Package 'globalGSA'

February 19, 2015

Type Package

Title Global Gene-Set Analysis for Association Studies.

Version 1.0

Date 2013-10-22

Author Natalia Vilor, M.Luz Calle

Maintainer Natalia Vilor <natalia.vilor@uvic.cat>

Description Implementation of three different Gene set analysis (GSA) algorithms for combining the individual pvalues of a set of genetic variats (SNPs) in a gene level pvalue. The implementation includes the selection of the best inheritance model for each SNP.

License GPL (>= 2)

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2013-10-23 23:52:23

R topics documented:

globalGSA-package	1
globalARTP	2
globalFisher	4
globalSimes	6
	9

Index

globalGSA-package	Gene-set analysis for combining p-values in a joint test of association
	between a phenotype and a set of genetic variants (SNPs). Previously,
	a global test for the best inheritance model of each SNP is performed.

Description

This package implements three different Gene-set analysis (GSA) methods for combining individual p-values of a set of SNPs. Each method provides a p-value for a joint test of association between the phenotype and the specified set of genetic variants. The three implemented methods are: Fisher method [1], Simes method [2] and ARTP method [3].

Since the SNPs in a set may follow different modes of inheritance, previously to the GSA, a global test for the best inheritance model (dominant, recessive, log-additive and co-dominant) is performed on every SNP. The permutational p-value of the best model is obtained.

Details

Package:	globalGSA
Type:	Package
Version:	1.0
Date:	2013-09-22
License:	GPL (>= 2)

Author(s)

Natalia Vilor, M.Luz Calle

Maintainer: natalia.vilor@uvic.cat

References

[1] Fisher, R.A. (1925). Statistical Methods for Research Workers. ISBN 0-05-002170-2.

[2] Simes, R.J. (1986). An Improved Bonferroni Procedure for Multiple Tests of Significance. Biometrika, 73, 751-754.

[3] Yu, K. Li, Q. Bergen, A.W. Pfeiffer, R.M. Rosenberg, P.S. Caporaso, N. Kraft, P. and Chatterjee, N. (2009). Pathway analysis by adaptive combination of P-values. Genet, Epidemiol. December; 33(8): 700-709.

globalARTP

Global Adaptive Rank Truncated Product method.

Description

This function provides the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) using the Adaptive Rank Truncated Product method [1] after a global test for the best mode of inheritance of every SNP. The final gene-p-value is obtained from the permutational null distribution of the test statistic.

globalARTP

Usage

```
globalARTP(data, B, K, gene_list, Gene = "all", addit = FALSE,
covariable = NULL, family = binomial)
```

Arguments

data	Data frame containing the variables in the model. The first column is the dependent variable which must be a binary variable defined as factor (in case-control studies, the usual codification is 1 for cases and 0 for controls). SNP values may be codified in a numerical form $(0,1,2)$ denoting the number of minor alleles, or using a character form where the two alleles are specified, without spaces, tabs or any other symbol between the two alleles.
В	Number of permutations considered in the permutational procedure.
К	Integer that indicates the maximum truncation point.
gene_list	File that provides the name of the set (for instance, gene) where each SNP be- longs. This file has two columns: the SNP-Id ("Id"), and the Gene-Id ("Gene"). The SNP-Id must have the same label as the colnames of the data file.
Gene	Name of the gene that we want to analyze. The default value is Gene= "all" that indicates that the p-values of all SNPs in the database are to be combined. In this case it is not necessary to specify the gene_list file. In other case, we need to specify the name of the gene, for instance, Gene = "Gene1", and also the gene_list file.
addit	logical to determine if only an additive inheritance model should be considered in the global Test or, conversely, if we want to consider all possible inheritance models (dominant, recessive, log-additive and co-dominant). By default, addit = FALSE.
covariable	Data frame containing the covariables in the model. Each column represents one covariable. By default, covariable=NULL.
family	This can be a character string naming a family distribution. By default, family=binomial.

Value

List with the following components:

nPerm	Number of permutations.
Gene	Considered Gene.
Trunkpoint	Considered truncation point
Kopt	Optimal truncation point.
genevalue	gene-pvalue.

