Generalized nonlinear models in R: An overview of the gnm package

Heather Turner and David Firth*
University of Warwick, UK

For gnm version 1.1-1, 2020-02-02

Contents

1 Introduction 2
2 Generalized linear models 2
2.1 Preamble 2
2.2 Diag and Symm 2
2.3 Topo. 3
2.4 The wedderburn family 5
2.5 termPredictors 5
3 Nonlinear terms 5
3.1 Basic mathematical functions of predictors 6
3.2 MultHomog 7
3.3 Dref 7
3.4 instances 8
3.5 Custom nonlin functions 8
3.5.1 General description 8
3.5.2 Example: a logistic function 9
3.5.3 Example: MultHomog 9
4 Controlling the fitting procedure 10
4.1 Basic control parameters 10
4.2 Specifying starting values 10
4.2.1 Using start 10
4.2.2 Using etastart or mustart 11
4.3 Using constrain 12
4.4 Using eliminate 14
5 Methods and accessor functions 17
5.1 Methods 17
5.2 ofInterest and pickCoef 19
5.3 checkEstimable 19
5.4 getContrasts, se 21
5.5 residSVD 23
6 gnm or (g)nls? 24

[^0]7 Examples 25
7.1 Row-column association models 25
7.1.1 RC(1) model 25
7.1.2 $\quad \mathrm{RC}(2)$ model 27
7.1.3 Homogeneous effects 28
7.2 Diagonal reference models 30
7.3 Uniform difference (UNIDIFF) models 37
7.4 Generalized additive main effects and multiplicative interaction (GAMMI) models 39
7.5 Biplot models 41
7.6 Stereotype model for multinomial response 46
7.7 Lee-Carter model for trends in age-specific mortality 51
7.8 Exponential and sum-of-exponentials models for decay curves 56
7.8.1 Example: single exponential decay term 56
7.8.2 Example: sum of two exponentials 56
A User-level functions 59

1 Introduction

The gnm package provides facilities for fitting generalized nonlinear models, i.e., regression models in which the link-transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters. Linear and generalized linear models, as handled by the 1 m and glm functions in R , are included in the class of generalized nonlinear models, as the special case in which there is no nonlinear term.

This document gives an extended overview of the gnm package, with some examples of applications. The primary package documentation in the form of standard help pages, as viewed in R by, for example, ?gnm or help(gnm), is supplemented rather than replaced by the present document.

We begin below with a preliminary note (Section 2) on some ways in which the gnm package extends R's facilities for specifying, fitting and working with generalized linear models. Then (Section 3 onwards) the facilities for nonlinear terms are introduced, explained and exemplified.

The gnm package is installed in the standard way for CRAN packages, for example by using install. packages. Once installed, the package is loaded into an R session by

```
> library(gnm)
```


2 Generalized linear models

2.1 Preamble

Central to the facilities provided by the gnm package is the model-fitting function gnm, which interprets a model formula and returns a model object. The user interface of gnm is patterned after glm (which is included in R's standard stats package), and indeed gnm can be viewed as a replacement for glm for specifying and fitting generalized linear models. In general there is no reason to prefer gnm to $g l m$ for fitting generalized linear models, except perhaps when the model involves a large number of incidental parameters which are treatable by gnm's eliminate mechanism (see Section 4.4).

While the main purpose of the gnm package is to extend the class of models to include nonlinear terms, some of the new functions and methods can be used also with the familiar 1 m and glm model-fitting functions. These are: three new data-manipulation functions Diag, Symm and Topo, for setting up structured interactions between factors; a new family function, wedderburn, for modelling a continuous response variable in [0,1] with the variance function $V(\mu)=\mu^{2}(1-\mu)^{2}$ as in Wedderburn (1974); and a new generic function termPredictors which extracts the contribution of each term to the predictor from a fitted model object. These functions are briefly introduced here, before we move on to the main purpose of the package, nonlinear models, in Section 3 .

2.2 Diag and Symm

When dealing with homologous factors, that is, categorical variables whose levels are the same, statistical models often involve structured interaction terms which exploit the inherent symmetry. The functions Diag and Symm facilitate the specification of such structured interactions.

As a simple example of their use, consider the log-linear models of quasi-independence, quasi-symmetry and symmetry for a square contingency table. Agresti (2002), Section 10.4, gives data on migration between regions of the USA between 1980 and 1985:

```
> count <- c(11607, 100, 366, 124,
87, 13677, 515, 302,
+ 172, 225, 17819, 270,
+ 63, 176, 286, 10192)
> region <- c("NE", "MW", "S", "W")
> row <- gl(4, 4, labels = region)
> col <- gl(4, 1, length = 16, labels = region)
```

The comparison of models reported by Agresti can be achieved as follows:

```
> independence <- glm(count ~ row + col, family = poisson)
> quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson)
> symmetry <- glm(count ~ Symm(row, col), family = poisson)
> quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson)
> comparison1 <- anova(independence, quasi.indep, quasi.symm)
> print(comparison1, digits = 7)
Analysis of Deviance Table
Model 1: count ~ row + col
Model 2: count ~ row + col + Diag(row, col)
Model 3: count ~ row + col + Symm(row, col)
    Resid. Df Resid. Dev Df Deviance
1 9 125923.29
2 5 69.51 4 125853.78
3 3
> comparison2 <- anova(symmetry, quasi.symm)
> print(comparison2)
Analysis of Deviance Table
Model 1: count ~ Symm(row, col)
Model 2: count ~ row + col + Symm(row, col)
    Resid. Df Resid. Dev Df Deviance
1 6 243.550
2 3 3 2.986 3 240.56
```

The Diag and Symm functions also generalize the notions of diagonal and symmetric interaction to cover situations involving more than two homologous factors.

2.3 Topo

More general structured interactions than those provided by Diag and Symm can be specified using the function Topo. (The name of this function is short for 'topological interaction', which is the nomenclature often used in sociology for factor interactions with structure derived from subject-matter theory.)

The Topo function operates on any number (k, say) of input factors, and requires an argument named spec which must be an array of dimension $L_{1} \times \ldots \times L_{k}$, where L_{i} is the number of levels for the i th factor. The spec argument specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new factor representing the specified interaction.

As an example, consider fitting the 'log-multiplicative layer effects' models described in Xie (1992). The data are 7 by 7 versions of social mobility tables from Erikson et al. (1982):

```
### Collapse to 7 by 7 table as in Erikson et al. (1982)
erikson <- as.data.frame(erikson)
lvl <- levels(erikson$origin)
levels(erikson$origin) <- levels(erikson$destination) <-
    c(rep(paste(lvl[1:2], collapse = " + "), 2), lvl[3],
    rep(paste(lvl[4:5], collapse = " + "), 2), lvl[6:9])
erikson <- xtabs(Freq ~ origin + destination + country, data = erikson)
```

From sociological theory - for which see Erikson et al. (1982) or Xie (1992) - the log-linear interaction between origin and destination is assumed to have a particular structure:

```
levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6,
    3, 3, 4, 6, 4, 5, 6,
    4, 4, 2, 5, 5, 5, 5,
    6, 6, 5, 1, 6, 5, 2,
    4, 4, 5, 6, 3, 4, 5,
    5, 4, 5, 5, 3, 3, 5,
    6, 6, 5, 3, 5, 4, 1), 7, 7, byrow = TRUE)
```

The models of table 3 of Xie (1992) can now be fitted as follows:

```
## Null association between origin and destination
nullModel <- gnm(Freq ~ country:origin + country:destination,
        family = poisson, data = erikson, verbose = FALSE)
## Interaction specified by levelMatrix, common to all countries
commonTopo <- update(nullModel, ~ . +
    Topo(origin, destination, spec = levelMatrix),
    verbose = FALSE)
## Interaction specified by levelMatrix, different multiplier for each country
multTopo <- update(nullModel, ~ . +
    Mult(Exp(country), Topo(origin, destination, spec = levelMatrix)),
    verbose = FALSE)
## Interaction specified by levelMatrix, different effects for each country
separateTopo <- update(nullModel, ~ . +
    country:Topo(origin, destination, spec = levelMatrix),
    verbose = FALSE)
anova(nullModel, commonTopo, multTopo, separateTopo)
```

Analysis of Deviance Table
Model 1: Freq ~ country:origin + country:destination
Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin +
country:destination
Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) +
country:origin + country:destination
Model 4: Freq ~ country:origin + country:destination + country:Topo(origin,
destination, spec = levelMatrix)
Resid. Df Resid. Dev Df Deviance

1	108	4860.0		
2	103	244.3	5	4615.7
3	101	216.4	2	28.0
4	93	208.5	8	7.9

Here we have used gnm to fit all of these log-link models; the first, second and fourth are log-linear and could equally well have been fitted using $g 1 m$.

2.4 The wedderburn family

In Wedderburn (1974) it was suggested to represent the mean of a continuous response variable in [0, 1] using a quasi-likelihood model with logit link and the variance function $\mu^{2}(1-\mu)^{2}$. This is not one of the variance functions made available as standard in R's quasi family. The wedderburn family provides it. As an example, Wedderburn's analysis of data on leaf blotch on barley can be reproduced as follows:

```
> ## data from Wedderburn (1974), see ?barley
> logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley)
> fit <- fitted(logitModel)
> print(sum((barley$y - fit)^2 / (fit * (1-fit))^2))
[1] 71.17401
```

This agrees with the chi-squared value reported on page 331 of McCullagh and Nelder (1989), which differs slightly from Wedderburn's own reported value.

2.5 termPredictors

The generic function termPredictors extracts a term-by-term decomposition of the predictor function in a linear, generalized linear or generalized nonlinear model.

As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows:

```
> print(temp <- termPredictors(quasi.symm))
```

	(Intercept)	row	col	Symm(row, col)
1	9.359364	0.0000000	0.0000000	0.0000000
2	9.359364	0.0000000	-3.8411328	-0.9560870
3	9.359364	0.0000000	-3.2719227	-0.1727563
4	9.359364	0.0000000	0.2708672	-4.8117742
5	9.359364	-3.8900969	0.0000000	-0.9560870
6	9.359364	-3.8900969	-3.8411328	7.8953369
7	9.359364	-3.8900969	-3.2719227	4.0206235
8	9.359364	-3.8900969	0.2708672	0.0000000
9	9.359364	-4.0652507	0.0000000	-0.1727563
10	9.359364	-4.0652507	-3.8411328	4.0206235
11	9.359364	-4.0652507	-3.2719227	7.7658304
12	9.359364	-4.0652507	0.2708672	0.0000000
13	9.359364	-0.4008725	0.0000000	-4.8117742
14	9.359364	-0.4008725	-3.8411328	0.0000000
15	9.359364	-0.4008725	-3.2719227	0.0000000
16	9.359364	-0.4008725	0.2708672	0.0000000

```
> rowSums(temp) - quasi.symm$linear.predictors
```

 \(\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}\)
 $\begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$

Such a decomposition might be useful, for example, in assessing the relative contributions of different terms or groups of terms.

3 Nonlinear terms

The main purpose of the gnm package is to provide a flexible framework for the specification and estimation of generalized models with nonlinear terms. The facility provided with gnm for the specification of nonlinear terms is designed to be compatible with the symbolic language used in formula objects. Primarily, nonlinear terms are specified in the model formula as calls to functions of the class nonlin. There are a number of nonlin
functions included in the gnm package. Some of these specify simple mathematical functions of predictors: Exp, Mult, and Inv. Others specify more specialized nonlinear terms, in particular MultHomog specifies homogeneous multiplicative interactions and Dref specifies diagonal reference terms. Users may also define their own nonlin functions.

3.1 Basic mathematical functions of predictors

Most of the nonlin functions included in gnm are basic mathematical functions of predictors:
Exp: the exponential of a predictor
Inv: the reciprocal of a predictor
Mult: the product of predictors
Predictors are specified by symbolic expressions that are interpreted as the right-hand side of a formula object, except that an intercept is not added by default.

The predictors may contain nonlinear terms, allowing more complex functions to be built up. For example, suppose we wanted to specify a logistic predictor with the same form as that used by SSlogis (a selfStart model for use with $n l s$ - see section 6 for more on $g n m$ vs. $n l s$):

$$
\frac{\text { Asym }}{1+\exp ((\operatorname{xmid}-x) / \text { scal })} .
$$

This expression could be simplified by re-parameterizing in terms of xmid/scal and $1 /$ scal, however we shall continue with this form for illustration. We could express this predictor symbolically as follows
$\sim-1+\operatorname{Mult}(1, \operatorname{Inv}(C o n s t(1)+\operatorname{Exp}(\operatorname{Mult}(1+\operatorname{offset}(-x), \operatorname{Inv}(1)))))$
where Const is a convenience function to specify a constant in a nonlin term, equivalent to offset (rep (1, $n 0 b s$)) where nObs is the number of observations. However, this is rather convoluted and it may be preferable to define a specialized nonlin function in such a case. Section 3.5 explains how users can define custom nonlin functions, with a function to specify logistic terms as an example.

One family of models usefully specified with the basic functions is the family of models with multiplicative interactions. For example, the row-column association model

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c},
$$

also known as the Goodman RC model Goodman, 1979), would be specified as a log-link model (for response variable resp, say), with formula
resp $\sim R+C+\operatorname{Mult}(R, C)$
where R and C are row and column factors respectively. In some contexts, it may be desirable to constrain one or more of the constituent multiplier $~^{1}$ in a multiplicative interaction to be nonnegative. This may be achieved by specifying the multiplier as an exponential, as in the following 'uniform difference' model Xie, 1992, Erikson and Goldthorpe, 1992)

$$
\log \mu_{r c t}=\alpha_{r t}+\beta_{c t}+e^{\gamma_{t}} \delta_{r c}
$$

which would be represented by a formula of the form

$$
\text { resp } \sim R: T+C: T+\operatorname{Mult}(\operatorname{Exp}(T), R: C)
$$

[^1]
3.2 MultHomog

MultHomog is a nonlin function to specify multiplicative interaction terms in which the constituent multipliers are the effects of two or more factors and the effects of these factors are constrained to be equal when the factor levels are equal. The arguments of MultHomog are the factors in the interaction, which are assumed to be objects of class factor.

As an example, consider the following association model with homogeneous row-column effects:

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\theta_{r} I(r=c)+\gamma_{r} \gamma_{c} .
$$

To fit this model, with response variable named resp, say, the formula argument to gnm would be

```
resp ~ R + C + Diag(R, C) + MultHomog(R, C)
```

If the factors passed to MultHomog do not have exactly the same levels, a common set of levels is obtained by taking the union of the levels of each factor, sorted into increasing order.

3.3 Dref

Dref is a nonlin function to fit diagonal reference terms (Sobel 1981, 1985) involving two or more factors with a common set of levels. A diagonal reference term comprises an additive component for each factor. The component for factor f is given by

$$
w_{f} \gamma_{l}
$$

for an observation with level l of factor f, where w_{f} is the weight for factor f and γ_{l} is the "diagonal effect" for level l.

The weights are constrained to be nonnegative and to sum to one so that a "diagonal effect", say γ_{l}, is the value of the diagonal reference term for data points with level l across the factors. Dref specifies the constraints on the weights by defining them as

$$
w_{f}=\frac{e^{\delta_{f}}}{\sum_{i} e^{\delta_{i}}}
$$

where the δ_{f} are the parameters to be estimated.
Factors defining the diagonal reference term are passed as unspecified arguments to Dref. For example, the following diagonal reference model for a contingency table classified by the row factor R and the column factor C,

$$
\mu_{r c}=\frac{e^{\delta_{1}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{r}+\frac{e^{\delta_{2}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{c},
$$

would be specified by a formula of the form

```
resp ~ -1 + Dref(R, C)
```

The Dref function has one specified argument, delta, which is a formula with no left-hand side, specifying the dependence (if any) of δ_{f} on covariates. For example, the formula

```
resp ~ -1 + x + Dref(R, C, delta = ~ 1 + x)
```

specifies the generalized diagonal reference model

$$
\mu_{r c i}=\beta x_{i}+\frac{e^{\xi_{01}+\xi_{11} x_{i}}}{e^{\xi_{01}+\xi_{11} x_{i}}+e^{\xi_{02}+\xi_{12} x_{i}}} \gamma_{r}+\frac{e^{\xi_{02}+\xi_{12} x_{i}}}{e^{\xi_{01}+\xi_{11} x_{i}}+e^{\xi_{02}+\xi_{12} x_{i}}} \gamma_{c} .
$$

The default value of delta is ~ 1, so that constant weights are estimated. The coefficients returned by gnm are those that are directly estimated, i.e. the δ_{f} or the $\xi_{. f}$, rather than the implied weights w_{f}. However, these weights may be obtained from a fitted model using the DrefWeights function, which computes the corresponding standard errors using the delta method.

