
Package ‘gradDescent’
January 25, 2018

Maintainer Lala Septem Riza <lala.s.riza@upi.edu>

Type Package

Title Gradient Descent for Regression Tasks

Version 3.0

URL https://github.com/drizzersilverberg/gradDescentR

Date 2018-01-03

Author Galih Praja Wijaya, Dendi Handian, Imam Fachmi Nasrul-
loh, Lala Septem Riza, Rani Megasari, Enjun Junaeti

Description An implementation of various learning algorithms based on Gradient Descent for deal-
ing with regression tasks.
The variants of gradient descent algorithm are :
Mini-Batch Gradient Descent (MBGD), which is an optimization to use training data par-
tially to reduce the computation load.
Stochastic Gradient Descent (SGD), which is an optimization to use a random data in learn-
ing to reduce the computation load drastically.
Stochastic Average Gradient (SAG), which is a SGD-
based algorithm to minimize stochastic step to average.
Momentum Gradient Descent (MGD), which is an optimization to speed-
up gradient descent learning.
Accelerated Gradient Descent (AGD), which is an optimization to accelerate gradient de-
scent learning.
Adagrad, which is a gradient-descent-
based algorithm that accumulate previous cost to do adaptive learning.
Adadelta, which is a gradient-descent-
based algorithm that use hessian approximation to do adaptive learning.
RMSprop, which is a gradient-descent-
based algorithm that combine Adagrad and Adadelta adaptive learning ability.
Adam, which is a gradient-descent-
based algorithm that mean and variance moment to do adaptive learning.
Stochastic Variance Reduce Gradient (SVRG), which is an optimization SGD-
based algorithm to accelerates the process toward converging by reducing the gradient.
Semi Stochastic Gradient Descent (SSGD),which is a SGD-based algorithm that com-
bine GD and SGD to accelerates the process toward converging by choosing one of the gradi-
ents at a time.

1

https://github.com/drizzersilverberg/gradDescentR

2 R topics documented:

Stochastic Recursive Gradient Algorithm (SARAH), which is an optimization algorithm simi-
larly SVRG to accelerates the process toward converging by accumulated stochastic information.
Stochastic Recursive Gradient Algorithm+ (SARAHPlus), which is a SARAH practical variant al-
gorithm to accelerates the process toward converging provides a possibility of earlier termination.

License GPL (>= 2) | file LICENSE

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-01-25 13:33:54 UTC

R topics documented:

ADADELTA . 3
ADAGRAD . 4
ADAM . 5
AGD . 6
GD . 8
gradDescentR.learn . 9
gradDescentRData . 10
MBGD . 11
MGD . 12
minmaxDescaling . 13
minmaxScaling . 14
predict.gradDescentRObject . 15
prediction . 16
RMSE . 18
RMSPROP . 19
SAGD . 20
SARAH . 21
SARAHPlus . 23
SGD . 24
splitData . 25
SSGD . 26
SVRG . 27
varianceDescaling . 29
varianceScaling . 30

Index 31

ADADELTA 3

ADADELTA ADADELTA Method Learning Function

Description

A function to build prediction model using ADADELTA method.

Usage

ADADELTA(dataTrain, maxIter = 10, momentum = 0.9, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

maxIter the maximal number of iterations.

momentum a float value represent momentum give a constant speed to learning process.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on SGD with an optimization to create an adaptive learning rate by hessian
approximation correction approach. Correction and has less computation load than ADAGRAD. This
method create an exclusive learning rate and doesn’t need alpha parameter, but uses momentum
parameter same as MGD and AGD.

Value

a vector matrix of theta (coefficient) for linear model.

References

M. D. Zeiler Adadelta: An Adaptive Learning Rate Method, arXiv: 1212.5701v1, pp. 1-6 (2012)

See Also

ADAGRAD, RMSPROP, ADAM

4 ADAGRAD

Examples

##################################
Learning and Build Model with ADADELTA
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with ADADELTA
ADADELTAmodel <- ADADELTA(splitedDataSet$dataTrain)
#show result
print(ADADELTAmodel)

ADAGRAD ADAGRAD Method Learning Function

Description

A function to build prediction model using ADAGRAD method.

