
Package ‘geometry’
April 18, 2022

License GPL (>= 3)

Title Mesh Generation and Surface Tessellation

Description Makes the 'Qhull' library <http://www.qhull.org>
available in R, in a similar manner as in Octave and MATLAB. Qhull
computes convex hulls, Delaunay triangulations, halfspace
intersections about a point, Voronoi diagrams, furthest-site
Delaunay triangulations, and furthest-site Voronoi diagrams. It
runs in 2D, 3D, 4D, and higher dimensions. It implements the
Quickhull algorithm for computing the convex hull. Qhull does not
support constrained Delaunay triangulations, or mesh generation of
non-convex objects, but the package does include some R functions
that allow for this.

Version 0.4.6

URL https://davidcsterratt.github.io/geometry/

Date 2022-04-18

BugReports https://github.com/davidcsterratt/geometry/issues

Depends R (>= 3.0.0)

Imports magic, Rcpp, lpSolve, linprog

Suggests spelling, testthat, rgl, R.matlab, tripack

LinkingTo Rcpp, RcppProgress

Encoding UTF-8

Language en-GB

RoxygenNote 7.1.2

NeedsCompilation yes

Author Jean-Romain Roussel [cph, ctb] (wrote tsearch function with QuadTrees),
C. B. Barber [cph],
Kai Habel [cph, aut],
Raoul Grasman [cph, aut],
Robert B. Gramacy [cph, aut],
Pavlo Mozharovskyi [cph, aut],
David C. Sterratt [cph, aut, cre]
(<https://orcid.org/0000-0001-9092-9099>)

1

http://www.qhull.org
https://davidcsterratt.github.io/geometry/
https://github.com/davidcsterratt/geometry/issues
https://orcid.org/0000-0001-9092-9099

2 R topics documented:

Maintainer David C. Sterratt <david.c.sterratt@ed.ac.uk>

Repository CRAN

Date/Publication 2022-04-18 10:12:29 UTC

R topics documented:

bary2cart . 3
cart2bary . 4
cart2pol . 5
cart2sph . 6
convhulln . 7
delaunayn . 9
distmesh2d . 11
distmeshnd . 13
dot . 15
entry.value . 16
extprod3d . 17
feasible.point . 18
halfspacen . 18
inhulln . 19
intersectn . 20
matmax . 22
mesh.dcircle . 23
mesh.diff . 24
mesh.drectangle . 24
mesh.dsphere . 25
mesh.hunif . 26
pol2cart . 27
polyarea . 28
rbox . 29
sph2cart . 29
surf.tri . 30
tetramesh . 31
to.mesh3d . 32
trimesh . 33
tsearch . 34
tsearchn . 35
Unique . 36

Index 37

bary2cart 3

bary2cart Conversion of Barycentric to Cartesian coordinates

Description

Given the barycentric coordinates of one or more points with respect to a simplex, compute the
Cartesian coordinates of these points.

Usage

bary2cart(X, Beta)

Arguments

X Reference simplex in N dimensions represented by a N + 1-by-N matrix

Beta M points in barycentric coordinates with respect to the simplex X represented
by a M -by-N + 1 matrix

Value

M -by-N matrix in which each row is the Cartesian coordinates of corresponding row of Beta

Author(s)

David Sterratt

See Also

cart2bary

Examples

Define simplex in 2D (i.e. a triangle)
X <- rbind(c(0, 0),

c(0, 1),
c(1, 0))

Cartesian cooridinates of points
beta <- rbind(c(0, 0.5, 0.5),

c(0.1, 0.8, 0.1))
Plot triangle and points
trimesh(rbind(1:3), X)
text(X[,1], X[,2], 1:3) # Label vertices
P <- bary2cart(X, beta)
points(P)

4 cart2bary

cart2bary Conversion of Cartesian to Barycentric coordinates.

Description

Given the Cartesian coordinates of one or more points, compute the barycentric coordinates of these
points with respect to a simplex.

Usage

cart2bary(X, P)

Arguments

X Reference simplex in N dimensions represented by a N + 1-by-N matrix

P M -by-N matrix in which each row is the Cartesian coordinates of a point.

Details

Given a reference simplex in N dimensions represented by a N + 1-by-N matrix an arbitrary point
P in Cartesian coordinates, represented by a 1-by-N row vector, can be written as

P = βX

where β is an N + 1 vector of the barycentric coordinates. A criterion on β is that∑
i

βi = 1

Now partition the simplex into its first N rows XN and its N + 1th row XN+1. Partition the
barycentric coordinates into the first N columns βN and the N + 1th column βN+1. This allows us
to write

PN+1 −XN+1 = βNXN + βN+1XN+1 −XN+1

which can be written
PN+1 −XN+1 = βN (XN − 1NXN+1)

where 1N is an N -by-1 matrix of ones. We can then solve for βN :

βN = (PN+1 −XN+1)(XN − 1NXN+1)−1

and compute

βN+1 = 1 −
N∑
i=1

βi

This can be generalised for multiple values of P , one per row.

Value

M -by-N + 1 matrix in which each row is the barycentric coordinates of corresponding row of P. If
the simplex is degenerate a warning is issued and the function returns NULL.

cart2pol 5

Note

Based on the Octave function by David Bateman.

Author(s)

David Sterratt

See Also

bary2cart

Examples

Define simplex in 2D (i.e. a triangle)
X <- rbind(c(0, 0),

c(0, 1),
c(1, 0))

Cartesian coordinates of points
P <- rbind(c(0.5, 0.5),

c(0.1, 0.8))
Plot triangle and points
trimesh(rbind(1:3), X)
text(X[,1], X[,2], 1:3) # Label vertices
points(P)
cart2bary(X, P)

cart2pol Transform Cartesian coordinates to polar or cylindrical coordinates.

Description

The inputs x, y (, and z) must be the same shape, or scalar. If called with a single matrix argument
then each row of C represents the Cartesian coordinate (x, y (, z)).

Usage

cart2pol(x, y = NULL, z = NULL)

Arguments

x x-coordinates or matrix with three columns

y y-coordinates (optional, if x) is a matrix

z z-coordinates (optional, if x) is a matrix

Value

A matrix P where each row represents one polar/(cylindrical) coordinate (theta, r, (, z)).