3.4 instances

Multiple instances of a linear term will be aliased with each other, but this is not necessarily the case for nonlinear terms. Indeed, there are certain types of model where adding further instances of a nonlinear term is a natural way to extend the model. For example, Goodman's RC model, introduced in section 3.1

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c}
$$

is naturally extended to the $\mathrm{RC}(2)$ model, with a two-component interaction

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c}+\theta_{r} \phi_{c}
$$

Currently all of the nonlin functions in gnm except Dref have an inst argument to allow the specification of multiple instances. So the $\mathrm{RC}(2)$ model could be specified as follows

```
resp ~ R + C + Mult(R,C, inst = 1) + Mult(R,C, inst = 2)
```

The convenience function instances allows multiple instances of a term to be specified at once
resp $\sim R+C+i n s t a n c e s(M u l t(R, C), 2)$
The formula is expanded by $g n m$, so that the instances are treated as separate terms. The instances function may be used with any function with an inst argument.

3.5 Custom nonlin functions

3.5.1 General description

Users may write their own nonlin functions to specify nonlinear terms which can not (easily) be specified using the nonlin functions in the gnm package. A function of class nonlin should return a list of arguments for the internal function nonlinTerms. The following arguments must be specified in all cases:
predictors: a list of symbolic expressions or formulae with no left hand side which represent (possibly nonlinear) predictors that form part of the term.
term: a function that takes the arguments predLabels and varLabels, which are labels generated by gnm for the specified predictors and variables (see below), and returns a deparsed mathematical expression of the nonlinear term. Only functions recognised by deriv should be used in the expression, e.g. + rather than sum.
If predictors are named, these names are used as a prefix for parameter labels or as the parameter label itself in the single-parameter case.

The following arguments of nonlinTerms must be specified whenever applicable to the nonlinear term:
variables: a list of expressions representing variables in the term (variables with a coefficient of 1).
common: a numeric index of predictors with duplicated indices identifying single factor predictors for which homologous effects are to be estimated.

The arguments below are optional:
call: a call to be used as a prefix for parameter labels.
match: (if call is non-NULL) a numeric index of predictors specifying which arguments of call the predictors match to - zero indicating no match. If NULL, predictors will not be matched to the arguments of call.
start: a function which takes a named vector of parameters corresponding to the predictors and returns a vector of starting values for those parameters. This function is ignored if the term is nested within another nonlinear term.
Predictors which are matched to a specified argument of call should be given the same name as the argument. Matched predictors are labelled using "dot-style" labelling, e.g. the label for the intercept in the first constituent multiplier of the term Mult (A, B) would be "Mult (. + A, 1 + B). (Intercept)". It is recommended that matches are specified wherever possible, to ensure parameter labels are well-defined.

The arguments of nonlin functions are as suited to the particular term, but will usually include symbolic representations of predictors in the term and/or the names of variables in the term. The function may also have an inst argument to allow specification of multiple instances (see 3.4).

3.5.2 Example: a logistic function

As an example, consider writing a nonlin function for the logistic term discussed in 3.1 .

$$
\frac{\text { Asym }}{1+\exp ((\operatorname{xmid}-x) / \text { scal })}
$$

We can consider Asym, xmid and scal as the parameters of three separate predictors, each with a single intercept term. Thus we specify the predictors argument to nonlinTerms as

```
predictors = list(Asym = 1, xmid = 1, scal = 1)
```

The term also depends on the variable x, which would need to be specified by the user. Suppose this is specified to our nonlin function through an argument named x. Then our nonlin function would specify the following variables argument

```
variables = list(substitute(x))
```

We need to use substitute here to list the variable specified by the user rather than the variable named "x" (if it exists).

Our nonlin function must also specify the term argument to nonlinTerms. This is a function that will paste together an expression for the term, given labels for the predictors and the variables:

```
term = function(predLabels, varLabels) {
    paste(predLabels[1], "/(1 + exp((", predLabels[2], "-",
    varLabels[1], ")/", predLabels[3], "))")
}
```

We now have all the necessary ingredients of a nonlin function to specify the logistic term. Since the parameterization does not depend on user-specified values, it does not make sense to use call-matched labelling in this case. The labels for our parameters will be taken from the labels of the predictors argument. Since we do not anticipate fitting models with multiple logistic terms, our nonlin function will not specify a call argument with which to prefix the parameter labels. We do however, have some idea of useful starting values, so we will specify the start argument as

```
start = function(theta){
    theta[3] <- 1
    theta
}
```

which sets the initial scale parameter to one.
Putting all these ingredients together we have

```
Logistic <- function(x){
    list(predictors = list(Asym = 1, xmid = 1, scal = 1),
        variables = list(substitute(x)),
        term = function(predLabels, varLabels) {
                paste(predLabels[1], "/(1 + exp((", predLabels[2], "-",
                varLabels[1], ")/", predLabels[3], "))")
            },
            start = function(theta){
                theta[3] <- 1
                theta
            })
}
class(Logistic) <- "nonlin"
```


3.5.3 Example: MultHomog

The MultHomog function included in the gnm package provides a further example of a nonlin function, showing how to specify a term with quite different features from the preceding example. The definition is

```
MultHomog <- function(..., inst = NULL){
    dots <- match.call(expand.dots = FALSE)[["..."]]
    list(predictors = dots,
        common = rep(1, length(dots)),
        term = function(predLabels, ...) {
            paste("(", paste(predLabels, collapse = ")*("), ")", sep = "")},
        call = as.expression(match.call()))
}
class(MultHomog) <- "nonlin"
```

Firstly, the interaction may be based on any number of factors, hence the use of the special ". . ." argument. The use of match. call is analogous to the use of substitute in the Logistic function: to obtain expressions for the factors as specified by the user.

The returned common argument specifies that homogeneous effects are to be estimated across all the specified factors. The term only depends on these factors, but the term function allows for the empty varLabels vector that will be passed to it, by having a ". . ." argument.

Since the user may wish to specify multiple instances, the call argument to nonlinTerms is specified, so that parameters in different instances of the term will have unique labels (due to the inst argument in the call). However as the expressions passed to ". . " may only represent single factors, rather than general predictors, it is not necessary to use call-matched labelling, so the match argument is not specified here.

4 Controlling the fitting procedure

The gnm function has a number of arguments which affect the way a model will be fitted. Basic control parameters can be set using the arguments lsMethod, ridge, tolerance, iterStart and iterMax. Starting values for the parameter estimates can be set by start or they can be generated from starting values for the predictors on the link or response scale via etastart or mustart respectively. Parameters can be constrained via constrain and constrainTo arguments, while parameters of a stratification factor can be handled more efficiently by specifying the factor in an eliminate argument. These options are described in more detail below.

4.1 Basic control parameters

The arguments iterStart and iterMax control respectively the number of starting iterations (where applicable) and the number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either verbose or trace to TRUE. If verbose is TRUE and trace is FALSE, which is the default setting, progress is indicated by printing the character "." at the beginning of each iteration. If trace is TRUE, the deviance is printed at the beginning of each iteration (over-riding the printing of "." if necessary). Whenever verbose is TRUE, additional messages indicate each stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart.

Prior to solving the (typically rank-deficient) least squares problem at the heart of the gnm fitting algorithm, the design matrix is standardized and regularized (in the Levenberg-Marquardt sense); the ridge argument provides a degree of control over the regularization performed (smaller values may sometimes give faster convergence but can lead to numerical instability).

The fitting algorithm will terminate before the number of main iterations has reached iterMax if the convergence criteria have been met, with tolerance specified by tolerance. Convergence is judged by comparing the squared components of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all components of the score vector, the ratio is less than tolerance ${ }^{\wedge} 2$, or the corresponding diagonal element of the Fisher information matrix is less than 1e-20, the algorithm is deemed to have converged.

4.2 Specifying starting values

4.2.1 Using start

In some contexts, the default starting values may not be appropriate and the fitting algorithm will fail to converge, or perhaps only converge after a large number of iterations. Alternative starting values may be passed on to gnm
by specifying a start argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated parameters, see Section 4.4, however missing starting values (NAs) are allowed.

If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful when adding terms to a model, since the estimates from the original model can be used as starting values, as in this example:

```
model1 <- gnm(mu ~ R + C + Mult(R,C))
model2 <- gnm(mu ~ R + C + instances(Mult(R, C), 2),
    start = c(coef(model1), rep(NA, 10)))
```

The gnm call can be made with method = "coefNames" to identify the parameters of a model prior to estimation, to assist with the specification of arguments such as start. For example, to get the number 10 for the value of start above, we could have done

```
gnm(mu ~ R + C + instances(Mult(R, C), 2), method = "coefNames")
```

from whose output it would be seen that there are 10 new coefficients in model2. When called with method = "coefNames", gnm makes no attempt to fit the specified model; instead it returns just the names that the coefficients in the fitted model object would have.

The starting procedure used by gnm is as follows:

1. Begin with all parameters set to NA.
2. Replace $N A$ values with any starting values set by nonlin functions.
3. Replace current values with any (non-NA) starting values specified by the start argument of gnm.
4. Set any values specified by the constrain argument to the values specified by the constrainTo argument (see Section 4.3).
5. Categorise remaining $N A$ parameters as linear or nonlinear, treating non-NA parameters as fixed. Initialise the nonlinear parameters by generating values θ_{i} from the Uniform $(-0.1,0.1)$ distribution and shifting these values away from zero as follows

$$
\theta_{i}= \begin{cases}\theta_{i}-0.1 & \text { if } \theta_{i}<1 \\ \theta_{i}+0.1 & \text { otherwise }\end{cases}
$$

6. Compute the glm estimate of the linear parameters, offsetting the contribution to the predictor of any terms fully determined by steps 2 to 5
7. Run starting iterations: update nonlinear parameters one at a time, jointly re-estimating linear parameters after each round of updates.

Note that no starting iterations (step 7 will be run if all parameters are linear, or if all nonlinear parameters are specified by start, constrain or a nonlin function.

4.2.2 Using etastart or mustart

An alternative way to set starting values for the parameters is to specify starting values for the predictors.
If there are linear parameters in the model, the predictor starting values are first used to fit a model with only the linear terms (offsetting any terms fully specified by starting values given by start, constrain or a nonlin function). In this case the parameters corresponding to the predictor starting values can be computed analytically. If the fitted model reproduces the predictor starting values, then these values contain no further information and they are replaced using the initialize function of the specified family.

The predictor starting values or their replacement are then used as the response variable in a nonlinear least squares model with only the unspecified nonlinear terms, offsetting the contribution of any other terms. Since the model is over-parameterized, the model is approximated using iterStart iterations of the "L-BFGS-B" algorithm of optim, assuming parameters lie in the range ($-10,10$).

Starting values for the predictors can be specified explicitly via etastart or implicitly by passing starting values for the fitted means to mustart. For example, when extending a model, the fitted predictors from the first model can be used to find starting values for the parameters of the second model:

```
model1 <- gnm(mu ~ R + C + Mult (R, C))
model2 <- gnm(mu ~ R + C + instances(Mult(R, C), 2), etastart = model1\$predictors)
```

Using etastart avoids the one-parameter-at-a-time starting iterations, so is quicker than using start to pass on information from a nested model. However start will generally produce better starting values so should be used when feasible. For multiplicative terms, the residSVD functions provides a better way to avoid starting iterations.

4.3 Using constrain

By default, gnm only imposes identifiability constraints according to the general conventions used by R to handle linear aliasing. Therefore models that have any nonlinear terms will be typically be over-parameterized, and gnm will return a random parameterization for unidentified coefficients (determined by the randomly chosen starting values for the iterative algorithm, step 5 above).

To illustrate this point, consider the following application of gnm, discussed later in Section 7.1 .

```
> set.seed(1)
> RChomog1 <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ MultHomog(origin, destination), family = poisson,
+ data = occupationalStatus, verbose = FALSE)
```

Running the analysis again from a different seed

```
> set.seed(2)
> RChomog2 <- update(RChomog1)
gives a different representation of the same model:
```

```
> compareCoef <- cbind(coef(RChomog1), coef(RChomog2))
```

> compareCoef <- cbind(coef(RChomog1), coef(RChomog2))
> colnames(compareCoef) <- c("RChomog1", "RChomog2")
> colnames(compareCoef) <- c("RChomog1", "RChomog2")
> round(compareCoef, 4)

```
> round(compareCoef, 4)
```

	RChomog1	RChomog2
(Intercept)	0.2404	0.3058
origin2	0.5101	0.5052
origin3	1.5928	1.5744
origin4	1.8892	1.8577
origin5	0.6692	0.6373
origin6	2.7113	2.6679
origin7	1.3687	1.3159
origin8	1.0974	1.0392
destination2	0.9291	0.9242
destination3	1.9372	1.9188
destination4	2.1776	2.1461
destination5	1.5686	1.5367
destination6	3.0148	2.9714
destination7	2.1203	2.0675
destination8	1.6728	1.6146
Diag(origin, destination)1	1.5267	1.5267
Diag(origin, destination)2	0.4560	0.4560
Diag(origin, destination)3	-0.0160	-0.0160
Diag(origin, destination)4	0.3892	0.3892
Diag(origin, destination)5	0.7385	0.7385
Diag(origin, destination)6	0.1347	0.1347
Diag(origin, destination)7	0.4576	0.4576
Diag(origin, destination)8	0.3885	0.3885
MultHomog(origin, destination)1	-1.4646	1.4421
MultHomog(origin, destination)2	-1.2463	1.2238

MultHomog(origin, destination)3	-0.6481	0.6256
MultHomog(origin, destination)4	-0.0642	0.0417
MultHomog(origin, destination)5	-0.0471	0.0246
MultHomog(origin, destination)6	0.4647	-0.4872
MultHomog(origin, destination)7	0.8808	-0.9033
MultHomog(origin, destination)8	1.1244	-1.1469

Even though the linear terms are constrained, the parameter estimates for the main effects of origin and destination still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained.

Standard errors are only meaningful for identified parameters and hence the output of summary.gnm will show clearly which coefficients are estimable:

```
> summary(RChomog2)
```

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus, verbose = FALSE)

Deviance Residuals:

Min	$1 Q$	Median	$3 Q$	Max
$-1.659 \mathrm{e}+00$	$-4.297 \mathrm{e}-01$	$-2.107 \mathrm{e}-08$	$3.862 \mathrm{e}-01$	$1.721 \mathrm{e}+00$

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	0.30577	NA	NA	NA
origin2	0.50522	NA	NA	NA
origin3	1.57439	NA	NA	NA
origin4	1.85767	NA	NA	NA
origin5	0.63728	NA	NA	NA
origin6	2.66791	NA	NA	NA
origin7	1.31592	NA	NA	NA
origin8	1.03921	NA	NA	NA
destination2	0.92424	NA	NA	NA
destination3	1.91881	NA	NA	NA
destination4	2.14611	NA	NA	NA
destination5	1.53670	NA	NA	NA
destination6	2.97139	NA	NA	NA
destination7	2.06751	NA	NA	NA
destination8	1.61459	NA	NA	NA
Diag(origin, destination)1	1.52667	0.44658	3.419	0.00063
Diag(origin, destination)2	0.45600	0.34595	1.318	0.18747
Diag(origin, destination)3	-0.01598	0.18098	-0.088	0.92965
Diag(origin, destination)4	0.38918	0.12748	3.053	0.00227
Diag(origin, destination) 5	0.73852	0.23329	3.166	0.00155
Diag(origin, destination)6	0.13474	0.07934	1.698	0.08945
Diag(origin, destination)7	0.45764	0.15103	3.030	0.00245
Diag(origin, destination)8	0.38847	0.22172	1.752	0.07976
MultHomog(origin, destination)1	1.44208	NA	NA	NA
MultHomog(origin, destination)2	1.22378	NA	NA	NA
MultHomog(origin, destination)3	0.62562	NA	NA	NA
MultHomog(origin, destination)4	0.04174	NA	NA	NA
MultHomog(origin, destination)5	0.02457	NA	NA	NA
MultHomog(origin, destination)6	-0.48719	NA	NA	NA
MultHomog(origin, destination)7	-0.90333	NA	NA	NA
MultHomog(origin, destination)8	-1.14691	NA	NA	NA

Std. Error is NA where coefficient has been constrained or is unidentified

```
Residual deviance: 32.561 on 34 degrees of freedom
```

AIC: 414.9
Number of iterations: 7
Additional constraints may be specified through the constrain and constrainTo arguments of gnm. These arguments specify respectively parameters that are to be constrained in the fitting process and the values to which they should be constrained. Parameters may be specified by a regular expression to match against the parameter names, a numeric vector of indices, a character vector of names, or, if constrain = "[?]" they can be selected through a $T k$ dialog. The values to constrain to should be specified by a numeric vector; if constrainTo is missing, constrained parameters will be set to zero.

In the case above, constraining one level of the homogeneous multiplicative factor is sufficient to make the parameters of the nonlinear term identifiable, and hence all parameters in the model identifiable. Figure 1 illustrates how the coefficient to be constrained may be specified via a $T k$ dialog, an approach which can be helpful in interactive R sessions.

