
Package ‘h2o’
April 5, 2022

Version 3.36.0.4

Type Package

Title R Interface for the 'H2O' Scalable Machine Learning Platform

Date 2022-03-30

Description R interface for 'H2O', the scalable open source machine learning
platform that offers parallelized implementations of many supervised and
unsupervised machine learning algorithms such as Generalized Linear
Models (GLM), Gradient Boosting Machines (including XGBoost), Random Forests,
Deep Neural Networks (Deep Learning), Stacked Ensembles, Naive Bayes,
Generalized Additive Models (GAM), ANOVA GLM, Cox Proportional Hazards, K-
Means, PCA, ModelSelection,
Word2Vec, as well as a fully automatic machine learning algorithm (H2O AutoML).

License Apache License (== 2.0)

URL https://github.com/h2oai/h2o-3

BugReports https://h2oai.atlassian.net/projects/PUBDEV

NeedsCompilation no

SystemRequirements Java (>= 8, <= 17)

Depends R (>= 2.13.0), methods, stats

Imports graphics, tools, utils, RCurl, jsonlite

Suggests ggplot2 (>= 3.3.0), mlbench, Matrix, slam, bit64 (>= 0.9.7),
data.table (>= 1.9.8), rgl (>= 0.100.19), plot3Drgl (>= 1.0.1),
survival, DT, IRdisplay, htmltools, plotly, repr

Collate 'aggregator.R' 'astfun.R' 'automl.R' 'classes.R' 'config.R'
'connection.R' 'constants.R' 'datasets.R' 'logging.R'
'communication.R' 'kvstore.R' 'frame.R' 'targetencoder.R'
'import.R' 'isolationforest.R' 'extendedisolationforest.R'
'parse.R' 'export.R' 'edicts.R' 'models.R' 'coxph.R'
'coxphutils.R' 'kmeans.R' 'gam.R' 'anovaglm.R' 'gbm.R'
'generic.R' 'glm.R' 'glrm.R' 'modelselection.R' 'pca.R' 'svd.R'
'psvm.R' 'deeplearning.R' 'stackedensemble.R' 'xgboost.R'
'randomforest.R' 'naivebayes.R' 'word2vec.R' 'w2vutils.R'

1

https://github.com/h2oai/h2o-3
https://h2oai.atlassian.net/projects/PUBDEV


2 R topics documented:

'locate.R' 'grid.R' 'segment.R' 'predict.R' 'tf-idf.R'
'rulefit.R' 'explain.R' 'permutation_varimp.R' 'infogram.R'
'zzz.R' 'upliftrandomforest.R'

RoxygenNote 7.1.2

Author Erin LeDell [aut, cre],
Navdeep Gill [aut],
Spencer Aiello [aut],
Anqi Fu [aut],
Arno Candel [aut],
Cliff Click [aut],
Tom Kraljevic [aut],
Tomas Nykodym [aut],
Patrick Aboyoun [aut],
Michal Kurka [aut],
Michal Malohlava [aut],
Ludi Rehak [ctb],
Eric Eckstrand [ctb],
Brandon Hill [ctb],
Sebastian Vidrio [ctb],
Surekha Jadhawani [ctb],
Amy Wang [ctb],
Raymond Peck [ctb],
Wendy Wong [ctb],
Jan Gorecki [ctb],
Matt Dowle [ctb],
Yuan Tang [ctb],
Lauren DiPerna [ctb],
Tomas Fryda [ctb],
Veronika Maurerova [ctb],
H2O.ai [cph, fnd]

Maintainer Erin LeDell <erin@h2o.ai>

Repository CRAN

Date/Publication 2022-04-05 06:50:02 UTC

R topics documented:
h2o-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
.addParm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
.check_for_ggplot2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
.collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
.consolidate_varimps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
.create_leaderboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
.customized_call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
.find_appropriate_column_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
.get_algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
.get_domain_mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



R topics documented: 3

.get_feature_count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

.get_first_of_family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

.h2o.doGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

.h2o.doPOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

.h2o.doRawGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

.h2o.doRawPOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

.h2o.doSafeGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

.h2o.doSafePOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

.h2o.is_progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

.h2o.locate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

.h2o.perfect_auc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

.h2o.primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

.h2o.__ALL_CAPABILITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

.h2o.__checkConnectionHealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

.h2o.__CREATE_FRAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

.h2o.__DECRYPTION_SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

.h2o.__DKV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

.h2o.__EXPORT_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

.h2o.__FRAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

.h2o.__IMPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

.h2o.__JOBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

.h2o.__LOGANDECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

.h2o.__MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

.h2o.__MODEL_BUILDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

.h2o.__MODEL_METRICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

.h2o.__PARSE_SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

.h2o.__RAPIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

.h2o.__REST_API_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

.h2o.__SEGMENT_MODELS_BUILDERS . . . . . . . . . . . . . . . . . . . . . . . . 30

.h2o.__W2V_SYNONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

.has_varimp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

.interpretable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

.is_h2o_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

.is_h2o_tree_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

.is_plotting_to_rnotebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

.leaderboard_for_row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

.min_max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

.model_ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

.pkg.env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

.plot_varimp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

.process_models_or_automl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

.shorten_model_ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

.skip_if_not_developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

.uniformize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

.varimp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

.verify_dataxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
aaa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



4 R topics documented:

as.character.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
as.data.frame.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
as.data.frame.H2OSegmentModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
as.factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
as.h2o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
as.matrix.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
as.numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
as.vector.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
colnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
dim.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
dimnames.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
feature_frequencies.H2OModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
generate_col_ind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
get_seed.H2OModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
h2o.abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
h2o.acos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
h2o.aecu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
h2o.aecu_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
h2o.aggregated_frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
h2o.aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
h2o.aic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
h2o.all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
h2o.anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
h2o.anovaglm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
h2o.any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
h2o.anyFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
h2o.api . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
h2o.arrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
h2o.ascharacter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
h2o.asfactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
h2o.asnumeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
h2o.assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
h2o.as_date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
h2o.auc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
h2o.aucpr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
h2o.automl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
h2o.auuc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
h2o.auuc_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
h2o.betweenss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
h2o.biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
h2o.bottomN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
h2o.cbind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
h2o.ceiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
h2o.centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
h2o.centersSTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
h2o.centroid_stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
h2o.clearLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



R topics documented: 5

h2o.clusterInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
h2o.clusterIsUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
h2o.clusterStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
h2o.cluster_sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
h2o.coef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
h2o.coef_norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
h2o.colnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
h2o.columns_by_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
h2o.computeGram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
h2o.confusionMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
h2o.connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
h2o.cor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
h2o.cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
h2o.cosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
h2o.coxph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
h2o.createFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
h2o.cross_validation_fold_assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
h2o.cross_validation_holdout_predictions . . . . . . . . . . . . . . . . . . . . . . . . . 101
h2o.cross_validation_models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
h2o.cross_validation_predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
h2o.cummax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
h2o.cummin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
h2o.cumprod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
h2o.cumsum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
h2o.cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
h2o.day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
h2o.dayOfWeek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
h2o.dct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
h2o.ddply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
h2o.decryptionSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
h2o.deepfeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
h2o.deeplearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
h2o.describe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
h2o.difflag1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
h2o.dim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
h2o.dimnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
h2o.distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
h2o.downloadAllLogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
h2o.downloadCSV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
h2o.download_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
h2o.download_mojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
h2o.download_pojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
h2o.drop_duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
h2o.entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
h2o.exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
h2o.explain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
h2o.explain_row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
h2o.exportFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



6 R topics documented:

h2o.exportHDFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
h2o.extendedIsolationForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
h2o.feature_interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
h2o.fillna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
h2o.filterNACols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
h2o.findSynonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
h2o.find_row_by_threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
h2o.find_threshold_by_max_metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
h2o.floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
h2o.flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
h2o.gainsLift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
h2o.gam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
h2o.gbm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
h2o.generic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
h2o.genericModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
h2o.getAlphaBest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
h2o.getConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
h2o.getFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
h2o.getGLMFullRegularizationPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
h2o.getGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
h2o.getId . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
h2o.getLambdaBest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
h2o.getLambdaMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
h2o.getLambdaMin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
h2o.getModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
h2o.getModelTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
h2o.getTimezone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
h2o.getTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
h2o.getVersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
h2o.get_automl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
h2o.get_best_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
h2o.get_best_model_predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
h2o.get_best_r2_values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
h2o.get_leaderboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
h2o.get_ntrees_actual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
h2o.get_segment_models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
h2o.giniCoef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
h2o.glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
h2o.glrm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
h2o.grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
h2o.grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
h2o.group_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
h2o.gsub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
h2o.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
h2o.head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
h2o.HGLMMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
h2o.hist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
h2o.hit_ratio_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



R topics documented: 7

h2o.hour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
h2o.ice_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
h2o.ifelse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
h2o.importFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
h2o.import_hive_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
h2o.import_mojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
h2o.import_sql_select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
h2o.import_sql_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
h2o.impute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
h2o.infogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
h2o.init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
h2o.insertMissingValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
h2o.interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
h2o.isax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
h2o.ischaracter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
h2o.isfactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
h2o.isnumeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
h2o.isolationForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
h2o.is_client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
h2o.keyof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
h2o.kfold_column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
h2o.killMinus3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
h2o.kmeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
h2o.kolmogorov_smirnov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
h2o.kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
h2o.learning_curve_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
h2o.levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
h2o.listTimezones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
h2o.list_all_extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
h2o.list_api_extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
h2o.list_core_extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
h2o.list_jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
h2o.list_models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
h2o.loadGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
h2o.loadModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
h2o.load_frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
h2o.log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
h2o.log10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
h2o.log1p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
h2o.log2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
h2o.logAndEcho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
h2o.logloss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
h2o.ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
h2o.lstrip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
h2o.mae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
h2o.makeGLMModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
h2o.make_metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
h2o.match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



8 R topics documented:

h2o.max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
h2o.mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
h2o.mean_per_class_error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
h2o.mean_residual_deviance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
h2o.median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
h2o.melt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
h2o.merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
h2o.metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
h2o.min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
h2o.mktime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
h2o.modelSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
h2o.model_correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
h2o.model_correlation_heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
h2o.mojo_predict_csv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
h2o.mojo_predict_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
h2o.month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
h2o.mse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
h2o.multinomial_aucpr_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
h2o.multinomial_auc_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
h2o.nacnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
h2o.naiveBayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
h2o.names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
h2o.na_omit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
h2o.nchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
h2o.ncol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
h2o.networkTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
h2o.nlevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
h2o.no_progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
h2o.nrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
h2o.null_deviance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
h2o.null_dof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
h2o.num_iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
h2o.num_valid_substrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
h2o.openLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
h2o.parseRaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
h2o.parseSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
h2o.partialPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
h2o.pd_multi_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
h2o.pd_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
h2o.performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
h2o.permutation_importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
h2o.permutation_importance_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
h2o.pivot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
h2o.prcomp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
h2o.predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
h2o.predict_json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
h2o.predict_rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
h2o.print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



R topics documented: 9

h2o.prod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
h2o.proj_archetypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
h2o.psvm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
h2o.qini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
h2o.quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
h2o.r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
h2o.randomForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
h2o.range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
h2o.rank_within_group_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
h2o.rapids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
h2o.rbind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
h2o.reconstruct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
h2o.relevel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
h2o.removeAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
h2o.removeVecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
h2o.rep_len . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
h2o.reset_threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
h2o.residual_analysis_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
h2o.residual_deviance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
h2o.residual_dof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
h2o.resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
h2o.resumeGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
h2o.rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
h2o.rmse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
h2o.rmsle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
h2o.round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
h2o.rstrip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
h2o.rulefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
h2o.runif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
h2o.saveGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
h2o.saveModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
h2o.saveModelDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
h2o.saveMojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
h2o.save_frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
h2o.save_mojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
h2o.save_to_hive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
h2o.scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
h2o.scoreHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
h2o.scoreHistoryGAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
h2o.screeplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
h2o.sd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
h2o.sdev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
h2o.setLevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
h2o.setTimezone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
h2o.set_s3_credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
h2o.shap_explain_row_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
h2o.shap_summary_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
h2o.show_progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338



10 R topics documented:

h2o.shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
h2o.signif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
h2o.sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
h2o.skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
h2o.splitFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
h2o.sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
h2o.stackedEnsemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
h2o.startLogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
h2o.std_coef_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
h2o.stopLogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
h2o.str . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
h2o.stringdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
h2o.strsplit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
h2o.sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
h2o.substring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
h2o.sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
h2o.summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
h2o.svd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
h2o.table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
h2o.tabulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
h2o.tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
h2o.tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
h2o.targetencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
h2o.target_encode_apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
h2o.target_encode_create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
h2o.tf_idf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
h2o.thresholds_and_metric_scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
h2o.toFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
h2o.tokenize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
h2o.tolower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
h2o.topBottomN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
h2o.topN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
h2o.totss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
h2o.tot_withinss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
h2o.toupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
h2o.train_segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
h2o.transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
h2o.transform,H2OTargetEncoderModel-method . . . . . . . . . . . . . . . . . . . . . 374
h2o.transform,H2OWordEmbeddingModel-method . . . . . . . . . . . . . . . . . . . . 375
h2o.transform_word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
h2o.trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
h2o.trunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
h2o.unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
h2o.upliftRandomForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
h2o.upload_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
h2o.upload_mojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
h2o.var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
h2o.varimp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384



R topics documented: 11

h2o.varimp,H2OAutoML-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
h2o.varimp,H2OFrame-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
h2o.varimp,H2OModel-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
h2o.varimp_heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
h2o.varimp_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
h2o.varsplits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
h2o.week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
h2o.weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
h2o.which . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
h2o.which_max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
h2o.which_min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
h2o.withinss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
h2o.word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
h2o.xgboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
h2o.xgboost.available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
h2o.year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
H2OAutoML-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
H2OClusteringModel-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
H2OConnection-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
H2OConnectionMutableState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
H2OCoxPHModel-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
H2OCoxPHModelSummary-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
H2OFrame-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
H2OFrame-Extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
H2OGrid-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
H2OInfogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
H2OInfogram-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
H2OLeafNode-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
H2OModel-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
H2OModelFuture-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
H2OModelMetrics-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
H2ONode-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
H2OSegmentModels-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
H2OSegmentModelsFuture-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
H2OSplitNode-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
H2OTree-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
housevotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
initialize,H2OInfogram-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
is.character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
is.factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
is.h2o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
is.numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Keyed-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
length,H2OTree-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Logical-or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
ModelAccessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
model_cache-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421



12 h2o-package

names.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Ops.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
plot.H2OInfogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
plot.H2OModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
plot.H2OTabulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
predict.H2OAutoML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
predict.H2OModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
predict_contributions.H2OModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
predict_leaf_node_assignment.H2OModel . . . . . . . . . . . . . . . . . . . . . . . . . 430
print.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
print.H2OTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
prostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
range.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
show,H2OAutoML-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
staged_predict_proba.H2OModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
str.H2OFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
summary,H2OAutoML-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
summary,H2OCoxPHModel-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
summary,H2OGrid-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
summary,H2OModel-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
use.package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
with_no_h2o_progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
zzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
&& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Index 442

h2o-package H2O R Interface

Description

This is a package for running H2O via its REST API from within R. To communicate with a H2O
instance, the version of the R package must match the version of H2O. When connecting to a new
H2O cluster, it is necessary to re-run the initializer.

Details

Package: h2o
Type: Package
Version: 3.36.0.4
Branch: rel-zorn
Date: Wed Mar 30 18:37:50 UTC 2022
License: Apache License (== 2.0)
Depends: R (>= 2.13.0), RCurl, jsonlite, statmod, tools, methods, utils



.addParm 13

H2O is the scalable open source machine learning platform that offers parallelized implementa-
tions of many supervised and unsupervised machine learning algorithms such as Generalized Lin-
ear Models (GLM), Gradient Boosting Machines (including XGBoost), Random Forests, Deep
Neural Networks (Deep Learning), Stacked Ensembles, Naive Bayes, Generalized Additive Mod-
els (GAM), ANOVA GLM, Maximum R GLM (maxrglm), Cox Proportional Hazards, K-Means,
PCA, Word2Vec, as well as a fully automatic machine learning algorithm (H2O AutoML). As an
example, to run GLM, call h2o.glm with the H2O parsed data and parameters (response variable,
error distribution, etc.) as arguments.

This package enables the use of the H2O machine learning platform commands in R. To use H2O
from R, you must start or connect to the "H2O cluster", the term we use to describe the backend
H2O Java engine. To run H2O on your local machine, call h2o.init without any arguments, and
H2O will be automatically launched at localhost:54321, where the IP is "127.0.0.1" and the port
is 54321. If you have the H2O cluster running on a remote machine (e.g. AWS EC2), you must
provide the IP and port of the remote machine as arguments to the h2o.init call.

Note that no actual data is stored in the R workspace; and no actual work is carried out by R. R only
saves the named objects, which uniquely identify the data set, model, etc on the server. When the
user makes a request, R queries the server via the REST API, which returns a JSON file with the
relevant information that R then displays in the console.

Author(s)

Maintainer: Erin LeDell <erin@h2o.ai>

References

• H2O.ai Homepage

• H2O User Guide

• H2O on GitHub

.addParm TODO: No objects in this file are being used. Either remove file or use
objects.

Description

Append a <key,value> pair to a list.

Usage

.addParm(parms, k, v)

Arguments

parms a list to add the <k,v> pair to

k a key, typically the name of some algorithm parameter

v a value, the value of the algorithm parameter

https://h2o.ai
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
https://github.com/h2oai/h2o-3


14 .collapse

Details

Contained here are a set of helper methods that perform type checking on the value passed in.

.check_for_ggplot2 Stop with a user friendly message if a user is missing the ggplot2 pack-
age or has an old version of it.

Description

Stop with a user friendly message if a user is missing the ggplot2 package or has an old version of
it.

Usage

.check_for_ggplot2(version = "3.0.0")

Arguments

version minimal required ggplot2 version

.collapse Helper Collapse Function

Description

Collapse a character vector into a ’,’-sep array of the form: [thing1,thing2,...]

Usage

.collapse(v)

Arguments

v Character vector.



.consolidate_varimps 15

.consolidate_varimps Consolidate variable importances

Description

Consolidation works in the following way: 1. if varimp variable is in x => add it to consoli-
dated_varimps 2. for all remaining varimp variables: 1. find the longest prefix of varimp variable
that is in x and add it to the consolidated varimp 2. if there was no match, throw an error 3. normal-
ize the consolidated_varimps so they sum up to 1

Usage

.consolidate_varimps(model)

Arguments

model H2OModel

Value

sorted named vector

.create_leaderboard Create a leaderboard like data frame for models

Description

Create a leaderboard like data frame for models

Usage

.create_leaderboard(models_info, leaderboard_frame, top_n = 20)

Arguments

models_info H2OAutoML object or list of models
leaderboard_frame

when provided with list of models, use this frame to calculate metrics

top_n create leaderboard with just top_n models

Value

a data.frame



16 .find_appropriate_column_name

.customized_call A helper function that makes it easier to override/add params in a
function call.

Description

A helper function that makes it easier to override/add params in a function call.

Usage

.customized_call(fun, ..., overridable_defaults = NULL, overrides = NULL)

Arguments

fun Function to be called
... Parameters that can’t be overridden
overridable_defaults

List of parameters and values that can be overridden
overrides Parameters to add/override.

Value

result of fun

.find_appropriate_column_name

Tries to match a fuzzy_col_name with a column name that exists in
cols.

Description

Tries to match a fuzzy_col_name with a column name that exists in cols.

Usage

.find_appropriate_column_name(fuzzy_col_name, cols)

Arguments

fuzzy_col_name a name to be decoded
cols vector of columns that contain all possible column names, i.e., decode fuzzy_col_name

must be in cols

Value

a correct column name



.get_algorithm 17

.get_algorithm Get the algoritm used by the model_or_model_id

Description

Get the algoritm used by the model_or_model_id

Usage

.get_algorithm(model_or_model_id, treat_xrt_as_algorithm = FALSE)

Arguments

model_or_model_id

Model object or a string containing model id
treat_xrt_as_algorithm

Try to find out if a model is XRT and if so report it as xrt

Value

algorithm name

.get_domain_mapping Get a mapping between columns and their domains

Description

Get a mapping between columns and their domains

Usage

.get_domain_mapping(model)

Arguments

model an h2o model

Value

list containing a mapping from column to its domains (levels)



18 .get_first_of_family

.get_feature_count Get feature count sorted by the count descending.

Description

Get feature count sorted by the count descending.

Usage

.get_feature_count(column)

Arguments

column H2OFrame column

Value

named vector with feature counts

.get_first_of_family Get first of family models

Description

Get first of family models

Usage

.get_first_of_family(models, all_stackedensembles = FALSE)

Arguments

models models or model ids
all_stackedensembles

if TRUE, select all stacked ensembles



.h2o.doGET 19

.h2o.doGET Just like doRawGET but fills in the default h2oRestApiVersion if none
is provided

Description

Just like doRawGET but fills in the default h2oRestApiVersion if none is provided

Usage

.h2o.doGET(h2oRestApiVersion, urlSuffix, parms, ...)

Arguments

h2oRestApiVersion

(Optional) A version number to prefix to the urlSuffix. If no version is provided,
a default version is chosen for you.

urlSuffix The partial URL suffix to add to the calculated base URL for the instance

parms (Optional) Parameters to include in the request

... (Optional) Additional parameters.

Value

A list object as described above

.h2o.doPOST Just like doRawPOST but fills in the default h2oRestApiVersion if none
is provided

Description

Just like doRawPOST but fills in the default h2oRestApiVersion if none is provided

Usage

.h2o.doPOST(h2oRestApiVersion, urlSuffix, parms, ...)

Arguments

h2oRestApiVersion

(Optional) A version number to prefix to the urlSuffix. If no version is provided,
a default version is chosen for you.

urlSuffix The partial URL suffix to add to the calculated base URL for the instance

parms (Optional) Parameters to include in the request

... (Optional) Additional parameters.



20 .h2o.doRawGET

Value

A list object as described above

.h2o.doRawGET Perform a low-level HTTP GET operation on an H2O instance

Description

Does not do any I/O level error checking. Caller must do its own validations. Does not modify the
response payload in any way. Log the request and response if h2o.startLogging() has been called.

Usage

.h2o.doRawGET(
conn = h2o.getConnection(),
h2oRestApiVersion,
urlSuffix,
parms,
...

)

Arguments

conn H2OConnection
h2oRestApiVersion

(Optional) A version number to prefix to the urlSuffix. If no version is provided,
the version prefix is skipped.

urlSuffix The partial URL suffix to add to the calculated base URL for the instance

parms (Optional) Parameters to include in the request

... (Optional) Additional parameters.

Details

The return value is a list as follows: $url – Final calculated URL. $postBody – The body of the
POST request from client to server. $curlError – TRUE if a socket-level error occurred. FALSE
otherwise. $curlErrorMessage – If curlError is TRUE a message about the error. $httpStatusCode
– The HTTP status code. Usually 200 if the request succeeded. $httpStatusMessage – A string
describing the httpStatusCode. $payload – The raw response payload as a character vector.

Value

A list object as described above



.h2o.doRawPOST 21

.h2o.doRawPOST Perform a low-level HTTP POST operation on an H2O instance

Description

Does not do any I/O level error checking. Caller must do its own validations. Does not modify the
response payload in any way. Log the request and response if h2o.startLogging() has been called.

Usage

.h2o.doRawPOST(
conn = h2o.getConnection(),
h2oRestApiVersion,
urlSuffix,
parms,
fileUploadInfo,
...

)

Arguments

conn H2OConnection
h2oRestApiVersion

(Optional) A version number to prefix to the urlSuffix. If no version is provided,
the version prefix is skipped.

urlSuffix The partial URL suffix to add to the calculated base URL for the instance

parms (Optional) Parameters to include in the request

fileUploadInfo (Optional) Information to POST (NOTE: changes Content-type from XXX-
www-url-encoded to multi-part). Use fileUpload(normalizePath("/path/to/file")).

... (Optional) Additional parameters.

Details

The return value is a list as follows: $url – Final calculated URL. $postBody – The body of the
POST request from client to server. $curlError – TRUE if a socket-level error occurred. FALSE
otherwise. $curlErrorMessage – If curlError is TRUE a message about the error. $httpStatusCode
– The HTTP status code. Usually 200 if the request succeeded. $httpStatusMessage – A string
describing the httpStatusCode. $payload – The raw response payload as a character vector.

Value

A list object as described above



22 .h2o.doSafePOST

.h2o.doSafeGET Perform a safe (i.e. error-checked) HTTP GET request to an H2O
cluster.

Description

This function validates that no CURL error occurred and that the HTTP response code is successful.
If a failure occurred, then stop() is called with an error message. Since all necessary error checking
is done inside this call, the valid payload is directly returned if the function successfully finishes
without calling stop().

Usage

.h2o.doSafeGET(h2oRestApiVersion, urlSuffix, parms, ...)

Arguments

h2oRestApiVersion

(Optional) A version number to prefix to the urlSuffix. If no version is provided,
a default version is chosen for you.

urlSuffix The partial URL suffix to add to the calculated base URL for the instance

parms (Optional) Parameters to include in the request

... (Optional) Additional parameters.

Value

The raw response payload as a character vector

.h2o.doSafePOST Perform a safe (i.e. error-checked) HTTP POST request to an H2O
cluster.

Description

This function validates that no CURL error occurred and that the HTTP response code is successful.
If a failure occurred, then stop() is called with an error message. Since all necessary error checking
is done inside this call, the valid payload is directly returned if the function successfully finishes
without calling stop().

Usage

.h2o.doSafePOST(h2oRestApiVersion, urlSuffix, parms, fileUploadInfo, ...)



.h2o.is_progress 23

Arguments

h2oRestApiVersion

(Optional) A version number to prefix to the urlSuffix. If no version is provided,
a default version is chosen for you.

urlSuffix The partial URL suffix to add to the calculated base URL for the instance

parms (Optional) Parameters to include in the request

fileUploadInfo (Optional) Information to POST (NOTE: changes Content-type from XXX-
www-url-encoded to multi-part). Use fileUpload(normalizePath("/path/to/file")).

... (Optional) Additional parameters.

Value

The raw response payload as a character vector

.h2o.is_progress Check if Progress Bar is Enabled

Description

Check if Progress Bar is Enabled

Usage

.h2o.is_progress()

.h2o.locate Locate a file given the pattern <bucket>/<path/to/file> e.g.
h2o:::.h2o.locate("smalldata/iris/iris22.csv") returns the absolute
path to iris22.csv

Description

Locate a file given the pattern <bucket>/<path/to/file> e.g. h2o:::.h2o.locate("smalldata/iris/iris22.csv")
returns the absolute path to iris22.csv

Usage

.h2o.locate(pathStub, root.parent = NULL)

Arguments

pathStub relative path

root.parent search root directory



24 .h2o.primitives

.h2o.perfect_auc Internal function that calculates a precise AUC from given probabili-
ties and actual responses.

Description

Note: The underlying implementation is not distributed and can only handle limited size of data.
For internal use only.

Usage

.h2o.perfect_auc(probs, acts)

Arguments

probs An H2OFrame holding vector of probabilities.

acts An H2OFrame holding vector of actuals.

.h2o.primitives Map of operations known to H2O

Description

Map of operations known to H2O

Usage

.h2o.primitives

Format

An object of class character of length 39.



.h2o.__ALL_CAPABILITIES 25

.h2o.__ALL_CAPABILITIES

Capabilities endpoints

Description

Capabilities endpoints

Usage

.h2o.__ALL_CAPABILITIES

Format

An object of class character of length 1.

.h2o.__checkConnectionHealth

Check H2O Server Health

Description

Warn if there are sick nodes.

Usage

.h2o.__checkConnectionHealth()

.h2o.__CREATE_FRAME H2OFrame Manipulation

Description

H2OFrame Manipulation

Usage

.h2o.__CREATE_FRAME

Format

An object of class character of length 1.



26 .h2o.__EXPORT_FILES

.h2o.__DECRYPTION_SETUP

Decryption Endpoints

Description

Decryption Endpoints

Usage

.h2o.__DECRYPTION_SETUP

Format

An object of class character of length 1.

.h2o.__DKV Removal Endpoints

Description

Removal Endpoints

Usage

.h2o.__DKV

Format

An object of class character of length 1.

.h2o.__EXPORT_FILES Export Files Endpoint Generator

Description

Export Files Endpoint Generator

Usage

.h2o.__EXPORT_FILES(frame)

Arguments

frame H2OFrame



.h2o.__FRAMES 27

.h2o.__FRAMES Inspect/Summary Endpoints

Description

Inspect/Summary Endpoints

Usage

.h2o.__FRAMES

Format

An object of class character of length 1.

.h2o.__IMPORT Import/Export Endpoints

Description

Import/Export Endpoints

Usage

.h2o.__IMPORT

Format

An object of class character of length 1.

.h2o.__JOBS Administrative Endpoints

Description

Administrative Endpoints

Usage

.h2o.__JOBS

Format

An object of class character of length 1.



28 .h2o.__MODEL_BUILDERS

.h2o.__LOGANDECHO Log and Echo Endpoint

Description

Log and Echo Endpoint

Usage

.h2o.__LOGANDECHO

Format

An object of class character of length 1.

.h2o.__MODELS Model Endpoint

Description

Model Endpoint

Usage

.h2o.__MODELS

Format

An object of class character of length 1.

.h2o.__MODEL_BUILDERS Model Builder Endpoint Generator

Description

Model Builder Endpoint Generator

Usage

.h2o.__MODEL_BUILDERS(algo)

Arguments

algo Cannonical identifier of H2O algorithm.



.h2o.__MODEL_METRICS 29

.h2o.__MODEL_METRICS Model Metrics Endpoint

Description

Model Metrics Endpoint

Usage

.h2o.__MODEL_METRICS(model, data)

Arguments

model H2OModel.
data H2OFrame.

.h2o.__PARSE_SETUP Parse Endpoints

Description

Parse Endpoints

Usage

.h2o.__PARSE_SETUP

Format

An object of class character of length 1.

.h2o.__RAPIDS Rapids Endpoint

Description

Rapids Endpoint

Usage

.h2o.__RAPIDS

Format

An object of class character of length 1.



30 .h2o.__SEGMENT_MODELS_BUILDERS

.h2o.__REST_API_VERSION

H2O Package Constants

Description

The API endpoints for interacting with H2O via REST are named here.

Usage

.h2o.__REST_API_VERSION

Format

An object of class integer of length 1.

Details

Additionally, environment variables for the H2O package are named here. Endpoint Version

.h2o.__SEGMENT_MODELS_BUILDERS

Segment Models Builder Endpoint Generator

Description

Segment Models Builder Endpoint Generator

Usage

.h2o.__SEGMENT_MODELS_BUILDERS(algo)

Arguments

algo Cannonical identifier of H2O algorithm.



.h2o.__W2V_SYNONYMS 31

.h2o.__W2V_SYNONYMS Word2Vec Endpoints

Description

Word2Vec Endpoints

Usage

.h2o.__W2V_SYNONYMS

Format

An object of class character of length 1.

.has_varimp Has the model variable importance?

Description

Has the model variable importance?

Usage

.has_varimp(model)

Arguments

model model or a string containing model id

Value

boolean



32 .is_h2o_model

.interpretable Is the model considered to be interpretable, i.e., simple enough.

Description

Is the model considered to be interpretable, i.e., simple enough.

Usage

.interpretable(model)

Arguments

model model or a string containing model id

Value

boolean

.is_h2o_model Is the model an H2O model?

Description

Is the model an H2O model?

Usage

.is_h2o_model(model)

Arguments

model Either H2O model/model id => TRUE, or something else => FALSE

Value

boolean



.is_h2o_tree_model 33

.is_h2o_tree_model Is the model a Tree-based H2O Model?

Description

Is the model a Tree-based H2O Model?

Usage

.is_h2o_tree_model(model)

Arguments

model Either tree-based H2O model/model id => TRUE, or something else => FALSE

Value

boolean

.is_plotting_to_rnotebook

Check if we are plotting in to r notebook.

Description

Check if we are plotting in to r notebook.

Usage

.is_plotting_to_rnotebook()

Value

boolean



34 .min_max

.leaderboard_for_row Enhance leaderboard with per-model predictions.

Description

Enhance leaderboard with per-model predictions.

Usage

.leaderboard_for_row(models_info, newdata, row_index, top_n = 20)

Arguments

models_info models_info object

newdata H2OFrame

row_index index of the inspected row

top_n leaderboard will contain top_n models

Value

H2OFrame

.min_max Min-max normalization.

Description

Min-max normalization.

Usage

.min_max(col)

Arguments

col numeric vector

Value

normalized numeric vector



.model_ids 35

.model_ids Get Model Ids

Description

When provided with list of models it will extract model ids. When provided with model ids it won’t
change anything. Works for mixed list as well.

Usage

.model_ids(models)

Arguments

models list or vector of models/model_ids

Value

a vector of model_ids

.pkg.env The H2O Package Environment

Description

The H2O Package Environment

Usage

.pkg.env

Format

An object of class environment of length 4.



36 .process_models_or_automl

.plot_varimp Plot variable importances with ggplot2

Description

Plot variable importances with ggplot2

Usage

.plot_varimp(model, top_n = 10)

Arguments

model H2OModel

top_n Plot just top_n features

Value

list of variable importance, groupped variable importance, and variable importance plot

.process_models_or_automl

Do basic validation and transform object to a "standardized" list
containing models, and their properties such as x, y, whether it is
a (multinomial) clasification or not etc.

Description

Do basic validation and transform object to a "standardized" list containing models, and their
properties such as x, y, whether it is a (multinomial) clasification or not etc.

Usage

.process_models_or_automl(
object,
newdata,
require_single_model = FALSE,
require_multiple_models = FALSE,
top_n_from_AutoML = NA,
only_with_varimp = FALSE,
best_of_family = FALSE,
require_newdata = TRUE

)



.shorten_model_ids 37

Arguments

object Can be a single model/model_id, vector of model_id, list of models, H2OAutoML
object

newdata An H2OFrame with the same format as training frame
require_single_model

If true, make sure we were provided only one model
require_multiple_models

If true, make sure we were provided at least two models
top_n_from_AutoML

If set, don’t return more than top_n models (applies only for AutoML object)
only_with_varimp

If TRUE, return only models that have variable importance

best_of_family If TRUE, return only the best of family models; if FALSE return all models in
object

require_newdata

If TRUE, require newdata to be specified; otherwise allow NULL instead, this
can be used when there is no need to know if the problem is (multinomial)
classification.

Value

a list with the following names leader, is_automl, models, is_classification, is_multinomial_classification,
x, y, model

.shorten_model_ids Shortens model ids if possible (iff there will be same amount of unique
model_ids as before)

Description

Shortens model ids if possible (iff there will be same amount of unique model_ids as before)

Usage

.shorten_model_ids(model_ids)

Arguments

model_ids character vector

Value

character vector



38 .uniformize

.skip_if_not_developer

H2O <-> R Communication and Utility Methods

Description

Collected here are the various methods used by the h2o-R package to communicate with the H2O
backend. There are methods for checking cluster health, polling, and inspecting objects in the H2O
store.

Usage

.skip_if_not_developer()

.uniformize Convert to quantiles when provided with numeric vector. When col is
a factor vector assign uniformly value between 0 and 1 to each level.

Description

Convert to quantiles when provided with numeric vector. When col is a factor vector assign uni-
formly value between 0 and 1 to each level.

Usage

.uniformize(col)

Arguments

col vector

Value

vector with values between 0 and 1



.varimp 39

.varimp Get variable importance in a standardized way.

Description

Get variable importance in a standardized way.

Usage

.varimp(model)

Arguments

model H2OModel

Value

A named vector

.verify_dataxy Used to verify data, x, y and turn into the appropriate things

Description

Used to verify data, x, y and turn into the appropriate things

Usage

.verify_dataxy(data, x, y, autoencoder = FALSE)

Arguments

data H2OFrame

x features

y response

autoencoder autoencoder flag



40 apply

aaa Starting H2O For examples

Description

Starting H2O For examples

Examples

## Not run:
if (Sys.info()['sysname'] == "Darwin" && Sys.info()['release'] == '13.4.0') {

quit(save = "no")
} else {
h2o.init(nthreads = 2)

}

## End(Not run)

apply Apply on H2O Datasets

Description

Method for apply on H2OFrame objects.

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X an H2OFrame object on which apply will operate.

MARGIN the vector on which the function will be applied over, either 1 for rows or 2 for
columns.

FUN the function to be applied.

... optional arguments to FUN.

Value

Produces a new H2OFrame of the output of the applied function. The output is stored in H2O so
that it can be used in subsequent H2O processes.

See Also

apply for the base generic



as.character.H2OFrame 41

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
summary(apply(iris_hf, 2, sum))

## End(Not run)

as.character.H2OFrame Convert an H2OFrame to a String

Description

Convert an H2OFrame to a String

Usage

## S3 method for class 'H2OFrame'
as.character(x, ...)

Arguments

x An H2OFrame object

... Further arguments to be passed from or to other methods.

Examples

## Not run:
library(h2o)
h2o.init()
pretrained <- as.h2o(data.frame(

C1 = c("a", "b"), C2 = c(0, 1), C3 = c(1, 0), C4 = c(0.2, 0.8),
stringsAsFactors = FALSE))

pretrained_w2v <- h2o.word2vec(pre_trained = pretrained, vec_size = 3)
words <- as.character(as.h2o(c("b", "a", "c", NA, "a")))
vecs <- h2o.transform(pretrained_w2v, words = words)

## End(Not run)



42 as.data.frame.H2OFrame

as.data.frame.H2OFrame

Converts parsed H2O data into an R data frame

Description

Downloads the H2O data and then scans it in to an R data frame.

Usage

## S3 method for class 'H2OFrame'
as.data.frame(x, ...)

Arguments

x An H2OFrame object.

... Further arguments to be passed down from other methods.

Details

Method as.data.frame.H2OFrame will use fread if data.table package is installed in required
version.

See Also

use.package

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
as.data.frame(prostate)

## End(Not run)



as.data.frame.H2OSegmentModels 43

as.data.frame.H2OSegmentModels

Converts a collection of Segment Models to a data.frame

Description

Converts a collection of Segment Models to a data.frame

Usage

## S3 method for class 'H2OSegmentModels'
as.data.frame(x, ...)

Arguments

x Object of class H2OSegmentModels.

... Further arguments to be passed down from other methods.

Value

Returns data.frame with result of segment model training.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
models <- h2o.train_segments(algorithm = "gbm",

segment_columns = "Species",
x = c(1:3), y = 4,
training_frame = iris_hf,
ntrees = 5,
max_depth = 4)

as.data.frame(models)

## End(Not run)

as.factor Convert H2O Data to Factors

Description

Convert column/columns in the current frame to categoricals.



44 as.h2o

Usage

as.factor(x)

Arguments

x a column from an H2OFrame data set.

See Also

as.factor.

Examples

## Not run:
library(h2o)
h2o.init()

# Single column
cars <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
df <- h2o.importFile(cars)
df["cylinders"] <- as.factor(df["cylinders"])
h2o.describe(df["cylinders"])

# Multiple columns
cars <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
df <- h2o.importFile(cars)
df[c("cylinders","economy_20mpg")] <- as.factor(df[c("cylinders","economy_20mpg")])
h2o.describe(df[c("cylinders","economy_20mpg")])

## End(Not run)

as.h2o Create H2OFrame

Description

Import R object to the H2O cluster.

Usage

as.h2o(x, destination_frame = "", ...)

## Default S3 method:
as.h2o(x, destination_frame = "", ...)

## S3 method for class 'H2OFrame'
as.h2o(x, destination_frame = "", ...)

## S3 method for class 'data.frame'



as.h2o 45

as.h2o(x, destination_frame = "", use_datatable = TRUE, ...)

## S3 method for class 'Matrix'
as.h2o(x, destination_frame = "", use_datatable = TRUE, ...)

Arguments

x An R object.
destination_frame

A string with the desired name for the H2OFrame

... arguments passed to method arguments.

use_datatable allow usage of data.table

Details

Method as.h2o.data.frame will use fwrite if data.table package is installed in required version.

To speedup execution time for large sparse matrices, use h2o datatable. Make sure you have in-
stalled and imported data.table and slam packages. Turn on h2o datatable by options("h2o.use.data.table"=TRUE)

References

https://h2o.ai/blog/fast-csv-writing-for-r/

See Also

use.package

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
euro_hf <- as.h2o(euro)
letters_hf <- as.h2o(letters)
state_hf <- as.h2o(state.x77)
iris_hf_2 <- as.h2o(iris_hf)
stopifnot(is.h2o(iris_hf), dim(iris_hf) == dim(iris),

is.h2o(euro_hf), dim(euro_hf) == c(length(euro), 1L),
is.h2o(letters_hf), dim(letters_hf) == c(length(letters), 1L),
is.h2o(state_hf), dim(state_hf) == dim(state.x77),
is.h2o(iris_hf_2), dim(iris_hf_2) == dim(iris_hf))

if (requireNamespace("Matrix", quietly=TRUE)) {
data <- rep(0, 100)
data[(1:10) ^ 2] <- 1:10 * pi
m <- matrix(data, ncol = 20, byrow = TRUE)
m <- Matrix::Matrix(m, sparse = TRUE)
m_hf <- as.h2o(m)
stopifnot(is.h2o(m_hf), dim(m_hf) == dim(m))

}

https://h2o.ai/blog/fast-csv-writing-for-r/


46 as.numeric

## End(Not run)

as.matrix.H2OFrame Convert an H2OFrame to a matrix

Description

Convert an H2OFrame to a matrix

Usage

## S3 method for class 'H2OFrame'
as.matrix(x, ...)

Arguments

x An H2OFrame object

... Further arguments to be passed down from other methods.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
describe <- h2o.describe(iris_hf)
mins = as.matrix(apply(iris_hf, 2, min))
print(mins)

## End(Not run)

as.numeric Convert H2O Data to Numeric

Description

Converts an H2O column into a numeric value column. If the column type is enum and you want to
convert it to numeric, you should first convert it to character then convert it to numeric. Otherwise,
the values may be converted to underlying factor values, not the expected mapped values.

Usage

as.numeric(x)

Arguments

x a column from an H2OFrame data set.



as.vector.H2OFrame 47

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate[, 2] <- as.factor (prostate[, 2])
prostate[, 2] <- as.numeric(prostate[, 2])

## End(Not run)

as.vector.H2OFrame Convert an H2OFrame to a vector

Description

Convert an H2OFrame to a vector

Usage

## S3 method for class 'H2OFrame'
as.vector(x,mode)

Arguments

x An H2OFrame object

mode Mode to coerce vector to

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
cor_R <- cor(as.matrix(iris[, 1]))
cor_h2o <- cor(iris_hf[, 1])
iris_R_cor <- cor(iris[, 1:4])
iris_H2O_cor <- as.data.frame(cor(iris_hf[, 1:4]))
h2o_vec <- as.vector(unlist(iris_H2O_cor))
r_vec <- as.vector(unlist(iris_R_cor))

## End(Not run)



48 colnames

australia Australia Coastal Data

Description

Temperature, soil moisture, runoff, and other environmental measurements from the Australia coast.
The data is available from https://cs.colby.edu/courses/S11/cs251/labs/lab07/AustraliaSubset.csv.

Format

A data frame with 251 rows and 8 columns

colnames Returns the column names of an H2OFrame

Description

Returns the column names of an H2OFrame

Usage

colnames(x, do.NULL = TRUE, prefix = "col")

Arguments

x An H2OFrame object.

do.NULL logical. If FALSE and names are NULL, names are created.

prefix for created names.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
colnames(iris_hf) # Returns "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

## End(Not run)



dim.H2OFrame 49

dim.H2OFrame Returns the Dimensions of an H2OFrame

Description

Returns the number of rows and columns for an H2OFrame object.

Usage

## S3 method for class 'H2OFrame'
dim(x)

Arguments

x An H2OFrame object.

See Also

dim for the base R method.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
dim(iris_hf)

## End(Not run)

dimnames.H2OFrame Column names of an H2OFrame

Description

Set column names of an H2O Frame

Usage

## S3 method for class 'H2OFrame'
dimnames(x)

Arguments

x An H2OFrame



50 feature_frequencies.H2OModel

Examples

## Not run:
library(h2o)
h2o.init()

n <- 2000
# Generate variables V1, ... V10
X <- matrix(rnorm(10 * n), n, 10)
# y = +1 if sum_i x_{ij}^2 > chisq median on 10 df
y <- rep(-1, n)
y[apply(X*X, 1, sum) > qchisq(.5, 10)] <- 1
# Assign names to the columns of X:
dimnames(X)[[2]] <- c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10")

## End(Not run)

feature_frequencies.H2OModel

Retrieve the number of occurrences of each feature for given observa-
tions Available for GBM, Random Forest and Isolation Forest models.

Description

Retrieve the number of occurrences of each feature for given observations Available for GBM,
Random Forest and Isolation Forest models.

Usage

feature_frequencies.H2OModel(object, newdata, ...)

h2o.feature_frequencies(object, newdata, ...)

Arguments

object a fitted H2OModel object for which prediction is desired

newdata An H2OFrame object in which to look for variables with which to predict.

... additional arguments to pass on.

Value

Returns an H2OFrame contain per-feature frequencies on the predict path for each input row.

See Also

h2o.gbm and h2o.randomForest for model generation in h2o.



generate_col_ind 51

generate_col_ind CHeck to see if the column names/indices entered is valid for the
dataframe given. This is an internal function

Description

CHeck to see if the column names/indices entered is valid for the dataframe given. This is an
internal function

Usage

generate_col_ind(data, by)

Arguments

data The H2OFrame whose column names or indices are entered as a list

by The column names/indices in a list.

get_seed.H2OModel Get the seed from H2OModel which was used during training. If a
user does not set the seed parameter before training, the seed is auto-
generated. It returns seed as the string if the value is bigger than the
integer. For example, an autogenerated seed is always long so that the
seed in R is a string.

Description

Get the seed from H2OModel which was used during training. If a user does not set the seed
parameter before training, the seed is autogenerated. It returns seed as the string if the value is
bigger than the integer. For example, an autogenerated seed is always long so that the seed in R is
a string.

Usage

get_seed.H2OModel(object)

h2o.get_seed(object)

Arguments

object a fitted H2OModel object.

Value

Returns seed to be used during training a model. Could be numeric or string.



52 h2o.abs

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
prostate_gbm <- h2o.gbm(3:9, "CAPSULE", prostate)
seed <- h2o.get_seed(prostate_gbm)

## End(Not run)

h2o.abs Compute the absolute value of x

Description

Compute the absolute value of x

Usage

h2o.abs(x)

Arguments

x An H2OFrame object.

See Also

MathFun for the base R implementation, abs().