References

[3] Yu, K. Li, Q. Bergen, A.W. Pfeiffer, R.M. Rosenberg, P.S. Caporaso, N. Kraft, P. and Chatterjee, N. (2009). Pathway analysis by adaptive combination of P-values. Genet, Epidemiol. December; 33(8): 700-709.

Examples

```
# load the included example dataset.
# This is a simulated case/control study data set
# with 2000 patients (1000 cases / 1000 controls)
# and 10 SNPs. where all of them have
# a direct association with the outcome:
data(data)
#globalARTP(data, B=1000, K=10, Gene="all", addit = FALSE)
# it may take some time,
# hence the result of this example is included:
data(ans11)
# You can test:
globalARTP(data, B=1, K=10, Gene="all", addit = FALSE)
# We consider that the first four SNPs
# are included in "Gene1",
# and the other six SNPs
# are included in "Gene2":
data(gene_list)
#globalARTP(data, B=1000, K=10, gene_list=gene_list, Gene="Gene1", addit = FALSE)
# it may take some time,
# hence the result of this example is included:
data(ans1)
# You can test:
globalARTP(data, B=1, K=10, gene_list=gene_list, Gene="Gene1", addit = FALSE)
```

globalFisher

Global Fisher combination method.

Description

This function provides the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) using the Fisher method [1] after a global test for the best mode of inheritance of every SNP. The final gene-p-value is obtained from the permutational null distribution of the test statistic

Usage

```
globalFisher(data, B, gene_list, Gene = "all", addit = FALSE,
covariable = NULL, family = binomial)
```

Arguments

data Data frame containing the variables in the model. The first column is the dependent variable which must be a binary variable defined as factor (in case-control

4

	studies, the usual codification is 1 for cases and 0 for controls). SNP values may be codified in a numerical form $(0,1,2)$ denoting the number of minor alleles, or using a character form where the two alleles are specified, without spaces, tabs or any other symbol between the two alleles.
В	Number of permutations considered in the permutational procedure.
gene_list	File that provides the name of the set (for instance, gene) where each SNP be- longs. This file has two columns: the SNP-Id ("Id"), and the Gene-Id ("Gene"). The SNP-Id must have the same label as the colnames of the data file.
Gene	Name of the gene that we want to analyze. The default value is Gene= "all" that indicates that the p-values of all SNPs in the database are to be combined. In this case it is not necessary to specify the gene_list file. In other case, we need to specify the name of the gene, for instance, Gene = "Gene1", and also the gene_list file.
addit	logical to determine if only an additive inheritance model should be considered in the global Test or, conversely, if we want to consider all possible inheritance models (dominant, recessive, log-additive and co-dominant). By default, addit = FALSE.
covariable	Data frame containing the covariables in the model. Each column represents one covariable. By default, covariable=NULL.
family	This can be a character string naming a family distribution. By default, fam- ily=binomial.

Value

List with the following components:

nPerm	Number of permutations.
Gene	Considered Gene.
genevalue	gene-pvalue.

References

[1] Fisher, R.A. (1925). Statistical Methods for Research Workers. ISBN 0-05-002170-2.

Examples

```
# load the included example dataset.
# This is a simulated case/control study data set
# with 2000 patients (1000 cases / 1000 controls)
# and 10 SNPs, where all of them have
# a direct association with the outcome:
data(data)
#globalFisher(data, B=1000, Gene="all", addit=FALSE)
# it may take some time,
# hence the result of this example is included:
data(ans21)
```

```
# You can test:
globalFisher(data, B=1, Gene="all", addit=FALSE)
# We consider that the first four SNPs
# are included in "Gene1",
# and the other six SNPs
# are included in "Gene2":
data(gene_list)
#globalFisher(data, B=1000, gene_list=gene_list, Gene="Gene1", addit=FALSE)
# it may take some time,
# hence the result of this example is included:
data(ans2)
# You can test:
globalFisher(data, B=1, gene_list=gene_list, Gene="Gene1", addit=FALSE)
```

```
globalSimes
```

Global Simes' combination method.

