
Package ‘ggpmisc’
April 10, 2022

Type Package

Title Miscellaneous Extensions to 'ggplot2'

Version 0.4.6

Date 2022-04-10

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Description Extensions to 'ggplot2' respecting the grammar of graphics
paradigm. Statistics: locate and tag peaks and valleys; label plot with the
equation of a fitted polynomial or other types of models; labels
with P-value, R^2 or adjusted R^2 or information criteria for fitted models;
label with ANOVA table for fitted models; label with summary for fitted
models. Model fit classes for which suitable methods are provided by package
'broom' and 'broom.mixed' are supported. Scales and stats to build volcano
and quadrant plots based on outcomes, fold changes, p-values and false
discovery rates.

License GPL (>= 2)

LazyData TRUE

LazyLoad TRUE

ByteCompile TRUE

Depends R (>= 3.6.0), ggpp (>= 0.4.3)

Imports grid, stats, ggplot2 (>= 3.3.3), scales (>= 1.1.1), rlang (>=
0.4.11), generics (>= 0.1.0), MASS (>= 7.3-51.6), polynom (>=
1.4-0), quantreg (>= 5.85), lmodel2 (>= 1.7-3), splus2R (>=
1.3-3), tibble (>= 3.1.5), plyr (>= 1.8.6), dplyr (>= 1.0.6),
lubridate (>= 1.7.10)

Suggests knitr (>= 1.34), rmarkdown (>= 2.10), ggrepel (>= 0.9.1),
broom (>= 0.7.7), broom.mixed (>= 0.2.7), nlme (>= 3.1-152),
gginnards (>= 0.1.0-1)

URL https://docs.r4photobiology.info/ggpmisc/,

https://github.com/aphalo/ggpmisc

BugReports https://github.com/aphalo/ggpmisc/issues

1

https://docs.r4photobiology.info/ggpmisc/
https://github.com/aphalo/ggpmisc
https://github.com/aphalo/ggpmisc/issues

2 R topics documented:

Encoding UTF-8

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Pedro J. Aphalo [aut, cre] (<https://orcid.org/0000-0003-3385-972X>),
Kamil Slowikowski [ctb] (<https://orcid.org/0000-0002-2843-6370>),
Samer Mouksassi [ctb] (<https://orcid.org/0000-0002-7152-6654>)

Repository CRAN

Date/Publication 2022-04-10 19:22:31 UTC

R topics documented:
ggpmisc-package . 3
coef.lmodel2 . 5
confint.lmodel2 . 6
Moved . 7
outcome2factor . 7
predict.lmodel2 . 8
quadrant_example.df . 9
scale_colour_outcome . 10
scale_shape_outcome . 11
scale_x_logFC . 13
scale_y_Pvalue . 16
stat_correlation . 18
stat_fit_augment . 23
stat_fit_deviations . 26
stat_fit_glance . 30
stat_fit_residuals . 34
stat_fit_tb . 37
stat_fit_tidy . 42
stat_ma_eq . 47
stat_ma_line . 52
stat_peaks . 56
stat_poly_eq . 60
stat_poly_line . 68
stat_quant_band . 71
stat_quant_eq . 74
stat_quant_line . 81
swap_xy . 86
symmetric_limits . 87
volcano_example.df . 87
xy_outcomes2factor . 88

Index 90

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2843-6370
https://orcid.org/0000-0002-7152-6654

ggpmisc-package 3

ggpmisc-package ggpmisc: Miscellaneous Extensions to ’ggplot2’

Description

Extensions to ’ggplot2’ respecting the grammar of graphics paradigm. Statistics: locate and tag
peaks and valleys; label plot with the equation of a fitted polynomial or other types of models; labels
with P-value, R^2 or adjusted R^2 or information criteria for fitted models; label with ANOVA
table for fitted models; label with summary for fitted models. Model fit classes for which suitable
methods are provided by package ’broom’ and ’broom.mixed’ are supported. Scales and stats to
build volcano and quadrant plots based on outcomes, fold changes, p-values and false discovery
rates.

Details

The new facilities for cleanly defining new stats and geoms added to ’ggplot2’ in version 2.0.0 and
the support for nested tibbles and new syntax for mapping computed values to aesthetics added to
’ggplot2’ in version 3.0.0 are used in this package’s code. This means that ’ggpmisc’ (>= 0.3.0)
requires version 3.0.0 or later of ggplot2 while ’ggpmisc’ (< 0.3.0) requires version 2.0.0 or later of
ggplot2.

Extensions provided:

• Function for conversion of time series data into tibbles that can be plotted with ggplot.

• ggplot() method for time series data.

• Stats for locating and tagging "peaks" and "valleys" (local or global maxima and minima).

• Stat for generating labels from a lm() model fit, including formatted equation. By default
labels are expressions but tikz device is supported optionally with LaTeX formatted labels.

• Stats for extracting information from a any model fit supported by package ’broom’.

• Stats for filtering-out/filtering-in observations in regions of a panel or group where the density
of observations is high.

• Geom for annotating plots with tables.

The stats for peaks and valleys are coded so as to work correctly both with numeric and POSIXct
variables mapped to the x aesthetic. Special handling was needed as text labels are generated from
the data.

Warning!

geom_null(), stat_debug_group(), stat_debug_panel(), geom_debug(), append_layers(),
bottom_layer(), delete_layers(), extract_layers(), move_layers(), num_layesr(), shift_layers(),
top_layer() and which_layers() have been moved from package ’ggpmisc’ into their own sep-
arate package ’gginnards-package.

4 ggpmisc-package

Acknowledgements

We thank Kamil Slowikowski not only for contributing ideas and code examples to this package but
also for adding new features to his package ’ggrepel’ that allow new use cases for stat_dens2d_labels
from this package.

Note

The signatures of stat_peaks() and stat_valleys() are identical to those of stat_peaks and
stat_valleys from package photobiology but the variables returned are a subset as values related
to light spectra are missing. Furthermore the stats from package ggpmisc work correctly when the
x aesthetic uses a date or datetime scale, while those from package photobiology do not generate
correct labels in this case.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

Other contributors:

• Kamil Slowikowski (ORCID) [contributor]

• Samer Mouksassi <samermouksassi@gmail.com> (ORCID) [contributor]

References

Package suite ’r4photobiology’ web site at https://www.r4photobiology.info/
Package ’ggplot2’ documentation at https://ggplot2.tidyverse.org/
Package ’ggplot2’ source code at https://github.com/tidyverse/ggplot2

See Also

Useful links:

• https://docs.r4photobiology.info/ggpmisc/

• https://github.com/aphalo/ggpmisc

• Report bugs at https://github.com/aphalo/ggpmisc/issues

Examples

library(tibble)

ggplot(lynx, as.numeric = FALSE) + geom_line() +
stat_peaks(colour = "red") +

stat_peaks(geom = "text", colour = "red", angle = 66,
hjust = -0.1, x.label.fmt = "%Y") +

ylim(NA, 8000)

formula <- y ~ poly(x, 2, raw = TRUE)
ggplot(cars, aes(speed, dist)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = after_stat(eq.label)),

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2843-6370
https://orcid.org/0000-0002-7152-6654
https://www.r4photobiology.info/
https://ggplot2.tidyverse.org/
https://github.com/tidyverse/ggplot2
https://docs.r4photobiology.info/ggpmisc/
https://github.com/aphalo/ggpmisc
https://github.com/aphalo/ggpmisc/issues

coef.lmodel2 5

formula = formula,
parse = TRUE) +

labs(x = expression("Speed, "*x~("mph")),
y = expression("Stopping distance, "*y~("ft")))

formula <- y ~ x
ggplot(PlantGrowth, aes(group, weight)) +

stat_summary(fun.data = "mean_se") +
stat_fit_tb(method = "lm",

method.args = list(formula = formula),
tb.type = "fit.anova",
tb.vars = c(Term = "term", "df", "M.S." = "meansq",

"italic(F)" = "statistic",
"italic(p)" = "p.value"),

tb.params = c("Group" = 1, "Error" = 2),
table.theme = ttheme_gtbw(parse = TRUE)) +

labs(x = "Group", y = "Dry weight of plants") +
theme_classic()

coef.lmodel2 Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by modeling
functions. coefficients is an alias for it.

Usage

S3 method for class 'lmodel2'
coef(object, method = "MA", ...)

Arguments

object a fitted model object.

method character One of the methods available in object.

... ignored by this method.

Details

Function lmodel2() from package ’lmodel2’ returns a fitted model object of class "lmodel2"
which differs from that returned by lm(). Here we implement a coef() method for objects of
this class. It differs from de generic method and that for lm objects in having an additional formal
parameter method that must be used to select estimates based on which of the methods supported
by lmodel2() are to be extracted. The returned object is identical in its structure to that returned
by coef.lm().

6 confint.lmodel2

Value

A named numeric vector of length two.

See Also

lmodel2

confint.lmodel2 Confidence Intervals for Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. This a method for
objects inheriting from class "lmodel2".

Usage

S3 method for class 'lmodel2'
confint(object, parm, level = 0.95, method = "MA", ...)

Arguments

object a fitted model object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required. Currently only 0.95 accepted.

method character One of the methods available in object.

... ignored by this method.

Details

Function lmodel2() from package ’lmodel2’ returns a fitted model object of class "lmodel2"
which differs from that returned by lm(). Here we implement a confint() method for objects
of this class. It differs from the generic method and that for lm objects in having an additional
formal parameter method that must be used to select estimates based on which of the methods sup-
ported by lmodel2() are to be extracted. The returned object is identical in its structure to that
returned by confint.lm().

Value

A data frame with two rows and three columns.

See Also

lmodel2

Moved 7

Moved Moved to package ’gginnards’

Description

Some stats, geoms and the plot layer manipulation functions have been moved from package ’ggp-
misc’ to a separate new package called ’gginnards’.

Details

To continue using any of these functions and methods, simply run at the R prompt or add to your
script library(gginnards), after installing package ’gginnards’.

See Also

gginnards-package, geom_null, stat_debug_group, stat_debug_panel, geom_debug and delete_layers.

outcome2factor Convert numeric ternary outcomes into a factor

Description

Convert numeric ternary outcomes into a factor

Usage

outcome2factor(x, n.levels = 3L)

threshold2factor(x, n.levels = 3L, threshold = 0)

Arguments

x a numeric vector of -1, 0, and +1 values, indicating down-regulation, uncertain
response or up-regulation, or a numeric vector that can be converted into such
values using a pair of thresholds.

n.levels numeric Number of levels to create, either 3 or 2.

threshold numeric vector Range enclosing the values to be considered uncertain.

Details

These functions convert the numerically encoded values into a factor with the three levels "down",
"uncertain" and "up", or into a factor with two levels de and uncertain as expected by de-
fault by scales scale_colour_outcome, scale_fill_outcome and scale_shape_outcome. When
n.levels = 2 both -1 and +1 are merged to the same level of the factor with label "de".

8 predict.lmodel2

Note

These are convenience functions that only save some typing. The same result can be achieved by
a direct call to factor and comparisons. These functions aim at making it easier to draw volcano
and quadrant plots.

See Also

Other Functions for quadrant and volcano plots: FC_format(), scale_colour_outcome(), scale_shape_outcome(),
scale_y_Pvalue(), xy_outcomes2factor()

Other scales for omics data: scale_shape_outcome(), scale_x_logFC(), xy_outcomes2factor()

Examples

outcome2factor(c(-1, 1, 0, 1))
outcome2factor(c(-1, 1, 0, 1), n.levels = 2L)

threshold2factor(c(-0.1, -2, 0, +5))
threshold2factor(c(-0.1, -2, 0, +5), n.levels = 2L)
threshold2factor(c(-0.1, -2, 0, +5), threshold = c(-1, 1))

predict.lmodel2 Model Predictions

Description

predict is a generic function for predictions from the results of various model fitting functions.
predict.lmodel2 is the method for model fit objects of class "lmodel2".

Usage

S3 method for class 'lmodel2'
predict(
object,
method = "MA",
newdata = NULL,
interval = c("none", "confidence"),
level = 0.95,
...

)

Arguments

object a fitted model object.

method character One of the methods available in object.

quadrant_example.df 9

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

interval Type of interval calculation.
level the confidence level required. Currently only 0.95 accepted.
... ignored by this method.

Details

Function lmodel2() from package ’lmodel2’ returns a fitted model object of class "lmodel2"
which differs from that returned by lm(). Here we implement a predict() method for objects
of this class. It differs from the generic method and that for lm objects in having an additional for-
mal parameter method that must be used to select which of the methods supported by lmodel2()
are to be used in the prediction. The returned object is similar in its structure to that returned by
predict.lm() but lacking names or rownames.

Value

If interval = "none" a numeric vector is returned, while if interval = "confidence" a data
frame with columns fit, lwr and upr is returned.

See Also

lmodel2

quadrant_example.df Example gene expression data

Description

A dataset containing reshaped and simplified output from an analysis of data from RNAseq done
with package edgeR. Original data from gene expression in the plant species Arabidopsis thaliana.

Usage

quadrant_example.df

Format

A data.frame object with 6088 rows and 6 variables

See Also

Other Transcriptomics data examples: volcano_example.df

Examples

names(quadrant_example.df)
head(quadrant_example.df)

10 scale_colour_outcome

scale_colour_outcome Colour and fill scales for ternary outcomes

Description

Manual scales for colour and fill aesthetics with defaults suitable for the three way outcome from
some statistical tests.

Usage

scale_colour_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
aesthetics = "colour"

)

scale_color_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
aesthetics = "colour"

)

scale_fill_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
aesthetics = "fill"

)

Arguments

... other named arguments passed to scale_manual.

name The name of the scale, used for the axis-label.

scale_shape_outcome 11

ns.colour, down.colour, up.colour, de.colour

The colour definitions to use for each of the three possible outcomes.

na.colour colour definition used for NA.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics =
c("colour", "fill").