However for reproducible code, it is best to specify the constrained coefficients directly. For example, the following code specifies that the last level of the homogeneous multiplicative factor should be constrained to zero,

```
> set.seed(1)
> RChomogConstrained1 <- update(RChomog1, constrain = length(coef(RChomog1)))
```

Since all the parameters are now constrained, re-fitting the model will give the same results, regardless of the random seed set beforehand:

```
> set.seed(2)
> RChomogConstrained2 <- update(RChomogConstrained1)
> identical(coef(RChomogConstrained1), coef(RChomogConstrained2))
```


[1] FALSE

It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However use of constrain in conjunction with constrainTo is usually sufficient to make coefficients of interest identifiable. The functions checkEstimable or getContrasts, described in Section 5 , may be used to check whether particular combinations of parameters are estimable.

4.4 Using eliminate

When a model contains the additive effect of a factor which has a large number of levels, the iterative algorithm by which maximum likelihood estimates are computed can usually be accelerated by use of the eliminate argument to gnm. A factor passed to eliminate specifies the first term in the model, replacing any intercept term. So, for example

```
gnm(mu ~ A + B + Mult(A, B), eliminate = strata1:strata2)
```

is equivalent, in terms of the structure of the model, to

```
gnm(mu ~ -1 + strata1:strata2 + A + B + Mult(A, B))
```

However, specifying a factor through eliminate has two advantages over the standard specification. First, the structure of the eliminated factor is exploited so that computational speed is improved - substantially so if the number of eliminated parameters is large. Second, eliminated parameters are returned separately from noneliminated parameters (as an attribute of the coefficients component of the returned object). Thus eliminated parameters are excluded from printed model summaries by default and disregarded by gnm methods that would not be relevant to such parameters (see Section 5).

When gnm is called with constrain = "[?]", a Tk dialog is shown listing the coefficients in the model.

Scroll through the coefficients and click to select a single coefficient to constrain. To select multiple coefficients, hold down the Ctrl key whilst clicking. The Add button will become active when coefficient(s) have been selected.

Click the Add button to add the selected coefficients to the list of coefficients to be constrained. To remove coefficients from the list, select the coefficients in the right pane and click Remove. Click OK when you have finalised the list.

Figure 1: Selecting coefficients to constrain with the $T k$ dialog.

The eliminate feature is useful, for example, when multinomial-response models are fitted by using the well known equivalence between multinomial and (conditional) Poisson likelihoods. In such situations the sufficient statistic involves a potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest. For an application see Section 7.6 below. Here we give an artificial illustration: 1000 randomly-generated trinomial responses, and a single predictor variable (whose effect on the data generation is null):

```
> set.seed(1)
> n <- 1000
> x <- rep(rnorm(n), rep(3, n))
> counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2)))
> rowID <- gl(n, 3, 3 * n)
> resp <- gl(3, 1, 3 * n)
```

The logistic model for dependence on x can be fitted as a Poisson log-linear mode ${ }^{2}$ using either $g l m$ or $g n m$:

```
> ## Timings on a Xeon 2.33GHz, under Linux
> system.time(temp.glm <- glm(counts ~ rowID + resp + resp:x,
        family = poisson))[1]
user.self
    37.126
> system.time(temp.gnm <- gnm(counts ~ resp + resp:x, eliminate = rowID,
                family = poisson, verbose = FALSE))[1]
user.self
    0.04
> c(deviance(temp.glm), deviance(temp.gnm))
[1] 2462.556 2462.556
```

Here the use of eliminate causes the gnm calculations to run much more quickly than $g l m$. The speed advantage increases with the number of eliminated parameters (here 1000). By default,the eliminated parameters do not appear in printed model summaries as here:

```
> summary(temp.gnm)
```

Call:

```
gnm(formula = counts ~ resp + resp:x, eliminate = rowID, family = poisson,
    verbose = FALSE)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2.852038 & -0.786172 & -0.004534 & 0.645278 & 2.755013
\end{tabular}
```

Coefficients of interest:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
resp2 -1.961448 0.034007-57.678 <2e-16
resp3 -1.255846 0.025359-49.523 <2e-16
resp1:x - $0.007726 \quad 0.024517-0.315 \quad 0.753$
resp2:x - $0.023340 \quad 0.037611 \quad-0.621 \quad 0.535$
resp3: 0.000000 NA NA NA

[^2]Std. Error is NA where coefficient has been constrained or is unidentified
Residual deviance: 2462.6 on 1996 degrees of freedom
AIC: 12028

Number of iterations: 4
although the summary method has a logical with. eliminate that can toggled so that the eliminated parameters are included if desired.

The eliminate feature as implemented in gnm extends the earlier work of Hatzinger and Francis (2004) to a broader class of models and to over-parameterized model representations.

5 Methods and accessor functions

5.1 Methods

The gnm function returns an object of class c("gnm", "glm", "lm"). There are several methods that have been written for objects of class glm or $l \mathrm{~m}$ to facilitate inspection of fitted models. Out of the generic functions in the base, stats and graphics packages for which methods have been written for glm or $l m$ objects, Figure 2 shows those that can be used to analyse gnm objects, whilst Figure 3 shows those that are not implemented for gnm objects.

add1*	family	print
anova	formula	profile
case.names	hatvalues	residuals
coef	labels	rstandard
cooks.distance	logLik	summary
confint	model.frame	variable.names
deviance	model.matrix	vcov
drop1*	plot	weights
extractAIC	predict	

Figure 2: Generic functions in the base, stats and graphics packages that can be used to analyse gnm objects. Starred functions are implemented for models with linear terms only.

alias	effects
dfbeta	influence
dfbetas	kappa
dummy.coef	proj

Figure 3: Generic functions in the base, stats and graphics packages for which methods have been written for glm or lm objects, but which are not implemented for gnm objects.

In addition to the accessor functions shown in Figure 2, the gnm package provides a new generic function called termPredictors that has methods for objects of class $\mathrm{gnm}, \mathrm{glm}$ and lm . This function returns the additive contribution of each term to the predictor. See Section 2.5 for an example of its use.

Most of the functions listed in Figure 2 can be used as they would be for glm or lm objects, however care must be taken with vcov.gnm, as the variance-covariance matrix will depend on the parameterization of the model. In particular, standard errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are estimable!

Similarly, profile.gnm and confint.gnm are only applicable to estimable parameters. The deviance function of a generalized nonlinear model can sometimes be far from quadratic and profile.gnm attempts to detect
asymmetry or asymptotic behaviour in order to return a sufficient profile for a given parameter. As an example, consider the following model, described later in Section 7.3 .

```
unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest),
    constrain = "[.]educ1", family = poisson, data = yaish,
    subset = (dest != 7))
prof <- profile(unidiff, which = 61:65, trace = TRUE)
```

If the deviance is quadratic in a given parameter, the profile trace will be linear. We can plot the profile traces as follows:

Profile traces for the multipliers of the orig:dest association

Figure 4: Profile traces for the multipliers of the orig:dest association
From these plots we can see that the deviance is approximately quadratic in $\operatorname{Mult(Exp}($.$) , orig:dest).educ2,$ asymmetric in Mult(Exp(.), orig:dest).educ3 and Mult(Exp(.), orig:dest).educ4 and asymptotic in Mult(Exp(.), orig:dest).educ5. When the deviance is approximately quadratic in a given parameter, profile.gnm uses the same stepsize for profiling above and below the original estimate:

```
> diff(prof[[2]]$par.vals[, "Mult(Exp(.), orig:dest).educ2"])
```

```
[1] 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072
[8] 0.1053072 0.1053072 0.1053072
```

When the deviance is asymmetric, profile.gnm uses different step sizes to accommodate the skew:

```
> diff(prof[[4]]$par.vals[, "Mult(Exp(.), orig:dest).educ4"])
```

[1] 0.20183930 .20183930 .20183930 .20183930 .20183930 .20183930 .2018393
[8] 0.20183930 .20183930 .22436730 .22436730 .22436730 .22436730 .2243673

Finally, the presence of an asymptote is recorded in the "asymptote" attribute of the returned profile:

```
> attr(prof[[5]], "asymptote")
```


[1] TRUE FALSE

This information is used by confint.gnm to return infinite limits for confidence intervals, as appropriate:

```
> confint(prof, level = 0.95)
```

	2.5%	97.5%
Mult(Exp(.), orig:dest).educ1	NA	NA
Mult(Exp(.), orig:dest).educ2	-0.5978901	0.1022447
Mult(Exp(.), orig:dest).educ3	-1.4836854	-0.2362378
Mult(Exp(.), orig:dest).educ4	-2.5792398	-0.2953420
Mult(Exp(.), orig:dest).educ5	$-\operatorname{Inf}$	-0.7006889

5.2 ofInterest and pickCoef

It is quite common for a statistical model to have a large number of parameters, but for only a subset of these parameters be of interest when it comes to interpreting the model.

The ofInterest argument to gnm allows the user to specify a subset of the parameters which are of interest, so that gnm methods will focus on these parameters. In particular, printed model summaries will only show the parameters of interest, whilst methods for which a subset of parameters may be selected will by default select the parameters of interest, or where this may not be appropriate, provide a $T k$ dialog for selection from the parameters of interest. Parameters may be specified to the ofInterest argument by a regular expression to match against parameter names, by a numeric vector of indices, by a character vector of names, or, if ofInterest = "[?]" they can be selected through a Tk dialog.

The information regarding the parameters of interest is held in the ofInterest component of gnm objects, which is a named vector of numeric indices, or NULL if all parameters are of interest. This component may be accessed or replaced using ofInterest or ofInterest<- respectively.

The pickCoef function provides a simple way to obtain the indices of coefficients from any model object. It takes the model object as its first argument and has an optional regexp argument. If a regular expression is passed to regexp, the coefficients are selected by matching this regular expression against the coefficient names. Otherwise, coefficients may be selected via a $T k$ dialog.

So, returning to the example from the last section, if we had set ofInterest to index the education multipliers as follows

```
ofInterest(unidiff) <- pickCoef(unidiff, "[.]educ")
```

then it would not have been necessary to specify the which argument of profile as these parameters would have been selected by default.

5.3 checkEstimable

The checkEstimable function can be used to check the estimability of a linear combination of parameters. For non-linear combinations the same function can be used to check estimability based on the (local) vector of partial derivatives. The checkEstimable function provides a numerical version of the sort of algebraic test described in Catchpole and Morgan (1997).

Consider the following model, which is described later in Section 7.3

```
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion
+ + Mult(Exp(election), religion:vote) +
+ Mult(Exp(election), class:vote), family = poisson,
+ data = cautres)
```

Initialising
Running start-up iterations..
Running main iterations
Done

The effects of the first constituent multiplier in the first multiplicative interaction are identified when the parameter for one of the levels - say for the first level - is constrained to zero. The parameters to be estimated are then the differences between each other level and the first. These differences can be represented by a contrast matrix as follows:

```
> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep(", religion:vote", coefs)]
> nContr <- length(contrCoefs)
> contrMatrix <- matrix(0, length(coefs), nContr,
+ dimnames = list(coefs, contrCoefs))
> contr <- contr.sum(contrCoefs)
> # switch round to contrast with first level
> contr <- rbind(contr[nContr, ], contr[-nContr, ])
> contrMatrix[contrCoefs, 2:nContr] <- contr
> contrMatrix[contrCoefs, 2:nContr]
```

 Mult(Exp(.), religion:vote).election2
 | Mult(Exp(.), religion:vote).election1 | -1 |
| :---: | :---: |
| Mult(Exp(.), religion:vote).election2 | 1 |
| Mult(Exp(.), religion:vote).election3 | 0 |
| Mult(Exp(.), religion:vote).election4 | 0 |
| | Mult(Exp(.), religion:vote).election3 |
| Mult(Exp(.), religion:vote).election1 | -1 |
| Mult(Exp(.), religion:vote).election2 | 0 |
| Mult(Exp(.), religion:vote).election3 | 1 |
| Mult(Exp(.), religion:vote).election4 | 0 |
| | Mult(Exp(.), religion:vote).election4 |
| Mult(Exp(.), religion:vote).election1 | -1 |
| Mult(Exp(.), religion:vote).election2 | 0 |
| Mult(Exp(.), religion:vote).election3 | 0 |
| Mult(Exp(.), religion:vote).election4 | 1 |

Then their estimability can be checked using checkEstimable

```
> checkEstimable(doubleUnidiff, contrMatrix)
```

Mult(Exp(.), religion:vote).election1 Mult(Exp(.), religion:vote).election2
NA TRUE
Mult(Exp(.), religion:vote).election3 Mult(Exp(.), religion:vote).election4
TRUE TRUE
which confirms that the effects for the other three levels are estimable when the parameter for the first level is set to zero.

However, applying the equivalent constraint to the second constituent multiplier in the interaction is not sufficient to make the parameters in that multiplier estimable:

```
> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep("[.]religion", coefs)]
> nContr <- length(contrCoefs)
> contrMatrix <- matrix(0, length(coefs), length(contrCoefs),
+ dimnames = list(coefs, contrCoefs))
> contr <- contr.sum(contrCoefs)
> contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr, ], contr[-nContr, ])
> checkEstimable(doubleUnidiff, contrMatrix)
Mult(Exp(election), .).religion1:vote1 Mult(Exp(election), .).religion2:vote1
    NA
                            FALSE
Mult(Exp(election), .).religion3:vote1 Mult(Exp(election), .).religion4:vote1
```

FALSE FALSE
Mult(Exp(election), .).religion1:vote2 Mult(Exp(election), .).religion2:vote2
FALSE FALSE
Mult(Exp(election), .).religion3:vote2 Mult(Exp(election), .).religion4:vote2
FALSE FALSE

5.4 getContrasts, se

To investigate simple "sum to zero" contrasts such as those above, it is easiest to use the getContrasts function, which checks the estimability of possibly scaled contrasts and returns the parameter estimates with their standard errors. Returning to the example of the first constituent multiplier in the first multiplicative interaction term, the differences between each election and the first can be obtained as follows:

```
> myContrasts <- getContrasts(doubleUnidiff,
+ pickCoef(doubleUnidiff, ", religion:vote"))
> myContrasts
```

		estimate	SE	quasiSE
Mult(Exp(.), religion:vote).election1	0.0000000	0.0000000	0.09803075	
Mult(Exp(.), religion:vote).election2	-0.0878181	0.1136832	0.05702819	
Mult(Exp(.), religion:vote).election3	-0.2615200	0.1184134	0.06812239	
Mult(Exp(.), religion:vote).election4	-0.3283459	0.1221302	0.07168290	

Mult(Exp(.), religion:vote).election1 0.009610029
Mult(Exp(.), religion:vote).election2 0.003252214
Mult(Exp(.), religion:vote).election3 0.004640660
Mult(Exp(.), religion:vote).election4 0.005138439
Visualization of estimated contrasts using 'quasi standard errors' (Firth, 2003, Firth and de Menezes, 2004) is achieved by plotting the resulting object:

```
> plot(myContrasts,
+ main = "Relative strength of religion-vote association, log scale",
+ xlab = "Election", levelNames = 1:4)
```

By default, getContrasts uses the first parameter of the specified set as the reference level; alternatives may be set via the ref argument.

In the above example, the simple contrasts are estimable without scaling. In certain other applications, for example row-column association models (see Section7.1, the contrasts are identified only after fixing their scale. A more general family of scaled contrasts for a set of parameters $\gamma_{r}, r=1, \ldots, R$ is given by

$$
\gamma_{r}^{*}=\frac{\gamma_{r}-\bar{\gamma}_{w}}{\sqrt{\sum_{r} v_{r}\left(\gamma_{r}-\bar{\gamma}_{u}\right)^{2}}}
$$

where $\bar{\gamma}_{w}=\sum w_{r} \gamma_{r}$ is the reference level against which the contrasts are taken, $\bar{\gamma}_{u}=\sum u_{r} \gamma_{r}$ is a possibly different weighted mean of the parameters to be used as reference level for a set of "scaling contrasts", and v_{r} is a further set of weights. Thus, for example, the choice

$$
w_{r}=\left\{\begin{array}{ll}
1 & (r=1) \\
0 & \text { (otherwise) }
\end{array}, \quad u_{r}=v_{r}=1 / R\right.
$$

specifies contrasts with the first level, with the coefficients scaled to have variance 1. This general type of scaling can be obtained by specifying the form of $\bar{\gamma}_{u}$ and v_{r} via the scaleRef and scaleWeights arguments of getContrasts.