6 cart2sph

Author(s)

Kai Habel

David Sterratt

See Also

pol2cart, cart2sph, sph2cart

cart2sph Transform Cartesian to spherical coordinates

Description

If called with a single matrix argument then each row of c represents the Cartesian coordinate (x, y,
z).

Usage

cart2sph(x, y = NULL, z = NULL)

Arguments

x x-coordinates or matrix with three columns

y y-coordinates (optional, if x) is a matrix

z z-coordinates (optional, if x) is a matrix

Value

Matrix with columns:

theta the angle relative to the positive x-axis

phi the angle relative to the xy-plane

r the distance to the origin (0,0,0)

Author(s)

Kai Habel

David Sterratt

See Also

sph2cart, cart2pol, pol2cart

convhulln 7

convhulln Compute smallest convex hull that encloses a set of points

Description

Returns information about the smallest convex complex of a set of input points in N -dimensional
space (the convex hull of the points). By default, indices to points forming the facets of the hull
are returned; optionally normals to the facets and the generalised surface area and volume can be
returned. This function interfaces the Qhull library.

Usage

convhulln(
p,
options = "Tv",
output.options = NULL,
return.non.triangulated.facets = FALSE

)

Arguments

p AnM -by-N matrix. The rows of p representM points inN -dimensional space.

options String containing extra options for the underlying Qhull command; see de-
tails below and Qhull documentation at ../doc/qhull/html/qconvex.html#
synopsis.

output.options String containing Qhull options to generate extra output. Currently n (normals)
and FA (generalised areas and volumes) are supported; see ‘Value’ for details. If
output.options is TRUE, select all supported options.

return.non.triangulated.facets

logical defining whether the output facets should be triangulated; FALSE by de-
fault.

Value

By default (return.non.triangulated.facets is FALSE), return an M -by-N matrix in which
each row contains the indices of the points in p forming an N − 1-dimensional facet. e.g In 3
dimensions, there are 3 indices in each row describing the vertices of 2-dimensional triangles.

If return.non.triangulated.facets is TRUE then the number of columns equals the maximum
number of vertices in a facet, and each row defines a polygon corresponding to a facet of the convex
hull with its vertices followed by NAs until the end of the row.

If the output.options or options argument contains FA or n, return a list with class convhulln
comprising the named elements:

p The points passed to convnhulln

hull The convex hull, represented as a matrix indexing p, as described above

http://www.qhull.org
../doc/qhull/html/qconvex.html#synopsis
../doc/qhull/html/qconvex.html#synopsis

8 convhulln

area If FA is specified, the generalised area of the hull. This is the surface area of a 3D hull or the
length of the perimeter of a 2D hull. See ../doc/qhull/html/qh-optf.html#FA.

vol If FA is specified, the generalised volume of the hull. This is volume of a 3D hull or the area
of a 2D hull. See ../doc/qhull/html/qh-optf.html#FA.

normals If n is specified, this is a matrix hyperplane normals with offsets. See ../doc/qhull/
html/qh-opto.html#n.

Note

This function was originally a port of the Octave convhulln function written by Kai Habel.

See further notes in delaunayn.

Author(s)

Raoul Grasman, Robert B. Gramacy, Pavlo Mozharovskyi and David Sterratt <david.c.sterratt@ed.ac.uk>

References

Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., “The Quickhull algorithm for convex hulls,”
ACM Trans. on Mathematical Software, Dec 1996.

http://www.qhull.org

See Also

intersectn, delaunayn, surf.tri, convex.hull

Examples

Points in a sphere
ps <- matrix(rnorm(3000), ncol=3)
ps <- sqrt(3)*ps/drop(sqrt((ps^2) %*% rep(1, 3)))
ts.surf <- t(convhulln(ps)) # see the qhull documentations for the options
Not run:
rgl.triangles(ps[ts.surf,1],ps[ts.surf,2],ps[ts.surf,3],col="blue",alpha=.2)
for(i in 1:(8*360)) rgl.viewpoint(i/8)

End(Not run)

Square
pq <- rbox(0, C=0.5, D=2)
Return indices only
convhulln(pq)
Return convhulln object with normals, generalised area and volume
ch <- convhulln(pq, output.options=TRUE)
plot(ch)

Cube
pc <- rbox(0, C=0.5, D=3)
Return indices of triangles on surface
convhulln(pc)

../doc/qhull/html/qh-optf.html#FA
../doc/qhull/html/qh-optf.html#FA
../doc/qhull/html/qh-opto.html#n
../doc/qhull/html/qh-opto.html#n
https://www.gnu.org/software/octave/
http://www.qhull.org

delaunayn 9

Return indices of squares on surface
convhulln(pc, return.non.triangulated.facets=TRUE)

delaunayn Delaunay triangulation in N dimensions

Description

The Delaunay triangulation is a tessellation of the convex hull of the points such that no N -sphere
defined by the N - triangles contains any other points from the set.

Usage

delaunayn(p, options = NULL, output.options = NULL, full = FALSE)

Arguments

p An M -by-N matrix whose rows represent M points in N -dimensional space.

options String containing extra control options for the underlying Qhull command; see
the Qhull documentation (../doc/qhull/html/qdelaun.html) for the avail-
able options.
The Qbb option is always passed to Qhull. The remaining default options are
Qcc Qc Qt Qz for N < 4 and Qcc Qc Qt Qx for N >= 4. If neither of the QJ or
Qt options are supplied, the Qt option is passed to Qhull. The Qt option ensures
all Delaunay regions are simplical (e.g., triangles in 2D). See ../doc/qhull/
html/qdelaun.html for more details. Contrary to the Qhull documentation,
no degenerate (zero area) regions are returned with the Qt option since the R
function removes them from the triangulation.
If options is specified, the default options are overridden. It is recommended
to use output.options for options controlling the outputs.

output.options String containing Qhull options to control output. Currently Fn (neighbours)
and Fa (areas) are supported. Causes an object of return value for details. If
output.options is TRUE, select all supported options.

full Deprecated and will be removed in a future release. Adds options Fa and Fn.