Examples

## Not run:
library(h2o)
h2o.init()
url <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/smtrees.csv"
smtrees_hf <- h2o.importFile(url)
smtrees_df <- read.csv(

"https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/smtrees.csv")
model <- h2o.gbm(x = c("girth", "height"), y = "vol", ntrees = 3, max_depth = 1,

distribution = "gaussian", min_rows = 2, learn_rate = .1,
training_frame = smtrees_hf)

pred <- as.data.frame(predict(model, newdata = smtrees_hf))
diff <- pred - smtrees_df[, 4]
diff_abs <- abs(diff)
print(diff_abs)

## End(Not run)



h2o.acos 53

h2o.acos Compute the arc cosine of x

Description

Compute the arc cosine of x

Usage

h2o.acos(x)

Arguments

x An H2OFrame object.

See Also

Trig for the base R implementation, acos().

Examples

## Not run:
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.acos(prostate[, 2])

## End(Not run)

h2o.aecu Retrieve the default AECU (Average Excess Cumulative Uplift = area
between AUUC and random AUUC)

Description

Retrieves the AECU value from an H2OBinomialUpliftMetrics. You need to specificy the type of
AECU using metric parameter. Defaults "qini". Qini AECU equals the Qini value. If "train" and
"valid" parameters are FALSE (default), then the training AECU value is returned. If more than
one parameter is set to TRUE, then a named vector of AECUs are returned, where the names are
"train", "valid".

Usage

h2o.aecu(object, train = FALSE, valid = FALSE, metric = "qini")



54 h2o.aecu_table

Arguments

object An H2OBinomialUpliftMetrics

train Retrieve the training AECU

valid Retrieve the validation AECU

metric Specify metric of AECU. Posibilities are "qini", "lift", "gain", defaults "qini".

Examples

## Not run:
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)

model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")

perf <- h2o.performance(model, train=TRUE)
h2o.aecu(perf)

## End(Not run)

h2o.aecu_table Retrieve the all types of AECU (average excess cumulative uplift)
value in a table

Description

Retrieves the all types of AECU value in a table from an H2OBinomialUpliftMetrics. If "train" and
"valid" parameters are FALSE (default), then the training AECU values are returned. If more than
one parameter is set to TRUE, then a named vector of AECU values are returned, where the names
are "train", "valid".

Usage

h2o.aecu_table(object, train = FALSE, valid = FALSE)

Arguments

object An H2OBinomialUpliftMetrics

train Retrieve the training AECU values table

valid Retrieve the validation AECU values table



h2o.aggregated_frame 55

Examples

## Not run:
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)

model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")

perf <- h2o.performance(model, train=TRUE)
h2o.aecu_table(perf)

## End(Not run)

h2o.aggregated_frame Retrieve an aggregated frame from an Aggregator model

Description

Retrieve an aggregated frame from the Aggregator model and use it to create a new frame.

Usage

h2o.aggregated_frame(model)

Arguments

model an H2OClusteringModel corresponding from a h2o.aggregator call.

Examples

## Not run:
library(h2o)
h2o.init()
df <- h2o.createFrame(rows = 100,

cols = 5,
categorical_fraction = 0.6,
integer_fraction = 0,
binary_fraction = 0,
real_range = 100,
integer_range = 100,
missing_fraction = 0)

target_num_exemplars = 1000
rel_tol_num_exemplars = 0.5
encoding = "Eigen"
agg <- h2o.aggregator(training_frame = df,



56 h2o.aggregator

target_num_exemplars = target_num_exemplars,
rel_tol_num_exemplars = rel_tol_num_exemplars,
categorical_encoding = encoding)

# Use the aggregated frame to create a new dataframe
new_df <- h2o.aggregated_frame(agg)

## End(Not run)

h2o.aggregator Build an Aggregated Frame

Description

Builds an Aggregated Frame of an H2OFrame.

Usage

h2o.aggregator(
training_frame,
x,
model_id = NULL,
ignore_const_cols = TRUE,
target_num_exemplars = 5000,
rel_tol_num_exemplars = 0.5,
transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"),
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

save_mapping_frame = FALSE,
num_iteration_without_new_exemplar = 500,
export_checkpoints_dir = NULL

)

Arguments

training_frame Id of the training data frame.

x A vector containing the character names of the predictors in the model.

model_id Destination id for this model; auto-generated if not specified.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
target_num_exemplars

Targeted number of exemplars Defaults to 5000.
rel_tol_num_exemplars

Relative tolerance for number of exemplars (e.g, 0.5 is +/- 50 percents) Defaults
to 0.5.

transform Transformation of training data Must be one of: "NONE", "STANDARDIZE",
"NORMALIZE", "DEMEAN", "DESCALE". Defaults to NORMALIZE.



h2o.aic 57

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

save_mapping_frame

Logical. Whether to export the mapping of the aggregated frame Defaults to
FALSE.

num_iteration_without_new_exemplar

The number of iterations to run before aggregator exits if the number of exem-
plars collected didn’t change Defaults to 500.

export_checkpoints_dir

Automatically export generated models to this directory.

Examples

## Not run:
library(h2o)
h2o.init()
df <- h2o.createFrame(rows = 100,

cols = 5,
categorical_fraction = 0.6,
integer_fraction = 0,
binary_fraction = 0,
real_range = 100,
integer_range = 100,
missing_fraction = 0)

target_num_exemplars = 1000
rel_tol_num_exemplars = 0.5
encoding = "Eigen"
agg <- h2o.aggregator(training_frame = df,

target_num_exemplars = target_num_exemplars,
rel_tol_num_exemplars = rel_tol_num_exemplars,
categorical_encoding = encoding)

## End(Not run)

h2o.aic Retrieve the Akaike information criterion (AIC) value

Description

Retrieves the AIC value. If "train", "valid", and "xval" parameters are FALSE (default), then the
training AIC value is returned. If more than one parameter is set to TRUE, then a named vector of
AICs are returned, where the names are "train", "valid" or "xval".

Usage

h2o.aic(object, train = FALSE, valid = FALSE, xval = FALSE)



58 h2o.all

Arguments

object An H2OModel or H2OModelMetrics.

train Retrieve the training AIC

valid Retrieve the validation AIC

xval Retrieve the cross-validation AIC

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
p_sid <- h2o.runif(prostate)
prostate_train <- prostate[p_sid > .2,]
prostate_glm <- h2o.glm(x = 3:7, y = 2, training_frame = prostate_train)
aic_basic <- h2o.aic(prostate_glm)
print(aic_basic)

## End(Not run)

h2o.all Given a set of logical vectors, are all of the values true?

Description

Given a set of logical vectors, are all of the values true?

Usage

h2o.all(x)

Arguments

x An H2OFrame object.

See Also

all for the base R implementation.



h2o.anomaly 59

h2o.anomaly Anomaly Detection via H2O Deep Learning Model

Description

Detect anomalies in an H2O dataset using an H2O deep learning model with auto-encoding.

Usage

h2o.anomaly(object, data, per_feature = FALSE)

Arguments

object An H2OAutoEncoderModel object that represents the model to be used for
anomaly detection.

data An H2OFrame object.

per_feature Whether to return the per-feature squared reconstruction error

Value

Returns an H2OFrame object containing the reconstruction MSE or the per-feature squared error.

See Also

h2o.deeplearning for making an H2OAutoEncoderModel.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
prostate_dl = h2o.deeplearning(x = 3:9, training_frame = prostate, autoencoder = TRUE,

hidden = c(10, 10), epochs = 5)
prostate_anon = h2o.anomaly(prostate_dl, prostate)
head(prostate_anon)
prostate_anon_per_feature = h2o.anomaly(prostate_dl, prostate, per_feature = TRUE)
head(prostate_anon_per_feature)

## End(Not run)



60 h2o.anovaglm

h2o.anovaglm H2O ANOVAGLM is used to calculate Type III SS which is used to
evaluate the contributions of individual predictors and their interac-
tions to a model. Predictors or interactions with negligible contri-
butions to the model will have high p-values while those with more
contributions will have low p-values.

Description

H2O ANOVAGLM is used to calculate Type III SS which is used to evaluate the contributions of
individual predictors and their interactions to a model. Predictors or interactions with negligible
contributions to the model will have high p-values while those with more contributions will have
low p-values.

Usage

h2o.anovaglm(
x,
y,
training_frame,
model_id = NULL,
seed = -1,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
offset_column = NULL,
weights_column = NULL,
family = c("AUTO", "gaussian", "binomial", "fractionalbinomial", "quasibinomial",

"poisson", "gamma", "tweedie", "negativebinomial"),
tweedie_variance_power = 0,
tweedie_link_power = 1,
theta = 0,
solver = c("AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR"),

missing_values_handling = c("MeanImputation", "Skip", "PlugValues"),
plug_values = NULL,
compute_p_values = TRUE,
standardize = TRUE,
non_negative = FALSE,
max_iterations = 0,
link = c("family_default", "identity", "logit", "log", "inverse", "tweedie",
"ologit"),

prior = 0,
alpha = NULL,
lambda = c(0),
lambda_search = FALSE,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",



h2o.anovaglm 61

"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

early_stopping = FALSE,
stopping_tolerance = 0.001,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
max_runtime_secs = 0,
save_transformed_framekeys = FALSE,
highest_interaction_term = 0,
nparallelism = 4,
type = 0

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

family Family. Use binomial for classification with logistic regression, others are for
regression problems. Must be one of: "AUTO", "gaussian", "binomial", "frac-
tionalbinomial", "quasibinomial", "poisson", "gamma", "tweedie", "negativebi-
nomial". Defaults to AUTO.



62 h2o.anovaglm

tweedie_variance_power

Tweedie variance power Defaults to 0.
tweedie_link_power

Tweedie link power Defaults to 1.

theta Theta Defaults to 0.

solver AUTO will set the solver based on given data and the other parameters. IRLSM
is fast on on problems with small number of predictors and for lambda-search
with L1 penalty, L_BFGS scales better for datasets with many columns. Must be
one of: "AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR".
Defaults to IRLSM.

missing_values_handling

Handling of missing values. Either MeanImputation, Skip or PlugValues. Must
be one of: "MeanImputation", "Skip", "PlugValues". Defaults to MeanImputa-
tion.

plug_values Plug Values (a single row frame containing values that will be used to im-
pute missing values of the training/validation frame, use with conjunction miss-
ing_values_handling = PlugValues)

compute_p_values

Logical. Request p-values computation, p-values work only with IRLSM solver
and no regularization Defaults to TRUE.

standardize Logical. Standardize numeric columns to have zero mean and unit variance
Defaults to TRUE.

non_negative Logical. Restrict coefficients (not intercept) to be non-negative Defaults to
FALSE.

max_iterations Maximum number of iterations Defaults to 0.

link Link function. Must be one of: "family_default", "identity", "logit", "log", "in-
verse", "tweedie", "ologit". Defaults to family_default.

prior Prior probability for y==1. To be used only for logistic regression iff the data
has been sampled and the mean of response does not reflect reality. Defaults to
0.

alpha Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties.
A value of 1 for alpha represents Lasso regression, a value of 0 produces Ridge
regression, and anything in between specifies the amount of mixing between the
two. Default value of alpha is 0 when SOLVER = ’L-BFGS’; 0.5 otherwise.

lambda Regularization strength Defaults to c(0.0).

lambda_search Logical. Use lambda search starting at lambda max, given lambda is then in-
terpreted as lambda min Defaults to FALSE.

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom



h2o.anovaglm 63

and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

early_stopping Logical. Stop early when there is no more relative improvement on train or
validation (if provided). Defaults to FALSE.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

save_transformed_framekeys

Logical. true to save the keys of transformed predictors and interaction column.
Defaults to FALSE.

highest_interaction_term

Limit the number of interaction terms, if 2 means interaction between 2 columns
only, 3 for three columns and so on... Default to 2. Defaults to 0.

nparallelism Number of models to build in parallel. Default to 4. Adjust according to your
system. Defaults to 4.

type Refer to the SS type 1, 2, 3, or 4. We are currently only supporting 3 Defaults to
0.

Examples

## Not run:
h2o.init()

# Run ANOVA GLM of VOL ~ CAPSULE + RACE
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
model <- h2o.anovaglm(y = "VOL", x = c("CAPSULE","RACE"), training_frame = prostate)

## End(Not run)



64 h2o.anyFactor

h2o.any Given a set of logical vectors, is at least one of the values true?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

h2o.any(x)

Arguments

x An H2OFrame object.

See Also

all for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.any(iris[, 1] < 1000)

## End(Not run)

h2o.anyFactor Check H2OFrame columns for factors

Description

Determines if any column of an H2OFrame object contains categorical data.

Usage

h2o.anyFactor(x)

Arguments

x An H2OFrame object.



h2o.api 65

Value

Returns a logical value indicating whether any of the columns in x are factors.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
h2o.anyFactor(iris_hf)

## End(Not run)

h2o.api Perform a REST API request to a previously connected server.

Description

This function is mostly for internal purposes, but may occasionally be useful for direct access to the
backend H2O server. It has same parameters as :meth:H2OConnection.request <h2o.backend.H2OConnection.request>.

Usage

h2o.api(endpoint, params = NULL, json = NULL)

Arguments

endpoint A H2O REST API endpoint.

params A list of params passed in the url.

json A list of params passed as a json payload.

Details

REST API endpoints can be obtained using:

endpoints <- sapply(h2o.api("GET /3/Metadata/endpoints")$routes, function(r) paste(r$http_method, r$url_pattern))

For a given route, the supported params can be otained using:

parameters <- sapply(h2o.api("GET /3/Metadata/schemas/{route$input_schema}")$schemas[[1]]$fields, function(f) { l <-list(); l[f$name] <- f$help; l })

Value

The parsed response.



66 h2o.arrange

Examples

## Not run:
res <- h2o.api("GET /3/NetworkTest")
res$table

## End(Not run)

h2o.arrange Sorts an H2O frame by columns

Description

Sorts H2OFrame by the columns specified. H2OFrame can contain String columns but should not
sort on any String columns. Otherwise, an error will be thrown. To sort column c1 in descending
order, do desc(c1). Returns a new H2OFrame, like dplyr::arrange.

Usage

h2o.arrange(x, ...)

Arguments

x The H2OFrame input to be sorted.

... The column names to sort by.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.arrange(iris, "species","petal_len","petal_wid")

## End(Not run)



h2o.ascharacter 67

h2o.ascharacter Convert H2O Data to Characters

Description

Convert H2O Data to Characters

Usage

h2o.ascharacter(x)

Arguments

x An H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.ascharacter(iris["species"])

## End(Not run)

h2o.asfactor Convert H2O Data to Factors

Description

Convert H2O Data to Factors

Usage

h2o.asfactor(x)

Arguments

x An H2OFrame object.

See Also

factor for the base R implementation, as.factor().



68 h2o.asnumeric

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
h2o.asfactor(cars["cylinders"])

## End(Not run)

h2o.asnumeric Convert H2O Data to Numerics

Description

If the column type is enum and you want to convert it to numeric, you should first convert it to
character then convert it to numeric. Otherwise, the values may be converted to underlying factor
values, not the expected mapped values.

Usage

h2o.asnumeric(x)

Arguments

x An H2OFrame object.

See Also

numeric for the base R implementation, as.numeric().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
h2o.ascharacter(cars)
h2o.asnumeric(cars)

## End(Not run)



h2o.assign 69

h2o.assign Rename an H2O object.

Description

Makes a copy of the data frame and gives it the desired key.

Usage

h2o.assign(data, key)

Arguments

data An H2OFrame object

key The key to be associated with the H2O parsed data object

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
dim(cars)
split <- h2o.splitFrame(data = cars, ratios = 0.8)
train <- h2o.assign(split[[1]], key = "train")
test <- h2o.assign(split[[2]], key = "test")
dim(train)
dim(test)

## End(Not run)

h2o.as_date Convert between character representations and objects of Date class

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

Usage

h2o.as_date(x, format, ...)



70 h2o.auc

Arguments

x H2OFrame column of strings or factors to be converted

format A character string indicating date pattern

... Further arguments to be passed from or to other methods.

h2o.auc Retrieve the AUC

Description

Retrieves the AUC value from an H2OBinomialMetrics. If "train", "valid", and "xval" parameters
are FALSE (default), then the training AUC value is returned. If more than one parameter is set to
TRUE, then a named vector of AUCs are returned, where the names are "train", "valid" or "xval".

Usage

h2o.auc(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OBinomialMetrics or H2OMultinomialMetrics object.

train Retrieve the training AUC

valid Retrieve the validation AUC

xval Retrieve the cross-validation AUC

See Also

h2o.giniCoef for the Gini coefficient, h2o.mse for MSE, and h2o.metric for the various thresh-
old metrics. See h2o.performance for creating H2OModelMetrics objects.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.auc(perf)

## End(Not run)



h2o.aucpr 71

h2o.aucpr Retrieve the AUCPR (Area Under Precision Recall Curve)

Description

Retrieves the AUCPR value from an H2OBinomialMetrics. If "train", "valid", and "xval" parame-
ters are FALSE (default), then the training AUCPR value is returned. If more than one parameter is
set to TRUE, then a named vector of AUCPRs are returned, where the names are "train", "valid" or
"xval".

Usage

h2o.aucpr(object, train = FALSE, valid = FALSE, xval = FALSE)

h2o.pr_auc(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OBinomialMetrics object.

train Retrieve the training aucpr

valid Retrieve the validation aucpr

xval Retrieve the cross-validation aucpr

See Also

h2o.giniCoef for the Gini coefficient, h2o.mse for MSE, and h2o.metric for the various thresh-
old metrics. See h2o.performance for creating H2OModelMetrics objects.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.aucpr(perf)

## End(Not run)



72 h2o.automl

h2o.automl Automatic Machine Learning

Description

The Automatic Machine Learning (AutoML) function automates the supervised machine learning
model training process. AutoML finds the best model, given a training frame and response, and
returns an H2OAutoML object, which contains a leaderboard of all the models that were trained in
the process, ranked by a default model performance metric.

Usage

h2o.automl(
x,
y,
training_frame,
validation_frame = NULL,
leaderboard_frame = NULL,
blending_frame = NULL,
nfolds = -1,
fold_column = NULL,
weights_column = NULL,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
max_runtime_secs = NULL,
max_runtime_secs_per_model = NULL,
max_models = NULL,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error"),
stopping_tolerance = NULL,
stopping_rounds = 3,
seed = NULL,
project_name = NULL,
exclude_algos = NULL,
include_algos = NULL,
modeling_plan = NULL,
preprocessing = NULL,
exploitation_ratio = -1,
monotone_constraints = NULL,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_models = FALSE,
keep_cross_validation_fold_assignment = FALSE,
sort_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE", "AUC",

"AUCPR", "mean_per_class_error"),
export_checkpoints_dir = NULL,
verbosity = "warn",



h2o.automl 73

...
)

Arguments

x A vector containing the names or indices of the predictor variables to use in
building the model. If x is missing, then all columns except y are used.

y The name or index of the response variable in the model. For classification, the
y column must be a factor, otherwise regression will be performed. Indexes are
1-based in R.

training_frame Training frame (H2OFrame or ID).
validation_frame

Validation frame (H2OFrame or ID); Optional. This argument is ignored un-
less the user sets nfolds = 0. If cross-validation is turned off, then a validation
frame can be specified and used for early stopping of individual models and
early stopping of the grid searches. By default and when nfolds > 1, cross-
validation metrics will be used for early stopping and thus validation_frame will
be ignored.

leaderboard_frame

Leaderboard frame (H2OFrame or ID); Optional. If provided, the Leaderboard
will be scored using this data frame intead of using cross-validation metrics,
which is the default.

blending_frame Blending frame (H2OFrame or ID) used to train the the metalearning algorithm
in Stacked Ensembles (instead of relying on cross-validated predicted values);
Optional. When provided, it also is recommended to disable cross validation by
setting nfolds=0 and to provide a leaderboard frame for scoring purposes.

nfolds Number of folds for k-fold cross-validation. Must be >= 2; defaults to 5. Use
0 to disable cross-validation; this will also disable Stacked Ensemble (thus de-
creasing the overall model performance).

fold_column Column with cross-validation fold index assignment per observation; used to
override the default, randomized, 5-fold cross-validation scheme for individual
models in the AutoML run.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed.

balance_classes

Logical. Specify whether to oversample the minority classes to balance the
class distribution; only applicable to classification. If the oversampled size of the
dataset exceeds the maximum size calculated during max_after_balance_size
parameter, then the majority class will be undersampled to satisfy the size limit.
Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.



74 h2o.automl

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

max_runtime_secs

This argument specifies the maximum time that the AutoML process will run
for. If neither max_runtime_secs nor max_models are specified by the user,
then max_runtime_secs defaults to 3600 seconds (1 hour).

max_runtime_secs_per_model

Maximum runtime in seconds dedicated to each individual model training pro-
cess. Use 0 to disable. Defaults to 0.

max_models Maximum number of models to build in the AutoML process (does not include
Stacked Ensembles). Defaults to NULL (no strict limit).

stopping_metric

Metric to use for early stopping ("AUTO" is logloss for classification, deviance
for regression). Must be one of "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error". Defaults to "AUTO".

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much). This value defaults to 0.001 if the dataset is at
least 1 million rows; otherwise it defaults to a bigger value determined by the
size of the dataset and the non-NA-rate. In that case, the value is computed as
1/sqrt(nrows * non-NA-rate).

stopping_rounds

Integer. Early stopping based on convergence of stopping_metric. Stop if
simple moving average of length k of the stopping_metric does not improve
for k (stopping_rounds) scoring events. Defaults to 3 and must be an non-zero
integer. Use 0 to disable early stopping.

seed Integer. Set a seed for reproducibility. AutoML can only guarantee reproducibil-
ity if max_models or early stopping is used because max_runtime_secs is re-
source limited, meaning that if the resources are not the same between runs,
AutoML may be able to train more models on one run vs another. In addition,
H2O Deep Learning models are not reproducible by default for performance rea-
sons, so if the user requires reproducibility, then exclude_algos must contain
"DeepLearning".

project_name Character string to identify an AutoML project. Defaults to NULL, which means
a project name will be auto-generated. More models can be trained and added
to an existing AutoML project by specifying the same project name in multiple
calls to the AutoML function (as long as the same training frame is used in
subsequent runs).

exclude_algos Vector of character strings naming the algorithms to skip during the model-
building phase. An example use is exclude_algos = c("GLM","DeepLearning","DRF"),
and the full list of options is: "DRF" (Random Forest and Extremely-Randomized
Trees), "GLM", "XGBoost", "GBM", "DeepLearning" and "StackedEnsemble".
Defaults to NULL, which means that all appropriate H2O algorithms will be
used, if the search stopping criteria allow. Optional.



h2o.automl 75

include_algos Vector of character strings naming the algorithms to restrict to during the model-
building phase. This can’t be used in combination with exclude_algos param.
Defaults to NULL, which means that all appropriate H2O algorithms will be
used, if the search stopping criteria allow. Optional.

modeling_plan List. The list of modeling steps to be used by the AutoML engine (they may not
all get executed, depending on other constraints). Optional (Expert usage only).

preprocessing List. The list of preprocessing steps to run. Only ’target_encoding’ is currently
supported.

exploitation_ratio

The budget ratio (between 0 and 1) dedicated to the exploitation (vs exploration)
phase. By default, this is set to AUTO (exploitation_ratio=-1) as this is still
experimental; to activate it, it is recommended to try a ratio around 0.1. Note
that the current exploitation phase only tries to fine-tune the best XGBoost and
the best GBM found during exploration.

monotone_constraints

List. A mapping representing monotonic constraints. Use +1 to enforce an
increasing constraint and -1 to specify a decreasing constraint.

keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation predictions.
This needs to be set to TRUE if running the same AutoML object for repeated
runs because CV predictions are required to build additional Stacked Ensemble
models in AutoML. This option defaults to FALSE.

keep_cross_validation_models

Logical. Whether to keep the cross-validated models. Keeping cross-validation
models may consume significantly more memory in the H2O cluster. This op-
tion defaults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep fold assignments in the models. Deleting them will
save memory in the H2O cluster. Defaults to FALSE.

sort_metric Metric to sort the leaderboard by. For binomial classification choose between
"AUC", "AUCPR", "logloss", "mean_per_class_error", "RMSE", "MSE". For
regression choose between "mean_residual_deviance", "RMSE", "MSE", "MAE",
and "RMSLE". For multinomial classification choose between "mean_per_class_error",
"logloss", "RMSE", "MSE". Default is "AUTO". If set to "AUTO", then "AUC"
will be used for binomial classification, "mean_per_class_error" for multinomial
classification, and "mean_residual_deviance" for regression.

export_checkpoints_dir

(Optional) Path to a directory where every model will be stored in binary form.

verbosity Verbosity of the backend messages printed during training; Optional. Must be
one of NULL (live log disabled), "debug", "info", "warn", "error". Defaults to
"warn".

... Additional (experimental) arguments to be passed through; Optional.

Details

AutoML trains several models, cross-validated by default, by using the following available algo-
rithms:



76 h2o.automl

• XGBoost

• GBM (Gradient Boosting Machine)

• GLM (Generalized Linear Model)

• DRF (Distributed Random Forest)

• XRT (eXtremely Randomized Trees)

• DeepLearning (Fully Connected Deep Neural Network)

It also applies HPO on the following algorithms:

• XGBoost

• GBM

• DeepLearning

In some cases, there will not be enough time to complete all the algorithms, so some may be missing
from the leaderboard.

Finally, AutoML also trains several Stacked Ensemble models at various stages during the run.
Mainly two kinds of Stacked Ensemble models are trained:

• one of all available models at time t.

• one of only the best models of each kind at time t.

Note that Stacked Ensemble models are trained only if there isn’t another stacked ensemble with
the same base models.

Value

An H2OAutoML object.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 30)
lb <- h2o.get_leaderboard(aml)
head(lb)

## End(Not run)



h2o.auuc 77

h2o.auuc Retrieve the default AUUC

Description

Retrieves the AUUC value from an H2OBinomialUpliftMetrics. If the metric parameter is "AUTO",
the type of AUUC depends on auuc_type which was set before training. If you need specific AUUC,
set metric parameter. If "train" and "valid" parameters are FALSE (default), then the training AUUC
value is returned. If more than one parameter is set to TRUE, then a named vector of AUUCs are
returned, where the names are "train", "valid".

Usage

h2o.auuc(object, train = FALSE, valid = FALSE, metric = NULL)

Arguments

object An H2OBinomialUpliftMetrics

train Retrieve the training AUUC

valid Retrieve the validation AUUC

metric Specify the AUUC metric to get specific AUUC. Possibilities are NULL, "qini",
"lift", "gain".

Examples

## Not run:
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)

model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")

perf <- h2o.performance(model, train=TRUE)
h2o.auuc(perf)

## End(Not run)



78 h2o.betweenss

h2o.auuc_table Retrieve the all types of AUUC in a table

Description

Retrieves the all types of AUUC in a table from an H2OBinomialUpliftMetrics. If "train" and
"valid" parameters are FALSE (default), then the training AUUC values are returned. If more than
one parameter is set to TRUE, then a named vector of AUUCs are returned, where the names are
"train", "valid".

Usage

h2o.auuc_table(object, train = FALSE, valid = FALSE)

Arguments

object An H2OBinomialUpliftMetrics

train Retrieve the training AUUC table

valid Retrieve the validation AUUC table

Examples

## Not run:
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)

model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",

auuc_type="AUTO")
perf <- h2o.performance(model, train=TRUE)
h2o.auuc_table(perf)

## End(Not run)

h2o.betweenss Get the between cluster sum of squares

Description

Get the between cluster sum of squares. If "train", "valid", and "xval" parameters are FALSE
(default), then the training betweenss value is returned. If more than one parameter is set to TRUE,
then a named vector of betweenss’ are returned, where the names are "train", "valid" or "xval".



h2o.biases 79

Usage

h2o.betweenss(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OClusteringModel object.

train Retrieve the training between cluster sum of squares

valid Retrieve the validation between cluster sum of squares

xval Retrieve the cross-validation between cluster sum of squares

Examples

## Not run:
library(h2o)
h2o.init()
fr <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv")
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
km <- h2o.kmeans(x = predictors, training_frame = fr, k = 3, nfolds = 3)
h2o.betweenss(km, train = TRUE)

## End(Not run)

h2o.biases Return the respective bias vector

Description

Return the respective bias vector

Usage

h2o.biases(object, vector_id = 1)

Arguments

object An H2OModel or H2OModelMetrics

vector_id An integer, ranging from 1 to number of layers + 1, that specifies the bias vector
to return.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/chicago/chicagoCensus.csv"
census <- h2o.importFile(f)



80 h2o.bottomN

census[, 1] <- as.factor(census[, 1])

dl_model <- h2o.deeplearning(x = c(1:3), y = 4, training_frame = census,
hidden = c(17, 191),
epochs = 1,
balance_classes = FALSE,
export_weights_and_biases = TRUE)

h2o.biases(dl_model, vector_id = 1)

## End(Not run)

h2o.bottomN H2O bottomN

Description

bottomN function will will grab the bottom N percent of values of a column and return it in a
H2OFrame. Extract the top N percent of values of a column and return it in a H2OFrame.

Usage

h2o.bottomN(x, column, nPercent)

Arguments

x an H2OFrame

column is a column name or column index to grab the top N percent value from

nPercent is a bottom percentage value to grab

Value

An H2OFrame with 2 columns. The first column is the original row indices, second column contains
the bottomN values

Examples

## Not run:
library(h2o)
h2o.init()

f1 <- "https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/jira/TopBottomNRep4.csv.zip"
f2 <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/jira/Bottom20Per.csv.zip"
data_Frame <- h2o.importFile(f1)
bottom_Answer <- h2o.importFile(f2)
nPercent <- c(1, 2, 3, 4)
frame_Names <- names(data_Frame)
nP <- nPercent[sample(1:length(nPercent), 1, replace = FALSE)]
col_Index <- sample(1:length(frame_Names), 1, replace = FALSE)
h2o.bottomN(data_Frame, frame_Names[col_Index], nP)



h2o.cbind 81

## End(Not run)

h2o.cbind Combine H2O Datasets by Columns

Description

Takes a sequence of H2O data sets and combines them by column

Usage

h2o.cbind(...)

Arguments

... A sequence of H2OFrame arguments. All datasets must exist on the same H2O
instance (IP and port) and contain the same number of rows.

Value

An H2OFrame object containing the combined . . . arguments column-wise.

See Also

cbind for the base R method.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate_cbind <- h2o.cbind(prostate, prostate)
head(prostate_cbind)

## End(Not run)



82 h2o.centers

h2o.ceiling Take a single numeric argument and return a numeric vector with the
smallest integers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest
integers not less than the corresponding elements of x.

Usage

h2o.ceiling(x)

Arguments

x An H2OFrame object.

See Also

Round for the base R implementation, ceiling().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.ceiling(iris[, 1])

## End(Not run)

h2o.centers Retrieve the Model Centers

Description

Retrieve the Model Centers

Usage

h2o.centers(object)

Arguments

object An H2OClusteringModel object.



h2o.centersSTD 83

Examples

## Not run:
library(h2o)
h2o.init()
fr <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv")
h2o.ceiling(fr[, 1])

## End(Not run)

h2o.centersSTD Retrieve the Model Centers STD

Description

Retrieve the Model Centers STD

Usage

h2o.centersSTD(object)

Arguments

object An H2OClusteringModel object.

Examples

## Not run:
library(h2o)
h2o.init()
fr <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv")
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
km <- h2o.kmeans(x = predictors, training_frame = fr, k = 3, nfolds = 3)
h2o.centersSTD(km)

## End(Not run)

h2o.centroid_stats Retrieve centroid statistics

Description

Retrieve the centroid statistics. If "train" and "valid" parameters are FALSE (default), then the
training centroid stats value is returned. If more than one parameter is set to TRUE, then a named
list of centroid stats data frames are returned, where the names are "train" or "valid" For cross
validation metrics this statistics are not available.



84 h2o.clearLog

Usage

h2o.centroid_stats(object, train = FALSE, valid = FALSE)

Arguments

object An H2OClusteringModel object.
train Retrieve the training centroid statistics
valid Retrieve the validation centroid statistics

Examples

## Not run:
library(h2o)
h2o.init()
fr <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv")
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
km <- h2o.kmeans(x = predictors, training_frame = fr, k = 3, nfolds = 3)
h2o.centroid_stats(km, train = TRUE)

## End(Not run)

h2o.clearLog Delete All H2O R Logs

Description

Clear all H2O R command and error response logs from the local disk. Used primarily for debug-
ging purposes.

Usage

h2o.clearLog()

See Also

h2o.startLogging,h2o.stopLogging,h2o.openLog

Examples

## Not run:
library(h2o)
h2o.init()
h2o.startLogging()
australia_path = system.file("extdata", "australia.csv", package = "h2o")
australia = h2o.importFile(path = australia_path)
h2o.stopLogging()
h2o.clearLog()

## End(Not run)



h2o.clusterInfo 85

h2o.clusterInfo Print H2O cluster info

Description

Print H2O cluster info

Usage

h2o.clusterInfo()

h2o.clusterIsUp Determine if an H2O cluster is up or not

Description

Determine if an H2O cluster is up or not

Usage

h2o.clusterIsUp(conn = h2o.getConnection())

Arguments

conn H2OConnection object

Value

TRUE if the cluster is up; FALSE otherwise

h2o.clusterStatus Return the status of the cluster

Description

Retrieve information on the status of the cluster running H2O.

Usage

h2o.clusterStatus()

See Also

H2OConnection, h2o.init



86 h2o.cluster_sizes

Examples

## Not run:
h2o.init()
h2o.clusterStatus()

## End(Not run)

h2o.cluster_sizes Retrieve the cluster sizes

Description

Retrieve the cluster sizes. If "train", "valid", and "xval" parameters are FALSE (default), then the
training cluster sizes value is returned. If more than one parameter is set to TRUE, then a named
list of cluster size vectors are returned, where the names are "train", "valid" or "xval".

Usage

h2o.cluster_sizes(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OClusteringModel object.

train Retrieve the training cluster sizes

valid Retrieve the validation cluster sizes

xval Retrieve the cross-validation cluster sizes

Examples

## Not run:
library(h2o)
h2o.init()
fr <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv")
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
km <- h2o.kmeans(x = predictors, training_frame = fr, k = 3, nfolds = 3)
h2o.cluster_sizes(km, train = TRUE)

## End(Not run)



h2o.coef 87

h2o.coef Return the coefficients that can be applied to the non-standardized
data.

Description

Note: standardize = True by default. If set to False, then coef() returns the coefficients that are fit
directly.

Usage

h2o.coef(object, predictorSize = -1)

Arguments

object an H2OModel object.

predictorSize predictor subset size. If specified, will only return model coefficients of that
subset size. If not specified will return a lists of model coefficient dicts for all
predictor subset size.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "cylinders"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_glm <- h2o.glm(balance_classes = TRUE,

seed = 1234,
x = predictors,
y = response,
training_frame = train,
validation_frame = valid)

h2o.coef(cars_glm)

## End(Not run)



88 h2o.coef_norm

h2o.coef_norm Return coefficients fitted on the standardized data (requires standard-
ize = True, which is on by default). These coefficients can be used to
evaluate variable importance.

Description

Return coefficients fitted on the standardized data (requires standardize = True, which is on by
default). These coefficients can be used to evaluate variable importance.

Usage

h2o.coef_norm(object, predictorSize = -1)

Arguments

object an H2OModel object.

predictorSize predictor subset size. If specified, will only return model coefficients of that
subset size. If not specified will return a lists of model coefficient dicts for all
predictor subset size.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "cylinders"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_glm <- h2o.glm(balance_classes = TRUE,

seed = 1234,
x = predictors,
y = response,
training_frame = train,
validation_frame = valid)

h2o.coef_norm(cars_glm)

## End(Not run)



h2o.colnames 89

h2o.colnames Return column names of an H2OFrame

Description

Return column names of an H2OFrame

Usage

h2o.colnames(x)

Arguments

x An H2OFrame object.

See Also

colnames for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.colnames(frame)

## End(Not run)

h2o.columns_by_type Obtain a list of columns that are specified by ‘coltype‘

Description

Obtain a list of columns that are specified by ‘coltype‘

Usage

h2o.columns_by_type(object, coltype = "numeric", ...)



90 h2o.computeGram

Arguments

object H2OFrame object

coltype A character string indicating which column type to filter by. This must be one of
the following: "numeric" - Numeric, but not categorical or time "categorical" -
Integer, with a categorical/factor String mapping "string" - String column "time"
- Long msec since the Unix Epoch - with a variety of display/parse options
"uuid" - UUID "bad" - No none-NA rows (triple negative! all NAs or zero rows)

... Ignored

Value

A list of column indices that correspond to "type"

Examples

## Not run:
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.columns_by_type(prostate, coltype = "numeric")

## End(Not run)

h2o.computeGram Compute weighted gram matrix.

Description

Compute weighted gram matrix.

Usage

h2o.computeGram(
X,
weights = "",
use_all_factor_levels = FALSE,
standardize = TRUE,
skip_missing = FALSE

)

Arguments

X an H2OModel corresponding to H2O framel.

weights character corresponding to name of weight vector in frame.
use_all_factor_levels

logical flag telling h2o whether or not to skip first level of categorical variables
during one-hot encoding.



h2o.confusionMatrix 91

standardize logical flag telling h2o whether or not to standardize data

skip_missing logical flag telling h2o whether skip rows with missing data or impute them with
mean

h2o.confusionMatrix Access H2O Confusion Matrices

Description

Retrieve either a single or many confusion matrices from H2O objects.

Usage

h2o.confusionMatrix(object, ...)

## S4 method for signature 'H2OModel'
h2o.confusionMatrix(object, newdata, valid = FALSE, ...)

## S4 method for signature 'H2OModelMetrics'
h2o.confusionMatrix(object, thresholds = NULL, metrics = NULL)

Arguments

object Either an H2OModel object or an H2OModelMetrics object.

... Extra arguments for extracting train or valid confusion matrices.

newdata An H2OFrame object that can be scored on. Requires a valid response column.

valid Retrieve the validation metric.

thresholds (Optional) A value or a list of valid values between 0.0 and 1.0. This value is
only used in the case of H2OBinomialMetrics objects.

metrics (Optional) A metric or a list of valid metrics ("min_per_class_accuracy", "ab-
solute_mcc", "tnr", "fnr", "fpr", "tpr", "precision", "accuracy", "f0point5", "f2",
"f1"). This value is only used in the case of H2OBinomialMetrics objects.

Details

The H2OModelMetrics version of this function will only take H2OBinomialMetrics or H2OMultinomialMetrics
objects. If no threshold is specified, all possible thresholds are selected.

Value

Calling this function on H2OModel objects returns a confusion matrix corresponding to the predict
function. If used on an H2OBinomialMetrics object, returns a list of matrices corresponding to the
number of thresholds specified.

See Also

predict for generating prediction frames, h2o.performance for creating H2OModelMetrics.



92 h2o.connect

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
h2o.confusionMatrix(model, prostate)
# Generating a ModelMetrics object
perf <- h2o.performance(model, prostate)
h2o.confusionMatrix(perf)

## End(Not run)

h2o.connect Connect to a running H2O instance.

Description

Connect to a running H2O instance.

Usage

h2o.connect(
ip = "localhost",
port = 54321,
strict_version_check = TRUE,
proxy = NA_character_,
https = FALSE,
cacert = NA_character_,
insecure = FALSE,
username = NA_character_,
password = NA_character_,
use_spnego = FALSE,
cookies = NA_character_,
context_path = NA_character_,
config = NULL

)

Arguments

ip Object of class character representing the IP address of the server where H2O
is running.

port Object of class numeric representing the port number of the H2O server.
strict_version_check

(Optional) Setting this to FALSE is unsupported and should only be done when
advised by technical support.



h2o.cor 93

proxy (Optional) A character string specifying the proxy path.

https (Optional) Set this to TRUE to use https instead of http.

cacert Path to a CA bundle file with root and intermediate certificates of trusted CAs.

insecure (Optional) Set this to TRUE to disable SSL certificate checking.

username (Optional) Username to login with.

password (Optional) Password to login with.

use_spnego (Optional) Set this to TRUE to enable SPNEGO authentication.

cookies (Optional) Vector(or list) of cookies to add to request.

context_path (Optional) The last part of connection URL: http://<ip>:<port>/<context_path>

config (Optional) A list describing connection parameters. Using config makes
h2o.connect ignore other parameters and collect named list members instead
(see examples).

Value

an instance of H2OConnection object representing a connection to the running H2O instance.

Examples

## Not run:
library(h2o)
# Try to connect to a H2O instance running at http://localhost:54321/cluster_X
#h2o.connect(ip = "localhost", port = 54321, context_path = "cluster_X")
# Or
#config = list(ip = "localhost", port = 54321, context_path = "cluster_X")
#h2o.connect(config = config)

# Skip strict version check during connecting to the instance
#h2o.connect(config = c(strict_version_check = FALSE, config))

## End(Not run)

h2o.cor Correlation of columns.

Description

Compute the correlation matrix of one or two H2OFrames.

Usage

h2o.cor(x, y = NULL, na.rm = FALSE, use, method = "Pearson")

cor(x, ...)



94 h2o.cos

Arguments

x An H2OFrame object.

y NULL (default) or an H2OFrame. The default is equivalent to y = x.

na.rm logical. Should missing values be removed?

use An optional character string indicating how to handle missing values. This must
be one of the following: "everything" - outputs NaNs whenever one of its con-
tributing observations is missing "all.obs" - presence of missing observations
will throw an error "complete.obs" - discards missing values along with all ob-
servations in their rows so that only complete observations are used

method str Method of correlation computation. Allowed values are: "Pearson" - Pear-
son’s correlation coefficient "Spearman" - Spearman’s correlation coefficient
(Spearman’s Rho) Defaults to "Pearson"

... Further arguments to be passed down from other methods.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
cor(prostate$AGE)

## End(Not run)

h2o.cos Compute the cosine of x

Description

Compute the cosine of x

Usage

h2o.cos(x)

Arguments

x An H2OFrame object.

See Also

Trig for the base R implementation, cos().



h2o.cosh 95

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.cos(frame["C1"])

## End(Not run)

h2o.cosh Compute the hyperbolic cosine of x

Description

Compute the hyperbolic cosine of x

Usage

h2o.cosh(x)

Arguments

x An H2OFrame object.

See Also

Hyperbolic for the base R implementation, cosh().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.cosh(frame["C1"])

## End(Not run)



96 h2o.coxph

h2o.coxph Trains a Cox Proportional Hazards Model (CoxPH) on an H2O
dataset

Description

Trains a Cox Proportional Hazards Model (CoxPH) on an H2O dataset

Usage

h2o.coxph(
x,
event_column,
training_frame,
model_id = NULL,
start_column = NULL,
stop_column = NULL,
weights_column = NULL,
offset_column = NULL,
stratify_by = NULL,
ties = c("efron", "breslow"),
init = 0,
lre_min = 9,
max_iterations = 20,
interactions = NULL,
interaction_pairs = NULL,
interactions_only = NULL,
use_all_factor_levels = FALSE,
export_checkpoints_dir = NULL,
single_node_mode = FALSE

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except event_column,
start_column and stop_column are used.

event_column The name of binary data column in the training frame indicating the occurrence
of an event.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.

start_column Start Time Column.

stop_column Stop Time Column.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative



h2o.coxph 97

weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

stratify_by List of columns to use for stratification.

ties Method for Handling Ties. Must be one of: "efron", "breslow". Defaults to
efron.

init Coefficient starting value. Defaults to 0.

lre_min Minimum log-relative error. Defaults to 9.

max_iterations Maximum number of iterations. Defaults to 20.

interactions A list of predictor column indices to interact. All pairwise combinations will be
computed for the list.

interaction_pairs

A list of pairwise (first order) column interactions.
interactions_only

A list of columns that should only be used to create interactions but should not
itself participate in model training.

use_all_factor_levels

Logical. (Internal. For development only!) Indicates whether to use all factor
levels. Defaults to FALSE.

export_checkpoints_dir

Automatically export generated models to this directory.
single_node_mode

Logical. Run on a single node to reduce the effect of network overhead (for
smaller datasets) Defaults to FALSE.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the heart dataset
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/coxph_test/heart.csv"
heart <- h2o.importFile(f)

# Set the predictor and response
predictor <- "age"
response <- "event"

# Train a Cox Proportional Hazards model
heart_coxph <- h2o.coxph(x = predictor, training_frame = heart,



98 h2o.createFrame

event_column = "event",
start_column = "start",
stop_column = "stop")

## End(Not run)

h2o.createFrame Data H2OFrame Creation in H2O

Description

Creates a data frame in H2O with real-valued, categorical, integer, and binary columns specified by
the user.

Usage

h2o.createFrame(
rows = 10000,
cols = 10,
randomize = TRUE,
value = 0,
real_range = 100,
categorical_fraction = 0.2,
factors = 100,
integer_fraction = 0.2,
integer_range = 100,
binary_fraction = 0.1,
binary_ones_fraction = 0.02,
time_fraction = 0,
string_fraction = 0,
missing_fraction = 0.01,
response_factors = 2,
has_response = FALSE,
seed,
seed_for_column_types

)

Arguments

rows The number of rows of data to generate.

cols The number of columns of data to generate. Excludes the response column if
has_response = TRUE.

randomize A logical value indicating whether data values should be randomly generated.
This must be TRUE if either categorical_fraction or integer_fraction is
non-zero.

value If randomize = FALSE, then all real-valued entries will be set to this value.

real_range The range of randomly generated real values.



h2o.createFrame 99

categorical_fraction

The fraction of total columns that are categorical.

factors The number of (unique) factor levels in each categorical column.
integer_fraction

The fraction of total columns that are integer-valued.

integer_range The range of randomly generated integer values.
binary_fraction

The fraction of total columns that are binary-valued.
binary_ones_fraction

The fraction of values in a binary column that are set to 1.

time_fraction The fraction of randomly created date/time columns.
string_fraction

The fraction of randomly created string columns.
missing_fraction

The fraction of total entries in the data frame that are set to NA.
response_factors

If has_response = TRUE, then this is the number of factor levels in the response
column.

has_response A logical value indicating whether an additional response column should be pre-
pended to the final H2O data frame. If set to TRUE, the total number of columns
will be cols+1.

seed A seed used to generate random values when randomize = TRUE.
seed_for_column_types

A seed used to generate random column types when randomize = TRUE.

Value

Returns an H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init()
hf <- h2o.createFrame(rows = 1000, cols = 100, categorical_fraction = 0.1,

factors = 5, integer_fraction = 0.5, integer_range = 1,
has_response = TRUE)

head(hf)
summary(hf)

hf <- h2o.createFrame(rows = 100, cols = 10, randomize = FALSE, value = 5,
categorical_fraction = 0, integer_fraction = 0)

summary(hf)

## End(Not run)



100 h2o.cross_validation_fold_assignment

h2o.cross_validation_fold_assignment

Retrieve the cross-validation fold assignment

Description

Retrieve the cross-validation fold assignment

Usage

h2o.cross_validation_fold_assignment(object)

Arguments

object An H2OModel object.

Value

Returns a H2OFrame

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "economy_20mpg"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response, training_frame = train,

nfolds = 5, keep_cross_validation_fold_assignment = TRUE, seed = 1234)
h2o.cross_validation_fold_assignment(cars_gbm)

## End(Not run)



h2o.cross_validation_holdout_predictions 101

h2o.cross_validation_holdout_predictions

Retrieve the cross-validation holdout predictions

Description

Retrieve the cross-validation holdout predictions

Usage

h2o.cross_validation_holdout_predictions(object)

Arguments

object An H2OModel object.