Details

These scales only alter the breaks, values, and na.value default arguments of scale_colour_manual()
and scale_fill_manual(). Please, see documentation for scale_manual for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_shape_outcome(),
scale_y_Pvalue(), xy_outcomes2factor()

Examples

set.seed(12346)
outcome <- sample(c(-1, 0, +1), 50, replace = TRUE)
my.df <- data.frame(x = rnorm(50),

y = rnorm(50),
outcome2 = outcome2factor(outcome, n.levels = 2),
outcome3 = outcome2factor(outcome))

ggplot(my.df, aes(x, y, colour = outcome3)) +
geom_point() +
scale_colour_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, colour = outcome2)) +
geom_point() +
scale_colour_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, fill = outcome3)) +
geom_point(shape = 21) +
scale_fill_outcome() +
theme_bw()

scale_shape_outcome Shape scale for ternary outcomes

12 scale_shape_outcome

Description

Manual scales for colour and fill aesthetics with defaults suitable for the three way outcome from
some statistical tests.

Usage

scale_shape_outcome(
...,
name = "Outcome",
ns.shape = "circle filled",
up.shape = "triangle filled",
down.shape = "triangle down filled",
de.shape = "square filled",
na.shape = "cross"

)

Arguments

... other named arguments passed to scale_manual.

name The name of the scale, used for the axis-label.
ns.shape, down.shape, up.shape, de.shape

The shapes to use for each of the three possible outcomes.

na.shape Shape used for NA.

Details

These scales only alter the values, and na.value default arguments of scale_shape_manual().
Please, see documentation for scale_manual for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_colour_outcome(),
scale_y_Pvalue(), xy_outcomes2factor()

Other scales for omics data: outcome2factor(), scale_x_logFC(), xy_outcomes2factor()

Examples

set.seed(12346)
outcome <- sample(c(-1, 0, +1), 50, replace = TRUE)
my.df <- data.frame(x = rnorm(50),

y = rnorm(50),
outcome2 = outcome2factor(outcome, n.levels = 2),
outcome3 = outcome2factor(outcome))

ggplot(my.df, aes(x, y, shape = outcome3)) +
geom_point() +
scale_shape_outcome() +
theme_bw()

scale_x_logFC 13

ggplot(my.df, aes(x, y, shape = outcome3)) +
geom_point() +
scale_shape_outcome(guide = FALSE) +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome2)) +
geom_point(size = 2) +
scale_shape_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3, fill = outcome2)) +
geom_point() +
scale_shape_outcome() +
scale_fill_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3, fill = outcome2)) +
geom_point() +
scale_shape_outcome(name = "direction") +
scale_fill_outcome(name = "significance") +
theme_bw()

scale_x_logFC Position scales for log fold change data

Description

Continuous scales for x and y aesthetics with defaults suitable for values expressed as log2 fold
change in data and fold-change in tick labels. Supports tick labels and data expressed in any
combination of fold-change, log2 fold-change and log10 fold-change. Supports addition of units to
axis labels passed as argument to the name formal parameter.

Usage

scale_x_logFC(
name = "Abundance of x%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.15, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
...

)

scale_y_logFC(

14 scale_x_logFC

name = "Abundance of y%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.15, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
...

)

Arguments

name The name of the scale without units, used for the axis-label.

breaks The positions of ticks or a function to generate them. Default varies depending
on argument passed to log.base.labels. if supplied as a numeric vector they
should be given using the data as passed to parameter data.

labels The tick labels or a function to generate them from the tick positions. The default
is function that uses the arguments passed to log.base.data and log.base.labels
to generate suitable labels.

limits limits One of: NULL to use the default scale range from ggplot2. A numeric
vector of length two providing limits of the scale, using NA to refer to the ex-
isting minimum or maximum. A function that accepts the existing (automatic)
limits and returns new limits. The default is function symmetric_limits()
which keep 1 at the middle of the axis..

oob Function that handles limits outside of the scale limits (out of bounds). The
default squishes out-of-bounds values to the boundary.

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. The default is
to expand the scale by 15% on each end for log-fold-data, so as to leave space
for counts annotations.

log.base.labels, log.base.data

integer or logical Base of logarithms used to express fold-change values in tick
labels and in data. Use FALSE for no logarithm transformation.

... other named arguments passed to scale_y_continuous.

Details

These scales only alter default arguments of scale_x_continuous() and scale_y_continuous().
Please, see documentation for scale_continuous for details. The name argument supports the
use of "%unit" at the end of the string to automatically add a units string, otherwise user-supplied
values for names, breaks, and labels work as usual. Tick labels are built based on the transformation
already applied to the data (log2 by default) and a possibly different log transformation (default is
fold-change with no transformation).

See Also

Other scales for omics data: outcome2factor(), scale_shape_outcome(), xy_outcomes2factor()

scale_x_logFC 15

Examples

set.seed(12346)
my.df <- data.frame(x = rnorm(50, sd = 4), y = rnorm(50, sd = 4))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_logFC()

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format())) +
scale_y_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format()))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(log.base.labels = 2) +
scale_y_logFC(log.base.labels = 2)

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC("A concentration%unit", log.base.labels = 10) +
scale_y_logFC("B concentration%unit", log.base.labels = 10)

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC("A concentration%unit", breaks = NULL) +
scale_y_logFC("B concentration%unit", breaks = NULL)

taking into account that data are expressed as log2 FC.
ggplot(my.df, aes(x, y)) +

geom_point() +
scale_x_logFC("A concentration%unit", breaks = log2(c(1/100, 1, 100))) +
scale_y_logFC("B concentration%unit", breaks = log2(c(1/100, 1, 100)))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format())) +
scale_y_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format()))

override "special" default arguments.
ggplot(my.df, aes(x, y)) +

geom_point() +
scale_x_logFC("A concentration",

breaks = waiver(),
labels = waiver()) +

scale_y_logFC("B concentration",

16 scale_y_Pvalue

breaks = waiver(),
labels = waiver())

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_logFC() +
geom_quadrant_lines() +
stat_quadrant_counts(size = 3.5)

scale_y_Pvalue Convenience scale for P-values

Description

Scales for y aesthetic mapped to P-values as used in volcano plots with transcriptomics and metabolomics
data.

Usage

scale_y_Pvalue(
...,
name = expression(italic(P) - plain(value)),
trans = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-20),
oob = NULL,
expand = NULL

)

scale_y_FDR(
...,
name = "False discovery rate",
trans = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-10),
oob = NULL,
expand = NULL

)

scale_x_Pvalue(
...,
name = expression(italic(P) - plain(value)),
trans = NULL,
breaks = NULL,

scale_y_Pvalue 17

labels = NULL,
limits = c(1, 1e-20),
oob = NULL,
expand = NULL

)

scale_x_FDR(
...,
name = "False discovery rate",
trans = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-10),
oob = NULL,
expand = NULL

)

Arguments

... other named arguments passed to scale_y_continuous.

name The name of the scale without units, used for the axis-label.

trans Either the name of a transformation object, or the object itself. Use NULL for
the default.

breaks The positions of ticks or a function to generate them. Default varies depending
on argument passed to log.base.labels.

labels The tick labels or a function to generate them from the tick positions. The default
is function that uses the arguments passed to log.base.data and log.base.labels
to generate suitable labels.

limits Use one of: NULL to use the default scale range, a numeric vector of length two
providing limits of the scale; NA to refer to the existing minimum or maximum;
a function that accepts the existing (automatic) limits and returns new limits.

oob Function that handles limits outside of the scale limits (out of bounds). The
default squishes out-of-bounds values to the boundary.

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. The default is
to expand the scale by 15% on each end for log-fold-data, so as to leave space
for counts annotations.

Details

These scales only alter default arguments of scale_x_continuous() and scale_y_continuous().
Please, see documentation for scale_continuous for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_colour_outcome(),
scale_shape_outcome(), xy_outcomes2factor()

18 stat_correlation

Examples

set.seed(12346)
my.df <- data.frame(x = rnorm(50, sd = 4),

y = 10^-runif(50, min = 0, max = 20))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_Pvalue()

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_FDR(limits = c(NA, 1e-20))

stat_correlation Annotate plot with correlation test

Description

stat_correlation() applies stats::cor.test() respecting grouping with method = "pearson"
default but alternatively using "kendall" or "spearman" methods. It generates labels for correla-
tion coefficients and p-value, coefficient of determination (R^2) for method "pearson" and number
of observations.

Usage

stat_correlation(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
...,
method = "pearson",
alternative = "two.sided",
exact = NULL,
conf.level = 0.95,
continuity = FALSE,
small.r = FALSE,
small.p = FALSE,
coef.keep.zeros = TRUE,
r.digits = 2,
t.digits = 3,
p.digits = 3,
label.x = "left",
label.y = "top",

stat_correlation 19

hstep = 0,
vstep = NULL,
output.type = NULL,
na.rm = FALSE,
parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

method character One of "pearson", "kendall" or "spearman".

alternative character One of "two.sided", "less" or "greater".

exact logical Whether an exact p-value should be computed. Used for Kendall’s tau
and Spearman’s rho.

conf.level numeric Confidence level for the returned confidence interval (only if method =
"pearson" which is the default).

continuity logical If TRUE , a continuity correction is used for Kendall’s tau and Spear-
man’s rho when not computed exactly.

small.r, small.p

logical Flags to switch use of lower case r and p for coefficient of correlation
(only for method = "pearson") and p-value.

coef.keep.zeros

logical Keep or drop trailing zeros when formatting the correlation coefficients
and t-value, z-value or S-value (see note below).

r.digits, t.digits, p.digits

integer Number of digits after the decimal point to use for R, r.squared, tau or
rho and P-value in labels.

label.x, label.y

numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

20 stat_correlation

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic can be used to annotate a plot with the correlation coefficient and the outcome of its test
of significance. It supports Pearson, Kendall and Spearman methods to compute correlation. This
statistic generates labels as R expressions by default but LaTeX (use TikZ device), markdown (use
package ’ggtext’) and plain text are also supported, as well as numeric values for user-generated text
labels. The character labels include the symbol describing the quantity together with the numeric
value.

The value of parse is set automatically based on output-type, but if you assemble labels that
need parsing from numeric output, the default needs to be overridden. By default the value of
output.type is guessed from the name of the geometry.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. cor.test() is always applied
to the variables mapped to the x and y aesthetics, so the scales used for x and y should both be
continuous scales rather than discrete.

Aesthetics

stat_correaltion() requires x and y. In addition, the aesthetics understood by the geom ("text"
is the default) are understood and grouping respected.

Computed variables

If output.type is "numeric" the returned tibble contains the columns listed below with variations
depending on the method. If the model fit function used does not return a value, the variable is set
to NA_real_.

x,npcx x position

y,npcy y position

cor, tau or rho numeric values for correlation coefficient estimates

t.value and its df, z.value or S.value numeric values for statistic estimates

p.value, n numeric values

grp.label Set according to mapping in aes.

method, test character values

If output.type different from "numeric" the returned tibble contains in addition to the columns
listed above those listed below. If the numeric value is missing the label is set to character(0L).

stat_correlation 21

r.label, and cor.label, tau.label or rho.label Correlation coefficient as a character string.

t.value.label, z.value.label or S.value.label t-value and degrees of freedom, z-value or S-value as
a character string.

p.value.label P-value for test against zero, as a character string.

n.label Number of observations used in the fit, as a character string.

grp.label Set according to mapping in aes, as a character string.

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the last examples below.

Note

Currently coef.keep.zeros is ignored, with trailing zeros always retained in the labels but not
protected from being dropped by R when character strings are parsed into expressions.

See Also

cor.test for details on the computations.

Examples

generate artificial data
set.seed(4321)
x <- (1:100) / 10
y <- x + rnorm(length(x))
my.data <- data.frame(x = x,

y = y,
y.desc = - y,
group = c("A", "B"))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation()

ggplot(my.data, aes(x, y.desc)) +
geom_point() +
stat_correlation(label.x = "right")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(aes(label = paste(after_stat(r.label),

after_stat(p.value.label),
after_stat(n.label),
sep = "*\"; \"*")))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(small.r = TRUE)

ggplot(my.data, aes(x, y)) +
geom_point() +

22 stat_correlation

stat_correlation(aes(label = paste(after_stat(r.label),
after_stat(p.value.label),
after_stat(n.label),
sep = "*\"; \"*")),

method = "kendall")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(method = "kendall")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(method = "spearman")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(aes(label = paste(after_stat(r.label),

after_stat(p.value.label),
after_stat(n.label),
sep = "*\"; \"*")),

method = "spearman")

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics.

the whole of data
ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", method = "pearson")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", method = "kendall")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", method = "spearman")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", output.type = "numeric")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", output.type = "markdown")

stat_fit_augment 23

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_correlation(geom = "debug", output.type = "LaTeX")

}

stat_fit_augment Augment data with fitted values and statistics

Description

stat_fit_augment fits a model and returns a "tidy" version of the model’s data with prediction
added, using ’augmnent() methods from packages ’broom’, ’broom.mixed’, or other sources. The
prediction can be added to the plot as a curve.

Usage

stat_fit_augment(
mapping = NULL,
data = NULL,
geom = "smooth",
method = "lm",
method.args = list(formula = y ~ x),
augment.args = list(),
level = 0.95,
y.out = ".fitted",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character or function.
method.args, augment.args

list of arguments to pass to method and to to broom:augment.

level numeric Level of confidence interval to use (0.95 by default)

y.out character (or numeric) index to column to return as y.