Value

If output.options is NULL (the default), return the Delaunay triangulation as a matrix with M
rows and N + 1 columns in which each row contains a set of indices to the input points p. Thus
each row describes a simplex of dimension N , e.g. a triangle in 2D or a tetrahedron in 3D.

If the output.options argument is TRUE or is a string containing Fn or Fa, return a list with class
delaunayn comprising the named elements:

tri The Delaunay triangulation described above

areas If TRUE or if Fa is specified, an M -dimensional vector containing the generalised area of
each simplex (e.g. in 2D the areas of triangles; in 3D the volumes of tetrahedra). See ../doc/
qhull/html/qh-optf.html#Fa.

../doc/qhull/html/qdelaun.html
../doc/qhull/html/qdelaun.html
../doc/qhull/html/qdelaun.html
../doc/qhull/html/qh-optf.html#Fa
../doc/qhull/html/qh-optf.html#Fa

10 delaunayn

neighbours If TRUE or if Fn is specified, a list of neighbours of each simplex. See ../doc/qhull/
html/qh-optf.html#Fn

Note

This function interfaces the Qhull library and is a port from Octave (https://www.gnu.org/
software/octave/) to R. Qhull computes convex hulls, Delaunay triangulations, halfspace in-
tersections about a point, Voronoi diagrams, furthest-site Delaunay triangulations, and furthest-site
Voronoi diagrams. It runs in 2D, 3D, 4D, and higher dimensions. It implements the Quickhull
algorithm for computing the convex hull. Qhull handles round-off errors from floating point arith-
metic. It computes volumes, surface areas, and approximations to the convex hull. See the Qhull
documentation included in this distribution (the doc directory ../doc/qhull/index.html).

Qhull does not support constrained Delaunay triangulations, triangulation of non-convex surfaces,
mesh generation of non-convex objects, or medium-sized inputs in 9D and higher. A rudimentary
algorithm for mesh generation in non-convex regions using Delaunay triangulation is implemented
in distmesh2d (currently only 2D).

Author(s)

Raoul Grasman and Robert B. Gramacy; based on the corresponding Octave sources of Kai Habel.

References

Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., “The Quickhull algorithm for convex hulls,”
ACM Trans. on Mathematical Software, Dec 1996.

http://www.qhull.org

See Also

tri.mesh, convhulln, surf.tri, distmesh2d

Examples

example delaunayn
d <- c(-1,1)
pc <- as.matrix(rbind(expand.grid(d,d,d),0))
tc <- delaunayn(pc)

example tetramesh
Not run:
rgl::rgl.viewpoint(60)
rgl::rgl.light(120,60)
tetramesh(tc,pc, alpha=0.9)

End(Not run)

tc1 <- delaunayn(pc, output.options="Fa")
sum of generalised areas is total volume of cube
sum(tc1$areas)

../doc/qhull/html/qh-optf.html#Fn
../doc/qhull/html/qh-optf.html#Fn
https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
../doc/qhull/index.html
http://www.qhull.org

distmesh2d 11

distmesh2d A simple mesh generator for non-convex regions

Description

An unstructured simplex requires a choice of mesh points (vertex nodes) and a triangulation. This
is a simple and short algorithm that improves the quality of a mesh by relocating the mesh points
according to a relaxation scheme of forces in a truss structure. The topology of the truss is reset
using Delaunay triangulation. A (sufficiently smooth) user supplied signed distance function (fd)
indicates if a given node is inside or outside the region. Points outside the region are projected back
to the boundary.

Usage

distmesh2d(
fd,
fh,
h0,
bbox,
p = NULL,
pfix = array(0, dim = c(0, 2)),
...,
dptol = 0.001,
ttol = 0.1,
Fscale = 1.2,
deltat = 0.2,
geps = 0.001 * h0,
deps = sqrt(.Machine$double.eps) * h0,
maxiter = 1000,
plot = TRUE

)

Arguments

fd Vectorized signed distance function, for example mesh.dcircle or mesh.diff,
accepting an n-by-2 matrix, where n is arbitrary, as the first argument.

fh Vectorized function, for example mesh.hunif, that returns desired edge length
as a function of position. Accepts an n-by-2 matrix, where n is arbitrary, as its
first argument.

h0 Initial distance between mesh nodes. (Ignored of p is supplied)

bbox Bounding box cbind(c(xmin,xmax),c(ymin,ymax))

p An n-by-2 matrix. The rows of p represent locations of starting mesh nodes.

pfix nfix-by-2 matrix with fixed node positions.

... parameters to be passed to fd and/or fh

dptol Algorithm stops when all node movements are smaller than dptol

12 distmesh2d

ttol Controls how far the points can move (relatively) before a retriangulation with
delaunayn.

Fscale “Internal pressure” in the edges.

deltat Size of the time step in Euler’s method.

geps Tolerance in the geometry evaluations.

deps Stepsize ∆x in numerical derivative computation for distance function.

maxiter Maximum iterations.

plot logical. If TRUE (default), the mesh is plotted as it is generated.

Details

This is an implementation of original Matlab software of Per-Olof Persson.

Excerpt (modified) from the reference below:

‘The algorithm is based on a mechanical analogy between a triangular mesh and a 2D truss structure.
In the physical model, the edges of the Delaunay triangles of a set of points correspond to bars of a
truss. Each bar has a force-displacement relationship f(`, `0) depending on its current length ` and
its unextended length `0.’

‘External forces on the structure come at the boundaries, on which external forces have normal
orientations. These external forces are just large enough to prevent nodes from moving outside the
boundary. The position of the nodes are the unknowns, and are found by solving for a static force
equilibrium. The hope is that (when fh = function(p) return(rep(1,nrow(p)))), the lengths of
all the bars at equilibrium will be nearly equal, giving a well-shaped triangular mesh.’

See the references below for all details. Also, see the comments in the source file.

Value

n-by-2 matrix with node positions.

