmin
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ
∑

(i,j)∈E

|βi − βj |+ γ · λ
n∑
i=1

|βi|. (9)

Here γ ≥ 0 is another parameter that controls the ratio between the fusion and sparsity
penalty terms. Note that (9) also fits into the generalized lasso framework, as it simply con-
catenates (a multiple of) the identity matrix to the rows of a fused lasso penalty matrix. For a
single fixed value of γ, the solution path of the sparse fused lasso problem (9) can be computed
using by setting the gamma argument in fusedlasso (or fusedlasso1d, fusedlasso2d). (Ad-
ditionally including a non-identity predictor matrix poses no problems, and is done by setting
the X argument, as before.)

When X = I, a particularly simple relationship exists between the solutions of the problem
(8) and its sparse variant (9): at any λ, the solution of (9) is simply given by soft-thresholding
the solution of (8) by an amount γ ·λ, as shown in Friedman, Hastie, Hoefling, and Tibshirani
(2007). If the solution path of (9) is desired at several levels of γ (or even at a single nonzero
level, actually) it is more efficient to solve the problem with γ = 0 and then soft-threshold to
yield the solutions.

We demonstrate this by revisiting the 1d fused lasso example of Section 3.1:

> set.seed(1)

> n = 100

> i = 1:n

> y = (i > 20 & i < 30) + 5*(i > 50 & i < 70) +

+ rnorm(n, sd=0.1)

> out = fusedlasso1d(y)

> beta1 = coef(out, lambda=1.5)$beta

To compute the solution at λ = 1.5 and γ = 1, we could call fusedlasso1d with gamma=1, or
simply soft-threshold:



Taylor Arnold, Ryan Tibshirani 9

> beta2 = softthresh(out, lambda=1.5, gamma=1)

The effect of soft-thresholding is apparent when looking at the original and thresholded esti-
mates (with the dashed line showing the thresholding level γ · λ = 1.5):
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4. Trend filtering

4.1. Beyond piecewise constant fits

Like the 1d fused lasso, trend filtering in the signal approximator case X = I assumes that the
data y = (y1, . . . yn) ∈ Rn is meaningfully ordered from 1 to n, and fits a piecewise polynomial
of a specified degree. For example, linear trend filtering (with X = I) solves the following
minimization problem:

β̂ = argmin
β∈Rn

1

2

n∑
i=1

(yi − βi)2 + λ

n−2∑
i=1

|βi − 2βi+1 + βi+1|. (10)

Notice that here the discrete second deriative is penalized, as opposed to the discrete first
derivative in the 1d fused lasso criterion (6). Quadratic and cubic trend filtering are defined
similarly, by penalizing the discrete third and fourth derivative, respectively. (In this light,
we can think of the 1d fused lasso as constant or zeroth order trend filtering.)



10 Introduction to the genlasso package

We generate a data set with a piecewise linear mean:

> set.seed(1)

> n = 100

> y = 50 - abs(1:n-n/2) + rnorm(n, sd=5)

We use the function trendfilter to fit trend filtering model of order 1 (i.e., linear). It has
the same plotting functionality as the fusedlasso1d function:

> out = trendfilter(y, ord=1)

> plot(out, lambda=n)
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Higher order plots are just as easy, as shown by the following cubic fit to data generated with
a mean given by a sine curve:

> n = 100

> y = sin(1:n/n*2*pi) + rnorm(n, sd=0.3)

> out = trendfilter(y, ord=3)

> plot(out, lambda=n)
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Note that trend filtering fits can also be produced by using the genlasso with D=getDtf(n,k),
where getDtf is a convenience function to construct a trend filtering penalty matrix of a
specified order (k=1 being linear). However, this is not recommended because the specialized
implementation trendfilter is significantly more efficient and stable. Trend filtering can
also be fit with a non-identity predictor; simply use the X argument.

4.2. Cross-validation

For automatic choice of λ in trend filtering problems there is an easy to use, pre-built cross-
validation function. Here, we again generate some data which that has a piecewise constant
mean, and fit a piecewise constant model:

> set.seed(1)

> n = 100

> y = rep(sample(1:8,5), each=n/5) + rnorm(n, sd=0.8)

> out = trendfilter(y, ord=0)

(Here we demonstrate that trendfilter with ord=0 is equivalent to calling fusedlasso.)
Now we use the function cv.trendfilter to perform k-fold cross-validation in to choose
λ. This places every kth point in the same fold, so the folds are non-random and calling
cv.trendfilter twice will yield the same result. The default is k = 10 folds.
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> cv = cv.trendfilter(out)

Now we plot the estimate at the value of λ the minimizes the cross-validated error:

> plot(out, lambda=cv$lambda.min, main="Minimal CV error")
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Note that there is a considerable amount of noise here and this does not provide a good
estimate of the change points. Using the value of λ chosen by the one standard error rule
produces a more regularized estimate:

> plot(out, lambda=cv$lambda.1se, main="One standard error rule")
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This gives a cleaner estimate of the change points.
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