24 stat_fit_augment

position The position adjustment to use for overlapping points on this layer

na.rm logical indicating whether NA values should be stripped before the computation
proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_augment together with stat_fit_glance and stat_fit_tidy, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by ’broom’.
In contrast to stat_poly_eq which can generate text or expression labels automatically, for these
functions the mapping of aesthetic label needs to be explicitly supplied in the call, and labels built
on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Warning!

Not all ‘glance()‘ methods are defined in package ’broom’. ‘glance()‘ specializations for mixed
models fits of classes ‘lme‘, ‘nlme‘, ‘lme4‘, and many others are defined in package ’broom.mixed’.

Handling of grouping

stat_fit_augment applies the function given by method separately to each group of observations;
in ggplot2 factors mapped to aesthetics generate a separate group for each level. Because of this,
stat_fit_augment is not useful for annotating plots with results from t.test() or ANOVA or
ANCOVA. In such cases use instead stat_fit_tb() which applies the model fitting per panel.

Computed variables

The output of augment() is returned as is, except for y which is set based on y.out and y.observed
which preserves the y returned by the generics::augment methods. This renaming is needed so
that the geom works as expected.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug. An example is shown below.

stat_fit_augment 25

Note

The statistic stat_fit_augment can be used only with methods that accept formulas under any for-
mal parameter name and a data argument. Use ggplot2::stat_smooth() instead of stat_fit_augment
in production code if the additional features are not needed.

Although arguments passed to parameter augment.args will be passed to [generics::augment()]
whether they are silently ignored or obeyed depends on each specialization of [augment()], so do
carefully read the documentation for the version of [augment()] corresponding to the ‘method‘ used
to fit the model.

See Also

broom and broom.mixed for details on how the tidying of the result of model fits is done.

Other ggplot statistics for model fits: stat_fit_deviations(), stat_fit_glance(), stat_fit_residuals(),
stat_fit_tb(), stat_fit_tidy()

Examples

package 'broom' needs to be installed to run these examples

if (requireNamespace("broom", quietly = TRUE)) {
library(broom)
library(quantreg)

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {
library(gginnards)

Regression by panel
ggplot(mtcars, aes(x = disp, y = mpg)) +

geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x),
geom = "debug",
summary.fun = colnames)

}

Regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +

geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x))

Residuals from regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method = "lm",
method.args = list(formula = y ~ x),
y.out = ".resid")

Regression by group example

26 stat_fit_deviations

ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_point() +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x))

Residuals from regression by group example
ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method.args = list(formula = y ~ x),
y.out = ".resid")

Weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x,
weights = quote(weight)))

Residuals from weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method.args = list(formula = y ~ x,
weights = quote(weight)),

y.out = ".resid")

Quantile regression
ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
stat_fit_augment(method = "rq",

label.y = "bottom")

}

stat_fit_deviations Residuals from model fit as segments

Description

stat_fit_deviations fits a linear model and returns fitted values and residuals ready to be plotted
as segments.

Usage

stat_fit_deviations(
mapping = NULL,
data = NULL,
geom = "segment",

stat_fit_deviations 27

method = "lm",
method.args = list(),
formula = NULL,
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method function or character If character, "lm", "rlm", "lqs" and "rq" are implemented.
If a function, it must support parameters formula and data.

method.args named list with additional arguments.

formula a "formula" object. Using aesthetic names instead of original variable names.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

This stat can be used to automatically highlight residuals as segments in a plot of a fitted model
equation. This stat only generates the residuals, the predicted values need to be separately added
to the plot, so to make sure that the same model formula is used in all steps it is best to save the
formula as an object and supply this object as argument to the different statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. In other words, it respects the
grammar of graphics and consequently within the model formula names of aesthetics like x and
y should be used instead of the original variable names. This helps ensure that the model is fitted
to the same data as plotted in other layers.

28 stat_fit_deviations

Computed variables

Data frame with same nrow as data as subset for each group containing five numeric variables.

x x coordinates of observations

y.fitted x coordinates of fitted values

y y coordinates of observations

y.fitted y coordinates of fitted values

To explore the values returned by this statistic we suggest the use of geom_debug. An example is
shown below, where one can also see in addition to the computed values the default mapping of the
fitted values to aesthetics xend and yend.

Note

In the case of method = "rq" quantiles are fixed at tau = 0.5 unless method.args has length > 0.
Parameter orientation is redundant as it only affects the default for formula but is included for
consistency with ggplot2.

See Also

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_glance(), stat_fit_residuals(),
stat_fit_tb(), stat_fit_tidy()

Examples

generate artificial data
library(MASS)

set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x, y)

plot residuals from linear model
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = y ~ x) +
stat_fit_deviations(method = "lm", formula = y ~ x, colour = "red") +
geom_point()

plot residuals from linear model with y as explanatory variable
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = y ~ x, orientation = "y") +
stat_fit_deviations(method = "lm", formula = x ~ y, colour = "red") +
geom_point()

as above using orientation
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", orientation = "y") +
stat_fit_deviations(orientation = "y", colour = "red") +
geom_point()

stat_fit_deviations 29

both regressions and their deviations
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm") +
stat_fit_deviations(colour = "blue") +
geom_smooth(method = "lm", orientation = "y", colour = "red") +
stat_fit_deviations(orientation = "y", colour = "red") +
geom_point()

give a name to a formula
my.formula <- y ~ poly(x, 3, raw = TRUE)

plot linear regression
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, colour = "red") +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = stats::lm, colour = "red") +
geom_point()

plot robust regression
ggplot(my.data, aes(x, y)) +

stat_smooth(method = "rlm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = "rlm", colour = "red") +
geom_point()

plot robust regression with weights indicated by colour
my.data.outlier <- my.data
my.data.outlier[6, "y"] <- my.data.outlier[6, "y"] * 10
ggplot(my.data.outlier, aes(x, y)) +

stat_smooth(method = MASS::rlm, formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = "rlm",

mapping = aes(colour = after_stat(weights)),
show.legend = TRUE) +

scale_color_gradient(low = "red", high = "blue", limits = c(0, 1),
guide = "colourbar") +

geom_point()

plot quantile regression (= median regression)
ggplot(my.data, aes(x, y)) +

stat_quantile(formula = my.formula, quantiles = 0.5) +
stat_fit_deviations(formula = my.formula, method = "rq", colour = "red") +
geom_point()

plot quantile regression (= "quartile" regression)
ggplot(my.data, aes(x, y)) +

stat_quantile(formula = my.formula, quantiles = 0.75) +
stat_fit_deviations(formula = my.formula, colour = "red",

method = "rq", method.args = list(tau = 0.75)) +
geom_point()

30 stat_fit_glance

inspecting the returned data
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

plot, using geom_debug() to explore the after_stat data
ggplot(my.data, aes(x, y)) +
geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, geom = "debug") +
geom_point()

ggplot(my.data.outlier, aes(x, y)) +
stat_smooth(method = MASS::rlm, formula = my.formula) +
stat_fit_deviations(formula = my.formula, method = "rlm", geom = "debug") +
geom_point()

}

stat_fit_glance One row summary data frame for a fitted model

Description

stat_fit_glance fits a model and returns a "tidy" version of the model’s fit, using ’glance()
methods from packages ’broom’, ’broom.mixed’, or other sources.

Usage

stat_fit_glance(
mapping = NULL,
data = NULL,
geom = "text_npc",
method = "lm",
method.args = list(formula = y ~ x),
glance.args = list(),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = 0.075,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

stat_fit_glance 31

data A layer specific data set - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character or function.
method.args, glance.args

list of arguments to pass to method and to [generics::glance()], respectively.
label.x, label.y

numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_glance together with stat_fit_tidy and stat_fit_augment, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by package
’broom’. In contrast to stat_poly_eq which can generate text or expression labels automatically,
for these functions the mapping of aesthetic label needs to be explicitly supplied in the call, and
labels built on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Value

The output of the glance() methods is returned almost as is in the data object, as a data frame. The
names of the columns in the returned data are consistent with those returned by method glance()
from package ’broom’, that will frequently differ from the name of values returned by the print
methods corresponding to the fit or test function used. To explore the values returned by this statistic
including the name of variables/columns, which vary depending on the model fitting function and
model formula we suggest the use of geom_debug. An example is shown below.

32 stat_fit_glance

Warning!

Not all ‘glance()‘ methods are defined in package ’broom’. ‘glance()‘ specializations for mixed
models fits of classes ‘lme‘, ‘nlme‘, ‘lme4‘, and many others are defined in package ’broom.mixed’.

Handling of grouping

stat_fit_glance applies the function given by method separately to each group of observations,
and factors mapped to aesthetics, including x and y, create a separate group for each factor level.
Because of this, stat_fit_glance is not useful for annotating plots with results from t.test(),
ANOVA or ANCOVA. In such cases use the stat_fit_tb() statistic which applies the model
fitting per panel.

Model formula required

The current implementation works only with methods that accept a formula as argument and which
have a data parameter through which a data frame can be passed. For example, lm() should
be used with the formula interface, as the evaluation of x and y needs to be delayed until the
internal data object of the ggplot is available. With some methods like stats::cor.test() the
data embedded in the "ggplot" object cannot be automatically passed as argument for the data
parameter of the test or model fit function. Please, for annotations based on stats::cor.test()
use stat_correlation().

Note

Although arguments passed to parameter glance.args will be passed to [generics::glance()] whether
they are silently ignored or obeyed depends on each specialization of [glance()], so do carefully read
the documentation for the version of [glance()] corresponding to the ‘method‘ used to fit the model.

See Also

broom and broom.mixed for details on how the tidying of the result of model fits is done.

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_residuals(),
stat_fit_tb(), stat_fit_tidy()

Examples

package 'broom' needs to be installed to run these examples

if (requireNamespace("broom", quietly = TRUE)) {
library(broom)
library(quantreg)

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {
library(gginnards)

ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

stat_fit_glance 33

method.args = list(formula = y ~ x),
geom = "debug")

}

Regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

after_stat(r.squared), after_stat(p.value))),
parse = TRUE)

Regression by group example
ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
stat_smooth(method = "lm") +
geom_point() +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

after_stat(r.squared), after_stat(p.value))),
parse = TRUE)

Weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x, weights = quote(weight)),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

after_stat(r.squared), after_stat(p.value))),
parse = TRUE)

correlation test
ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
stat_fit_glance(method = "cor.test",

label.y = "bottom",
method.args = list(formula = ~ x + y),

mapping = aes(label = sprintf('r[Pearson]~"="~%.3f~~italic(P)~"="~%.2g',
after_stat(estimate), after_stat(p.value))),

parse = TRUE)

ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
stat_fit_glance(method = "cor.test",

label.y = "bottom",
method.args = list(formula = ~ x + y, method = "spearman", exact = FALSE),
mapping = aes(label = sprintf('r[Spearman]~"="~%.3f~~italic(P)~"="~%.2g',

34 stat_fit_residuals

after_stat(estimate), after_stat(p.value))),
parse = TRUE)

Quantile regression by group example
ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm") +
geom_point() +
stat_fit_glance(method = "rq",

label.y = "bottom",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf('AIC = %.3g, BIC = %.3g',

after_stat(AIC), after_stat(BIC))))

}

stat_fit_residuals Residuals from a model fit

Description

stat_fit_residuals fits a linear model and returns residuals ready to be plotted as points.

Usage

stat_fit_residuals(
mapping = NULL,
data = NULL,
geom = "point",
method = "lm",
method.args = list(),
formula = NULL,
resid.type = NULL,
weighted = FALSE,
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

stat_fit_residuals 35

method function or character If character, "lm", "rlm", and "rq" are implemented. If a
function, it must support parameters formula and data.

method.args named list with additional arguments.

formula a "formula" object. Using aesthetic names instead of original variable names.

resid.type character passed to residuals() as argument for type (defaults to "working"
except if weighted = TRUE when it is forced to "deviance").

weighted logical If true weighted residuals will be returned.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

This stat can be used to automatically plot residuals as points in a plot. At the moment it supports
only linear models fitted with function lm() or rlm(). It applies to the fitted model object methods
residuals or weighted.residuals depending on the argument passed to parameter weighted.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. In other words, it respects the
grammar of graphics and consequently within the model formula names of aesthetics like x and
y should be used instead of the original variable names, while data is automatically passed the
data frame. This helps ensure that the model is fitted to the same data as plotted in other layers.

Computed variables

Data frame with same value of nrow as data as subset for each group containing five numeric
variables.

x x coordinates of observations or x residuals from fitted values,

y y coordinates of observations or y residuals from fitted values,

x.resid residuals from fitted values,

y.resid residuals from fitted values,

weights the weights passed as input to lm or those computed by rlm

.

For orientation = "x", the default, stat(y.resid) is copied to variable y, while for orientation
= "y" stat(x.resid) is copied to variable x.

36 stat_fit_residuals

Note

How weights are applied to residuals depends on the method used to fit the model. For ordinary
least squares (OLS), weights are applied to the squares of the residuals, so the weighted residuals are
obtained by multiplying the "deviance" residuals by the square root of the weights. When residuals
are penalized differently to fit a model, the weighted residuals need to be computed accordingly.
Say if we use the absolute value of the residuals instead of the squared values, weighted residuals
are obtained by multiplying the residuals by the weights.

