
Package ‘gert’
March 29, 2022

Type Package

Title Simple Git Client for R

Version 1.6.0

Description Simple git client for R based on 'libgit2' <https://libgit2.org> with
support for SSH and HTTPS remotes. All functions in 'gert' use basic R data
types (such as vectors and data-frames) for their arguments and return values.
User credentials are shared with command line 'git' through the git-credential
store and ssh keys stored on disk or ssh-agent.

License MIT + file LICENSE

URL https://docs.ropensci.org/gert/, https://github.com/r-lib/gert

BugReports https://github.com/r-lib/gert/issues

Imports askpass, credentials (>= 1.2.1), openssl (>= 1.4.1),
rstudioapi (>= 0.11), sys, zip (>= 2.1.0)

Suggests spelling, knitr, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

SystemRequirements libgit2 (>= 1.0): libgit2-devel (rpm) or
libgit2-dev (deb)

Language en-US

NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>),
Jennifer Bryan [ctb] (<https://orcid.org/0000-0002-6983-2759>)

Maintainer Jeroen Ooms <jeroen@berkeley.edu>

Repository CRAN

Date/Publication 2022-03-29 21:10:02 UTC

1

https://libgit2.org
https://docs.ropensci.org/gert/
https://github.com/r-lib/gert
https://github.com/r-lib/gert/issues
https://orcid.org/0000-0002-4035-0289
https://orcid.org/0000-0002-6983-2759

2 git_archive

R topics documented:

git_archive . 2
git_branch . 3
git_checkout_pull_request . 4
git_commit . 4
git_config . 6
git_diff . 8
git_fetch . 9
git_merge . 11
git_open . 13
git_rebase . 13
git_remote . 14
git_repo . 15
git_signature . 17
git_stash . 18
git_submodule_list . 19
git_tag . 19
libgit2_config . 20
user_is_configured . 21

Index 22

git_archive Git Archive

Description

Exports the files in your repository to a zip file that is returned by the function.

Usage

git_archive_zip(file = NULL, repo = ".")

Arguments

file name of the output zip file. Default is returned by the function

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

Value

path to the zip file that was created

git_branch 3

See Also

Other git: git_branch(), git_commit(), git_config(), git_diff(), git_fetch(), git_merge(),
git_rebase(), git_remote, git_repo, git_signature(), git_stash, git_tag

git_branch Git Branch

Description

Create, list, and checkout branches.

Usage

git_branch(repo = ".")

git_branch_list(local = NULL, repo = ".")

git_branch_checkout(branch, force = FALSE, orphan = FALSE, repo = ".")

git_branch_create(branch, ref = "HEAD", checkout = TRUE, repo = ".")

git_branch_delete(branch, repo = ".")

git_branch_move(branch, new_branch, force = FALSE, repo = ".")

git_branch_fast_forward(ref, repo = ".")

git_branch_set_upstream(upstream, branch = git_branch(repo), repo = ".")

git_branch_exists(branch, local = TRUE, repo = ".")

Arguments

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

local set TRUE to only check for local branches, FALSE to check for remote branches.
Use NULL to return all branches.

branch name of branch to check out
force ignore conflicts and overwrite modified files
orphan if branch does not exist, checkout unborn branch
ref string with a branch/tag/commit
checkout move HEAD to the newly created branch
new_branch target name of the branch once the move is performed; this name is validated for

consistency.
upstream remote branch from git_branch_list, for example "origin/master"

4 git_commit

See Also

Other git: git_archive, git_commit(), git_config(), git_diff(), git_fetch(), git_merge(),
git_rebase(), git_remote, git_repo, git_signature(), git_stash, git_tag

git_checkout_pull_request

GitHub Wrappers

Description

Fetch and checkout pull requests.

Usage

git_checkout_pull_request(pr = 1, remote = NULL, repo = ".")

git_fetch_pull_requests(pr = "*", remote = NULL, repo = ".")