Wishlist

• Implement in C/Fortran

• Implement an nD version as provided in the Matlab package

• Translate other functions of the Matlab package

Author(s)

Raoul Grasman

References

http://persson.berkeley.edu/distmesh/

P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

http://persson.berkeley.edu/distmesh/

distmeshnd 13

See Also

tri.mesh, delaunayn, mesh.dcircle, mesh.drectangle, mesh.diff, mesh.union, mesh.intersect

Examples

examples distmesh2d
fd <- function(p, ...) sqrt((p^2)%*%c(1,1)) - 1

also predefined as `mesh.dcircle'
fh <- function(p,...) rep(1,nrow(p))
bbox <- matrix(c(-1,1,-1,1),2,2)
p <- distmesh2d(fd,fh,0.2,bbox, maxiter=100)

this may take a while:
press Esc to get result of current iteration

example with non-convex region
fd <- function(p, ...) mesh.diff(p , mesh.drectangle, mesh.dcircle, radius=.3)

fd defines difference of square and circle

p <- distmesh2d(fd,fh,0.05,bbox,radius=0.3,maxiter=4)
p <- distmesh2d(fd,fh,0.05,bbox,radius=0.3, maxiter=10)

continue on previous mesh

distmeshnd A simple mesh generator for non-convex regions in n-D space

Description

An unstructured simplex requires a choice of mesh points (vertex nodes) and a triangulation. This
is a simple and short algorithm that improves the quality of a mesh by relocating the mesh points
according to a relaxation scheme of forces in a truss structure. The topology of the truss is reset
using Delaunay triangulation. A (sufficiently smooth) user supplied signed distance function (fd)
indicates if a given node is inside or outside the region. Points outside the region are projected back
to the boundary.

Usage

distmeshnd(
fdist,
fh,
h,
box,
pfix = array(dim = c(0, ncol(box))),
...,
ptol = 0.001,
ttol = 0.1,
deltat = 0.1,
geps = 0.1 * h,

14 distmeshnd

deps = sqrt(.Machine$double.eps) * h
)

Arguments

fdist Vectorized signed distance function, for example mesh.dsphere, accepting an
m-by-n matrix, where m is arbitrary, as the first argument.

fh Vectorized function, for example mesh.hunif, that returns desired edge length
as a function of position. Accepts an m-by-n matrix, where n is arbitrary, as its
first argument.

h Initial distance between mesh nodes.

box 2-by-n matrix that specifies the bounding box. (See distmesh2d for an example.)

pfix nfix-by-2 matrix with fixed node positions.

... parameters that are passed to fdist and fh

ptol Algorithm stops when all node movements are smaller than dptol

ttol Controls how far the points can move (relatively) before a retriangulation with
delaunayn.

deltat Size of the time step in Euler’s method.

geps Tolerance in the geometry evaluations.

deps Stepsize ∆x in numerical derivative computation for distance function.

Details

This is an implementation of original Matlab software of Per-Olof Persson.

Excerpt (modified) from the reference below:

‘The algorithm is based on a mechanical analogy between a triangular mesh and a n-D truss struc-
ture. In the physical model, the edges of the Delaunay triangles of a set of points correspond to bars
of a truss. Each bar has a force-displacement relationship f(`, `0) depending on its current length `
and its unextended length `0.’

‘External forces on the structure come at the boundaries, on which external forces have normal
orientations. These external forces are just large enough to prevent nodes from moving outside the
boundary. The position of the nodes are the unknowns, and are found by solving for a static force
equilibrium. The hope is that (when fh = function(p) return(rep(1,nrow(p)))), the lengths of
all the bars at equilibrium will be nearly equal, giving a well-shaped triangular mesh.’

See the references below for all details. Also, see the comments in the source file of distmesh2d.

Value

m-by-n matrix with node positions.

Wishlist

• Implement in C/Fortran

• Translate other functions of the Matlab package

dot 15

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

See Also

distmesh2d, tri.mesh, delaunayn, mesh.dsphere, mesh.hunif,
mesh.diff, mesh.union, mesh.intersect

Examples

Not run:
examples distmeshnd
require(rgl)

fd = function(p, ...) sqrt((p^2)%*%c(1,1,1)) - 1
also predefined as `mesh.dsphere'

fh = function(p,...) rep(1,nrow(p))
also predefined as `mesh.hunif'

bbox = matrix(c(-1,1),2,3)
p = distmeshnd(fd,fh,0.2,bbox, maxiter=100)

this may take a while:
press Esc to get result of current iteration

End(Not run)

dot Compute the dot product of two vectors

Description

If x and y are matrices, calculate the dot-product along the first non-singleton dimension. If the
optional argument d is given, calculate the dot-product along this dimension.

Usage

dot(x, y, d = NULL)

http://persson.berkeley.edu/distmesh/

16 entry.value

Arguments

x Matrix of vectors

y Matrix of vectors

d Dimension along which to calculate the dot product

Value

Vector with length of dth dimension

Author(s)

David Sterratt

entry.value Retrieve or set a list of array element values

Description

entry.value retrieves or sets the values in an array a at the positions indicated by the rows of a
matrix idx.

Usage

entry.value(a, idx)

Arguments

a An array.

idx Numerical matrix with the same number of columns as the number of dimen-
sions of a. Each row indices a cell in a of which the value is to be retrieved or
set.

value An array of length nrow(idx).

Value

entry.value(a,idx) returns a vector of values at the indicated cells. entry.value(a,idx) <-val
changes the indicated cells of a to val.

Author(s)

Raoul Grasman

extprod3d 17

Examples

a = array(1:(4^4),c(4,4,4,4))
entry.value(a,cbind(1:4,1:4,1:4,1:4))
entry.value(a,cbind(1:4,1:4,1:4,1:4)) <- 0

entry.value(a, as.matrix(expand.grid(1:4,1:4,1:4,1:4)))
same as `c(a[1:4,1:4,1:4,1:4])' which is same as `c(a)'

extprod3d Compute external- or ‘cross’- product of 3D vectors.

Description

Computes the external product

(x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)

of the 3D vectors in x and y.

Usage

extprod3d(x, y, drop = TRUE)

Arguments

x n-by-3 matrix. Each row is one x-vector

y n-by-3 matrix. Each row is one y-vector

drop logical. If TRUE and if the inputs are one row matrices or vectors, then delete the
dimensions of the array returned.

Value

If n is greater than 1 or drop is FALSE, n-by-3 matrix; if n is 1 and drop is TRUE, a vector of length
3.