See Also

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_glance(),
stat_fit_tb(), stat_fit_tidy()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x, y)

plot residuals from linear model
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = y ~ x)

ggplot(my.data, aes(x, y)) +
geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = y ~ x, weighted = TRUE)

plot residuals from linear model with y as explanatory variable
ggplot(my.data, aes(x, y)) +

geom_vline(xintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = x ~ y) +
coord_flip()

give a name to a formula
my.formula <- y ~ poly(x, 3, raw = TRUE)

plot residuals from linear model
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula) +
coord_flip()

ggplot(my.data, aes(x, y)) +
geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, resid.type = "response")

plot residuals from robust regression
ggplot(my.data, aes(x, y)) +

stat_fit_tb 37

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, method = "rlm")

plot residuals with weights indicated by colour
my.data.outlier <- my.data
my.data.outlier[6, "y"] <- my.data.outlier[6, "y"] * 10
ggplot(my.data.outlier, aes(x, y)) +

stat_fit_residuals(formula = my.formula, method = "rlm",
mapping = aes(colour = after_stat(weights)),
show.legend = TRUE) +

scale_color_gradient(low = "red", high = "blue", limits = c(0, 1),
guide = "colourbar")

plot weighted residuals with weights indicated by colour
ggplot(my.data.outlier) +

stat_fit_residuals(formula = my.formula, method = "rlm",
mapping = aes(x = x,

y = stage(start = y, after_stat = y * weights),
colour = after_stat(weights)),

show.legend = TRUE) +
scale_color_gradient(low = "red", high = "blue", limits = c(0, 1),

guide = "colourbar")

plot residuals from quantile regression (median)
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, method = "rq")

plot residuals from quantile regression (upper quartile)
ggplot(my.data, aes(x, y)) +

geom_hline(yintercept = 0, linetype = "dashed") +
stat_fit_residuals(formula = my.formula, method = "rq",
method.args = list(tau = 0.75))

inspecting the returned data
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

ggplot(my.data, aes(x, y)) +
stat_fit_residuals(formula = my.formula, resid.type = "working",

geom = "debug")

ggplot(my.data, aes(x, y)) +
stat_fit_residuals(formula = my.formula, method = "rlm",

geom = "debug")
}

stat_fit_tb Model-fit summary or ANOVA

38 stat_fit_tb

Description

stat_fit_tb fits a model and returns a "tidy" version of the model’s summary or ANOVA table,
using ’tidy() methods from packages ’broom’, ’broom.mixed’, or other sources. The annotation
is added to the plots in tabular form.

Usage

stat_fit_tb(
mapping = NULL,
data = NULL,
geom = "table_npc",
method = "lm",
method.args = list(formula = y ~ x),
tidy.args = list(),
tb.type = "fit.summary",
tb.vars = NULL,
tb.params = NULL,
digits = 3,
p.digits = digits,
label.x = "center",
label.y = "top",
label.x.npc = NULL,
label.y.npc = NULL,
position = "identity",
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 1,
parse = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.
geom The geometric object to use display the data
method character.
method.args, tidy.args

lists of arguments to pass to method and to tidy().
tb.type character One of "fit.summary", "fit.anova" or "fit.coefs".
tb.vars, tb.params

character or numeric vectors, optionally named, used to select and/or rename
the columns or the parameters in the table returned.

stat_fit_tb 39

digits integer indicating the number of significant digits to be used for all numeric
values in the table.

p.digits integer indicating the number of decimal places to round p-values to, with those
rounded to zero displayed as the next larger possible value preceded by "<". If
p.digits is outside the range 1..22 no rounding takes place.

label.x, label.y

numeric Coordinates (in data units) to be used for absolute positioning of the
output. If too short they will be recycled.

label.x.npc, label.y.npc

numeric with range 0..1 or character. Coordinates to be used for positioning the
output, expressed in "normalized parent coordinates" or character string. If too
short they will be recycled.

position The position adjustment to use for overlapping points on this layer

table.theme NULL, list or function A ’gridExtra’ ttheme definition, or a constructor for a
ttheme or NULL for default.

table.rownames, table.colnames

logical flag to enable or disabling printing of row names and column names.

table.hjust numeric Horizontal justification for the core and column headings of the table.

parse If TRUE, the labels will be parsed into expressions and displayed as described
in ?plotmath.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_tb Applies a model fitting function per panel, using the grouping factors from aesthetic
mappings in the fitted model. This is suitable, for example for analysis of variance used to test for
differences among groups.

The argument to method can be any fit method for which a suitable tidy() method is available,
including non-linear regression. Fit methods retain their default arguments unless overridden.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

40 stat_fit_tb

Computed variables

The output of tidy() is returned as a single "cell" in a tibble (i.e. a tibble nested within a tibble).
The returned data object contains a single, containing the result from a single model fit to all data
in a panel. If grouping is present, it is ignored.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug.

See Also

broom and broom.mixed for details on how the tidying of the result of model fits is done. See
geom_table for details on how inset tables respond to mapped aesthetics and table themes. For
details on predefined table themes see ttheme_gtdefault.

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_glance(),
stat_fit_residuals(), stat_fit_tidy()

Examples

package 'broom' needs to be installed to run these examples

if (requireNamespace("broom", quietly = TRUE)) {
library(broom)

data for examples
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
covariate <- sqrt(x) + rnorm(9)
group <- factor(c(rep("A", 4), rep("B", 5)))
my.df <- data.frame(x, group, covariate)

Linear regression fit summary, by default
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

Linear regression fit summary, by default
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(digits = 2, p.digits = 4) +
expand_limits(y = 70)

Linear regression fit summary
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.summary") +
expand_limits(y = 70)

Linear regression ANOVA table
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova") +
expand_limits(y = 70)

stat_fit_tb 41

Linear regression fit coeficients
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.coefs") +
expand_limits(y = 70)

Polynomial regression
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ poly(x, 2))) +
expand_limits(y = 70)

Polynomial regression with renamed parameters
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ poly(x, 2)),

tb.params = c("x^0" = 1, "x^1" = 2, "x^2" = 3),
parse = TRUE) +

expand_limits(y = 70)

Polynomial regression with renamed parameters and columns
using numeric indexes

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ poly(x, 2)),

tb.params = c("x^0" = 1, "x^1" = 2, "x^2" = 3),
tb.vars = c("Term" = 1, "Estimate" = 2, "S.E." = 3,

"italic(F)-value" = 4, "italic(P)-value" = 5),
parse = TRUE) +

expand_limits(y = 70)

ANOVA summary
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

ANOVA table
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova") +
expand_limits(y = 70)

ANOVA table with renamed and selected columns
using column names

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova",

tb.vars = c(Effect = "term", "df", "italic(F)" = "statistic",
"italic(P)" = "p.value"),

parse = TRUE)

42 stat_fit_tidy

ANOVA table with renamed and selected columns
using column names with partial matching

ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(tb.type = "fit.anova",

tb.vars = c(Effect = "term", "df", "italic(F)" = "stat",
"italic(P)" = "p"),

parse = TRUE)

ANOVA summary
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

ANCOVA (covariate not plotted)
ggplot(my.df, aes(group, x, z = covariate)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ x + z),

tb.vars = c(Effect = "term", "italic(F)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

t-test
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(method = "t.test",

tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

t-test (equal variances assumed)
ggplot(my.df, aes(group, x)) +
geom_point() +
stat_fit_tb(method = "t.test",

method.args = list(formula = y ~ x, var.equal = TRUE),
tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

Linear regression using a table theme
ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(table.theme = ttheme_gtlight) +
expand_limits(y = 70)

}

stat_fit_tidy One row data frame with fitted parameter estimates

stat_fit_tidy 43

Description

stat_fit_tidy fits a model and returns a "tidy" version of the model’s summary, using ’tidy()
methods from packages ’broom’, ’broom.mixed’, or other sources. To add the summary in tabular
form use stat_fit_tb instead of this statistic. When using stat_fit_tidy() you will most likely
want to change the default mapping for label.

Usage

stat_fit_tidy(
mapping = NULL,
data = NULL,
geom = "text_npc",
method = "lm",
method.args = list(formula = y ~ x),
tidy.args = list(),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
sanitize.names = FALSE,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character or function.
method.args, tidy.args

list of arguments to pass to method, and to [generics::tidy], respectively.
label.x, label.y

numeric with range 0..1 or character. Coordinates to be used for positioning the
output, expressed in "normalized parent coordinates" or character string. If too
short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

sanitize.names logical If true sanitize column names in the returned data with R’s make.names()
function.

position The position adjustment to use for overlapping points on this layer

44 stat_fit_tidy

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_tidy together with stat_fit_glance and stat_fit_augment, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by ’broom’.
In contrast to stat_poly_eq which can generate text or expression labels automatically, for these
functions the mapping of aesthetic label needs to be explicitly supplied in the call, and labels built
on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Value

The output of tidy() is returned after reshaping it into a single row. Grouping is respected, and the
model fitted separately to each group of data. The returned data object has one row for each group
within a panel. To use the intercept, note that output of tidy() is renamed from (Intercept) to
Intercept. Otherwise, the names of the columns in the returned data are based on those returned by
the tidy() method for the model fit class returned by the fit function. These will frequently differ
from the name of values returned by the print methods corresponding to the fit or test function used.
To explore the values returned by this statistic including the name of variables/columns, which vary
depending on the model fitting function and model formula, we suggest the use of geom_debug.
An example is shown below. Names of columns as returned by default are not always syntactically
valid R names making it necessary to use back ticks to access them. Syntactically valid names are
guaranteed if sanitize.names = TRUE is added to the call.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug. An example is shown below.

Warning!

Not all ‘glance()‘ methods are defined in package ’broom’. ‘glance()‘ specializations for mixed
models fits of classes ‘lme‘, ‘nlme‘, ‘lme4‘, and many others are defined in package ’broom.mixed’.

stat_fit_tidy 45

Handling of grouping

stat_fit_tidy applies the function given by method separately to each group of observations;
in ggplot2 factors mapped to aesthetics generate a separate group for each level. Because of this,
stat_fit_tidy is not useful for annotating plots with results from t.test() or ANOVA or AN-
COVA. In such cases use instead stat_fit_tb() which applies the model fitting per panel.

Note

The statistic stat_fit_tidy can be used only with methods that accept formulas under any formal
parameter name and a data argument. Use ggplot2::stat_smooth() instead of stat_fit_augment
in production code if the additional features are not needed.

Although arguments passed to parameter tidy.args will be passed to [generics::tidy()] whether
they are silently ignored or obeyed depends on each specialization of [tidy()], so do carefully read
the documentation for the version of [tidy()] corresponding to the ‘method‘ used to fit the model.
You will also need to manually install the package, such as ’broom’, where the tidier you intend to
use are defined.

See Also

broom and broom.mixed for details on how the tidying of the result of model fits is done.

Other ggplot statistics for model fits: stat_fit_augment(), stat_fit_deviations(), stat_fit_glance(),
stat_fit_residuals(), stat_fit_tb()

Examples

package 'broom' needs to be installed to run these examples

if (requireNamespace("broom", quietly = TRUE)) {
library(broom)
library(quantreg)

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {
library(gginnards)

This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics. This is specially important for
this stat as these names depend on the specific tidy() method used, which
depends on the method used, such as lm(), used to fit the model.

Regression by panel, default column names
ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm", formula = y ~ x + I(x^2)) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

method.args = list(formula = y ~ x + I(x^2)),
geom = "debug")

Regression by panel, sanitized column names
ggplot(mtcars, aes(x = disp, y = mpg)) +

46 stat_fit_tidy

stat_smooth(method = "lm", formula = y ~ x + I(x^2)) +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

method.args = list(formula = y ~ x + I(x^2)),
geom = "debug", sanitize.names = TRUE)

}

Regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

Regression by group example
ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
stat_smooth(method = "lm") +
geom_point() +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf("Slope = %.3g, p-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

Weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +
stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x, weights = quote(weight)),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

Correlation test
ggplot(mtcars, aes(x = disp, y = mpg)) +
stat_smooth(method = "lm") +
geom_point() +
stat_fit_tidy(method = "cor.test",

label.y = "bottom",
method.args = list(formula = ~ x + y),
mapping = aes(label = sprintf("R = %.3g\np-value = %.3g",

after_stat(`_estimate`),
after_stat(`_p.value`))))

Quantile regression
ggplot(mtcars, aes(x = disp, y = mpg)) +

stat_ma_eq 47

stat_smooth(method = "lm") +
geom_point() +
stat_fit_tidy(method = "rq",

label.y = "bottom",
method.args = list(formula = y ~ x),
tidy.args = list(se.type = "nid"),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

after_stat(x_estimate),
after_stat(x_p.value))))

}

stat_ma_eq Equation, p-value, R^2 of major axis regression

Description

stat_ma_eq fits model II regressions. From the fitted model it generates several labels including
the equation, p-value, coefficient of determination (R^2), and number of observations.

Usage

stat_ma_eq(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
...,
method = "MA",
formula = NULL,
range.y = NULL,
range.x = NULL,
nperm = 99,
eq.with.lhs = TRUE,
eq.x.rhs = NULL,
small.r = FALSE,
small.p = FALSE,
coef.digits = 3,
coef.keep.zeros = TRUE,
rr.digits = 2,
p.digits = max(1, ceiling(log10(nperm))),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
output.type = NULL,
na.rm = FALSE,

48 stat_ma_eq

orientation = NA,
parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

method character "MA", "SMA" , "RMA" and "OLS".

formula a formula object. Using aesthetic names x and y instead of original variable
names.

range.y, range.x

character Pass "relative" or "interval" if method "RMA" is to be computed.

nperm integer Number of permutation used to estimate significance.

eq.with.lhs If character the string is pasted to the front of the equation label before parsing
or a logical (see note).

eq.x.rhs character this string will be used as replacement for "x" in the model equation
when generating the label before parsing it.

small.r, small.p

logical Flags to switch use of lower case r and p for coefficient of determination
and p-value.

coef.digits integer Number of significant digits to use for the fitted coefficients.
coef.keep.zeros

logical Keep or drop trailing zeros when formatting the fitted coefficients and
F-value.

rr.digits, p.digits

integer Number of digits after the decimal point to use for R^2 and P-value in
labels.

label.x, label.y

numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

stat_ma_eq 49

orientation character Either "x" or "y" controlling the default for formula.