As an example, consider the following model, described in Section 7.1

```
> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)
> RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS),
+ family = poisson, data = mentalHealth)
```


Relative strength of religion-vote association, log scale

Figure 5: Relative strength of religion-vote association, log scale

Initialising
Running start-up iterations..
Running main iterations.......
Done
The effects of the constituent multipliers of the multiplicative interaction are identified when both their scale and location are constrained. A simple way to achieve this is to set the first parameter to zero and the last parameter to one:

```
> RC1model2 <- gnm(count ~ SES + MHS + Mult(1, SES, MHS),
+ constrain = "[.]SES[AF]", constrainTo =c(0, 1),
+ ofInterest = "[.]SES",
+ family = poisson, data = mentalHealth)
```

Initialising
Running start-up iterations..
Running main iterations.............
Done
> summary(RC1model2)
Call:

```
gnm(formula = count ~ SES + MHS + Mult(1, SES, MHS), ofInterest = "[.]SES",
        constrain = "[.]SES[AF]", constrainTo = c(0, 1), family = poisson,
        data = mentalHealth)
Deviance Residuals:
            Min 1Q Median 3Q
                                Max
-0.87231 -0.3098
0.01026
0.29898
0.87866
```


Coefficients of interest:

			Std. Error		(
Mult (1,	MHS).SESA	0.000000	NA	NA	NA
Mult (1,	MHS).SESB	-0.003107	0.181567	-0.017	0.986
Mult (1,	MHS).SESC	0.252939	0.158922	1.592	0.111
Mult (1,	MHS).SESD	0.388785	0.144164	2.697	0.007
Mult (1,	MHS).SESE	0.724329	0.172325	4.203	$2.63 \mathrm{e}-05$
Mult (1,	MHS).SESF	1.000000	NA	NA	

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified
Residual deviance: 3.5706 on 8 degrees of freedom
AIC: 179.74
Number of iterations: 12
Note that a constant multiplier must be incorporated into the interaction term, i.e., the multiplicative term Mult (SES, MHS) becomes Mult (1, SES, MHS), in order to maintain equivalence with the original model specification. The constraints specified for RC1model2 result in the estimation of scaled contrasts with level A of $S E S$, in which the scaling fixes the magnitude of the contrast between level F and level A to be equal to 1 . The equivalent use of getContrasts, together with the unconstrained fit (RC1model), in this case is as follows:

```
> getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = "first",
+ scaleRef = "first", scaleWeights = c(rep(0, 5), 1))
    Estimate Std. Error
Mult(., MHS).SESA 0.000000000 0.0000000
Mult(., MHS).SESB -0.003107289 0.1815672
Mult(., MHS).SESC 0.252939253 0.1589218
Mult(., MHS).SESD 0.388785114 0.1441637
Mult(., MHS).SESE 0.724328752 0.1723247
Mult(., MHS).SESF 1.000000000 0.0000000
```

Quasi-variances and standard errors are not returned here as they can not (currently) be computed for scaled contrasts. When the scaling uses the same reference level as the contrasts, equal scale weights produce "spherical" contrasts, whilst unequal weights produce "elliptical" contrasts. Further examples are given in Sections 7.1 and 7.4

For more general linear combinations of parameters than contrasts, the lower-level se function (which is called internally by getContrasts and by the summary method) can be used directly. See help(se) for details.

5.5 residSVD

Sometimes it is useful to operate on the residuals of a model in order to create informative summaries of residual variation, or to obtain good starting values for additional parameters in a more elaborate model. The relevant arithmetical operations are weighted means of the so-called working residuals.

The residSVD function facilitates one particular residual analysis that is often useful when considering multiplicative interaction between factors as a model elaboration: in effect, residSVD provides a direct estimate of the parameters of such an interaction, by performing an appropriately weighted singular value decomposition on the working residuals.

As an illustration, consider the barley data from Wedderburn (1974). These data have the following two-way structure:

```
> xtabs(y ~ site + variety, barley)
```

variety										
site	1	2	3	4	5	6	7	8	9	X
A 0.0005	0.0000	0.0000	0.0010	0.0025	0.0005	0.0050	0.0130	0.0150	0.0150	
B 0.0000	0.0005	0.0005	0.0030	0.0075	0.0030	0.0300	0.0750	0.0100	0.1270	
C 0.0125	0.0125	0.0250	0.1660	0.0250	0.0250	0.0000	0.2000	0.3750	0.2625	
D 0.0250	0.0050	0.0001	0.0300	0.0250	0.0001	0.2500	0.5500	0.0500	0.4000	
E 0.0550	0.0100	0.0600	0.0110	0.0250	0.0800	0.1650	0.2950	0.2000	0.4350	
F 0.0100	0.0500	0.0500	0.0500	0.0500	0.0500	0.1000	0.0500	0.5000	0.7500	
G 0.0500	0.0010	0.0500	0.0500	0.5000	0.1000	0.5000	0.2500	0.5000	0.7500	
H 0.0500	0.1000	0.0500	0.0500	0.2500	0.7500	0.5000	0.7500	0.7500	0.7500	
I 0.1750	0.2500	0.4250	0.5000	0.3750	0.9500	0.6250	0.9500	0.9500	0.9500	

In Section 7.5 a biplot model is proposed for these data, which comprises a two-component interaction between the cross-classifying factors. In order to fit this model, we can proceed by fitting a smaller model, then use residSVD to obtain starting values for the parameters in the bilinear term:

```
> emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley)
> biplotStart <- residSVD(emptyModel, barley$site, barley$variety, d = 2)
> biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2),
+ family = wedderburn, data = barley, start = biplotStart)
```

Running main iterations
.
Done

In this instance, the use of purposive (as opposed to the default, random) starting values had little effect: the fairly large number of iterations needed in this example is caused by a rather flat (quasi-)likelihood surface near the maximum, not by poor starting values. In other situations, the use of residSVD may speed the calculations dramatically (see for example Section 7.4, or it may be crucial to success in locating the MLE (for example see help(House2001), where the number of multiplicative parameters is in the hundreds).

The residSVD result in this instance provides a crude approximation to the MLE of the enlarged model, as can be seen in Figure 6

6 gnm or (g)nls?

The nls function in the stats package may be used to fit a nonlinear model via least-squares estimation. Statistically speaking, $g n m$ is to $n l s$ as $g l m$ is to $l m$, in that a nonlinear least-squares model is equivalent to a generalized nonlinear model with family = gaussian. A nls model assumes that the responses are distributed either with constant variance or with fixed relative variances (specified via the weights argument). The gnls function in the nlme package extends $n l s$ to allow correlated responses. On the other hand, gnm allows for responses distributed with variances that are a specified (via the family argument) function of the mean; as with nls, no correlation is allowed.

The $g n m$ function also differs from $n l s / g n l s$ in terms of the interface. Models are specified to $n l s$ and gnls in terms of a mathematical formula or a selfStart function based on such a formula, which is convenient for models that have a small number of parameters. For models that have a large number of parameters, or can not easily be represented by a mathematical formula, the symbolic model specification used by gnm may be more convenient. This would usually be the case for models involving factors, which would need to be represented by dummy variables in a $n l s$ formula.

When working with artificial data, gnm has the minor advantage that it does not fail when a model is an exact fit to the data (see help(nls)). Therefore it is not necessary with gnm to add noise to artificial data, which can be useful when testing methods.

Figure 6: Comparison of residSVD and the MLE for a 2-dimensional biplot model

7 Examples

7.1 Row-column association models

There are several models that have been proposed for modelling the relationship between the cell means of a contingency table and the cross-classifying factors. The following examples consider the row-column association models proposed by Goodman (1979). The examples shown use data from two-way contingency tables, but the gnm package can also be used to fit the equivalent models for higher order tables.

7.1.1 $\quad R C(1)$ model

The $\mathrm{RC}(1)$ model is a row and column association model with the interaction between row and column factors represented by one component of the multiplicative interaction. If the rows are indexed by r and the columns by c, then the log-multiplicative form of the $\mathrm{RC}(1)$ model for the cell means $\mu_{r c}$ is given by

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c} .
$$

We shall fit this model to the mentalHealth data set from Agresti (2002, page 381), which is a two-way contingency table classified by the child's mental impairment (MHS) and the parents' socioeconomic status (SES). Although both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the contrasts attribute of these factors to treatment:

```
> set.seed(1)
> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)
```

The gnm model is then specified as follows, using the poisson family with a log link function:

```
> RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson,
+ data = mentalHealth)
```

```
Initialising
Running start-up iterations..
Running main iterations
Done
> RC1model
Call:
gnm(formula = count ~ SES + MHS + Mult(SES, MHS), family = poisson,
    data = mentalHealth)
Coefficients:
\begin{tabular}{rrr} 
Intercept) & SESB & SESC \\
3.83543 & -0.06739 & 0.10800 \\
SESD & SESE & SESF \\
0.40196 & 0.01966 & -0.20842 \\
MHSmild & MHSmoderate & \\
0.71188 & 0.20370 & MHSimpaired \\
MHS).SESA & Mult(., MHS).SESB & 0.24956 \\
0.95853 & 0.96636 & Mult(., MHS).SESC \\
MHS).SESD & Mult(., MHS).SESE & 0.32099 \\
-0.02141 & -0.86716 & Mult(., MHS).SESF \\
.).MHSwell & Mult(SES, .).MHSmild & Mult(SES, .).MHSmoderate \\
0.32802 & 0.03048 & -1.56200 \\
\hline
\end{tabular}
Mult(SES, .).MHSimpaired
        -0.27035
\begin{tabular}{ll} 
Deviance: & 3.570562 \\
Pearson chi-squared: & 3.568088 \\
Residual df: & 8
\end{tabular}
```

The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be normalized as in Agresti's eqn (9.15):

```
> rowProbs <- with(mentalHealth, tapply(count, SES, sum) / sum(count))
> colProbs <- with(mentalHealth, tapply(count, MHS, sum) / sum(count))
> rowScores <- coef(RC1model)[10:15]
> colScores <- coef(RC1model)[16:19]
> rowScores <- rowScores - sum(rowScores * rowProbs)
> colScores <- colScores - sum(colScores * colProbs)
> beta1 <- sqrt(sum(rowScores^2 * rowProbs))
> beta2 <- sqrt(sum(colScores^2 * colProbs))
> assoc <- list(beta = beta1 * beta2,
+ mu = rowScores / beta1,
+ nu = colScores / beta2)
> assoc
```


\$beta

[1] 0. 1664874

```
$mu
Mult(., MHS).SESA Mult(., MHS).SESB Mult(., MHS).SESC Mult(., MHS).SESD
    1.11233085 1.12143706 0.37107608 -0.02702931
Mult(., MHS).SESE Mult(., MHS).SESF
    -1.01036141 -1.81823304
$nu
```

```
    Mult(SES, .).MHSwell Mult(SES, .).MHSmild Mult(SES, .).MHSmoderate
    1.6775144 0.1403989 -0.1369926
```

Mult(SES, .).MHSimpaired
-1.4136909

Alternatively, the elliptical contrasts mu and nu can be obtained using getContrasts, with the advantage that the standard errors for the contrasts will also be computed:

```
> mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"),
+ ref = rowProbs, scaleWeights = rowProbs)
> nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"),
+ ref = colProbs, scaleWeights = colProbs)
> mu
```

 Estimate Std. Error
 Mult(., MHS).SESA 1.111360520 .2992108
Mult(., MHS).SESB 1.12045878 0.3142156
Mult(., MHS).SESC 0.37075238 0.3191514
Mult(., MHS).SESD -0.02700573 0. 2732755
Mult(., MHS).SESE -1.00948003 0.3146991
Mult(., MHS).SESF -1.81664693 0.2809530
$>n u$

	Estimate	Std. Error
Mult(SES, .).MHSwell	1.6737834	0.1904282
Mult(SES, .).MHSmild	0.1400866	0.2001792
Mult(SES, .).MHSmoderate	-0.1366879	0.2794787
Mult(SES, .).MHSimpaired -1.4105466	$\mathbf{0 . 1 7 4 1 8 1 8}$	

Since the value of beta is dependent upon the particular scaling used for the contrasts, it is typically not of interest to conduct inference on this parameter directly. The standard error for beta could be obtained, if desired, via the delta method.

7.1.2 $\mathbf{R C}(2)$ model

The $\mathrm{RC}(1)$ model can be extended to an $\mathrm{RC}(m)$ model with m components of the multiplicative interaction. For example, the $\mathrm{RC}(2)$ model is given by

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c}+\theta_{r} \phi_{c} .
$$

Extra instances of the multiplicative interaction can be specified by the multiplicity argument of Mult, so the $\mathrm{RC}(2)$ model can be fitted to the mentalHealth data as follows

```
> RC2model <- gnm(count ~ SES + MHS + instances(Mult(SES, MHS), 2),
+ family = poisson, data = mentalHealth)
Initialising
Running start-up iterations..
Running main iterations
Done
> RC2model
Call:
gnm(formula = count ~ SES + MHS + instances(Mult(SES, MHS), 2),
    family = poisson, data = mentalHealth)
Coefficients:
```

```
        (Intercept) SESB
            3.8603353 -0.0556106
                SESC SESD
    0.1097869 0.3284008
                SESE SESF
    -0.0381411 -0.1524531
        MHSmild MHSmoderate
    0.7102765 0.1892520
    MHSimpaired Mult(., MHS, inst = 1).SESA
    0.2488493
    Mult(., MHS, inst = 1).SESB
                            -0.2146166
    Mult(., MHS, inst = 1).SESD
        0.8399440
        Mult(., MHS, inst = 1).SESF
            -1.9282818
    Mult(SES, ., inst = 1).MHSmild
                            0.0791084
Mult(SES, ., inst = 1).MHSimpaired
                    -0.4539996
        Mult(., MHS, inst = 2).SESB
                            -0.4908029
        Mult(., MHS, inst = 2).SESD
                            0.5515182
        Mult(., MHS, inst = 2).SESF
            -0.6576153
    Mult(SES, ., inst = 2).MHSmild
                -0.0092990
            -0.0175314
        Mult(., MHS, inst = 1).SESC
            -0.2679378
        Mult(., MHS, inst = 1).SESE
        0.3076632
        Mult(SES, ., inst = 1).MHSwell
        0.6285745
    Mult(SES, ., inst = 1).MHSmoderate
                            -0.0465426
        Mult(., MHS, inst = 2).SESA
                            -0.3575749
        Mult(., MHS, inst = 2).SESC
            -0.2886945
        Mult(., MHS, inst = 2).SESE
                                    0.5001104
        Mult(SES, ., inst = 2).MHSwell
                            -0.8149901
    Mult(SES, ., inst = 2).MHSmoderate
                            0.0006713
Mult(SES, ., inst = 2).MHSimpaired
                        0.8711873
Deviance: 0.5225353
Pearson chi-squared: 0.523331
Residual df: 3
```


7.1.3 Homogeneous effects

If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction could be modelled by a multiplicative interaction with homogeneous effects, that is

$$
\log \mu_{r c}=\alpha_{r}+\beta_{c}+\gamma_{r} \gamma_{c} .
$$

For example, the occupationalStatus data set from Goodman (1979) is a contingency table classified by the occupational status of fathers (origin) and their sons (destination). Goodman (1979) fits a row-column association model with homogeneous effects to these data after deleting the cells on the main diagonal. Equivalently we can account for the diagonal effects by a separate Diag term:

```
> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ MultHomog(origin, destination), family = poisson,
+ data = occupationalStatus)
Initialising
Running start-up iterations..
Running main iterations........
Done
> RChomog
```

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus)

Coefficients:

(Intercept)	origin2
0.22086	0.51159
origin3	origin4
1.59819	1.89849
origin5	origin6
0.67860	2.72414
origin7	origin8
1.38428	1.11467

destination
ationz
0.93060
destination4
2.18692
destination6
3.02762
destination8
1.69005

Diag(origin, destination)2 0.45600

Diag(origin, destination)4 0.38918

Diag(origin, destination)6 0.13474

Diag(origin, destination) 8 0.38847

MultHomog(origin, destination)2 -1. 25293
MultHomog(origin, destination)4 -0.07088
MultHomog(origin, destination)6 0.45804
destination3 1.94260
destination5 1.57802
destination7 2.13587

Diag(origin, destination)1
1.52667

Diag(origin, destination)3
-0.01598
Diag(origin, destination) 5
0.73852

Diag(origin, destination)7
0.45764

MultHomog(origin, destination)1
-1.47122
MultHomog(origin, destination)3
-0. 65476
MultHomog(origin, destination) 5
-0.05371
MultHomog(origin, destination)7
0.87418

MultHomog(origin, destination) 8 1.11776

Deviance: $\quad 32.56098$
Pearson chi-squared: 31.20716
Residual df: 34

To determine whether it would be better to allow for heterogeneous effects on the association of the fathers' occupational status and the sons' occupational status, we can compare this model to the $\mathrm{RC}(1)$ model for these data:

```
> RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Mult(origin, destination), family = poisson,
+ data = occupationalStatus)
Initialising
Running start-up iterations..
Running main iterations.
Done
> anova(RChomog, RCheterog)
```

Analysis of Deviance Table

```
Model 1: Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin,
    destination)
Model 2: Freq ~ origin + destination + Diag(origin, destination) + Mult(origin,
        destination)
    Resid. Df Resid. Dev Df Deviance
13432.561
\(\begin{array}{lllll}2 & 28 & 29.149 & 6 & 3.4118\end{array}\)
```

In this case there is little gain in allowing heterogeneous effects.

7.2 Diagonal reference models

Diagonal reference models, proposed by Sobel (1981, 1985), are designed for contingency tables classified by factors with the same levels. The cell means are modelled as a function of the diagonal effects, i.e., the mean responses of the 'diagonal' cells in which the levels of the row and column factors are the same.