Author(s)

Raoul Grasman

See Also

drop

18 halfspacen

feasible.point Find point in intersection of convex hulls

Description

Find point that lies somewhere in interesction of two convex hulls. If such a point does not exist,
return NA. The feasible point is found using a linear program similar to the one suggested at ..
/doc/qhull/html/qhalf.html#notes

Usage

feasible.point(ch1, ch2, tol = 0)

Arguments

ch1 First convex hull with normals

ch2 Second convex hull with normals

tol The point must be at least this far within the facets of both convex hulls

halfspacen Compute halfspace intersection about a point

Description

Compute halfspace intersection about a point

Usage

halfspacen(p, fp, options = "Tv")

Arguments

p AnM -by-N+1 matrix. Each row of p represents a halfspace by aN -dimensional
normal to a hyperplane and the offset of the hyperplane.

fp A “feasible” point that is within the space contained within all the halfspaces.

options String containing extra options, separated by spaces, for the underlying Qhull
command; see Qhull documentation at ../doc/qhull/html/qhalf.html.

Value

A N -column matrix containing the intersection points of the hyperplanes ../doc/qhull/html/
qhalf.html.

../doc/qhull/html/qhalf.html#notes
../doc/qhull/html/qhalf.html#notes
../doc/qhull/html/qhalf.html
../doc/qhull/html/qhalf.html
../doc/qhull/html/qhalf.html

inhulln 19

Note

halfspacen was introduced in geometry 0.4.0, and is still under development. It is worth checking
results for unexpected behaviour.

Author(s)

David Sterratt

References

Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., “The Quickhull algorithm for convex hulls,”
ACM Trans. on Mathematical Software, Dec 1996.

http://www.qhull.org

See Also

convhulln

Examples

p <- rbox(0, C=0.5) # Generate points on a unit cube centered around the origin
ch <- convhulln(p, "n") # Generate convex hull, including normals to facets, with "n" option
Intersections of half planes
These points should be the same as the orginal points
pn <- halfspacen(ch$normals, c(0, 0, 0))

inhulln Test if points lie in convex hull

Description

Tests if a set of points lies within a convex hull, returning a boolean vector in which each element
is TRUE if the corresponding point lies within the hull and FALSE if it lies outwith the hull or on one
of its facets.

Usage

inhulln(ch, p)

Arguments

ch Convex hull produced using convhulln

p An M -by-N matrix of points to test. The rows of p represent M points in N -
dimensional space.

http://www.qhull.org

20 intersectn

Value

A boolean vector with M elements

Note

inhulln was introduced in geometry 0.4.0, and is still under development. It is worth checking
results for unexpected behaviour.

Author(s)

David Sterratt

See Also

convhulln, point.in.polygon in sp

Examples

p <- cbind(c(-1, -1, 1), c(-1, 1, -1))
ch <- convhulln(p)
First point should be in the hull; last two outside
inhulln(ch, rbind(c(-0.5, -0.5),

c(1 , 1),
c(10 , 0)))

Test hypercube
p <- rbox(D=4, B=1)
ch <- convhulln(p)
tp <- cbind(seq(-1.9, 1.9, by=0.2), 0, 0, 0)
pin <- inhulln(ch, tp)
Points on x-axis should be in box only betw,een -1 and 1
pin == (tp[,1] < 1 & tp[,1] > -1)

intersectn Compute convex hull of intersection of two sets of points

Description

Compute convex hull of intersection of two sets of points

Usage

intersectn(
ps1,
ps2,
tol = 0,
return.chs = TRUE,
options = "Tv",

intersectn 21

fp = NULL,
autoscale = FALSE

)

Arguments

ps1 First set of points

ps2 Second set of points

tol Tolerance used to determine if a feasible point lies within the convex hulls of
both points and to round off the points generated by the halfspace intersection,
which sometimes produces points very close together.

return.chs If TRUE (default) return the convex hulls of the first and second sets of points, as
well as the convex hull of the intersection.

options Options passed to halfspacen. By default this is Tv.

fp Coordinates of feasible point, i.e. a point known to lie in the hulls of ps1 and
ps2. The feasible point is required for halfspacen to find the intersection.
intersectn tries to find the feasible point automatically using the linear pro-
gram in feasible.point, but currently the linear program fails on some ex-
amples where there is an obvious solution. This option overrides the automatic
search for a feasible point

autoscale Experimental in v0.4.2 Automatically scale the points to lie in a sensible numeric
range. May help to correct some numerical issues.

Value

List containing named elements: ch1, the convex hull of the first set of points, with volumes, areas
and normals (see convhulln; ch2, the convex hull of the first set of points, with volumes, areas
and normals; ps, the intersection points of convex hulls ch1 and ch2; and ch, the convex hull of the
intersection points, with volumes, areas and normals.

Note

intersectn was introduced in geometry 0.4.0, and is still under development. It is worth checking
results for unexpected behaviour.

Author(s)

David Sterratt

See Also

convhulln, halfspacen, inhulln, feasible.point

Examples

Two overlapping boxes
ps1 <- rbox(0, C=0.5)
ps2 <- rbox(0, C=0.5) + 0.5

22 matmax

out <- intersectn(ps1, ps2)
message("Volume of 1st convex hull: ", out$ch1$vol)
message("Volume of 2nd convex hull: ", out$ch2$vol)
message("Volume of intersection convex hull: ", outchvol)

matmax Row-wise matrix functions

Description

Compute maximum or minimum of each row, or sort each row of a matrix, or a set of (equal length)
vectors.

Usage

matmax(...)

Arguments

... A numeric matrix or a set of numeric vectors (that are column-wise bind together
into a matrix with cbind).

Value

matmin and matmax return a vector of length nrow(cbind(...)). matsort returns a matrix of di-
mension dim(cbind(...)) with in each row of cbind(...) sorted. matsort(x) is a lot faster than,
e.g., t(apply(x,1,sort)), if x is tall (i.e., nrow(x)»ncol(x) and ncol(x)<30. If ncol(x)>30
then matsort simply calls ‘t(apply(x,1,sort))’. matorder returns a permutation which rear-
ranges its first argument into ascending order, breaking ties by further arguments.

Author(s)

Raoul Grasman

Examples

example(Unique)

mesh.dcircle 23

mesh.dcircle Circle distance function

Description

Signed distance from points p to boundary of circle to allow easy definition of regions in distmesh2d.