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This stat can be used to automatically annotate a plot with R^2, P_value, n and/or the fitted model
equation. It supports linear major axis (MA), standard major axis (SMA) and ranged major axis
(RMA) regression by means of function lmodel2. Please see the documentation, including the
vignette of package ’lmodel2’ for details. The parameters in stat_ma_eq() follow the same naming
as in function lmodel2().

A ggplot statistic receives as data a data frame that is not the one passed as argument by the
user, but instead a data frame with the variables mapped to aesthetics. stat_ma_eq() mimics how
stat_smooth() works, except that only linear regression can be fitted. Similarly to these statistics
the model fits respect grouping, so the scales used for x and y should both be continuous scales
rather than discrete.

Aesthetics

stat_ma_eq understands x and y, to be referenced in the formula while the weight aesthetic is
ignored. Both x and y must be mapped to numeric variables. In addition, the aesthetics understood
by the geom ("text" is the default) are understood and grouping respected.

Computed variables

If output.type different from "numeric" the returned tibble contains columns listed below. If the
fitted model does not contain a given value, the label is set to character(0L).

x,npcx x position

y,npcy y position

eq.label equation for the fitted polynomial as a character string to be parsed

rr.label R2 of the fitted model as a character string to be parsed

p.value.label P-value for the F-value above.

n.label Number of observations used in the fit.

grp.label Set according to mapping in aes.

r.squared, p.value, n numeric values, from the model fit object

If output.type is "numeric" the returned tibble contains columns listed below. If the model fit
function used does not return a value, the variable is set to NA_real_.

x,npcx x position

50 stat_ma_eq

y,npcy y position

coef.ls list containing the "coefficients" matrix from the summary of the fit object

r.squared, adj.r.squared, f.value, f.df1, f.df2, p.value, AIC, BIC, n numeric values, from the model
fit object

grp.label Set according to mapping in aes.

b_0.constant TRUE is polynomial is forced through the origin

b_i One or two columns with the coefficient estimates

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the last examples below.

Note

For backward compatibility a logical is accepted as argument for eq.with.lhs. If TRUE, the default
is used, either "x" or "y", depending on the argument passed to formula. However, "x" or "y" can
be substituted by providing a suitable replacement character string through eq.x.rhs. Parameter
orientation is redundant as it only affects the default for formula but is included for consistency
with ggplot2::stat_smooth().

See Also

This stat_ma_eq statistic can return ready formatted labels depending on the argument passed
to output.type. If other than linear major axis regression is desired, then stat_poly_eq or
stat_quant_eq should be used instead of stat_ma_eq. For other types of models such as non-
linear models, statistics stat_fit_glance and stat_fit_tidy should be used and the code for
construction of character strings from numeric values and their mapping to aesthetic label needs
to be explicitly supplied in the call.

Other ggplot statistics for major axis regression: stat_ma_line()

Examples

generate artificial data
set.seed(98723)
my.data <- data.frame(x = rnorm(100) + (0:99) / 10 - 5,

y = rnorm(100) + (0:99) / 10 - 5,
group = c("A", "B"))

using defaults (major axis regression)
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line() +
stat_ma_eq()

using major axis regression
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(method = "MA") +
stat_ma_eq(aes(label =

paste(after_stat(eq.label),

stat_ma_eq 51

after_stat(p.value.label),
sep = "*\", \"*")),
method = "MA")

using standard major axis regression
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(method = "SMA") +
stat_ma_eq(aes(label =
paste(after_stat(eq.label),

after_stat(p.value.label),
sep = "*\", \"*")),
method = "SMA")

using ranged major axis regression
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(method = "RMA", range.y = "interval", range.x = "interval") +
stat_ma_eq(aes(label =
paste(after_stat(eq.label),

after_stat(p.value.label),
sep = "*\", \"*")),
method = "RMA",
range.y = "interval", range.x = "interval")

No permutation-based test
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(method = "MA") +
stat_ma_eq(aes(label =
paste(after_stat(eq.label),

after_stat(p.value.label),
sep = "*\", \"*")),
method = "MA", nperm = 0)

explicit formula "x explained by y"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(formula = x ~ y) +
stat_ma_eq(formula = x ~ y,

aes(label = paste(after_stat(eq.label),
after_stat(p.value.label),
sep = "*\", \"*")))

grouping
ggplot(my.data, aes(x, y, color = group)) +

geom_point() +
stat_ma_line() +
stat_ma_eq()

labelling equations
ggplot(my.data, aes(x, y, shape = group, linetype = group,

grp.label = group)) +

52 stat_ma_line

geom_point() +
stat_ma_line(color = "black") +
stat_ma_eq(aes(label = paste(after_stat(grp.label),

after_stat(eq.label),
sep = "*\": \"*"))) +

theme_classic()

geom = "text"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line() +
stat_ma_eq(label.x = "left", label.y = "top")

Inspecting the returned data using geom_debug()
Not run:
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics.

default is output.type = "expression"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_eq(geom = "debug")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_eq(aes(label = after_stat(eq.label)),

geom = "debug",
output.type = "markdown")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_eq(geom = "debug", output.type = "text")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_eq(geom = "debug", output.type = "numeric")

}

End(Not run)

stat_ma_line Predicted line from major axis linear fit

stat_ma_line 53

Description

Predicted values and a confidence band are computed and, by default, plotted. stat_ma_line()
behaves similarly to stat_smooth except for fitting the model with lmodel2::lmodel2() with
"MA" as default for method.

Usage

stat_ma_line(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
method = "MA",
formula = NULL,
range.y = NULL,
range.x = NULL,
se = TRUE,
mf.values = FALSE,
n = 80,
nperm = 99,
fullrange = FALSE,
level = 0.95,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.
geom The geometric object to use display the data
position The position adjustment to use for overlapping points on this layer
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
method character "MA", "SMA" , "RMA" and "OLS".
formula a formula object. Using aesthetic names x and y instead of original variable

names.
range.y, range.x

character Pass "relative" or "interval" if method "RMA" is to be computed.
se logical Return confidence interval around smooth? (‘TRUE‘ by default, see

‘level‘ to control.)
mf.values logical Add R2, p-value and n as columns to returned data? (‘FALSE‘ by de-

fault.)

54 stat_ma_line

n Number of points at which to evaluate smoother.

nperm integer Number of permutation used to estimate significance.

fullrange Should the fit span the full range of the plot, or just the data?

level Level of confidence interval to use (only 0.95 currently).

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic fits major axis ("MA") and other model II regressions with function lmodel2. Model
II regression is called for when both x and y are subject to random variation and the intention is
not to predict y from x by means of the model but rather to study the relationship between two
independent variables. A frequent case in biology are allometric relationships among body parts.

As the fitted line is the same whether x or y is on the rhs of the model equation, orientation even
is accepted does not have an effect on the fit. In contrast, geom_smooth treats each axis differently
and can thus have two orientations. The orientation is easy to deduce from the argument passed to
formula. Thus, stat_ma_line() will by default guess which orientation the layer should have. If
no argument is passed to formula, the orientation can be specified directly passing an argument to
the orientation parameter, which can be either "x" or "y". The value gives the axis that is on
the rhs of the model equation, "x" being the default orientation. Package ’ggpmisc’ does not define
new geometries matching the new statistics as they are not needed and conceptually transformations
of data are expressed as statistics.

Value

The value returned by the statistic is a data frame, that will have n rows of predicted values and their
confidence limits. Optionally it will also include additional values related to the model fit.

Computed variables

‘stat_ma_line()‘ provides the following variables, some of which depend on the orientation:

y *or* x predicted value

ymin *or* xmin lower pointwise confidence interval around the mean

ymax *or* xmax upper pointwise confidence interval around the mean

se standard error

If mf.values = TRUE is passed then columns based on the summary of the model fit are added, with
the same value in each row within a group. This is wasteful and disabled by default, but provides a
simple and robust approach to achieve effects like colouring or hiding of the model fit line based on
P-values, r-squared or the number of observations.

stat_ma_line 55

Aesthetics

stat_ma_line understands x and y, to be referenced in the formula. Both must be mapped to
numeric variables. In addition, the aesthetics understood by the geom ("geom_smooth" is the
default) are understood and grouping respected.

See Also

Other ggplot statistics for major axis regression: stat_ma_eq()

Examples

generate artificial data
set.seed(98723)
my.data <- data.frame(x = rnorm(100) + (0:99) / 10 - 5,

y = rnorm(100) + (0:99) / 10 - 5,
group = c("A", "B"))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line()

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "MA")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "SMA")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "RMA",

range.y = "interval", range.x = "interval")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(method = "OLS")

plot line to the ends of range of data (the default)
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(fullrange = FALSE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))

plot line to the limits of the scales
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_ma_line(fullrange = TRUE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))

plot line to the limits of the scales
ggplot(my.data, aes(x, y)) +

56 stat_peaks

geom_point() +
stat_ma_line(orientation = "y", fullrange = TRUE) +
expand_limits(x = c(-10, 10), y = c(-10, 10))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line(formula = x ~ y)

Smooths are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

ggplot(my.data, aes(x, y, colour = group)) +
geom_point() +
stat_ma_line()

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_ma_line() +
facet_wrap(~group)

Inspecting the returned data using geom_debug()
Not run:
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

ggplot(my.data, aes(x, y)) +
stat_ma_line(geom = "debug")

ggplot(my.data, aes(x, y)) +
stat_ma_line(geom = "debug", mf.values = TRUE)

}

End(Not run)

stat_peaks Local maxima (peaks) or minima (valleys)

Description

stat_peaks finds at which x positions local y maxima are located and stat_valleys finds at which
x positions local y minima are located. Both stats return a subset of data with rows matching for
peaks or valleys with formatted character labels added. The formatting is determined by a format
string compatible with sprintf() or strftime().

Usage

stat_peaks(
mapping = NULL,

stat_peaks 57

data = NULL,
geom = "point",
span = 5,
ignore_threshold = 0,
strict = FALSE,
label.fmt = NULL,
x.label.fmt = NULL,
y.label.fmt = NULL,
orientation = "x",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_valleys(
mapping = NULL,
data = NULL,
geom = "point",
span = 5,
ignore_threshold = 0,
strict = FALSE,
label.fmt = NULL,
x.label.fmt = NULL,
y.label.fmt = NULL,
orientation = "x",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

span a peak is defined as an element in a sequence which is greater than all other
elements within a window of width span centered at that element. The default
value is 5, meaning that a peak is bigger than two consecutive neighbors on each
side. A NULL value for span is taken as a span covering the whole of the data
range.

ignore_threshold

numeric value between 0.0 and 1.0 indicating the size threshold below which
peaks will be ignored.

58 stat_peaks

strict logical flag: if TRUE, an element must be strictly greater than all other values
in its window to be considered a peak. Default: FALSE.

label.fmt character string giving a format definition for converting values into character
strings by means of function sprintf or strptime, its use is deprecated.

x.label.fmt character string giving a format definition for converting x-values into char-
acter strings by means of function sprintf or strftime. The default argument
varies depending on the scale in use.

y.label.fmt character string giving a format definition for converting y-values into char-
acter strings by means of function sprintf.

orientation character Either "x" or "y".

position The position adjustment to use for overlapping points on this layer.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

These stats use geom_point by default as it is the geom most likely to work well in almost any sit-
uation without need of tweaking. The default aesthetics set by these stats allow their direct use with
geom_text, geom_label, geom_line, geom_rug, geom_hline and geom_vline. The formatting of
the labels returned can be controlled by the user.

The default for parameter strict is TRUE in functions splus2R::peaks() and find_peaks(),
while the default is FALSE in stat_peaks() and in stat_valleys().

Returned and computed variables

x x-value at the peak (or valley) as numeric

y y-value at the peak (or valley) as numeric

x.label x-value at the peak (or valley) as character

y.label y-value at the peak (or valley) as character

Warning!

The current version of these statistics do not support passing nudge_x or nurge_y named parameters
to the geometry. Use ‘position‘ and one of the position functions such as position_nudge_keep
instead.

stat_peaks 59

Note

These statistics check the scale of the x aesthetic and if it is Date or Datetime they correctly generate
the labels by transforming the numeric x values to Date or POSIXct objects, respectively. In which
case the x.label.fmt must follow the syntax supported by strftime() rather than by sprintf().
Overlap of labels with points can avoided by use of one of the nudge positions, possibly together
with geometry geom_text_s from package ggpp, or with geom_text_repel or geom_label_repel
from package ggrepel. To discard overlapping labels use check_overlap = TRUE as argument to
geom_text or geom_text_s. By default the labels are character values suitable to be plotted as
is, but with a suitable format passed as argument to label.fmt labels suitable for parsing by the
geoms (e.g. into expressions containing Greek letters, super- or subscripts, maths symbols or maths
constructs) can be also easily obtained.