Dref example 1: Political consequences of social mobility

To illustrate the use of diagonal reference models we shall use the voting data from Clifford and Heath (1993). The data come from the 1987 British general election and are the percentage voting Labour in groups crossclassified by the class of the head of household (destination) and the class of their father (origin). In order to weight these percentages by the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour:

```
> set.seed(1)
> count <- with(voting, percentage/100 * total)
> yvar <- cbind(count, voting$total - count)
```

The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonal effects for the corresponding origin and destination classes. This model may be expressed as

$$
\mu_{o d}=\frac{e^{\delta_{1}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{o}+\frac{e^{\delta_{2}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{d}
$$

See Section 3.3 for more detail on the parameterization.
The basic diagonal reference model may be fitted using gnm as follows

```
> classMobility <- gnm(yvar ~ Dref(origin, destination),
+ family = binomial, data = voting)
```

Initialising
Running main iterations........
Done
> classMobility
Call:
gnm(formula = yvar ~ Dref(origin, destination), family = binomial,
data $=$ voting)
Coefficients:
(Intercept) Dref(origin, destination)delta1
-1. 34325
-0. 30736
Dref(origin, destination)delta2
-0.05501
Dref(., .).origin|destination1
-0. 83454
Dref(., .).origin|destination2
Dref(., .).origin|destination3
Q. 21066
-0. 61159

$\operatorname{Dref}(., ~.) . o r i g i n \mid d e s t i n a t i o n 4$	Dref(., .).origin\|destination5
0.76500	1.38370

Deviance:	21.22093
Pearson chi-squared:	18.95311
Residual df:	19

and the origin and destination weights can be evaluated as below

```
> DrefWeights(classMobility)
$origin
    weight se
0.43724694 0.03996404
```

```
$destination
    weight se
0.56275306 0.03996404
```

These results are slightly different from those reported by Clifford and Heath (1993). The reason for this is unclear: we are confident that the above results are correct for the data as given in Clifford and Heath (1993), but have not been able to confirm that the data as printed in the journal were exactly as used in Clifford and Heath's analysis.

Clifford and Heath (1993) suggest that movements in and out of the salariat (class 1) should be treated differently from movements between the lower classes (classes 2-5), since the former has a greater effect on social status. Thus they propose the following model

$$
\mu_{o d}= \begin{cases}\frac{e^{\delta_{1}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{o}+\frac{e^{\delta_{2}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{d} & \text { if } o=1 \\ \frac{e^{\delta_{3}}}{e^{\delta_{3}}+e^{\delta_{4}}} \gamma_{o}+\frac{e^{\delta_{4}}}{e^{\delta_{3}}+e^{\delta_{4}}} \gamma_{d} & \text { if } d=1 \\ \frac{e^{\delta_{5}}}{e^{\delta_{5}}+e^{\delta_{6}}} \gamma_{o}+\frac{e^{\delta_{6}}}{e^{\delta_{5}}+e^{\delta_{6}}} \gamma_{d} & \text { if } o \neq 1 \text { and } d \neq 1\end{cases}
$$

To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat

```
> upward <- with(voting, origin != 1 & destination == 1)
> downward <- with(voting, origin == 1 & destination != 1)
```

Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows

```
> socialMobility <- gnm(yvar ~ Dref(origin, destination,
+ delta = ~ 1 + downward + upward),
+ family = binomial, data = voting)
Initialising
Running main iterations.........
Done
> socialMobility
Call:
gnm(formula = yvar ~ Dref(origin, destination, delta = ~1 + downward +
    upward), family = binomial, data = voting)
Coefficients:
```

Dref(origin, destination, delta $=\sim$. + downward + upward).delta1(Intercept) 0.1875

Dref(origin, destination, delta $=\sim 1+\ldots+$ upward).delta1downwardTRUE 0.3442

Dref(origin, destination, delta $=\sim 1+$ downward + .).deltalupwardTRUE 0.2174

Dref(origin, destination, delta = ~ . + downward + upward).delta2(Intercept) 0.5743

Dref(origin, destination, delta $=\sim 1+\ldots+$ upward).delta2downwardTRUE -0. 4665
Dref(origin, destination, delta $=\sim 1+$ downward + .).delta2upwardTRUE 0.2776

Dref(., ., delta = $\sim 1+$ downward + upward).origin|destination1 -0. 7183
Dref(., ., delta = ~ 1 + downward + upward).origin|destination2
0.2266

Dref(., ., delta = ~ 1 + downward + upward).origin|destination3
-0. 6555
Dref(., ., delta = $\sim 1+$ downward + upward).origin|destination4 0.7702

Dref(., ., delta = ~ 1 + downward + upward).origin|destination5
1.3969

Deviance:	18.97407
Pearson chi-squared:	17.07493
Residual df:	17

The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be evaluated as below

```
> DrefWeights(socialMobility)
$origin
    downward upward weight se
        FALSE FALSE 0.4044959 0.05918141
            TRUE FALSE 0.6044393 0.12371032
            FALSE TRUE 0.3900792 0.08134359
$destination
    downward upward weight se
        FALSE FALSE 0.5955041 0.05918141
            TRUE FALSE 0.3955607 0.12371032
        FALSE TRUE 0.6099208 0.08134359
```

Again, the results differ slightly from those reported by Clifford and Heath (1993), but the essence of the results is the same: the origin weight is much larger for the downwardly mobile group than for the other groups. The weights for the upwardly mobile group are very similar to the base level weights, so the model may be simplified by only fitting separate weights for the downwardly mobile group:

```
> downwardMobility <- gnm(yvar ~ Dref(origin, destination,
    delta = ~ 1 + downward),
+ family = binomial, data = voting)
```


Initialising

Running main iterations........
Done

```
> downwardMobility
Call:
gnm(formula = yvar ~ Dref(origin, destination, delta = ~1 + downward),
    family = binomial, data = voting)
Coefficients:
                                    (Intercept)
                                    -1.32007
Dref(origin, destination, delta = ~ . + downward).delta1(Intercept)
                                    0.05458
        Dref(origin, destination, delta = ~ 1 + .).delta1downwardTRUE
                0.16498
Dref(origin, destination, delta = ~ . + downward).delta2(Intercept)
                                    0.46337
        Dref(origin, destination, delta = ~ 1 + .).delta2downwardTRUE
                                    -0.64576
        Dref(., ., delta = ~ 1 + downward).origin|destination1
                                    -0.74980
        Dref(., ., delta = ~ 1 + downward).origin|destination2
                                    0.21354
        Dref(., ., delta = ~ 1 + downward).origin|destination3
                        -0.67158
        Dref(., ., delta = ~ 1 + downward).origin|destination4
                                    0.74699
        Dref(., ., delta = ~ 1 + downward).origin|destination5
                                    1.37637
Deviance:
        18.99389
Pearson chi-squared: 17.09981
Residual df: 18
> DrefWeights(downwardMobility)
$origin
    downward weight se
1 FALSE 0.3992031 0.04750643
2 TRUE 0.5991570 0.11951340
$destination
    downward weight se
1 FALSE 0.6007969 0.04750643
2 TRUE 0.4008430 0.11951340
```


Dref example 2: conformity to parental rules

Another application of diagonal reference models is given by van der Slik et al. (2002). The data from this paper are not publicly availabl ${ }^{3}$, but we shall show how the models presented in the paper may be estimated using gnm.

The data relate to the value parents place on their children conforming to their rules. There are two response variables: the mother's conformity score (MCFM) and the father's conformity score (FCFF). The data are crossclassified by two factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates (AGEM, MRMM, FRMF, MWORK, MFCM and FFCF).

In their baseline model for the mother's conformity score, van der Slik et al. (2002) include five of the six covariates (leaving out the father's family conflict score, FCFF) and a diagonal reference term with constant

[^3]weights based on the two education factors. This model may be expressed as
$$
\mu_{r c i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\beta_{4} x_{4 i}+\beta_{5} x_{5 i}+\frac{e^{\delta_{1}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{r}+\frac{e^{\delta_{2}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{c}
$$

The baseline model can be fitted as follows:

```
> set.seed(1)
> A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
+ verbose = FALSE)
>A
Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
    Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
    verbose = FALSE)
Coefficients:
\begin{tabular}{rrrr} 
AGEM & MRMM & FRMF \\
0.06363 & -0.32425 & & -0.25324 \\
MWORK & MFCM & Dref(MOPLM, FOPLF)delta1 \\
-0.06430 & -0.06043 & & -0.33731 \\
LF)delta2 & Dref(., .).MOPLM|FOPLF1 & Dref(., .).MOPLM|FOPLF2 \\
-0.02505 & 4.95121 & & 4.86329 \\
M|FOPLF3 & Dref(., .).MOPLM|FOPLF4 & Dref(., .).MOPLM|FOPLF5 \\
4.86458 & 4.72343 & & 4.43516 \\
4. & &
\end{tabular}
Deviance:
425.3389
Pearson chi-squared: 425.3389
Residual df: 576
```

The coefficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic identifiability constraints that have been imposed are sufficient for these parameters to be identified. The diagonal effects do not need to be constrained as they represent contrasts with the off-diagonal cells. Therefore the only unidentified parameters in this model are the weight parameters. This is confirmed in the summary of the model:

```
> summary(A)
Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
    Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
    verbose = FALSE)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-3.63688 & -0.50383 & 0.01714 & 0.56753 & 2.25139
\end{tabular}
```

Coefficients:

	Estimate					Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
AGEM	0.06363	0.07375	0.863	0.38859				
MRMM	-0.32425	0.07766	-4.175	$3.44 \mathrm{e}-05$				
FRMF	-0.25324	0.07681	-3.297	0.00104				
MWORK	-0.06430	0.07431	-0.865	0.38727				
MFCM	-0.06043	0.07123	-0.848	0.39663				

Dref(MOPLM, FOPLF)delta1	-0.33731	NA	NA	NA
Dref(MOPLM, FOPLF) delta2	-0.02505	NA	NA	NA
Dref(., .).MOPLM\|FOPLF1	4.95121	0.16639	29.757	$<2 \mathrm{e}-16$
Dref(., .).MOPLM\|FOPLF2	4.86329	0.10436	46.602	$<2 \mathrm{e}-16$
Dref(., .).MOPLM\|FOPLF3	4.86458	0.12855	37.842	$<2 \mathrm{e}-16$
Dref(., .).MOPLM\|FOPLF4	4.72343	0.13523	34.929	$<2 \mathrm{e}-16$
Dref(., .).MOPLM\|FOPLF5	4.43516	0.19314	22.963	$<2 \mathrm{e}-16$
Dref(., .).MOPLM\|FOPLF6	4.18873	0.17142	24.435	$<2 \mathrm{e}-16$
Dref(., .).MOPLM\|FOPLF7	4.43378	0.16903	26.231	$<2 \mathrm{e}-16$

(Dispersion parameter for gaussian family taken to be 0.7384355)				

Std. Error is NA where coefficient has been constrained or is unidentified
Residual deviance: 425.34 on 576 degrees of freedom
AIC: 1507.8

Number of iterations: 15
The weights have been constrained to sum to one as described in Section 3.3, so the weights themselves may be estimated as follows:

```
> prop.table(exp(coef(A)[6:7]))
    Dref(MOPLM, FOPLF)delta1 Dref(MOPLM, FOPLF)delta2
    0.4225638 0.5774362
```

However, in order to estimate corresponding standard errors, the parameters of one of the weights must be constrained. If no such constraints were applied when the model was fitted, DrefWeights will refit the model constraining the parameters of the first weight to zero:

```
> DrefWeights(A)
```

Refitting with parameters of first Dref weight constrained to zero
\$MOPLM
weight se
0.42256360 .1439829

\$FOPLF

```
    weight se
```

0.57743640 .1439829
giving the values reported by van der Slik et al. (2002). All the other coefficients of model A are the same as those reported by van der Slik et al. (2002) except the coefficients of the mother's gender role (MRMM) and the father's gender role (FRMF). van der Slik et al. (2002) reversed the signs of the coefficients of these factors since they were coded in the direction of liberal values, unlike the other covariates. However, simply reversing the signs of these coefficients does not give the same model, since the estimates of the diagonal effects depend on the estimates of these coefficients. For consistent interpretation of the covariate coefficients, it is better to recode the gender role factors as follows:

```
> MRMM2 <- as.numeric(!conformity$MRMM)
> FRMF2 <- as.numeric(!conformity$FRMF)
>A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
+ Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
+ verbose = FALSE)
>A
Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
```

```
    Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
    verbose = FALSE)
Coefficients:
\begin{tabular}{rrrr} 
AGEM & MRMM2 & FRMF2 \\
0.06363 & & 0.32425 & 0.25324 \\
MWORK & & MFCM & Dref(MOPLM, FOPLF)delta1 \\
-0.06430 & & -0.06043 & \\
Dref(MOPLM, FOPLF) delta2 & Dref(., .).MOPLM|FOPLF1 & Dref(., .).MOPLM|FOPLF2 \\
0.39666 & & 4.37371 & 4.28579 \\
Dref(., .).MOPLM|FOPLF3 & Dref(., .).MOPLM|FOPLF4 & Dref(., .).MOPLM|FOPLF5 \\
4.28708 & & 4.14593 & \\
Dref(., .).MOPLM|FOPLF6 & Dref(., .).MOPLM|FOPLF7 & \\
3.61123 & & 3.85629 &
\end{tabular}

The coefficients of the covariates are now as reported by van der Slik et al. (2002), but the diagonal effects have been adjusted appropriately.
van der Slik et al. (2002) compare the baseline model for the mother's conformity score to several other models in which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they consider incorporates an interaction of the weights with the mother's conflict score as follows:
\[
\mu_{r c i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\beta_{4} x_{4 i}+\beta_{5} x_{5 i}+\frac{e^{\xi_{01}+\xi_{11} x_{5 i}}}{e^{\xi_{01}+\xi_{11} x_{5 i}}+e^{\xi_{02}+\xi_{12} x_{5 i}}} \gamma_{r}+\frac{e^{\xi_{02}+\xi_{12} x_{5 i}}}{e^{\xi_{01}+\xi_{11} x_{5 i}}+e^{\xi_{02}+\xi_{12} x_{5 i}}} \gamma_{c} .
\]

This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the results reported by van der Slik et al. (2002),
```

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

+ Dref(MOPLM, FOPLF, delta = ~ 1 + MFCM), family = gaussian,
+ data = conformity, verbose = FALSE)
> F
Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian,
data = conformity, verbose = FALSE)

```
Coefficients:
                                    AGEM
                                    0.05818
                                    MRMM
                                    -0. 32701
                                    FRMF
                                    -0. 25772
                                    MWORK
                                    -0.07847
                                    MFCM
                            -0.01694
Dref(MOPLM, FOPLF, delta \(=\sim\). + MFCM).delta1 (Intercept)
                                    1.03515
    Dref(MOPLM, FOPLF, delta \(=\sim 1+\).).delta1MFCM
                                    -1.77756
Dref(MOPLM, FOPLF, delta \(=\sim\). + MFCM).delta2(Intercept)
                                    -0.03515
\[
\begin{aligned}
& \text { Dref(MOPLM, FOPLF, delta }=\sim 1+\text {.).delta2MFCM } \\
& 2.77756 \\
& \text { Dref(., ., delta = } \sim 1+\text { MFCM).MOPLM|FOPLF1 } \\
& 4.82476 \\
& \text { Dref(., ., delta }=\sim 1+\text { MFCM).MOPLM|FOPLF2 } \\
& 4.88066 \\
& \text { Dref(., ., delta = ~ } 1 \text { + MFCM).MOPLM|FOPLF3 } \\
& 4.83969 \\
& \text { Dref(., ., delta }=\sim 1+\text { MFCM).MOPLM|FOPLF4 } \\
& 4.74850 \\
& \text { Dref(., ., delta }=\sim 1+\text { MFCM).MOPLM|FOPLF5 } \\
& 4.42020 \\
& \text { Dref(., ., delta = } 1+\text { MFCM).MOPLM|FOPLF6 } \\
& 4.17957 \\
& \text { Dref(., ., delta }=\sim 1+\text { MFCM).MOPLM|FOPLF7 } \\
& 4.40819
\end{aligned}
\]
```

Deviance: 420.9022
Pearson chi-squared: 420.9022
Residual df: 575

```

In this case there are two sets of weights, one for when the mother's conflict score is less than average (coded as zero) and one for when the score is greater than average (coded as one). These can be evaluated as follows:
```