Usage

mesh.dcircle(p, radius = 1, ...)

Arguments

p A matrix with 2 columns (3 in mesh.dsphere), each row representing a point in
the plane.

radius radius of circle

... additional arguments (not used)

Value

A vector of length nrow(p) containing the signed distances to the circle

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

See Also

distmesh2d, mesh.drectangle, mesh.diff, mesh.intersect, mesh.union

Examples

example(distmesh2d)

http://persson.berkeley.edu/distmesh/

24 mesh.drectangle

mesh.diff Difference, union and intersection operation on two regions

Description

Compute the signed distances from points p to a region defined by the difference, union or inter-
section of regions specified by the functions regionA and regionB. regionA and regionB must
accept a matrix p with 2 columns as their first argument, and must return a vector of length nrow(p)
containing the signed distances of the supplied points in p to their respective regions.

Usage

mesh.diff(p, regionA, regionB, ...)

Arguments

p A matrix with 2 columns (3 in mesh.dsphere), each row representing a point in
the plane.

regionA vectorized function describing region A in the union / intersection / difference

regionB vectorized function describing region B in the union / intersection / difference

... additional arguments passed to regionA and regionB

Value

A vector of length nrow(p) containing the signed distances to the boundary of the region.

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

See Also

distmesh2d, mesh.dcircle, mesh.drectangle mesh.dsphere

mesh.drectangle Rectangle distance function

Description

Signed distance from points p to boundary of rectangle to allow easy definition of regions in
distmesh2d.

Usage

mesh.drectangle(p, x1 = -1/2, y1 = -1/2, x2 = 1/2, y2 = 1/2, ...)

mesh.dsphere 25

Arguments

p A matrix with 2 columns, each row representing a point in the plane.
x1 lower left corner of rectangle
y1 lower left corner of rectangle
x2 upper right corner of rectangle
y2 upper right corner of rectangle
... additional arguments (not used)

Value

a vector of length nrow(p) containing the signed distances

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

See Also

distmesh2d, mesh.drectangle, mesh.diff, mesh.intersect, mesh.union

Examples

example(distmesh2d)

mesh.dsphere Sphere distance function

Description

Signed distance from points p to boundary of sphere to allow easy definition of regions in distmeshnd.

Usage

mesh.dsphere(p, radius = 1, ...)

Arguments

p A matrix with 2 columns (3 in mesh.dsphere), each row representing a point in
the plane.

radius radius of sphere
... additional arguments (not used)

http://persson.berkeley.edu/distmesh/

26 mesh.hunif

Value

A vector of length nrow(p) containing the signed distances to the sphere

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

See Also

distmeshnd

Examples

example(distmeshnd)

mesh.hunif Uniform desired edge length

Description

Uniform desired edge length function of position to allow easy definition of regions when passed
as the fh argument of distmesh2d or distmeshnd.

Usage

mesh.hunif(p, ...)

Arguments

p A n-by-m matrix, each row representing a point in an m-dimensional space.

... additional arguments (not used)

Value

Vector of ones of length n.

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

http://persson.berkeley.edu/distmesh/

pol2cart 27

See Also

distmesh2d and distmeshnd.

pol2cart Transform polar or cylindrical coordinates to Cartesian coordinates.

Description

The inputs theta, r, (and z) must be the same shape, or scalar. If called with a single matrix
argument then each row of P represents the polar/(cylindrical) coordinate (theta, r (, z)).

Usage

pol2cart(theta, r = NULL, z = NULL)

Arguments

theta describes the angle relative to the positive x-axis.

r is the distance to the z-axis (0, 0, z).

z (optional) is the z-coordinate

Value

a matrix C where each row represents one Cartesian coordinate (x, y (, z)).

Author(s)

Kai Habel

David Sterratt

See Also

cart2pol, sph2cart, cart2sph

28 polyarea

polyarea Determines area of a polygon by triangle method.

Description

Determines area of a polygon by triangle method. The variables x and y define the vertex pairs, and
must therefore have the same shape. They can be either vectors or arrays. If they are arrays then the
columns of x and y are treated separately and an area returned for each.

Usage

polyarea(x, y, d = 1)

Arguments

x X coordinates of vertices.

y Y coordinates of vertices.

d Dimension of array to work along.

Details

If the optional dim argument is given, then polyarea works along this dimension of the arrays x
and y.

Value

Area(s) of polygon(s).

Author(s)

David Sterratt based on the octave sources by David M. Doolin

Examples

x <- c(1, 1, 3, 3, 1)
y <- c(1, 3, 3, 1, 1)
polyarea(x, y)
polyarea(cbind(x, x), cbind(y, y)) ## c(4, 4)
polyarea(cbind(x, x), cbind(y, y), 1) ## c(4, 4)
polyarea(rbind(x, x), rbind(y, y), 2) ## c(4, 4)

rbox 29

rbox Generate various point distributions

Description

Default is corners of a hypercube.

Usage

rbox(n = 3000, D = 3, B = 0.5, C = NA)

Arguments

n number of random points in hypercube

D number of dimensions of hypercube

B bounding box coordinate - faces will be -B and B from origin

C add a unit hypercube to the output - faces will be -C and C from origin

Value

Matrix of points

Author(s)

David Sterratt

sph2cart Transform spherical coordinates to Cartesian coordinates

Description

The inputs theta, phi, and r must be the same shape, or scalar. If called with a single matrix
argument then each row of S represents the spherical coordinate (theta, phi, r).

Usage

sph2cart(theta, phi = NULL, r = NULL)

Arguments

theta describes the angle relative to the positive x-axis.

phi is the angle relative to the xy-plane.

r is the distance to the origin (0,0,0).
If only a single return argument is requested then return a matrix C where each
row represents one Cartesian coordinate (x, y, z).

30 surf.tri

Author(s)

Kai Habel

David Sterratt

See Also

cart2sph, pol2cart, cart2pol

surf.tri Find surface triangles from tetrahedral mesh

Description

Find surface triangles from tetrahedral mesh typically obtained with delaunayn.