Value

Returns a H2OFrame

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement","power","weight","acceleration","year")
response <- "economy_20mpg"
cars_split <- h2o.splitFrame(data = cars,ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response, training_frame = train,

nfolds = 5, keep_cross_validation_predictions = TRUE, seed = 1234)
h2o.cross_validation_holdout_predictions(cars_gbm)

## End(Not run)



102 h2o.cross_validation_models

h2o.cross_validation_models

Retrieve the cross-validation models

Description

Retrieve the cross-validation models

Usage

h2o.cross_validation_models(object)

Arguments

object An H2OModel object.

Value

Returns a list of H2OModel objects

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "economy_20mpg"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response, training_frame = train,

nfolds = 5, keep_cross_validation_models = TRUE, seed = 1234)
h2o.cross_validation_models(cars_gbm)

## End(Not run)



h2o.cross_validation_predictions 103

h2o.cross_validation_predictions

Retrieve the cross-validation predictions

Description

Retrieve the cross-validation predictions

Usage

h2o.cross_validation_predictions(object)

Arguments

object An H2OModel object.

Value

Returns a list of H2OFrame objects

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "economy_20mpg"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response, training_frame = train,

nfolds = 5, keep_cross_validation_predictions = TRUE, seed = 1234)
h2o.cross_validation_predictions(cars_gbm)

## End(Not run)



104 h2o.cummin

h2o.cummax Return the cumulative max over a column or across a row

Description

Return the cumulative max over a column or across a row

Usage

h2o.cummax(x, axis = 0)

Arguments

x An H2OFrame object.

axis An int that indicates whether to do down a column (0) or across a row (1).

See Also

cumsum for the base R implementation, cummax().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.cummax(frame, 1)

## End(Not run)

h2o.cummin Return the cumulative min over a column or across a row

Description

Return the cumulative min over a column or across a row

Usage

h2o.cummin(x, axis = 0)



h2o.cumprod 105

Arguments

x An H2OFrame object.

axis An int that indicates whether to do down a column (0) or across a row (1).

See Also

cumsum for the base R implementation, cummin().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.cummin(frame, 1)

## End(Not run)

h2o.cumprod Return the cumulative product over a column or across a row

Description

Return the cumulative product over a column or across a row

Usage

h2o.cumprod(x, axis = 0)

Arguments

x An H2OFrame object.

axis An int that indicates whether to do down a column (0) or across a row (1).

See Also

cumsum for the base R implementation, cumprod().



106 h2o.cumsum

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.cumprod(frame, 1)

## End(Not run)

h2o.cumsum Return the cumulative sum over a column or across a row

Description

Return the cumulative sum over a column or across a row

Usage

h2o.cumsum(x, axis = 0)

Arguments

x An H2OFrame object.

axis An int that indicates whether to do down a column (0) or across a row (1).

See Also

cumsum for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.cumsum(frame, 1)

## End(Not run)



h2o.cut 107

h2o.cut Cut H2O Numeric Data to Factor

Description

Divides the range of the H2O data into intervals and codes the values according to which interval
they fall in. The leftmost interval corresponds to the level one, the next is level two, etc.

Usage

h2o.cut(
x,
breaks,
labels = NULL,
include.lowest = FALSE,
right = TRUE,
dig.lab = 3,
...

)

## S3 method for class 'H2OFrame'
cut(
x,
breaks,
labels = NULL,
include.lowest = FALSE,
right = TRUE,
dig.lab = 3,
...

)

Arguments

x An H2OFrame object with a single numeric column.

breaks A numeric vector of two or more unique cut points.

labels Labels for the levels of the resulting category. By default, labels are constructed
sing "(a,b]" interval notation.

include.lowest Logical, indicationg if an ’x[i]’ equal to the lowest (or highest, for right =
FALSE ’breaks’ value should be included

right /codeLogical, indicating if the intervals should be closed on the right (opened
on the left) or vice versa.

dig.lab Integer which is used when labels are not given, determines the number of digits
used in formatting the break numbers.

... Further arguments passed to or from other methods.



108 h2o.day

Value

Returns an H2OFrame object containing the factored data with intervals as levels.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
summary(iris_hf)

# Cut sepal length column into intervals determined by min/max/quantiles
sepal_len_cut <- cut(iris_hf$Sepal.Length, c(4.2, 4.8, 5.8, 6, 8))
head(sepal_len_cut)
summary(sepal_len_cut)

## End(Not run)

h2o.day Convert Milliseconds to Day of Month in H2O Datasets

Description

Converts the entries of an H2OFrame object from milliseconds to days of the month (on a 1 to 31
scale).

Usage

h2o.day(x)

day(x)

## S3 method for class 'H2OFrame'
day(x)

Arguments

x An H2OFrame object.

Value

An H2OFrame object containing the entries of x converted to days of the month.

See Also

h2o.month



h2o.dayOfWeek 109

h2o.dayOfWeek Convert Milliseconds to Day of Week in H2O Datasets

Description

Converts the entries of an H2OFrame object from milliseconds to days of the week (on a 0 to 6
scale).

Usage

h2o.dayOfWeek(x)

dayOfWeek(x)

## S3 method for class 'H2OFrame'
dayOfWeek(x)

Arguments

x An H2OFrame object.

Value

An H2OFrame object containing the entries of x converted to days of the week.

See Also

h2o.day,h2o.month

h2o.dct Compute DCT of an H2OFrame

Description

Compute the Discrete Cosine Transform of every row in the H2OFrame

Usage

h2o.dct(data, destination_frame, dimensions, inverse = FALSE)



110 h2o.ddply

Arguments

data An H2OFrame object representing the dataset to transform
destination_frame

A frame ID for the result

dimensions An array containing the 3 integer values for height, width, depth of each sample.
The product of HxWxD must total up to less than the number of columns. For
1D, use c(L,1,1), for 2D, use C(N,M,1).

inverse Whether to perform the inverse transform

Value

Returns an H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init()
df <- h2o.createFrame(rows = 1000, cols = 8 * 16 * 24,

categorical_fraction = 0, integer_fraction = 0, missing_fraction = 0)
df1 <- h2o.dct(data = df, dimensions = c(8 * 16 * 24, 1, 1))
df2 <- h2o.dct(data = df1, dimensions = c(8 * 16 * 24, 1, 1), inverse = TRUE)
max(abs(df1 - df2))

df1 <- h2o.dct(data = df, dimensions = c(8 * 16, 24, 1))
df2 <- h2o.dct(data = df1, dimensions = c(8 * 16, 24, 1), inverse = TRUE)
max(abs(df1 - df2))

df1 <- h2o.dct(data = df, dimensions = c(8, 16, 24))
df2 <- h2o.dct(data = df1, dimensions = c(8, 16, 24), inverse = TRUE)
max(abs(df1 - df2))

## End(Not run)

h2o.ddply Split H2O Dataset, Apply Function, and Return Results

Description

For each subset of an H2O data set, apply a user-specified function, then combine the results. This
is an experimental feature based on plyr::ddply.

Usage

h2o.ddply(X, .variables, FUN, ..., .progress = "none")



h2o.decryptionSetup 111

Arguments

X An H2OFrame object to be processed.

.variables Variables to split X by, either the indices or names of a set of columns.

FUN Function to apply to each subset grouping.

... Additional arguments passed on to FUN.

.progress Name of the progress bar to use. #TODO: (Currently unimplemented)

Value

Returns an H2OFrame object containing the results from the split/apply operation, arranged

Examples

## Not run:
library(h2o)
h2o.init()

# Import iris dataset to H2O
iris_hf <- as.h2o(iris)
# Add function taking mean of Sepal.Length column
fun <- function(df) { sum(df[, 1], na.rm = TRUE) / nrow(df) }
# Apply function to groups by flower specie
# uses h2o's ddply, since iris_hf is an H2OFrame object
res <- h2o.ddply(iris_hf, "Species", fun)
head(res)

## End(Not run)

h2o.decryptionSetup Setup a Decryption Tool

Description

If your source file is encrypted - setup a Decryption Tool and then provide the reference (result of
this function) to the import functions.

Usage

h2o.decryptionSetup(
keystore,
keystore_type = "JCEKS",
key_alias = NA_character_,
password = NA_character_,
decrypt_tool = "",
decrypt_impl = "water.parser.GenericDecryptionTool",
cipher_spec = NA_character_

)



112 h2o.deepfeatures

Arguments

keystore An H2OFrame object referencing a loaded Java Keystore (see example).

keystore_type (Optional) Specification of Keystore type, defaults to JCEKS.

key_alias Which key from the keystore to use for decryption.

password Password to the keystore and the key.

decrypt_tool (Optional) Name of the decryption tool.

decrypt_impl (Optional) Java class name implementing the Decryption Tool.

cipher_spec Specification of a cipher (eg.: AES/ECB/PKCS5Padding).

See Also

h2o.importFile, h2o.parseSetup

Examples

## Not run:
library(h2o)
h2o.init()
ks_path <- system.file("extdata", "keystore.jks", package = "h2o")
keystore <- h2o.importFile(path = ks_path, parse = FALSE) # don't parse, keep as a binary file
cipher <- "AES/ECB/PKCS5Padding"
pwd <- "Password123"
alias <- "secretKeyAlias"
dt <- h2o.decryptionSetup(keystore, key_alias = alias, password = pwd, cipher_spec = cipher)
data_path <- system.file("extdata", "prostate.csv.aes", package = "h2o")
data <- h2o.importFile(data_path, decrypt_tool = dt)
summary(data)

## End(Not run)

h2o.deepfeatures Feature Generation via H2O Deep Learning

Description

Extract the non-linear feature from an H2O data set using an H2O deep learning model.

Usage

h2o.deepfeatures(object, data, layer)

Arguments

object An H2OModel object that represents the deep learning model to be used for
feature extraction.

data An H2OFrame object.

layer Index (integer) of the hidden layer to extract



h2o.deeplearning 113

Value

Returns an H2OFrame object with as many features as the number of units in the hidden layer of
the specified index.

See Also

h2o.deeplearning for making H2O Deep Learning models.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
prostate_dl = h2o.deeplearning(x = 3:9, y = 2, training_frame = prostate,

hidden = c(100, 200), epochs = 5)
prostate_deepfeatures_layer1 = h2o.deepfeatures(prostate_dl, prostate, layer = 1)
prostate_deepfeatures_layer2 = h2o.deepfeatures(prostate_dl, prostate, layer = 2)
head(prostate_deepfeatures_layer1)
head(prostate_deepfeatures_layer2)

## End(Not run)

h2o.deeplearning Build a Deep Neural Network model using CPUs

Description

Builds a feed-forward multilayer artificial neural network on an H2OFrame.

Usage

h2o.deeplearning(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,



114 h2o.deeplearning

weights_column = NULL,
offset_column = NULL,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
checkpoint = NULL,
pretrained_autoencoder = NULL,
overwrite_with_best_model = TRUE,
use_all_factor_levels = TRUE,
standardize = TRUE,
activation = c("Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout",

"Maxout", "MaxoutWithDropout"),
hidden = c(200, 200),
epochs = 10,
train_samples_per_iteration = -2,
target_ratio_comm_to_comp = 0.05,
seed = -1,
adaptive_rate = TRUE,
rho = 0.99,
epsilon = 1e-08,
rate = 0.005,
rate_annealing = 1e-06,
rate_decay = 1,
momentum_start = 0,
momentum_ramp = 1e+06,
momentum_stable = 0,
nesterov_accelerated_gradient = TRUE,
input_dropout_ratio = 0,
hidden_dropout_ratios = NULL,
l1 = 0,
l2 = 0,
max_w2 = 3.4028235e+38,
initial_weight_distribution = c("UniformAdaptive", "Uniform", "Normal"),
initial_weight_scale = 1,
initial_weights = NULL,
initial_biases = NULL,
loss = c("Automatic", "CrossEntropy", "Quadratic", "Huber", "Absolute", "Quantile"),
distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma",

"tweedie", "laplace", "quantile", "huber"),
quantile_alpha = 0.5,
tweedie_power = 1.5,
huber_alpha = 0.9,
score_interval = 5,
score_training_samples = 10000,
score_validation_samples = 0,
score_duty_cycle = 0.1,
classification_stop = 0,
regression_stop = 1e-06,



h2o.deeplearning 115

stopping_rounds = 5,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0,
max_runtime_secs = 0,
score_validation_sampling = c("Uniform", "Stratified"),
diagnostics = TRUE,
fast_mode = TRUE,
force_load_balance = TRUE,
variable_importances = TRUE,
replicate_training_data = TRUE,
single_node_mode = FALSE,
shuffle_training_data = FALSE,
missing_values_handling = c("MeanImputation", "Skip"),
quiet_mode = FALSE,
autoencoder = FALSE,
sparse = FALSE,
col_major = FALSE,
average_activation = 0,
sparsity_beta = 0,
max_categorical_features = 2147483647,
reproducible = FALSE,
export_weights_and_biases = FALSE,
mini_batch_size = 1,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

elastic_averaging = FALSE,
elastic_averaging_moving_rate = 0.9,
elastic_averaging_regularization = 0.001,
export_checkpoints_dir = NULL,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO"),

verbose = FALSE
)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.



116 h2o.deeplearning

nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to
0.

keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

checkpoint Model checkpoint to resume training with.
pretrained_autoencoder

Pretrained autoencoder model to initialize this model with.



h2o.deeplearning 117

overwrite_with_best_model

Logical. If enabled, override the final model with the best model found during
training. Defaults to TRUE.

use_all_factor_levels

Logical. Use all factor levels of categorical variables. Otherwise, the first factor
level is omitted (without loss of accuracy). Useful for variable importances and
auto-enabled for autoencoder. Defaults to TRUE.

standardize Logical. If enabled, automatically standardize the data. If disabled, the user
must provide properly scaled input data. Defaults to TRUE.

activation Activation function. Must be one of: "Tanh", "TanhWithDropout", "Rectifier",
"RectifierWithDropout", "Maxout", "MaxoutWithDropout". Defaults to Recti-
fier.

hidden Hidden layer sizes (e.g. [100, 100]). Defaults to c(200, 200).

epochs How many times the dataset should be iterated (streamed), can be fractional.
Defaults to 10.

train_samples_per_iteration

Number of training samples (globally) per MapReduce iteration. Special val-
ues are 0: one epoch, -1: all available data (e.g., replicated training data), -2:
automatic. Defaults to -2.

target_ratio_comm_to_comp

Target ratio of communication overhead to computation. Only for multi-node
operation and train_samples_per_iteration = -2 (auto-tuning). Defaults to 0.05.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Note: only reproducible
when running single threaded. Defaults to -1 (time-based random number).

adaptive_rate Logical. Adaptive learning rate. Defaults to TRUE.

rho Adaptive learning rate time decay factor (similarity to prior updates). Defaults
to 0.99.

epsilon Adaptive learning rate smoothing factor (to avoid divisions by zero and allow
progress). Defaults to 1e-08.

rate Learning rate (higher => less stable, lower => slower convergence). Defaults to
0.005.

rate_annealing Learning rate annealing: rate / (1 + rate_annealing * samples). Defaults to 1e-
06.

rate_decay Learning rate decay factor between layers (N-th layer: rate * rate_decay ^ (n -
1). Defaults to 1.

momentum_start Initial momentum at the beginning of training (try 0.5). Defaults to 0.

momentum_ramp Number of training samples for which momentum increases. Defaults to 1000000.
momentum_stable

Final momentum after the ramp is over (try 0.99). Defaults to 0.
nesterov_accelerated_gradient

Logical. Use Nesterov accelerated gradient (recommended). Defaults to TRUE.
input_dropout_ratio

Input layer dropout ratio (can improve generalization, try 0.1 or 0.2). Defaults
to 0.



118 h2o.deeplearning

hidden_dropout_ratios

Hidden layer dropout ratios (can improve generalization), specify one value per
hidden layer, defaults to 0.5.

l1 L1 regularization (can add stability and improve generalization, causes many
weights to become 0). Defaults to 0.

l2 L2 regularization (can add stability and improve generalization, causes many
weights to be small. Defaults to 0.

max_w2 Constraint for squared sum of incoming weights per unit (e.g. for Rectifier).
Defaults to 3.4028235e+38.

initial_weight_distribution

Initial weight distribution. Must be one of: "UniformAdaptive", "Uniform",
"Normal". Defaults to UniformAdaptive.

initial_weight_scale

Uniform: -value...value, Normal: stddev. Defaults to 1.
initial_weights

A list of H2OFrame ids to initialize the weight matrices of this model with.
initial_biases A list of H2OFrame ids to initialize the bias vectors of this model with.
loss Loss function. Must be one of: "Automatic", "CrossEntropy", "Quadratic", "Hu-

ber", "Absolute", "Quantile". Defaults to Automatic.
distribution Distribution function Must be one of: "AUTO", "bernoulli", "multinomial",

"gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber". De-
faults to AUTO.

quantile_alpha Desired quantile for Quantile regression, must be between 0 and 1. Defaults to
0.5.

tweedie_power Tweedie power for Tweedie regression, must be between 1 and 2. Defaults to
1.5.

huber_alpha Desired quantile for Huber/M-regression (threshold between quadratic and lin-
ear loss, must be between 0 and 1). Defaults to 0.9.

score_interval Shortest time interval (in seconds) between model scoring. Defaults to 5.
score_training_samples

Number of training set samples for scoring (0 for all). Defaults to 10000.
score_validation_samples

Number of validation set samples for scoring (0 for all). Defaults to 0.
score_duty_cycle

Maximum duty cycle fraction for scoring (lower: more training, higher: more
scoring). Defaults to 0.1.

classification_stop

Stopping criterion for classification error fraction on training data (-1 to disable).
Defaults to 0.

regression_stop

Stopping criterion for regression error (MSE) on training data (-1 to disable).
Defaults to 1e-06.

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 5.



h2o.deeplearning 119

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

score_validation_sampling

Method used to sample validation dataset for scoring. Must be one of: "Uni-
form", "Stratified". Defaults to Uniform.

diagnostics Logical. Enable diagnostics for hidden layers. Defaults to TRUE.

fast_mode Logical. Enable fast mode (minor approximation in back-propagation). De-
faults to TRUE.

force_load_balance

Logical. Force extra load balancing to increase training speed for small datasets
(to keep all cores busy). Defaults to TRUE.

variable_importances

Logical. Compute variable importances for input features (Gedeon method) -
can be slow for large networks. Defaults to TRUE.

replicate_training_data

Logical. Replicate the entire training dataset onto every node for faster training
on small datasets. Defaults to TRUE.

single_node_mode

Logical. Run on a single node for fine-tuning of model parameters. Defaults to
FALSE.

shuffle_training_data

Logical. Enable shuffling of training data (recommended if training data is
replicated and train_samples_per_iteration is close to #nodes x #rows, of if using
balance_classes). Defaults to FALSE.

missing_values_handling

Handling of missing values. Either MeanImputation or Skip. Must be one of:
"MeanImputation", "Skip". Defaults to MeanImputation.

quiet_mode Logical. Enable quiet mode for less output to standard output. Defaults to
FALSE.

autoencoder Logical. Auto-Encoder. Defaults to FALSE.

sparse Logical. Sparse data handling (more efficient for data with lots of 0 values).
Defaults to FALSE.

col_major Logical. #DEPRECATED Use a column major weight matrix for input layer.
Can speed up forward propagation, but might slow down backpropagation. De-
faults to FALSE.



120 h2o.deeplearning

average_activation

Average activation for sparse auto-encoder. #Experimental Defaults to 0.

sparsity_beta Sparsity regularization. #Experimental Defaults to 0.
max_categorical_features

Max. number of categorical features, enforced via hashing. #Experimental De-
faults to 2147483647.

reproducible Logical. Force reproducibility on small data (will be slow - only uses 1 thread).
Defaults to FALSE.

export_weights_and_biases

Logical. Whether to export Neural Network weights and biases to H2O Frames.
Defaults to FALSE.

mini_batch_size

Mini-batch size (smaller leads to better fit, larger can speed up and generalize
better). Defaults to 1.

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

elastic_averaging

Logical. Elastic averaging between compute nodes can improve distributed
model convergence. #Experimental Defaults to FALSE.

elastic_averaging_moving_rate

Elastic averaging moving rate (only if elastic averaging is enabled). Defaults to
0.9.

elastic_averaging_regularization

Elastic averaging regularization strength (only if elastic averaging is enabled).
Defaults to 0.001.

export_checkpoints_dir

Automatically export generated models to this directory.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

verbose Logical. Print scoring history to the console (Metrics per epoch). Defaults to
FALSE.

See Also

predict.H2OModel for prediction

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
iris_dl <- h2o.deeplearning(x = 1:4, y = 5, training_frame = iris_hf, seed=123456)

# now make a prediction
predictions <- h2o.predict(iris_dl, iris_hf)



h2o.describe 121

## End(Not run)

h2o.describe H2O Description of A Dataset

Description

Reports the "Flow" style summary rollups on an instance of H2OFrame. Includes information about
column types, mins/maxs/missing/zero counts/stds/number of levels

Usage

h2o.describe(frame)

Arguments

frame An H2OFrame object.

Value

A table with the Frame stats.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path)
h2o.describe(prostate)

## End(Not run)

h2o.difflag1 Conduct a lag 1 transform on a numeric H2OFrame column

Description

Conduct a lag 1 transform on a numeric H2OFrame column

Usage

h2o.difflag1(object)

Arguments

object H2OFrame object



122 h2o.dim

Value

Returns an H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "cylinders"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response, training_frame = train,

validation_frame = valid, nfolds = 5, seed = 1234)
h2o.difflag1(cars["cylinders"])

## End(Not run)

h2o.dim Returns the number of rows and columns for an H2OFrame object.

Description

Returns the number of rows and columns for an H2OFrame object.

Usage

h2o.dim(x)

Arguments

x An H2OFrame object.

See Also

dim for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)



h2o.dimnames 123

h2o.dim(cars)

## End(Not run)

h2o.dimnames Column names of an H2OFrame

Description

Column names of an H2OFrame

Usage

h2o.dimnames(x)

Arguments

x An H2OFrame object.

See Also

dimnames for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
h2o.dimnames(cars)

## End(Not run)

h2o.distance Compute a pairwise distance measure between all rows of two numeric
H2OFrames.

Description

Compute a pairwise distance measure between all rows of two numeric H2OFrames.

Usage

h2o.distance(x, y, measure)



124 h2o.downloadAllLogs

Arguments

x An H2OFrame object (large, references).

y An H2OFrame object (small, queries).

measure An optional string indicating what distance measure to use. Must be one of:
"l1" - Absolute distance (L1-norm, >=0) "l2" - Euclidean distance (L2-norm,
>=0) "cosine" - Cosine similarity (-1...1) "cosine_sq" - Squared Cosine similar-
ity (0...1)

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.distance(prostate[11:30, ], prostate[1:10, ], "cosine")

## End(Not run)

h2o.downloadAllLogs Download H2O Log Files to Disk

Description

h2o.downloadAllLogs downloads all H2O log files to local disk in .zip format. Generally used for
debugging purposes.

Usage

h2o.downloadAllLogs(dirname = ".", filename = NULL)

Arguments

dirname (Optional) A character string indicating the directory that the log file should be
saved in.

filename (Optional) A character string indicating the name that the log file should be
saved to. Note that the saved format is .zip, so the file name must include the
.zip extension.

Examples

## Not run:
h2o.downloadAllLogs(dirname='./your_directory_name/', filename = 'autoh2o_log.zip')

## End(Not run)



h2o.downloadCSV 125

h2o.downloadCSV Download H2O Data to Disk

Description

Download an H2O data set to a CSV file on the local disk

Usage

h2o.downloadCSV(data, filename)

Arguments

data an H2OFrame object to be downloaded.

filename A string indicating the name that the CSV file should be should be saved to.

Warning

Files located on the H2O server may be very large! Make sure you have enough hard drive space to
accomodate the entire file.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)

file_path <- paste(getwd(), "my_iris_file.csv", sep = .Platform$file.sep)
h2o.downloadCSV(iris_hf, file_path)
file.info(file_path)
file.remove(file_path)

## End(Not run)

h2o.download_model Download the model in binary format. The owner of the file saved is
the user by which python session was executed.

Description

Download the model in binary format. The owner of the file saved is the user by which python
session was executed.



126 h2o.download_mojo

Usage

h2o.download_model(
model,
path = NULL,
export_cross_validation_predictions = FALSE,
filename = ""

)

Arguments

model An H2OModel

path The path where binary file should be downloaded. Downloaded to current di-
rectory by default.

export_cross_validation_predictions

A boolean flag indicating whether the download model should be saved with CV
Holdout Frame predictions. Default is not to export the predictions.

filename string indicating the file name.

Examples

## Not run:
library(h2o)
h <- h2o.init()
fr <- as.h2o(iris)
my_model <- h2o.gbm(x = 1:4, y = 5, training_frame = fr)
h2o.download_model(my_model) # save to the current working directory

## End(Not run)

h2o.download_mojo Download the model in MOJO format.

Description

Download the model in MOJO format.

Usage

h2o.download_mojo(
model,
path = getwd(),
get_genmodel_jar = FALSE,
genmodel_name = "",
genmodel_path = "",
filename = ""

)



h2o.download_pojo 127

Arguments

model An H2OModel

path The path where MOJO file should be saved. Saved to current directory by de-
fault.

get_genmodel_jar

If TRUE, then also download h2o-genmodel.jar and store it in either in the same
folder as the MOJO or in “genmodel_path“ if specified.

genmodel_name Custom name of genmodel jar.

genmodel_path Path to store h2o-genmodel.jar. If left blank and “get_genmodel_jar“ is TRUE,
then the h2o-genmodel.jar is saved to “path“.

filename string indicating the file name. (Type of file is always .zip)

Value

Name of the MOJO file written to the path.

Examples

## Not run:
library(h2o)
h <- h2o.init()
fr <- as.h2o(iris)
my_model <- h2o.gbm(x = 1:4, y = 5, training_frame = fr)
h2o.download_mojo(my_model) # save to the current working directory

## End(Not run)

h2o.download_pojo Download the Scoring POJO (Plain Old Java Object) of an H2O
Model

Description

Download the Scoring POJO (Plain Old Java Object) of an H2O Model

Usage

h2o.download_pojo(
model,
path = NULL,
getjar = NULL,
get_jar = TRUE,
jar_name = ""

)



128 h2o.drop_duplicates

Arguments

model An H2OModel
path The path to the directory to store the POJO (no trailing slash). If NULL, then

print to to console. The file name will be a compilable java file name.
getjar (DEPRECATED) Whether to also download the h2o-genmodel.jar file needed

to compile the POJO. This argument is now called ‘get_jar‘.
get_jar Whether to also download the h2o-genmodel.jar file needed to compile the POJO
jar_name Custom name of genmodel jar.

Value

If path is NULL, then pretty print the POJO to the console. Otherwise save it to the specified
directory and return POJO file name.

Examples

## Not run:
library(h2o)
h <- h2o.init()
fr <- as.h2o(iris)
my_model <- h2o.gbm(x = 1:4, y = 5, training_frame = fr)

h2o.download_pojo(my_model) # print the model to screen
# h2o.download_pojo(my_model, getwd()) # save the POJO and jar file to the current working
# directory, NOT RUN
# h2o.download_pojo(my_model, getwd(), get_jar = FALSE ) # save only the POJO to the current
# working directory, NOT RUN
h2o.download_pojo(my_model, getwd()) # save to the current working directory

## End(Not run)

h2o.drop_duplicates Drops duplicated rows.

Description

Drops duplicated rows across specified columns.

Usage

h2o.drop_duplicates(frame, columns, keep = "first")

Arguments

frame An H2OFrame object to drop duplicates on.
columns Columns to compare during the duplicate detection process.
keep Which rows to keep. The "first" value (default) keeps the first row and deletes

the rest. The "last" keeps the last row.



h2o.entropy 129

Examples

## Not run:
library(h2o)
h2o.init()

data <- as.h2o(iris)
deduplicated_data <- h2o.drop_duplicates(data, c("Species", "Sepal.Length"), keep = "first")

## End(Not run)

h2o.entropy Shannon entropy

Description

Return the Shannon entropy of a string column. If the string is empty, the entropy is 0.

Usage

h2o.entropy(x)

Arguments

x The column on which to calculate the entropy.

Examples

## Not run:
library(h2o)
h2o.init()
buys <- as.h2o(c("no", "no", "yes", "yes", "yes", "no", "yes", "no", "yes", "yes","no"))
buys_entropy <- h2o.entropy(buys)

## End(Not run)

h2o.exp Compute the exponential function of x

Description

Compute the exponential function of x

Usage

h2o.exp(x)



130 h2o.explain

Arguments

x An H2OFrame object.

See Also

Log for the base R implementation, exp().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.exp(frame["C1"])

## End(Not run)

h2o.explain Generate Model Explanations

Description

The H2O Explainability Interface is a convenient wrapper to a number of explainabilty methods
and visualizations in H2O. The function can be applied to a single model or group of models and
returns a list of explanations, which are individual units of explanation such as a partial dependence
plot or a variable importance plot. Most of the explanations are visual (ggplot plots). These plots
can also be created by individual utility functions as well.

Usage

h2o.explain(
object,
newdata,
columns = NULL,
top_n_features = 5,
include_explanations = "ALL",
exclude_explanations = NULL,
plot_overrides = NULL

)



h2o.explain 131

Arguments

object A list of H2O models, an H2O AutoML instance, or an H2OFrame with a
’model_id’ column (e.g. H2OAutoML leaderboard).

newdata An H2OFrame.

columns A vector of column names or column indices to create plots with. If specified
parameter top_n_features will be ignored.

top_n_features An integer specifying the number of columns to use, ranked by variable impor-
tance (where applicable).

include_explanations

If specified, return only the specified model explanations. (Mutually exclusive
with exclude_explanations)

exclude_explanations

Exclude specified model explanations.

plot_overrides Overrides for individual model explanations, e.g. list(shap_summary_plot =
list(columns = 50)).

Value

List of outputs with class "H2OExplanation"

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
aml <- h2o.automl(y = response,

training_frame = train,
max_models = 10,
seed = 1)

# Create the explanation for whole H2OAutoML object
exa <- h2o.explain(aml, test)
print(exa)

# Create the explanation for the leader model



132 h2o.explain_row

exm <- h2o.explain(aml@leader, test)
print(exm)

## End(Not run)

h2o.explain_row Generate Model Explanations for a single row

Description

Explain the behavior of a model or group of models with respect to a single row of data. The
function returns a list of explanations, which are individual units of explanation such as a partial
dependence plot or a variable importance plot. Most of the explanations are visual (ggplot plots).
These plots can also be created by individual utility functions as well.

Usage

h2o.explain_row(
object,
newdata,
row_index,
columns = NULL,
top_n_features = 5,
include_explanations = "ALL",
exclude_explanations = NULL,
plot_overrides = NULL

)

Arguments

object A list of H2O models, an H2O AutoML instance, or an H2OFrame with a
’model_id’ column (e.g. H2OAutoML leaderboard).

newdata An H2OFrame.

row_index A row index of the instance to explain.

columns A vector of column names or column indices to create plots with. If specified
parameter top_n_features will be ignored.

top_n_features An integer specifying the number of columns to use, ranked by variable impor-
tance (where applicable).

include_explanations

If specified, return only the specified model explanations. (Mutually exclusive
with exclude_explanations)

exclude_explanations

Exclude specified model explanations.

plot_overrides Overrides for individual model explanations, e.g., list(shap_explain_row =
list(columns = 5))



h2o.exportFile 133

Value

List of outputs with class "H2OExplanation"

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
aml <- h2o.automl(y = response,

training_frame = train,
max_models = 10,
seed = 1)

# Create the explanation for whole H2OAutoML object
exa <- h2o.explain_row(aml, test, row_index = 1)
print(exa)

# Create the explanation for the leader model
exm <- h2o.explain_row(aml@leader, test, row_index = 1)
print(exm)

## End(Not run)

h2o.exportFile Export an H2O Data Frame (H2OFrame) to a File or to a collection
of Files.

Description

Exports an H2OFrame (which can be either VA or FV) to a file. This file may be on the H2O
instace’s local filesystem, or to HDFS (preface the path with hdfs://) or to S3N (preface the path
with s3n://).



134 h2o.exportFile

Usage

h2o.exportFile(
data,
path,
force = FALSE,
sep = ",",
compression = NULL,
parts = 1,
header = TRUE,
quote_header = TRUE

)

Arguments

data An H2OFrame object.

path The path to write the file to. Must include the directory and also filename if
exporting to a single file. May be prefaced with hdfs:// or s3n://. Each row of
data appears as line of the file.

force logical, indicates how to deal with files that already exist.

sep The field separator character. Values on each line of the file will be separated by
this character (default ",").

compression How to compress the exported dataset (default none; gzip, bzip2 and snappy
available)

parts integer, number of part files to export to. Default is to write to a single file.
Large data can be exported to multiple ’part’ files, where each part file contains
subset of the data. User can specify the maximum number of part files or use
value -1 to indicate that H2O should itself determine the optimal number of files.
Parameter path will be considered to be a path to a directory if export to multiple
part files is desired. Part files conform to naming scheme ’part-m-?????’.

header logical, indicates whether to write the header line. Default is to include the
header in the output file.

quote_header logical, indicates whether column names should be quoted. Default is to use
quotes.

Details

In the case of existing files force = TRUE will overwrite the file. Otherwise, the operation will fail.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)

# These aren't real paths
# h2o.exportFile(iris_hf, path = "/path/on/h2o/server/filesystem/iris.csv")



h2o.exportHDFS 135

# h2o.exportFile(iris_hf, path = "hdfs://path/in/hdfs/iris.csv")
# h2o.exportFile(iris_hf, path = "s3n://path/in/s3/iris.csv")

## End(Not run)

h2o.exportHDFS Export a Model to HDFS

Description

Exports an H2OModel to HDFS.

Usage

h2o.exportHDFS(object, path, force = FALSE)

Arguments

object an H2OModel class object.

path The path to write the model to. Must include the driectory and filename.

force logical, indicates how to deal with files that already exist.

Examples

## Not run:
library(h2o)
h2o.init

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv"
train <- h2o.importFile(f)
h2o.exportHDFS(train, path = " ", force = FALSE)

## End(Not run)

h2o.extendedIsolationForest

Trains an Extended Isolation Forest model

Description

Trains an Extended Isolation Forest model



136 h2o.extendedIsolationForest

Usage

h2o.extendedIsolationForest(
training_frame,
x,
model_id = NULL,
ignore_const_cols = TRUE,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

ntrees = 100,
sample_size = 256,
extension_level = 0,
seed = -1

)

Arguments

training_frame Id of the training data frame.

x A vector containing the character names of the predictors in the model.

model_id Destination id for this model; auto-generated if not specified.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

ntrees Number of Extended Isolation Forest trees. Defaults to 100.

sample_size Number of randomly sampled observations used to train each Extended Isolation
Forest tree. Defaults to 256.

extension_level

Maximum is N - 1 (N = numCols). Minimum is 0. Extended Isolation Forest
with extension_Level = 0 behaves like Isolation Forest. Defaults to 0.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

Examples

## Not run:
library(h2o)
h2o.init()

# Import the prostate dataset
p <- h2o.importFile(path="https://raw.github.com/h2oai/h2o/master/smalldata/logreg/prostate.csv")

# Set the predictors
predictors <- c("AGE","RACE","DPROS","DCAPS","PSA","VOL","GLEASON")



h2o.feature_interaction 137

# Build an Extended Isolation forest model
model <- h2o.extendedIsolationForest(x = predictors,

training_frame = p,
model_id = "eif.hex",
ntrees = 100,
sample_size = 256,
extension_level = length(predictors) - 1)

# Calculate score
score <- h2o.predict(model, p)
anomaly_score <- score$anomaly_score

# Number in [0, 1] explicitly defined in Equation (1) from Extended Isolation Forest paper
# or in paragraph '2 Isolation and Isolation Trees' of Isolation Forest paper
anomaly_score <- score$anomaly_score

# Average path length of the point in Isolation Trees from root to the leaf
mean_length <- score$mean_length

## End(Not run)

h2o.feature_interaction

Feature interactions and importance, leaf statistics and split value his-
tograms in a tabular form. Available for XGBoost and GBM.

Description

Metrics: Gain - Total gain of each feature or feature interaction. FScore - Amount of possible splits
taken on a feature or feature interaction. wFScore - Amount of possible splits taken on a feature
or feature interaction weighed by the probability of the splits to take place. Average wFScore -
wFScore divided by FScore. Average Gain - Gain divided by FScore. Expected Gain - Total gain
of each feature or feature interaction weighed by the probability to gather the gain. Average Tree
Index Average Tree Depth

Usage

h2o.feature_interaction(
model,
max_interaction_depth = 100,
max_tree_depth = 100,
max_deepening = -1

)

Arguments

model A trained xgboost model.
max_interaction_depth

Upper bound for extracted feature interactions depth. Defaults to 100.



138 h2o.fillna

max_tree_depth Upper bound for tree depth. Defaults to 100.

max_deepening Upper bound for interaction start deepening (zero deepening => interactions
starting at root only). Defaults to -1.

Examples

## Not run:
library(h2o)
h2o.init()
boston <- h2o.importFile(

"https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv",
destination_frame="boston"
)

boston_xgb <- h2o.xgboost(training_frame = boston, y = "medv", seed = 1234)
feature_interactions <- h2o.feature_interaction(boston_xgb)

## End(Not run)

h2o.fillna fillNA

Description

Fill NA’s in a sequential manner up to a specified limit

Usage

h2o.fillna(x, method = "forward", axis = 1, maxlen = 1L)

Arguments

x an H2OFrame

method A String: "forward" or "backward"

axis An Integer 1 for row-wise fill (default), 2 for column-wise fill

maxlen An Integer for maximum number of consecutive NA’s to fill

Value

An H2OFrame after filling missing values

Examples

## Not run:
library(h2o)
h2o.init()

frame_with_nas <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,



h2o.filterNACols 139

missing_fraction = 0.7,
seed = 123)

frame <- h2o.fillna(frame_with_nas, "forward", axis = 1, maxlen = 2L)

## End(Not run)

h2o.filterNACols Filter NA Columns

Description

Filter NA Columns

Usage

h2o.filterNACols(data, frac = 0.2)

Arguments

data A dataset to filter on.

frac The threshold of NAs to allow per column (columns >= this threshold are fil-
tered)

Value

Returns a numeric vector of indexes that pertain to non-NA columns

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.filterNACols(frame, frac = 0.5)
h2o.filterNACols(frame, frac = 0.6)

## End(Not run)



140 h2o.find_row_by_threshold

h2o.findSynonyms Find synonyms using a word2vec model.

Description

Find synonyms using a word2vec model.

Usage

h2o.findSynonyms(word2vec, word, count = 20)

Arguments

word2vec A word2vec model.

word A single word to find synonyms for.

count The top ‘count‘ synonyms will be returned.

Examples

## Not run:
library(h2o)
h2o.init()

job_titles <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/craigslistJobTitles.csv",
col.names = c("category", "jobtitle"), col.types = c("String", "String"), header = TRUE

)
words <- h2o.tokenize(job_titles, " ")
vec <- h2o.word2vec(training_frame = words)
h2o.findSynonyms(vec, "teacher", count = 20)

## End(Not run)

h2o.find_row_by_threshold

Find the threshold, give the max metric. No duplicate thresholds al-
lowed

Description

Find the threshold, give the max metric. No duplicate thresholds allowed

Usage

h2o.find_row_by_threshold(object, threshold)



h2o.find_threshold_by_max_metric 141

Arguments

object H2OBinomialMetrics

threshold number between 0 and 1

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "economy_20mpg"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response,

training_frame = train, validation_frame = valid,
build_tree_one_node = TRUE , seed = 1234)

perf <- h2o.performance(cars_gbm, cars)
h2o.find_row_by_threshold(perf, 0.5)

## End(Not run)

h2o.find_threshold_by_max_metric

Find the threshold, give the max metric

Description

Find the threshold, give the max metric

Usage

h2o.find_threshold_by_max_metric(object, metric)

Arguments

object H2OBinomialMetrics

metric "F1," for example



142 h2o.floor

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "economy_20mpg"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response,

training_frame = train, validation_frame = valid,
build_tree_one_node = TRUE , seed = 1234)

perf <- h2o.performance(cars_gbm, cars)
h2o.find_threshold_by_max_metric(perf, "fnr")

## End(Not run)

h2o.floor Take a single numeric argument and return a numeric vector with the
largest integers

Description

floor takes a single numeric argument x and returns a numeric vector containing the largest integers
not greater than the corresponding elements of x.

Usage

h2o.floor(x)

Arguments

x An H2OFrame object.

See Also

Round for the base R implementation, floor().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,



h2o.flow 143

categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.floor(frame["C2"])

## End(Not run)

h2o.flow Open H2O Flow

Description

Open H2O Flow in your browser

Usage

h2o.flow()

h2o.gainsLift Access H2O Gains/Lift Tables

Description

Retrieve either a single or many Gains/Lift tables from H2O objects.

Usage

h2o.gainsLift(object, ...)

## S4 method for signature 'H2OModel'
h2o.gainsLift(object, newdata, valid = FALSE, xval = FALSE, ...)

## S4 method for signature 'H2OModelMetrics'
h2o.gainsLift(object)

Arguments

object Either an H2OModel object or an H2OModelMetrics object.

... further arguments to be passed to/from this method.

newdata An H2OFrame object that can be scored on. Requires a valid response column.

valid Retrieve the validation metric.

xval Retrieve the cross-validation metric.

Details

The H2OModelMetrics version of this function will only take H2OBinomialMetrics objects.



144 h2o.gam

Value

Calling this function on H2OModel objects returns a Gains/Lift table corresponding to the predict
function.

See Also

predict for generating prediction frames, h2o.performance for creating H2OModelMetrics.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, distribution = "bernoulli",

training_frame = prostate, validation_frame = prostate, nfolds = 3)
h2o.gainsLift(model) ## extract training metrics
h2o.gainsLift(model, valid = TRUE) ## extract validation metrics (here: the same)
h2o.gainsLift(model, xval = TRUE) ## extract cross-validation metrics
h2o.gainsLift(model, newdata = prostate) ## score on new data (here: the same)
# Generating a ModelMetrics object
perf <- h2o.performance(model, prostate)
h2o.gainsLift(perf) ## extract from existing metrics object

## End(Not run)

h2o.gam Fit a General Additive Model

Description

Creates a generalized additive model, specified by a response variable, a set of predictors, and a
description of the error distribution.

Usage

h2o.gam(
x,
y,
training_frame,
gam_columns,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
seed = -1,
keep_cross_validation_models = TRUE,



h2o.gam 145

keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
offset_column = NULL,
weights_column = NULL,
family = c("AUTO", "gaussian", "binomial", "quasibinomial", "ordinal", "multinomial",

"poisson", "gamma", "tweedie", "negativebinomial", "fractionalbinomial"),
tweedie_variance_power = 0,
tweedie_link_power = 0,
theta = 0,
solver = c("AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR"),

alpha = NULL,
lambda = NULL,
lambda_search = FALSE,
early_stopping = TRUE,
nlambdas = -1,
standardize = FALSE,
missing_values_handling = c("MeanImputation", "Skip", "PlugValues"),
plug_values = NULL,
compute_p_values = FALSE,
remove_collinear_columns = FALSE,
intercept = TRUE,
non_negative = FALSE,
max_iterations = -1,
objective_epsilon = -1,
beta_epsilon = 1e-04,
gradient_epsilon = -1,
link = c("family_default", "identity", "logit", "log", "inverse", "tweedie",
"ologit"),

startval = NULL,
prior = -1,
cold_start = FALSE,
lambda_min_ratio = -1,
beta_constraints = NULL,
max_active_predictors = -1,
interactions = NULL,
interaction_pairs = NULL,
obj_reg = -1,
export_checkpoints_dir = NULL,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0.001,



146 h2o.gam

balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
max_runtime_secs = 0,
custom_metric_func = NULL,
num_knots = NULL,
knot_ids = NULL,
standardize_tp_gam_cols = FALSE,
scale_tp_penalty_mat = FALSE,
bs = NULL,
scale = NULL,
keep_gam_cols = FALSE,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO")

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.
gam_columns Arrays of predictor column names for gam for smoothers using single or multi-

ple predictors like ’c1’,’c2’,’c3’,’c4’,...
model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to

0.
seed Seed for random numbers (affects certain parts of the algo that are stochastic

and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.



h2o.gam 147

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

family Family. Use binomial for classification with logistic regression, others are for
regression problems. Must be one of: "AUTO", "gaussian", "binomial", "quasi-
binomial", "ordinal", "multinomial", "poisson", "gamma", "tweedie", "negative-
binomial", "fractionalbinomial". Defaults to AUTO.

tweedie_variance_power

Tweedie variance power Defaults to 0.
tweedie_link_power

Tweedie link power Defaults to 0.

theta Theta Defaults to 0.

solver AUTO will set the solver based on given data and the other parameters. IRLSM
is fast on on problems with small number of predictors and for lambda-search
with L1 penalty, L_BFGS scales better for datasets with many columns. Must be
one of: "AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR".
Defaults to AUTO.

alpha Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties.
A value of 1 for alpha represents Lasso regression, a value of 0 produces Ridge
regression, and anything in between specifies the amount of mixing between the
two. Default value of alpha is 0 when SOLVER = ’L-BFGS’; 0.5 otherwise.

lambda Regularization strength

lambda_search Logical. Use lambda search starting at lambda max, given lambda is then in-
terpreted as lambda min Defaults to FALSE.

early_stopping Logical. Stop early when there is no more relative improvement on train or
validation (if provided) Defaults to TRUE.

nlambdas Number of lambdas to be used in a search. Default indicates: If alpha is zero,
with lambda search set to True, the value of nlamdas is set to 30 (fewer lambdas
are needed for ridge regression) otherwise it is set to 100. Defaults to -1.