Usage

ADAGRAD(dataTrain, alpha = 0.1, maxIter = 10, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on SGD with an optimization to create an adaptive learning rate with an approach
that accumulate previous cost in each iteration.

Value

a vector matrix of theta (coefficient) for linear model.

ADAM 5

References

J. Duchi, E. Hazan, Y. Singer Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization, Journal of Machine Learning Research 12, pp. 2121-2159 (2011)

See Also

ADADELTA, RMSPROP, ADAM

Examples

##################################
Learning and Build Model with ADAGRAD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with ADAGRAD
ADAGRADmodel <- ADAGRAD(splitedDataSet$dataTrain)
#show result
print(ADAGRADmodel)

ADAM ADADELTA Method Learning Function

Description

A function to build prediction model using ADAM method.

Usage

ADAM(dataTrain, alpha = 0.1, maxIter = 10, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

6 AGD

Details

This function based on SGD with an optimization to create an adaptive learning rate by two moment
estimation called mean and variance.

Value

a vector matrix of theta (coefficient) for linear model.

References

D.P Kingma, J. Lei Adam: a Method for Stochastic Optimization, International Conference on
Learning Representation, pp. 1-13 (2015)

See Also

ADAGRAD, RMSPROP, ADADELTA

Examples

##################################
Learning and Build Model with ADAM
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with ADAM
ADAMmodel <- ADAM(splitedDataSet$dataTrain)
#show result
print(ADAMmodel)

AGD Accelerated Gradient Descent (AGD) Method Learning Function

Description

A function to build prediction model using Accelerated Gradient Descent (AGD) method.

Usage

AGD(dataTrain, alpha = 0.1, maxIter = 10, momentum = 0.9, seed = NULL)

AGD 7

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

momentum a float value represent momentum give a constant speed to learning process.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on SGD and MGD with optimization to accelerate the learning with momentum
constant in each iteration.

Value

a vector matrix of theta (coefficient) for linear model.

References

Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence
O (1/k2), Soviet Mathematics Doklady 27 (2), pp. 543-547 (1983)

See Also

MGD

Examples

##################################
Learning and Build Model with AGD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with AGD
AGDmodel <- AGD(splitedDataSet$dataTrain)
#show result
print(AGDmodel)

8 GD

GD Gradient Descent (GD) Method Learning Function

Description

A function to build prediction model using Gradient Descent method.

Usage

GD(dataTrain, alpha = 0.1, maxIter = 10, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function build a prediction model using Gradient Descent (GD) method. Gradient Descent is
a first order optimization algorithm to find a local minimum of an objective function by searching
along the steepest descent direction. In machine learning, it is mostly used for dealing with super-
vised learning, which is regression task. By using GD, we construct a model represented in a linear
equation that maps the relationship between input variables and the output one. In other words,
GD determines suitable coefficient of each variables. So, that the equation can express the mapping
correctly.

Value

a vector matrix of theta (coefficient) for linear model.

References

L.A. Cauchy, "Methode generale pour la resolution des systemes d equations", Compte Rendu a l
Academie des Sciences 25, pp. 536-538 (1847)

See Also

MBGD

gradDescentR.learn 9

Examples

##################################
Learning and Build Model with GD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with GD
GDmodel <- GD(splitedDataSet$dataTrain)
#show result
print(GDmodel)

gradDescentR.learn GradDescent Learning Function

Description

A top-level funtion to generate/learn the model from numerical data using a selected gradient de-
scent method.