Usage

surf.tri(p, t)

Arguments

p An n-by-3 matrix. The rows of p represent n points in dim-dimensional space.

t Matrix with 4 columns, interpreted as output of delaunayn.

Details

surf.tri and convhulln serve a similar purpose in 3D, but surf.tri also works for non-convex
meshes obtained e.g. with distmeshnd. It also does not produce currently unavoidable diagnostic
output on the console as convhulln does at the Rterm console–i.e., surf.tri is silent.

Value

An m-by-3 index matrix of which each row defines a triangle. The indices refer to the rows in p.

Note

surf.tri was based on Matlab code for mesh of Per-Olof Persson (http://persson.berkeley.
edu/distmesh/).

Author(s)

Raoul Grasman

See Also

tri.mesh, convhulln, surf.tri, distmesh2d

http://persson.berkeley.edu/distmesh/
http://persson.berkeley.edu/distmesh/

tetramesh 31

Examples

Not run:
more extensive example of surf.tri

url's of publically available data:
data1.url = "http://neuroimage.usc.edu/USCPhantom/mesh_data.bin"
data2.url = "http://neuroimage.usc.edu/USCPhantom/CT_PCS_trans.bin"

meshdata = R.matlab::readMat(url(data1.url))
elec = R.matlab::readMat(url(data2.url))$eeg.ct2pcs/1000
brain = meshdata$mesh.brain[,c(1,3,2)]
scalp = meshdata$mesh.scalp[,c(1,3,2)]
skull = meshdata$mesh.skull[,c(1,3,2)]
tbr = t(surf.tri(brain, delaunayn(brain)))
tsk = t(surf.tri(skull, delaunayn(skull)))
tsc = t(surf.tri(scalp, delaunayn(scalp)))
rgl::rgl.triangles(brain[tbr,1], brain[tbr,2], brain[tbr,3],col="gray")
rgl::rgl.triangles(skull[tsk,1], skull[tsk,2], skull[tsk,3],col="white", alpha=0.3)
rgl::rgl.triangles(scalp[tsc,1], scalp[tsc,2], scalp[tsc,3],col="#a53900", alpha=0.6)
rgl::rgl.viewpoint(-40,30,.4,zoom=.03)
lx = c(-.025,.025); ly = -c(.02,.02);
rgl::rgl.spheres(elec[,1],elec[,3],elec[,2],radius=.0025,col='gray')
rgl::rgl.spheres(lx, ly,.11,radius=.015,col="white")
rgl::rgl.spheres(lx, ly,.116,radius=.015*.7,col="brown")
rgl::rgl.spheres(lx, ly,.124,radius=.015*.25,col="black")

End(Not run)

tetramesh Render tetrahedron mesh (3D)

Description

tetramesh(T,X,col) uses the rgl package to display the tetrahedrons defined in the m-by-4 matrix
T as mesh. Each row of T specifies a tetrahedron by giving the 4 indices of its points in X.

Usage

tetramesh(T, X, col = grDevices::heat.colors(nrow(T)), clear = TRUE, ...)

Arguments

T T is a m-by-3 matrix in trimesh and m-by-4 in tetramesh. A row of T contains
indices into X of the vertices of a triangle/tetrahedron. T is usually the output of
delaunayn.

X X is an n-by-2/n-by-3 matrix. The rows of X represent n points in 2D/3D space.

32 to.mesh3d

col The tetrahedron colour. See rgl documentation for details.

clear Should the current rendering device be cleared?

... Parameters to the rendering device. See the rgl package.

Author(s)

Raoul Grasman

See Also

trimesh, rgl, delaunayn, convhulln, surf.tri

Examples

Not run:
example delaunayn
d = c(-1,1)
pc = as.matrix(rbind(expand.grid(d,d,d),0))
tc = delaunayn(pc)

example tetramesh
clr = rep(1,3) %o% (1:nrow(tc)+1)
rgl::rgl.viewpoint(60,fov=20)
rgl::rgl.light(270,60)
tetramesh(tc,pc,alpha=0.7,col=clr)

End(Not run)

to.mesh3d Convert convhulln object to RGL mesh

Description

Convert convhulln object to RGL mesh

Usage

to.mesh3d(x, ...)

Arguments

x convhulln object

... Arguments to qmesh3d or tmesh3d

Value

mesh3d object, which can be displayed in RGL with dot3d, wire3d or shade3d

trimesh 33

See Also

as.mesh3d

trimesh Display triangles mesh (2D)

Description

trimesh(T,p) displays the triangles defined in the m-by-3 matrix T and points p as a mesh. Each
row of T specifies a triangle by giving the 3 indices of its points in X.

Usage

trimesh(T, p, p2, add = FALSE, axis = FALSE, boxed = FALSE, ...)

Arguments

T T is a m-by-3 matrix. A row of T contains indices into X of the vertices of a
triangle. T is usually the output of delaunayn.

p A vector or a matrix.

p2 if p is not a matrix p and p2 are bind to a matrix with cbind.

add Add to existing plot in current active device?

axis Draw axes?

boxed Plot box?

... Parameters to the rendering device. See the rgl package.

Author(s)

Raoul Grasman

See Also

tetramesh, rgl, delaunayn, convhulln, surf.tri

Examples

#example trimesh
p = cbind(x=rnorm(30), y=rnorm(30))
tt = delaunayn(p)
trimesh(tt,p)

34 tsearch

tsearch Search for the enclosing Delaunay convex hull

Description

For t <-delaunay(cbind(x,y)), where (x,y) is a 2D set of points, tsearch(x,y,t,xi,yi) finds
the index in t containing the points (xi,yi). For points outside the convex hull the index is NA.

Usage

tsearch(x, y, t, xi, yi, bary = FALSE, method = "quadtree")

Arguments

x X-coordinates of triangulation points

y Y-coordinates of triangulation points

t Triangulation, e.g. produced by t <-delaunayn(cbind(x,y))

xi X-coordinates of points to test

yi Y-coordinates of points to test

bary If TRUE return barycentric coordinates as well as index of triangle.

method One of "quadtree" or "orig". The Quadtree algorithm is much faster and new
from version 0.4.0. The orig option uses the tsearch algorithm adapted from
Octave code. Its use is deprecated and it may be removed from a future version
of the package.