148 h2o.gam

standardize Logical. Standardize numeric columns to have zero mean and unit variance
Defaults to FALSE.

missing_values_handling

Handling of missing values. Either MeanImputation, Skip or PlugValues. Must
be one of: "MeanImputation", "Skip", "PlugValues". Defaults to MeanImputa-
tion.

plug_values Plug Values (a single row frame containing values that will be used to im-
pute missing values of the training/validation frame, use with conjunction miss-
ing_values_handling = PlugValues)

compute_p_values

Logical. Request p-values computation, p-values work only with IRLSM solver
and no regularization Defaults to FALSE.

remove_collinear_columns

Logical. In case of linearly dependent columns, remove some of the dependent
columns Defaults to FALSE.

intercept Logical. Include constant term in the model Defaults to TRUE.

non_negative Logical. Restrict coefficients (not intercept) to be non-negative Defaults to
FALSE.

max_iterations Maximum number of iterations Defaults to -1.
objective_epsilon

Converge if objective value changes less than this. Default indicates: If lambda_search
is set to True the value of objective_epsilon is set to .0001. If the lambda_search
is set to False and lambda is equal to zero, the value of objective_epsilon is set
to .000001, for any other value of lambda the default value of objective_epsilon
is set to .0001. Defaults to -1.

beta_epsilon Converge if beta changes less (using L-infinity norm) than beta esilon, ONLY
applies to IRLSM solver Defaults to 0.0001.

gradient_epsilon

Converge if objective changes less (using L-infinity norm) than this, ONLY ap-
plies to L-BFGS solver. Default indicates: If lambda_search is set to False
and lambda is equal to zero, the default value of gradient_epsilon is equal to
.000001, otherwise the default value is .0001. If lambda_search is set to True,
the conditional values above are 1E-8 and 1E-6 respectively. Defaults to -1.

link Link function. Must be one of: "family_default", "identity", "logit", "log", "in-
verse", "tweedie", "ologit". Defaults to family_default.

startval double array to initialize coefficients for GAM.

prior Prior probability for y==1. To be used only for logistic regression iff the data
has been sampled and the mean of response does not reflect reality. Defaults to
-1.

cold_start Logical. Only applicable to multiple alpha/lambda values when calling GLM
from GAM. If false, build the next model for next set of alpha/lambda values
starting from the values provided by current model. If true will start GLM model
from scratch. Defaults to FALSE.

lambda_min_ratio

Minimum lambda used in lambda search, specified as a ratio of lambda_max
(the smallest lambda that drives all coefficients to zero). Default indicates:



h2o.gam 149

if the number of observations is greater than the number of variables, then
lambda_min_ratio is set to 0.0001; if the number of observations is less than
the number of variables, then lambda_min_ratio is set to 0.01. Defaults to -1.

beta_constraints

Beta constraints
max_active_predictors

Maximum number of active predictors during computation. Use as a stopping
criterion to prevent expensive model building with many predictors. Default
indicates: If the IRLSM solver is used, the value of max_active_predictors is set
to 5000 otherwise it is set to 100000000. Defaults to -1.

interactions A list of predictor column indices to interact. All pairwise combinations will be
computed for the list.

interaction_pairs

A list of pairwise (first order) column interactions.

obj_reg Likelihood divider in objective value computation, default is 1/nobs Defaults to
-1.

export_checkpoints_dir

Automatically export generated models to this directory.
stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

custom_metric_func

Reference to custom evaluation function, format: ‘language:keyName=funcName‘



150 h2o.gbm

num_knots Number of knots for gam predictors

knot_ids String arrays storing frame keys of knots. One for each gam column set specified
in gam_columns

standardize_tp_gam_cols

Logical. standardize tp (thin plate) predictor columns Defaults to FALSE.

scale_tp_penalty_mat

Logical. Scale penalty matrix for tp (thin plate) smoothers as in R Defaults to
FALSE.

bs Basis function type for each gam predictors, 0 for cr, 1 for thin plate regression
with knots, 2 for thin plate regression with SVD. If specified, must be the same
size as gam_columns

scale Smoothing parameter for gam predictors. If specified, must be of the same
length as gam_columns

keep_gam_cols Logical. Save keys of model matrix Defaults to FALSE.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

Examples

## Not run:
h2o.init()

# Run GAM of CAPSULE ~ AGE + RACE + PSA + DCAPS
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
h2o.gam(y = "CAPSULE", x = c("RACE"), gam_columns = c("PSA"),

training_frame = prostate, family = "binomial")

## End(Not run)

h2o.gbm Build gradient boosted classification or regression trees

Description

Builds gradient boosted classification trees and gradient boosted regression trees on a parsed data
set. The default distribution function will guess the model type based on the response column type.
In order to run properly, the response column must be an numeric for "gaussian" or an enum for
"bernoulli" or "multinomial".



h2o.gbm 151

Usage

h2o.gbm(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
score_each_iteration = FALSE,
score_tree_interval = 0,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
offset_column = NULL,
weights_column = NULL,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
ntrees = 50,
max_depth = 5,
min_rows = 10,
nbins = 20,
nbins_top_level = 1024,
nbins_cats = 1024,
r2_stopping = Inf,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0.001,
max_runtime_secs = 0,
seed = -1,
build_tree_one_node = FALSE,
learn_rate = 0.1,
learn_rate_annealing = 1,
distribution = c("AUTO", "bernoulli", "quasibinomial", "multinomial", "gaussian",

"poisson", "gamma", "tweedie", "laplace", "quantile", "huber", "custom"),
quantile_alpha = 0.5,
tweedie_power = 1.5,
huber_alpha = 0.9,
checkpoint = NULL,
sample_rate = 1,
sample_rate_per_class = NULL,
col_sample_rate = 1,
col_sample_rate_change_per_level = 1,



152 h2o.gbm

col_sample_rate_per_tree = 1,
min_split_improvement = 1e-05,
histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal",
"RoundRobin"),

max_abs_leafnode_pred = Inf,
pred_noise_bandwidth = 0,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

calibrate_model = FALSE,
calibration_frame = NULL,
custom_metric_func = NULL,
custom_distribution_func = NULL,
export_checkpoints_dir = NULL,
monotone_constraints = NULL,
check_constant_response = TRUE,
gainslift_bins = -1,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO"),

verbose = FALSE
)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.

nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to
0.

keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.



h2o.gbm 153

score_tree_interval

Score the model after every so many trees. Disabled if set to 0. Defaults to 0.
fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

ntrees Number of trees. Defaults to 50.

max_depth Maximum tree depth (0 for unlimited). Defaults to 5.

min_rows Fewest allowed (weighted) observations in a leaf. Defaults to 10.

nbins For numerical columns (real/int), build a histogram of (at least) this many bins,
then split at the best point Defaults to 20.

nbins_top_level

For numerical columns (real/int), build a histogram of (at most) this many bins
at the root level, then decrease by factor of two per level Defaults to 1024.

nbins_cats For categorical columns (factors), build a histogram of this many bins, then split
at the best point. Higher values can lead to more overfitting. Defaults to 1024.

r2_stopping r2_stopping is no longer supported and will be ignored if set - please use stop-
ping_rounds, stopping_metric and stopping_tolerance instead. Previous version
of H2O would stop making trees when the R^2 metric equals or exceeds this
Defaults to 1.797693135e+308.



154 h2o.gbm

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

build_tree_one_node

Logical. Run on one node only; no network overhead but fewer cpus used.
Suitable for small datasets. Defaults to FALSE.

learn_rate Learning rate (from 0.0 to 1.0) Defaults to 0.1.
learn_rate_annealing

Scale the learning rate by this factor after each tree (e.g., 0.99 or 0.999) Defaults
to 1.

distribution Distribution function Must be one of: "AUTO", "bernoulli", "quasibinomial",
"multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quan-
tile", "huber", "custom". Defaults to AUTO.

quantile_alpha Desired quantile for Quantile regression, must be between 0 and 1. Defaults to
0.5.

tweedie_power Tweedie power for Tweedie regression, must be between 1 and 2. Defaults to
1.5.

huber_alpha Desired quantile for Huber/M-regression (threshold between quadratic and lin-
ear loss, must be between 0 and 1). Defaults to 0.9.

checkpoint Model checkpoint to resume training with.
sample_rate Row sample rate per tree (from 0.0 to 1.0) Defaults to 1.
sample_rate_per_class

A list of row sample rates per class (relative fraction for each class, from 0.0 to
1.0), for each tree

col_sample_rate

Column sample rate (from 0.0 to 1.0) Defaults to 1.
col_sample_rate_change_per_level

Relative change of the column sampling rate for every level (must be > 0.0 and
<= 2.0) Defaults to 1.



h2o.gbm 155

col_sample_rate_per_tree

Column sample rate per tree (from 0.0 to 1.0) Defaults to 1.
min_split_improvement

Minimum relative improvement in squared error reduction for a split to happen
Defaults to 1e-05.

histogram_type What type of histogram to use for finding optimal split points Must be one of:
"AUTO", "UniformAdaptive", "Random", "QuantilesGlobal", "RoundRobin".
Defaults to AUTO.

max_abs_leafnode_pred

Maximum absolute value of a leaf node prediction Defaults to 1.797693135e+308.
pred_noise_bandwidth

Bandwidth (sigma) of Gaussian multiplicative noise ~N(1,sigma) for tree node
predictions Defaults to 0.

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

calibrate_model

Logical. Use Platt Scaling to calculate calibrated class probabilities. Cali-
bration can provide more accurate estimates of class probabilities. Defaults to
FALSE.

calibration_frame

Calibration frame for Platt Scaling
custom_metric_func

Reference to custom evaluation function, format: ‘language:keyName=funcName‘
custom_distribution_func

Reference to custom distribution, format: ‘language:keyName=funcName‘
export_checkpoints_dir

Automatically export generated models to this directory.
monotone_constraints

A mapping representing monotonic constraints. Use +1 to enforce an increasing
constraint and -1 to specify a decreasing constraint.

check_constant_response

Logical. Check if response column is constant. If enabled, then an exception
is thrown if the response column is a constant value.If disabled, then model will
train regardless of the response column being a constant value or not. Defaults
to TRUE.

gainslift_bins Gains/Lift table number of bins. 0 means disabled.. Default value -1 means
automatic binning. Defaults to -1.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

verbose Logical. Print scoring history to the console (Metrics per tree). Defaults to
FALSE.

See Also

predict.H2OModel for prediction



156 h2o.generic

Examples

## Not run:
library(h2o)
h2o.init()

# Run regression GBM on australia data
australia_path <- system.file("extdata", "australia.csv", package = "h2o")
australia <- h2o.uploadFile(path = australia_path)
independent <- c("premax", "salmax", "minairtemp", "maxairtemp", "maxsst",

"maxsoilmoist", "Max_czcs")
dependent <- "runoffnew"
h2o.gbm(y = dependent, x = independent, training_frame = australia,

ntrees = 3, max_depth = 3, min_rows = 2)

## End(Not run)

h2o.generic Imports a generic model into H2O. Such model can be used then used
for scoring and obtaining additional information about the model. The
imported model has to be supported by H2O.

Description

Imports a generic model into H2O. Such model can be used then used for scoring and obtaining
additional information about the model. The imported model has to be supported by H2O.

Usage

h2o.generic(model_id = NULL, model_key = NULL, path = NULL)

Arguments

model_id Destination id for this model; auto-generated if not specified.

model_key Key to the self-contained model archive already uploaded to H2O.

path Path to file with self-contained model archive.

Examples

## Not run:
# library(h2o)
# h2o.init()

# generic_model <- h2o.genericModel(path="/path/to/model.zip", model_id="my_model")
# predictions <- h2o.predict(generic_model, dataset)

## End(Not run)



h2o.genericModel 157

h2o.genericModel Imports a model under given path, creating a Generic model with it.

Description

Usage example: generic_model <- h2o.genericModel(model_file_path = "/path/to/mojo.zip") pre-
dictions <- h2o.predict(generic_model, dataset)

Usage

h2o.genericModel(mojo_file_path, model_id = NULL)

Arguments

mojo_file_path Filesystem path to the model imported

model_id Model ID, default is NULL

Value

Returns H2O Generic Model based on given embedded model

Examples

## Not run:

# Import default Iris dataset as H2O frame
data <- as.h2o(iris)

# Train a very simple GBM model
features <- c("Sepal.Length", "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
original_model <- h2o.gbm(x = features, y = "Species", training_frame = data)

# Download the trained GBM model as MOJO (temporary directory used in this example)
mojo_original_name <- h2o.download_mojo(model = original_model, path = tempdir())
mojo_original_path <- paste0(tempdir(), "/", mojo_original_name)

# Import the MOJO as Generic model
generic_model <- h2o.genericModel(mojo_original_path)

# Perform scoring with the generic model
generic_model_predictions <- h2o.predict(generic_model, data)

## End(Not run)



158 h2o.getFrame

h2o.getAlphaBest Extract best alpha value found from glm model.

Description

This function allows setting betas of an existing glm model.

Usage

h2o.getAlphaBest(model)

Arguments

model an H2OModel corresponding from a h2o.glm call.

h2o.getConnection Retrieve an H2O Connection

Description

Attempt to recover an h2o connection.

Usage

h2o.getConnection()

Value

Returns an H2OConnection object.

h2o.getFrame Get an R Reference to an H2O Dataset, that will NOT be GC’d by
default

Description

Get the reference to a frame with the given id in the H2O instance.

Usage

h2o.getFrame(id)

Arguments

id A string indicating the unique frame of the dataset to retrieve.



h2o.getGLMFullRegularizationPath 159

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
train <- h2o.importFile(f)
y <- "species"
x <- setdiff(names(train), y)
train[, y] <- as.factor(train[, y])
nfolds <- 5
num_base_models <- 2
my_gbm <- h2o.gbm(x = x, y = y, training_frame = train,

distribution = "multinomial", ntrees = 10,
max_depth = 3, min_rows = 2, learn_rate = 0.2,
nfolds = nfolds, fold_assignment = "Modulo",
keep_cross_validation_predictions = TRUE, seed = 1)

my_rf <- h2o.randomForest(x = x, y = y, training_frame = train,
ntrees = 50, nfolds = nfolds, fold_assignment = "Modulo",
keep_cross_validation_predictions = TRUE, seed = 1)

stack <- h2o.stackedEnsemble(x = x, y = y, training_frame = train,
model_id = "my_ensemble_l1",
base_models = list(my_gbm@model_id, my_rf@model_id),
keep_levelone_frame = TRUE)

h2o.getFrame(stack@model$levelone_frame_id$name)

## End(Not run)

h2o.getGLMFullRegularizationPath

Extract full regularization path from a GLM model

Description

Extract the full regularization path from a GLM model (assuming it was run with the lambda search
option).

Usage

h2o.getGLMFullRegularizationPath(model)

Arguments

model an H2OModel corresponding from a h2o.glm call.



160 h2o.getGrid

h2o.getGrid Get a grid object from H2O distributed K/V store.

Description

Note that if neither cross-validation nor a validation frame is used in the grid search, then the training
metrics will display in the "get grid" output. If a validation frame is passed to the grid, and nfolds
= 0, then the validation metrics will display. However, if nfolds > 1, then cross-validation metrics
will display even if a validation frame is provided.

Usage

h2o.getGrid(grid_id, sort_by, decreasing, verbose = FALSE)

Arguments

grid_id ID of existing grid object to fetch

sort_by Sort the models in the grid space by a metric. Choices are "logloss", "resid-
ual_deviance", "mse", "auc", "accuracy", "precision", "recall", "f1", etc.

decreasing Specify whether sort order should be decreasing

verbose Controls verbosity of the output, if enabled prints out error messages for failed
models (default: FALSE)

Examples

## Not run:
library(h2o)
library(jsonlite)
h2o.init()
iris_hf <- as.h2o(iris)
h2o.grid("gbm", grid_id = "gbm_grid_id", x = c(1:4), y = 5,

training_frame = iris_hf, hyper_params = list(ntrees = c(1, 2, 3)))
grid <- h2o.getGrid("gbm_grid_id")
# Get grid summary
summary(grid)
# Fetch grid models
model_ids <- grid@model_ids
models <- lapply(model_ids, function(id) { h2o.getModel(id)})

## End(Not run)



h2o.getId 161

h2o.getId Get back-end distributed key/value store id from an H2OFrame.

Description

Get back-end distributed key/value store id from an H2OFrame.

Usage

h2o.getId(x)

Arguments

x An H2OFrame

Value

The id of the H2OFrame

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.getId(iris)

## End(Not run)

h2o.getLambdaBest Extract best lambda value found from glm model.

Description

This function allows setting betas of an existing glm model.

Usage

h2o.getLambdaBest(model)

Arguments

model an H2OModel corresponding from a h2o.glm call.



162 h2o.getLambdaMin

h2o.getLambdaMax Extract the maximum lambda value used during lambda search from
glm model.

Description

This function allows setting betas of an existing glm model.

Usage

h2o.getLambdaMax(model)

Arguments

model an H2OModel corresponding from a h2o.glm call.

h2o.getLambdaMin Extract the minimum lambda value calculated during lambda search
from glm model. Note that due to early stop, this minimum lambda
value may not be used in the actual lambda search.

Description

This function allows setting betas of an existing glm model.

Usage

h2o.getLambdaMin(model)

Arguments

model an H2OModel corresponding from a h2o.glm call.



h2o.getModel 163

h2o.getModel Get an R reference to an H2O model

Description

Returns a reference to an existing model in the H2O instance.

Usage

h2o.getModel(model_id)

Arguments

model_id A string indicating the unique model_id of the model to retrieve.

Value

Returns an object that is a subclass of H2OModel.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
model_id <- h2o.gbm(x = 1:4, y = 5, training_frame = iris_hf)@model_id
model_retrieved <- h2o.getModel(model_id)

## End(Not run)

h2o.getModelTree Fetchces a single tree of a H2O model. This function is intended to be
used on Gradient Boosting Machine models or Distributed Random
Forest models.

Description

Fetchces a single tree of a H2O model. This function is intended to be used on Gradient Boosting
Machine models or Distributed Random Forest models.

Usage

h2o.getModelTree(
model,
tree_number,
tree_class = NA,
plain_language_rules = "AUTO"

)



164 h2o.getTimezone

Arguments

model Model with trees

tree_number Number of the tree in the model to fetch, starting with 1

tree_class Name of the class of the tree (if applicable). This value is ignored for regression
and binomial response column, as there is only one tree built. As there is exactly
one class per categorical level, name of tree’s class equals to the corresponding
categorical level of response column.

plain_language_rules

(Optional) Whether to generate plain language rules. AUTO by default, meaning
FALSE for big trees and TRUE for small trees.

Value

Returns an H2OTree object with detailed information about a tree.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
gbm_model <- h2o.gbm(y = "species", training_frame = iris)
tree <- h2o.getModelTree(gbm_model, 1, "Iris-setosa")

## End(Not run)

h2o.getTimezone Get the Time Zone on the H2O cluster Returns a string

Description

Get the Time Zone on the H2O cluster Returns a string

Usage

h2o.getTimezone()



h2o.getTypes 165

h2o.getTypes Get the types-per-column

Description

Get the types-per-column

Usage

h2o.getTypes(x)

Arguments

x An H2OFrame

Value

A list of types per column

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.getTypes(iris)

## End(Not run)

h2o.getVersion Get h2o version

Description

Get h2o version

Usage

h2o.getVersion()



166 h2o.get_best_model

h2o.get_automl Get an R object that is a subclass of H2OAutoML

Description

Get an R object that is a subclass of H2OAutoML

Usage

h2o.get_automl(project_name)

h2o.getAutoML(project_name)

Arguments

project_name A string indicating the project_name of the automl instance to retrieve.

Value

Returns an object that is a subclass of H2OAutoML.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate,

max_runtime_secs = 30, project_name = "prostate")
aml2 <- h2o.get_automl("prostate")

## End(Not run)

h2o.get_best_model Get best model of a given family/algorithm for a given criterion from
an AutoML object.

Description

Get best model of a given family/algorithm for a given criterion from an AutoML object.



h2o.get_best_model 167

Usage

h2o.get_best_model(
object,
algorithm = c("any", "basemodel", "deeplearning", "drf", "gbm", "glm",
"stackedensemble", "xgboost"),

criterion = c("AUTO", "AUC", "AUCPR", "logloss", "MAE", "mean_per_class_error",
"deviance", "MSE", "predict_time_per_row_ms", "RMSE", "RMSLE", "training_time_ms")

)

Arguments

object H2OAutoML object

algorithm One of "any", "basemodel", "deeplearning", "drf", "gbm", "glm", "stackedensem-
ble", "xgboost"

criterion Criterion can be one of the metrics reported in the leaderboard. If set to NULL,
the same ordering as in the leaderboard will be used. Avaliable criteria:

• Regression metrics: deviance, RMSE, MSE, MAE, RMSLE
• Binomial metrics: AUC, logloss, AUCPR, mean_per_class_error, RMSE,

MSE
• Multinomial metrics: mean_per_class_error, logloss, RMSE, MSE

The following additional leaderboard information can be also used as a criterion:

• ’training_time_ms’: column providing the training time of each model in
milliseconds (doesn’t include the training of cross validation models).

• ’predict_time_per_row_ms’: column providing the average prediction time
by the model for a single row.

Value

An H2OModel or NULL if no model of a given family is present

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 30)
gbm <- h2o.get_best_model(aml, "gbm")

## End(Not run)



168 h2o.get_best_r2_values

h2o.get_best_model_predictors

Extracts the subset of predictor names that yield the best R2 value for
each predictor subset size.

Description

Extracts the subset of predictor names that yield the best R2 value for each predictor subset size.

Usage

h2o.get_best_model_predictors(model)

Arguments

model is a H2OModel with algorithm name of modelselection

h2o.get_best_r2_values

Extracts the best R2 values for all predictor subset size.

Description

Extracts the best R2 values for all predictor subset size.

Usage

h2o.get_best_r2_values(model)

Arguments

model is a H2OModel with algorithm name of modelselection



h2o.get_leaderboard 169

h2o.get_leaderboard Retrieve the leaderboard from the AutoML instance.

Description

Contrary to the default leaderboard attached to the automl instance, this one can return columns
other than the metrics.

Usage

h2o.get_leaderboard(object, extra_columns = NULL)

Arguments

object The object for which to return the leaderboard. Currently, only H2OAutoML
instances are supported.

extra_columns A string or a list of string specifying which optional columns should be added
to the leaderboard. Defaults to None. Currently supported extensions are:

• ’ALL’: adds all columns below.
• ’training_time_ms’: column providing the training time of each model in

milliseconds (doesn’t include the training of cross validation models).
• ’predict_time_per_row_ms’: column providing the average prediction time

by the model for a single row.
• ’algo’: column providing the algorithm name for each model.

Value

An H2OFrame representing the leaderboard.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 30)
lb <- h2o.get_leaderboard(aml)
head(lb)

## End(Not run)



170 h2o.get_segment_models

h2o.get_ntrees_actual Retrieve actual number of trees for tree algorithms

Description

Retrieve actual number of trees for tree algorithms

Usage

h2o.get_ntrees_actual(object)

Arguments

object An H2OModel object.

h2o.get_segment_models

Retrieves an instance of H2OSegmentModels for a given id.

Description

Retrieves an instance of H2OSegmentModels for a given id.

Usage

h2o.get_segment_models(segment_models_id)

Arguments

segment_models_id

A string indicating the unique segment_models_id

Value

Returns an object that is a subclass of H2OSegmentModels.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
h2o.train_segments(algorithm = "gbm",

segment_columns = "Species", segment_models_id="models_by_species",
x = c(1:3), y = 4, training_frame = iris_hf, ntrees = 5, max_depth = 4)

models <- h2o.get_segment_models("models_by_species")
as.data.frame(models)

## End(Not run)



h2o.giniCoef 171

h2o.giniCoef Retrieve the GINI Coefficcient

Description

Retrieves the GINI coefficient from an H2OBinomialMetrics. If "train", "valid", and "xval" param-
eters are FALSE (default), then the training GINIvalue is returned. If more than one parameter is
set to TRUE, then a named vector of GINIs are returned, where the names are "train", "valid" or
"xval".

Usage

h2o.giniCoef(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object an H2OBinomialMetrics object.

train Retrieve the training GINI Coefficcient

valid Retrieve the validation GINI Coefficcient

xval Retrieve the cross-validation GINI Coefficcient

See Also

h2o.auc for AUC, h2o.giniCoef for the GINI coefficient, and h2o.metric for the various thresh-
old metrics. See h2o.performance for creating H2OModelMetrics objects.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.giniCoef(perf)

## End(Not run)



172 h2o.glm

h2o.glm Fit a generalized linear model

Description

Fits a generalized linear model, specified by a response variable, a set of predictors, and a descrip-
tion of the error distribution.

Usage

h2o.glm(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
checkpoint = NULL,
export_checkpoints_dir = NULL,
seed = -1,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
random_columns = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
score_iteration_interval = -1,
offset_column = NULL,
weights_column = NULL,
family = c("AUTO", "gaussian", "binomial", "fractionalbinomial", "quasibinomial",
"ordinal", "multinomial", "poisson", "gamma", "tweedie", "negativebinomial"),

rand_family = c("[gaussian]"),
tweedie_variance_power = 0,
tweedie_link_power = 1,
theta = 1e-10,
solver = c("AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR"),

alpha = NULL,
lambda = NULL,
lambda_search = FALSE,
early_stopping = TRUE,
nlambdas = -1,
standardize = TRUE,
missing_values_handling = c("MeanImputation", "Skip", "PlugValues"),
plug_values = NULL,



h2o.glm 173

compute_p_values = FALSE,
remove_collinear_columns = FALSE,
intercept = TRUE,
non_negative = FALSE,
max_iterations = -1,
objective_epsilon = -1,
beta_epsilon = 1e-04,
gradient_epsilon = -1,
link = c("family_default", "identity", "logit", "log", "inverse", "tweedie",
"ologit"),

rand_link = c("[identity]", "[family_default]"),
startval = NULL,
calc_like = FALSE,
HGLM = FALSE,
prior = -1,
cold_start = FALSE,
lambda_min_ratio = -1,
beta_constraints = NULL,
max_active_predictors = -1,
interactions = NULL,
interaction_pairs = NULL,
obj_reg = -1,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0.001,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
max_runtime_secs = 0,
custom_metric_func = NULL,
generate_scoring_history = FALSE,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO")

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.



174 h2o.glm

validation_frame

Id of the validation data frame.
nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to

0.
checkpoint Model checkpoint to resume training with.
export_checkpoints_dir

Automatically export generated models to this directory.
seed Seed for random numbers (affects certain parts of the algo that are stochastic

and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
random_columns random columns indices for HGLM.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

score_iteration_interval

Perform scoring for every score_iteration_interval iterations Defaults to -1.
offset_column Offset column. This will be added to the combination of columns before apply-

ing the link function.
weights_column Column with observation weights. Giving some observation a weight of zero

is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

family Family. Use binomial for classification with logistic regression, others are for re-
gression problems. Must be one of: "AUTO", "gaussian", "binomial", "fraction-
albinomial", "quasibinomial", "ordinal", "multinomial", "poisson", "gamma",
"tweedie", "negativebinomial". Defaults to AUTO.



h2o.glm 175

rand_family Random Component Family array. One for each random component. Only
support gaussian for now. Must be one of: "[gaussian]".

tweedie_variance_power

Tweedie variance power Defaults to 0.
tweedie_link_power

Tweedie link power Defaults to 1.

theta Theta Defaults to 1e-10.

solver AUTO will set the solver based on given data and the other parameters. IRLSM
is fast on on problems with small number of predictors and for lambda-search
with L1 penalty, L_BFGS scales better for datasets with many columns. Must be
one of: "AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR".
Defaults to AUTO.

alpha Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties.
A value of 1 for alpha represents Lasso regression, a value of 0 produces Ridge
regression, and anything in between specifies the amount of mixing between the
two. Default value of alpha is 0 when SOLVER = ’L-BFGS’; 0.5 otherwise.

lambda Regularization strength

lambda_search Logical. Use lambda search starting at lambda max, given lambda is then in-
terpreted as lambda min Defaults to FALSE.

early_stopping Logical. Stop early when there is no more relative improvement on train or
validation (if provided) Defaults to TRUE.

nlambdas Number of lambdas to be used in a search. Default indicates: If alpha is zero,
with lambda search set to True, the value of nlamdas is set to 30 (fewer lambdas
are needed for ridge regression) otherwise it is set to 100. Defaults to -1.

standardize Logical. Standardize numeric columns to have zero mean and unit variance
Defaults to TRUE.

missing_values_handling

Handling of missing values. Either MeanImputation, Skip or PlugValues. Must
be one of: "MeanImputation", "Skip", "PlugValues". Defaults to MeanImputa-
tion.

plug_values Plug Values (a single row frame containing values that will be used to im-
pute missing values of the training/validation frame, use with conjunction miss-
ing_values_handling = PlugValues)

compute_p_values

Logical. Request p-values computation, p-values work only with IRLSM solver
and no regularization Defaults to FALSE.

remove_collinear_columns

Logical. In case of linearly dependent columns, remove some of the dependent
columns Defaults to FALSE.

intercept Logical. Include constant term in the model Defaults to TRUE.

non_negative Logical. Restrict coefficients (not intercept) to be non-negative Defaults to
FALSE.

max_iterations Maximum number of iterations Defaults to -1.



176 h2o.glm

objective_epsilon

Converge if objective value changes less than this. Default indicates: If lambda_search
is set to True the value of objective_epsilon is set to .0001. If the lambda_search
is set to False and lambda is equal to zero, the value of objective_epsilon is set
to .000001, for any other value of lambda the default value of objective_epsilon
is set to .0001. Defaults to -1.

beta_epsilon Converge if beta changes less (using L-infinity norm) than beta esilon, ONLY
applies to IRLSM solver Defaults to 0.0001.

gradient_epsilon

Converge if objective changes less (using L-infinity norm) than this, ONLY ap-
plies to L-BFGS solver. Default indicates: If lambda_search is set to False
and lambda is equal to zero, the default value of gradient_epsilon is equal to
.000001, otherwise the default value is .0001. If lambda_search is set to True,
the conditional values above are 1E-8 and 1E-6 respectively. Defaults to -1.

link Link function. Must be one of: "family_default", "identity", "logit", "log", "in-
verse", "tweedie", "ologit". Defaults to family_default.

rand_link Link function array for random component in HGLM. Must be one of: "[iden-
tity]", "[family_default]".

startval double array to initialize fixed and random coefficients for HGLM, coefficients
for GLM.

calc_like Logical. if true, will return likelihood function value for HGLM. Defaults to
FALSE.

HGLM Logical. If set to true, will return HGLM model. Otherwise, normal GLM
model will be returned Defaults to FALSE.

prior Prior probability for y==1. To be used only for logistic regression iff the data
has been sampled and the mean of response does not reflect reality. Defaults to
-1.

cold_start Logical. Only applicable to multiple alpha/lambda values. If false, build the
next model for next set of alpha/lambda values starting from the values pro-
vided by current model. If true will start GLM model from scratch. Defaults to
FALSE.

lambda_min_ratio

Minimum lambda used in lambda search, specified as a ratio of lambda_max
(the smallest lambda that drives all coefficients to zero). Default indicates:
if the number of observations is greater than the number of variables, then
lambda_min_ratio is set to 0.0001; if the number of observations is less than
the number of variables, then lambda_min_ratio is set to 0.01. Defaults to -1.

beta_constraints

Beta constraints
max_active_predictors

Maximum number of active predictors during computation. Use as a stopping
criterion to prevent expensive model building with many predictors. Default
indicates: If the IRLSM solver is used, the value of max_active_predictors is set
to 5000 otherwise it is set to 100000000. Defaults to -1.

interactions A list of predictor column indices to interact. All pairwise combinations will be
computed for the list.



h2o.glm 177

interaction_pairs

A list of pairwise (first order) column interactions.

obj_reg Likelihood divider in objective value computation, default is 1/nobs Defaults to
-1.

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

custom_metric_func

Reference to custom evaluation function, format: ‘language:keyName=funcName‘
generate_scoring_history

Logical. If set to true, will generate scoring history for GLM. This may signif-
icantly slow down the algo. Defaults to FALSE.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

Value

A subclass of H2OModel is returned. The specific subclass depends on the machine learning task at
hand (if it’s binomial classification, then an H2OBinomialModel is returned, if it’s regression then
a H2ORegressionModel is returned). The default print- out of the models is shown, but further
GLM-specifc information can be queried out of the object. To access these various items, please
refer to the seealso section below. Upon completion of the GLM, the resulting object has coeffi-
cients, normalized coefficients, residual/null deviance, aic, and a host of model metrics including



178 h2o.glrm

MSE, AUC (for logistic regression), degrees of freedom, and confusion matrices. Please refer to the
more in-depth GLM documentation available here: https://h2o-release.s3.amazonaws.com/
h2o-dev/rel-shannon/2/docs-website/h2o-docs/index.html#Data+Science+Algorithms-GLM

See Also

predict.H2OModel for prediction, h2o.mse, h2o.auc, h2o.confusionMatrix, h2o.performance,
h2o.giniCoef, h2o.logloss, h2o.varimp, h2o.scoreHistory

Examples

## Not run:
h2o.init()

# Run GLM of CAPSULE ~ AGE + RACE + PSA + DCAPS
prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"), training_frame = prostate,

family = "binomial", nfolds = 0, alpha = 0.5, lambda_search = FALSE)

# Run GLM of VOL ~ CAPSULE + AGE + RACE + PSA + GLEASON
predictors = setdiff(colnames(prostate), c("ID", "DPROS", "DCAPS", "VOL"))
h2o.glm(y = "VOL", x = predictors, training_frame = prostate, family = "gaussian",

nfolds = 0, alpha = 0.1, lambda_search = FALSE)

# GLM variable importance
# Also see:
# https://github.com/h2oai/h2o/blob/master/R/tests/testdir_demos/runit_demo_VI_all_algos.R
bank = h2o.importFile(
path="https://s3.amazonaws.com/h2o-public-test-data/smalldata/demos/bank-additional-full.csv"

)
predictors = 1:20
target = "y"
glm = h2o.glm(x = predictors,

y = target,
training_frame = bank,
family = "binomial",
standardize = TRUE,
lambda_search = TRUE)

h2o.std_coef_plot(glm, num_of_features = 20)

## End(Not run)

h2o.glrm Generalized low rank decomposition of an H2O data frame

Description

Builds a generalized low rank decomposition of an H2O data frame

https://h2o-release.s3.amazonaws.com/h2o-dev/rel-shannon/2/docs-website/h2o-docs/index.html#Data+Science+Algorithms-GLM
https://h2o-release.s3.amazonaws.com/h2o-dev/rel-shannon/2/docs-website/h2o-docs/index.html#Data+Science+Algorithms-GLM


h2o.glrm 179

Usage

h2o.glrm(
training_frame,
cols = NULL,
model_id = NULL,
validation_frame = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
representation_name = NULL,
loading_name = NULL,
transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"),
k = 1,
loss = c("Quadratic", "Absolute", "Huber", "Poisson", "Hinge", "Logistic",
"Periodic"),

loss_by_col = c("Quadratic", "Absolute", "Huber", "Poisson", "Hinge", "Logistic",
"Periodic", "Categorical", "Ordinal"),

loss_by_col_idx = NULL,
multi_loss = c("Categorical", "Ordinal"),
period = 1,
regularization_x = c("None", "Quadratic", "L2", "L1", "NonNegative", "OneSparse",

"UnitOneSparse", "Simplex"),
regularization_y = c("None", "Quadratic", "L2", "L1", "NonNegative", "OneSparse",

"UnitOneSparse", "Simplex"),
gamma_x = 0,
gamma_y = 0,
max_iterations = 1000,
max_updates = 2000,
init_step_size = 1,
min_step_size = 1e-04,
seed = -1,
init = c("Random", "SVD", "PlusPlus", "User"),
svd_method = c("GramSVD", "Power", "Randomized"),
user_y = NULL,
user_x = NULL,
expand_user_y = TRUE,
impute_original = FALSE,
recover_svd = FALSE,
max_runtime_secs = 0,
export_checkpoints_dir = NULL

)

Arguments

training_frame Id of the training data frame.
cols (Optional) A vector containing the data columns on which k-means operates.
model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.



180 h2o.glrm

ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

representation_name

Frame key to save resulting X

loading_name [Deprecated] Use representation_name instead. Frame key to save resulting X.

transform Transformation of training data Must be one of: "NONE", "STANDARDIZE",
"NORMALIZE", "DEMEAN", "DESCALE". Defaults to NONE.

k Rank of matrix approximation Defaults to 1.

loss Numeric loss function Must be one of: "Quadratic", "Absolute", "Huber", "Pois-
son", "Hinge", "Logistic", "Periodic". Defaults to Quadratic.

loss_by_col Loss function by column (override) Must be one of: "Quadratic", "Absolute",
"Huber", "Poisson", "Hinge", "Logistic", "Periodic", "Categorical", "Ordinal".

loss_by_col_idx

Loss function by column index (override)

multi_loss Categorical loss function Must be one of: "Categorical", "Ordinal". Defaults to
Categorical.

period Length of period (only used with periodic loss function) Defaults to 1.
regularization_x

Regularization function for X matrix Must be one of: "None", "Quadratic",
"L2", "L1", "NonNegative", "OneSparse", "UnitOneSparse", "Simplex". De-
faults to None.

regularization_y

Regularization function for Y matrix Must be one of: "None", "Quadratic",
"L2", "L1", "NonNegative", "OneSparse", "UnitOneSparse", "Simplex". De-
faults to None.

gamma_x Regularization weight on X matrix Defaults to 0.

gamma_y Regularization weight on Y matrix Defaults to 0.

max_iterations Maximum number of iterations Defaults to 1000.

max_updates Maximum number of updates, defaults to 2*max_iterations Defaults to 2000.

init_step_size Initial step size Defaults to 1.

min_step_size Minimum step size Defaults to 0.0001.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

init Initialization mode Must be one of: "Random", "SVD", "PlusPlus", "User".
Defaults to PlusPlus.

svd_method Method for computing SVD during initialization (Caution: Randomized is cur-
rently experimental and unstable) Must be one of: "GramSVD", "Power", "Ran-
domized". Defaults to Randomized.

user_y User-specified initial Y



h2o.glrm 181

user_x User-specified initial X

expand_user_y Logical. Expand categorical columns in user-specified initial Y Defaults to
TRUE.

impute_original

Logical. Reconstruct original training data by reversing transform Defaults to
FALSE.

recover_svd Logical. Recover singular values and eigenvectors of XY Defaults to FALSE.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

export_checkpoints_dir

Automatically export generated models to this directory.

Value

an object of class H2ODimReductionModel.

References

M. Udell, C. Horn, R. Zadeh, S. Boyd (2014). Generalized Low Rank Models[https://arxiv.org/abs/1410.0342].
Unpublished manuscript, Stanford Electrical Engineering Department. N. Halko, P.G. Martinsson,
J.A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approxi-
mate matrix decompositions[https://arxiv.org/abs/0909.4061]. SIAM Rev., Survey and Review sec-
tion, Vol. 53, num. 2, pp. 217-288, June 2011.

See Also

h2o.kmeans,h2o.svd, h2o.prcomp

Examples

## Not run:
library(h2o)
h2o.init()
australia_path <- system.file("extdata", "australia.csv", package = "h2o")
australia <- h2o.uploadFile(path = australia_path)
h2o.glrm(training_frame = australia, k = 5, loss = "Quadratic", regularization_x = "L1",

gamma_x = 0.5, gamma_y = 0, max_iterations = 1000)

## End(Not run)



182 h2o.grep

h2o.grep Search for matches to an argument pattern

Description

Searches for matches to argument ‘pattern‘ within each element of a string column.

Usage

h2o.grep(
pattern,
x,
ignore.case = FALSE,
invert = FALSE,
output.logical = FALSE

)

Arguments

pattern A character string containing a regular expression.

x An H2O frame that wraps a single string column.

ignore.case If TRUE case is ignored during matching.

invert Identify elements that do not match the pattern.

output.logical If TRUE returns logical vector of indicators instead of list of matching positions

Details

This function has similar semantics as R’s native grep function and it supports a subset of its pa-
rameters. Default behavior is to return indices of the elements matching the pattern. Parameter
‘output.logical‘ can be used to return a logical vector indicating if the element matches the pattern
(1) or not (0).

Value

H2OFrame holding the matching positions or a logical vector if ‘output.logical‘ is enabled.

Examples

## Not run:
library(h2o)
h2o.init()
addresses <- as.h2o(c("2307", "Leghorn St", "Mountain View", "CA", "94043"))
zip_codes <- addresses[h2o.grep("[0-9]{5}", addresses, output.logical = TRUE),]

## End(Not run)



h2o.grid 183

h2o.grid H2O Grid Support

Description

Provides a set of functions to launch a grid search and get its results.

Usage

h2o.grid(
algorithm,
grid_id,
x,
y,
training_frame,
...,
hyper_params = list(),
is_supervised = NULL,
do_hyper_params_check = FALSE,
search_criteria = NULL,
export_checkpoints_dir = NULL,
recovery_dir = NULL,
parallelism = 1

)

Arguments

algorithm Name of algorithm to use in grid search (gbm, randomForest, kmeans, glm,
deeplearning, naivebayes, pca).

grid_id (Optional) ID for resulting grid search. If it is not specified then it is autogener-
ated.

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

... arguments describing parameters to use with algorithm (i.e., x, y, training_frame).
Look at the specific algorithm - h2o.gbm, h2o.glm, h2o.kmeans, h2o.deepLearning
- for available parameters.

hyper_params List of lists of hyper parameters (i.e., list(ntrees=c(1,2),max_depth=c(5,7))).

is_supervised [Deprecated] It is not possible to override default behaviour. (Optional) If spec-
ified then override the default heuristic which decides if the given algorithm
name and parameters specify a supervised or unsupervised algorithm.



184 h2o.grid

do_hyper_params_check

Perform client check for specified hyper parameters. It can be time expensive
for large hyper space.

search_criteria

(Optional) List of control parameters for smarter hyperparameter search. The
list can include values for: strategy, max_models, max_runtime_secs, stop-
ping_metric, stopping_tolerance, stopping_rounds and seed. The default strat-
egy ’Cartesian’ covers the entire space of hyperparameter combinations. If you
want to use cartesian grid search, you can leave the search_criteria argument
unspecified. Specify the "RandomDiscrete" strategy to get random search of all
the combinations of your hyperparameters with three ways of specifying when to
stop the search: max number of models, max time, and metric-based early stop-
ping (e.g., stop if MSE has not improved by 0.0001 over the 5 best models). Ex-
amples below: list(strategy = "RandomDiscrete",max_runtime_secs = 600,max_models
= 100,stopping_metric = "AUTO",stopping_tolerance = 0.00001,stopping_rounds
= 5,seed = 123456) or list(strategy = "RandomDiscrete",max_models = 42,max_runtime_secs
= 28800) or list(strategy = "RandomDiscrete",stopping_metric = "AUTO",stopping_tolerance
= 0.001,stopping_rounds = 10) or list(strategy = "RandomDiscrete",stopping_metric
= "misclassification",stopping_tolerance = 0.00001,stopping_rounds
= 5).

export_checkpoints_dir

Directory to automatically export grid and its models to.
recovery_dir When specified the grid and all necessary data (frames, models) will be saved

to this directory (use HDFS or other distributed file-system). Should the cluster
crash during training, the grid can be reloaded from this directory via h2o.loadGrid
and training can be resumed

parallelism Level of Parallelism during grid model building. 1 = sequential building (de-
fault). Use the value of 0 for adaptive parallelism - decided by H2O. Any num-
ber > 1 sets the exact number of models built in parallel.

Details

Launch grid search with given algorithm and parameters.

Examples

## Not run:
library(h2o)
library(jsonlite)
h2o.init()
iris_hf <- as.h2o(iris)
grid <- h2o.grid("gbm", x = c(1:4), y = 5, training_frame = iris_hf,

hyper_params = list(ntrees = c(1, 2, 3)))
# Get grid summary
summary(grid)
# Fetch grid models
model_ids <- grid@model_ids
models <- lapply(model_ids, function(id) { h2o.getModel(id)})

## End(Not run)



h2o.group_by 185

h2o.group_by Group and Apply by Column

Description

Performs a group by and apply similar to ddply.

Usage

h2o.group_by(
data,
by,
...,
gb.control = list(na.methods = NULL, col.names = NULL)

)

Arguments

data an H2OFrame object.

by a list of column names

... any supported aggregate function. See Details: for more help.

gb.control a list of how to handle NA values in the dataset as well as how to name out-
put columns. The method is specified using the rm.method argument. See
Details: for more help.

Details

In the case of na.methods within gb.control, there are three possible settings. "all" will include
NAs in computation of functions. "rm" will completely remove all NA fields. "ignore" will remove
NAs from the numerator but keep the rows for computational purposes. If a list smaller than the
number of columns groups is supplied, the list will be padded by "ignore".

Note that to specify a list of column names in the gb.control list, you must add the col.names
argument. Similar to na.methods, col.names will pad the list with the default column names if the
length is less than the number of colums groups supplied.

Supported functions include nrow. This function is required and accepts a string for the name of the
generated column. Other supported aggregate functions accept col and na arguments for specifying
columns and the handling of NAs ("all", "ignore", and GroupBy object; max calculates the maxi-
mum of each column specified in col for each group of a GroupBy object; mean calculates the mean
of each column specified in col for each group of a GroupBy object; min calculates the minimum of
each column specified in col for each group of a GroupBy object; mode calculates the mode of each
column specified in col for each group of a GroupBy object; sd calculates the standard deviation of
each column specified in col for each group of a GroupBy object; ss calculates the sum of squares
of each column specified in col for each group of a GroupBy object; sum calculates the sum of each
column specified in col for each group of a GroupBy object; and var calculates the variance of each
column specified in col for each group of a GroupBy object. If an aggregate is provided without
a value (for example, as max in sum(col="X1",na="all").mean(col="X5",na="all").max()),



186 h2o.gsub

then it is assumed that the aggregation should apply to all columns except the GroupBy columns.
However, operations will not be performed on String columns. They will be skipped. Note again
that nrow is required and cannot be empty.

Value

Returns a new H2OFrame object with columns equivalent to the number of groups created

Examples

## Not run:
library(h2o)
h2o.init()
df <- h2o.importFile(paste("https://s3.amazonaws.com/h2o-public-test-data",

"/smalldata/prostate/prostate.csv",
sep=""))

h2o.group_by(data = df, by = "RACE", nrow("VOL"))

## End(Not run)

h2o.gsub String Global Substitute

Description

Creates a copy of the target column in which each string has all occurence of the regex pattern
replaced with the replacement substring.

Usage

h2o.gsub(pattern, replacement, x, ignore.case = FALSE)

Arguments

pattern The pattern to replace.

replacement The replacement pattern.

x The column on which to operate.

ignore.case Case sensitive or not

Examples

## Not run:
library(h2o)
h2o.init()
string_to_gsub <- as.h2o("r tutorial")
sub_string <- h2o.gsub("r ", "H2O ", string_to_gsub)

## End(Not run)



h2o.h 187

h2o.h Calculates Friedman and Popescu’s H statistics, in order to test for
the presence of an interaction between specified variables in h2o gbm
and xgb models. H varies from 0 to 1. It will have a value of 0 if
the model exhibits no interaction between specified variables and a
correspondingly larger value for a stronger interaction effect between
them. NaN is returned if a computation is spoiled by weak main effects
and rounding errors.

Description

See Jerome H. Friedman and Bogdan E. Popescu, 2008, "Predictive learning via rule ensembles",
*Ann. Appl. Stat.* **2**:916-954, http://projecteuclid.org/download/pdfview_1/euclid.aoas/1223908046,
s. 8.1.

Usage

h2o.h(model, frame, variables)

Arguments

model A trained gradient-boosting model.

frame A frame that current model has been fitted to.

variables Variables of the interest.

Examples

## Not run:
library(h2o)
h2o.init()
prostate.hex <- h2o.importFile(

"https://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv",
destination_frame="prostate.hex"
)

prostate.hex$CAPSULE <- as.factor(prostate.hex$CAPSULE)
prostate.hex$RACE <- as.factor(prostate.hex$RACE)
prostate.h2o <- h2o.gbm(x = 3:9, y = "CAPSULE", training_frame = prostate.hex,
distribution = "bernoulli", ntrees = 100, max_depth = 5, min_rows = 10, learn_rate = 0.1)
h_val <- h2o.h(prostate.h2o, prostate.hex, c('DPROS','DCAPS'))

## End(Not run)



188 h2o.head

h2o.head Return the Head or Tail of an H2O Dataset.