Arguments

pr number with PR to fetch or check out. Use "*" to fetch all pull requests.
remote Optional. Name of a remote listed in git_remote_list(). If unspecified and

the current branch is already tracking branch a remote branch, that remote is
honored. Otherwise, defaults to origin.

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

Details

By default git_fetch_pull_requests will download all PR branches. To remove these again
simply use git_fetch(prune = TRUE).

git_commit Stage and commit changes

Description

To commit changes, start by staging the files to be included in the commit using git_add() or
git_rm(). Use git_status() to see an overview of staged and unstaged changes, and finally
git_commit() creates a new commit with currently staged files.

git_commit_all() is a convenience function that automatically stages and commits all modified
files. Note that git_commit_all() does not add new, untracked files to the repository. You need
to make an explicit call to git_add() to start tracking new files.

git_log() shows the most recent commits and git_ls() lists all the files that are being tracked in
the repository. git_stat_files()

git_commit 5

Usage

git_commit(message, author = NULL, committer = NULL, repo = ".")

git_commit_all(message, author = NULL, committer = NULL, repo = ".")

git_commit_info(ref = "HEAD", repo = ".")

git_commit_id(ref = "HEAD", repo = ".")

git_commit_descendant_of(ancestor, ref = "HEAD", repo = ".")

git_add(files, force = FALSE, repo = ".")

git_rm(files, repo = ".")

git_status(staged = NULL, repo = ".")

git_conflicts(repo = ".")

git_ls(repo = ".")

git_log(ref = "HEAD", max = 100, after = NULL, repo = ".")

git_stat_files(files, ref = "HEAD", repo = ".")

Arguments

message a commit message

author A git_signature value, default is git_signature_default().

committer A git_signature value, default is same as author

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

ref revision string with a branch/tag/commit value

ancestor a reference to a potential ancestor commit

files vector of paths relative to the git root directory. Use "." to stage all changed
files.

force add files even if in gitignore

staged return only staged (TRUE) or unstaged files (FALSE). Use NULL or NA to show
both (default).

max lookup at most latest n parent commits

after date or timestamp: only include commits starting this date

6 git_config

Value

• git_status(), git_ls(): A data frame with one row per file

• git_log(): A data frame with one row per commit

• git_commit(), git_commit_all(): A SHA

See Also

Other git: git_archive, git_branch(), git_config(), git_diff(), git_fetch(), git_merge(),
git_rebase(), git_remote, git_repo, git_signature(), git_stash, git_tag

Examples

oldwd <- getwd()
repo <- file.path(tempdir(), "myrepo")
git_init(repo)
setwd(repo)

Set a user if no default
if(!user_is_configured()){

git_config_set("user.name", "Jerry")
git_config_set("user.email", "jerry@gmail.com")

}

writeLines(letters[1:6], "alphabet.txt")
git_status()

git_add("alphabet.txt")
git_status()

git_commit("Start alphabet file")
git_status()

git_ls()

git_log()

cat(letters[7:9], file = "alphabet.txt", sep = "\n", append = TRUE)
git_status()

git_commit_all("Add more letters")

cleanup
setwd(oldwd)
unlink(repo, recursive = TRUE)

git_config Get or set Git configuration

git_config 7

Description

Get or set Git options, as git config does on the command line. Global settings affect all of a
user’s Git operations (git config --global), whereas local settings are scoped to a specific repository
(git config --local). When both exist, local options always win. Four functions address the four
possible combinations of getting vs setting and global vs. local.

local global
get git_config() git_config_global()
set git_config_set() git_config_global_set()

Usage

git_config(repo = ".")

git_config_global()

git_config_set(name, value, repo = ".")

git_config_global_set(name, value)

Arguments

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

name Name of the option to set
value Value to set. Must be a string, logical, number or NULL (to unset).

Value

• git_config(): a data.frame of the Git options "in force" in the context of repo, one row
per option. The level column reveals whether the option is determined from global or local
config.

• git_config_global(): a data.frame, as for git_config(), except only for global Git
options.

• git_config_set(), git_config_global_set(): The previous value of name in local or
global config, respectively. If this option was previously unset, returns NULL. Returns invisibly.