Examples

lynx is a time.series object
lynx_num.df <-

try_tibble(lynx,
col.names = c("year", "lynx"),
as.numeric = TRUE) # years -> as numeric

ggplot(lynx_num.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_valleys(colour = "blue")

ggplot(lynx_num.df, aes(lynx, year)) +
geom_line(orientation = "y") +
stat_peaks(colour = "red", orientation = "y") +
stat_valleys(colour = "blue", orientation = "y")

ggplot(lynx_num.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red", geom = "rug")

ggplot(lynx_num.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red", geom = "text", hjust = -0.1, angle = 33)

ggplot(lynx_num.df, aes(lynx, year)) +
geom_line(orientation = "y") +
stat_peaks(colour = "red", orientation = "y") +
stat_peaks(colour = "red", orientation = "y",

geom = "text", hjust = -0.1)

lynx_datetime.df <-
try_tibble(lynx,

col.names = c("year", "lynx")) # years -> POSIXct

ggplot(lynx_datetime.df, aes(year, lynx)) +

60 stat_poly_eq

geom_line() +
stat_peaks(colour = "red") +
stat_valleys(colour = "blue")

ggplot(lynx_datetime.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red",

geom = "text",
hjust = -0.1,
x.label.fmt = "%Y",
angle = 33)

ggplot(lynx_datetime.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red",

geom = "text_s",
position = position_nudge_keep(x = 0, y = 200),
hjust = -0.1,
x.label.fmt = "%Y",
angle = 90) +

expand_limits(y = 8000)

ggplot(lynx_datetime.df, aes(year, lynx)) +
geom_line() +
stat_peaks(colour = "red",

geom = "text_s",
position = position_nudge_to(y = 7200),
arrow = arrow(length = grid::unit(1.5, "mm")),
hjust = -0.1,
x.label.fmt = "%Y",
angle = 90) +

expand_limits(y = 8000)

stat_poly_eq Equation, p-value, Rˆ2, AIC or BIC of fitted polynomial

Description

stat_poly_eq fits a polynomial by default with stats::lm() but alternatively using robust re-
gression. From the fitted model it generates several labels including the equation, p-value, F-value,
coefficient of determination (R^2), ’AIC’, ’BIC’, and number of observations.

Usage

stat_poly_eq(
mapping = NULL,
data = NULL,

stat_poly_eq 61

geom = "text_npc",
position = "identity",
...,
method = "lm",
method.args = list(),
formula = NULL,
eq.with.lhs = TRUE,
eq.x.rhs = NULL,
small.r = FALSE,
small.p = FALSE,
coef.digits = 3,
coef.keep.zeros = TRUE,
rr.digits = 2,
f.digits = 3,
p.digits = 3,
label.x = "left",
label.y = "top",
label.x.npc = NULL,
label.y.npc = NULL,
hstep = 0,
vstep = NULL,
output.type = NULL,
na.rm = FALSE,
orientation = NA,
parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

method function or character If character, "lm" and "rlm" are accepted. If a function, it
must have formal parameters formula and data and return a model fit object
for which summary() and coefficients() are consistent with those for lm fits.

method.args named list with additional arguments.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

eq.with.lhs If character the string is pasted to the front of the equation label before parsing
or a logical (see note).

62 stat_poly_eq

eq.x.rhs character this string will be used as replacement for "x" in the model equation
when generating the label before parsing it.

small.r, small.p

logical Flags to switch use of lower case r and p for coefficient of determination
and p-value.

coef.digits, f.digits

integer Number of significant digits to use for the fitted coefficients and F-value.
coef.keep.zeros

logical Keep or drop trailing zeros when formatting the fitted coefficients and
F-value.

rr.digits, p.digits

integer Number of digits after the decimal point to use for R2 and P-value in
labels.

label.x, label.y

numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

label.x.npc, label.y.npc

numeric with range 0..1 (npc units) DEPRECATED, use label.x and label.y
instead; together with a geom using npcx and npcy aesthetics.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic can be used to automatically annotate a plot with R2, adjusted R2 or the fitted model
equation. It supports linear regression, robust linear regression and median regression fitted with
functions lm(), MASS::rlm() or quanreg::rq(). The R2 and adjusted R2 annotations can be used
with any linear model formula. The fitted equation label is correctly generated for polynomials or
quasi-polynomials through the origin. Model formulas can use poly() or be defined algebraically
with terms of powers of increasing magnitude with no missing intermediate terms, except possibly
for the intercept indicated by "- 1" or "-1" or "+ 0" in the formula. The validity of the formula is not
checked in the current implementation, and for this reason the default aesthetics sets R2 as label for
the annotation. This stat generates labels as R expressions by default but LaTeX (use TikZ device),

stat_poly_eq 63

markdown (use package ’ggtext’) and plain text are also supported, as well as numeric values for
user-generated text labels. The value of parse is set automatically based on output-type, but if
you assemble labels that need parsing from numeric output, the default needs to be overridden.
This stat only generates annotation labels, the predicted values/line need to be added to the plot
as a separate layer using stat_poly_line or stat_smooth, so to make sure that the same model
formula is used in all steps it is best to save the formula as an object and supply this object as
argument to the different statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. stat_poly_eq() mimics how
stat_smooth() works, except that only polynomials can be fitted. Similarly to these statistics the
model fits respect grouping, so the scales used for x and y should both be continuous scales rather
than discrete.

IMPORTANT

stat_regline_equation() in package ’ggpubr’ is a renamed but almost unchanged copy of stat_poly_eq()
taken from an earlier version of this package (without acknowledgement of source and authorship).
stat_regline_equation() lacks important functionality and contains bugs that have been fixed
in stat_poly_eq().

Aesthetics

stat_poly_eq understands x and y, to be referenced in the formula and weight passed as argument
to parameter weights. All three must be mapped to numeric variables. In addition, the aesthetics
understood by the geom ("text" is the default) are understood and grouping respected.

Computed variables

If output.type different from "numeric" the returned tibble contains columns listed below. If the
model fit function used does not return a value, the label is set to character(0L).

x,npcx x position

y,npcy y position

eq.label equation for the fitted polynomial as a character string to be parsed

rr.label R2 of the fitted model as a character string to be parsed

adj.rr.label Adjusted R2 of the fitted model as a character string to be parsed

f.value.label F value and degrees of freedom for the fitted model as a whole.

p.value.label P-value for the F-value above.

AIC.label AIC for the fitted model.

BIC.label BIC for the fitted model.

n.label Number of observations used in the fit.

grp.label Set according to mapping in aes.

r.squared, adj.r.squared, p.value, n numeric values, from the model fit object

If output.type is "numeric" the returned tibble contains columns listed below. If the model fit
function used does not return a value, the variable is set to NA_real_.

64 stat_poly_eq

x,npcx x position

y,npcy y position

coef.ls list containing the "coefficients" matrix from the summary of the fit object

r.squared, adj.r.squared, f.value, f.df1, f.df2, p.value, AIC, BIC, n numeric values, from the model
fit object

grp.label Set according to mapping in aes.

b_0.constant TRUE is polynomial is forced through the origin

b_i One or columns with the coefficient estimates

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the last examples below.

Note

For backward compatibility a logical is accepted as argument for eq.with.lhs. If TRUE, the default
is used, either "x" or "y", depending on the argument passed to formula. However, "x" or "y" can
be substituted by providing a suitable replacement character string through eq.x.rhs. Parameter
orientation is redundant as it only affects the default for formula but is included for consistency
with ggplot2::stat_smooth().

References

Written as an answer to question 7549694 at Stackoverflow.

See Also

This stat_poly_eq statistic can return ready formatted labels depending on the argument passed
to output.type. This is possible because only polynomial models are supported. For quantile
regression stat_quant_eq should be used instead of stat_poly_eq while for model II or major
axis regression stat_ma_eq should be used. For other types of models such as non-linear models,
statistics stat_fit_glance and stat_fit_tidy should be used and the code for construction of
character strings from numeric values and their mapping to aesthetic label needs to be explicitly
supplied by the user.

Other ggplot statistics for linear and polynomial regression: stat_poly_line()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x = x, y = y,

group = c("A", "B"),
y2 = y * c(0.5,2),
w = sqrt(x))

give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)

stat_poly_eq 65

no weights
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula)

grouping
ggplot(my.data, aes(x, y, color = group)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula)

rotation
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, angle = 90, hjust = 1)

label location
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, label.y = "bottom", label.x = "right")

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, label.y = 0.1, label.x = 0.9)

using weights
ggplot(my.data, aes(x, y, weight = w)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula)

no weights, digits for R square
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, rr.digits = 4)

user specified label
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = paste(after_stat(rr.label),

after_stat(n.label), sep = "*\", \"*")),
formula = formula)

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +

66 stat_poly_eq

stat_poly_eq(aes(label = paste(after_stat(eq.label),
after_stat(adj.rr.label), sep = "*\", \"*")),

formula = formula)

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = paste(after_stat(f.value.label),

after_stat(p.value.label),
sep = "*\", \"*")),

formula = formula)

x on y regression
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula, orientation = "y") +
stat_poly_eq(aes(label = paste(after_stat(eq.label),

after_stat(adj.rr.label),
sep = "*\", \"*")),

formula = x ~ poly(y, 3, raw = TRUE))

conditional user specified label
ggplot(my.data, aes(x, y, color = group)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = ifelse(after_stat(adj.r.squared) > 0.96,

paste(after_stat(adj.rr.label),
after_stat(eq.label),
sep = "*\", \"*"),

after_stat(adj.rr.label))),
rr.digits = 3,
formula = formula)

geom = "text"
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(geom = "text", label.x = 100, label.y = 0, hjust = 1,

formula = formula)

using numeric values
Here we use columns b_0 ... b_3 for the coefficient estimates
my.format <-

"b[0]~`=`~%.3g*\", \"*b[1]~`=`~%.3g*\", \"*b[2]~`=`~%.3g*\", \"*b[3]~`=`~%.3g"
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula,

output.type = "numeric",
parse = TRUE,
mapping =
aes(label = sprintf(my.format,

after_stat(b_0), after_stat(b_1),

stat_poly_eq 67

after_stat(b_2), after_stat(b_3))))

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics.

the whole of data
ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug")

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug", output.type = "numeric")

names of the variables
ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

summary.fun = colnames)

only data$eq.label
ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

output.type = "expression",
summary.fun = function(x) {x[["eq.label"]]})

only data$eq.label
ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = after_stat(eq.label)),

formula = formula, geom = "debug",
output.type = "markdown",
summary.fun = function(x) {x[["eq.label"]]})

only data$eq.label
ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

output.type = "latex",
summary.fun = function(x) {x[["eq.label"]]})

only data$eq.label

68 stat_poly_line

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug",

output.type = "text",
summary.fun = function(x) {x[["eq.label"]]})

show the content of a list column
ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug", output.type = "numeric",

summary.fun = function(x) {x[["coef.ls"]][[1]]})
}

stat_poly_line Predicted line from model fit

Description

Predicted values and a confidence band are computed and, by default, plotted.

Usage

stat_poly_line(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
method = "lm",
formula = NULL,
se = TRUE,
mf.values = FALSE,
n = 80,
fullrange = FALSE,
level = 0.95,
method.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

stat_poly_line 69

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

method function or character If character, "lm", "rlm" and "rq" are accepted. If a func-
tion, it must have formal parameters formula and data and return a model fit
object for which summary() and coefficients() are consistent with those for
lm fits.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

se Display confidence interval around smooth? (‘TRUE‘ by default, see ‘level‘ to
control.)

mf.values logical Add R2, adjusted R2, p-value and n as columns to returned data? (‘FALSE‘
by default.)

n Number of points at which to evaluate smoother.

fullrange Should the fit span the full range of the plot, or just the data?

level Level of confidence interval to use (0.95 by default).

method.args named list with additional arguments.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic is similar to stat_smooth but has different defaults and it interprets the argument
passed to formula differently, accepting y as explanatory variable and setting orientation auto-
matically. The default for method is "lm" and spline-based smoothers like loess are not supported.
Other defaults are consistent with those in stat_poly_eq(), stat_quant_line(), stat_quant_eq(),
stat_ma_line(), stat_ma_eq().

geom_poly_line() treats the x and y aesthetics differently and can thus have two orientations. The
orientation can be deduced from the argument passed to formula. Thus, stat_poly_line() will
by default guess which orientation the layer should have. If no argument is passed to formula,
the formula defaults to y ~ x. For consistency with stat_smooth orientation can be also specified
directly passing an argument to the orientation parameter, which can be either "x" or "y". The
value of orientation gives the axis that is taken as the explanatory variable. Package ’ggpmisc’
does not define new geometries matching the new statistics as they are not needed and conceptually
transformations of data are statistics in the grammar of graphics.

70 stat_poly_line

Value

The value returned by the statistic is a data frame, that will have n rows of predicted values and their
confidence limits. Optionally it will also include additional values related to the model fit.

Computed variables

‘stat_poly_line()‘ provides the following variables, some of which depend on the orientation:

y *or* x predicted value

ymin *or* xmin lower pointwise confidence interval around the mean

ymax *or* xmax upper pointwise confidence interval around the mean

se standard error

If mf.values = TRUE is passed then columns based on the summary of the model fit are added, with
the same value in each row within a group. This is wasteful and disabled by default, but provides a
simple and robust approach to achieve effects like colouring or hiding of the model fit line based on
P-values, r-squared, adjusted r-squared or the number of observations.

Aesthetics

stat_poly_line understands x and y, to be referenced in the formula and weight passed as ar-
gument to parameter weights. All three must be mapped to numeric variables. In addition, the
aesthetics understood by the geom ("geom_smooth" is the default) are understood and grouping
respected.

See Also

Other ggplot statistics for linear and polynomial regression: stat_poly_eq()

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line()

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line(formula = x ~ y)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line(formula = y ~ poly(x, 3))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line(formula = x ~ poly(y, 3))

Smooths are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

stat_quant_band 71

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
stat_poly_line(se = FALSE)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_poly_line() +
facet_wrap(~drv)

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

ggplot(mpg, aes(displ, hwy)) +
stat_poly_line(geom = "debug")

ggplot(mpg, aes(displ, hwy)) +
stat_poly_line(geom = "debug", mf.values = TRUE)

ggplot(mpg, aes(displ, hwy)) +
stat_poly_line(geom = "debug", method = lm, mf.values = TRUE)

}

stat_quant_band Compute predicted line from quantile regression fit

Description

Predicted values are computed and, by default, plotted as a band plus an optional line within.
stat_quant_band() supports the use of both x and y as explanatory variable in the model for-
mula.