Description

Returns the first or last rows of an H2OFrame object.

Usage

h2o.head(x, n = 6L, m = 200L, ...)

## S3 method for class 'H2OFrame'
head(x, n = 6L, m = 200L, ...)

h2o.tail(x, n = 6L, m = 200L, ...)

## S3 method for class 'H2OFrame'
tail(x, n = 6L, m = 200L, ...)

Arguments

x An H2OFrame object.
n (Optional) A single integer. If positive, number of rows in x to return. If nega-

tive, all but the n first/last number of rows in x.
m (Optional) A single integer. If positive, number of columns in x to return. If

negative, all but the m first/last number of columns in x.
... Ignored.

Value

An H2OFrame containing the first or last n rows and m columns of an H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init(ip <- "localhost", port = 54321, startH2O = TRUE)
australia_path <- system.file("extdata", "australia.csv", package = "h2o")
australia <- h2o.uploadFile(path = australia_path)
# Return the first 10 rows and 6 columns
h2o.head(australia, n = 10L, m = 6L)
# Return the last 10 rows and 6 columns
h2o.tail(australia, n = 10L, m = 6L)

# For Jupyter notebook with an R kernel,
# view all rows of a data frame
options(repr.matrix.max.rows = 600, repr.matrix.max.cols = 200)

## End(Not run)



h2o.HGLMMetrics 189

h2o.HGLMMetrics Retrieve HGLM ModelMetrics

Description

Retrieve HGLM ModelMetrics

Usage

h2o.HGLMMetrics(object)

Arguments

object an H2OModel object or H2OModelMetrics.

h2o.hist Compute A Histogram

Description

Compute a histogram over a numeric column. If breaks=="FD", the MAD is used over the IQR in
computing bin width. Note that we do not beautify the breakpoints as R does.

Usage

h2o.hist(x, breaks = "Sturges", plot = TRUE)

Arguments

x A single numeric column from an H2OFrame.

breaks Can be one of the following: A string: "Sturges", "Rice", "sqrt", "Doane", "FD",
"Scott" A single number for the number of breaks splitting the range of the vec
into number of breaks bins of equal width A vector of numbers giving the split
points, e.g., c(-50,213.2123,9324834)

plot A logical value indicating whether or not a plot should be generated (default is
TRUE).

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.asnumeric(iris["petal_len"])



190 h2o.hit_ratio_table

h2o.hist(iris["petal_len"], breaks = "Sturges", plot = TRUE)

## End(Not run)

h2o.hit_ratio_table Retrieve the Hit Ratios

Description

If "train", "valid", and "xval" parameters are FALSE (default), then the training Hit Ratios value
is returned. If more than one parameter is set to TRUE, then a named list of Hit Ratio tables are
returned, where the names are "train", "valid" or "xval".

Usage

h2o.hit_ratio_table(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel object.

train Retrieve the training Hit Ratio

valid Retrieve the validation Hit Ratio

xval Retrieve the cross-validation Hit Ratio

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_wheader.csv"
iris <- h2o.importFile(f)
iris_split <- h2o.splitFrame(data = iris, ratios = 0.8, seed = 1234)
train <- iris_split[[1]]
valid <- iris_split[[2]]

iris_xgb <- h2o.xgboost(x = 1:4, y = 5, training_frame = train, validation_frame = valid)
hrt_iris <- h2o.hit_ratio_table(iris_xgb, valid = TRUE)
hrt_iris

## End(Not run)



h2o.hour 191

h2o.hour Convert Milliseconds to Hour of Day in H2O Datasets

Description

Converts the entries of an H2OFrame object from milliseconds to hours of the day (on a 0 to 23
scale).

Usage

h2o.hour(x)

hour(x)

## S3 method for class 'H2OFrame'
hour(x)

Arguments

x An H2OFrame object.

Value

An H2OFrame object containing the entries of x converted to hours of the day.

See Also

h2o.day

h2o.ice_plot Plot Individual Conditional Expectation (ICE) for each decile

Description

Individual Conditional Expectation (ICE) plot gives a graphical depiction of the marginal effect of
a variable on the response. ICE plots are similar to partial dependence plots (PDP); PDP shows the
average effect of a feature while ICE plot shows the effect for a single instance. This function will
plot the effect for each decile. In contrast to the PDP, ICE plots can provide more insight, especially
when there is stronger feature interaction.

Usage

h2o.ice_plot(model, newdata, column, target = NULL, max_levels = 30)



192 h2o.ifelse

Arguments

model An H2OModel.

newdata An H2OFrame.

column A feature column name to inspect.

target If multinomial, plot PDP just for target category. Character string.

max_levels An integer specifying the maximum number of factor levels to show. Defaults
to 30.

Value

A ggplot2 object

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
gbm <- h2o.gbm(y = response,

training_frame = train)

# Create the individual conditional expectations plot
ice <- h2o.ice_plot(gbm, test, column = "alcohol")
print(ice)

## End(Not run)

h2o.ifelse H2O Apply Conditional Statement

Description

Applies conditional statements to numeric vectors in H2O parsed data objects when the data are
numeric.



h2o.importFile 193

Usage

h2o.ifelse(test, yes, no)

ifelse(test, yes, no)

Arguments

test A logical description of the condition to be met (>, <, =, etc...)

yes The value to return if the condition is TRUE.

no The value to return if the condition is FALSE.

Details

Both numeric and categorical values can be tested. However when returning a yes and no condition
both conditions must be either both categorical or numeric.

Value

Returns a vector of new values matching the conditions stated in the ifelse call.

Examples

## Not run:
library(h2o)
h2o.init()
australia_path <- system.file("extdata", "australia.csv", package = "h2o")
australia <- h2o.importFile(path = australia_path)
australia[, 9] <- ifelse(australia[, 3] < 279.9, 1, 0)
summary(australia)

## End(Not run)

h2o.importFile Import Files into H2O

Description

Imports files into an H2O cluster. The default behavior is to pass-through to the parse phase auto-
matically.

Usage

h2o.importFile(
path,
destination_frame = "",
parse = TRUE,
header = NA,



194 h2o.importFile

sep = "",
col.names = NULL,
col.types = NULL,
na.strings = NULL,
decrypt_tool = NULL,
skipped_columns = NULL,
custom_non_data_line_markers = NULL,
partition_by = NULL,
quotechar = NULL,
escapechar = ""

)

h2o.importFolder(
path,
pattern = "",
destination_frame = "",
parse = TRUE,
header = NA,
sep = "",
col.names = NULL,
col.types = NULL,
na.strings = NULL,
decrypt_tool = NULL,
skipped_columns = NULL,
custom_non_data_line_markers = NULL,
partition_by = NULL,
quotechar = NULL,
escapechar = "\\"

)

h2o.importHDFS(
path,
pattern = "",
destination_frame = "",
parse = TRUE,
header = NA,
sep = "",
col.names = NULL,
na.strings = NULL

)

h2o.uploadFile(
path,
destination_frame = "",
parse = TRUE,
header = NA,
sep = "",
col.names = NULL,



h2o.importFile 195

col.types = NULL,
na.strings = NULL,
progressBar = FALSE,
parse_type = NULL,
decrypt_tool = NULL,
skipped_columns = NULL,
quotechar = NULL,
escapechar = "\\"

)

Arguments

path The complete URL or normalized file path of the file to be imported. Each row
of data appears as one line of the file.

destination_frame

(Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the URL path.

parse (Optional) A logical value indicating whether the file should be parsed after
import, for details see h2o.parseRaw.

header (Optional) A logical value indicating whether the first line of the file contains
column headers. If left empty, the parser will try to automatically detect this.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) An H2OFrame object containing a single delimited line with the col-
umn names for the file.

col.types (Optional) A vector to specify whether columns should be forced to a certain
type upon import parsing.

na.strings (Optional) H2O will interpret these strings as missing.
decrypt_tool (Optional) Specify a Decryption Tool (key-reference acquired by calling h2o.decryptionSetup.
skipped_columns

a list of column indices to be skipped during parsing.
custom_non_data_line_markers

(Optional) If a line in imported file starts with any character in given string it
will NOT be imported. Empty string means all lines are imported, NULL means
that default behaviour for given format will be used

partition_by names of the columns the persisted dataset has been partitioned by.
quotechar A hint for the parser which character to expect as quoting character. None (de-

fault) means autodetection.
escapechar (Optional) One ASCII character used to escape other characters.
pattern (Optional) Character string containing a regular expression to match file(s) in

the folder.
progressBar (Optional) When FALSE, tell H2O parse call to block synchronously instead of

polling. This can be faster for small datasets but loses the progress bar.
parse_type (Optional) Specify which parser type H2O will use. Valid types are "ARFF",

"XLS", "CSV", "SVMLight"



196 h2o.import_hive_table

Details

h2o.importFile is a parallelized reader and pulls information from the server from a location
specified by the client. The path is a server-side path. This is a fast, scalable, highly optimized way
to read data. H2O pulls the data from a data store and initiates the data transfer as a read operation.

Unlike the import function, which is a parallelized reader, h2o.uploadFile is a push from the
client to the server. The specified path must be a client-side path. This is not scalable and is only
intended for smaller data sizes. The client pushes the data from a local filesystem (for example, on
your machine where R is running) to H2O. For big-data operations, you don’t want the data stored
on or flowing through the client.

h2o.importFolder imports an entire directory of files. If the given path is relative, then it will
be relative to the start location of the H2O instance. The default behavior is to pass-through to the
parse phase automatically.

h2o.importHDFS is deprecated. Instead, use h2o.importFile.

See Also

h2o.import_sql_select, h2o.import_sql_table, h2o.parseRaw

Examples

## Not run:
h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
class(prostate)
summary(prostate)

#Import files with a certain regex pattern by utilizing h2o.importFolder()
#In this example we import all .csv files in the directory prostate_folder
prostate_path = system.file("extdata", "prostate_folder", package = "h2o")
prostate_pattern = h2o.importFolder(path = prostate_path, pattern = ".*.csv")
class(prostate_pattern)
summary(prostate_pattern)

## End(Not run)

h2o.import_hive_table Import Hive Table into H2O

Description

Import Hive table to H2OFrame in memory. Make sure to start H2O with Hive on classpath. Uses
hive-site.xml on classpath to connect to Hive. When database is specified as jdbc URL uses Hive
JDBC driver to obtain table metadata. then uses direct HDFS access to import data.



h2o.import_mojo 197

Usage

h2o.import_hive_table(
database,
table,
partitions = NULL,
allow_multi_format = FALSE

)

Arguments

database Name of Hive database (default database will be used by default), can be also a
JDBC URL

table name of Hive table to import

partitions a list of lists of strings - partition key column values of partitions you want to
import.

allow_multi_format

enable import of partitioned tables with different storage formats used. WARN-
ING: this may fail on out-of-memory for tables with a large number of small
partitions.

Details

For example, my_citibike_data = h2o.import_hive_table("default", "citibike20k", partitions = list(c("2017",
"01"), c("2017", "02"))) my_citibike_data = h2o.import_hive_table("jdbc:hive2://hive-server:10000/default",
"citibike20k", allow_multi_format = TRUE)

h2o.import_mojo Imports a MOJO under given path, creating a Generic model with it.

Description

Usage example: mojo_model <- h2o.import_mojo(model_file_path = "/path/to/mojo.zip") predic-
tions <- h2o.predict(mojo_model, dataset)

Usage

h2o.import_mojo(mojo_file_path, model_id = NULL)

Arguments

mojo_file_path Filesystem path to the model imported

model_id Model ID, default is NULL

Value

Returns H2O Generic Model embedding given MOJO model



198 h2o.import_sql_select

Examples

## Not run:

# Import default Iris dataset as H2O frame
data <- as.h2o(iris)

# Train a very simple GBM model
features <- c("Sepal.Length", "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
original_model <- h2o.gbm(x = features, y = "Species", training_frame = data)

# Download the trained GBM model as MOJO (temporary directory used in this example)
mojo_original_path <- h2o.save_mojo(original_model, path = tempdir())

# Import the MOJO and obtain a Generic model
mojo_model <- h2o.import_mojo(mojo_original_path)

# Perform scoring with the generic model
predictions <- h2o.predict(mojo_model, data)

## End(Not run)

h2o.import_sql_select Import SQL table that is result of SELECT SQL query into H2O

Description

Creates a temporary SQL table from the specified sql_query. Runs multiple SELECT SQL queries
on the temporary table concurrently for parallel ingestion, then drops the table. Be sure to start the
h2o.jar in the terminal with your downloaded JDBC driver in the classpath: ‘java -cp <path_to_h2o_jar>:<path_to_jdbc_driver_jar>
water.H2OApp‘ Also see h2o.import_sql_table. Currently supported SQL databases are MySQL,
PostgreSQL, MariaDB, Hive, Oracle and Microsoft SQL Server.

Usage

h2o.import_sql_select(
connection_url,
select_query,
username,
password,
use_temp_table = NULL,
temp_table_name = NULL,
optimize = NULL,
fetch_mode = NULL

)



h2o.import_sql_table 199

Arguments

connection_url URL of the SQL database connection as specified by the Java Database Connec-
tivity (JDBC) Driver. For example, "jdbc:mysql://localhost:3306/menagerie?&useSSL=false"

select_query SQL query starting with ‘SELECT‘ that returns rows from one or more database
tables.

username Username for SQL server

password Password for SQL server

use_temp_table Whether a temporary table should be created from select_query
temp_table_name

Name of temporary table to be created from select_query

optimize (Optional) Optimize import of SQL table for faster imports. Experimental. De-
fault is true.

fetch_mode (Optional) Set to DISTRIBUTED to enable distributed import. Set to SINGLE
to force a sequential read from the database Can be used for databases that do
not support OFFSET-like clauses in SQL statements.

Details

For example, my_sql_conn_url <- "jdbc:mysql://172.16.2.178:3306/ingestSQL?&useSSL=false"
select_query <- "SELECT bikeid from citibike20k" username <- "root" password <- "abc123"
my_citibike_data <- h2o.import_sql_select(my_sql_conn_url, select_query, username, password)

h2o.import_sql_table Import SQL Table into H2O

Description

Imports SQL table into an H2O cluster. Assumes that the SQL table is not being updated and
is stable. Runs multiple SELECT SQL queries concurrently for parallel ingestion. Be sure to
start the h2o.jar in the terminal with your downloaded JDBC driver in the classpath: ‘java -cp
<path_to_h2o_jar>:<path_to_jdbc_driver_jar> water.H2OApp‘ Also see h2o.import_sql_select. Cur-
rently supported SQL databases are MySQL, PostgreSQL, MariaDB, Hive, Oracle and Microsoft
SQL Server.

Usage

h2o.import_sql_table(
connection_url,
table,
username,
password,
columns = NULL,
optimize = NULL,
fetch_mode = NULL

)



200 h2o.impute

Arguments

connection_url URL of the SQL database connection as specified by the Java Database Connec-
tivity (JDBC) Driver. For example, "jdbc:mysql://localhost:3306/menagerie?&useSSL=false"

table Name of SQL table

username Username for SQL server

password Password for SQL server

columns (Optional) Character vector of column names to import from SQL table. Default
is to import all columns.

optimize (Optional) Optimize import of SQL table for faster imports. Default is true.
Ignored - use fetch_mode instead.

fetch_mode (Optional) Set to DISTRIBUTED to enable distributed import. Set to SINGLE
to force a sequential read from the database Can be used for databases that do
not support OFFSET-like clauses in SQL statements.

Details

For example, my_sql_conn_url <- "jdbc:mysql://172.16.2.178:3306/ingestSQL?&useSSL=false"
table <- "citibike20k" username <- "root" password <- "abc123" my_citibike_data <- h2o.import_sql_table(my_sql_conn_url,
table, username, password)

h2o.impute Basic Imputation of H2O Vectors

Description

Perform inplace imputation by filling missing values with aggregates computed on the "na.rm’d"
vector. Additionally, it’s possible to perform imputation based on groupings of columns from within
data; these columns can be passed by index or name to the by parameter. If a factor column is
supplied, then the method must be "mode".

Usage

h2o.impute(
data,
column = 0,
method = c("mean", "median", "mode"),
combine_method = c("interpolate", "average", "lo", "hi"),
by = NULL,
groupByFrame = NULL,
values = NULL

)



h2o.infogram 201

Arguments

data The dataset containing the column to impute.
column A specific column to impute, default of 0 means impute the whole frame.
method "mean" replaces NAs with the column mean; "median" replaces NAs with the

column median; "mode" replaces with the most common factor (for factor columns
only);

combine_method If method is "median", then choose how to combine quantiles on even sample
sizes. This parameter is ignored in all other cases.

by group by columns
groupByFrame Impute the column col with this pre-computed grouped frame.
values A vector of impute values (one per column). NaN indicates to skip the column

Details

The default method is selected based on the type of the column to impute. If the column is numeric
then "mean" is selected; if it is categorical, then "mode" is selected. Other column types (e.g. String,
Time, UUID) are not supported.

Value

an H2OFrame with imputed values

Examples

## Not run:
h2o.init()
iris_hf <- as.h2o(iris)
iris_hf[sample(nrow(iris_hf), 40), 5] <- NA # randomly replace 50 values with NA
# impute with a group by
iris_hf <- h2o.impute(iris_hf, "Species", "mode", by = c("Sepal.Length", "Sepal.Width"))

## End(Not run)

h2o.infogram H2O Infogram

Description

The infogram is a graphical information-theoretic interpretability tool which allows the user to
quickly spot the core, decision-making variables that uniquely and safely drive the response, in su-
pervised classification problems. The infogram can significantly cut down the number of predictors
needed to build a model by identifying only the most valuable, admissible features. When protected
variables such as race or gender are present in the data, the admissibility of a variable is determined
by a safety and relevancy index, and thus serves as a diagnostic tool for fairness. The safety of each
feature can be quantified and variables that are unsafe will be considered inadmissible. Models built
using only admissible features will naturally be more interpretable, given the reduced feature set.
Admissible models are also less susceptible to overfitting and train faster, while providing similar
accuracy as models built using all available features.



202 h2o.infogram

Usage

h2o.infogram(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
seed = -1,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
nfolds = 0,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
offset_column = NULL,
weights_column = NULL,
standardize = FALSE,
distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma",

"tweedie", "laplace", "quantile", "huber"),
plug_values = NULL,
max_iterations = 0,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0.001,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
max_runtime_secs = 0,
custom_metric_func = NULL,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO"),

algorithm = c("AUTO", "deeplearning", "drf", "gbm", "glm", "xgboost"),
algorithm_params = NULL,
protected_columns = NULL,
total_information_threshold = -1,
net_information_threshold = -1,
relevance_index_threshold = -1,
safety_index_threshold = -1,
data_fraction = 1,
top_n_features = 50

)



h2o.infogram 203

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.
model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
seed Seed for random numbers (affects certain parts of the algo that are stochastic

and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to
0.

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.



204 h2o.infogram

standardize Logical. Standardize numeric columns to have zero mean and unit variance.
Defaults to FALSE.

distribution Distribution function Must be one of: "AUTO", "bernoulli", "multinomial",
"gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber". De-
faults to AUTO.

plug_values Plug Values (a single row frame containing values that will be used to im-
pute missing values of the training/validation frame, use with conjunction miss-
ing_values_handling = PlugValues).

max_iterations Maximum number of iterations. Defaults to 0.
stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

custom_metric_func

Reference to custom evaluation function, format: ‘language:keyName=funcName‘

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

algorithm Type of machine learning algorithm used to build the infogram. Options in-
clude ’AUTO’ (gbm), ’deeplearning’ (Deep Learning with default parameters),
’drf’ (Random Forest with default parameters), ’gbm’ (GBM with default pa-
rameters), ’glm’ (GLM with default parameters), or ’xgboost’ (if available, XG-
Boost with default parameters). Must be one of: "AUTO", "deeplearning", "drf",
"gbm", "glm", "xgboost". Defaults to AUTO.



h2o.infogram 205

algorithm_params

Customized parameters for the machine learning algorithm specified in the al-
gorithm parameter.

protected_columns

Columns that contain features that are sensitive and need to be protected (legally,
or otherwise), if applicable. These features (e.g. race, gender, etc) should not
drive the prediction of the response.

total_information_threshold

A number between 0 and 1 representing a threshold for total information, de-
faulting to 0.1. For a specific feature, if the total information is higher than
this threshold, and the corresponding net information is also higher than the
threshold “net_information_threshold“, that feature will be considered admis-
sible. The total information is the x-axis of the Core Infogram. Default is -1
which gets set to 0.1. Defaults to -1.

net_information_threshold

A number between 0 and 1 representing a threshold for net information, de-
faulting to 0.1. For a specific feature, if the net information is higher than this
threshold, and the corresponding total information is also higher than the to-
tal_information_threshold, that feature will be considered admissible. The net
information is the y-axis of the Core Infogram. Default is -1 which gets set to
0.1. Defaults to -1.

relevance_index_threshold

A number between 0 and 1 representing a threshold for the relevance index, de-
faulting to 0.1. This is only used when “protected_columns“ is set by the user.
For a specific feature, if the relevance index value is higher than this threshold,
and the corresponding safety index is also higher than the safety_index_threshold“,
that feature will be considered admissible. The relevance index is the x-axis of
the Fair Infogram. Default is -1 which gets set to 0.1. Defaults to -1.

safety_index_threshold

A number between 0 and 1 representing a threshold for the safety index, default-
ing to 0.1. This is only used when protected_columns is set by the user. For a
specific feature, if the safety index value is higher than this threshold, and the
corresponding relevance index is also higher than the relevance_index_threshold,
that feature will be considered admissible. The safety index is the y-axis of the
Fair Infogram. Default is -1 which gets set to 0.1. Defaults to -1.

data_fraction The fraction of training frame to use to build the infogram model. Defaults to
1.0, and any value greater than 0 and less than or equal to 1.0 is acceptable.
Defaults to 1.

top_n_features An integer specifying the number of columns to evaluate in the infogram. The
columns are ranked by variable importance, and the top N are evaluated. De-
faults to 50. Defaults to 50.

Details

The infogram allows the user to quickly spot the admissible decision-making variables that are
driving the response. There are two types of infogram plots: Core and Fair Infogram.

The Core Infogram plots all the variables as points on two-dimensional grid of total vs net informa-
tion. The x-axis is total information, a measure of how much the variable drives the response (the



206 h2o.init

more predictive, the higher the total information). The y-axis is net information, a measure of how
unique the variable is. The top right quadrant of the infogram plot is the admissible section; the
variables located in this quadrant are the admissible features. In the Core Infogram, the admissible
features are the strongest, unique drivers of the response.

If sensitive or protected variables are present in data, the user can specify which attributes should
be protected while training using the protected_columns argument. All non-protected predictor
variables will be checked to make sure that there’s no information pathway to the response through
a protected feature, and deemed inadmissible if they possess little or no informational value beyond
their use as a dummy for protected attributes. The Fair Infogram plots all the features as points on
two-dimensional grid of relevance vs safety. The x-axis is relevance index, a measure of how much
the variable drives the response (the more predictive, the higher the relevance). The y-axis is safety
index, a measure of how much extra information the variable has that is not acquired through the
protected variables. In the Fair Infogram, the admissible features are the strongest, safest drivers of
the response.

Examples

## Not run:
h2o.init()

# Convert iris dataset to an H2OFrame
df <- as.h2o(iris)

# Infogram
ig <- h2o.infogram(y = "Species", training_frame = df)
plot(ig)

## End(Not run)

h2o.init Initialize and Connect to H2O

Description

Attempts to start and/or connect to and H2O instance.

Usage

h2o.init(
ip = "localhost",
port = 54321,
name = NA_character_,
startH2O = TRUE,
forceDL = FALSE,
enable_assertions = TRUE,
license = NULL,
nthreads = -1,



h2o.init 207

max_mem_size = NULL,
min_mem_size = NULL,
ice_root = tempdir(),
log_dir = NA_character_,
log_level = NA_character_,
strict_version_check = TRUE,
proxy = NA_character_,
https = FALSE,
cacert = NA_character_,
insecure = FALSE,
username = NA_character_,
password = NA_character_,
use_spnego = FALSE,
cookies = NA_character_,
context_path = NA_character_,
ignore_config = FALSE,
extra_classpath = NULL,
jvm_custom_args = NULL,
bind_to_localhost = TRUE

)

Arguments

ip Object of class character representing the IP address of the server where H2O
is running.

port Object of class numeric representing the port number of the H2O server.

name (Optional) A character string representing the H2O cluster name.

startH2O (Optional) A logical value indicating whether to try to start H2O from R if no
connection with H2O is detected. This is only possible if ip = "localhost" or
ip = "127.0.0.1". If an existing connection is detected, R does not start H2O.

forceDL (Optional) A logical value indicating whether to force download of the H2O
executable. Defaults to FALSE, so the executable will only be downloaded if it
does not already exist in the h2o R library resources directory h2o/java/h2o.jar.
This value is only used when R starts H2O.

enable_assertions

(Optional) A logical value indicating whether H2O should be launched with
assertions enabled. Used mainly for error checking and debugging purposes.
This value is only used when R starts H2O.

license (Optional) A character string value specifying the full path of the license file.
This value is only used when R starts H2O.

nthreads (Optional) Number of threads in the thread pool. This relates very closely to the
number of CPUs used. -1 means use all CPUs on the host (Default). A positive
integer specifies the number of CPUs directly. This value is only used when R
starts H2O.

max_mem_size (Optional) A character string specifying the maximum size, in bytes, of the
memory allocation pool to H2O. This value must a multiple of 1024 greater



208 h2o.init

than 2MB. Append the letter m or M to indicate megabytes, or g or G to indicate
gigabytes. This value is only used when R starts H2O. If max_mem_size is
not defined, then the amount of memory that H2O allocates will be determined
by the default memory of Java Virtual Machine. This amount is dependent on
the Java version, but it will generally be 25 percent of the machine’s physical
memory.

min_mem_size (Optional) A character string specifying the minimum size, in bytes, of the
memory allocation pool to H2O. This value must a multiple of 1024 greater
than 2MB. Append the letter m or M to indicate megabytes, or g or G to indicate
gigabytes. This value is only used when R starts H2O.

ice_root (Optional) A directory to handle object spillage. The defaul varies by OS.

log_dir (Optional) A directory where H2O server logs are stored. The default varies by
OS.

log_level (Optional) The level of logging of H2O server. The default is INFO.

strict_version_check

(Optional) Setting this to FALSE is unsupported and should only be done when
advised by technical support.

proxy (Optional) A character string specifying the proxy path.

https (Optional) Set this to TRUE to use https instead of http.

cacert (Optional) Path to a CA bundle file with root and intermediate certificates of
trusted CAs.

insecure (Optional) Set this to TRUE to disable SSL certificate checking.

username (Optional) Username to login with.

password (Optional) Password to login with.

use_spnego (Optional) Set this to TRUE to enable SPNEGO authentication.

cookies (Optional) Vector(or list) of cookies to add to request.

context_path (Optional) The last part of connection URL: http://<ip>:<port>/<context_path>

ignore_config (Optional) A logical value indicating whether a search for a .h2oconfig file
should be conducted or not. Default value is FALSE.

extra_classpath

(Optional) A vector of paths to libraries to be added to the Java classpath when
H2O is started from R.

jvm_custom_args

(Optional) A character list of custom arguments for the JVM where new H2O
instance is going to run, if started. Ignored when connecting to an existing
instance.

bind_to_localhost

(Optional) A logical flag indicating whether access to the H2O instance should
be restricted to the local machine (default) or if it can be reached from other
computers on the network. Only applicable when H2O is started from R.



h2o.init 209

Details

By default, this method first checks if an H2O instance is connectible. If it cannot connect and start
= TRUE with ip = "localhost", it will attempt to start and instance of H2O at localhost:54321. If
an open ip and port of your choice are passed in, then this method will attempt to start an H2O
instance at that specified ip port.

When initializing H2O locally, this method searches for h2o.jar in the R library resources (system.file("java","h2o.jar",package
= "h2o")), and if the file does not exist, it will automatically attempt to download the correct version
from Amazon S3. The user must have Internet access for this process to be successful.

Once connected, the method checks to see if the local H2O R package version matches the version
of H2O running on the server. If there is a mismatch and the user indicates she wishes to upgrade,
it will remove the local H2O R package and download/install the H2O R package from the server.

Value

this method will load it and return a H2OConnection object containing the IP address and port
number of the H2O server.

Note

Users may wish to manually upgrade their package (rather than waiting until being prompted),
which requires that they fully uninstall and reinstall the H2O package, and the H2O client package.
You must unload packages running in the environment before upgrading. It’s recommended that
users restart R or R studio after upgrading

See Also

H2O R package documentation for more details. h2o.shutdown for shutting down from R.

Examples

## Not run:
# Try to connect to a local H2O instance that is already running.
# If not found, start a local H2O instance from R with the default settings.
h2o.init()

# Try to connect to a local H2O instance.
# If not found, raise an error.
h2o.init(startH2O = FALSE)

# Try to connect to a local H2O instance that is already running.
# If not found, start a local H2O instance from R with 5 gigabytes of memory.
h2o.init(max_mem_size = "5g")

# Try to connect to a local H2O instance that is already running.
# If not found, start a local H2O instance from R that uses 5 gigabytes of memory.
h2o.init(max_mem_size = "5g")

## End(Not run)

https://docs.h2o.ai/h2o/latest-stable/h2o-r/h2o_package.pdf


210 h2o.insertMissingValues

h2o.insertMissingValues

Insert Missing Values into an H2OFrame

Description

Randomly replaces a user-specified fraction of entries in an H2O dataset with missing values.

Usage

h2o.insertMissingValues(data, fraction = 0.1, seed = -1)

Arguments

data An H2OFrame object representing the dataset.

fraction A number between 0 and 1 indicating the fraction of entries to replace with
missing.

seed A random number used to select which entries to replace with missing values.
Default of seed = -1 will automatically generate a seed in H2O.

Value

Returns an H2OFrame object.

WARNING

This will modify the original dataset. Unless this is intended, this function should only be called on
a subset of the original.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
summary(iris_hf)

iris_miss <- h2o.insertMissingValues(iris_hf, fraction = 0.25)
head(iris_miss)
summary(iris_miss)

## End(Not run)



h2o.interaction 211

h2o.interaction Categorical Interaction Feature Creation in H2O

Description

Creates a data frame in H2O with n-th order interaction features between categorical columns, as
specified by the user.

Usage

h2o.interaction(
data,
destination_frame,
factors,
pairwise,
max_factors,
min_occurrence

)

Arguments

data An H2OFrame object containing the categorical columns.
destination_frame

A string indicating the destination key. If empty, this will be auto-generated by
H2O.

factors Factor columns (either indices or column names).

pairwise Whether to create pairwise interactions between factors (otherwise create one
higher-order interaction). Only applicable if there are 3 or more factors.

max_factors Max. number of factor levels in pair-wise interaction terms (if enforced, one
extra catch-all factor will be made)

min_occurrence Min. occurrence threshold for factor levels in pair-wise interaction terms

Value

Returns an H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init()

# Create some random data
my_frame <- h2o.createFrame(rows = 20, cols = 5,

seed = -12301283, randomize = TRUE, value = 0,
categorical_fraction = 0.8, factors = 10, real_range = 1,
integer_fraction = 0.2, integer_range = 10,



212 h2o.isax

binary_fraction = 0, binary_ones_fraction = 0.5,
missing_fraction = 0.2,
response_factors = 1)

# Turn integer column into a categorical
my_frame[,5] <- as.factor(my_frame[,5])
head(my_frame, 20)

# Create pairwise interactions
pairwise <- h2o.interaction(my_frame,

factors = list(c(1, 2), c("C2", "C3", "C4")),
pairwise = TRUE, max_factors = 10, min_occurrence = 1)

head(pairwise, 20)
h2o.levels(pairwise, 2)

# Create 5-th order interaction
higherorder <- h2o.interaction(my_frame, factors = c(1, 2, 3, 4, 5),

pairwise = FALSE, max_factors = 10000, min_occurrence = 1)
head(higherorder, 20)

# Limit the number of factors of the "categoricalized" integer column
# to at most 3 factors, and only if they occur at least twice
head(my_frame[,5], 20)
trim_integer_levels <- h2o.interaction(my_frame, factors = "C5", pairwise = FALSE, max_factors = 3,

min_occurrence = 2)
head(trim_integer_levels, 20)

# Put all together
my_frame <- h2o.cbind(my_frame, pairwise, higherorder, trim_integer_levels)
my_frame
head(my_frame, 20)
summary(my_frame)

## End(Not run)

h2o.isax iSAX

Description

Compute the iSAX index for a DataFrame which is assumed to be numeric time series data

Usage

h2o.isax(x, num_words, max_cardinality, optimize_card = FALSE)

Arguments

x an H2OFrame

num_words Number of iSAX words for the timeseries. ie granularity along the time series



h2o.ischaracter 213

max_cardinality

Maximum cardinality of the iSAX word. Each word can have less than the max

optimize_card An optimization flag that will find the max cardinality regardless of what is
passed in for max_cardinality.

Value

An H2OFrame with the name of time series, string representation of iSAX word, followed by binary
representation

References

https://www.cs.ucr.edu/~eamonn/iSAX_2.0.pdf

https://www.cs.ucr.edu/~eamonn/SAX.pdf

Examples

## Not run:
library(h2o)
h2o.init()
df <- h2o.createFrame(rows = 1, cols = 256, randomize = TRUE, value = 0,

real_range = 100, categorical_fraction = 0, factors = 0,
integer_fraction = 0, integer_range = 100, binary_fraction = 0,
binary_ones_fraction = 0, time_fraction = 0, string_fraction = 0,
missing_fraction = 0, has_response = FALSE, seed = 123)

df2 <- h2o.cumsum(df, axis = 1)
h2o.isax(df2, num_words = 10, max_cardinality = 10)

## End(Not run)

h2o.ischaracter Check if character

Description

Check if character

Usage

h2o.ischaracter(x)

Arguments

x An H2OFrame object.

See Also

character for the base R implementation, is.character().



214 h2o.isfactor

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_wheader.csv"
iris <- h2o.importFile(f)
iris_char <- h2o.ascharacter(iris["class"])
h2o.ischaracter(iris_char)

## End(Not run)

h2o.isfactor Check if factor

Description

Check if factor

Usage

h2o.isfactor(x)

Arguments

x An H2OFrame object.

See Also

factor for the base R implementation, is.factor().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
h2o.isfactor(cars["economy_20mpg"])

## End(Not run)



h2o.isnumeric 215

h2o.isnumeric Check if numeric

Description

Check if numeric

Usage

h2o.isnumeric(x)

Arguments

x An H2OFrame object.

See Also

numeric for the base R implementation, is.numeric().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_wheader.csv"
iris <- h2o.importFile(f)
h2o.isnumeric(iris["sepal_len"])

## End(Not run)

h2o.isolationForest Trains an Isolation Forest model

Description

Trains an Isolation Forest model

Usage

h2o.isolationForest(
training_frame,
x,
model_id = NULL,
score_each_iteration = FALSE,
score_tree_interval = 0,
ignore_const_cols = TRUE,



216 h2o.isolationForest

ntrees = 50,
max_depth = 8,
min_rows = 1,
max_runtime_secs = 0,
seed = -1,
build_tree_one_node = FALSE,
mtries = -1,
sample_size = 256,
sample_rate = -1,
col_sample_rate_change_per_level = 1,
col_sample_rate_per_tree = 1,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

stopping_rounds = 0,
stopping_metric = c("AUTO", "anomaly_score"),
stopping_tolerance = 0.01,
export_checkpoints_dir = NULL,
contamination = -1,
validation_frame = NULL,
validation_response_column = NULL

)

Arguments

training_frame Id of the training data frame.

x A vector containing the character names of the predictors in the model.

model_id Destination id for this model; auto-generated if not specified.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

score_tree_interval

Score the model after every so many trees. Disabled if set to 0. Defaults to 0.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.

ntrees Number of trees. Defaults to 50.

max_depth Maximum tree depth (0 for unlimited). Defaults to 8.

min_rows Fewest allowed (weighted) observations in a leaf. Defaults to 1.
max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

build_tree_one_node

Logical. Run on one node only; no network overhead but fewer cpus used.
Suitable for small datasets. Defaults to FALSE.



h2o.isolationForest 217

mtries Number of variables randomly sampled as candidates at each split. If set to -1,
defaults (number of predictors)/3. Defaults to -1.

sample_size Number of randomly sampled observations used to train each Isolation Forest
tree. Only one of parameters sample_size and sample_rate should be defined. If
sample_rate is defined, sample_size will be ignored. Defaults to 256.

sample_rate Rate of randomly sampled observations used to train each Isolation Forest tree.
Needs to be in range from 0.0 to 1.0. If set to -1, sample_rate is disabled and
sample_size will be used instead. Defaults to -1.

col_sample_rate_change_per_level

Relative change of the column sampling rate for every level (must be > 0.0 and
<= 2.0) Defaults to 1.

col_sample_rate_per_tree

Column sample rate per tree (from 0.0 to 1.0) Defaults to 1.
categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance for
regression and anonomaly_score for Isolation Forest). Note that custom and
custom_increasing can only be used in GBM and DRF with the Python client.
Must be one of: "AUTO", "anomaly_score". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.01.

export_checkpoints_dir

Automatically export generated models to this directory.

contamination Contamination ratio - the proportion of anomalies in the input dataset. If unde-
fined (-1) the predict function will not mark observations as anomalies and only
anomaly score will be returned. Defaults to -1 (undefined). Defaults to -1.

validation_frame

Id of the validation data frame.
validation_response_column

(experimental) Name of the response column in the validation frame. Response
column should be binary and indicate not anomaly/anomaly.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the cars dataset



218 h2o.keyof

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)

# Set the predictors
predictors <- c("displacement", "power", "weight", "acceleration", "year")

# Train the IF model
cars_if <- h2o.isolationForest(x = predictors, training_frame = cars,

seed = 1234, stopping_metric = "anomaly_score",
stopping_rounds = 3, stopping_tolerance = 0.1)

## End(Not run)

h2o.is_client Check Client Mode Connection

Description

Check Client Mode Connection

Usage

h2o.is_client()

h2o.keyof Method on Keyed objects allowing to obtain their key.

Description

Method on Keyed objects allowing to obtain their key.

Usage

h2o.keyof(object)

## S4 method for signature 'Keyed'
h2o.keyof(object)

## S4 method for signature 'H2OModel'
h2o.keyof(object)

## S4 method for signature 'H2OGrid'
h2o.keyof(object)

## S4 method for signature 'H2OFrame'
h2o.keyof(object)

## S4 method for signature 'H2OAutoML'
h2o.keyof(object)



h2o.kfold_column 219

Arguments

object A Keyed object

Value

the string key holding the persistent object.

h2o.kfold_column Produce a k-fold column vector.

Description

Create a k-fold vector useful for H2O algorithms that take a fold_assignments argument.

Usage

h2o.kfold_column(data, nfolds, seed = -1)

Arguments

data A dataframe against which to create the fold column.

nfolds The number of desired folds.

seed A random seed, -1 indicates that H2O will choose one.

Value

Returns an H2OFrame object with fold assignments.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_wheader.csv"
iris <- h2o.importFile(f)
kfolds <- h2o.kfold_column(iris, nfolds = 5, seed = 1234)

## End(Not run)



220 h2o.kmeans

h2o.killMinus3 Dump the stack into the JVM’s stdout.

Description

A poor man’s profiler, but effective.

Usage

h2o.killMinus3()

h2o.kmeans Performs k-means clustering on an H2O dataset

Description

Performs k-means clustering on an H2O dataset

Usage

h2o.kmeans(
training_frame,
x,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
k = 1,
estimate_k = FALSE,
user_points = NULL,
max_iterations = 10,
standardize = TRUE,
seed = -1,
init = c("Random", "PlusPlus", "Furthest", "User"),
max_runtime_secs = 0,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

export_checkpoints_dir = NULL,
cluster_size_constraints = NULL

)



h2o.kmeans 221

Arguments

training_frame Id of the training data frame.

x A vector containing the character names of the predictors in the model.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.

nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to
0.

keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

k The max. number of clusters. If estimate_k is disabled, the model will find k
centroids, otherwise it will find up to k centroids. Defaults to 1.

estimate_k Logical. Whether to estimate the number of clusters (<=k) iteratively and de-
terministically. Defaults to FALSE.

user_points This option allows you to specify a dataframe, where each row represents an
initial cluster center. The user- specified points must have the same number
of columns as the training observations. The number of rows must equal the
number of clusters

max_iterations Maximum training iterations (if estimate_k is enabled, then this is for each inner
Lloyds iteration) Defaults to 10.

standardize Logical. Standardize columns before computing distances Defaults to TRUE.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

init Initialization mode Must be one of: "Random", "PlusPlus", "Furthest", "User".
Defaults to Furthest.



222 h2o.kolmogorov_smirnov

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

export_checkpoints_dir

Automatically export generated models to this directory.

cluster_size_constraints

An array specifying the minimum number of points that should be in each clus-
ter. The length of the constraints array has to be the same as the number of
clusters.

Value

an object of class H2OClusteringModel.

See Also

h2o.cluster_sizes, h2o.totss, h2o.num_iterations, h2o.betweenss, h2o.tot_withinss,
h2o.withinss, h2o.centersSTD, h2o.centers

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.kmeans(training_frame = prostate, k = 10, x = c("AGE", "RACE", "VOL", "GLEASON"))

## End(Not run)

h2o.kolmogorov_smirnov

Kolmogorov-Smirnov metric for binomial models

Description

Retrieves a Kolmogorov-Smirnov metric for given binomial model. The number returned is in
range between 0 and 1. K-S metric represents the degree of separation between the positive (1) and
negative (0) cumulative distribution functions. Detailed metrics per each group are to be found in
the gains-lift table.



h2o.kurtosis 223

Usage

h2o.kolmogorov_smirnov(object)

## S4 method for signature 'H2OModelMetrics'
h2o.kolmogorov_smirnov(object)

## S4 method for signature 'H2OModel'
h2o.kolmogorov_smirnov(object)

Arguments

object Either an H2OModel object or an H2OModelMetrics object.

Details

The H2OModelMetrics version of this function will only take H2OBinomialMetrics objects.

Value

Kolmogorov-Smirnov metric, a number between 0 and 1.

See Also

h2o.gainsLift to see detailed K-S metrics per group

Examples

## Not run:
library(h2o)
h2o.init()
data <- h2o.importFile(
path = "https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
model <- h2o.gbm(x = c("Origin", "Distance"), y = "IsDepDelayed",

training_frame = data, ntrees = 1)
h2o.kolmogorov_smirnov(model)

## End(Not run)

h2o.kurtosis Kurtosis of a column

Description

Obtain the kurtosis of a column of a parsed H2O data object.



224 h2o.learning_curve_plot

Usage

h2o.kurtosis(x, ..., na.rm = TRUE)

kurtosis.H2OFrame(x, ..., na.rm = TRUE)

Arguments

x An H2OFrame object.

... Further arguments to be passed from or to other methods.

na.rm A logical value indicating whether NA or missing values should be stripped be-
fore the computation.

Value

Returns a list containing the kurtosis for each column (NaN for non-numeric columns).

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.kurtosis(prostate$AGE)

## End(Not run)

h2o.learning_curve_plot

Learning Curve Plot

Description

Create learning curve plot for an H2O Model. Learning curves show error metric dependence on
learning progress, e.g., RMSE vs number of trees trained so far in GBM. There can be up to 4
curves showing Training, Validation, Training on CV Models, and Cross-validation error.

Usage

h2o.learning_curve_plot(
model,
metric = c("AUTO", "auc", "aucpr", "mae", "rmse", "anomaly_score", "convergence",

"custom", "custom_increasing", "deviance", "lift_top_group", "logloss",
"misclassification", "negative_log_likelihood", "objective", "sumetaieta02"),
cv_ribbon = NULL,
cv_lines = NULL

)



h2o.levels 225

Arguments

model an H2O model

metric Metric to be used for the learning curve plot. These should mostly correspond
with stopping metric.

cv_ribbon if True, plot the CV mean as a and CV standard deviation as a ribbon around
the mean, if NULL, it will attempt to automatically determine if this is suitable
visualisation

cv_lines if True, plot scoring history for individual CV models, if NULL, it will attempt
to automatically determine if this is suitable visualisation

Value

A ggplot2 object

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
gbm <- h2o.gbm(y = response,

training_frame = train)

# Create the learning curve plot
learning_curve <- h2o.learning_curve_plot(gbm)
print(learning_curve)

## End(Not run)

h2o.levels Return the levels from the column requested column.

Description

Return the levels from the column requested column.



226 h2o.list_all_extensions

Usage

h2o.levels(x, i)

Arguments

x An H2OFrame object.

i Optional, the index of the column whose domain is to be returned.

See Also

levels for the base R method.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
h2o.levels(iris_hf, 5) # returns "setosa" "versicolor" "virginica"

## End(Not run)

h2o.listTimezones List all of the Time Zones Acceptable by the H2O cluster.

Description

List all of the Time Zones Acceptable by the H2O cluster.

Usage

h2o.listTimezones()

h2o.list_all_extensions

List all H2O registered extensions

Description

List all H2O registered extensions

Usage

h2o.list_all_extensions()



h2o.list_api_extensions 227

h2o.list_api_extensions

List registered API extensions

Description

List registered API extensions

Usage

h2o.list_api_extensions()

h2o.list_core_extensions

List registered core extensions

Description

List registered core extensions

Usage

h2o.list_core_extensions()

h2o.list_jobs Return list of jobs performed by the H2O cluster

Description

Return list of jobs performed by the H2O cluster

Usage

h2o.list_jobs()



228 h2o.loadGrid

h2o.list_models Get an list of all model ids present in the cluster

Description

Get an list of all model ids present in the cluster

Usage

h2o.list_models()

Value

Returns a vector of model ids.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
model_id <- h2o.gbm(x = 1:4, y = 5, training_frame = iris_hf)@model_id
model_id_list <- h2o.list_models()

## End(Not run)

h2o.loadGrid Loads previously saved grid with all it’s models from the same folder

Description

Returns a reference to the loaded Grid.

Usage

h2o.loadGrid(grid_path, load_params_references = FALSE)

Arguments

grid_path A character string containing the path to the file with the grid saved.
load_params_references

A logical which if true will attemt to reload saved objects referenced by grid
parameters (e.g. training frame, calibration frame), will fail if grid was saved
without referenced objects.



h2o.loadModel 229

Examples

## Not run:
library(h2o)
h2o.init()

iris <- as.h2o(iris)

ntrees_opts = c(1, 5)
learn_rate_opts = c(0.1, 0.01)
size_of_hyper_space = length(ntrees_opts) * length(learn_rate_opts)

hyper_parameters = list(ntrees = ntrees_opts, learn_rate = learn_rate_opts)
# Tempdir is chosen arbitrarily. May be any valid folder on an H2O-supported filesystem.
baseline_grid <- h2o.grid("gbm", grid_id="gbm_grid_test", x=1:4, y=5, training_frame=iris,
hyper_params = hyper_parameters, export_checkpoints_dir = tempdir())
# Remove everything from the cluster or restart it
h2o.removeAll()
grid <- h2o.loadGrid(paste0(tempdir(),"/",baseline_grid@grid_id))

## End(Not run)

h2o.loadModel Load H2O Model from HDFS or Local Disk

Description

Load a saved H2O model from disk. (Note that ensemble binary models can now be loaded using
this method.)