Usage

gradDescentR.learn(dataSet, featureScaling = TRUE,
scalingMethod = "VARIANCE", learningMethod = "GD", control = list(),
seed = NULL)

Arguments

dataSet a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

featureScaling a boolean value that decide to do feature scaling on dataset. The default value is
TRUE, which the function will do feature scaling.

scalingMethod a string value that represent the feature scaling method to be used. There are
two option for this arguments: "VARIANCE" and "MINMAX". The default value
is "VARIANCE", which the function will do Variance Scaling/ Standardization to
dataset.

learningMethod a string value that represent the learning method to do model building. There
are ten option for this arguments: "GD", "MBGD", "SGD", "SAGD", "MGD", "AGD",
"ADAGRAD", "ADADELTA", "RMSPROP", "ADAM", "SSGD", "SVRG", "SARAH" and
"SARAHPlus". The default value is "GD", which the function will to Gradient
Descent learning.

10 gradDescentRData

control a list containing all arguments, depending on the learning algorithm to use. The
following list are parameters required for each methods.

• alpha: a float value in interval of [0,1] that represent the step-size or learn-
ing rate of the learning. The default value is 0.1.

• maxIter: a integer value that represent the iteration/loop/epoch of the learn-
ing. The default value is 10, which the function will do 10 times learning
calculation.

seed a integer value for static random. Default value is NULL, which the the function
will not do static random.

Details

This function makes accessible all learning methods that are implemented in this package. All of
the methods use this function as interface for the learning stage, so users do not need to call other
functions in the learning phase. In order to obtain good results, users need to adjust some parameters
such as the number of labels, the type of the shape of the membership function, the maximal number
of iterations, the step size of the gradient descent, or other method-dependent parameters which are
collected in the control parameter. After creating the model using this function, it can be used to
predict new data with predict.

Value

The gradDescentRObject.

See Also

predict

Examples

##################################
Learning and Build Model with GD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
train dataset
modelObject <- gradDescentR.learn(dataSet)

gradDescentRData Data set of the package

Description

This is a dataset that collected experimentaly by Kennedy in 1954 to obtain the density value of
CO2. Parameter used in the experiment are temperature and pressure, which it can be a parameter
to obtain compressibility factor value of CO2.

MBGD 11

References

Kennedy, G. C. (1954). Pressure-Volmue Temperature Relations in CO2 at Elevated Temperatures
and Pressures. American Journal of Science, 225-241.

MBGD Mini-Batch Gradient Descent (MBGD) Method Learning Function

Description

A function to build prediction model using Mini-Batch Gradient Descent (MBGD) method.

Usage

MBGD(dataTrain, alpha = 0.1, maxIter = 10, nBatch = 2, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

nBatch a integer value representing the training data batch.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on GD method with optimization to use the training data partially. MBGD has a
parameter named batchRate that represent the instances percentage of training data.

Value

a vector matrix of theta (coefficient) for linear model.

References

A. Cotter, O. Shamir, N. Srebro, K. Sridharan Better Mini-Batch Algoritms via Accelerated Gradi-
ent Methods, NIPS, pp. 1647- (2011)

See Also

GD

12 MGD

Examples

##################################
Learning and Build Model with MBGD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with 0.8 batch rate MBGD
MBGDmodel <- MBGD(splitedDataSet$dataTrain, nBatch=2)
#show result
print(MBGDmodel)

MGD Momentum Gradient Descent (MGD) Method Learning Function

Description

A function to build prediction model using Momentum Gradient Descent (MGD) method.

Usage

MGD(dataTrain, alpha = 0.1, maxIter = 10, momentum = 0.9, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

momentum a float value represent momentum give a constant speed to learning process.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on SGD with an optimization to speed-up the learning by adding a constant
momentum.

Value

a vector matrix of theta (coefficient) for linear model.

minmaxDescaling 13

References

N. Qian On the momentum term in gradient descent learning algorithms., Neural networks : the
official journal of the International Neural Network Society, pp. 145-151- (1999)

See Also

AGD

Examples

##################################
Learning and Build Model with MGD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with MGD
MGDmodel <- MGD(splitedDataSet$dataTrain)
#show result
print(MGDmodel)

minmaxDescaling Min-Max Scaling Revert Function

Description

A function to revert the value that has been done by min-max scaling method.