> DrefWeights(F)
Refitting with parameters of first Dref weight constrained to zero
\$MOPLM
MFCM weight se
1 10.02974675 0.2277711
2 0 0.74465224 0.2006916
\$FOPLF
MFCM weight se
10.9702532 0.2277711
2 0 0.2553478 0.2006916

```
giving the same weights as in Table 4 of van der Slik et al. (2002), though we obtain a lower standard error in the case where MFCM is equal to one.

\subsection*{7.3 Uniform difference (UNIDIFF) models}

Uniform difference models (Xie, 1992; Erikson and Goldthorpe, 1992) use a simplified three-way interaction to provide an interpretable model of contingency tables classified by three or more variables. For example, the uniform difference model for a three-way contingency table, also known as the UNIDIFF model, is given by
\[
\mu_{i j k}=\alpha_{i k}+\beta_{j k}+\exp \left(\delta_{k}\right) \gamma_{i j} .
\]

The \(\gamma_{i j}\) represent a pattern of association that varies in strength over the dimension indexed by \(k\), and \(\exp \left(\delta_{k}\right)\) represents the relative strength of that association at level \(k\).

This model can be applied to the yaish data set (Yaish, 1998, 2004), which is a contingency table crossclassified by father's social class (orig), son's social class (dest) and son's education level (educ). In this case, we can consider the importance of the association between the social class of father and son across the education levels. We omit the sub-table which corresponds to level 7 of dest, because its information content is negligible:
```

> set.seed(1)
> unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest),

+ ofInterest = "[.]educ", family = poisson,
+ data = yaish, subset = (dest != 7))

```
```

Initialising
Running start-up iterations..
Running main iterations
Done
> coef(unidiff)
Coefficients of interest:
Mult(Exp(.), orig:dest).educ1 Mult(Exp(.), orig:dest).educ2
-0.05643003 -0.28180183
Mult(Exp(.), orig:dest).educ3 Mult(Exp(.), orig:dest).educ4
-0.79985357 -1.09536845
Mult(Exp(.), orig:dest).educ5
-2.30593232

```

The ofInterest component has been set to index the multipliers of the association between the social class of father and son. We can contrast each multiplier to that of the lowest education level and obtain the standard errors for these parameters as follows:
```

> getContrasts(unidiff, ofInterest(unidiff))

```
\begin{tabular}{lrrrr} 
& & estimate & SE & quasiSE
\end{tabular} quasiVar

Four-way contingency tables may sometimes be described by a "double UNIDIFF" model
\[
\mu_{i j k l}=\alpha_{i l}+\beta_{j k l}+\exp \left(\delta_{l}\right) \gamma_{i j}+\exp \left(\phi_{l}\right) \theta_{i k}
\]
where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth variable. The cautres data set, from Cautres et al. (1998), can be used to illustrate the application of the double UNIDIFF model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF model, we can see how the association between class and vote, and the association between religion and vote, differ between the most recent election and the other elections:
```

> set.seed(1)
> doubleUnidiff <- gnm(Freq ~ election*vote + election*class*religion +

+ Mult(Exp(election), religion:vote) +
+ Mult(Exp(election), class:vote),
+
+ family = poisson, data = cautres)
Initialising
Running start-up iterations..
Running main iterations
Done
> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", class:vote")))
Mult(Exp(.), class:vote).election4 0.00000000 0.0000000 0.10934796 0.011956977
Mult(Exp(.), class:vote).election3 0.08754411 0.1446833 0.09475939 0.008979341
Mult(Exp(.), class:vote).election2 0.31990704 0.1320022 0.07395886 0.005469914
Mult(Exp(.), class:vote).election1 -0.36183034 0.2534754 0.22854401 0.052232364
> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", religion:vote")))

```
```

 estimate SE quasiSE
 Mult(Exp(.), religion:vote).election4 0.00000000 0.00000000 0.07168290
Mult(Exp(.), religion:vote).election3 0.06682585 0.09906916 0.06812239
Mult(Exp(.), religion:vote).election2 0.24052778 0.09116479 0.05702819
Mult(Exp(.), religion:vote).election1 0.32834589 0.12213023 0.09803075
quasiVar
Mult(Exp(.), religion:vote).election4 0.005138439
Mult(Exp(.), religion:vote).election3 0.004640660
Mult(Exp(.), religion:vote).election2 0.003252214
Mult(Exp(.), religion:vote).election1 0.009610029

```

\subsection*{7.4 Generalized additive main effects and multiplicative interaction (GAMMI) models}

Generalized additive main effects and multiplicative interaction models, or GAMMI models, were motivated by two-way contingency tables and comprise the row and column main effects plus one or more components of the multiplicative interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the strength of association between the row and column scores, indicating the importance of the component, or axis.

For cell means \(\mu_{r c}\) a GAMMI-K model has the form
\[
\begin{equation*}
g\left(\mu_{r c}\right)=\alpha_{r}+\beta_{c}+\sum_{k=1}^{K} \sigma_{k} \gamma_{k r} \delta_{k c}, \tag{1}
\end{equation*}
\]
in which \(g\) is a link function, \(\alpha_{r}\) and \(\beta_{c}\) are the row and column main effects, \(\gamma_{k r}\) and \(\delta_{k c}\) are the row and column scores for multiplicative component \(k\) and \(\sigma_{k}\) is the singular value for component \(k\). The number of multiplicative components, \(K\), is less than or equal to the rank of the matrix of residuals from the main effects.

The row-column association models discussed in Section 7.1 are examples of GAMMI models, with a log link and poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a constant variance.

We shall use the wheat data set taken from Vargas et al. (2001), which gives wheat yields measured over ten years. First we scale these yields and create a new treatment factor, so that we can reproduce the analysis of Vargas et al. (2001):
```

> set.seed(1)
> yield.scaled <- wheat$yield * sqrt(3/1000)
> treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure,

+ wheat\$N, sep = "")

```

Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from the wheat dataset. We will proceed by first fitting the main effects model, then using residSVD (see Section 5.5) for the parameters of the multiplicative term:
```

> mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian,

+ data = wheat)
> svdStart <- residSVD(mainEffects, year, treatment, 3)
> bilinear1 <- update(mainEffects, . ~ . + Mult(year, treatment),
+ start = c(coef(mainEffects), svdStart[,1]))

```

Running main iterations..
Done
We can compare the AMMI-1 model to the main effects model,
```

> anova(mainEffects, bilinear1, test = "F")
Analysis of Deviance Table
Model 1: yield.scaled ~ year + treatment

```
```

Model 2: yield.scaled ~ year + treatment + Mult(year, treatment)
Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 207 279515
2 176 128383 31 151133 6.6835 < 2.2e-16

```
giving the same results as in Table 1 of Vargas et al. (2001) (up to error caused by rounding).
Thus the significance of the multiplicative interaction can be tested without applying constraints to this term. If the multiplicative interaction is significant, we may wish to apply constraints to obtain estimates of the row and column scores. We illustrate this using the barleyHeights data, which records the average height for 15 genotypes of barley over 9 years.

For this small dataset the AMMI-1 model is easily estimated with the default settings:
```

> set.seed(1)
> barleyModel <- gnm(height ~ year + genotype + Mult(year, genotype),

+ data = barleyHeights)

```

Initialising
Running start-up iterations..
Running main iterations.......
Done
To obtain the parameterization of Equation 1 in which \(\sigma_{k}\) is the singular value for component \(k\), the row and column scores must be constrained so that the scores sum to zero and the squared scores sum to one. These contrasts can be obtained using getContrasts:
```

> gamma <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]y"),

+ ref = "mean", scaleWeights = "unit")
delta <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]g"),
+ ref = "mean", scaleWeights = "unit")
gamma

```
\begin{tabular}{lrrr} 
& Estimate & Std. Error \\
Mult(., genotype).year1974 & 0.22662083 & 0.05621029 \\
Mult(., genotype).year1975 & 0.51350519 & 0.04856519 \\
Mult(., genotype).year1976 & 0.43898738 & 0.05124785 \\
Mult(., genotype).year1977 & -0.20046457 & 0.05658391 \\
Mult(., genotype).year1978 & -0.53320298 & 0.04775769 \\
Mult(., genotype).year1979 & 0.14181352 & 0.05724921 \\
Mult(., genotype).year1980 & -0.33249439 & 0.05418746 \\
Mult(., genotype).year1981 & -0.17553769 & 0.05689550 \\
Mult(., genotype).year1982 & -0.07922728 & 0.05770322
\end{tabular}
```

> delta

```

Estimate Std. Error
Mult(year, .).genotype1 0.079143300 0.05913864
Mult(year, .).genotype10 -0.335345232 0.05564859
Mult(year, .).genotype11 -0. 3759095140.05466190
Mult(year, .).genotype12 0. 2852390580.05669279
Mult(year, .).genotype13 -0. 1683166680.05843057
Mult(year, .).genotype14 0. 2930526730.05654225
Mult(year, .).genotype15 0.460366625 0.05216774
Mult(year, .).genotype2 0.007543294 0.05933628
Mult(year, .).genotype3 0.169718829 0.05841527
Mult(year, .).genotype4 -0.047168473 0.05926732
Mult(year, .).genotype5 0.181497848 0.05828153
Mult(year, .).genotype6 0.129417613 0.05880326
Mult(year, .).genotype7 0.013581894 0.05933222
Mult(year, .).genotype8 -0.4222429660 .05337051
Mult(year, .).genotype9 -0.270578282 0.05696326

Confidence intervals based on the assumption of asymptotic normality can be computed as follows:
```

> gamma[[2]][,1] + (gamma[[2]][,2]) %o% c(-1.96, 1.96)
[,1] [,2]
[1,] 0.11644866 0.33679300
[2,] 0.41831741 0.60869296
[3,] 0.33854160 0.53943316
[4,] -0.31136904 -0.08956010
[5,] -0.62680805 -0.43959792
[6,] 0.02960507 0.25402198
[7,] -0.43870182 -0.22628697
[8,] -0.28705286-0.06402252
[9,] -0.19232559 0.03387103
> delta[[2]][,1] + (delta[[2]][,2]) %o% c(-1.96, 1.96)
[,1] [,2]
[1,] -0.03676844 0.19505504
[2,] -0.44441647-0.22627399
[3,] -0.48304683-0.26877219
[4,] 0.17412119 0.39635693
[5,] -0.28284059 -0.05379275
[6,] 0.18222986 0.40387548
[7,] 0.35811786 0.56261539
[8,] -0.10875581 0.12384240
[9,] 0.05522490 0.28421275
[10,] -0.16333242 0.06899548
[11,] 0.06726605 0.29572965
[12,] 0.01416323 0.24467200
[13,] -0.10270926 0.12987305
[14,] -0.52684917-0.31763677
[15,] -0.38222628 -0.15893028

```
which broadly agree with Table 8 of Chadoeuf and Denis (1991), allowing for the change in sign.
On the basis of such confidence intervals we can investigate simplifications of the model such as combining levels of the factors or fitting an additive model to a subset of the data.

The singular value \(\sigma_{k}\) may be obtained as follows
> svd(termPredictors(barleyModel)[, "Mult(year, genotype)"])\$d
[1] 43.49601
This parameter is of little interest in itself, given that the significance of the term as a whole can be tested using ANOVA.

The SVD representation can also be obtained quite easily for AMMI and GAMMI models with interaction rank greater than 1. See example (wheat) for an example of this in an AMMI model with rank 2. (The calculation of standard errors and confidence regions for the SVD representation with rank greater than 1 is not yet implemented, though.)

\subsection*{7.5 Biplot models}

Biplots are graphical displays of two-dimensional arrays, which represent the objects that index both dimensions of the array on the same plot. Here we consider the case of a two-way table, where a biplot may be used to represent both the row and column categories simultaneously.

A two-dimensional biplot is constructed from a rank-2 representation of the data. For two-way tables, the generalized bilinear model defines one such representation:
\[
g\left(\mu_{i j}\right)=\eta_{i j}=\alpha_{1 i} \beta_{1 j}+\alpha_{2 i} \beta_{2 j}
\]
since we can alternatively write
\[
\begin{aligned}
\boldsymbol{\eta} & =\left(\begin{array}{cc}
\alpha_{11} & \alpha_{21} \\
\vdots & \vdots \\
\alpha_{1 n} & \alpha_{2 n}
\end{array}\right)\left(\begin{array}{lll}
\beta_{11} & \ldots & \beta_{1 p} \\
\beta_{21} & \ldots & \beta_{2 p}
\end{array}\right) \\
& =\boldsymbol{A} \boldsymbol{B}^{T}
\end{aligned}
\]
where the columns of \(A\) and \(B\) are linearly independent by definition.
To demonstrate how the biplot is obtained from this model, we shall use the barley data set which gives the percentage of leaf area affected by leaf blotch for ten varieties of barley grown at nine sites (Wedderburn, 1974; Gabriel 1998). As suggested by Wedderburn (1974) we model these data using a logit link and a variance proportional to the square of that of the binomial, implemented as the wedderburn family in gnm (see also Section 22:
```

> set.seed(83)
> biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2),

+ family = wedderburn, data = barley)
Initialising
Running start-up iterations..
Running main iterations.
Done

```

The effect of site \(i\) can be represented by the point
\[
\left(\alpha_{1 i}, \alpha_{2 i}\right)
\]
in the space spanned by the linearly independent basis vectors
\[
\begin{aligned}
& a_{1}=\left(\alpha_{11}, \alpha_{12}, \ldots \alpha_{19}\right)^{T} \\
& a_{2}=\left(\alpha_{21}, \alpha_{22}, \ldots \alpha_{29}\right)^{T}
\end{aligned}
\]
and the variety effects can be similarly represented.
Thus we can represent the sites and varieties separately as follows
```

sites <- pickCoef(biplotModel, "[.]site")
coefs <- coef(biplotModel)
A <- matrix(coefs[sites], nc = 2)
B <- matrix(coefs[-sites], nc = 2)
par(mfrow = c(1, 2))
plot(A, pch = levels(barley$site), xlim = c(-5, 5), ylim =c(-5, 5),
 main = "Site Effects", xlab = "Component 1", ylab = "Component 2")
plot(B, pch = levels(barley$variety), xlim = c(-5, 5), ylim = c(-5, 5),
main = "Variety Effects", xlab = "Component 1", ylab = "Component 2")

```

Of course the parameterization of the bilinear model is not unique and therefore the scale and rotation of the points in these plots will depend on the random seed. By rotation and reciprocal scaling of the matrices \(A\) and \(B\), we can obtain basis vectors with desirable properties without changing the fitted model.

In particular, if we rotate the matrices \(A\) and \(B\) so that their columns are orthogonal, then the corresponding plots will display the euclidean distances between sites and varieties respectively. If we also scale the matrices \(A\) and \(B\) so that the corresponding plots have the same units, then we can combine the two plots to give a conventional biplot display.

The required rotation and scaling can be performed via singular value decomposition of the fitted predictors:


Figure 7: Plots of site and variety effects from the generalized bilinear model of the barley data.
```

> barleyMatrix <- xtabs(biplotModel\$predictors ~ site + variety,

+ data = barley)
> barleySVD <- svd(barleyMatrix)
>A <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2]
> B <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2]
> rownames(A) <- levels(barley$site)
> rownames(B) <- levels(barley$variety)
> colnames(A) <- colnames(B) <- paste("Component", 1:2)
>A
Component 1 Component 2
A 4.1948225 -0.39186724
B 2.7642412-0.33951385
C 1.4250454-0.04654266
D 1.8463067 0.33365989
E 1.2704088 0.15776723
F 1.1562913 0.40048199
G 1.0172048 0.72727987
H 0.6451366 1.46162701
I -0.1470898 2.13234201
>B
Component 1 Component 2
1 -2.0673648-0.97420446
2 -3.0599797-0.50683007
3-2.9598031-0.33190626
4 -1.8086247-0.49758477
5 -1.5579477 -0.08444511
6 -1.8939995 1.08460553
7 -1.1790432 0.40687014
8 -0.8490092 1.14671349
9 -0.9704664 1.26558202
X -0.6036789 1.39655881

```

These matrices are essentially the same as in Gabriel (1998). From these the biplot can be produced, for sites \(A \ldots I\) and varieties \(1 \ldots 9, X\) :
```

> barleyCol <- c("red", "blue")
> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),

+ col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data",
+ xlab = "Component 1", ylab = "Component 2")
> text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"),
+ col = barleyCol, adj = 0)

```

Biplot for barley data


Figure 8: Biplot for barley data
The biplot gives an idea of how the sites and varieties are related to one another. It also allows us to consider whether the data can be represented by a simpler model than the generalized bilinear model. We see that the points in the biplot approximately align with the rotated axes shown in Figure 9, such that the sites fall about a line parallel to the " h -axis" and the varieties group about two lines roughly parallel to the " v -axis".
```

> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),

+ col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data",
+ xlab = "Component 1", ylab = "Component 2")
> text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"),
+ col = barleyCol, adj = 0)
> abline(a = 0, b = tan(pi/3))
> abline(a = 0, b = -tan(pi/6))
> abline(a = 2.6, b = tan(pi/3), lty = 2)
> abline(a = 4.5, b = tan(pi/3), lty = 2)
> abline(a = 1.3, b = -tan(pi/6), lty = 2)
> text(2.8, 3.9, "v-axis", font = 3)
> text(3.8, -2.7, "h-axis", font = 3)

```

Biplot for barley data


Figure 9: Biplot for barley data, showing approximate alignment with rotated axes.

This suggests that the sites could be represented by points along a line, with co-ordinates
\[
\left(\gamma_{i}, \delta_{0}\right)
\]
and the varieties by points on two lines perpendicular to the site line:
\[
\left(v_{0}+v_{1} I(i \in\{2,3,6\}), \omega_{j}\right)
\]

This corresponds to the following simplification of the bilinear model:
\[
\begin{aligned}
& \alpha_{1 i} \beta_{1 j}+\alpha_{2 i} \beta_{2 j} \\
\approx & \gamma_{i}\left(v_{0}+v_{1} I(i \in\{2,3,6\})\right)+\delta_{0} \omega_{j}
\end{aligned}
\]
or equivalently
\[
\gamma_{i}\left(v_{0}+v_{1} I(i \in\{2,3,6\})\right)+\omega_{j},
\]
the double additive model proposed by Gabriel (1998). We can fit this model as follows:
```