Usage

h2o.loadModel(path)

Arguments

path The path of the H2O Model to be imported.

Value

Returns a H2OModel object of the class corresponding to the type of model loaded.

See Also

h2o.saveModel,H2OModel



230 h2o.load_frame

Examples

## Not run:
# library(h2o)
# h2o.init()
# prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
# prostate = h2o.importFile(path = prostate_path)
# prostate_glm = h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
# training_frame = prostate, family = "binomial", alpha = 0.5)
# glmmodel_path = h2o.saveModel(prostate_glm, dir = "/Users/UserName/Desktop")
# glmmodel_load = h2o.loadModel(glmmodel_path)

## End(Not run)

h2o.load_frame Load frame previously stored in H2O’s native format.

Description

Load frame previously stored in H2O’s native format.

Usage

h2o.load_frame(frame_id, dir, force = TRUE)

Arguments

frame_id the frame ID of the original frame

dir a filesystem location where to look for frame data

force logical. overwrite an already existing frame (defaults to true)

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
h2o.save_frame(prostate, "/tmp/prostate")
prostate.key <- h2o.getId(prostate)
h2o.rm(prostate)
prostate <- h2o.load_frame(prostate.key, "/tmp/prostate")

## End(Not run)



h2o.log 231

h2o.log Compute the logarithm of x

Description

Compute the logarithm of x

Usage

h2o.log(x)

Arguments

x An H2OFrame object.

See Also

Log for the base R implementation, log.

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.log(frame)

## End(Not run)

h2o.log10 Compute the log10 of x

Description

Compute the log10 of x

Usage

h2o.log10(x)

Arguments

x An H2OFrame object.



232 h2o.log1p

See Also

Log for the base R implementation, log10().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.log10(frame)

## End(Not run)

h2o.log1p Compute the log1p of x

Description

Compute the log1p of x

Usage

h2o.log1p(x)

Arguments

x An H2OFrame object.

See Also

Log for the base R implementation, log1p().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.log1p(frame)

## End(Not run)



h2o.log2 233

h2o.log2 Compute the log2 of x

Description

Compute the log2 of x

Usage

h2o.log2(x)

Arguments

x An H2OFrame object.

See Also

Log for the base R implementation, log2()

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.log2(frame)

## End(Not run)

h2o.logAndEcho Log a message on the server-side logs

Description

This is helpful when running several pieces of work one after the other on a single H2O cluster and
you want to make a notation in the H2O server side log where one piece of work ends and the next
piece of work begins.

Usage

h2o.logAndEcho(message)



234 h2o.logloss

Arguments

message A character string with the message to write to the log.

Details

h2o.logAndEcho sends a message to H2O for logging. Generally used for debugging purposes.

h2o.logloss Retrieve the Log Loss Value

Description

Retrieves the log loss output for a H2OBinomialMetrics or H2OMultinomialMetrics object If "train",
"valid", and "xval" parameters are FALSE (default), then the training Log Loss value is returned.
If more than one parameter is set to TRUE, then a named vector of Log Losses are returned, where
the names are "train", "valid" or "xval".

Usage

h2o.logloss(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object a H2OModelMetrics object of the correct type.
train Retrieve the training Log Loss
valid Retrieve the validation Log Loss
xval Retrieve the cross-validation Log Loss

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")
response <- "economy_20mpg"
cars_splits <- h2o.splitFrame(data = cars, ratios = .8, seed = 1234)
train <- cars_splits[[1]]
valid <- cars_splits[[2]]
car_drf <- h2o.randomForest(x = predictors,

y = response,
training_frame = train,
validation_frame = valid)

h2o.logloss(car_drf, train = TRUE, valid = TRUE)

## End(Not run)



h2o.ls 235

h2o.ls List Keys on an H2O Cluster

Description

Accesses a list of object keys in the running instance of H2O.

Usage

h2o.ls()

Value

Returns a list of hex keys in the current H2O instance.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.ls()

## End(Not run)

h2o.lstrip Strip set from left

Description

Return a copy of the target column with leading characters removed. The set argument is a string
specifying the set of characters to be removed. If omitted, the set argument defaults to removing
whitespace.

Usage

h2o.lstrip(x, set = " ")

Arguments

x The column whose strings should be lstrip-ed.

set string of characters to be removed



236 h2o.mae

Examples

## Not run:
library(h2o)
h2o.init()
string_to_lstrip <- as.h2o("1234567890")
lstrip_string <- h2o.lstrip(string_to_lstrip, "123") #Remove "123"

## End(Not run)

h2o.mae Retrieve the Mean Absolute Error Value

Description

Retrieves the mean absolute error (MAE) value from an H2O model. If "train", "valid", and "xval"
parameters are FALSE (default), then the training MAE value is returned. If more than one parame-
ter is set to TRUE, then a named vector of MAEs are returned, where the names are "train", "valid"
or "xval".

Usage

h2o.mae(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel object.

train Retrieve the training MAE

valid Retrieve the validation set MAE if a validation set was passed in during model
build time.

xval Retrieve the cross-validation MAE

Examples

## Not run:
library(h2o)

h <- h2o.init()
fr <- as.h2o(iris)

m <- h2o.deeplearning(x = 2:5, y = 1, training_frame = fr)

h2o.mae(m)

## End(Not run)



h2o.makeGLMModel 237

h2o.makeGLMModel Set betas of an existing H2O GLM Model

Description

This function allows setting betas of an existing glm model.

Usage

h2o.makeGLMModel(model, beta)

Arguments

model an H2OModel corresponding from a h2o.glm call.

beta a new set of betas (a named vector)

h2o.make_metrics Create Model Metrics from predicted and actual values in H2O

Description

Given predicted values (target for regression, class-1 probabilities or binomial or per-class proba-
bilities for multinomial), compute a model metrics object

Usage

h2o.make_metrics(
predicted,
actuals,
domain = NULL,
distribution = NULL,
weights = NULL,
treatment = NULL,
auc_type = "NONE",
auuc_type = "AUTO",
auuc_nbins = -1

)

Arguments

predicted An H2OFrame containing predictions

actuals An H2OFrame containing actual values

domain Vector with response factors for classification.

distribution Distribution for regression.



238 h2o.match

weights (optional) An H2OFrame containing observation weights.

treatment (optional, for uplift models only) An H2OFrame containing treatment column
for uplift classification.

auc_type (optional) For multinomial classification you have to specify which type of agre-
gated AUC/AUCPR will be used to calculate this metric.

auuc_type (optional) For uplift binomial classification you have to specify which type of
AUUC will be used to calculate this metric. Possibilities are gini, lift, gain,
AUTO. Default is AUTO which means qini.

auuc_nbins (optional) For uplift binomial classification you have to specify number of bins
to be used for calculation the AUUC. Default is -1, which means 1000.

Value

Returns an object of the H2OModelMetrics subclass.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
prostate_gbm <- h2o.gbm(3:9, "CAPSULE", prostate)
pred <- h2o.predict(prostate_gbm, prostate)[, 3] ## class-1 probability
h2o.make_metrics(pred, prostate$CAPSULE)

## End(Not run)

h2o.match Value Matching in H2O

Description

match and %in% return values similar to the base R generic functions.

Usage

h2o.match(x, table, nomatch = 0, incomparables = NULL)

match.H2OFrame(x, table, nomatch = 0, incomparables = NULL)

x %in% table



h2o.max 239

Arguments

x a categorical vector from an H2OFrame object with values to be matched.

table an R object to match x against.

nomatch the value to be returned in the case when no match is found.

incomparables a vector of calues that cannot be matched. Any value in x matching a value in
this vector is assigned the nomatch value.

Value

Returns a vector of the positions of (first) matches of its first argument in its second

See Also

match for base R implementation.

Examples

## Not run:
h2o.init()
iris_hf <- as.h2o(iris)
h2o.match(iris_hf[, 5], c("setosa", "versicolor"))

## End(Not run)

h2o.max Returns the maxima of the input values.

Description

Returns the maxima of the input values.

Usage

h2o.max(x, na.rm = FALSE)

Arguments

x An H2OFrame object.

na.rm logical. indicating whether missing values should be removed.

See Also

Extremes for the base R implementation, max().



240 h2o.mean

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.max(iris["petal_len"], na.rm = TRUE)

## End(Not run)

h2o.mean Compute the frame’s mean by-column (or by-row).

Description

Compute the frame’s mean by-column (or by-row).

Usage

h2o.mean(x, na.rm = FALSE, axis = 0, return_frame = FALSE, ...)

## S3 method for class 'H2OFrame'
mean(x, na.rm = FALSE, axis = 0, return_frame = FALSE, ...)

Arguments

x An H2OFrame object.

na.rm logical. Indicate whether missing values should be removed.

axis integer. Indicate whether to calculate the mean down a column (0) or across a
row (1). NOTE: This is only applied when return_frame is set to TRUE. Other-
wise, this parameter is ignored.

return_frame logical. Indicate whether to return an H2O frame or a list. Default is FALSE
(returns a list).

... Further arguments to be passed from or to other methods.

Value

Returns a list containing the mean for each column (NaN for non-numeric columns) if return_frame
is set to FALSE. If return_frame is set to TRUE, then it will return an H2O frame with means per
column or row (depends on axis argument).

See Also

Round for base R implementation, mean() and colSums for the base R implementation, colMeans().



h2o.mean_per_class_error 241

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
# Default behavior. Will return list of means per column.
h2o.mean(prostate$AGE)
# return_frame set to TRUE. This will return an H2O Frame
# with mean per row or column (depends on axis argument)
h2o.mean(prostate, na.rm = TRUE, axis = 1, return_frame = TRUE)

## End(Not run)

h2o.mean_per_class_error

Retrieve the mean per class error

Description

Retrieves the mean per class error from an H2OBinomialMetrics. If "train", "valid", and "xval"
parameters are FALSE (default), then the training mean per class error value is returned. If more
than one parameter is set to TRUE, then a named vector of mean per class errors are returned, where
the names are "train", "valid" or "xval".

Usage

h2o.mean_per_class_error(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OBinomialMetrics object.

train Retrieve the training mean per class error

valid Retrieve the validation mean per class error

xval Retrieve the cross-validation mean per class error

See Also

h2o.mse for MSE, and h2o.metric for the various threshold metrics. See h2o.performance for
creating H2OModelMetrics objects.



242 h2o.mean_residual_deviance

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.mean_per_class_error(perf)
h2o.mean_per_class_error(model, train=TRUE)

## End(Not run)

h2o.mean_residual_deviance

Retrieve the Mean Residual Deviance value

Description

Retrieves the Mean Residual Deviance value from an H2O model. If "train", "valid", and "xval"
parameters are FALSE (default), then the training Mean Residual Deviance value is returned. If
more than one parameter is set to TRUE, then a named vector of Mean Residual Deviances are
returned, where the names are "train", "valid" or "xval".

Usage

h2o.mean_residual_deviance(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel object.

train Retrieve the training Mean Residual Deviance

valid Retrieve the validation Mean Residual Deviance

xval Retrieve the cross-validation Mean Residual Deviance

Examples

## Not run:
library(h2o)

h <- h2o.init()
fr <- as.h2o(iris)

m <- h2o.deeplearning(x = 2:5, y = 1, training_frame = fr)



h2o.median 243

h2o.mean_residual_deviance(m)

## End(Not run)

h2o.median H2O Median

Description

Compute the median of an H2OFrame.

Usage

h2o.median(x, na.rm = TRUE)

## S3 method for class 'H2OFrame'
median(x, na.rm = TRUE)

Arguments

x An H2OFrame object.

na.rm a logical, indicating whether na’s are omitted.

Value

Returns a list containing the median for each column (NaN for non-numeric columns)

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.median(prostate)

## End(Not run)



244 h2o.merge

h2o.melt Converts a frame to key-value representation while optionally skipping
NA values. Inverse operation to h2o.pivot.

Description

Pivot the frame designated by the three columns: index, column, and value. Index and column
should be of type enum, int, or time. For cases of multiple indexes for a column label, the aggrega-
tion method is to pick the first occurrence in the data frame

Usage

h2o.melt(
x,
id_vars,
value_vars = NULL,
var_name = "variable",
value_name = "value",
skipna = FALSE

)

Arguments

x an H2OFrame

id_vars the columns used as identifiers

value_vars what columns will be converted to key-value pairs (optional, if not specified
complement to id_vars will be used)

var_name name of the key-column (default: "variable")

value_name name of the value-column (default: "value")

skipna if enabled, do not include NAs in the result (default: FALSE)

Value

an unpivoted H2OFrame

h2o.merge Merge Two H2O Data Frames



h2o.merge 245

Description

Merges two H2OFrame objects with the same arguments and meanings as merge() in base R. How-
ever, we do not support all=TRUE, all.x=TRUE and all.y=TRUE. The default method is auto and it
will default to the radix method. The radix method will return the correct merge result regardless
of duplicated rows in the right frame. In addition, the radix method can perform merge even if you
have string columns in your frames. If there are duplicated rows in your rite frame, they will not
be included if you use the hash method. The hash method cannot perform merge if you have string
columns in your left frame. Hence, we consider the radix method superior to the hash method and
is the default method to use.

Usage

h2o.merge(
x,
y,
by = intersect(names(x), names(y)),
by.x = by,
by.y = by,
all = FALSE,
all.x = all,
all.y = all,
method = "auto"

)

Arguments

x, y H2OFrame objects

by columns used for merging by default the common names

by.x x columns used for merging by name or number

by.y y columns used for merging by name or number

all TRUE includes all rows in x and all rows in y even if there is no match to the
other

all.x If all.x is true, all rows in the x will be included, even if there is no matching
row in y, and vice-versa for all.y.

all.y see all.x

method auto(default), radix, hash

Examples

## Not run:
library(h2o)
h2o.init()
left <- data.frame(fruit = c('apple', 'orange', 'banana', 'lemon', 'strawberry', 'blueberry'),
color <- c('red', 'orange', 'yellow', 'yellow', 'red', 'blue'))
right <- data.frame(fruit = c('apple', 'orange', 'banana', 'lemon', 'strawberry', 'watermelon'),
citrus <- c(FALSE, TRUE, FALSE, TRUE, FALSE, FALSE))
left_hf <- as.h2o(left)



246 h2o.metric

right_hf <- as.h2o(right)
merged <- h2o.merge(left_hf, right_hf, all.x = TRUE)

## End(Not run)

h2o.metric H2O Model Metric Accessor Functions

Description

A series of functions that retrieve model metric details.

Usage

h2o.metric(object, thresholds, metric, transform = NULL)

h2o.F0point5(object, thresholds)

h2o.F1(object, thresholds)

h2o.F2(object, thresholds)

h2o.accuracy(object, thresholds)

h2o.error(object, thresholds)

h2o.maxPerClassError(object, thresholds)

h2o.mean_per_class_accuracy(object, thresholds)

h2o.mcc(object, thresholds)

h2o.precision(object, thresholds)

h2o.tpr(object, thresholds)

h2o.fpr(object, thresholds)

h2o.fnr(object, thresholds)

h2o.tnr(object, thresholds)

h2o.recall(object, thresholds)

h2o.sensitivity(object, thresholds)

h2o.fallout(object, thresholds)



h2o.metric 247

h2o.missrate(object, thresholds)

h2o.specificity(object, thresholds)

Arguments

object An H2OModelMetrics object of the correct type.

thresholds (Optional) A value or a list of values between 0.0 and 1.0. If not set, then all
thresholds will be returned. If "max", then the threshold maximizing the metric
will be used.

metric (Optional) the metric to retrieve. If not set, then all metrics will be returned.

transform (Optional) a list describing a transformer for the given metric, if any. e.g. trans-
form=list(op=foo_fn, name="foo") will rename the given metric to "foo" and
apply function foo_fn to the metric values.

Details

Many of these functions have an optional thresholds parameter. Currently only increments of 0.1
are allowed. If not specified, the functions will return all possible values. Otherwise, the function
will return the value for the indicated threshold.

Currently, the these functions are only supported by H2OBinomialMetrics objects.

Value

Returns either a single value, or a list of values.

See Also

h2o.auc for AUC, h2o.giniCoef for the GINI coefficient, and h2o.mse for MSE. See h2o.performance
for creating H2OModelMetrics objects.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate$CAPSULE <- as.factor(prostate$CAPSULE)
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.F1(perf)

## End(Not run)



248 h2o.mktime

h2o.min Returns the minima of the input values.

Description

Returns the minima of the input values.

Usage

h2o.min(x, na.rm = FALSE)

Arguments

x An H2OFrame object.

na.rm logical. indicating whether missing values should be removed.

See Also

Extremes for the base R implementation, min().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.min(iris["sepal_len"], na.rm = TRUE)

## End(Not run)

h2o.mktime Compute msec since the Unix Epoch

Description

Compute msec since the Unix Epoch



h2o.modelSelection 249

Usage

h2o.mktime(
year = 1970,
month = 0,
day = 0,
hour = 0,
minute = 0,
second = 0,
msec = 0

)

Arguments

year Defaults to 1970

month zero based (months are 0 to 11)

day zero based (days are 0 to 30)

hour hour

minute minute

second second

msec msec

Examples

## Not run:
library(h2o)
h2o.init()

x = as.h2o(c(2018, 3, 2, 6, 32, 0, 0))
h2o.mktime(x)

## End(Not run)

h2o.modelSelection H2O ModelSelection is used to build the best model with one predic-
tor, two predictors, ... up to max_predictor_number specified in the
algorithm parameters when mode=allsubsets. The best model is the
one with the highest R2 value. When mode=maxr, the model returned
is no longer guaranteed to have the best R2 value.

Description

H2O ModelSelection is used to build the best model with one predictor, two predictors, ... up
to max_predictor_number specified in the algorithm parameters when mode=allsubsets. The best
model is the one with the highest R2 value. When mode=maxr, the model returned is no longer
guaranteed to have the best R2 value.



250 h2o.modelSelection

Usage

h2o.modelSelection(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
seed = -1,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
score_iteration_interval = 0,
offset_column = NULL,
weights_column = NULL,
family = c("AUTO", "gaussian", "binomial", "fractionalbinomial", "quasibinomial",

"poisson", "gamma", "tweedie", "negativebinomial"),
link = c("family_default", "identity", "logit", "log", "inverse", "tweedie",
"ologit"),

tweedie_variance_power = 0,
tweedie_link_power = 0,
theta = 0,
solver = c("AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR"),

alpha = NULL,
lambda = NULL,
lambda_search = FALSE,
early_stopping = FALSE,
nlambdas = 0,
standardize = TRUE,
missing_values_handling = c("MeanImputation", "Skip", "PlugValues"),
plug_values = NULL,
compute_p_values = FALSE,
remove_collinear_columns = FALSE,
intercept = FALSE,
non_negative = FALSE,
max_iterations = 0,
objective_epsilon = 0,
beta_epsilon = 0,
gradient_epsilon = 0,
startval = NULL,
prior = 0,
cold_start = FALSE,
lambda_min_ratio = 0,
beta_constraints = NULL,
max_active_predictors = -1,
obj_reg = 0,



h2o.modelSelection 251

stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0.001,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
max_runtime_secs = 0,
custom_metric_func = NULL,
nparallelism = 0,
max_predictor_number = 1,
min_predictor_number = 1,
mode = c("allsubsets", "maxr", "backward"),
p_values_threshold = 0

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.
model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to

0.
seed Seed for random numbers (affects certain parts of the algo that are stochastic

and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

score_iteration_interval

Perform scoring for every score_iteration_interval iterations Defaults to 0.



252 h2o.modelSelection

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

family Family. For MaxR, only gaussian. For backward, ordinal and multinomial fam-
ilies are not supported Must be one of: "AUTO", "gaussian", "binomial", "frac-
tionalbinomial", "quasibinomial", "poisson", "gamma", "tweedie", "negativebi-
nomial". Defaults to AUTO.

link Link function. Must be one of: "family_default", "identity", "logit", "log", "in-
verse", "tweedie", "ologit". Defaults to family_default.

tweedie_variance_power

Tweedie variance power Defaults to 0.
tweedie_link_power

Tweedie link power Defaults to 0.
theta Theta Defaults to 0.
solver AUTO will set the solver based on given data and the other parameters. IRLSM

is fast on on problems with small number of predictors and for lambda-search
with L1 penalty, L_BFGS scales better for datasets with many columns. Must be
one of: "AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",
"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR".
Defaults to IRLSM.

alpha Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties.
A value of 1 for alpha represents Lasso regression, a value of 0 produces Ridge
regression, and anything in between specifies the amount of mixing between the
two. Default value of alpha is 0 when SOLVER = ’L-BFGS’; 0.5 otherwise.

lambda Regularization strength
lambda_search Logical. Use lambda search starting at lambda max, given lambda is then in-

terpreted as lambda min Defaults to FALSE.
early_stopping Logical. Stop early when there is no more relative improvement on train or

validation (if provided) Defaults to FALSE.
nlambdas Number of lambdas to be used in a search. Default indicates: If alpha is zero,

with lambda search set to True, the value of nlamdas is set to 30 (fewer lambdas
are needed for ridge regression) otherwise it is set to 100. Defaults to 0.

standardize Logical. Standardize numeric columns to have zero mean and unit variance
Defaults to TRUE.

missing_values_handling

Handling of missing values. Either MeanImputation, Skip or PlugValues. Must
be one of: "MeanImputation", "Skip", "PlugValues". Defaults to MeanImputa-
tion.



h2o.modelSelection 253

plug_values Plug Values (a single row frame containing values that will be used to im-
pute missing values of the training/validation frame, use with conjunction miss-
ing_values_handling = PlugValues)

compute_p_values

Logical. Request p-values computation, p-values work only with IRLSM solver
and no regularization Defaults to FALSE.

remove_collinear_columns

Logical. In case of linearly dependent columns, remove some of the dependent
columns Defaults to FALSE.

intercept Logical. Include constant term in the model Defaults to FALSE.

non_negative Logical. Restrict coefficients (not intercept) to be non-negative Defaults to
FALSE.

max_iterations Maximum number of iterations Defaults to 0.
objective_epsilon

Converge if objective value changes less than this. Default indicates: If lambda_search
is set to True the value of objective_epsilon is set to .0001. If the lambda_search
is set to False and lambda is equal to zero, the value of objective_epsilon is set
to .000001, for any other value of lambda the default value of objective_epsilon
is set to .0001. Defaults to 0.

beta_epsilon Converge if beta changes less (using L-infinity norm) than beta esilon, ONLY
applies to IRLSM solver Defaults to 0.

gradient_epsilon

Converge if objective changes less (using L-infinity norm) than this, ONLY ap-
plies to L-BFGS solver. Default indicates: If lambda_search is set to False
and lambda is equal to zero, the default value of gradient_epsilon is equal to
.000001, otherwise the default value is .0001. If lambda_search is set to True,
the conditional values above are 1E-8 and 1E-6 respectively. Defaults to 0.

startval double array to initialize fixed and random coefficients for HGLM, coefficients
for GLM.

prior Prior probability for y==1. To be used only for logistic regression iff the data
has been sampled and the mean of response does not reflect reality. Defaults to
0.

cold_start Logical. Only applicable to multiple alpha/lambda values. If false, build the
next model for next set of alpha/lambda values starting from the values pro-
vided by current model. If true will start GLM model from scratch. Defaults to
FALSE.

lambda_min_ratio

Minimum lambda used in lambda search, specified as a ratio of lambda_max
(the smallest lambda that drives all coefficients to zero). Default indicates:
if the number of observations is greater than the number of variables, then
lambda_min_ratio is set to 0.0001; if the number of observations is less than
the number of variables, then lambda_min_ratio is set to 0.01. Defaults to 0.

beta_constraints

Beta constraints



254 h2o.modelSelection

max_active_predictors

Maximum number of active predictors during computation. Use as a stopping
criterion to prevent expensive model building with many predictors. Default
indicates: If the IRLSM solver is used, the value of max_active_predictors is set
to 5000 otherwise it is set to 100000000. Defaults to -1.

obj_reg Likelihood divider in objective value computation, default is 1/nobs Defaults to
0.

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

custom_metric_func

Reference to custom evaluation function, format: ‘language:keyName=funcName‘
nparallelism number of models to build in parallel. Defaults to 0.0 which is adaptive to the

system capability Defaults to 0.
max_predictor_number

Maximum number of predictors to be considered when building GLM models.
Defaults to 1. Defaults to 1.

min_predictor_number

For mode = ’backward’ only. Minimum number of predictors to be considered
when building GLM models starting with all predictors to be included. Defaults
to 1. Defaults to 1.

mode Mode: Used to choose model selection algorithms to use. Options include ’all-
subsets’ for all subsets, ’maxr’ for MaxR, ’backward’ for backward selection
Must be one of: "allsubsets", "maxr", "backward". Defaults to maxr.



h2o.model_correlation 255

p_values_threshold

For mode=’backward’ only. If specified, will stop the model building process
when all coefficientsp-values drop below this threshold Defaults to 0.

Examples

## Not run:
library(h2o)
h2o.init()
# Run ModelSelection of VOL ~ all predictors
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
model <- h2o.modelSelection(y="VOL", x=c("RACE","AGE","RACE","DPROS"), training_frame=prostate)

## End(Not run)

h2o.model_correlation Model Prediction Correlation

Description

Get a data.frame containing the correlation between the predictions of the models. For classification,
frequency of identical predictions is used. By default, models are ordered by their similarity (as
computed by hierarchical clustering).

Usage

h2o.model_correlation(object, newdata, top_n = 20, cluster_models = TRUE)

Arguments

object A list of H2O models, an H2O AutoML instance, or an H2OFrame with a
’model_id’ column (e.g. H2OAutoML leaderboard)..

newdata An H2O Frame. Predictions from the models will be generated using this frame,
so this should be a holdout set.

top_n (DEPRECATED) Integer specifying the number models shown in the heatmap
(used only with an AutoML object, and based on the leaderboard ranking. De-
faults to 20.

cluster_models Logical. Order models based on their similarity. Defaults to TRUE.

Value

A data.frame containing variable importance.



256 h2o.model_correlation_heatmap

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
aml <- h2o.automl(y = response,

training_frame = train,
max_models = 10,
seed = 1)

# Create the model correlation
model_correlation <- h2o.model_correlation(aml, test)
print(model_correlation)

## End(Not run)

h2o.model_correlation_heatmap

Model Prediction Correlation Heatmap

Description

This plot shows the correlation between the predictions of the models. For classification, frequency
of identical predictions is used. By default, models are ordered by their similarity (as computed by
hierarchical clustering).

Usage

h2o.model_correlation_heatmap(
object,
newdata,
top_n = 20,
cluster_models = TRUE,
triangular = TRUE

)



h2o.model_correlation_heatmap 257

Arguments

object A list of H2O models, an H2O AutoML instance, or an H2OFrame with a
’model_id’ column (e.g. H2OAutoML leaderboard).

newdata An H2O Frame. Predictions from the models will be generated using this frame,
so this should be a holdout set.

top_n Integer specifying the number models shown in the heatmap (used only with an
AutoML object, and based on the leaderboard ranking. Defaults to 20.

cluster_models Logical. Order models based on their similarity. Defaults to TRUE.

triangular Print just the lower triangular part of correlation matrix. Defaults to TRUE.

Value

A ggplot2 object.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
aml <- h2o.automl(y = response,

training_frame = train,
max_models = 10,
seed = 1)

# Create the model correlation heatmap
model_correlation_heatmap <- h2o.model_correlation_heatmap(aml, test)
print(model_correlation_heatmap)

## End(Not run)



258 h2o.mojo_predict_csv

h2o.mojo_predict_csv H2O Prediction from R without having H2O running

Description

Provides the method h2o.mojo_predict_csv with which you can predict a MOJO model from R.

Usage

h2o.mojo_predict_csv(
input_csv_path,
mojo_zip_path,
output_csv_path = NULL,
genmodel_jar_path = NULL,
classpath = NULL,
java_options = NULL,
verbose = F,
setInvNumNA = F

)

Arguments

input_csv_path Path to input CSV file.

mojo_zip_path Path to MOJO zip downloaded from H2O.
output_csv_path

Optional, path to the output CSV file with computed predictions. If NULL
(default), then predictions will be saved as prediction.csv in the same folder as
the MOJO zip.

genmodel_jar_path

Optional, path to genmodel jar file. If NULL (default) then the h2o-genmodel.jar
in the same folder as the MOJO zip will be used.

classpath Optional, specifies custom user defined classpath which will be used when scor-
ing. If NULL (default) then the default classpath for this MOJO model will be
used.

java_options Optional, custom user defined options for Java. By default ’-Xmx4g -XX:ReservedCodeCacheSize=256m’
is used.

verbose Optional, if TRUE, then additional debug information will be printed. FALSE
by default.

setInvNumNA Optional, if TRUE, then then for an string that cannot be parsed into a number an
N/A value will be produced, if false the command will fail. FALSE by default.

Value

Returns a data.frame containing computed predictions



h2o.mojo_predict_df 259

h2o.mojo_predict_df H2O Prediction from R without having H2O running

Description

Provides the method h2o.mojo_predict_df with which you can predict a MOJO model from R.

Usage

h2o.mojo_predict_df(
frame,
mojo_zip_path,
genmodel_jar_path = NULL,
classpath = NULL,
java_options = NULL,
verbose = F,
setInvNumNA = F

)

Arguments

frame data.frame to score.

mojo_zip_path Path to MOJO zip downloaded from H2O.

genmodel_jar_path

Optional, path to genmodel jar file. If NULL (default) then the h2o-genmodel.jar
in the same folder as the MOJO zip will be used.

classpath Optional, specifies custom user defined classpath which will be used when scor-
ing. If NULL (default) then the default classpath for this MOJO model will be
used.

java_options Optional, custom user defined options for Java. By default ’-Xmx4g -XX:ReservedCodeCacheSize=256m’
is used.

verbose Optional, if TRUE, then additional debug information will be printed. FALSE
by default.

setInvNumNA Optional, if TRUE, then then for an string that cannot be parsed into a number an
N/A value will be produced, if false the command will fail. FALSE by default.

Value

Returns a data.frame containing computed predictions



260 h2o.mse

h2o.month Convert Milliseconds to Months in H2O Datasets

Description

Converts the entries of an H2OFrame object from milliseconds to months (on a 1 to 12 scale).

Usage

h2o.month(x)

month(x)

## S3 method for class 'H2OFrame'
month(x)

Arguments

x An H2OFrame object.

Value

An H2OFrame object containing the entries of x converted to months of the year.

See Also

h2o.year

h2o.mse Retrieves Mean Squared Error Value

Description

Retrieves the mean squared error value from an H2OModelMetrics object. If "train", "valid", and
"xval" parameters are FALSE (default), then the training MSEvalue is returned. If more than one
parameter is set to TRUE, then a named vector of MSEs are returned, where the names are "train",
"valid" or "xval".

Usage

h2o.mse(object, train = FALSE, valid = FALSE, xval = FALSE)



h2o.multinomial_aucpr_table 261

Arguments

object An H2OModelMetrics object of the correct type.

train Retrieve the training MSE

valid Retrieve the validation MSE

xval Retrieve the cross-validation MSE

Details

This function only supports H2OBinomialMetrics, H2OMultinomialMetrics, and H2ORegressionMetrics
objects.

See Also

h2o.auc for AUC, h2o.mse for MSE, and h2o.metric for the various threshold metrics. See
h2o.performance for creating H2OModelMetrics objects.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.mse(perf)

## End(Not run)

h2o.multinomial_aucpr_table

Retrieve the all PR AUC values in a table (One to Rest, One to One,
macro and weighted average) for mutlinomial classification.

Description

Retrieves the PR AUC table from an H2OMultinomialMetrics. If "train", "valid", and "xval" param-
eters are FALSE (default), then the training PR AUC table is returned. If more than one parameter
is set to TRUE, then a named vector of PR AUC tables are returned, where the names are "train",
"valid" or "xval".

Usage

h2o.multinomial_aucpr_table(object, train = FALSE, valid = FALSE, xval = FALSE)



262 h2o.multinomial_auc_table

Arguments

object An H2OMultinomialMetrics object.
train Retrieve the training PR AUC table
valid Retrieve the validation PR AUC table
xval Retrieve the cross-validation PR AUC table

See Also

h2o.giniCoef for the Gini coefficient, h2o.mse for MSE, and h2o.metric for the various thresh-
old metrics. See h2o.performance for creating H2OModelMetrics objects.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.multinomial_aucpr_table(perf)

## End(Not run)

h2o.multinomial_auc_table

Retrieve the all AUC values in a table (One to Rest, One to One, macro
and weighted average) for mutlinomial classification.

Description

Retrieves the AUC table from an H2OMultinomialMetrics. If "train", "valid", and "xval" parameters
are FALSE (default), then the training AUC table is returned. If more than one parameter is set to
TRUE, then a named vector of AUC tables are returned, where the names are "train", "valid" or
"xval".

Usage

h2o.multinomial_auc_table(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OMultinomialMetrics object.
train Retrieve the training AUC table
valid Retrieve the validation AUC table
xval Retrieve the cross-validation AUC table



h2o.nacnt 263

See Also

h2o.giniCoef for the Gini coefficient, h2o.mse for MSE, and h2o.metric for the various thresh-
old metrics. See h2o.performance for creating H2OModelMetrics objects.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.multinomial_auc_table(perf)

## End(Not run)

h2o.nacnt Count of NAs per column

Description

Gives the count of NAs per column.

Usage

h2o.nacnt(x)

Arguments

x An H2OFrame object.

Value

Returns a list containing the count of NAs per column

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
h2o.nacnt(iris_hf) # should return all 0s
h2o.insertMissingValues(iris_hf)
h2o.nacnt(iris_hf)



264 h2o.naiveBayes

## End(Not run)

h2o.naiveBayes Compute naive Bayes probabilities on an H2O dataset.

Description

The naive Bayes classifier assumes independence between predictor variables conditional on the
response, and a Gaussian distribution of numeric predictors with mean and standard deviation com-
puted from the training dataset. When building a naive Bayes classifier, every row in the training
dataset that contains at least one NA will be skipped completely. If the test dataset has missing
values, then those predictors are omitted in the probability calculation during prediction.

Usage

h2o.naiveBayes(
x,
y,
training_frame,
model_id = NULL,
nfolds = 0,
seed = -1,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
validation_frame = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
laplace = 0,
threshold = 0.001,
min_sdev = 0.001,
eps = 0,
eps_sdev = 0,
min_prob = 0.001,
eps_prob = 0,
compute_metrics = TRUE,
max_runtime_secs = 0,
export_checkpoints_dir = NULL,
gainslift_bins = -1,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO")

)



h2o.naiveBayes 265

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.

nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to
0.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

validation_frame

Id of the validation data frame.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.



266 h2o.names

laplace Laplace smoothing parameter Defaults to 0.

threshold This argument is deprecated, use ‘min_sdev‘ instead. The minimum standard
deviation to use for observations without enough data. Must be at least 1e-10.

min_sdev The minimum standard deviation to use for observations without enough data.
Must be at least 1e-10.

eps This argument is deprecated, use ‘eps_sdev‘ instead. A threshold cutoff to deal
with numeric instability, must be positive.

eps_sdev A threshold cutoff to deal with numeric instability, must be positive.

min_prob Min. probability to use for observations with not enough data.

eps_prob Cutoff below which probability is replaced with min_prob.
compute_metrics

Logical. Compute metrics on training data Defaults to TRUE.
max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

export_checkpoints_dir

Automatically export generated models to this directory.

gainslift_bins Gains/Lift table number of bins. 0 means disabled.. Default value -1 means
automatic binning. Defaults to -1.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

Value

an object of class H2OBinomialModel if the response has two categorical levels, and H2OMultinomialModel
otherwise.

Examples

## Not run:
h2o.init()
votes_path <- system.file("extdata", "housevotes.csv", package = "h2o")
votes <- h2o.uploadFile(path = votes_path, header = TRUE)
h2o.naiveBayes(x = 2:17, y = 1, training_frame = votes, laplace = 3)

## End(Not run)

h2o.names Column names of an H2OFrame

Description

Column names of an H2OFrame



h2o.na_omit 267

Usage

h2o.names(x)

Arguments

x An H2OFrame object.

See Also

names for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.names(iris)

## End(Not run)

h2o.na_omit Remove Rows With NAs

Description

Remove Rows With NAs

Usage

h2o.na_omit(object, ...)

Arguments

object H2OFrame object

... Ignored

Value

Returns an H2OFrame object containing non-NA rows.



268 h2o.nchar

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.na_omit(frame)

## End(Not run)

h2o.nchar String length

Description

String length

Usage

h2o.nchar(x)

Arguments

x The column whose string lengths will be returned.

Examples

## Not run:
library(h2o)
h2o.init()
string_to_nchar <- as.h2o("r tutorial")
nchar_string <- h2o.nchar(string_to_nchar)

## End(Not run)



h2o.ncol 269

h2o.ncol Return the number of columns present in x.

Description

Return the number of columns present in x.

Usage

h2o.ncol(x)

Arguments

x An H2OFrame object.

See Also

nrow for the base R implementation, ncol().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.ncol(iris)

## End(Not run)

h2o.networkTest View Network Traffic Speed

Description

View speed with various file sizes.

Usage

h2o.networkTest()

Value

Returns a table listing the network speed for 1B, 10KB, and 10MB.



270 h2o.no_progress

h2o.nlevels Get the number of factor levels for this frame.

Description

Get the number of factor levels for this frame.

Usage

h2o.nlevels(x)

Arguments

x An H2OFrame object.

See Also

nlevels for the base R method.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
h2o.nlevels(cars)

## End(Not run)

h2o.no_progress Disable Progress Bar

Description

Disable Progress Bar

Usage

h2o.no_progress()



h2o.nrow 271

Examples

## Not run:
library(h2o)
h2o.init()
h2o.no_progress()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv"
iris <- h2o.importFile(f)
iris["class"] <- as.factor(iris["class"])
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
splits <- h2o.splitFrame(iris, ratios = 0.8, seed = 1234)
train <- splits[[1]]
valid <- splits[[2]]

iris_km <- h2o.kmeans(x = predictors,
training_frame = train,
validation_frame = valid,
k = 10, estimate_k = TRUE,
standardize = FALSE, seed = 1234)

## End(Not run)

h2o.nrow Return the number of rows present in x.

Description

Return the number of rows present in x.

Usage

h2o.nrow(x)

Arguments

x An H2OFrame object.

See Also

nrow for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)



272 h2o.null_deviance

h2o.nrow(cars)

## End(Not run)

h2o.null_deviance Retrieve the null deviance

Description

If "train", "valid", and "xval" parameters are FALSE (default), then the training null deviance value
is returned. If more than one parameter is set to TRUE, then a named vector of null deviances are
returned, where the names are "train", "valid" or "xval".

Usage

h2o.null_deviance(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel or H2OModelMetrics

train Retrieve the training null deviance

valid Retrieve the validation null deviance

xval Retrieve the cross-validation null deviance

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),

training_frame = prostate, family = "binomial", nfolds = 0,
alpha = 0.5, lambda_search = FALSE)

h2o.null_deviance(prostate_glm, train = TRUE)

## End(Not run)



h2o.null_dof 273

h2o.null_dof Retrieve the null degrees of freedom

Description

If "train", "valid", and "xval" parameters are FALSE (default), then the training null degrees of
freedom value is returned. If more than one parameter is set to TRUE, then a named vector of null
degrees of freedom are returned, where the names are "train", "valid" or "xval".

Usage

h2o.null_dof(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel or H2OModelMetrics

train Retrieve the training null degrees of freedom

valid Retrieve the validation null degrees of freedom

xval Retrieve the cross-validation null degrees of freedom

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),

training_frame = prostate, family = "binomial", nfolds = 0,
alpha = 0.5, lambda_search = FALSE)

h2o.null_dof(prostate_glm, train = TRUE)

## End(Not run)

h2o.num_iterations Retrieve the number of iterations.

Description

Retrieve the number of iterations.

Usage

h2o.num_iterations(object)



274 h2o.num_valid_substrings

Arguments

object An H2OClusteringModel object.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),

training_frame = prostate, family = "binomial",
nfolds = 0, alpha = 0.5, lambda_search = FALSE)

h2o.num_iterations(prostate_glm)

## End(Not run)

h2o.num_valid_substrings

Count of substrings >= 2 chars that are contained in file

Description

Find the count of all possible substrings >= 2 chars that are contained in the specified line-separated
text file.

Usage

h2o.num_valid_substrings(x, path)

Arguments

x The column on which to calculate the number of valid substrings.

path Path to text file containing line-separated strings to be referenced.



h2o.openLog 275

h2o.openLog View H2O R Logs

Description

Open existing logs of H2O R POST commands and error resposnes on local disk. Used primarily
for debugging purposes.

Usage

h2o.openLog(type)

Arguments

type Currently unimplemented.

See Also

h2o.startLogging,h2o.stopLogging,h2o.clearLog

Examples

## Not run:
h2o.init()

h2o.startLogging()
australia_path = system.file("extdata", "australia.csv", package = "h2o")
australia = h2o.importFile(path = australia_path)
h2o.stopLogging()

# Not run to avoid windows being opened during R CMD check
# h2o.openLog("Command")
# h2o.openLog("Error")

## End(Not run)

h2o.parseRaw H2O Data Parsing

Description

The second phase in the data ingestion step.



276 h2o.parseRaw

Usage

h2o.parseRaw(
data,
pattern = "",
destination_frame = "",
header = NA,
sep = "",
col.names = NULL,
col.types = NULL,
na.strings = NULL,
blocking = FALSE,
parse_type = NULL,
chunk_size = NULL,
decrypt_tool = NULL,
skipped_columns = NULL,
custom_non_data_line_markers = NULL,
partition_by = NULL,
quotechar = NULL,
escapechar = ""

)

Arguments

data An H2OFrame object to be parsed.

pattern (Optional) Character string containing a regular expression to match file(s) in
the folder.

destination_frame

(Optional) The hex key assigned to the parsed file.

header (Optional) A logical value indicating whether the first row is the column header.
If missing, H2O will automatically try to detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) An H2OFrame object containing a single delimited line with the col-
umn names for the file. If skipped_columns are specified, only list column
names of columns that are not skipped.

col.types (Optional) A vector specifying the types to attempt to force over columns. If
skipped_columns are specified, only list column types of columns that are not
skipped.

na.strings (Optional) H2O will interpret these strings as missing.

blocking (Optional) Tell H2O parse call to block synchronously instead of polling. This
can be faster for small datasets but loses the progress bar.

parse_type (Optional) Specify which parser type H2O will use. Valid types are "ARFF",
"XLS", "CSV", "SVMLight"

chunk_size size of chunk of (input) data in bytes



h2o.parseSetup 277

decrypt_tool (Optional) Specify a Decryption Tool (key-reference acquired by calling h2o.decryptionSetup.
skipped_columns

a list of column indices to be excluded from parsing
custom_non_data_line_markers

(Optional) If a line in imported file starts with any character in given string it
will NOT be imported. Empty string means all lines are imported, NULL means
that default behaviour for given format will be used

partition_by (Optional) Names of the columns the persisted dataset has been partitioned by.

quotechar A hint for the parser which character to expect as quoting character. None (de-
fault) means autodetection.

escapechar (Optional) One ASCII character used to escape other characters.

Details

Parse the Raw Data produced by the import phase.

See Also

h2o.importFile, h2o.parseSetup

h2o.parseSetup Get a parse setup back for the staged data.

Description

Get a parse setup back for the staged data.

Usage

h2o.parseSetup(
data,
pattern = "",
destination_frame = "",
header = NA,
sep = "",
col.names = NULL,
col.types = NULL,
na.strings = NULL,
parse_type = NULL,
chunk_size = NULL,
decrypt_tool = NULL,
skipped_columns = NULL,
custom_non_data_line_markers = NULL,
partition_by = NULL,
single_quotes = FALSE,
escapechar = ""

)



278 h2o.parseSetup

Arguments

data An H2OFrame object to be parsed.

pattern (Optional) Character string containing a regular expression to match file(s) in
the folder.

destination_frame

(Optional) The hex key assigned to the parsed file.

header (Optional) A logical value indicating whether the first row is the column header.
If missing, H2O will automatically try to detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) An H2OFrame object containing a single delimited line with the col-
umn names for the file. If skipped_columns are specified, only list column
names of columns that are not skipped.

col.types (Optional) A vector specifying the types to attempt to force over columns. If
skipped_columns are specified, only list column types of columns that are not
skipped.

na.strings (Optional) H2O will interpret these strings as missing.

parse_type (Optional) Specify which parser type H2O will use. Valid types are "ARFF",
"XLS", "CSV", "SVMLight"

chunk_size size of chunk of (input) data in bytes

decrypt_tool (Optional) Specify a Decryption Tool (key-reference acquired by calling h2o.decryptionSetup.

skipped_columns

a list of column indices to be excluded from parsing

custom_non_data_line_markers

(Optional) If a line in imported file starts with any character in given string it
will NOT be imported. Empty string means all lines are imported, NULL means
that default behaviour for given format will be used

partition_by (Optional) Names of the columns the persisted dataset has been partitioned by.

single_quotes If set to true, the parser expects single quotes. False for double quotes (default).

escapechar (Optional) One ASCII character used to escape other characters.

See Also

h2o.parseRaw



h2o.partialPlot 279

h2o.partialPlot Partial Dependence Plots

Description

Partial dependence plot gives a graphical depiction of the marginal effect of a variable on the re-
sponse. The effect of a variable is measured in change in the mean response. Note: Unlike random-
Forest’s partialPlot when plotting partial dependence the mean response (probabilities) is returned
rather than the mean of the log class probability.

Usage

h2o.partialPlot(
object,
data,
cols,
destination_key,
nbins = 20,
plot = TRUE,
plot_stddev = TRUE,
weight_column = -1,
include_na = FALSE,
user_splits = NULL,
col_pairs_2dpdp = NULL,
save_to = NULL,
row_index = -1,
targets = NULL

)

Arguments

object An H2OModel object.

data An H2OFrame object used for scoring and constructing the plot.

cols Feature(s) for which partial dependence will be calculated.
destination_key

An key reference to the created partial dependence tables in H2O.

nbins Number of bins used. For categorical columns make sure the number of bins
exceeds the level count. If you enable add_missing_NA, the returned length
will be nbin+1.

plot A logical specifying whether to plot partial dependence table.

plot_stddev A logical specifying whether to add std err to partial dependence plot.

weight_column A string denoting which column of data should be used as the weight column.

include_na A logical specifying whether missing value should be included in the Feature
values.



280 h2o.partialPlot

user_splits A two-level nested list containing user defined split points for pdp plots for each
column. If there are two columns using user defined split points, there should be
two lists in the nested list. Inside each list, the first element is the column name
followed by values defined by the user.

col_pairs_2dpdp

A two-level nested list like this: col_pairs_2dpdp = list(c("col1_name", "col2_name"),
c("col1_name","col3_name"), ...,) where a 2D partial plots will be generated for
col1_name, col2_name pair, for col1_name, col3_name pair and whatever other
pairs that are specified in the nested list.

save_to Fully qualified prefix of the image files the resulting plots should be saved to,
e.g. ’/home/user/pdp’. Plots for each feature are saved separately in PNG for-
mat, each file receives a suffix equal to the corresponding feature name, e.g.
‘/home/user/pdp_AGE.png‘. If the files already exists, they will be overridden.
Files are only saves if plot = TRUE (default).

row_index Row for which partial dependence will be calculated instead of the whole input
frame.

targets Target classes for multinomial model.