Usage

minmaxDescaling(dataSet, minmaxParameter)

Arguments

dataSet a data.frame that representing dataset (m × n), where m is the number of in-
stances and n is the number of variables where the last column is the output
variable. dataSet must have at least two columns and ten rows of data that con-
tain only numbers (integer or float).

minmaxParameter

a matrix that has value of minmax scaling parameter, such as minimum value
and maximum value of data that can be used to restore the original value of
dataset. This parameter is exclusively produced by varianceScaling function.

14 minmaxScaling

Details

This function changes the value of min-max scaled dataset that produced by varianceScaling
function and represented by data.frame object.

Value

a data.frame representing reverted dataset value

See Also

minmaxScaling

Examples

##################################
Revert Min-Max Scaling
load R Package data
data(gradDescentRData)
get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
fsr <- minmaxScaling(dataSet)
rfsr <- minmaxDescaling(fsr$scaledDataSet, fsr$scalingParameter)

minmaxScaling The Min-Max Feature Scaling Function

Description

A function to do feature scaling to dataset with min-max scaling method.

Usage

minmaxScaling(dataSet)

Arguments

dataSet a data.frame that representing dataset (m × n), where m is the number of in-
stances and n is the number of variables where the last column is the output
variable. dataSet must have at least two columns and ten rows of data that con-
tain only numbers (integer or float).

Details

This function changes the value of dataset that represented by data.frame object into min-max scaled
value that has interval between 0 to 1.

predict.gradDescentRObject 15

Value

a list contains feature scaled dataset and scaling parameter

See Also

minmaxDescaling

Examples

##################################
Feature scaling with Min-Max Scaling Method
load R Package data
data(gradDescentRData)
get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
do min-max scaling to dataset
featureScalingResult <- minmaxScaling(dataSet)
show result
print(featureScalingResult$scaledDataSet)
print(featureScalingResult$scalingParameter)

predict.gradDescentRObject

The gradDescentR prediction stage

Description

This is the main function to obtain a final result as predicted values for all methods in this pack-
age. In order to get predicted values, this function is run using an gradDescentRObject, which is
typically generated using gradDescentR.learn.

Usage

S3 method for class 'gradDescentRObject'
predict(object, newdata, ...)

Arguments

object an gradDescentRObject.

newdata a data frame or matrix (m×n) of data for the prediction process, where m is the
number of instances and n is the number of input variables. It should be noted
that the testing data must be expressed in numbers (numerical data).

... the other parameters (not used)

Value

The predicted values.

16 prediction

See Also

gradDescentR.learn

Examples

##################################
Predict NewData Using Model Object
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
train dataset
modelObject <- gradDescentR.learn(dataSet)
create new data input
temp <- c(273.1, 353.1, 363.1)
pres <- c(24.675, 24.675, 24.675)
conf <- c(0.8066773, 0.9235751, 0.9325948)
zfac <- data.frame(temp, pres, conf)
predict
prediction_data <- predict(modelObject, zfac)

##################################
Predict NewData Using Model Object
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
train dataset
modelObject <- gradDescentR.learn(dataSet, featureScaling=TRUE, scalingMethod="VARIANCE",

learningMethod="SARAHPlus", control=list(), seed=NULL)
create new data input
temp <- c(273.1, 353.1, 363.1)
pres <- c(24.675, 24.675, 24.675)
conf <- c(0.8066773, 0.9235751, 0.9325948)
zfac <- data.frame(temp, pres, conf)
predict
prediction_data <- predict(modelObject, zfac)

prediction Predicting Function for Linear Model

Description

A function to predict testing data with built gradient descent model

Usage

prediction(model, dataTestInput)

prediction 17

Arguments

model a matrix of coefficients used as a linear model to predict testing data input. This
parameter exclusively produced by the gradient-descent-based learning func-
tion.

dataTestInput a data.frame represented dataset with input variables only (m × n − 1), where
m is the number of instances and n is the number of input variables only.