Note

All entries in the name column are automatically normalised to lowercase (see https://libgit2.
org/libgit2/#HEAD/type/git_config_entry for details).

See Also

Other git: git_archive, git_branch(), git_commit(), git_diff(), git_fetch(), git_merge(),
git_rebase(), git_remote, git_repo, git_signature(), git_stash, git_tag

https://libgit2.org/libgit2/#HEAD/type/git_config_entry
https://libgit2.org/libgit2/#HEAD/type/git_config_entry

8 git_diff

Examples

Set and inspect a local, custom Git option
r <- file.path(tempdir(), "gert-demo")
git_init(r)

previous <- git_config_set("aaa.bbb", "ccc", repo = r)
previous
cfg <- git_config(repo = r)
subset(cfg, level == "local")
cfg$value[cfg$name == "aaa.bbb"]

previous <- git_config_set("aaa.bbb", NULL, repo = r)
previous
cfg <- git_config(repo = r)
subset(cfg, level == "local")
cfg$value[cfg$name == "aaa.bbb"]

unlink(r, recursive = TRUE)

Not run:
Set global Git options
git_config_global_set("user.name", "Your Name")
git_config_global_set("user.email", "your@email.com")
git_config_global()

End(Not run)

git_diff Git Diff

Description

View changes in a commit or in the current working directory.

Usage

git_diff(ref = NULL, repo = ".")

git_diff_patch(ref = NULL, repo = ".")

Arguments

ref a reference such as "HEAD", or a commit id, or NULL to the diff the working
directory against the repository index.

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

git_fetch 9

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_fetch(), git_merge(),
git_rebase(), git_remote, git_repo, git_signature(), git_stash, git_tag

git_fetch Push and pull

Description

Functions to connect with a git server (remote) to fetch or push changes. The ’credentials’ package
is used to handle authentication, the credentials vignette explains the various authentication methods
for SSH and HTTPS remotes.

Usage

git_fetch(
remote = NULL,
refspec = NULL,
password = askpass,
ssh_key = NULL,
prune = FALSE,
verbose = interactive(),
repo = "."

)

git_remote_ls(
remote = NULL,
password = askpass,
ssh_key = NULL,
verbose = interactive(),
repo = "."

)

git_push(
remote = NULL,
refspec = NULL,
set_upstream = NULL,
password = askpass,
ssh_key = NULL,
mirror = FALSE,
force = FALSE,
verbose = interactive(),
repo = "."

)

git_clone(

https://docs.ropensci.org/credentials/articles/intro.html

10 git_fetch

url,
path = NULL,
branch = NULL,
password = askpass,
ssh_key = NULL,
bare = FALSE,
mirror = FALSE,
verbose = interactive()

)

git_pull(remote = NULL, rebase = FALSE, ..., repo = ".")

Arguments

remote Optional. Name of a remote listed in git_remote_list(). If unspecified and
the current branch is already tracking branch a remote branch, that remote is
honored. Otherwise, defaults to origin.

refspec string with mapping between remote and local refs. Default uses the default
refspec from the remote, which usually fetches all branches.

password a string or a callback function to get passwords for authentication or password
protected ssh keys. Defaults to askpass which checks getOption('askpass').

ssh_key path or object containing your ssh private key. By default we look for keys in
ssh-agent and credentials::ssh_key_info.

prune delete tracking branches that no longer exist on the remote, or are not in the
refspec (such as pull requests).

verbose display some progress info while downloading

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

set_upstream change the branch default upstream to remote. If NULL, this will set the branch
upstream only if the push was successful and if the branch does not have an
upstream set yet.

mirror use the --mirror flag

force use the --force flag

url remote url. Typically starts with https://github.com/ for public repositories, and
https://yourname@github.com/ or git@github.com/ for private repos. You will
be prompted for a password or pat when needed.

path Directory of the Git repository to create.

branch name of branch to check out locally

bare use the --bare flag

rebase if TRUE we try to rebase instead of merge local changes. This is not possible in
case of conflicts (you will get an error).