Value

Plot and list of calculated mean response tables for each feature requested.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate[, "CAPSULE"] <- as.factor(prostate[, "CAPSULE"] )
prostate[, "RACE"] <- as.factor(prostate[, "RACE"] )
prostate_gbm <- h2o.gbm(x = c("AGE", "RACE"),

y = "CAPSULE",
training_frame = prostate,
ntrees = 10,
max_depth = 5,
learn_rate = 0.1)

h2o.partialPlot(object = prostate_gbm, data = prostate, cols = c("AGE", "RACE"))

iris_hex <- as.h2o(iris)
iris_gbm <- h2o.gbm(x = c(1:4), y = 5, training_frame = iris_hex)

# one target class
h2o.partialPlot(object = iris_gbm, data = iris_hex, cols="Petal.Length", targets=c("setosa"))
# three target classes
h2o.partialPlot(object = iris_gbm, data = iris_hex, cols="Petal.Length",

targets=c("setosa", "virginica", "versicolor"))

## End(Not run)



h2o.pd_multi_plot 281

h2o.pd_multi_plot Plot partial dependencies for a variable across multiple models

Description

Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on
the response. The effect of a variable is measured in change in the mean response. PDP assumes
independence between the feature for which is the PDP computed and the rest.

Usage

h2o.pd_multi_plot(
object,
newdata,
column,
best_of_family = TRUE,
target = NULL,
row_index = NULL,
max_levels = 30

)

Arguments

object Either a list of H2O models/model_ids or an H2OAutoML object.

newdata An H2OFrame.

column A feature column name to inspect. Character string.

best_of_family If TRUE, plot only the best model of each algorithm family; if FALSE, plot all
models. Defaults to TRUE.

target If multinomial, plot PDP just for target category.

row_index Optional. Calculate Individual Conditional Expectation (ICE) for row, row_index.
Integer.

max_levels An integer specifying the maximum number of factor levels to show. Defaults
to 30.

Value

A ggplot2 object

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"



282 h2o.pd_plot

df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
aml <- h2o.automl(y = response,

training_frame = train,
max_models = 10,
seed = 1)

# Create the partial dependence plot
pdp <- h2o.pd_multi_plot(aml, test, column = "alcohol")
print(pdp)

## End(Not run)

h2o.pd_plot Plot partial dependence for a variable

Description

Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on
the response. The effect of a variable is measured in change in the mean response. PDP assumes
independence between the feature for which is the PDP computed and the rest.

Usage

h2o.pd_plot(
object,
newdata,
column,
target = NULL,
row_index = NULL,
max_levels = 30

)

Arguments

object An H2O model.

newdata An H2OFrame. Used to generate predictions used in Partial Dependence calcu-
lations.

column A feature column name to inspect. Character string.



h2o.performance 283

target If multinomial, plot PDP just for target category. Character string.

row_index Optional. Calculate Individual Conditional Expectation (ICE) for row, row_index.
Integer.

max_levels An integer specifying the maximum number of factor levels to show. Defaults
to 30.

Value

A ggplot2 object

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
gbm <- h2o.gbm(y = response,

training_frame = train)

# Create the partial dependence plot
pdp <- h2o.pd_plot(gbm, test, column = "alcohol")
print(pdp)

## End(Not run)

h2o.performance Model Performance Metrics in H2O

Description

Given a trained h2o model, compute its performance on the given dataset. However, if the dataset
does not contain the response/target column, no performance will be returned. Instead, a warning
message will be printed.



284 h2o.performance

Usage

h2o.performance(
model,
newdata = NULL,
train = FALSE,
valid = FALSE,
xval = FALSE,
data = NULL,
auc_type = "NONE"

)

Arguments

model An H2OModel object

newdata An H2OFrame. The model will make predictions on this dataset, and subse-
quently score them. The dataset should match the dataset that was used to train
the model, in terms of column names, types, and dimensions. If newdata is
passed in, then train, valid, and xval are ignored.

train A logical value indicating whether to return the training metrics (constructed
during training).
Note: when the trained h2o model uses balance_classes, the training metrics
constructed during training will be from the balanced training dataset. For more
information visit: https://0xdata.atlassian.net/browse/TN-9

valid A logical value indicating whether to return the validation metrics (constructed
during training).

xval A logical value indicating whether to return the cross-validation metrics (con-
structed during training).

data (DEPRECATED) An H2OFrame. This argument is now called ‘newdata‘.

auc_type For multinomila model only. Set default multinomial AUC type. Must be one of:
"AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO". Default is "NONE"

Value

Returns an object of the H2OModelMetrics subclass.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
prostate_gbm <- h2o.gbm(3:9, "CAPSULE", prostate)
h2o.performance(model = prostate_gbm, newdata=prostate)

https://0xdata.atlassian.net/browse/TN-9


h2o.permutation_importance 285

## If model uses balance_classes
## the results from train = TRUE will not match the results from newdata = prostate
prostate_gbm_balanced <- h2o.gbm(3:9, "CAPSULE", prostate, balance_classes = TRUE)
h2o.performance(model = prostate_gbm_balanced, newdata = prostate)
h2o.performance(model = prostate_gbm_balanced, train = TRUE)

## End(Not run)

h2o.permutation_importance

Calculate Permutation Feature Importance.

Description

When n_repeats == 1, the result is similar to the one from h2o.varimp(), i.e., it contains the follow-
ing columns "Relative Importance", "Scaled Importance", and "Percentage".

Usage

h2o.permutation_importance(
object,
newdata,
metric = c("AUTO", "AUC", "MAE", "MSE", "RMSE", "logloss", "mean_per_class_error",

"PR_AUC"),
n_samples = 10000,
n_repeats = 1,
features = NULL,
seed = -1

)

Arguments

object A trained supervised H2O model.

newdata Training frame of the model which is going to be permuted

metric Metric to be used. One of "AUTO", "AUC", "MAE", "MSE", "RMSE", "logloss",
"mean_per_class_error", "PR_AUC". Defaults to "AUTO".

n_samples Number of samples to be evaluated. Use -1 to use the whole dataset. Defaults
to 10 000.

n_repeats Number of repeated evaluations. Defaults to 1.

features Character vector of features to include in the permutation importance. Use
NULL to include all.

seed Seed for the random generator. Use -1 to pick a random seed. Defaults to -1.



286 h2o.permutation_importance_plot

Details

When n_repeats > 1, the individual columns correspond to the permutation variable importance
values from individual runs which corresponds to the "Relative Importance" and also to the dis-
tance between the original prediction error and prediction error using a frame with a given feature
permuted.

Value

H2OTable with variable importance.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
h2o.permutation_importance(model, prostate)

## End(Not run)

h2o.permutation_importance_plot

Plot Permutation Variable Importances.

Description

This method plots either a bar plot or if n_repeats > 1 a box plot and returns the variable importance
table.

Usage

h2o.permutation_importance_plot(
object,
newdata,
metric = c("AUTO", "AUC", "MAE", "MSE", "RMSE", "logloss", "mean_per_class_error",

"PR_AUC"),
n_samples = 10000,
n_repeats = 1,
features = NULL,
seed = -1,
num_of_features = NULL

)



h2o.pivot 287

Arguments

object A trained supervised H2O model.

newdata Training frame of the model which is going to be permuted

metric Metric to be used. One of "AUTO", "AUC", "MAE", "MSE", "RMSE", "logloss",
"mean_per_class_error", "PR_AUC". Defaults to "AUTO".

n_samples Number of samples to be evaluated. Use -1 to use the whole dataset. Defaults
to 10 000.

n_repeats Number of repeated evaluations. Defaults to 1.

features Character vector of features to include in the permutation importance. Use
NULL to include all.

seed Seed for the random generator. Use -1 to pick a random seed. Defaults to -1.
num_of_features

The number of features shown in the plot (default is 10 or all if less than 10).

Value

H2OTable with variable importance.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
h2o.permutation_importance_plot(model, prostate)

## End(Not run)

h2o.pivot Pivot a frame

Description

Pivot the frame designated by the three columns: index, column, and value. Index and column
should be of type enum, int, or time. For cases of multiple indexes for a column label, the aggrega-
tion method is to pick the first occurrence in the data frame

Usage

h2o.pivot(x, index, column, value)



288 h2o.prcomp

Arguments

x an H2OFrame

index the column where pivoted rows should be aligned on

column the column to pivot

value values of the pivoted table

Value

An H2OFrame with columns from the columns arg, aligned on the index arg, with values from
values arg

Examples

## Not run:
library(h2o)
h2o.init()

df = h2o.createFrame(rows = 1000, cols = 3, factors = 10, integer_fraction = 1.0/3,
categorical_fraction = 1.0/3, missing_fraction = 0.0, seed = 123)

df$C3 = h2o.abs(df$C3)
h2o.pivot(df, index="C3", column="C2", value="C1")

## End(Not run)

h2o.prcomp Principal component analysis of an H2O data frame

Description

Principal components analysis of an H2O data frame using the power method to calculate the sin-
gular value decomposition of the Gram matrix.

Usage

h2o.prcomp(
training_frame,
x,
model_id = NULL,
validation_frame = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"),
pca_method = c("GramSVD", "Power", "Randomized", "GLRM"),
pca_impl = c("MTJ_EVD_DENSEMATRIX", "MTJ_EVD_SYMMMATRIX", "MTJ_SVD_DENSEMATRIX",

"JAMA"),
k = 1,
max_iterations = 1000,



h2o.prcomp 289

use_all_factor_levels = FALSE,
compute_metrics = TRUE,
impute_missing = FALSE,
seed = -1,
max_runtime_secs = 0,
export_checkpoints_dir = NULL

)

Arguments

training_frame Id of the training data frame.

x A vector containing the character names of the predictors in the model.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

transform Transformation of training data Must be one of: "NONE", "STANDARDIZE",
"NORMALIZE", "DEMEAN", "DESCALE". Defaults to NONE.

pca_method Specify the algorithm to use for computing the principal components: GramSVD
- uses a distributed computation of the Gram matrix, followed by a local SVD;
Power - computes the SVD using the power iteration method (experimental);
Randomized - uses randomized subspace iteration method; GLRM - fits a gener-
alized low-rank model with L2 loss function and no regularization and solves for
the SVD using local matrix algebra (experimental) Must be one of: "GramSVD",
"Power", "Randomized", "GLRM". Defaults to GramSVD.

pca_impl Specify the implementation to use for computing PCA (via SVD or EVD):
MTJ_EVD_DENSEMATRIX - eigenvalue decompositions for dense matrix us-
ing MTJ; MTJ_EVD_SYMMMATRIX - eigenvalue decompositions for sym-
metric matrix using MTJ; MTJ_SVD_DENSEMATRIX - singular-value decom-
positions for dense matrix using MTJ; JAMA - eigenvalue decompositions for
dense matrix using JAMA. References: JAMA - http://math.nist.gov/javanumerics/jama/;
MTJ - https://github.com/fommil/matrix-toolkits-java/ Must be one of: "MTJ_EVD_DENSEMATRIX",
"MTJ_EVD_SYMMMATRIX", "MTJ_SVD_DENSEMATRIX", "JAMA".

k Rank of matrix approximation Defaults to 1.

max_iterations Maximum training iterations Defaults to 1000.
use_all_factor_levels

Logical. Whether first factor level is included in each categorical expansion
Defaults to FALSE.

compute_metrics

Logical. Whether to compute metrics on the training data Defaults to TRUE.

impute_missing Logical. Whether to impute missing entries with the column mean Defaults to
FALSE.



290 h2o.predict

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

export_checkpoints_dir

Automatically export generated models to this directory.

Value

an object of class H2ODimReductionModel.

References

N. Halko, P.G. Martinsson, J.A. Tropp. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions[http://arxiv.org/abs/0909.4061]. SIAM Rev.,
Survey and Review section, Vol. 53, num. 2, pp. 217-288, June 2011.

See Also

h2o.svd, h2o.glrm

Examples

## Not run:
library(h2o)
h2o.init()
australia_path <- system.file("extdata", "australia.csv", package = "h2o")
australia <- h2o.uploadFile(path = australia_path)
h2o.prcomp(training_frame = australia, k = 8, transform = "STANDARDIZE")

## End(Not run)

h2o.predict Predict on an H2O Model

Description

Predict on an H2O Model

Usage

h2o.predict(object, newdata, ...)



h2o.predict_json 291

Arguments

object a fitted model object for which prediction is desired.

newdata An H2OFrame object in which to look for variables with which to predict.

... additional arguments to pass on.

Value

Returns an H2OFrame object with probabilites and default predictions.

h2o.predict_json H2O Prediction from R without having H2O running

Description

Provides the method h2o.predict with which you can predict a MOJO or POJO Jar model from R.

Usage

h2o.predict_json(model, json, genmodelpath, labels, classpath, javaoptions)

Arguments

model String with file name of MOJO or POJO Jar

json JSON String with inputs to model

genmodelpath (Optional) path name to h2o-genmodel.jar, if not set defaults to same dir as
MOJO

labels (Optional) if TRUE then show output labels in result

classpath (Optional) Extra items for the class path of where to look for Java classes, e.g.,
h2o-genmodel.jar

javaoptions (Optional) Java options string, default if "-Xmx4g"

Value

Returns an object with the prediction result

Examples

## Not run:
library(h2o)
h2o.predict_json('~/GBM_model_python_1473313897851_6.zip', '{"C7":1}')
h2o.predict_json('~/GBM_model_python_1473313897851_6.zip', '{"C7":1}', c(".", "lib"))

## End(Not run)



292 h2o.predict_rules

h2o.predict_rules Evaluates validity of the given rules on the given data. Returns a frame
with a column per each input rule id, representing a flag whether given
rule is applied to the observation or not.

Description

Evaluates validity of the given rules on the given data. Returns a frame with a column per each
input rule id, representing a flag whether given rule is applied to the observation or not.

Usage

h2o.predict_rules(model, frame, rule_ids)

Arguments

model A trained rulefit model.

frame A frame on which rule validity is to be evaluated

rule_ids Rule ids to be evaluated against the frame

Examples

## Not run:
library(h2o)
h2o.init()
titanic <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv"

)
response = "survived"
predictors <- c("age", "sibsp", "parch", "fare", "sex", "pclass")
titanic[,response] <- as.factor(titanic[,response])
titanic[,"pclass"] <- as.factor(titanic[,"pclass"])

splits <- h2o.splitFrame(data = titanic, ratios = .8, seed = 1234)
train <- splits[[1]]
test <- splits[[2]]

rfit <- h2o.rulefit(y = response, x = predictors, training_frame = train, validation_frame = test,
min_rule_length = 1, max_rule_length = 10, max_num_rules = 100, seed = 1, model_type="rules")
h2o.predict_rules(rfit, train, c("M1T0N7, M1T49N7, M1T16N7", "M1T36N7", "M2T19N19"))

## End(Not run)



h2o.print 293

h2o.print Print An H2OFrame

Description

Print An H2OFrame

Usage

h2o.print(x, n = 6L)

Arguments

x An H2OFrame object

n An (Optional) A single integer. If positive, number of rows in x to return. If
negative, all but the n first/last number of rows in x. Anything bigger than 20
rows will require asking the server (first 20 rows are cached on the client).

Examples

## Not run:
library()
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.print(iris["species"], n = 15)

## End(Not run)

h2o.prod Return the product of all the values present in its arguments.

Description

Return the product of all the values present in its arguments.

Usage

h2o.prod(x)

Arguments

x An H2OFrame object.



294 h2o.proj_archetypes

See Also

prod for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.prod(iris["petal_len"])

## End(Not run)

h2o.proj_archetypes Convert Archetypes to Features from H2O GLRM Model

Description

Project each archetype in an H2O GLRM model into the corresponding feature space from the H2O
training frame.

Usage

h2o.proj_archetypes(object, data, reverse_transform = FALSE)

Arguments

object An H2ODimReductionModel object that represents the model containing archetypes
to be projected.

data An H2OFrame object representing the training data for the H2O GLRM model.
reverse_transform

(Optional) A logical value indicating whether to reverse the transformation from
model-building by re-scaling columns and adding back the offset to each column
of the projected archetypes.

Value

Returns an H2OFrame object containing the projection of the archetypes down into the original
feature space, where each row is one archetype.

See Also

h2o.glrm for making an H2ODimReductionModel.



h2o.psvm 295

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
iris_glrm <- h2o.glrm(training_frame = iris_hf, k = 4, loss = "Quadratic",

multi_loss = "Categorical", max_iterations = 1000)
iris_parch <- h2o.proj_archetypes(iris_glrm, iris_hf)
head(iris_parch)

## End(Not run)

h2o.psvm Trains a Support Vector Machine model on an H2O dataset

Description

Alpha version. Supports only binomial classification problems.

Usage

h2o.psvm(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
ignore_const_cols = TRUE,
hyper_param = 1,
kernel_type = c("gaussian"),
gamma = -1,
rank_ratio = -1,
positive_weight = 1,
negative_weight = 1,
disable_training_metrics = TRUE,
sv_threshold = 1e-04,
fact_threshold = 1e-05,
feasible_threshold = 0.001,
surrogate_gap_threshold = 0.001,
mu_factor = 10,
max_iterations = 200,
seed = -1

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.



296 h2o.psvm

y The name or column index of the response variable in the data. The response
must be either a binary categorical/factor variable or a numeric variable with
values -1/1 (for compatibility with SVMlight format).

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.

hyper_param Penalty parameter C of the error term Defaults to 1.

kernel_type Type of used kernel Must be one of: "gaussian". Defaults to gaussian.

gamma Coefficient of the kernel (currently RBF gamma for gaussian kernel, -1 means
1/#features) Defaults to -1.

rank_ratio Desired rank of the ICF matrix expressed as an ration of number of input rows
(-1 means use sqrt(#rows)). Defaults to -1.

positive_weight

Weight of positive (+1) class of observations Defaults to 1.
negative_weight

Weight of positive (-1) class of observations Defaults to 1.
disable_training_metrics

Logical. Disable calculating training metrics (expensive on large datasets) De-
faults to TRUE.

sv_threshold Threshold for accepting a candidate observation into the set of support vectors
Defaults to 0.0001.

fact_threshold Convergence threshold of the Incomplete Cholesky Factorization (ICF) Defaults
to 1e-05.

feasible_threshold

Convergence threshold for primal-dual residuals in the IPM iteration Defaults to
0.001.

surrogate_gap_threshold

Feasibility criterion of the surrogate duality gap (eta) Defaults to 0.001.

mu_factor Increasing factor mu Defaults to 10.

max_iterations Maximum number of iteration of the algorithm Defaults to 200.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

Examples

## Not run:
library(h2o)
h2o.init()

# Import the splice dataset
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/splice/splice.svm"



h2o.qini 297

splice <- h2o.importFile(f)

# Train the Support Vector Machine model
svm_model <- h2o.psvm(gamma = 0.01, rank_ratio = 0.1,

y = "C1", training_frame = splice,
disable_training_metrics = FALSE)

## End(Not run)

h2o.qini Retrieve the default Qini value

Description

Retrieves the Qini value from an H2OBinomialUpliftMetrics. If "train" and "valid" parameters are
FALSE (default), then the training Qini value is returned. If more than one parameter is set to
TRUE, then a named vector of Qini values are returned, where the names are "train", "valid".

Usage

h2o.qini(object, train = FALSE, valid = FALSE)

Arguments

object An H2OBinomialUpliftMetrics or

train Retrieve the training Qini value

valid Retrieve the validation Qini

Examples

## Not run:
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)

model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")

perf <- h2o.performance(model, train=TRUE)
h2o.qini(perf)

## End(Not run)



298 h2o.quantile

h2o.quantile Quantiles of H2O Frames.

Description

Obtain and display quantiles for H2O parsed data.

Usage

h2o.quantile(
x,
probs = c(0.001, 0.01, 0.1, 0.25, 0.333, 0.5, 0.667, 0.75, 0.9, 0.99, 0.999),
combine_method = c("interpolate", "average", "avg", "low", "high"),
weights_column = NULL,
...

)

## S3 method for class 'H2OFrame'
quantile(
x,
probs = c(0.001, 0.01, 0.1, 0.25, 0.333, 0.5, 0.667, 0.75, 0.9, 0.99, 0.999),
combine_method = c("interpolate", "average", "avg", "low", "high"),
weights_column = NULL,
...

)

Arguments

x An H2OFrame object with a single numeric column.

probs Numeric vector of probabilities with values in [0,1].

combine_method How to combine quantiles for even sample sizes. Default is to do linear inter-
polation. E.g., If method is "lo", then it will take the lo value of the quantile.
Abbreviations for average, low, and high are acceptable (avg, lo, hi).

weights_column (Optional) String name of the observation weights column in x or an H2OFrame
object with a single numeric column of observation weights.

... Further arguments passed to or from other methods.

Details

quantile.H2OFrame, a method for the quantile generic. Obtain and return quantiles for an
H2OFrame object.

Value

A vector describing the percentiles at the given cutoffs for the H2OFrame object.



h2o.r2 299

Examples

## Not run:
# Request quantiles for an H2O parsed data set:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
# Request quantiles for a subset of columns in an H2O parsed data set
quantile(prostate[, 3])
for(i in 1:ncol(prostate))

quantile(prostate[, i])

## End(Not run)

h2o.r2 Retrieve the R2 value

Description

Retrieves the R2 value from an H2O model. Will return R^2 for GLM Models and will return NaN
otherwise. If "train", "valid", and "xval" parameters are FALSE (default), then the training R2 value
is returned. If more than one parameter is set to TRUE, then a named vector of R2s are returned,
where the names are "train", "valid" or "xval".

Usage

h2o.r2(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel object.
train Retrieve the training R2
valid Retrieve the validation set R2 if a validation set was passed in during model

build time.
xval Retrieve the cross-validation R2

Examples

## Not run:
library(h2o)

h <- h2o.init()
fr <- as.h2o(iris)

m <- h2o.glm(x = 2:5, y = 1, training_frame = fr)

h2o.r2(m)

## End(Not run)



300 h2o.randomForest

h2o.randomForest Build a Random Forest model

Description

Builds a Random Forest model on an H2OFrame.

Usage

h2o.randomForest(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
score_each_iteration = FALSE,
score_tree_interval = 0,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
offset_column = NULL,
weights_column = NULL,
balance_classes = FALSE,
class_sampling_factors = NULL,
max_after_balance_size = 5,
ntrees = 50,
max_depth = 20,
min_rows = 1,
nbins = 20,
nbins_top_level = 1024,
nbins_cats = 1024,
r2_stopping = Inf,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0.001,
max_runtime_secs = 0,
seed = -1,
build_tree_one_node = FALSE,
mtries = -1,
sample_rate = 0.632,
sample_rate_per_class = NULL,



h2o.randomForest 301

binomial_double_trees = FALSE,
checkpoint = NULL,
col_sample_rate_change_per_level = 1,
col_sample_rate_per_tree = 1,
min_split_improvement = 1e-05,
histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal",
"RoundRobin"),

categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

calibrate_model = FALSE,
calibration_frame = NULL,
distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma",

"tweedie", "laplace", "quantile", "huber"),
custom_metric_func = NULL,
export_checkpoints_dir = NULL,
check_constant_response = TRUE,
gainslift_bins = -1,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO"),

verbose = FALSE
)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.

nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to
0.

keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.



302 h2o.randomForest

score_tree_interval

Score the model after every so many trees. Disabled if set to 0. Defaults to 0.
fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.

offset_column Offset column. This argument is deprecated and has no use for Random Forest.

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

balance_classes

Logical. Balance training data class counts via over/under-sampling (for im-
balanced data). Defaults to FALSE.

class_sampling_factors

Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class bal-
ance during training. Requires balance_classes.

max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes. Defaults to 5.0.

ntrees Number of trees. Defaults to 50.

max_depth Maximum tree depth (0 for unlimited). Defaults to 20.

min_rows Fewest allowed (weighted) observations in a leaf. Defaults to 1.

nbins For numerical columns (real/int), build a histogram of (at least) this many bins,
then split at the best point Defaults to 20.

nbins_top_level

For numerical columns (real/int), build a histogram of (at most) this many bins
at the root level, then decrease by factor of two per level Defaults to 1024.

nbins_cats For categorical columns (factors), build a histogram of this many bins, then split
at the best point. Higher values can lead to more overfitting. Defaults to 1024.

r2_stopping r2_stopping is no longer supported and will be ignored if set - please use stop-
ping_rounds, stopping_metric and stopping_tolerance instead. Previous version
of H2O would stop making trees when the R^2 metric equals or exceeds this
Defaults to 1.797693135e+308.



h2o.randomForest 303

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

build_tree_one_node

Logical. Run on one node only; no network overhead but fewer cpus used.
Suitable for small datasets. Defaults to FALSE.

mtries Number of variables randomly sampled as candidates at each split. If set to -1,
defaults to sqrtp for classification and p/3 for regression (where p is the # of
predictors Defaults to -1.

sample_rate Row sample rate per tree (from 0.0 to 1.0) Defaults to 0.632.
sample_rate_per_class

A list of row sample rates per class (relative fraction for each class, from 0.0 to
1.0), for each tree

binomial_double_trees

Logical. For binary classification: Build 2x as many trees (one per class) - can
lead to higher accuracy. Defaults to FALSE.

checkpoint Model checkpoint to resume training with.
col_sample_rate_change_per_level

Relative change of the column sampling rate for every level (must be > 0.0 and
<= 2.0) Defaults to 1.

col_sample_rate_per_tree

Column sample rate per tree (from 0.0 to 1.0) Defaults to 1.
min_split_improvement

Minimum relative improvement in squared error reduction for a split to happen
Defaults to 1e-05.

histogram_type What type of histogram to use for finding optimal split points Must be one of:
"AUTO", "UniformAdaptive", "Random", "QuantilesGlobal", "RoundRobin".
Defaults to AUTO.



304 h2o.randomForest

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

calibrate_model

Logical. Use Platt Scaling to calculate calibrated class probabilities. Cali-
bration can provide more accurate estimates of class probabilities. Defaults to
FALSE.

calibration_frame

Calibration frame for Platt Scaling

distribution Distribution. This argument is deprecated and has no use for Random Forest.
custom_metric_func

Reference to custom evaluation function, format: ‘language:keyName=funcName‘
export_checkpoints_dir

Automatically export generated models to this directory.
check_constant_response

Logical. Check if response column is constant. If enabled, then an exception
is thrown if the response column is a constant value.If disabled, then model will
train regardless of the response column being a constant value or not. Defaults
to TRUE.

gainslift_bins Gains/Lift table number of bins. 0 means disabled.. Default value -1 means
automatic binning. Defaults to -1.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

verbose Logical. Print scoring history to the console (Metrics per tree). Defaults to
FALSE.

Value

Creates a H2OModel object of the right type.

See Also

predict.H2OModel for prediction

Examples

## Not run:
library(h2o)
h2o.init()

# Import the cars dataset
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)

# Set predictors and response; set response as a factor
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")



h2o.range 305

response <- "economy_20mpg"

# Train the DRF model
cars_drf <- h2o.randomForest(x = predictors, y = response,

training_frame = cars, nfolds = 5,
seed = 1234)

## End(Not run)

h2o.range Returns a vector containing the minimum and maximum of all the
given arguments.

Description

Returns a vector containing the minimum and maximum of all the given arguments.

Usage

h2o.range(x, na.rm = FALSE, finite = FALSE)

Arguments

x An H2OFrame object.

na.rm logical. indicating whether missing values should be removed.

finite logical. indicating if all non-finite elements should be omitted.

See Also

range for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.range(iris["petal_len"], na.rm = TRUE, finite = TRUE)

## End(Not run)



306 h2o.rank_within_group_by

h2o.rank_within_group_by

This function will add a new column rank where the ranking is pro-
duced as follows: 1. sorts the H2OFrame by columns sorted in by
columns specified in group_by_cols and sort_cols in the directions
specified by the ascending for the sort_cols. The sort directions for
the group_by_cols are ascending only. 2. A new rank column is added
to the frame which will contain a rank assignment performed next.
The user can choose to assign a name to this new column. The default
name is New_Rank_column. 3. For each groupby groups, a rank is
assigned to the row starting from 1, 2, ... to the end of that group. 4. If
sort_cols_sorted is TRUE, a final sort on the frame will be performed
frame according to the sort_cols and the sort directions in ascending.
If sort_cols_sorted is FALSE (by default), the frame from step 3 will
be returned as is with no extra sort. This may provide a small speedup
if desired.

Description

This function will add a new column rank where the ranking is produced as follows: 1. sorts
the H2OFrame by columns sorted in by columns specified in group_by_cols and sort_cols in the
directions specified by the ascending for the sort_cols. The sort directions for the group_by_cols are
ascending only. 2. A new rank column is added to the frame which will contain a rank assignment
performed next. The user can choose to assign a name to this new column. The default name is
New_Rank_column. 3. For each groupby groups, a rank is assigned to the row starting from 1, 2, ...
to the end of that group. 4. If sort_cols_sorted is TRUE, a final sort on the frame will be performed
frame according to the sort_cols and the sort directions in ascending. If sort_cols_sorted is FALSE
(by default), the frame from step 3 will be returned as is with no extra sort. This may provide a
small speedup if desired.

Usage

h2o.rank_within_group_by(
x,
group_by_cols,
sort_cols,
ascending = NULL,
new_col_name = "New_Rank_column",
sort_cols_sorted = FALSE

)

Arguments

x The H2OFrame input to be sorted.

group_by_cols a list of column names or indices to form the groupby groups

sort_cols a list of column names or indices for sorting



h2o.rank_within_group_by 307

ascending a list of Boolean to determine if ascending sort (set to TRUE) is needed for each
column in sort_cols (optional). Default is ascending sort for all. To perform
descending sort, set value to FALSE

new_col_name new column name for the newly added rank column if specified (optional). De-
fault name is New_Rank_column.

sort_cols_sorted

Boolean to determine if the final returned frame is to be sorted according to the
sort_cols and sort directions in ascending. Default is FALSE.

The following example is generated by Nidhi Mehta.

If the input frame is train:

ID Group_by_column num data Column_to_arrange_by num_1 fdata 12 1 2941.552
1 3 -3177.9077 1 12 1 2941.552 1 5 -13311.8247 1 12 2 -22722.174 1 3 -
3177.9077 1 12 2 -22722.174 1 5 -13311.8247 1 13 3 -12776.884 1 5 -18421.6171
0 13 3 -12776.884 1 4 28080.1607 0 13 1 -6049.830 1 5 -18421.6171 0 13 1 -
6049.830 1 4 28080.1607 0 15 3 -16995.346 1 1 -9781.6373 0 16 1 -10003.593
0 3 -61284.6900 0 16 3 26052.495 1 3 -61284.6900 0 16 3 -22905.288 0 3 -
61284.6900 0 17 2 -13465.496 1 2 12094.4851 1 17 2 -13465.496 1 3 -11772.1338
1 17 2 -13465.496 1 3 -415.1114 0 17 2 -3329.619 1 2 12094.4851 1 17 2 -
3329.619 1 3 -11772.1338 1 17 2 -3329.619 1 3 -415.1114 0

If the following commands are issued: rankedF1 <- h2o.rank_within_group_by(train,
c("Group_by_column"), c("Column_to_arrange_by"), c(TRUE)) h2o.summary(rankedF1)

The returned frame rankedF1 will look like this: ID Group_by_column num
fdata Column_to_arrange_by num_1 fdata.1 New_Rank_column 12 1 2941.552
1 3 -3177.9077 1 1 16 1 -10003.593 0 3 -61284.6900 0 2 13 1 -6049.830 0
4 28080.1607 0 3 12 1 2941.552 1 5 -13311.8247 1 4 13 1 -6049.830 0 5
-18421.6171 0 5 17 2 -13465.496 0 2 12094.4851 1 1 17 2 -3329.619 0 2
12094.4851 1 2 12 2 -22722.174 1 3 -3177.9077 1 3 17 2 -13465.496 0 3
-11772.1338 1 4 17 2 -13465.496 0 3 -415.1114 0 5 17 2 -3329.619 0 3 -
11772.1338 1 6 17 2 -3329.619 0 3 -415.1114 0 7 12 2 -22722.174 1 5 -
13311.8247 1 8 15 3 -16995.346 1 1 -9781.6373 0 1 16 3 26052.495 0 3 -
61284.6900 0 2 16 3 -22905.288 1 3 -61284.6900 0 3 13 3 -12776.884 1 4
28080.1607 0 4 13 3 -12776.884 1 5 -18421.6171 0 5

If the following commands are issued: rankedF1 <- h2o.rank_within_group_by(train,
c("Group_by_column"), c("Column_to_arrange_by"), c(TRUE), sort_cols_sorted=TRUE)
h2o.summary(rankedF1)

The returned frame will be sorted according to sortCols and hence look like
this instead: ID Group_by_column num fdata Column_to_arrange_by num_1
fdata.1 New_Rank_column 15 3 -16995.346 1 1 -9781.6373 0 1 17 2 -13465.496
0 2 12094.4851 1 1 17 2 -3329.619 0 2 12094.4851 1 2 12 1 2941.552 1 3
-3177.9077 1 1 12 2 -22722.174 1 3 -3177.9077 1 3 16 1 -10003.593 0 3 -
61284.6900 0 2 16 3 26052.495 0 3 -61284.6900 0 2 16 3 -22905.288 1 3 -
61284.6900 0 3 17 2 -13465.496 0 3 -11772.1338 1 4 17 2 -13465.496 0 3 -
415.1114 0 5 17 2 -3329.619 0 3 -11772.1338 1 6 17 2 -3329.619 0 3 -415.1114
0 7 13 3 -12776.884 1 4 28080.1607 0 4 13 1 -6049.830 0 4 28080.1607 0 3
12 1 2941.552 1 5 -13311.8247 1 4 12 2 -22722.174 1 5 -13311.8247 1 8 13 3
-12776.884 1 5 -18421.6171 0 5 13 1 -6049.830 0 5 -18421.6171 0 5



308 h2o.rapids

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip"
air <- h2o.importFile(f)
group_cols <- c("Distance")
sort_cols <- c("IsArrDelayed", "IsDepDelayed")
sort_directions <- c(TRUE, FALSE)
h2o.rank_within_group_by(x = air, group_by_cols = group_cols,

sort_cols = sort_cols,
ascending = sort_directions,
new_col_name = "New_Rank",
sort_cols_sorted = TRUE)

## End(Not run)

h2o.rapids Execute a Rapids expression.

Description

Execute a Rapids expression.

Usage

h2o.rapids(expr)

Arguments

expr The rapids expression (ascii string)

Examples

## Not run:
h2o.rapids('(setproperty "sys.ai.h2o.algos.evaluate_auto_model_parameters" "true")')

## End(Not run)



h2o.rbind 309

h2o.rbind Combine H2O Datasets by Rows

Description

Takes a sequence of H2O data sets and combines them by rows

Usage

h2o.rbind(...)

Arguments

... A sequence of H2OFrame arguments. All datasets must exist on the same H2O
instance (IP and port) and contain the same number and types of columns.

Value

An H2OFrame object containing the combined . . . arguments row-wise.

See Also

cbind for the base R method, rbind().

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate_rbind <- h2o.rbind(prostate, prostate)
head(prostate_rbind)
dim(prostate)
dim(prostate_rbind)

## End(Not run)

h2o.reconstruct Reconstruct Training Data via H2O GLRM Model

Description

Reconstruct the training data and impute missing values from the H2O GLRM model by computing
the matrix product of X and Y, and transforming back to the original feature space by minimizing
each column’s loss function.



310 h2o.relevel

Usage

h2o.reconstruct(object, data, reverse_transform = FALSE)

Arguments

object An H2ODimReductionModel object that represents the model to be used for
reconstruction.

data An H2OFrame object representing the training data for the H2O GLRM model.
Used to set the domain of each column in the reconstructed frame.

reverse_transform

(Optional) A logical value indicating whether to reverse the transformation from
model-building by re-scaling columns and adding back the offset to each column
of the reconstructed frame.

Value

Returns an H2OFrame object containing the approximate reconstruction of the training data;

See Also

h2o.glrm for making an H2ODimReductionModel.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
iris_glrm <- h2o.glrm(training_frame = iris_hf, k = 4, transform = "STANDARDIZE",

loss = "Quadratic", multi_loss = "Categorical", max_iterations = 1000)
iris_rec <- h2o.reconstruct(iris_glrm, iris_hf, reverse_transform = TRUE)
head(iris_rec)

## End(Not run)

h2o.relevel Reorders levels of an H2O factor, similarly to standard R’s relevel.

Description

The levels of a factor are reordered os that the reference level is at level 0, remaining levels are
moved down as needed.

Usage

h2o.relevel(x, y)



h2o.removeAll 311

Arguments

x factor column in h2o frame

y reference level (string)

Value

new reordered factor column

Examples

## Not run:
library(h2o)
h2o.init()

# Convert iris dataset to an H2OFrame
iris_hf <- as.h2o(iris)
# Look at current ordering of the Species column levels
h2o.levels(iris_hf["Species"])
# "setosa" "versicolor" "virginica"
# Change the reference level to "virginica"
iris_hf["Species"] <- h2o.relevel(x = iris_hf["Species"], y = "virginica")
# Observe new ordering
h2o.levels(iris_hf["Species"])
# "virginica" "setosa" "versicolor"

## End(Not run)

h2o.removeAll Remove All Objects on the H2O Cluster

Description

Removes the data from the h2o cluster, but does not remove the local references. Retains mod-
els, frames and vectors specified in retained_elements argument. Retained elements must be in-
stances/ids of models and frames only. For models retained, training and validation frames are
retained as well. Cross validation models of a retained model are NOT retained automatically,
those must be specified explicitely.

Usage

h2o.removeAll(timeout_secs = 0, retained_elements = c())

Arguments

timeout_secs Timeout in seconds. Default is no timeout.
retained_elements

Instances or ids of models and frames to be retained. Combination of instances
and ids in the same list is also a valid input.



312 h2o.rep_len

See Also

h2o.rm

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.ls()
h2o.removeAll()
h2o.ls()

## End(Not run)

h2o.removeVecs Delete Columns from an H2OFrame

Description

Delete the specified columns from the H2OFrame. Returns an H2OFrame without the specified
columns.

Usage

h2o.removeVecs(data, cols)

Arguments

data The H2OFrame.

cols The columns to remove.

h2o.rep_len Replicate Elements of Vectors or Lists into H2O

Description

h2o.rep_len performs just as rep does. It replicates the values in x in the H2O backend.

Usage

h2o.rep_len(x, length.out)



h2o.reset_threshold 313

Arguments

x an H2O frame

length.out non negative integer. The desired length of the output vector.

Value

Creates an H2OFrame of the same type as x

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv"
iris <- h2o.importFile(f)
h2o.rep_len(iris, length.out = 3)

## End(Not run)

h2o.reset_threshold Reset model threshold and return old threshold value.

Description

Reset model threshold and return old threshold value.

Usage

h2o.reset_threshold(object, threshold)

Arguments

object An H2OModel object.

threshold A threshold value from 0 to 1 included.

Value

Returns the previous threshold used in the model.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)



314 h2o.residual_analysis_plot

prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),

training_frame = prostate, family = "binomial",
nfolds = 0, alpha = 0.5, lambda_search = FALSE)

old_threshold <- h2o.reset_threshold(prostate_glm, 0.9)

## End(Not run)

h2o.residual_analysis_plot

Residual Analysis

Description

Do Residual Analysis and plot the fitted values vs residuals on a test dataset. Ideally, residuals
should be randomly distributed. Patterns in this plot can indicate potential problems with the model
selection, e.g., using simpler model than necessary, not accounting for heteroscedasticity, autocor-
relation, etc. If you notice "striped" lines of residuals, that is just an indication that your response
variable was integer valued instead of real valued.

Usage

h2o.residual_analysis_plot(model, newdata)

Arguments

model An H2OModel.

newdata An H2OFrame. Used to calculate residuals.

Value

A ggplot2 object

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]



h2o.residual_deviance 315

test <- splits[[2]]

# Build and train the model:
gbm <- h2o.gbm(y = response,

training_frame = train)

# Create the residual analysis plot
residual_analysis_plot <- h2o.residual_analysis_plot(gbm, test)
print(residual_analysis_plot)

## End(Not run)

h2o.residual_deviance Retrieve the residual deviance

Description

If "train", "valid", and "xval" parameters are FALSE (default), then the training residual deviance
value is returned. If more than one parameter is set to TRUE, then a named vector of residual
deviances are returned, where the names are "train", "valid" or "xval".

Usage

h2o.residual_deviance(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel or H2OModelMetrics

train Retrieve the training residual deviance

valid Retrieve the validation residual deviance

xval Retrieve the cross-validation residual deviance

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),

training_frame = prostate, family = "binomial",
nfolds = 0, alpha = 0.5, lambda_search = FALSE)

h2o.residual_deviance(prostate_glm, train = TRUE)

## End(Not run)



316 h2o.resume

h2o.residual_dof Retrieve the residual degrees of freedom

Description

If "train", "valid", and "xval" parameters are FALSE (default), then the training residual degrees
of freedom value is returned. If more than one parameter is set to TRUE, then a named vector of
residual degrees of freedom are returned, where the names are "train", "valid" or "xval".

Usage

h2o.residual_dof(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel or H2OModelMetrics

train Retrieve the training residual degrees of freedom

valid Retrieve the validation residual degrees of freedom

xval Retrieve the cross-validation residual degrees of freedom

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),

training_frame = prostate, family = "binomial",
nfolds = 0, alpha = 0.5, lambda_search = FALSE)

h2o.residual_dof(prostate_glm, train = TRUE)

## End(Not run)

h2o.resume Triggers auto-recovery resume - this will look into configured recovery
dir and resume and tasks that were interrupted by unexpected cluster
stopping.

Description

Triggers auto-recovery resume - this will look into configured recovery dir and resume and tasks
that were interrupted by unexpected cluster stopping.



h2o.resumeGrid 317

Usage

h2o.resume(recovery_dir = NULL)

Arguments

recovery_dir A character path to where cluster recovery data is stored, if blank, will use
cluster’s configuration.

h2o.resumeGrid Resume previously stopped grid training.

Description

Resume previously stopped grid training.

Usage

h2o.resumeGrid(grid_id, recovery_dir = NULL, ...)

Arguments

grid_id ID of existing grid search

recovery_dir When specified the grid and all necessary data (frames, models) will be saved
to this directory (use HDFS or other distributed file-system). Should the cluster
crash during training, the grid can be reloaded from this directory via h2o.loadGrid
and training can be resumed

... Additional parameters to modify the resumed Grid.

h2o.rm Delete Objects In H2O

Description

Remove the h2o Big Data object(s) having the key name(s) from ids.

Usage

h2o.rm(ids, cascade = TRUE)

Arguments

ids The object or hex key associated with the object to be removed or a vector/list
of those things.

cascade Boolean, if set to TRUE (default), the object dependencies (e.g. submodels) are
also removed.



318 h2o.rmse

See Also

h2o.assign, h2o.ls

Examples

## Not run:
library(h2o)
h2o.init()
iris <- as.h2o(iris)
model <- h2o.glm(1:4,5,training = iris, family = "multinomial")
h2o.rm(iris)

## End(Not run)

h2o.rmse Retrieves Root Mean Squared Error Value

Description

Retrieves the root mean squared error value from an H2OModelMetrics object. If "train", "valid",
and "xval" parameters are FALSE (default), then the training RMSEvalue is returned. If more than
one parameter is set to TRUE, then a named vector of RMSEs are returned, where the names are
"train", "valid" or "xval".

Usage

h2o.rmse(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModelMetrics object of the correct type.

train Retrieve the training RMSE

valid Retrieve the validation RMSE

xval Retrieve the cross-validation RMSE

Details

This function only supports H2OBinomialMetrics, H2OMultinomialMetrics, and H2ORegressionMetrics
objects.

See Also

h2o.auc for AUC, h2o.mse for RMSE, and h2o.metric for the various threshold metrics. See
h2o.performance for creating H2OModelMetrics objects.



h2o.rmsle 319

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)

prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
perf <- h2o.performance(model, prostate)
h2o.rmse(perf)

## End(Not run)

h2o.rmsle Retrieve the Root Mean Squared Log Error

Description

Retrieves the root mean squared log error (RMSLE) value from an H2O model. If "train", "valid",
and "xval" parameters are FALSE (default), then the training rmsle value is returned. If more than
one parameter is set to TRUE, then a named vector of rmsles are returned, where the names are
"train", "valid" or "xval".

Usage

h2o.rmsle(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OModel object.

train Retrieve the training rmsle

valid Retrieve the validation set rmsle if a validation set was passed in during model
build time.

xval Retrieve the cross-validation rmsle

Examples

## Not run:
library(h2o)

h <- h2o.init()
fr <- as.h2o(iris)

m <- h2o.deeplearning(x = 2:5, y = 1, training_frame = fr)

h2o.rmsle(m)



320 h2o.round

## End(Not run)

h2o.round Round doubles/floats to the given number of decimal places.

Description

Round doubles/floats to the given number of decimal places.

Usage

h2o.round(x, digits = 0)

round(x, digits = 0)

Arguments

x An H2OFrame object.

digits Number of decimal places to round doubles/floats. Rounding to a negative num-
ber of decimal places is

See Also

Round for the base R implementation, round().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/coxph_test/heart.csv"
heart <- h2o.importFile(f)

h2o.round(heart["age"], digits = 3)

## End(Not run)



h2o.rstrip 321

h2o.rstrip Strip set from right

Description

Return a copy of the target column with trailing characters removed. The set argument is a string
specifying the set of characters to be removed. If omitted, the set argument defaults to removing
whitespace.

Usage

h2o.rstrip(x, set = " ")

Arguments

x The column whose strings should be rstrip-ed.

set string of characters to be removed

Examples

## Not run:
library(h2o)
h2o.init()
string_to_rstrip <- as.h2o("1234567890")
rstrip_string <- h2o.rstrip(string_to_rstrip, "890") #Remove "890"

## End(Not run)

h2o.rulefit Build a RuleFit Model

Description

Builds a Distributed RuleFit model on a parsed dataset, for regression or classification.