Details

This function used to predict testing data with only input variable named dataTestInput. The
model parameter is the coefficients that produced by gradient-descent-based learning function. The
result of this function is a dataset that contains dataTestInput combined with prediction data as
the last column of dataset.

Value

a data.frame of testing data input variables and prediction variables.

See Also

GD, MBGD, SGD, SAGD, MGD, AGD, ADAGRAD, ADADELTA, RMSPROP, ADAM, SSGD, SVRG, SARAH, SARAHPlus

Examples

##################################
Predict Testing Data Using GD Model
load R Package data
data(gradDescentRData)
get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
do variance scaling to dataset
featureScalingResult <- varianceScaling(dataSet)
split dataset
splitedDataSet <- splitData(featureScalingResult$scaledDataSet)
built model using GD
model <- GD(splitedDataSet$dataTrain)
separate testing data with input only
dataTestInput <- (splitedDataSet$dataTest)[,1:ncol(splitedDataSet$dataTest)-1]
predict testing data using GD model
prediction <- prediction(model,dataTestInput)
show result()
prediction

##################################
Predict Testing Data Using SARAHPlus Model
load R Package data
data(gradDescentRData)
get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
do variance scaling to dataset

18 RMSE

featureScalingResult <- varianceScaling(dataSet)
split dataset
splitedDataSet <- splitData(featureScalingResult$scaledDataSet)
built model using SARAHPlus
model <- SARAHPlus(splitedDataSet$dataTrain, alpha=0.1, maxIter=10,

innerIter=10, gammaS=0.125, seed=NULL)
separate testing data with input only
dataTestInput <- (splitedDataSet$dataTest)[,1:ncol(splitedDataSet$dataTest)-1]
predict testing data using GD model
prediction <- prediction(model,dataTestInput)
show result()
prediction

RMSE RMSE Calculator Function

Description

A function to calculate error using Root-Mean-Square-Error

Usage

RMSE(outputData, prediction)

Arguments

outputData a data.frame represented dataset with output variable only (m× 1), where m is
the number of instances has one variable, which is the output.

prediction a data.frame represented prediction data with output variable only (m×1), where
m is the number of instances has one variable, which is the output.

Details

This function used to calculate the error between two variables. outputData is the first parameter
of this function representing the real output value. prediction is the second parameter of this
function representing the prediction value.

Value

a float value represent the average error of the prediction

Examples

##################################
Calculate Error using RMSE
load R Package data
data(gradDescentRData)
get z-factor Data

RMSPROP 19

dataSet <- gradDescentRData$CompressilbilityFactor
do variance scaling to dataset
featureScalingResult <- varianceScaling(dataSet)
split dataset
splitedDataSet <- splitData(featureScalingResult$scaledDataSet)
built model using GD
model <- GD(splitedDataSet$dataTrain)
separate testing data with input only
dataTestInput <- (splitedDataSet$dataTest)[,1:ncol(splitedDataSet$dataTest)-1]
predict testing data using GD model
predictionData <- prediction(model, dataTestInput)
calculate error using rmse
errorValue <- RMSE(splitedDataSet$dataTest[,ncol(splitedDataSet$dataTest)],
predictionData[,ncol(predictionData)])
show result
errorValue

RMSPROP ADADELTA Method Learning Function

Description

A function to build prediction model using RMSPROP method.

Usage

RMSPROP(dataTrain, alpha = 0.1, maxIter = 10, momentum = 0.9,
seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

momentum a float value represent momentum give a constant speed to learning process.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on SGD with an optimization to create an adaptive learning rate by RMS cost
and hessian approximation correction approach. In other word, this method combine the ADAGRAD
and ADADELTA approaches.

20 SAGD

Value

a vector matrix of theta (coefficient) for linear model.