... arguments passed to git_fetch

git_merge 11

Details

Use git_fetch() and git_push() to sync a local branch with a remote branch. Here git_pull()
is a wrapper for git_fetch() which then tries to fast-forward the local branch after fetching.

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_merge(),
git_rebase(), git_remote, git_repo, git_signature(), git_stash, git_tag

Examples

{# Clone a small repository
git_dir <- file.path(tempdir(), 'antiword')
git_clone('https://github.com/ropensci/antiword', git_dir)

Change into the repo directory
olddir <- getwd()
setwd(git_dir)

Show some stuff
git_log()
git_branch_list()
git_remote_list()

Add a file
write.csv(iris, 'iris.csv')
git_add('iris.csv')

Commit the change
jerry <- git_signature("Jerry", "jerry@hotmail.com")
git_commit('added the iris file', author = jerry)

Now in the log:
git_log()

Cleanup
setwd(olddir)
unlink(git_dir, recursive = TRUE)
}

git_merge Merging tools

Description

Use git_merge to merge a branch into the current head. Based on how the branches have diverged,
the function will select a fast-forward or merge-commit strategy.

12 git_merge

Usage

git_merge(ref, commit = TRUE, squash = FALSE, repo = ".")

git_merge_stage_only(ref, squash = FALSE, repo = ".")

git_merge_find_base(ref, target = "HEAD", repo = ".")

git_merge_analysis(ref, repo = ".")

git_merge_abort(repo = ".")

Arguments

ref branch or commit that you want to merge

commit automatically create a merge commit if the merge succeeds without conflicts.
Set this to FALSE if you want to customize your commit message/author.

squash omits the second parent from the commit, which make the merge a regular
single-parent commit.

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

target the branch where you want to merge into. Defaults to current HEAD.

Details

By default git_merge automatically commits the merge commit upon success. However if the
merge fails with merge-conflicts, or if commit is set to FALSE, the changes are staged and the repos-
itory is put in merging state, and you have to manually run git_commit or git_merge_abort to
proceed.

Other functions are more low-level tools that are used by git_merge. git_merge_find_base
looks up the commit where two branches have diverged (i.e. the youngest common ancestor). The
git_merge_analysis is used to test if a merge can simply be fast forwarded or not.

The git_merge_stage_only function applies and stages changes, without committing or fast-
forwarding.

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_fetch(),
git_rebase(), git_remote, git_repo, git_signature(), git_stash, git_tag

git_open 13

git_open Open local repository

Description

Returns a pointer to a libgit2 repository object.This function is mainly for internal use; users should
simply reference a repository in gert by by the path to the directory.

Usage

git_open(repo = ".")

Arguments

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

Value

an pointer to the libgit2 repository

Examples

r <- tempfile(pattern = "gert")
git_init(r)
r_ptr <- git_open(r)
r_ptr
git_open(r_ptr)
git_info(r)

cleanup
unlink(r, recursive = TRUE)

git_rebase Cherry-Pick and Rebase

Description

A cherry-pick applies the changes from a given commit (from another branch) onto the current
branch. A rebase resets the branch to the state of another branch (upstream) and then re-applies
your local changes by cherry-picking each of your local commits onto the upstream commit history.

14 git_remote

Usage

git_rebase_list(upstream = NULL, repo = ".")

git_rebase_commit(upstream = NULL, repo = ".")

git_reset_hard(ref = "HEAD", repo = ".")

git_reset_soft(ref = "HEAD", repo = ".")

git_reset_mixed(ref = "HEAD", repo = ".")

git_cherry_pick(commit, repo = ".")

git_ahead_behind(upstream = NULL, ref = "HEAD", repo = ".")

Arguments

upstream branch to which you want to rewind and re-apply your local commits. The
default uses the remote upstream branch with the current state on the git server,
simulating git_pull.