Value

If bary is FALSE, the index in t containing the points (xi,yi). For points outside the convex hull
the index is NA. If bary is TRUE, a list containing:

list("idx") the index in t containing the points (xi,yi)

list("p") a 3-column matrix containing the barycentric coordinates with respect to the enclosing
triangle of each point (xi,yi).

Note

The original Octave function is Copyright (C) 2007-2012 David Bateman

Author(s)

Jean-Romain Roussel (Quadtree algorithm), David Sterratt (Octave-based implementation)

See Also

tsearchn, delaunayn

tsearchn 35

tsearchn Search for the enclosing Delaunay convex hull

Description

For t = delaunayn(x), where x is a set of points in N dimensions, tsearchn(x,t,xi) finds the
index in t containing the points xi. For points outside the convex hull, idx is NA. tsearchn also
returns the barycentric coordinates p of the enclosing triangles.

Usage

tsearchn(x, t, xi, ...)

Arguments

x An N -column matrix, in which each row represents a point in N -dimensional
space.

t A matrix with N + 1 columns. A row of t contains indices into x of the vertices
of an N -dimensional simplex. t is usually the output of delaunayn.

xi AnM -by-N matrix. The rows of xi representM points inN -dimensional space
whose positions in the mesh are being sought.

... Additional arguments

Details

If x is NA and the t is a delaunayn object produced by delaunayn with the full option, then use
the Qhull library to perform the search. Please note that this is experimental in geometry version
0.4.0 and is only partly tested for 3D hulls, and does not yet work for hulls of 4 dimensions and
above.

Value

A list containing:

idx An M -long vector containing the indices of the row of t in which each point in xi is found.

p An M -by-N + 1 matrix containing the barycentric coordinates with respect to the enclosing
simplex of each point in xi.

Note

Based on the Octave function Copyright (C) 2007-2012 David Bateman.

Author(s)

David Sterratt

36 Unique

See Also

tsearch, delaunayn

Unique Extract Unique Rows

Description

‘Unique’ returns a vector, data frame or array like ’x’ but with duplicate elements removed.

Usage

Unique(X, rows.are.sets = FALSE)

Arguments

X Numerical matrix.

rows.are.sets If ‘TRUE’, rows are treated as sets - i.e., to define uniqueness, the order of the
rows does not matter.

Value

Matrix of the same number of columns as x, with the unique rows in x sorted according to the
columns of x. If rows.are.sets = TRUE the rows are also sorted.

Note

‘Unique’ is (under circumstances) much quicker than the more generic base function ‘unique’.

Author(s)

Raoul Grasman

Examples

`Unique' is faster than `unique'
x = matrix(sample(1:(4*8),4*8),ncol=4)
y = x[sample(1:nrow(x),3000,TRUE),]
gc(); system.time(unique(y))
gc(); system.time(Unique(y))

#
z = Unique(y)
x[matorder(x),]
z[matorder(z),]

Index

∗ arith
dot, 15
entry.value, 16
extprod3d, 17
matmax, 22
mesh.dcircle, 23
mesh.drectangle, 24
mesh.dsphere, 25
Unique, 36

∗ array
dot, 15
entry.value, 16
extprod3d, 17
matmax, 22
Unique, 36

∗ dplot
convhulln, 7
delaunayn, 9
distmesh2d, 11
distmeshnd, 13
surf.tri, 30

∗ graphs
convhulln, 7
delaunayn, 9
distmesh2d, 11
distmeshnd, 13

∗ hplot
tetramesh, 31
trimesh, 33

∗ math
convhulln, 7
delaunayn, 9
distmesh2d, 11
distmeshnd, 13
dot, 15
entry.value, 16
extprod3d, 17
mesh.dcircle, 23
mesh.drectangle, 24

mesh.dsphere, 25
surf.tri, 30
Unique, 36

∗ optimize
distmesh2d, 11
distmeshnd, 13
surf.tri, 30

as.mesh3d, 33

bary2cart, 3, 5

cart2bary, 3, 4
cart2pol, 5, 6, 27, 30
cart2sph, 6, 6, 27, 30
convex.hull, 8
convhulln, 7, 10, 19–21, 30, 32, 33

delaunayn, 8, 9, 12–15, 30, 32–36
distmesh2d, 10, 11, 14, 15, 23–27, 30
distmeshnd, 13, 25–27, 30
dot, 15
dot3d, 32
drop, 17

entry.value, 16
entry.value<- (entry.value), 16
extprod3d, 17

feasible.point, 18, 21

halfspacen, 18, 21

inhulln, 19, 21
intersectn, 8, 20

matmax, 22
matmin (matmax), 22
matorder (matmax), 22
matsort (matmax), 22
mesh.dcircle, 11, 13, 23, 24

37

38 INDEX

mesh.diff, 11, 13, 15, 23, 24, 25
mesh.drectangle, 13, 23, 24, 24, 25
mesh.dsphere, 14, 15, 24, 25
mesh.hunif, 11, 14, 15, 26
mesh.intersect, 13, 15, 23, 25
mesh.intersect (mesh.diff), 24
mesh.union, 13, 15, 23, 25
mesh.union (mesh.diff), 24
mesh3d, 32

pol2cart, 6, 27, 30
polyarea, 28

qmesh3d, 32

rbox, 29
rgl, 31–33

shade3d, 32
sph2cart, 6, 27, 29
surf.tri, 8, 10, 30, 30, 32, 33

tetramesh, 31, 33
tmesh3d, 32
to.mesh3d, 32
tri.mesh, 10, 13, 15, 30
trimesh, 32, 33
tsearch, 34, 36
tsearchn, 34, 35

Unique, 36

wire3d, 32

	bary2cart
	cart2bary
	cart2pol
	cart2sph
	convhulln
	delaunayn
	distmesh2d
	distmeshnd
	dot
	entry.value
	extprod3d
	feasible.point
	halfspacen
	inhulln
	intersectn
	matmax
	mesh.dcircle
	mesh.diff
	mesh.drectangle
	mesh.dsphere
	mesh.hunif
	pol2cart
	polyarea
	rbox
	sph2cart
	surf.tri
	tetramesh
	to.mesh3d
	trimesh
	tsearch
	tsearchn
	Unique
	Index