References

M. D. Zeiler Adadelta: An Adaptive Learning Rate Method, arXiv: 1212.5701v1, pp. 1-6 (2012)

See Also

ADAGRAD, ADADELTA, ADAM

Examples

##################################
Learning and Build Model with RMSPROP
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with RMSPROP
RMSPROPmodel <- RMSPROP(splitedDataSet$dataTrain)
#show result
print(RMSPROPmodel)

SAGD Stochastic Average Gradient Descent (SAGD) Method Learning Func-
tion

Description

A function to build prediction model using Stochastic Average Gradient Descent (SAGD) method.

Usage

SAGD(dataTrain, alpha = 0.1, maxIter = 10, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1
maxIter the maximal number of iterations.
seed a integer value for static random. Default value is NULL, which means the

function will not do static random.

SARAH 21

Details

This function based on SGD that only compute one instances of of training data stochasticaly. But
SAGD has an averaging control optimization to decide between do the coefficient update or not
randomly. This optimization will speed-up the learning, if it doesn’t perform computation and
update the coefficient.

Value

a vector matrix of theta (coefficient) for linear model.

References

M. Schmidt, N. Le Roux, F. Bach Minimizing Finite Sums with the Stochastic Average Gradi-
ent, INRIA-SIERRA Project - Team Departement d’informatique de l’Ecole Normale Superieure,
(2013)

See Also

SGD

Examples

##################################
Learning and Build Model with SAGD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with SAGD
SAGDmodel <- SAGD(splitedDataSet$dataTrain)
#show result
print(SAGDmodel)

SARAH Stochastic Recursive Gradient Algorithm (SARAH) Method Learning
Function

Description

A function to build prediction model using SARAH method.

Usage

SARAH(dataTrain, alpha = 0.1, maxIter = 10, innerIter = 10, seed = NULL)

22 SARAH

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations in outerloop.

innerIter the maximal number of iterations in innerloop.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function Similarly to SVRG, SARAH iterations are divided into the outer loop where a full gradient
is computed and the inner loop where only stochastic gradient is computed. Unlike the case of SVRG,
the steps of the inner loop of SARAH are based on accumulated stochastic information.

Value

a vector matrix of theta (coefficient) for linear model.

References

Lam M. Nguyen, Jie Lu, Katya Scheinberg, Martin Takac SARAH: A Novel Method for Machine
Learning Problems Using Stochastic Recursive Gradient, arXiv preprint arXiv:1703.00102, (2017)

See Also

SVRG, SSGD, SARAHPlus

Examples

##################################
Learning and Build Model with SARAH
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with SARAH
SARAHmodel <- SARAH(splitedDataSet$dataTrain)
#show result
print(SARAHmodel)

SARAHPlus 23

SARAHPlus Stochastic Recursive Gradient Algorithm+ (SARAH+) Method Learn-
ing Function

Description

A function to build prediction model using SARAH+ method.

Usage

SARAHPlus(dataTrain, alpha = 0.1, maxIter = 10, innerIter = 10,
gammaS = 0.125, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations in outerloop.

innerIter the maximal number of iterations in innerloop.

gammaS a float value to provide sufficient reduction. Default value is 0.125

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function is practical variant of SARAH, SARAHPlus provides a possibility of earlier termination
and unnecessary careful choices of maximum innerloop size, and it also covers the classical gradient
descent when we set gammaS = 1 (since the while loop does not proceed).

Value

a vector matrix of theta (coefficient) for linear model.

References

Lam M. Nguyen, Jie Lu, Katya Scheinberg, Martin Takac SARAH: A Novel Method for Machine
Learning Problems Using Stochastic Recursive Gradient, arXiv preprint arXiv:1703.00102, (2017)

See Also

SVRG, SSGD, SARAH

24 SGD

Examples

##################################
Learning and Build Model with SARAH+
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with SARAH+
SARAHPlusmodel <- SARAHPlus(splitedDataSet$dataTrain)
#show result
print(SARAHPlusmodel)

SGD Stochastic Gradient Descent (SGD) Method Learning Function

Description

A function to build prediction model using Stochastic Gradient Descent (SGD) method.