> variety.binary <- factor(match(barley\$variety, c(2,3,6), nomatch = 0) > 0,

+ labels = c("rest", "2,3,6"))
doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary),
+ family = wedderburn, data = barley)
Initialising
Running start-up iterations..
Running main iterations...........................
Done

```

Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch incidence:
```

> biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")^2)
> doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")^2)
> c(doubleAddChiSq - biplotModChiSq,

+ doubleAdditive$df.residual - biplotModel$df.residual)

```

\section*{[1] 9.51377315 .000000}

\subsection*{7.6 Stereotype model for multinomial response}

The stereotype model was proposed by Anderson (1984) for ordered categorical data. It is a special case of the multinomial logistic model, in which the covariate coefficients are common to all categories but the scale of association is allowed to vary between categories such that
\[
p_{i c}=\frac{\exp \left(\beta_{0 c}+\gamma_{c} \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)}{\sum_{k=1}^{K} \exp \left(\beta_{0 k}+\gamma_{k} \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)}
\]
where \(p_{i c}\) is the probability that the response for individual \(i\) is category \(c\) and \(K\) is the number of categories. Like the multinomial logistic model, the stereotype model specifies a simple form for the log odds of one category against another, e.g.
\[
\log \left(\frac{p_{i c}}{p_{i k}}\right)=\left(\beta_{0 c}-\beta_{0 k}\right)+\left(\gamma_{c}-\gamma_{k}\right) \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}
\]

In order to model a multinomial response in the generalized nonlinear model framework, we must re-express the data as category counts \(Y_{i}=\left(Y_{i 1}, \ldots, Y_{i K}\right)\) for each individual (or group). Then assuming a Poisson distribution for the counts \(Y_{i c}\), the joint distribution of \(Y_{i}\) is \(\operatorname{Multinomial}\left(N_{i}, p_{i 1}, \ldots, p_{i K}\right)\) conditional on the total count for each individual \(N_{i}\). The expected counts are then \(\mu_{i c}=N_{i} p_{i c}\) and the parameters of the stereotype model can be estimated through fitting the following model
\[
\begin{aligned}
\log \mu_{i c} & =\log \left(N_{i}\right)+\log \left(p_{i c}\right) \\
& =\alpha_{i}+\beta_{0 c}+\gamma_{c} \sum_{r} \boldsymbol{\beta}_{r} \boldsymbol{x}_{i r}
\end{aligned}
\]
where the "nuisance" parameters \(\alpha_{i}\) ensure that the multinomial denominators are reproduced exactly, as required.
The gnm package includes the utility function expandCategorical to re-express the categorical response as category counts. By default, individuals with common values across all covariates are grouped together, to avoid redundancy.

For example, the backPain data set from Anderson (1984) describes the progress of patients with back pain. The data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. We re-express the data as follows:
```

> set.seed(1)
> subset(backPain, x1 == 1 \& x2 == 1 \& x3 == 1)

	x 1	x 2	x3	pain
1	1	1	1	same
2	1	1	1	marked.improvement
3	1	1	1	complete.relief
41	1	1	1	marked.improvement
42	1	1	1	complete.relief
43	1	1	1	complete.relief
44	1	1	1	complete.relief

> backPainLong <- expandCategorical(backPain, "pain")
> head(backPainLong)

	x1	x2	x3	pain id count	
1	1	1	1	worse	1

```
\begin{tabular}{rrrrrrr}
2 & 1 & 1 & 1 & same & 1 & 1 \\
3 & 1 & 1 & 1 & slight.improvement & 1 & 0 \\
4 & 1 & 1 & 1 & moderate.improvement & 1 & 0 \\
5 & 1 & 1 & 1 & marked.improvement & 1 & 2 \\
6 & 1 & 1 & 1 & complete.relief & 1 & 4
\end{tabular}

We can now fit the stereotype model to these data:
```

> oneDimensional <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3),

+ eliminate = id, family = "poisson", data = backPainLong)

```

\section*{Initialising}

Running start-up iterations..
Running main iterations................
Done
> oneDimensional
Call:
gnm(formula \(=\) count \(\sim\) pain + Mult(pain, \(x 1+x 2+x 3)\), eliminate \(=\) id, family = "poisson", data = backPainLong)

Coefficients of interest:
painsame
16.1578
painslight.improvement
15.6848
painmoderate.improvement
12.4556
painmarked.improvement
19.9140
paincomplete.relief
21.6653

Mult(., x1 + x2 + x3). painworse
0.3322

Mult(., x1 + x2 + x3).painsame -1.9147
Mult(., x1 + x2 + x3).painslight.improvement \(-1.7935\)
Mult(., x1 + x2 + x3).painmoderate.improvement \(-1.2625\)
Mult(., x1 + x2 + x3).painmarked.improvement -2. 4609
Mult(., x1 + x2 + x3). paincomplete.relief -2.9214
Mult(pain, . + x2 + x3).x1 1.6510

Mult(pain, x1 + . + x3).x2 0.9470

Mult(pain, x1 + x2 + .). x3 0.8338

Deviance:
55.90786

Pearson chi-squared: 49.61719
Residual df:
48
specifying the id factor through eliminate so that the 12 id effects are estimated more efficiently and are excluded from printed model summaries by default. This model is one dimensional since it involves only one
function of \(\mathbf{x}=(x 1, x 2, x 3)\). We can compare this model to one with category-specific coefficients of the \(x\) variables, as may be used for a qualitative categorical response:
```

> threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id,

+ family = "poisson", data = backPainLong)
> threeDimensional
Call:
gnm(formula = count ~ pain + pain:(x1 + x2 + x3), eliminate = id,
family = "poisson", data = backPainLong)
Coefficients of interest:
painsame
34.3281
painmoderate.improvement
30.8299
paincomplete.relief
40.4785
painsame:x1
1.7421
painmoderate.improvement:x1
2.3351
paincomplete.relief:x1
painsame:x2
0.6009
painmoderate.improvement:x2
1.6029
paincomplete.relief:x2
painsame:x3
1.7852
painmoderate.improvement:x3
2.1944
paincomplete.relief:x3
NA
Deviance: 51.82277
Pearson chi-squared: 43.86631
Residual df:
4 0

```

This model has the maximum dimensionality of three (as determined by the number of covariates). The ungrouped multinomial log-likelihoods reported in Anderson (1984) are given by
\[
\sum_{i, c} y_{i c} \log \left(p_{i c}\right)=\sum_{i, c} y_{i c} \log \left(\mu_{i c} / n_{i c}\right)
\]

We write a simple function to compute this and the corresponding degrees of freedom, then compare the loglikelihoods of the one dimensional model and the three dimensional model:
```

> logLikMultinom <- function(model, size){

+ object <- get(model)
+ l <- sum(object$y * log(object$fitted/size))
+ c(nParameters = object$rank - nlevels(object$eliminate), logLikelihood = 1)
+ }
> size <- tapply(backPainLong$count, backPainLong$id, sum)[backPainLong\$id]
> t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom, size))

```
\begin{tabular}{lrr} 
& nParameters & logLikelihood \\
oneDimensional & 12 & -151.5501 \\
threeDimensional & 20 & -149.5076
\end{tabular}
showing that the oneDimensional model is adequate.
To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the second multiplier to 1 , which may be achieved by specifying the covariate as an offset:
```

> \#\# before constraint
> summary(oneDimensional)

```

Call:
gnm(formula \(=\) count \(\sim\) pain + Mult(pain, \(x 1+x 2+x 3)\), eliminate \(=\) id, family = "poisson", data = backPainLong)

Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2.0335 & -0.9195 & -0.1354 & 0.3593 & 1.7115
\end{tabular}

Coefficients of interest:
\begin{tabular}{|c|c|c|c|}
\hline & Estimate & Error & value \\
\hline painsame & 16.1578 & 6.5741 & 2.458 \\
\hline painslight.improvement & 15.6848 & 6.5274 & 2.403 \\
\hline painmoderate.improvement & 12.4556 & 6.4312 & 1.937 \\
\hline painmarked.improvement & 19.9140 & 6.4975 & 3.065 \\
\hline paincomplete.relief & 21.6653 & 6.5571 & 3.304 \\
\hline Mult(., x1 + x2 + x3).painworse & 0.3322 & NA & NA \\
\hline Mult (., x1 + x2 + x3).painsame & -1.9147 & NA & NA \\
\hline Mult (., x1 + x2 + x3).painslight.improvement & -1.7935 & NA & NA \\
\hline Mult(., x1 + x2 + x3).painmoderate.improvement & -1.2625 & NA & NA \\
\hline Mult(., x1 + x2 + x3).painmarked.improvement & -2.4609 & NA & NA \\
\hline Mult(., x1 + x2 + x3).paincomplete.relief & -2.9214 & NA & NA \\
\hline Mult (pain, . + x2 + x3).x1 & 1.6510 & NA & NA \\
\hline Mult (pain, \(\mathrm{x} 1+\ldots+\mathrm{x} 3\) ).x2 & 0.9470 & NA & NA \\
\hline Mult (pain, \(\mathrm{x} 1+\mathrm{x} 2+\).).x3 & 0.8338 & NA & NA \\
\hline & \(\operatorname{Pr}(>|z|)\) & & \\
\hline painsame & 0.013980 & & \\
\hline painslight.improvement & 0.016265 & & \\
\hline painmoderate.improvement & 0.052777 & & \\
\hline painmarked.improvement & 0.002178 & & \\
\hline paincomplete.relief & 0.000953 & & \\
\hline Mult (., x1 + x2 + x3).painworse & NA & & \\
\hline Mult(., x1 + x2 + x3).painsame & NA & & \\
\hline Mult(., x1 + x2 + x3).painslight.improvement & NA & & \\
\hline Mult(., x1 + x2 + x3).painmoderate.improvement & NA & & \\
\hline Mult(., x1 + x2 + x3).painmarked.improvement & NA & & \\
\hline Mult (., x1 + x2 + x3).paincomplete.relief & NA & & \\
\hline Mult(pain, . + x2 + x3).x1 & NA & & \\
\hline Mult (pain, x1 + . + x3).x2 & NA & & \\
\hline Mult(pain, \(\mathrm{x} 1+\mathrm{x} 2+\).).x3 & NA & & \\
\hline
\end{tabular}
(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified
Residual deviance: 55.908 on 48 degrees of freedom

AIC: 211.81

Number of iterations: 14
```

> oneDimensional <- gnm(count ~ pain + Mult(pain, offset(x1) + x2 + x3),

+ eliminate = id, family = "poisson", data = backPainLong)

```
Initialising
Running start-up iterations..
Running main iterations
Done
> \#\# after constraint
> summary(oneDimensional)

Call:
gnm(formula \(=\) count \(\sim\) pain + Mult (pain, offset \((x 1)+x 2+x 3)\),
    eliminate = id, family = "poisson", data = backPainLong)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2.0335 & -0.9195 & -0.1354 & 0.3593 & 1.7115
\end{tabular}

Coefficients of interest:
\begin{tabular}{|c|c|c|}
\hline & Estimate & Std. Error \\
\hline painsame & 16.1578 & 6.5742 \\
\hline painslight.improvement & 15.6848 & 6.5274 \\
\hline painmoderate.improvement & 12.4556 & 6.4312 \\
\hline painmarked.improvement & 19.9140 & 6.4976 \\
\hline paincomplete.relief & 21.6654 & 6.5571 \\
\hline Mult(., x2 + x3 + offset(x1)).painworse & 1.4679 & NA \\
\hline Mult (., x2 + x3 + offset(x1)).painsame & -2.2419 & NA \\
\hline Mult(., x2 + x3 + offset(x1)).painslight.improvement & -2.0418 & NA \\
\hline Mult(., x2 + x3 + offset(x1)).painmoderate.improvement & -1.1651 & NA \\
\hline Mult(., x2 + x3 + offset(x1)).painmarked.improvement & -3.1437 & NA \\
\hline Mult(., x2 + x3 + offset(x1)).paincomplete.relief & -3.9040 & NA \\
\hline Mult (pain, . + x3 + offset(x1)).x2 & 0.5736 & 0.2178 \\
\hline Mult (pain \(\mathrm{x}^{2}+\ldots+\) fffset (x1)) x 3 & Q. 5050 & \\
\hline
\end{tabular}
\(\begin{array}{lr}\text { Mult(pain, x2 + . + offset(x1)).x3 } & 0.5050 \quad 0.2431 \\ \text { painsame } & z \text { value } \operatorname{Pr}(>|z|) \\ 2.4580 .013980\end{array}\)
painsame
painslight.improvement \(\quad 2.4030 .016265\)
painmoderate.improvement \(\quad 1.9370 .052777\)
painmarked.improvement \(\quad 3.0650 .002178\)
paincomplete.relief 3.3040 .000953
Mult(., x2 + x3 + offset(x1)).painworse NA NA
Mult(., x2 + x3 + offset(x1)).painsame NA NA
Mult(., x2 + x3 + offset(x1)).painslight.improvement NA NA
Mult(., x2 + x3 + offset(x1)).painmoderate.improvement NA NA
Mult(., x2 + x3 + offset(x1)).painmarked.improvement NA NA
Mult(., x2 + x3 + offset(x1)).paincomplete.relief NA NA
Mult(pain, . + x3 + offset(x1)).x2 2.6330 .008451
Mult(pain, x2 + . + offset(x1)).x3 2.077 0.037808
(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 55.908 on 48 degrees of freedom
AIC: 211.81
Number of iterations: 14
The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through the constrain argument of gnm or with getContrasts:
```

> getContrasts(oneDimensional, pickCoef(oneDimensional, "[.]pain"))

```
\begin{tabular}{|c|c|c|}
\hline & estimate & SE \\
\hline Mult(., x2 + x3 + offset(x1)).painworse & 0.000000 & 0.000000 \\
\hline Mult(., x2 + x3 + offset(x1)).painsame & -3.709738 & 1.825568 \\
\hline Mult(., x2 + x3 + offset(x1)).painslight.improvement & -3.509697 & 1.791732 \\
\hline Mult(., x2 + x3 + offset(x1)).painmoderate.improvement & -2.632943 & 1.669256 \\
\hline Mult (., x2 + x3 + offset(x1)).painmarked.improvement & -4.611597 & 1.895240 \\
\hline Mult(., x2 + x3 + offset(x1)).paincomplete.relief & \[
\begin{array}{r}
-5.371854 \\
\text { quasiSE }
\end{array}
\] & \[
\begin{aligned}
& 1.999657 \\
& \text { quasiVar }
\end{aligned}
\] \\
\hline Mult(., x2 + x3 + offset(x1)).painworse & 1.7797353 & 3.16745779 \\
\hline Mult(., x2 + x3 + offset(x1)).painsame & 0.4281334 & 0.18329821 \\
\hline Mult(., x2 + x3 + offset(x1)).painslight.improvement & 0.4024684 & 0.16198083 \\
\hline Mult(., x2 + x3 + offset(x1)).painmoderate.improvement & 0.5518548 & 0.30454368 \\
\hline Mult(., x2 + x3 + offset(x1)).painmarked.improvement & 0.3133220 & 0.09817066 \\
\hline Mult(., x2 + x3 + offset(x1)).paincomplete.relief & 0.4919550 & 0.24201969 \\
\hline
\end{tabular}
giving the required estimates.

\subsection*{7.7 Lee-Carter model for trends in age-specific mortality}

In the study and projection of population mortality rates, the model proposed by Lee and Carter (1992) forms the basis of many if not most current analyses. Here we consider the quasi-Poisson version of the model (Wilmoth, 1993, Alho, 2000, Brouhns et al., 2002, Renshaw and Haberman, 2003), in which the death count \(D_{a y}\) for individuals of age \(a\) in year \(y\) has mean \(\mu_{a y}\) and variance \(\phi \mu_{a y}\) (where \(\phi\) is 1 for Poisson-distributed counts, and is respectively greater than or less than 1 in cases of over-dispersion or under-dispersion). In the Lee-Carter model, the expected counts follow the log-bilinear form
\[
\log \left(\mu_{a y} / e_{a y}\right)=\alpha_{a}+\beta_{a} \gamma_{y}
\]
where \(e_{a y}\) is the 'exposure' (number of lives at risk). This is a generalized nonlinear model with a single multiplicative term.

The use of gnm to fit this model is straightforward. We will illustrate by using data downloaded on 2006-1114 from the Human Mortality Databas \({ }^{4}\) (HMD, made available by the University of California, Berkeley, and Max Planck Institute for Demographic Research, at http://www.mortality.org) on male deaths in Canada between 1921 and 2003. The data are not made available as part of gnm because of license restrictions; but they are readily available via the web simply by registering with the HMD. We assume that the data for Canadian males (both deaths and exposure-to-risk) have been downloaded from the HMD and organised into a data frame named Canada in R, with columns Year (a factor, with levels 1921 to 2003), Age (a factor, with levels 20 to 99), mDeaths and mExposure (both quantitative). The Lee-Carter model may then be specified as
```