Description

This function provides the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) using the Simes method [1] after a global test for the best mode of inheritance of every SNP. The final gene-p-value is obtained from the permutational null distribution of the test statistic

Usage

globalSimes(data, B, gene_list, Gene = "all", addit = FALSE, covariable = NULL, family = binomial)

Arguments

data	Data frame containing the variables in the model. The first column is the dependent variable which must be a binary variable defined as factor (in case-control studies, the usual codification is 1 for cases and 0 for controls). SNP values may be codified in a numerical form $(0,1,2)$ denoting the number of minor alleles, or using a character form where the two alleles are specified, without spaces, tabs
	or any other symbol between the two alleles.
В	Number of permutations considered in the permutational procedure.
gene_list	File that provides the name of the set (for instance, gene) where each SNP be- longs. This file has two columns: the SNP-Id ("Id"), and the Gene-Id ("Gene"). The SNP-Id must have the same label as the colnames of the data file.
Gene	Name of the gene that we want to analyze. The default value is Gene= "all" that indicates that the p-values of all SNPs in the database are to be combined. In this case it is not necessary to specify the gene_list file. In other case, we need to specify the name of the gene, for instance, Gene = "Gene1", and also the gene_list file.

6

globalSimes

addit	logical to determine if only an additive inheritance model should be considered in the global Test or, conversely, if we want to consider all possible inheritance models (dominant, recessive, log-additive and co-dominant). By default, addit = FALSE.
covariable	Data frame containing the covariables in the model. Each column represents one covariable. By default, covariable=NULL.
family	This can be a character string naming a family distribution. By default, family=binomial.

Value

List with the following components:

nPerm	Number of permutations.
Gene	Considered Gene.
genevalue	gene-pvalue.

References

[1] Simes, R.J. (1986). An Improved Bonferroni Procedure for Multiple Tests of Significance. Biometrika, 73, 751-754.

Examples

```
# load the included example dataset.
# This is a simulated case/control study data set
# with 2000 patients (1000 cases / 1000 controls)
# and 10 SNPs, where all of them have
# a direct association with the outcome:
data(data)
#globalSimes(data, B=1000, Gene="all", addit=FALSE)
# it may take some time,
# hence the result of this example is included:
data(ans31)
# You can test:
globalSimes(data, B=1, Gene="all", addit=FALSE)
# We consider that the first four SNPs
# are included in "Gene1",
# and the other six SNPs
# are included in "Gene2":
data(gene_list)
#globalSimes(data, B=1000, gene_list=gene_list, Gene="Gene1", addit=FALSE)
# it may take some time,
# hence the result of this example is included:
data(ans3)
# You can test:
```

globalSimes(data, B=1, gene_list=gene_list, Gene="Gene1", addit=FALSE)

Index

*Topic Fisher's combination global test globalFisher, 4 *Topic Simes' combination global test globalSimes, 6 *****Topic global Adative Rank **Truncated Product method** globalARTP, 2 *Topic globalARTP globalARTP, 2 globalGSA-package, 1 *Topic **globalFisher** globalFisher, 4 globalGSA-package, 1 *Topic **globalSimes** globalGSA-package, 1 globalSimes, 6 *Topic package globalGSA-package, 1 ans1 (globalARTP), 2 ans11 (globalARTP), 2 ans2(globalFisher),4 ans21 (globalFisher), 4 ans3 (globalSimes), 6 ans31 (globalSimes), 6 Codadd (globalGSA-package), 1 Codcodom (globalGSA-package), 1 Coddom(globalGSA-package), 1 Codrec (globalGSA-package), 1 CreateFormula (globalGSA-package), 1 data(globalGSA-package), 1 EstimatePvalue (globalGSA-package), 1 ff (globalGSA-package), 1 gene_list (globalGSA-package), 1

GeneratePvalues (globalGSA-package), 1

globalARTP, 2
globalFisher, 4
globalGSA (globalGSA-package), 1
globalGSA-package, 1
globalSimes, 6

pvalFmla(globalGSA-package), 1

runPermut (globalGSA-package), 1
runPvalues (globalGSA-package), 1

Selected_genes (globalGSA-package), 1

Trunkpoint (globalGSA-package), 1