Usage

SGD(dataTrain, alpha = 0.1, maxIter = 10, seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on GD method with optimization to use only one instance of training data
stochasticaly. So, SGD will perform fast computation and the learning. However, the learning
to reach minimum cost will become more unstable.

Value

a vector matrix of theta (coefficient) for linear model.

splitData 25

References

N. Le Roux, M. Schmidt, F. Bach A Stochastic Gradient Method with an Exceptional Convergence
Rate for Finite Training Sets, Advances in Neural Information Processing Systems, (2011)

See Also

SAGD

Examples

##################################
Learning and Build Model with SGD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with SGD
SGDmodel <- SGD(splitedDataSet$dataTrain)
#show result
print(SGDmodel)

splitData The Data Spliting Function

Description

A function to split dataset into training and testing data

Usage

splitData(dataSet, dataTrainRate = 0.5, seed = NULL)

Arguments

dataSet a data.frame that representing dataset (m × n), where m is the number of in-
stances and n is the number of variables where the last column is the output
variable. dataSet must have at least two columns and ten rows of data that con-
tain only numbers (integer or float).

dataTrainRate a float number between 0 to 1 representing the training data rate of given dataset.
This parameter has default value of 0.5.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

26 SSGD

Details

This function split dataset into training and testing data. By default, this function split dataset
into 50 dataTest. You can decide the training data rate by change the value of dataTrainRate.
Example, if you want to set the training data rate by 80 As the remaining of dataTrainRate value,
which is 0.2, will be set as dataTest rate.

Value

a list contains data.frame of training data and testing data.

Examples

##################################
Splitting Dataset into Training and Testing Data
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
#show result
print(splitedDataSet$dataTrain)
print(splitedDataSet$dataTest)

SSGD Semi Stochastic Gradient Descent (SSGD) Method Learning Function

Description

A function to build prediction model using SSGD method.

Usage

SSGD(dataTrain, alpha = 0.1, maxIter = 10, lamda = 0, innerIter = 10,
seed = NULL)

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations in outerloop.

lamda a float value to generate random value from innerIter with probability for inner-
loop.

SVRG 27

innerIter the maximal number of iterations in innerloop.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function combines elements from both GD and SGD. SSGD starts by computing the full gradient
once and then proceeds with stochastic updates by choosing one of the gradients at a time.

Value

a vector matrix of theta (coefficient) for linear model.

References

George Papamakarios Comparison of Modern Stochastic Optimization Algorithms, (2014)

See Also

SVRG, SARAH, SARAHPlus

Examples

##################################
Learning and Build Model with SSGD
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with SSGD
SSGDmodel <- SSGD(splitedDataSet$dataTrain)
#show result
print(SSGDmodel)

SVRG Stochastic Variance Reduce Gradient (SVRG) Method Learning Func-
tion

Description

A function to build prediction model using SVRG method.

Usage

SVRG(dataTrain, alpha = 0.1, maxIter = 10, innerIter = 10, option = 2,
seed = NULL)

28 SVRG

Arguments

dataTrain a data.frame that representing training data (m× n), where m is the number of
instances and n is the number of variables where the last column is the output
variable. dataTrain must have at least two columns and ten rows of data that
contain only numbers (integer or float).

alpha a float value representing learning rate. Default value is 0.1

maxIter the maximal number of iterations in outerloop.

innerIter the maximal number of iterations in innerloop.

option is an option to set the theta. option 1 set the theta with the last theta in innerloop.
option 2 set the theta with random theta from 1 to last innerloop.

seed a integer value for static random. Default value is NULL, which means the
function will not do static random.

Details

This function based on SGD with an optimization that accelerates the process toward converging by
reducing the gradient in SGD

Value

a vector matrix of theta (coefficient) for linear model.