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

ref string with a branch/tag/commit

commit id of the commit to cherry pick

Details

git_rebase_list shows your local commits that are missing from the upstream history, and if
they conflict with upstream changes. It does so by performing a rebase dry-run, without committing
anything. If there are no conflicts, you can use git_rebase_commit to rewind and rebase your
branch onto upstream. Gert only support a clean rebase; it never leaves the repository in unfinished
"rebasing" state. If conflicts arise, git_rebase_commit will raise an error without making changes.

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_fetch(),
git_merge(), git_remote, git_repo, git_signature(), git_stash, git_tag

git_remote Git Remotes

Description

List, add, configure, or remove remotes.

git_repo 15

Usage

git_remote_list(repo = ".")

git_remote_add(url, name = "origin", refspec = NULL, repo = ".")

git_remote_remove(remote, repo = ".")

git_remote_info(remote = NULL, repo = ".")

git_remote_set_url(url, remote = NULL, repo = ".")

git_remote_set_pushurl(url, remote = NULL, repo = ".")

git_remote_refspecs(remote = NULL, repo = ".")

Arguments

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

url server url (https or ssh)
name unique name for the new remote
refspec optional string with the remote fetch value
remote name of an existing remote. Default NULL means the remote from the upstream

of the current branch.

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_fetch(),
git_merge(), git_rebase(), git_repo, git_signature(), git_stash, git_tag

git_repo Create or discover a local Git repository

Description

Use git_init() to create a new repository or git_find() to discover an existing local repository.
git_info() shows basic information about a repository, such as the SHA and branch of the current
HEAD.

Usage

git_init(path = ".", bare = FALSE)

git_find(path = ".")

git_info(repo = ".")

16 git_repo

Arguments

path the location of the git repository, see details.

bare if true, a Git repository without a working directory is created

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

Details

For git_init() the path parameter sets the directory of the git repository to create. If this directory
already exists, it must be empty. If it does not exist, it is created, along with any intermediate
directories that don’t yet exist. For git_find() the path arguments specifies the directory at which
to start the search for a git repository. If it is not a git repository itself, then its parent directory is
consulted, then the parent’s parent, and so on.

Value

The path to the Git repository.

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_fetch(),
git_merge(), git_rebase(), git_remote, git_signature(), git_stash, git_tag

Examples

directory does not yet exist
r <- tempfile(pattern = "gert")
git_init(r)
git_find(r)

create a child directory, then a grandchild, then search
r_grandchild_dir <- file.path(r, "aaa", "bbb")
dir.create(r_grandchild_dir, recursive = TRUE)
git_find(r_grandchild_dir)

cleanup
unlink(r, recursive = TRUE)

directory exists but is empty
r <- tempfile(pattern = "gert")
dir.create(r)
git_init(r)
git_find(r)

cleanup
unlink(r, recursive = TRUE)

git_signature 17

git_signature Author Signature

Description

A signature contains the author and timestamp of a commit. Each commit includes a signature of
the author and committer (which can be identical).

Usage

git_signature_default(repo = ".")

git_signature(name, email, time = NULL)

git_signature_parse(sig)

Arguments

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

name Real name of the committer

email Email address of the committer

time timestamp of class POSIXt or NULL

sig string in proper "First Last <your@email.com>" format, see details.

Details

A signature string has format "Real Name <email> timestamp tzoffset". The timestamp tzoffset
piece can be omitted in which case the current local time is used. If not omitted, timestamp must
contain the number of seconds since the Unix epoch and tzoffset is the timezone offset in hhmm
format (note the lack of a colon separator)

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_fetch(),
git_merge(), git_rebase(), git_remote, git_repo, git_stash, git_tag

Examples

Your default user
try(git_signature_default())

Specify explicit name and email
git_signature("Some committer", "sarah@gmail.com")

18 git_stash

Create signature for an hour ago
(sig <- git_signature("Han", "han@company.com", Sys.time() - 3600))

Parse a signature
git_signature_parse(sig)
git_signature_parse("Emma <emma@mu.edu>")

git_stash Stashing changes

Description

Temporary stash away changed from the working directory.