Usage

stat_quant_band(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
quantiles = c(0.25, 0.5, 0.75),
formula = NULL,
mf.values = FALSE,
n = 80,
method = "rq",
method.args = list(),
na.rm = FALSE,

72 stat_quant_band

orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

position The position adjustment to use for overlapping points on this layer.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

quantiles numeric vector Two or three values in 0..1 indicating the quantiles at the edges
of the band and optionally a line within the band.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

mf.values logical Add n as a column to returned data? (‘FALSE‘ by default.)

n Number of points at which to evaluate smoother.

method function or character If character, "rq" and "rqss" are accepted.

method.args named list with additional arguments.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic is similar to stat_quant_line but plots the quantiles differently with the band repre-
senting a region between two quantiles, while in stat_quant_line() the bands plotted when se =
TRUE represent confidence intervals for the fitted quantile lines.

geom_smooth, which is used by default, treats each axis differently and thus is dependent on ori-
entation. If no argument is passed to formula, it defaults to y ~ x but x ~y is also accepted, and
equivalent to y ~ x plus orientation = "y". Package ’ggpmisc’ does not define a new geometry
matching this statistic as it is enough for the statistic to return suitable ‘x‘ and ‘y‘ values.

Value

The value returned by the statistic is a data frame, that will have n rows of predicted values for three
quantiles as y, ymin and ymax, plus x.

stat_quant_band 73

Aesthetics

stat_quant_eq expects x and y, aesthetics to be used in the formula rather than the names of
the variables mapped to them. If present, the variable mapped to the weight aesthetics is passed
as argument to parameter weights of the fitting function. All three must be mapped to numeric
variables. In addition, the aesthetics recognized by the geometry ("geom_smooth" is the default)
are obeyed and grouping respected.

See Also

Other ggplot statistics for quantile regression: stat_quant_eq(), stat_quant_line()

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band()

If you need the fitting to be done along the y-axis set the orientation
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_band(orientation = "y")

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = y ~ x)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = x ~ y)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = y ~ poly(x, 3))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = x ~ poly(y, 3))

Instead of rq() we can use rqss() to fit an additive model:
library(quantreg)
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_band(method = "rqss",

formula = y ~ qss(x))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(method = "rqss",

formula = x ~ qss(y, constraint = "D"))

Regressions are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

74 stat_quant_eq

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
stat_quant_band(formula = y ~ x)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(formula = y ~ poly(x, 2)) +
facet_wrap(~drv)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_band(linetype = "dashed", color = "darkred", fill = "red")

ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(color = NA, alpha = 1) +
geom_point()

ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(quantiles = c(0, 0.1, 0.2)) +
geom_point()

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(geom = "debug")

ggplot(mpg, aes(displ, hwy)) +
stat_quant_band(geom = "debug", mf.values = TRUE)

}

stat_quant_eq Equation, p-value, R^2, AIC or BIC from quantile regression

Description

stat_quant_eq fits a polynomial model by quantile regression and generates several labels includ-
ing the equation, p-value, coefficient of determination (R^2), ’AIC’ and ’BIC’.

Usage

stat_quant_eq(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",

stat_quant_eq 75

...,
formula = NULL,
quantiles = c(0.25, 0.5, 0.75),
eq.with.lhs = TRUE,
eq.x.rhs = NULL,
coef.digits = 3,
coef.keep.zeros = TRUE,
rho.digits = 2,
label.x = "left",
label.y = "top",
label.x.npc = NULL,
label.y.npc = NULL,
hstep = 0,
vstep = NULL,
output.type = "expression",
na.rm = FALSE,
orientation = NA,
parse = NULL,
show.legend = FALSE,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.
geom The geometric object to use display the data
position The position adjustment to use for overlapping points on this layer
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
formula a formula object. Using aesthetic names instead of original variable names.
quantiles numeric vector Values in 0..1 indicating the quantiles.
eq.with.lhs If character the string is pasted to the front of the equation label before parsing

or a logical (see note).
eq.x.rhs character this string will be used as replacement for "x" in the model equation

when generating the label before parsing it.
coef.digits, rho.digits

integer Number of significant digits to use for the fitted coefficients and rho in
labels.

coef.keep.zeros

logical Keep or drop trailing zeros when formatting the fitted coefficients and
F-value.

label.x, label.y

numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

76 stat_quant_eq

label.x.npc, label.y.npc

numeric with range 0..1 (npc units) DEPRECATED, use label.x and label.y
instead; together with a geom using npcx and npcy aesthetics.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX", "text", "markdown" or "numeric".
In most cases, instead of using this statistics to obtain numeric values, it is better
to use stat_fit_tidy().

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

parse logical Passed to the geom. If TRUE, the labels will be parsed into expressions
and displayed as described in ?plotmath. Default is TRUE if output.type =
"expression" and FALSE otherwise.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This statistic interprets the argument passed to formula differently than stat_quantile accepting
y as well as x as explanatory variable, matching stat_poly_quant().

When two variables are subject to mutual constrains, it is useful to consider both of them as ex-
planatory and interpret the relationship based on them. So, from version 0.4.1 ’ggpmisc’ makes it
possible to easily implement the approach described by Cardoso (2019) under the name of "Double
quantile regression".

This stat can be used to automatically annotate a plot with R^2, adjusted R^2 or the fitted model
equation. It supports only linear models fitted with function lm(). The R^2 and adjusted R^2 anno-
tations can be used with any linear model formula. The fitted equation label is correctly generated
for polynomials or quasi-polynomials through the origin. Model formulas can use poly() or be
defined algebraically with terms of powers of increasing magnitude with no missing intermediate
terms, except possibly for the intercept indicated by "-1" or "-1" or "+ 0" in the formula. The
validity of the formula is not checked in the current implementation, and for this reason the default
aesthetics sets R^2 as label for the annotation. This stat generates labels as R expressions by default
but LaTeX (use TikZ device), markdown (use package ’ggtext’) and plain text are also supported, as
well as numeric values for user-generated text labels. The value of parse is set automatically based
on output-type, but if you assemble labels that need parsing from numeric output, the default
needs to be overridden. This stat only generates annotation labels, the predicted values/line need
to be added to the plot as a separate layer using stat_quant_line or stat_quantile, so to make
sure that the same model formula is used in all steps it is best to save the formula as an object and
supply this object as argument to the different statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. stat_quant_eq() mimics how
stat_smooth() works, except that only polynomials can be fitted. In other words, it respects the

stat_quant_eq 77

grammar of graphics. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Aesthetics

stat_quant_eq understands x and y, to be referenced in the formula and weight passed as argu-
ment to parameter weights of lm(). All three must be mapped to numeric variables. In addition,
the aesthetics understood by the geom used ("text" by default) are understood and grouping re-
spected.

Computed variables

If output.type different from "numeric" the returned tibble contains columns below in addition to
a modified version of the original group:

x,npcx x position

y,npcy y position

eq.label equation for the fitted polynomial as a character string to be parsed

rho.label rho of the fitted model as a character string to be parsed

AIC.label AIC for the fitted model.

n.label Number of observations used in the fit.

rq.method character, method used.

rho, n numeric values extracted or computed from fit object.

hjust, vjust Set to "inward" to override the default of the "text" geom.

quantile Numeric value of the quantile used for the fit

quantile.f Factor with a level for each quantile

If output.type is "numeric" the returned tibble contains columns in addition to a modified version
of the original group:

x,npcx x position

y,npcy y position

coef.ls list containing the "coefficients" matrix from the summary of the fit object

rho, AIC, n numeric values extracted or computed from fit object

rq.method character, method used.

hjust, vjust Set to "inward" to override the default of the "text" geom.

quantile Indicating the quantile used for the fit

quantile.f Factor with a level for each quantile

b_0.constant TRUE is polynomial is forced through the origin

b_i One or columns with the coefficient estimates

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the example below.

78 stat_quant_eq

Note

For backward compatibility a logical is accepted as argument for eq.with.lhs. If TRUE, the default
is used, either "x" or "y", depending on the argument passed to formula. However, "x" or "y" can
be substituted by providing a suitable replacement character string through eq.x.rhs. Parameter
orientation is redundant as it only affects the default for formula but is included for consistency
with ggplot2::stat_smooth().

Support for the angle aesthetic is not automatic and requires that the user passes as argument
suitable numeric values to override the defaults for label positions.

References

Written as an answer to question 65695409 by Mark Neal at Stackoverflow.

See Also

This stat_quant_eq statistic can return ready formatted labels depending on the argument passed
to output.type. This is possible because only polynomial models are supported. For other types
of models, statistics stat_fit_glance, stat_fit_tidy and stat_fit_glance should be used
instead and the code for construction of character strings from numeric values and their mapping to
aesthetic label needs to be explicitly supplied in the call.

Other ggplot statistics for quantile regression: stat_quant_band(), stat_quant_line()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x = x, y = y,

group = c("A", "B"),
y2 = y * c(0.5,2),
w = sqrt(x))

using defaults
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line() +
stat_quant_eq()

same formula as default
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = y ~ x) +
stat_quant_eq(formula = y ~ x)

explicit formula "x explained by y"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = x ~ y) +
stat_quant_eq(formula = x ~ y)

stat_quant_eq 79

using color
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(aes(color = after_stat(quantile.f))) +
stat_quant_eq(aes(color = after_stat(quantile.f))) +
labs(color = "Quantiles")

location and colour
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(aes(color = after_stat(quantile.f))) +
stat_quant_eq(aes(color = after_stat(quantile.f)),

label.y = "bottom", label.x = "right") +
labs(color = "Quantiles")

give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)

no weights
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula)

angle
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula, angle = 90, hstep = 0.05, vstep = 0,

label.y = 0.98, hjust = 1)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula, angle = 90,

hstep = 0.05, vstep = 0, hjust = 0,
label.y = 0.25)

user set quantiles
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula, quantiles = 0.5) +
stat_quant_eq(formula = formula, quantiles = 0.5)

grouping
ggplot(my.data, aes(x, y, color = group)) +

geom_point() +
stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula)

ggplot(my.data, aes(x, y, color = group)) +
geom_point() +

80 stat_quant_eq

stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula, angle = 90,

hstep = 0.05, vstep = 0, hjust = 0,
size = 3, label.y = 0.3)

labelling equations
ggplot(my.data, aes(x, y, shape = group, linetype = group,

grp.label = group)) +
geom_point() +
stat_quant_line(formula = formula, color = "black") +
stat_quant_eq(aes(label = paste(after_stat(grp.label), after_stat(eq.label), sep = "*\": \"*")),

formula = formula) +
theme_classic()

setting non-default quantiles
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula,

quantiles = c(0.1, 0.5, 0.9)) +
stat_quant_eq(formula = formula, parse = TRUE,

quantiles = c(0.1, 0.5, 0.9))

Location of equations
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula, label.y = "bottom", label.x = "right")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula, label.y = 0.03, label.x = 0.95, vstep = 0.04)

using weights
ggplot(my.data, aes(x, y, weight = w)) +

geom_point() +
stat_quant_line(formula = formula) +
stat_quant_eq(formula = formula)

no weights, quantile set to upper boundary
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(formula = formula, quantiles = 0.95) +
stat_quant_eq(formula = formula, quantiles = 0.95)

user specified label
ggplot(my.data, aes(x, y, color = group, grp.label = group)) +

geom_point() +
stat_quant_line(method = "rq", formula = formula,

quantiles = c(0.05, 0.5, 0.95)) +
stat_quant_eq(aes(label = paste(after_stat(grp.label), "*\": \"*",

after_stat(eq.label), sep = "")),
quantiles = c(0.05, 0.5, 0.95),

stat_quant_line 81

formula = formula, size = 3)

geom = "text"
ggplot(my.data, aes(x, y)) +

geom_point() +
stat_quant_line(method = "rq", formula = formula, quantiles = 0.5) +
stat_quant_eq(label.x = "left", label.y = "top",

formula = formula)

Inspecting the returned data using geom_debug()
Not run:
if (requireNamespace("gginnards", quietly = TRUE)) {

library(gginnards)

This provides a quick way of finding out the names of the variables that
are available for mapping to aesthetics.

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, geom = "debug")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(aes(label = after_stat(eq.label)),

formula = formula, geom = "debug",
output.type = "markdown")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, geom = "debug", output.type = "text")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, geom = "debug", output.type = "numeric")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, quantiles = c(0.25, 0.5, 0.75),

geom = "debug", output.type = "text")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quant_eq(formula = formula, quantiles = c(0.25, 0.5, 0.75),

geom = "debug", output.type = "numeric")
}

End(Not run)

stat_quant_line Predicted line from quantile regression fit

82 stat_quant_line

Description

Predicted values are computed and, by default, plotted. Depending on the fit method, a confidence
band can be computed and plotted. The confidence band can be interpreted similarly as that pro-
duced by stat_smooth() and stat_poly_line().

Usage

stat_quant_line(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
...,
quantiles = c(0.25, 0.5, 0.75),
formula = NULL,
se = length(quantiles) == 1L,
mf.values = FALSE,
n = 80,
method = "rq",
method.args = list(),
level = 0.95,
type = "direct",
interval = "confidence",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

quantiles numeric vector Values in 0..1 indicating the quantiles.

formula a formula object. Using aesthetic names x and y instead of original variable
names.

se logical Passed to quantreg::predict.rq().

mf.values logical Add n as a column to returned data? (‘FALSE‘ by default.)

n Number of points at which to evaluate smoother.

stat_quant_line 83

method function or character If character, "rq" and "rqss" are accepted. If a function, it
must have formal parameters formula and data and return a model fit object
for which summary() and coefficients() are consistent with those for lm fits.

method.args named list with additional arguments passed to rq() or rqss()..

level numeric in range [0..1] Passed to quantreg::predict.rq().

type character Passed to quantreg::predict.rq().

interval character Passed to quantreg::predict.rq().