References

Rie Johnson, Tong Zang Accelerating Stochastic Gradient Descent using Predictive Variance Re-
duction, Advances in Neural Information Processing Systems, pp. 315-323 (2013)

See Also

SSGD, SARAH, SARAHPlus

Examples

##################################
Learning and Build Model with SVRG
load R Package data
data(gradDescentRData)
get z-factor data
dataSet <- gradDescentRData$CompressilbilityFactor
split dataset
splitedDataSet <- splitData(dataSet)
build model with SVRG
SVRGmodel <- SVRG(splitedDataSet$dataTrain)
#show result
print(SVRGmodel)

varianceDescaling 29

varianceDescaling Variance/Standardization Revert Function

Description

A function to revert the value that has been done by variance/ . standardization scaling method.

Usage

varianceDescaling(dataSet, varianceParameter)

Arguments

dataSet a data.frame that representing dataset (m × n), where m is the number of in-
stances and n is the number of variables where the last column is the output
variable. dataSet must have at leas two columns and ten rows of data that con-
tain only numbers (integer or float).

varianceParameter

a matrix that has value of variance scaling parameter, such as mean value and
standard deviation value of data that can be used to restore the original value of
dataset. This parameter is exclusively produced by varianceScaling function.

Details

This function changes the value of variance scaled dataset that produced by varianceScaling
function and represented by data.frame object.

Value

a data.frame representing reverted dataset value

See Also

varianceScaling

Examples

##################################
Revert Variance Scaling
load R Package data
data(gradDescentRData)
get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
fsr <- varianceScaling(dataSet)
rfsr <- varianceDescaling(fsr$scaledDataSet, fsr$scalingParameter)

30 varianceScaling

varianceScaling The Variance/Standardization Feature Scaling Function

Description

A function to do feature scaling to dataset with variance/standardization scaling method .

Usage

varianceScaling(dataSet)

Arguments

dataSet a data.frame that representing dataset to be processed. dataSet must have at leas
two columns and ten rows of data that contain only numbers (integer or float).
The last column to the left will be defined as output variable.

Details

This function changes the value of dataset that represented by data.frame object into variance scaled
value that has interval value near -1 to 1.

Value

a list contains feature scaled dataset and scaling parameter

See Also

varianceDescaling

Examples

##################################
Feature scaling with Variance Scaling Method
load R Package data
data(gradDescentRData)
get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
do variance scaling to dataset
featureScalingResult <- varianceScaling(dataSet)
show result
print(featureScalingResult$scaledDataSet)
print(featureScalingResult$scalingParameter)

Index

∗Topic data
gradDescentRData, 10

ADADELTA, 3, 5, 6, 17, 19, 20
ADAGRAD, 3, 4, 6, 17, 19, 20
ADAM, 3, 5, 5, 17, 20
AGD, 3, 6, 13, 17

GD, 8, 11, 17, 24, 27
gradDescentR.learn, 9, 15, 16
gradDescentRData, 10

MBGD, 8, 11, 17
MGD, 3, 7, 12, 17
minmaxDescaling, 13, 15
minmaxScaling, 14, 14

predict, 10
predict (predict.gradDescentRObject), 15
predict.gradDescentRObject, 15
prediction, 16

RMSE, 18
RMSPROP, 3, 5, 6, 17, 19

SAGD, 17, 20, 25
SARAH, 17, 21, 22, 23, 27, 28
SARAHPlus, 17, 22, 23, 23, 27, 28
SGD, 3, 4, 6, 7, 12, 17, 19, 21, 24, 27, 28
splitData, 25
SSGD, 17, 22, 23, 26, 27, 28
SVRG, 17, 22, 23, 27, 27

varianceDescaling, 29, 30
varianceScaling, 13, 14, 29, 30

31

	ADADELTA
	ADAGRAD
	ADAM
	AGD
	GD
	gradDescentR.learn
	gradDescentRData
	MBGD
	MGD
	minmaxDescaling
	minmaxScaling
	predict.gradDescentRObject
	prediction
	RMSE
	RMSPROP
	SAGD
	SARAH
	SARAHPlus
	SGD
	splitData
	SSGD
	SVRG
	varianceDescaling
	varianceScaling
	Index