Usage

git_stash_save(
message = "",
keep_index = FALSE,
include_untracked = FALSE,
include_ignored = FALSE,
repo = "."

)

git_stash_pop(index = 0, repo = ".")

git_stash_drop(index = 0, repo = ".")

git_stash_list(repo = ".")

Arguments

message optional message to store the stash
keep_index changes already added to the index are left intact in the working directory
include_untracked

untracked files are also stashed and then cleaned up from the working directory
include_ignored

ignored files are also stashed and then cleaned up from the working directory
repo The path to the git repository. If the directory is not a repository, parent direc-

tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

index The position within the stash list. 0 points to the most recent stashed state.

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_fetch(),
git_merge(), git_rebase(), git_remote, git_repo, git_signature(), git_tag

git_submodule_list 19

git_submodule_list Submodules

Description

Interact with submodules in the repository.

Usage

git_submodule_list(repo = ".")

git_submodule_info(submodule, repo = ".")

git_submodule_init(submodule, overwrite = FALSE, repo = ".")

git_submodule_set_to(submodule, ref, checkout = TRUE, repo = ".")

git_submodule_add(url, path = basename(url), ref = "HEAD", ..., repo = ".")

git_submodule_fetch(submodule, ..., repo = ".")

Arguments

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

submodule name of the submodule

overwrite overwrite existing entries

ref a branch or tag or hash with

checkout actually switch the contents of the directory to this commit

url full git url of the submodule

path relative of the submodule

... extra arguments for git_fetch for authentication things

git_tag Git Tag

Description

Create and list tags.

20 libgit2_config

Usage

git_tag_list(match = "*", repo = ".")

git_tag_create(name, message, ref = "HEAD", repo = ".")

git_tag_delete(name, repo = ".")

git_tag_push(name, ..., repo = ".")

Arguments

match pattern to filter tags (use * for wildcard)

repo The path to the git repository. If the directory is not a repository, parent direc-
tories are considered (see git_find). To disable this search, provide the filepath
protected with I(). When using this parameter, always explicitly call by name
(i.e. repo =) because future versions of gert may have additional parameters.

name tag name

message tag message

ref target reference to tag

... other arguments passed to git_push

See Also

Other git: git_archive, git_branch(), git_commit(), git_config(), git_diff(), git_fetch(),
git_merge(), git_rebase(), git_remote, git_repo, git_signature(), git_stash

libgit2_config Show libgit2 version and capabilities

Description

libgit2_config() reveals which version of libgit2 gert is using and which features are supported,
such whether you are able to use ssh remotes.

Usage

libgit2_config()

Examples

libgit2_config()

user_is_configured 21

user_is_configured Test if a Git user is configured

Description

This function exists mostly to guard examples that rely on having a user configured, in order to
make commits. user_is_configured() makes no distinction between local or global user config.

Usage

user_is_configured(repo = ".")

Arguments

repo An optional repo, in the sense of git_open().

Value

TRUE if user.name and user.email are set locally or globally, FALSE otherwise.

Examples

user_is_configured()

Index

∗ git
git_archive, 2
git_branch, 3
git_commit, 4
git_config, 6
git_diff, 8
git_fetch, 9
git_merge, 11
git_rebase, 13
git_remote, 14
git_repo, 15
git_signature, 17
git_stash, 18
git_tag, 19

askpass, 10

credentials::ssh_key_info, 10

fast-forward, 11

git_add (git_commit), 4
git_ahead_behind (git_rebase), 13
git_archive, 2, 4, 6, 7, 9, 11, 12, 14–18, 20
git_archive_zip (git_archive), 2
git_branch, 3, 3, 6, 7, 9, 11, 12, 14–18, 20
git_branch_checkout (git_branch), 3
git_branch_create (git_branch), 3
git_branch_delete (git_branch), 3
git_branch_exists (git_branch), 3
git_branch_fast_forward (git_branch), 3
git_branch_list, 3
git_branch_list (git_branch), 3
git_branch_move (git_branch), 3
git_branch_set_upstream (git_branch), 3
git_checkout_pull_request, 4
git_cherry_pick (git_rebase), 13
git_clone (git_fetch), 9
git_commit, 3, 4, 4, 7, 9, 11, 12, 14–18, 20
git_commit_all (git_commit), 4