LCmodel.male <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year),
offset = log(mExposure), family = "quasipoisson",
data = Canada)

```

Here we have acknowledged the fact that the model only really makes sense if all of the \(\beta_{a}\) parameters, which represent the 'sensitivity' of age group \(a\) to a change in the level of general mortality (e.g., Brouhns et al., 2002), have the same sign. Without loss of generality we assume \(\beta_{a}>0\) for all \(a\), and we impose this constraint by using \(\operatorname{Exp}\) (Age) instead of just Age in the multiplicative term. Convergence is to a fitted model with residual deviance

\footnotetext{
\({ }^{4}\) Thanks to Iain Currie for helpful advice relating to this section
}
32419.83 on 6399 degrees of freedom - representing clear evidence of substantial overdispersion relative to the Poisson distribution. In order to explore the lack of fit a little further, we plot the distribution of Pearson residuals in Figure 10 .
```

par(mfrow = c(2,2))
age <- as.numeric(as.character(Canada\$Age))
with(Canada,{
res <- residuals(LCmodel.male, type = "pearson")
plot(Age, res, xlab="Age", ylab="Pearson residual",
main = "(a) Residuals by age")
plot(Year, res, xlab="Year", ylab="Pearson residual",
main = "(b) Residuals by year")
plot(Year[(age>24) \& (age<36)], res[(age>24) \& (age<36)],
xlab = "Year", ylab = "Pearson residual",
main = "(c) Age group 25-35")
plot(Year[(age>49) \& (age<66)], res[(age>49) \& (age<66)],
xlab = "Year", ylab = "Pearson residual",
main = "(d) Age group 50-65")
})

```

Panel (a) of Figure 10 indicates that the overdispersion is not evenly spread through the data, but is largely concentrated in two age groups, roughly ages \(25-35\) and 50-65. Panels (c) and (d) focus on the residuals in each of these two age groups: there is a clear (and roughly cancelling) dependence on Year, indicating that the assumed bilinear interaction between Age and Year does not hold for the full range of ages and years considered here.

A somewhat more satisfactory Lee-Carter model fit is obtained if only a subset of the data is used, namely only those males aged 45 or over:
```

LCmodel.maleOver45 <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year),
offset = log(mExposure), family = "quasipoisson",
data = Canada[age>44,])

```

The residual deviance now is 12595.44 on 4375 degrees of freedom: still substantially overdispersed, but less severely so than before. Again we plot the distributions of Pearson residuals (Figure 11). Still clear departures from the assumed bilinear structure are evident, especially for age group 81-89; but they are less pronounced than in the previous model fit.

The main purpose here is only to illustrate how straightforward it is to work with the Lee-Carter model using gnm, but we will take this example a little further by examining the estimated \(\beta_{a}\) parameters from the last fitted model. We can use getContrasts to compute quasi standard errors for the logarithms of \(\hat{\beta}_{a}\) - the logarithms being the result of having used \(\operatorname{Exp}\) (Age) in the model specification - and use these in a plot of the coefficients:
```

AgeContrasts <- getContrasts(LCmodel.maleOver45, 56:100) \#\# ages 45 to 89 only

```

The plot shows that sensitivity to the general level of mortality is highest at younger ages, as expected. An unexpected feature is the clear outlying positions occupied by the estimates for ages 51, 61, 71 and 81: for each of those ages, the estimated \(\beta_{a}\) coefficient is substantially less than it is for the neighbouring age groups (and the error bars indicate clearly that the deviations are larger than could plausibly be due to chance variation). This is a curious finding. An explanation comes from a look back at the raw death-count data. In the years between 1921 and 1940, the death counts for ages \(31,41,51,61,71\) and 81 all stand out as being very substantially lower than those of neighbouring ages (Figure 13 the ages concerned are highlighted in solid red). The same does not hold for later years: after about 1940, the ' 1 ' ages fall in with the general pattern. This apparent 'age heaping \({ }^{5}\) ' explains our finding above regarding the \(\beta_{a}\) coefficients: whilst all age groups have benefited from the general trend of reduced mortality, the ' 1 ' age groups appear to have benefited least because their starting point (in the 1920s and 1930s) was lower than would have been indicated by the general pattern - hence \(\hat{\beta}_{a}\) is smaller for ages \(a=31, a=41, \ldots, a=81\).

\footnotetext{
\({ }^{5}\) Age heaping is common in mortality data: see http://www.mortality.org/Public/Overview.php
}


Figure 10: Canada, males: plots of residuals from the Lee-Carter model of mortality


Figure 11: Canada, males over 45: plots of residuals from the Lee-Carter model of mortality


Figure 12: Canada, males over 45, Lee-Carter model: relative sensitivity of different ages to change in total mortality.


Figure 13: Canada, males: Deaths 1921 to 1940 by age

\subsection*{7.8 Exponential and sum-of-exponentials models for decay curves}

A class of nonlinear functions which arise in various application contexts - a notable one being pharmacokinetic studies - involves one or more exponential decay terms. For example, a simple decay model with additive error is
\[
\begin{equation*}
y=\alpha+\exp (\beta+\gamma x)+e \tag{2}
\end{equation*}
\]
(with \(\gamma<0\) ), while a more complex ('sum of exponentials') model might involve two decay terms:
\[
\begin{equation*}
y=\alpha+\exp \left(\beta_{1}+\gamma_{1} x\right)+\exp \left(\beta_{2}+\gamma_{2} x\right)+e . \tag{3}
\end{equation*}
\]

Estimation and inference with such models are typically not straightforward, partly on account of multiple local maxima in the likelihood (e.g., Seber and Wild, 1989, Ch.3). We illustrate the difficulties here, with a couple of artificial examples. These examples will make clear the value of making repeated calls to \(g n m\), in order to use different, randomly-generated parameterizations and starting values and thus improve the chances of locating both the global maximum and all local maxima of the likelihood.

\subsection*{7.8.1 Example: single exponential decay term}

Let us first construct some data from model (2). For our illustrative purposes here, we will use noise-free data, i.e., we fix the variance of \(e\) to be zero; for the other parameters we will use \(\alpha=0, \beta=0, \gamma=-0.1\).
```

> x <- 1:100
> y<- exp(-x / 10)
> set.seed(1)
> saved.fits <- list()
> for (i in 1:100) saved.fits[[i]] <- gnm(y ~ Exp(1 + x), verbose = FALSE)
> table(zapsmall(sapply(saved.fits, deviance)))

```
    Q 3.612654
    5248

The saved. fits object thus contains the results of 100 calls to \(g n m\), each using a different, randomly-generated starting value for the vector of parameters \((\alpha, \beta, \gamma)\). Out of 100 fits, 52 reproduce the data exactly, to machine accuracy. The remaining 48 fits are all identical to one another, but they are far from globally optimal, with residual sum of squares 3.61 : they result from divergence of \(\hat{\gamma}\) to \(+\infty\), and correspondingly of \(\hat{\beta}\) to \(-\infty\), such that the fitted 'curve' is in fact just a constant, with level equal to \(\bar{y}=0.09508\). For example, the second of the 100 fits is of this kind:
```

> saved.fits[[2]]

```
Call:
gnm(formula \(=\mathrm{y} \sim \operatorname{Exp}(1+\mathrm{x})\), verbose \(=\) FALSE \()\)
Coefficients:
    (Intercept) \(\operatorname{Exp}(.+\mathrm{x}) .(\) Intercept \() \quad \operatorname{Exp}(1+\).).x
    \(9.508 \mathrm{e}-02 \quad-1.493 \mathrm{e}+04 \quad 5.463 \mathrm{e}+01\)
\begin{tabular}{ll} 
Deviance: & 3.612654 \\
Pearson chi-squared: & 3.612654 \\
Residual df: & 99
\end{tabular}

The use of repeated calls to gnm, as here, allows the local and global maxima to be easily distinguished.

\subsection*{7.8.2 Example: sum of two exponentials}

We can conduct a similar exercise based on the more complex model (3):
```

> x <- 1:100
> y<- exp(-x / 10) + 2* exp(-x / 50)
> set.seed(1)
> saved.fits <- list()
> for (i in 1:100) {

+ saved.fits[[i]] <- suppressWarnings(gnm(y ~ Exp(1 + x, inst = 1) +
+
+
+ }
> table(round(unlist(sapply(saved.fits, deviance)), 4))
0 0.1589 41.6439
20

```

In this instance, only 27 of the 100 calls to gnm have successfully located a local maximum of the likelihood: in the remaining 73 cases the starting values generated were such that numerical problems resulted, and the fitting algorithm was abandoned (giving a NULL result). Among the 27 'successful' fits, it is evident that there are three distinct solutions (with respective residual sums of squares equal to \(0.1589,41.64\), and essentially zero - the last of these, the exact fit to the data, having been found 20 times out of the above 27). The two non-optimal local maxima here correspond to the best fit with a single exponential (which has residual sum of squares 0.1589 ) and to the fit with no dependence at all on \(x\) (residual sum of squares 41.64 ), as we can see by comparing with:
```

> singleExp <- gnm(y ~ Exp(1 + x), start = c(NA, NA, -0.1), verbose = FALSE)
> singleExp

```
Call:
gnm(formula \(=\mathrm{y} \sim \operatorname{Exp}(1+\mathrm{x})\), start \(=\mathrm{c}(\mathrm{NA}, \mathrm{NA},-0.1)\), verbose \(=\) FALSE \()\)
Coefficients:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\text { (Intercept) } \\
0.25007
\end{array}
\]}} \\
\hline & \\
\hline & 0.1589496 \\
\hline i-squared: & 0.1589496 \\
\hline f. & 97 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Deviance: & 0.1589496 \\
Pearson chi-squared: & 0.1589496 \\
Residual df: & 97
\end{tabular}
> meanOnly <- gnm(y ~ 1, verbose = FALSE)
> meanOnly
Call:
gnm(formula \(=\mathrm{y} \sim 1\), verbose \(=\) FALSE)
Coefficients:
(Intercept)
    0.9511
```

Deviance: 41.6439
Pearson chi-squared: 41.6439
Residual df: 99
> plot(x, y, main = "Two sub-optimal fits to a sum-of-exponentials curve")
> lines(x, fitted(singleExp))
> lines(x, fitted(meanOnly), lty = "dashed")

```

In this example, it is clear that even a small amount of noise in the data would make it practically impossible to distinguish between competing models containing one and two exponential-decay terms.

In summary: the default gnm setting of randomly-chosen starting values is useful for identifying multiple local maxima in the likelihood; and reasonably good starting values are needed if the global maximum is to be found. In the present example, knowing that \(\gamma_{1}\) and \(\gamma_{2}\) should both be small and negative, we might perhaps have tried

Two sub-optimal fits to a sum-of-exponentials curve


Figure 14: Two sub-optimal fits to a sum-of-exponentials curve
```

> gnm(y ~ instances(Exp (1 + x), 2), start = c(NA, NA, -0.1, NA, -0.1),

+ verbose = FALSE)
Call:
gnm(formula = y ~ instances(Exp(1 + x), 2), start = c(NA, NA,
-0.1, NA, -0.1), verbose = FALSE)
Coefficients:

```
```

 (Intercept)
    ```
            (Intercept)
                        2.059e-12
                        2.059e-12
                            Exp(. + x, inst = 1).(Intercept)
                            Exp(. + x, inst = 1).(Intercept)
                            -3.924e-12
                            -3.924e-12
    Exp(1 + ., inst = 1).x Exp(. + x, inst = 2).(Intercept)
    Exp(1 + ., inst = 1).x Exp(. + x, inst = 2).(Intercept)
        -1.000e-01 6.931e-01
        -1.000e-01 6.931e-01
        Exp(1 + ., inst = 2).x
        Exp(1 + ., inst = 2).x
            -2.000e-02
            -2.000e-02
Deviance:
        2.922785e-24
Pearson chi-squared: 2.922785e-24
Residual df:
        95
which reliably yields the (globally optimal) perfect fit to the data.
```


A User-level functions

We list here, for easy reference, all of the user-level functions in the gnm package. For full documentation see the package help pages.

References

Agresti A (2002). Categorical Data Analysis. 2nd edition. New York: Wiley.
Alho JM (2000). "Discussion of Lee (2000)." North American Actuarial Journal, 4, 91-93.
Anderson JA (1984). "Regression and Ordered Categorical Variables." J. R. Statist. Soc. B, 46(1), 1-30.
Brouhns N, Denuit M, Vermunt JK (2002). "A Poisson log-bilinear regression approach to the construction of projected lifetables." Insurance Mathematics and Economics, 31, 373-393.

Catchpole E, Morgan B (1997). "Detecting parameter redundancy." Biometrika, 84, 187-196.
Cautres B, Heath AF, Firth D (1998). "Class, religion and vote in Britain and France." La Lettre de la Maison Française, 8.

Clifford P, Heath AF (1993). "The Political Consequences of Social Mobility." J. Roy. Stat. Soc. A, 156(1), 51-61.
Erikson R, Goldthorpe JH (1992). The Constant Flux. Oxford: Clarendon Press.
Erikson R, Goldthorpe JH, Portocarero L (1982). "Social fluidity in Industrial nations: England, France and Sweden." British Journal of Sociology, 33, 1-34.

Firth D (2003). "Overcoming the reference category problem in the presentation of statistical models." Sociological Methodology, 33, 1-18.

Firth D, de Menezes RX (2004). "Quasi-variances." Biometrika, 91, 65-80.
Gabriel KR (1998). "Generalised bilinear regression." Biometrika, 85, 689-700.
Goodman LA (1979). "Simple models for the analysis of association in cross-classifications having ordered categories." J. Amer. Statist. Assoc., 74, 537-552.

Hatzinger R, Francis BJ (2004). "Fitting Paired Comparison Models in R." Technical Report 3, Department of Statistics and Mathematics, Wirtschaftsuniversität Wien.

Lee RD, Carter L (1992). "Modelling and forecasting the time series of US mortality." Journal of the American Statistical Association, 87, 659-671.

McCullagh P, Nelder JA (1989). Generalized Linear Models (Second Edition). Chapman \& Hall Ltd.
Renshaw A, Haberman S (2003). "Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections." Applied Statistics, 52, 119-137.

Seber GAF, Wild CJ (1989). Nonlinear Regression. Wiley.
Sobel ME (1981). "Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility effects." Amer. Soc. Rev., 46, 893-906.

Sobel ME (1985). "Social mobility and fertility revisited: Some new models for the analysis of the mobility effects hypothesis." Amer. Soc. Rev., 50, 699-712.
van der Slik FWP, de Graaf ND, Gerris JRM (2002). "Conformity to Parental Rules: Asymmetric Influences of Father's and Mother's Levels of Education." Europ. Soc. Rev., 18, 489-502.

Vargas M, Crossa J, van Eeuwijk F, Sayre KD, Reynolds MP (2001). "Interpreting treatment by environment interaction in agronomy trials." Agronomy Journal, 93, 949-960.

Wedderburn RWM (1974). "Quasi-likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method." Biometrika, 61, 439-447.

Wilmoth JR (1993). "Computational methods for fitting and extrapolating the Lee-Carter model of mortality change." Technical report, Department of Demography, University of California, Berkeley.

Xie Y (1992). "The log-multiplicative layer effect model for comparing mobility tables." American Sociological Review, 57, 380-395.

Yaish M (1998). Opportunities, Little Change. Class Mobility in Israeli Society, 1974-1991. Ph.D. thesis, Nuffield College, University of Oxford.

Yaish M (2004). Class Mobility Trends in Israeli Society, 1974-1991. Edwin Mellen Press, Lewiston.

[^0]: *This work was supported by the Economic and Social Research Council (UK) through Professorial Fellowship RES-051-27-0055.

[^1]: ${ }^{1}$ A note on terminology: the rather cumbersome phrase 'constituent multiplier', or sometimes the abbreviation 'multiplier', will be used throughout this document in preference to the more elegant and standard mathematical term 'factor'. This will avoid possible confusion with the completely different meaning of the word 'factor' - that is, a categorical variable - in R.

[^2]: ${ }^{2}$ For this particular example, of course, it would be more economical to fit the model directly using multinom (from the recommended package nnet). But fitting as here via the 'Poisson trick' allows the model to be elaborated within the gnm framework using Mult or other nonlin terms.

[^3]: ${ }^{3}$ We thank Frans van der Slik for his kindness in sending us the data.