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

orientation character Either "x" or "y" controlling the default for formula.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

stat_quant_line() behaves similarly to ggplot2::stat_smooth() and stat_poly_line() but
supports fitting regressions for multiple quantiles in the same plot layer. This statistic interprets the
argument passed to formula accepting y as well as x as explanatory variable, matching stat_quant_eq().
While stat_quant_eq() supports only method "rq", stat_quant_line() and stat_quant_band()
support both "rq" and "rqss", In the case of "rqss" the model formula makes normally use of
qss() to formulate the spline and its constraints.

geom_smooth, which is used by default, treats each axis different and thus is dependent on orien-
tation. If no argument is passed to formula, it defaults to y ~ x. Formulas with y as explanatory
variable are treated as if x was the explanatory variable and orientation = "y".

Package ’ggpmisc’ does not define a new geometry matching this statistic as it is enough for the
statistic to return suitable x, y, ymin, ymax and group values.

There are multiple uses for double regression on x and y. For example, when two variables are
subject to mutual constrains, it is useful to consider both of them as explanatory and interpret the
relationship based on them. So, from version 0.4.1 ’ggpmisc’ makes it possible to easily implement
the approach described by Cardoso (2019) under the name of "Double quantile regression".

Value

The value returned by the statistic is a data frame, that will have n rows of predicted values and and
their confidence limits for each quantile, with each quantile in a group. The variables are x and y
with y containing predicted values. In addition, quantile and quantile.f indicate the quantile
used and and edited group preserves the original grouping adding a new "level" for each quantile.
Is se = TRUE, a confidence band is computed and values for it returned in ymax and ymin.

The value returned by the statistic is a data frame, that will have n rows of predicted values and their
confidence limits. Optionally it will also include additional values related to the model fit.

84 stat_quant_line

Computed variables

‘stat_quant_line()‘ provides the following variables, some of which depend on the orientation:

y *or* x predicted value

ymin *or* xmin lower confidence interval around the mean

ymax *or* xmax upper confidence interval around the mean

If mf.values = TRUE is passed then one column with the number of observations n used for each fit
is also included, with the same value in each row within a group. This is wasteful and disabled by
default, but provides a simple and robust approach to achieve effects like colouring or hiding of the
model fit line based on the number of observations.

Aesthetics

stat_quant_line understands x and y, to be referenced in the formula and weight passed as
argument to parameter weights. All three must be mapped to numeric variables. In addition, the
aesthetics understood by the geom ("geom_smooth" is the default) are understood and grouping
respected.

References

Cardoso, G. C. (2019) Double quantile regression accurately assesses distance to boundary trade-
off. Methods in ecology and evolution, 10(8), 1322-1331.

See Also

rq, rqss and qss.

Other ggplot statistics for quantile regression: stat_quant_band(), stat_quant_eq()

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line()

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(se = TRUE)

If you need the fitting to be done along the y-axis set the orientation
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_line(orientation = "y")

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(orientation = "y", se = TRUE)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +

stat_quant_line 85

stat_quant_line(formula = y ~ x)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = x ~ y)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = y ~ poly(x, 3))

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = x ~ poly(y, 3))

Instead of rq() we can use rqss() to fit an additive model:
library(quantreg)
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
stat_quant_line(method = "rqss",

formula = y ~ qss(x, constraint = "D"),
quantiles = 0.5)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(method = "rqss",

formula = x ~ qss(y, constraint = "D"),
quantiles = 0.5)

ggplot(mpg, aes(displ, hwy)) +
geom_point()+
stat_quant_line(method="rqss",

interval="confidence",
se = TRUE,
mapping = aes(fill = factor(after_stat(quantile)),

color = factor(after_stat(quantile))),
quantiles=c(0.05,0.5,0.95))

Smooths are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

ggplot(mpg, aes(displ, hwy, colour = drv, fill = drv)) +
geom_point() +
stat_quant_line(method = "rqss",

formula = y ~ qss(x, constraint = "V"),
quantiles = 0.5)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
stat_quant_line(formula = y ~ poly(x, 2)) +
facet_wrap(~drv)

Inspecting the returned data using geom_debug()
if (requireNamespace("gginnards", quietly = TRUE)) {

86 swap_xy

library(gginnards)

ggplot(mpg, aes(displ, hwy)) +
stat_quant_line(geom = "debug")

ggplot(mpg, aes(displ, hwy)) +
stat_quant_line(geom = "debug", mf.values = TRUE)

}

swap_xy Swap x and y in a formula

Description

By default a formula of x on y is converted into a formula of y on x, while the reverse swap is done
only if backward = TRUE.

Usage

swap_xy(f, backwards = FALSE)

Arguments

f formula An R model formula

backwards logical

Details

This function is meant to be used only as a helper within ’ggplot2’ statistics. Normally together
with geometries supporting orientation when we want to automate the change in orientation based
on a user-supplied formula. Only x and y are changed, and in other respects the formula is rebuilt
copying the environment from f.

Value

A copy of f with x and y swapped by each other in the lhs and rhs.

symmetric_limits 87

symmetric_limits Expand a range to make it symmetric

Description

Expand scale limits to make them symmetric around zero. Can be passed as argument to parameter
limits of continuous scales from packages ’ggplot2’ or ’scales’. Can be also used to obtain an
enclosing symmetric range for numeric vectors.

Usage

symmetric_limits(x)

Arguments

x numeric The automatic limits when used as argument to a scale’s limits formal
parameter. Otherwise a numeric vector, possibly a range, for which to compute
a symmetric enclosing range.

Value

A numeric vector of length two with the new limits, which are always such that the absolute value
of upper and lower limits is the same.

Examples

symmetric_limits(c(-1, 1.8))
symmetric_limits(c(-10, 1.8))
symmetric_limits(-5:20)

volcano_example.df Example gene expression data

Description

A dataset containing reshaped and simplified output from an analysis of data from RNAseq done
with package edgeR. Original data from gene expression in the plant species Arabidopsis thaliana.

Usage

volcano_example.df

Format

A data.frame object with 1218 rows and 5 variables

88 xy_outcomes2factor

See Also

Other Transcriptomics data examples: quadrant_example.df

Examples

colnames(volcano_example.df)
head(volcano_example.df)

xy_outcomes2factor Convert two numeric ternary outcomes into a factor

Description

Convert two numeric ternary outcomes into a factor

Usage

xy_outcomes2factor(x, y)

xy_thresholds2factor(x, y, x_threshold = 0, y_threshold = 0)

Arguments

x, y numeric vectors of -1, 0, and +1 values, indicating down regulation, uncertain
response or up-regulation, or numeric vectors that can be converted into such
values using a pair of thresholds.

x_threshold, y_threshold

numeric vector Ranges enclosing the values to be considered uncertain for each
of the two vectors..

Details

This function converts the numerically encoded values into a factor with the four levels "xy", "x",
"y" and "none". The factor created can be used for faceting or can be mapped to aesthetics.

Note

This is an utility function that only saves some typing. The same result can be achieved by a direct
call to factor. This function aims at making it easier to draw quadrant plots with facets based on
the combined outcomes.

See Also

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_colour_outcome(),
scale_shape_outcome(), scale_y_Pvalue()

Other scales for omics data: outcome2factor(), scale_shape_outcome(), scale_x_logFC()

xy_outcomes2factor 89

Examples

xy_outcomes2factor(c(-1, 0, 0, 1, -1), c(0, 1, 0, 1, -1))
xy_thresholds2factor(c(-1, 0, 0, 1, -1), c(0, 1, 0, 1, -1))
xy_thresholds2factor(c(-1, 0, 0, 0.1, -5), c(0, 2, 0, 1, -1))

Index

∗ Functions for quadrant and volcano plots
outcome2factor, 7
scale_colour_outcome, 10
scale_shape_outcome, 11
scale_y_Pvalue, 16
xy_outcomes2factor, 88

∗ Transcriptomics data examples
quadrant_example.df, 9
volcano_example.df, 87

∗ datasets
quadrant_example.df, 9
volcano_example.df, 87

∗ ggplot statistics for correlation.
stat_correlation, 18

∗ ggplot statistics for linear and polynomial
regression

stat_poly_eq, 60
stat_poly_line, 68

∗ ggplot statistics for major axis regression
stat_ma_eq, 47
stat_ma_line, 52

∗ ggplot statistics for model fits
stat_fit_augment, 23
stat_fit_deviations, 26
stat_fit_glance, 30
stat_fit_residuals, 34
stat_fit_tb, 37
stat_fit_tidy, 42

∗ ggplot statistics for quantile regression
stat_quant_band, 71
stat_quant_eq, 74
stat_quant_line, 81

∗ scales for omics data
outcome2factor, 7
scale_shape_outcome, 11
scale_x_logFC, 13
xy_outcomes2factor, 88

aes, 19, 23, 27, 30, 34, 38, 43, 48, 53, 57, 61,
68, 72, 75, 82

aes_, 19, 23, 27, 30, 34, 38, 43, 57, 61, 68, 72,
75, 82

append_layers (Moved), 7

borders, 20, 24, 27, 31, 35, 39, 44, 49, 54, 58,
62, 69, 72, 76, 83

bottom_layer (Moved), 7
broom, 25, 32, 40, 45

coef.lmodel2, 5
confint.lmodel2, 6
cor.test, 21

delete_layers, 7
delete_layers (Moved), 7

extract_layers (Moved), 7

factor, 8, 88
FC_format, 8, 11, 12, 17, 88

geom_debug, 7, 21, 24, 28, 31, 40, 44, 50, 64,
77

geom_debug (Moved), 7
geom_label_repel, 59
geom_null, 7
geom_null (Moved), 7
geom_smooth, 54, 72, 83
geom_table, 40
geom_text_repel, 59
geom_text_s, 59
ggpmisc (ggpmisc-package), 3
ggpmisc-package, 3
ggpp, 59
ggrepel, 59

layer, 19, 24, 27, 31, 35, 39, 44, 48, 53, 58,
61, 69, 72, 75, 82

lmodel2, 6, 9, 49, 54

move_layers (Moved), 7

90

INDEX 91

Moved, 7

num_layers (Moved), 7

outcome2factor, 7, 11, 12, 14, 17, 88

position_nudge_keep, 58
predict.lmodel2, 8

qss, 84
quadrant_example.df, 9, 88

residuals, 35
rq, 84
rqss, 84

scale_color_outcome
(scale_colour_outcome), 10

scale_colour_outcome, 7, 8, 10, 12, 17, 88
scale_continuous, 14, 17
scale_fill_outcome, 7
scale_fill_outcome

(scale_colour_outcome), 10
scale_manual, 11, 12
scale_shape_outcome, 7, 8, 11, 11, 14, 17, 88
scale_x_FDR (scale_y_Pvalue), 16
scale_x_logFC, 8, 12, 13, 88
scale_x_Pvalue (scale_y_Pvalue), 16
scale_y_FDR (scale_y_Pvalue), 16
scale_y_logFC (scale_x_logFC), 13
scale_y_Pvalue, 8, 11, 12, 16, 88
shift_layers (Moved), 7
sprintf, 58
stat_correlation, 18
stat_debug_group, 7
stat_debug_group (Moved), 7
stat_debug_panel, 7
stat_debug_panel (Moved), 7
stat_fit_augment, 23, 28, 31, 32, 36, 40, 44,

45
stat_fit_deviations, 25, 26, 32, 36, 40, 45
stat_fit_glance, 24, 25, 28, 30, 36, 40, 44,

45, 50, 64, 78
stat_fit_residuals, 25, 28, 32, 34, 40, 45
stat_fit_tb, 25, 28, 32, 36, 37, 43, 45
stat_fit_tidy, 24, 25, 28, 31, 32, 36, 40, 42,

50, 64, 78
stat_ma_eq, 47, 55, 64
stat_ma_line, 50, 52
stat_peaks, 56

stat_poly_eq, 24, 31, 44, 50, 60, 70
stat_poly_line, 63, 64, 68
stat_quant_band, 71, 78, 84
stat_quant_eq, 50, 64, 73, 74, 84
stat_quant_line, 72, 73, 76, 78, 81
stat_quantile, 76
stat_smooth, 53, 63, 69
stat_valleys (stat_peaks), 56
strftime, 58
strptime, 58
swap_xy, 86
symmetric_limits, 87

threshold2factor (outcome2factor), 7
top_layer (Moved), 7
ttheme_gtdefault, 40

volcano_example.df, 9, 87

weighted.residuals, 35
which_layers (Moved), 7

xy_outcomes2factor, 8, 11, 12, 14, 17, 88
xy_thresholds2factor

(xy_outcomes2factor), 88

	ggpmisc-package
	coef.lmodel2
	confint.lmodel2
	Moved
	outcome2factor
	predict.lmodel2
	quadrant_example.df
	scale_colour_outcome
	scale_shape_outcome
	scale_x_logFC
	scale_y_Pvalue
	stat_correlation
	stat_fit_augment
	stat_fit_deviations
	stat_fit_glance
	stat_fit_residuals
	stat_fit_tb
	stat_fit_tidy
	stat_ma_eq
	stat_ma_line
	stat_peaks
	stat_poly_eq
	stat_poly_line
	stat_quant_band
	stat_quant_eq
	stat_quant_line
	swap_xy
	symmetric_limits
	volcano_example.df
	xy_outcomes2factor
	Index