git_commit_descendant_of (git_commit), 4
git_commit_id (git_commit), 4
git_commit_info (git_commit), 4
git_config, 3, 4, 6, 6, 9, 11, 12, 14–18, 20
git_config_global (git_config), 6
git_config_global_set (git_config), 6
git_config_set (git_config), 6
git_conflicts (git_commit), 4
git_diff, 3, 4, 6, 7, 8, 11, 12, 14–18, 20
git_diff_patch (git_diff), 8
git_fetch, 3, 4, 6, 7, 9, 9, 10, 12, 14–20
git_fetch(), 11
git_fetch_pull_requests

(git_checkout_pull_request), 4
git_find, 2–5, 7, 8, 10, 12–20
git_find (git_repo), 15
git_info (git_repo), 15
git_init (git_repo), 15
git_log (git_commit), 4
git_ls (git_commit), 4
git_merge, 3, 4, 6, 7, 9, 11, 11, 14–18, 20
git_merge_abort (git_merge), 11
git_merge_analysis (git_merge), 11
git_merge_find_base (git_merge), 11
git_merge_stage_only (git_merge), 11
git_open, 13
git_open(), 21
git_pull, 14
git_pull (git_fetch), 9
git_pull(), 11
git_push, 20
git_push (git_fetch), 9
git_push(), 11
git_rebase, 3, 4, 6, 7, 9, 11, 12, 13, 15–18, 20
git_rebase_commit (git_rebase), 13
git_rebase_list (git_rebase), 13
git_remote, 3, 4, 6, 7, 9, 11, 12, 14, 14,

16–18, 20
git_remote_add (git_remote), 14

22

INDEX 23

git_remote_info (git_remote), 14
git_remote_list (git_remote), 14
git_remote_list(), 4, 10
git_remote_ls (git_fetch), 9
git_remote_refspecs (git_remote), 14
git_remote_remove (git_remote), 14
git_remote_set_pushurl (git_remote), 14
git_remote_set_url (git_remote), 14
git_repo, 3, 4, 6, 7, 9, 11, 12, 14, 15, 15, 17,

18, 20
git_reset_hard (git_rebase), 13
git_reset_mixed (git_rebase), 13
git_reset_soft (git_rebase), 13
git_rm (git_commit), 4
git_signature, 3–7, 9, 11, 12, 14–16, 17, 18,

20
git_signature_default (git_signature),

17
git_signature_default(), 5
git_signature_parse (git_signature), 17
git_stash, 3, 4, 6, 7, 9, 11, 12, 14–17, 18, 20
git_stash_drop (git_stash), 18
git_stash_list (git_stash), 18
git_stash_pop (git_stash), 18
git_stash_save (git_stash), 18
git_stat_files (git_commit), 4
git_status (git_commit), 4
git_submodule_add (git_submodule_list),

19
git_submodule_fetch

(git_submodule_list), 19
git_submodule_info

(git_submodule_list), 19
git_submodule_init

(git_submodule_list), 19
git_submodule_list, 19
git_submodule_set_to

(git_submodule_list), 19
git_tag, 3, 4, 6, 7, 9, 11, 12, 14–18, 19
git_tag_create (git_tag), 19
git_tag_delete (git_tag), 19
git_tag_list (git_tag), 19
git_tag_push (git_tag), 19

I(), 2–5, 7, 8, 10, 12–20

libgit2_config, 20

user_is_configured, 21

	git_archive
	git_branch
	git_checkout_pull_request
	git_commit
	git_config
	git_diff
	git_fetch
	git_merge
	git_open
	git_rebase
	git_remote
	git_repo
	git_signature
	git_stash
	git_submodule_list
	git_tag
	libgit2_config
	user_is_configured
	Index