Usage

h2o.rulefit(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
seed = -1,
algorithm = c("AUTO", "DRF", "GBM"),
min_rule_length = 3,



322 h2o.rulefit

max_rule_length = 3,
max_num_rules = -1,
model_type = c("rules_and_linear", "rules", "linear"),
weights_column = NULL,
distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma",

"tweedie", "laplace", "quantile", "huber"),
rule_generation_ntrees = 50,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO"),

remove_duplicates = TRUE,
lambda = NULL

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.
model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
seed Seed for random numbers (affects certain parts of the algo that are stochastic

and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

algorithm The algorithm to use to generate rules. Must be one of: "AUTO", "DRF",
"GBM". Defaults to AUTO.

min_rule_length

Minimum length of rules. Defaults to 3.
max_rule_length

Maximum length of rules. Defaults to 3.
max_num_rules The maximum number of rules to return. defaults to -1 which means the number

of rules is selected by diminishing returns in model deviance. Defaults to -1.
model_type Specifies type of base learners in the ensemble. Must be one of: "rules_and_linear",

"rules", "linear". Defaults to rules_and_linear.
weights_column Column with observation weights. Giving some observation a weight of zero

is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.



h2o.rulefit 323

distribution Distribution function Must be one of: "AUTO", "bernoulli", "multinomial",
"gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber". De-
faults to AUTO.

rule_generation_ntrees

Specifies the number of trees to build in the tree model. Defaults to 50. Defaults
to 50.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

remove_duplicates

Logical. Whether to remove rules which are identical to an earlier rule. De-
faults to true. Defaults to TRUE.

lambda Lambda for LASSO regressor.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the titanic dataset:
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv"
coltypes <- list(by.col.name = c("pclass", "survived"), types=c("Enum", "Enum"))
df <- h2o.importFile(f, col.types = coltypes)

# Split the dataset into train and test
splits <- h2o.splitFrame(data = df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Set the predictors and response; set the factors:
response <- "survived"
predictors <- c("age", "sibsp", "parch", "fare", "sex", "pclass")

# Build and train the model:
rfit <- h2o.rulefit(y = response,

x = predictors,
training_frame = train,
max_rule_length = 10,
max_num_rules = 100,
seed = 1)

# Retrieve the rule importance:
print(rfit@model$rule_importance)

# Predict on the test data:
h2o.predict(rfit, newdata = test)

## End(Not run)



324 h2o.saveGrid

h2o.runif Produce a Vector of Random Uniform Numbers

Description

Creates a vector of random uniform numbers equal in length to the length of the specified H2O
dataset.

Usage

h2o.runif(x, seed = -1)

Arguments

x An H2OFrame object.

seed A random seed used to generate draws from the uniform distribution.

Value

A vector of random, uniformly distributed numbers. The elements are between 0 and 1.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path)
s <- h2o.runif(prostate)
summary(s)

prostate_train <- prostate[s <= 0.8,]
prostate_test <- prostate[s > 0.8,]
nrow(prostate_train) + nrow(prostate_test)

## End(Not run)

h2o.saveGrid Saves an existing Grid of models into a given folder.

Description

Returns a reference to the saved Grid.



h2o.saveGrid 325

Usage

h2o.saveGrid(
grid_directory,
grid_id,
save_params_references = FALSE,
export_cross_validation_predictions = FALSE

)

Arguments

grid_directory A character string containing the path to the folder for the grid to be saved to.
grid_id A chracter string with identification of the grid to be saved.
save_params_references

A logical indicating if objects referenced by grid parameters (e.g. training frame,
calibration frame) should also be saved.

export_cross_validation_predictions

A logical indicating whether exported model artifacts should also include CV
holdout Frame predictions.

Value

Returns an object that is a subclass of H2OGrid.

Examples

## Not run:
library(h2o)
h2o.init()

iris <- as.h2o(iris)

ntrees_opts = c(1, 5)
learn_rate_opts = c(0.1, 0.01)
size_of_hyper_space = length(ntrees_opts) * length(learn_rate_opts)

hyper_parameters = list(ntrees = ntrees_opts, learn_rate = learn_rate_opts)
# Tempdir is chosen arbitrarily. May be any valid folder on an H2O-supported filesystem.
baseline_grid <- h2o.grid(algorithm = "gbm",

grid_id = "gbm_grid_test",
x = 1:4,
y = 5,
training_frame = iris,
hyper_params = hyper_parameters)

grid_path <- h2o.saveGrid(grid_directory = tempdir(), grid_id = baseline_grid@grid_id)
# Remove everything from the cluster or restart it
h2o.removeAll()
grid <- h2o.loadGrid(grid_path)

## End(Not run)



326 h2o.saveModel

h2o.saveModel Save an H2O Model Object to Disk

Description

Save an H2OModel to disk. (Note that ensemble binary models can be saved.)

Usage

h2o.saveModel(
object,
path = "",
force = FALSE,
export_cross_validation_predictions = FALSE,
filename = ""

)

Arguments

object an H2OModel object.
path string indicating the directory the model will be written to.
force logical, indicates how to deal with files that already exist.
export_cross_validation_predictions

logical, indicates whether the exported model artifacts should also include CV
Holdout Frame predictions. Default is not to export the predictions.

filename string indicating the file name.

Details

In the case of existing files force = TRUE will overwrite the file. Otherwise, the operation will fail.

The owner of the file saved is the user by which H2O cluster was executed.

See Also

h2o.loadModel for loading a model to H2O from disk

Examples

## Not run:
# library(h2o)
# h2o.init()
# prostate <- h2o.importFile(path = paste("https://raw.github.com",
# "h2oai/h2o-2/master/smalldata/logreg/prostate.csv", sep = "/"))
# prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
# training_frame = prostate, family = "binomial", alpha = 0.5)
# h2o.saveModel(object = prostate_glm, path = "/Users/UserName/Desktop", force = TRUE)

## End(Not run)



h2o.saveModelDetails 327

h2o.saveModelDetails Save an H2O Model Details

Description

Save Model Details of an H2O Model in JSON Format

Usage

h2o.saveModelDetails(object, path = "", force = FALSE, filename = "")

Arguments

object an H2OModel object.

path string indicating the directory the model details will be written to.

force logical, indicates how to deal with files that already exist.

filename string indicating the file name. (Type of file is always .json)

Details

Model Details will download as a JSON file. In the case of existing files force = TRUE will over-
write the file. Otherwise, the operation will fail.

Examples

## Not run:
# library(h2o)
# h2o.init()
# prostate <- h2o.uploadFile(path = system.file("extdata", "prostate.csv", package = "h2o"))
# prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
# training_frame = prostate, family = "binomial", alpha = 0.5)
# h2o.saveModelDetails(object = prostate_glm, path = "/Users/UserName/Desktop", force = TRUE)

## End(Not run)

h2o.saveMojo Deprecated - use h2o.save_mojo instead. Save an H2O Model Object
as Mojo to Disk

Description

Save an MOJO (Model Object, Optimized) to disk.

Usage

h2o.saveMojo(object, path = "", force = FALSE)



328 h2o.save_frame

Arguments

object an H2OModel object.

path string indicating the directory the model will be written to.

force logical, indicates how to deal with files that already exist.

Details

MOJO will download as a zip file. In the case of existing files force = TRUE will overwrite the file.
Otherwise, the operation will fail.

See Also

h2o.saveModel for saving a model to disk as a binary object.

Examples

## Not run:
# library(h2o)
# h2o.init()
# prostate <- h2o.uploadFile(path = system.file("extdata", "prostate.csv", package="h2o"))
# prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
# training_frame = prostate, family = "binomial", alpha = 0.5)
# h2o.saveMojo(object = prostate_glm, path = "/Users/UserName/Desktop", force = TRUE)

## End(Not run)

h2o.save_frame Store frame data in H2O’s native format.

Description

Store frame data in H2O’s native format.

Usage

h2o.save_frame(x, dir, force = TRUE)

Arguments

x An H2OFrame object

dir a filesystem location where to write frame data (hdfs, nfs)

force logical. overwrite already existing files (defaults to true)



h2o.save_mojo 329

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
h2o.save_frame(prostate, "/tmp/prostate")

## End(Not run)

h2o.save_mojo Save an H2O Model Object as Mojo to Disk

Description

Save an MOJO (Model Object, Optimized) to disk.

Usage

h2o.save_mojo(object, path = "", force = FALSE, filename = "")

Arguments

object an H2OModel object.
path string indicating the directory the model will be written to.
force logical, indicates how to deal with files that already exist.
filename string indicating the file name. (Type of file is always .zip)

Details

MOJO will download as a zip file. In the case of existing files force = TRUE will overwrite the file.
Otherwise, the operation will fail.

See Also

h2o.saveModel for saving a model to disk as a binary object.

Examples

## Not run:
# library(h2o)
# h2o.init()
# prostate <- h2o.uploadFile(path = system.file("extdata", "prostate.csv", package="h2o"))
# prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
# training_frame = prostate, family = "binomial", alpha = 0.5)
# h2o.save_mojo(object = prostate_glm, path = "/Users/UserName/Desktop", force = TRUE)

## End(Not run)



330 h2o.scale

h2o.save_to_hive Save contents of this data frame into a Hive table

Description

For example, h2o.save_to_hive(data_frame, "jdbc:hive2://host:10000/database", "table_name") h2o.save_to_hive(data_frame,
"jdbc:hive2://host:10000/", "database.table_name", format = "parquet")

Usage

h2o.save_to_hive(
data,
jdbc_url,
table_name,
format = "csv",
table_path = NULL,
tmp_path = NULL

)

Arguments

data A H2O Frame object to be saved.

jdbc_url Hive JDBC connection URL.

table_name Table name into which to store the data. The table must not exist as it will be
created

format Storage format of created Hive table. (default csv, can be csv or parquet)

table_path If specified, the table will be created as an external table and this is where the
data

tmp_path Path where to store temporary data.

h2o.scale Scaling and Centering of an H2OFrame

Description

Centers and/or scales the columns of an H2O dataset.

Usage

h2o.scale(x, center = TRUE, scale = TRUE, inplace = FALSE)



h2o.scoreHistory 331

Arguments

x An H2OFrame object.

center either a logical value or numeric vector of length equal to the number of
columns of x.

scale either a logical value or numeric vector of length equal to the number of
columns of x.

inplace a logical values indicating whether directly overwrite original data (disabled
by default). Exposed for backwards compatibility (prior versions of this func-
tions were always doing an inplace update).

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
summary(iris_hf)

# Scale and center all the numeric columns in iris data set
iris_scaled <- h2o.scale(iris_hf[, 1:4])

## End(Not run)

h2o.scoreHistory Retrieve Model Score History

Description

Retrieve Model Score History

Usage

h2o.scoreHistory(object)

Arguments

object An H2OModel object.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
cars["economy_20mpg"] <- as.factor(cars["economy_20mpg"])
predictors <- c("displacement", "power", "weight", "acceleration", "year")



332 h2o.screeplot

response <- "economy_20mpg"
cars_split <- h2o.splitFrame(data = cars, ratios = 0.8, seed = 1234)
train <- cars_split[[1]]
valid <- cars_split[[2]]
cars_gbm <- h2o.gbm(x = predictors, y = response,

training_frame = train,
validation_frame = valid,
seed = 1234)

h2o.scoreHistory(cars_gbm)

## End(Not run)

h2o.scoreHistoryGAM Retrieve GLM Model Score History buried in GAM model

Description

Retrieve GLM Model Score History buried in GAM model

Usage

h2o.scoreHistoryGAM(object)

Arguments

object An H2OModel object.

h2o.screeplot Scree Plot

Description

Scree Plot

Usage

h2o.screeplot(model, type = c("barplot", "lines"))

Arguments

model A PCA model

type Type of the plot. Either "barplot" or "lines".



h2o.sd 333

h2o.sd Standard Deviation of a column of data.

Description

Obtain the standard deviation of a column of data.

Usage

h2o.sd(x, na.rm = FALSE)

sd(x, na.rm = FALSE)

Arguments

x An H2OFrame object.

na.rm logical. Should missing values be removed?

See Also

h2o.var for variance, and sd for the base R implementation.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
sd(prostate$AGE)

## End(Not run)

h2o.sdev Retrieve the standard deviations of principal components

Description

Retrieve the standard deviations of principal components

Usage

h2o.sdev(object)



334 h2o.setLevels

Arguments

object An H2ODimReductionModel object.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
predictors <- c("displacement", "power", "weight", "acceleration", "year")
cars_pca <- h2o.prcomp(cars, transform = "STANDARDIZE",

k = 3, x = predictors, seed = 12345)
h2o.sdev(cars_pca)

## End(Not run)

h2o.setLevels Set Levels of H2O Factor Column

Description

Works on a single categorical vector. New domains must be aligned with the old domains. This call
has SIDE EFFECTS and mutates the column in place (change of the levels will also affect all the
frames that are referencing this column). If you want to make a copy of the column instead, use
parameter in.place = FALSE.

Usage

h2o.setLevels(x, levels, in.place = TRUE)

Arguments

x A single categorical column.

levels A character vector specifying the new levels. The number of new levels must
match the number of old levels.

in.place Indicates whether new domain will be directly applied to the column (in place
change) or if a copy of the column will be created with the given domain levels.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
new_levels <- c("setosa", "versicolor", "caroliniana")



h2o.setTimezone 335

iris_hf$Species <- h2o.setLevels(iris_hf$Species, new_levels, in.place = FALSE)
h2o.levels(iris_hf$Species)

## End(Not run)

h2o.setTimezone Set the Time Zone on the H2O cluster

Description

Set the Time Zone on the H2O cluster

Usage

h2o.setTimezone(tz)

Arguments

tz The desired timezone.

Examples

## Not run:
library(h2o)
h2o.init()

h2o.setTimezone("America/Juneau")
h2o.getTimezone()

## End(Not run)

h2o.set_s3_credentials

Creates a new Amazon S3 client internally with specified credentials.

Description

There are no validations done to the credentials. Incorrect credentials are thus revealed with first S3
import call.

Usage

h2o.set_s3_credentials(secretKeyId, secretAccessKey, sessionToken = NULL)



336 h2o.shap_explain_row_plot

Arguments

secretKeyId Amazon S3 Secret Key ID (provided by Amazon)
secretAccessKey

Amazon S3 Secret Access Key (provided by Amazon)

sessionToken Amazon Session Token (optional, only when using AWS Temporary Creden-
tials)

h2o.shap_explain_row_plot

SHAP Local Explanation

Description

SHAP explanation shows contribution of features for a given instance. The sum of the feature
contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before
applying inverse link function. H2O implements TreeSHAP which when the features are correlated,
can increase contribution of a feature that had no influence on the prediction.

Usage

h2o.shap_explain_row_plot(
model,
newdata,
row_index,
columns = NULL,
top_n_features = 10,
plot_type = c("barplot", "breakdown"),
contribution_type = c("both", "positive", "negative")

)

Arguments

model An H2O tree-based model. This includes Random Forest, GBM and XGboost
only. Must be a binary classification or regression model.

newdata An H2O Frame, used to determine feature contributions.

row_index Instance row index.

columns List of columns or list of indices of columns to show. If specified, then the
top_n_features parameter will be ignored.

top_n_features Integer specifying the maximum number of columns to show (ranked by their
contributions). When plot_type = "barplot", then top_n_features features
will be chosen for each contribution_type.

plot_type Either "barplot" or "breakdown". Defaults to "barplot".
contribution_type

When plot_type == "barplot", plot one of "negative", "positive", or "both"
contributions. Defaults to "both".



h2o.shap_summary_plot 337

Value

A ggplot2 object.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
gbm <- h2o.gbm(y = response,

training_frame = train)

# Create the SHAP row explanation plot
shap_explain_row_plot <- h2o.shap_explain_row_plot(gbm, test, row_index = 1)
print(shap_explain_row_plot)

## End(Not run)

h2o.shap_summary_plot SHAP Summary Plot

Description

SHAP summary plot shows the contribution of the features for each instance (row of data). The
sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e.,
prediction before applying inverse link function.

Usage

h2o.shap_summary_plot(
model,
newdata,
columns = NULL,
top_n_features = 20,
sample_size = 1000

)



338 h2o.show_progress

Arguments

model An H2O tree-based model. This includes Random Forest, GBM and XGboost
only. Must be a binary classification or regression model.

newdata An H2O Frame, used to determine feature contributions.

columns List of columns or list of indices of columns to show. If specified, then the
top_n_features parameter will be ignored.

top_n_features Integer specifying the maximum number of columns to show (ranked by variable
importance).

sample_size Integer specifying the maximum number of observations to be plotted.

Value

A ggplot2 object

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
gbm <- h2o.gbm(y = response,

training_frame = train)

# Create the SHAP summary plot
shap_summary_plot <- h2o.shap_summary_plot(gbm, test)
print(shap_summary_plot)

## End(Not run)

h2o.show_progress Enable Progress Bar

Description

Enable Progress Bar



h2o.shutdown 339

Usage

h2o.show_progress()

Examples

## Not run:
library(h2o)
h2o.init()
h2o.no_progress()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv"
iris <- h2o.importFile(f)
iris["class"] <- as.factor(iris["class"])
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
splits <- h2o.splitFrame(iris, ratios = 0.8, seed = 1234)
train <- splits[[1]]
valid <- splits[[2]]
h2o.show_progress()

iris_km <- h2o.kmeans(x = predictors,
training_frame = train,
validation_frame = valid,
k = 10, estimate_k = TRUE,
standardize = FALSE, seed = 1234)

## End(Not run)

h2o.shutdown Shut Down H2O Instance

Description

Shut down the specified instance. All data will be lost.

Usage

h2o.shutdown(prompt = TRUE)

Arguments

prompt A logical value indicating whether to prompt the user before shutting down
the H2O server.

Details

This method checks if H2O is running at the specified IP address and port, and if it is, shuts down
that H2O instance.



340 h2o.signif

WARNING

All data, models, and other values stored on the server will be lost! Only call this function if you
and all other clients connected to the H2O server are finished and have saved your work.

Note

Users must call h2o.shutdown explicitly in order to shut down the local H2O instance started by R.
If R is closed before H2O, then an attempt will be made to automatically shut down H2O. This only
applies to local instances started with h2o.init, not remote H2O servers.

See Also

h2o.init

Examples

# Don't run automatically to prevent accidentally shutting down a cluster
## Not run:
library(h2o)
h2o.init()
h2o.shutdown()

## End(Not run)

h2o.signif Round doubles/floats to the given number of significant digits.

Description

Round doubles/floats to the given number of significant digits.

Usage

h2o.signif(x, digits = 6)

signif(x, digits = 6)

Arguments

x An H2OFrame object.

digits Number of significant digits to round doubles/floats.

See Also

Round for the base R implementation, signif().



h2o.sin 341

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/coxph_test/heart.csv"
heart <- h2o.importFile(f)

h2o.signif(heart["age"], digits = 3)

## End(Not run)

h2o.sin Compute the sine of x

Description

Compute the sine of x

Usage

h2o.sin(x)

Arguments

x An H2OFrame object.

See Also

Trig for the base R implementation, sin().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.sin(frame)

## End(Not run)



342 h2o.splitFrame

h2o.skewness Skewness of a column

Description

Obtain the skewness of a column of a parsed H2O data object.

Usage

h2o.skewness(x, ..., na.rm = TRUE)

skewness.H2OFrame(x, ..., na.rm = TRUE)

Arguments

x An H2OFrame object.

... Further arguments to be passed from or to other methods.

na.rm A logical value indicating whether NA or missing values should be stripped be-
fore the computation.

Value

Returns a list containing the skewness for each column (NaN for non-numeric columns).

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
h2o.skewness(prostate$AGE)

## End(Not run)

h2o.splitFrame Split an H2O Data Set

Description

Split an existing H2O data set according to user-specified ratios. The number of subsets is always 1
more than the number of given ratios. Note that this does not give an exact split. H2O is designed
to be efficient on big data using a probabilistic splitting method rather than an exact split. For
example, when specifying a split of 0.75/0.25, H2O will produce a test/train split with an expected
value of 0.75/0.25 rather than exactly 0.75/0.25. On small datasets, the sizes of the resulting splits
will deviate from the expected value more than on big data, where they will be very close to exact.



h2o.sqrt 343

Usage

h2o.splitFrame(data, ratios = 0.75, destination_frames, seed = -1)

Arguments

data An H2OFrame object, to be split.

ratios A numeric value or array indicating the ratio of total rows contained in each
split. Must total up to less than 1. e.g. c(0.8) for 80/20 split.

destination_frames

An array of frame IDs equal to the number of values specified in the ratios array,
plus one.

seed Random seed.

Value

Returns a list of split H2OFrames

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
iris_split <- h2o.splitFrame(iris_hf, ratios = c(0.2, 0.5))
head(iris_split[[1]])
summary(iris_split[[1]])

## End(Not run)

h2o.sqrt Compute the square root of x

Description

Compute the square root of x

Usage

h2o.sqrt(x)

Arguments

x An H2OFrame object.

See Also

MathFun for the base R implementation, sqrt().



344 h2o.stackedEnsemble

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.sqrt(frame)

## End(Not run)

h2o.stackedEnsemble Builds a Stacked Ensemble

Description

Build a stacked ensemble (aka. Super Learner) using the H2O base learning algorithms specified
by the user.

Usage

h2o.stackedEnsemble(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
blending_frame = NULL,
base_models = list(),
metalearner_algorithm = c("AUTO", "deeplearning", "drf", "gbm", "glm", "naivebayes",

"xgboost"),
metalearner_nfolds = 0,
metalearner_fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
metalearner_fold_column = NULL,
metalearner_params = NULL,
metalearner_transform = c("NONE", "Logit"),
max_runtime_secs = 0,
weights_column = NULL,
offset_column = NULL,
seed = -1,
score_training_samples = 10000,
keep_levelone_frame = FALSE,
export_checkpoints_dir = NULL,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO")

)



h2o.stackedEnsemble 345

Arguments

x (Optional). A vector containing the names or indices of the predictor variables
to use in building the model. If x is missing, then all columns except y are used.
Training frame is used only to compute ensemble training metrics.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.

blending_frame Frame used to compute the predictions that serve as the training frame for the
metalearner (triggers blending mode if provided)

base_models List of models or grids (or their ids) to ensemble/stack together. Grids are ex-
panded to individual models. If not using blending frame, then models must
have been cross-validated using nfolds > 1, and folds must be identical across
models.

metalearner_algorithm

Type of algorithm to use as the metalearner. Options include ’AUTO’ (GLM
with non negative weights; if validation_frame is present, a lambda search is
performed), ’deeplearning’ (Deep Learning with default parameters), ’drf’ (Ran-
dom Forest with default parameters), ’gbm’ (GBM with default parameters),
’glm’ (GLM with default parameters), ’naivebayes’ (NaiveBayes with default
parameters), or ’xgboost’ (if available, XGBoost with default parameters). Must
be one of: "AUTO", "deeplearning", "drf", "gbm", "glm", "naivebayes", "xg-
boost". Defaults to AUTO.

metalearner_nfolds

Number of folds for K-fold cross-validation of the metalearner algorithm (0 to
disable or >= 2). Defaults to 0.

metalearner_fold_assignment

Cross-validation fold assignment scheme for metalearner cross-validation. De-
faults to AUTO (which is currently set to Random). The ’Stratified’ option will
stratify the folds based on the response variable, for classification problems.
Must be one of: "AUTO", "Random", "Modulo", "Stratified".

metalearner_fold_column

Column with cross-validation fold index assignment per observation for cross-
validation of the metalearner.

metalearner_params

Parameters for metalearner algorithm
metalearner_transform

Transformation used for the level one frame. Must be one of: "NONE", "Logit".
Defaults to NONE.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.



346 h2o.stackedEnsemble

weights_column Column with observation weights. Giving some observation a weight of zero
is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

offset_column Offset column. This will be added to the combination of columns before apply-
ing the link function.

seed Seed for random numbers; passed through to the metalearner algorithm. De-
faults to -1 (time-based random number).

score_training_samples

Specify the number of training set samples for scoring. The value must be >= 0.
To use all training samples, enter 0. Defaults to 10000.

keep_levelone_frame

Logical. Keep level one frame used for metalearner training. Defaults to
FALSE.

export_checkpoints_dir

Automatically export generated models to this directory.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

Examples

## Not run:
library(h2o)
h2o.init()

# Import a sample binary outcome train/test set
train <- h2o.importFile("https://s3.amazonaws.com/erin-data/higgs/higgs_train_10k.csv")
test <- h2o.importFile("https://s3.amazonaws.com/erin-data/higgs/higgs_test_5k.csv")

# Identify predictors and response
y <- "response"
x <- setdiff(names(train), y)

# For binary classification, response should be a factor
train[, y] <- as.factor(train[, y])
test[, y] <- as.factor(test[, y])

# Number of CV folds
nfolds <- 5

# Train & Cross-validate a GBM
my_gbm <- h2o.gbm(x = x,

y = y,
training_frame = train,



h2o.startLogging 347

distribution = "bernoulli",
ntrees = 10,
max_depth = 3,
min_rows = 2,
learn_rate = 0.2,
nfolds = nfolds,
fold_assignment = "Modulo",
keep_cross_validation_predictions = TRUE,
seed = 1)

# Train & Cross-validate a RF
my_rf <- h2o.randomForest(x = x,

y = y,
training_frame = train,
ntrees = 50,
nfolds = nfolds,
fold_assignment = "Modulo",
keep_cross_validation_predictions = TRUE,
seed = 1)

# Train a stacked ensemble using the GBM and RF above
ensemble <- h2o.stackedEnsemble(x = x,

y = y,
training_frame = train,
model_id = "my_ensemble_binomial",
base_models = list(my_gbm, my_rf))

## End(Not run)

h2o.startLogging Start Writing H2O R Logs

Description

Begin logging H2o R POST commands and error responses to local disk. Used primarily for de-
buggin purposes.

Usage

h2o.startLogging(file)

Arguments

file a character string name for the file, automatically generated

See Also

h2o.stopLogging,h2o.clearLog,h2o.openLog



348 h2o.std_coef_plot

Examples

## Not run:
library(h2o)
h2o.init()
h2o.startLogging()
australia_path = system.file("extdata", "australia.csv", package = "h2o")
australia = h2o.importFile(path = australia_path)
h2o.stopLogging()

## End(Not run)

h2o.std_coef_plot Plot Standardized Coefficient Magnitudes

Description

Plot a GLM model’s standardized coefficient magnitudes.

Usage

h2o.std_coef_plot(model, num_of_features = NULL)

Arguments

model A trained generalized linear model
num_of_features

The number of features to be shown in the plot

See Also

h2o.varimp_plot for variable importances plot of random forest, GBM, deep learning.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),

training_frame = prostate, family = "binomial",
nfolds = 0, alpha = 0.5, lambda_search = FALSE)

h2o.std_coef_plot(prostate_glm)

## End(Not run)



h2o.stopLogging 349

h2o.stopLogging Stop Writing H2O R Logs

Description

Halt logging of H2O R POST commands and error responses to local disk. Used primarily for
debugging purposes.

Usage

h2o.stopLogging()

See Also

h2o.startLogging,h2o.clearLog,h2o.openLog

Examples

## Not run:
library(h2o)
h2o.init()
h2o.startLogging()
australia_path = system.file("extdata", "australia.csv", package = "h2o")
australia = h2o.importFile(path = australia_path)
h2o.stopLogging()

## End(Not run)

h2o.str Display the structure of an H2OFrame object

Description

Display the structure of an H2OFrame object

Usage

h2o.str(object, ..., cols = FALSE)

Arguments

object An H2OFrame.

... Further arguments to be passed from or to other methods.

cols Print the per-column str for the H2OFrame



350 h2o.stringdist

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.str(frame, cols = FALSE)

## End(Not run)

h2o.stringdist Compute element-wise string distances between two H2OFrames

Description

Compute element-wise string distances between two H2OFrames. Both frames need to have the
same shape (N x M) and only contain string/factor columns. Return a matrix (H2OFrame) of shape
N x M.

Usage

h2o.stringdist(
x,
y,
method = c("lv", "lcs", "qgram", "jaccard", "jw", "soundex"),
compare_empty = TRUE

)

Arguments

x An H2OFrame

y A comparison H2OFrame

method A string identifier indicating what string distance measure to use. Must be
one of: "lv" - Levenshtein distance "lcs" - Longest common substring distance
"qgram" - q-gram distance "jaccard" - Jaccard distance between q-gram profiles
"jw" - Jaro, or Jaro-Winker distance "soundex" - Distance based on soundex
encoding

compare_empty if set to FALSE, empty strings will be handled as NaNs



h2o.strsplit 351

Examples

## Not run:
h2o.init()
x <- as.h2o(c("Martha", "Dwayne", "Dixon"))
y <- as.character(as.h2o(c("Marhta", "Duane", "Dicksonx")))
h2o.stringdist(x, y, method = "jw")

## End(Not run)

h2o.strsplit String Split

Description

String Split

Usage

h2o.strsplit(x, split)

Arguments

x The column whose strings must be split.

split The pattern to split on.

Value

An H2OFrame where each column is the outcome of the string split.

Examples

## Not run:
library(h2o)
h2o.init()
string_to_split <- as.h2o("Split at every character.")
split_string <- h2o.strsplit(string_to_split, "")

## End(Not run)



352 h2o.substring

h2o.sub String Substitute

Description

Creates a copy of the target column in which each string has the first occurence of the regex pattern
replaced with the replacement substring.

Usage

h2o.sub(pattern, replacement, x, ignore.case = FALSE)

Arguments

pattern The pattern to replace.

replacement The replacement pattern.

x The column on which to operate.

ignore.case Case sensitive or not

Examples

## Not run:
library(h2o)
h2o.init()
string_to_sub <- as.h2o("r tutorial")
sub_string <- h2o.sub("r ", "H2O ", string_to_sub)

## End(Not run)

h2o.substring Substring

Description

Returns a copy of the target column that is a substring at the specified start and stop indices, inclu-
sive. If the stop index is not specified, then the substring extends to the end of the original string. If
start is longer than the number of characters in the original string, or is greater than stop, an empty
string is returned. Negative start is coerced to 0.

Usage

h2o.substring(x, start, stop = "[]")

h2o.substr(x, start, stop = "[]")



h2o.sum 353

Arguments

x The column on which to operate.

start The index of the first element to be included in the substring.

stop Optional, The index of the last element to be included in the substring.

Examples

## Not run:
library(h2o)
h2o.init()
string_to_substring <- as.h2o("1234567890")
substr <- h2o.substring(string_to_substring, 2) #Get substring from second index onwards

## End(Not run)

h2o.sum Compute the frame’s sum by-column (or by-row).

Description

Compute the frame’s sum by-column (or by-row).

Usage

h2o.sum(x, na.rm = FALSE, axis = 0, return_frame = FALSE)

Arguments

x An H2OFrame object.

na.rm logical. indicating whether missing values should be removed.

axis An int that indicates whether to do down a column (0) or across a row (1). For
row or column sums, the return_frame parameter must be TRUE.

return_frame A boolean that indicates whether to return an H2O frame or one single aggre-
gated value. Default is FALSE.

See Also

sum for the base R implementation.



354 h2o.summary

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.sum(frame["C1"], na.rm = TRUE, axis = 0, return_frame = TRUE)

## End(Not run)

h2o.summary Summarizes the columns of an H2OFrame.

Description

A method for the summary generic. Summarizes the columns of an H2O data frame or subset of
columns and rows using vector notation (e.g. dataset[row, col]).

Usage

h2o.summary(object, factors = 6L, exact_quantiles = FALSE, ...)

## S3 method for class 'H2OFrame'
summary(object, factors, exact_quantiles, ...)

Arguments

object An H2OFrame object.

factors The number of factors to return in the summary. Default is the top 6.
exact_quantiles

Compute exact quantiles or use approximation. Default is to use approximation.

... Further arguments passed to or from other methods.

Details

By default it uses approximated version of quantiles computation, however, user can modify this
behavior by setting up exact_quantiles argument to true.

Value

A table displaying the minimum, 1st quartile, median, mean, 3rd quartile and maximum for each
numeric column, and the levels and category counts of the levels in each categorical column.



h2o.svd 355

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path)
summary(prostate)
summary(prostate$GLEASON)
summary(prostate[, 4:6])
summary(prostate, exact_quantiles = TRUE)

## End(Not run)

h2o.svd Singular value decomposition of an H2O data frame using the power
method

Description

Singular value decomposition of an H2O data frame using the power method

Usage

h2o.svd(
training_frame,
x,
destination_key,
model_id = NULL,
validation_frame = NULL,
ignore_const_cols = TRUE,
score_each_iteration = FALSE,
transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"),
svd_method = c("GramSVD", "Power", "Randomized"),
nv = 1,
max_iterations = 1000,
seed = -1,
keep_u = TRUE,
u_name = NULL,
use_all_factor_levels = TRUE,
max_runtime_secs = 0,
export_checkpoints_dir = NULL

)

Arguments

training_frame Id of the training data frame.

x A vector containing the character names of the predictors in the model.



356 h2o.svd

destination_key

(Optional) The unique key assigned to the resulting model. Automatically gen-
erated if none is provided.

model_id Destination id for this model; auto-generated if not specified.

validation_frame

Id of the validation data frame.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.

score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

transform Transformation of training data Must be one of: "NONE", "STANDARDIZE",
"NORMALIZE", "DEMEAN", "DESCALE". Defaults to NONE.

svd_method Method for computing SVD (Caution: Randomized is currently experimental
and unstable) Must be one of: "GramSVD", "Power", "Randomized". Defaults
to GramSVD.

nv Number of right singular vectors Defaults to 1.

max_iterations Maximum iterations Defaults to 1000.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

keep_u Logical. Save left singular vectors? Defaults to TRUE.

u_name Frame key to save left singular vectors

use_all_factor_levels

Logical. Whether first factor level is included in each categorical expansion
Defaults to TRUE.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

export_checkpoints_dir

Automatically export generated models to this directory.

Value

an object of class H2ODimReductionModel.

References

N. Halko, P.G. Martinsson, J.A. Tropp. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions[https://arxiv.org/abs/0909.4061]. SIAM Rev.,
Survey and Review section, Vol. 53, num. 2, pp. 217-288, June 2011.



h2o.table 357

Examples

## Not run:
library(h2o)
h2o.init()
australia_path <- system.file("extdata", "australia.csv", package = "h2o")
australia <- h2o.uploadFile(path = australia_path)
h2o.svd(training_frame = australia, nv = 8)

## End(Not run)

h2o.table Cross Tabulation and Table Creation in H2O

Description

Uses the cross-classifying factors to build a table of counts at each combination of factor levels.

Usage

h2o.table(x, y = NULL, dense = TRUE)

table.H2OFrame(x, y = NULL, dense = TRUE)

Arguments

x An H2OFrame object with at most two columns.

y An H2OFrame similar to x, or NULL.

dense A logical for dense representation, which lists only non-zero counts, 1 combi-
nation per row. Set to FALSE to expand counts across all combinations.

Value

Returns a tabulated H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
summary(prostate)

# Counts of the ages of all patients
head(h2o.table(prostate[, 3]))
h2o.table(prostate[, 3])

# Two-way table of ages (rows) and race (cols) of all patients



358 h2o.tabulate

head(h2o.table(prostate[, c(3, 4)]))
h2o.table(prostate[, c(3, 4)])

## End(Not run)

h2o.tabulate Tabulation between Two Columns of an H2OFrame

Description

Simple Co-Occurrence based tabulation of X vs Y, where X and Y are two Vecs in a given dataset.
Uses histogram of given resolution in X and Y. Handles numerical/categorical data and missing
values. Supports observation weights.

Usage

h2o.tabulate(data, x, y, weights_column = NULL, nbins_x = 50, nbins_y = 50)

Arguments

data An H2OFrame object.

x predictor column

y response column

weights_column (optional) observation weights column

nbins_x number of bins for predictor column

nbins_y number of bins for response column

Value

Returns two TwoDimTables of 3 columns each count_table: X Y counts response_table: X meanY
counts

Examples

## Not run:
library(h2o)
h2o.init()
df <- as.h2o(iris)
tab <- h2o.tabulate(data = df, x = "Sepal.Length", y = "Petal.Width",

weights_column = NULL, nbins_x = 10, nbins_y = 10)
plot(tab)

## End(Not run)



h2o.tan 359

h2o.tan Compute the tangent of x

Description

Compute the tangent of x

Usage

h2o.tan(x)

Arguments

x An H2OFrame object.

See Also

Trig for the base R implementation, tan().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.tan(frame)

## End(Not run)

h2o.tanh Compute the hyperbolic tangent of x

Description

Compute the hyperbolic tangent of x

Usage

h2o.tanh(x)

Arguments

x An H2OFrame object.



360 h2o.targetencoder

See Also

Hyperbolic for the base R implementation, tanh().

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.tanh(frame)

## End(Not run)

h2o.targetencoder Transformation of a categorical variable with a mean value of the tar-
get variable

Description

Transformation of a categorical variable with a mean value of the target variable

Usage

h2o.targetencoder(
x,
y,
training_frame,
model_id = NULL,
fold_column = NULL,
columns_to_encode = NULL,
keep_original_categorical_columns = TRUE,
blending = FALSE,
inflection_point = 10,
smoothing = 20,
data_leakage_handling = c("leave_one_out", "k_fold", "none", "LeaveOneOut", "KFold",

"None"),
noise = 0.01,
seed = -1,
...

)



h2o.targetencoder 361

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.
model_id Destination id for this model; auto-generated if not specified.
fold_column Column with cross-validation fold index assignment per observation.
columns_to_encode

List of categorical columns or groups of categorical columns to encode. When
groups of columns are specified, each group is encoded as a single column (in-
teractions are created internally).

keep_original_categorical_columns

Logical. If true, the original non-encoded categorical features will remain in
the result frame. Defaults to TRUE.

blending Logical. If true, enables blending of posterior probabilities (computed for a
given categorical value) with prior probabilities (computed on the entire set).
This allows to mitigate the effect of categorical values with small cardinality.
The blending effect can be tuned using the ‘inflection_point‘ and ‘smoothing‘
parameters. Defaults to FALSE.

inflection_point

Inflection point of the sigmoid used to blend probabilities (see ‘blending‘ pa-
rameter). For a given categorical value, if it appears less that ‘inflection_point‘
in a data sample, then the influence of the posterior probability will be smaller
than the prior. Defaults to 10.

smoothing Smoothing factor corresponds to the inverse of the slope at the inflection point on
the sigmoid used to blend probabilities (see ‘blending‘ parameter). If smoothing
tends towards 0, then the sigmoid used for blending turns into a Heaviside step
function. Defaults to 20.

data_leakage_handling

Data leakage handling strategy used to generate the encoding. Supported op-
tions are: 1) "none" (default) - no holdout, using the entire training frame.
2) "leave_one_out" - current row’s response value is subtracted from the per-
level frequencies pre-calculated on the entire training frame. 3) "k_fold" - en-
codings for a fold are generated based on out-of-fold data. Must be one of:
"leave_one_out", "k_fold", "none", "LeaveOneOut", "KFold", "None". Defaults
to None.

noise The amount of noise to add to the encoded column. Use 0 to disable noise,
and -1 (=AUTO) to let the algorithm determine a reasonable amount of noise.
Defaults to 0.01.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

... Mainly used for backwards compatibility, to allow deprecated parameters.



362 h2o.target_encode_apply

Examples

## Not run:
library(h2o)
h2o.init()
#Import the titanic dataset
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv"
titanic <- h2o.importFile(f)

# Set response as a factor
response <- "survived"
titanic[response] <- as.factor(titanic[response])

# Split the dataset into train and test
splits <- h2o.splitFrame(data = titanic, ratios = .8, seed = 1234)
train <- splits[[1]]
test <- splits[[2]]

# Choose which columns to encode
encode_columns <- c("home.dest", "cabin", "embarked")

# Train a TE model
te_model <- h2o.targetencoder(x = encode_columns,

y = response,
training_frame = train,
fold_column = "pclass",
data_leakage_handling = "KFold")

# New target encoded train and test sets
train_te <- h2o.transform(te_model, train)
test_te <- h2o.transform(te_model, test)

## End(Not run)

h2o.target_encode_apply

Apply Target Encoding Map to Frame

Description

Applies a target encoding map to an H2OFrame object. Computing target encoding for high cardi-
nality categorical columns can improve performance of supervised learning models. A Target En-
coding tutorial is available here: https://github.com/h2oai/h2o-tutorials/blob/master/
best-practices/categorical-predictors/target_encoding.md.

Usage

h2o.target_encode_apply(
data,
x,

https://github.com/h2oai/h2o-tutorials/blob/master/best-practices/categorical-predictors/target_encoding.md
https://github.com/h2oai/h2o-tutorials/blob/master/best-practices/categorical-predictors/target_encoding.md


h2o.target_encode_apply 363

y,
target_encode_map,
holdout_type,
fold_column = NULL,
blended_avg = TRUE,
noise_level = NULL,
seed = -1

)

Arguments

data An H2OFrame object with which to apply the target encoding map.

x A list containing the names or indices of the variables to encode. A target en-
coding column will be created for each element in the list. Items in the list can
be multiple columns. For example, if ‘x = list(c("A"), c("B", "C"))‘, then the
resulting frame will have a target encoding column for A and a target encoding
column for B & C (in this case, we group by two columns).

y The name or column index of the response variable in the data. The response
variable can be either numeric or binary.

target_encode_map

A list of H2OFrame objects that is the results of the h2o.target_encode_create
function.

holdout_type The holdout type used. Must be one of: "LeaveOneOut", "KFold", "None".

fold_column (Optional) The name or column index of the fold column in the data. Defaults
to NULL (no ‘fold_column‘). Only required if ‘holdout_type‘ = "KFold".

blended_avg Logical. (Optional) Whether to perform blended average.

noise_level (Optional) The amount of random noise added to the target encoding. This helps
prevent overfitting. Defaults to 0.01 * range of y.

seed (Optional) A random seed used to generate draws from the uniform distribution
for random noise. Defaults to -1.

Value

Returns an H2OFrame object containing the target encoding per record.

See Also

h2o.target_encode_create for creating the target encoding map

Examples

## Not run:
library(h2o)
h2o.init()

# Get Target Encoding Frame on bank-additional-full data with numeric `y`
data <- h2o.importFile(
path = "https://s3.amazonaws.com/h2o-public-test-data/smalldata/demos/bank-additional-full.csv")



364 h2o.target_encode_create

splits <- h2o.splitFrame(data, seed = 1234)
train <- splits[[1]]
test <- splits[[2]]
mapping <- h2o.target_encode_create(data = train, x = list(c("job"), c("job", "marital")),

y = "age")

# Apply mapping to the training dataset
train_encode <- h2o.target_encode_apply(data = train, x = list(c("job"), c("job", "marital")),

y = "age", mapping, holdout_type = "LeaveOneOut")
# Apply mapping to a test dataset
test_encode <- h2o.target_encode_apply(data = test, x = list(c("job"), c("job", "marital")),

y = "age", target_encode_map = mapping,
holdout_type = "None")

## End(Not run)

h2o.target_encode_create

Create Target Encoding Map

Description

Creates a target encoding map based on group-by columns (‘x‘) and a numeric or binary target
column (‘y‘). Computing target encoding for high cardinality categorical columns can improve per-
formance of supervised learning models. A Target Encoding tutorial is available here: https://
github.com/h2oai/h2o-tutorials/blob/master/best-practices/categorical-predictors/
target_encoding.md.

Usage

h2o.target_encode_create(data, x, y, fold_column = NULL)

Arguments

data An H2OFrame object with which to create the target encoding map.
x A list containing the names or indices of the variables to encode. A target en-

coding map will be created for each element in the list. Items in the list can be
multiple columns. For example, if ‘x = list(c("A"), c("B", "C"))‘, then there will
be one mapping frame for A and one mapping frame for B & C (in this case, we
group by two columns).

y The name or column index of the response variable in the data. The response
variable can be either numeric or binary.

fold_column (Optional) The name or column index of the fold column in the data. Defaults
to NULL (no ‘fold_column‘).

Value

Returns a list of H2OFrame objects containing the target encoding mapping for each column in ‘x‘.

https://github.com/h2oai/h2o-tutorials/blob/master/best-practices/categorical-predictors/target_encoding.md
https://github.com/h2oai/h2o-tutorials/blob/master/best-practices/categorical-predictors/target_encoding.md
https://github.com/h2oai/h2o-tutorials/blob/master/best-practices/categorical-predictors/target_encoding.md


h2o.tf_idf 365

See Also

h2o.target_encode_apply for applying the target encoding mapping to a frame.

Examples

## Not run:
library(h2o)
h2o.init()

# Get Target Encoding Map on bank-additional-full data with numeric response
data <- h2o.importFile(
path = "https://s3.amazonaws.com/h2o-public-test-data/smalldata/demos/bank-additional-full.csv")
mapping_age <- h2o.target_encode_create(data = data, x = list(c("job"), c("job", "marital")),

y = "age")
head(mapping_age)

# Get Target Encoding Map on bank-additional-full data with binary response
mapping_y <- h2o.target_encode_create(data = data, x = list(c("job"), c("job", "marital")),

y = "y")
head(mapping_y)

## End(Not run)

h2o.tf_idf Computes TF-IDF values for each word in given documents.

Description

Computes TF-IDF values for each word in given documents.

Usage

h2o.tf_idf(
frame,
document_id_col,
text_col,
preprocess = TRUE,
case_sensitive = TRUE

)

Arguments

frame documents or words frame for which TF-IDF values should be computed.
document_id_col

index or name of a column containing document IDs.

text_col index or name of a column containing documents if ‘preprocess = TRUE‘ or
words if ‘preprocess = FALSE‘.



366 h2o.thresholds_and_metric_scores

preprocess whether input text data should be pre-processed. Defaults to ‘TRUE‘.

case_sensitive whether input data should be treated as case sensitive. Defaults to ‘TRUE‘.

Value

resulting frame with TF-IDF values. Row format: documentID, word, TF, IDF, TF-IDF

h2o.thresholds_and_metric_scores

Retrieve the thresholds and metric scores table

Description

Retrieves the thresholds and metric scores table from an H2OBinomialUpliftMetrics. The table
contains indices, thresholds, all cumulative uplift values and cumulative number of observations.
If "train" and "valid" parameters are FALSE (default), then the training table is returned. If more
than one parameter is set to TRUE, then a named vector of tables is returned, where the names are
"train", "valid".

Usage

h2o.thresholds_and_metric_scores(object, train = FALSE, valid = FALSE)

Arguments

object An H2OBinomialUpliftMetrics

train Retrieve the training thresholds and metric scores table

valid Retrieve the validation thresholds and metric scores table

Examples

## Not run:
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)

model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")

perf <- h2o.performance(model, train=TRUE)
h2o.thresholds_and_metric_scores(perf)

## End(Not run)



h2o.toFrame 367

h2o.toFrame Convert a word2vec model into an H2OFrame

Description

Converts a given word2vec model into an H2OFrame. The frame represents learned word embed-
dings

Usage

h2o.toFrame(word2vec)

Arguments

word2vec A word2vec model.

Examples

## Not run:
h2o.init()

# Build a dummy word2vec model
data <- as.character(as.h2o(c("a", "b", "a")))
w2v_model <- h2o.word2vec(data, sent_sample_rate = 0, min_word_freq = 0, epochs = 1, vec_size = 2)

# Transform words to vectors and return average vector for each sentence
h2o.toFrame(w2v_model) # -> Frame made of 2 rows and 2 columns

## End(Not run)

h2o.tokenize Tokenize String

Description

h2o.tokenize is similar to h2o.strsplit, the difference between them is that h2o.tokenize will store
the tokenized text into a single column making it easier for additional processing (filtering stop
words, word2vec algo, ...).

Usage

h2o.tokenize(x, split)

Arguments

x The column or columns whose strings to tokenize.

split The regular expression to split on.



368 h2o.tolower

Value

An H2OFrame with a single column representing the tokenized Strings. Original rows of the input
DF are separated by NA.

Examples

## Not run:
library(h2o)
h2o.init()
string_to_tokenize <- as.h2o("Split at every character and tokenize.")
tokenize_string <- h2o.tokenize(as.character(string_to_tokenize), "")

## End(Not run)

h2o.tolower Convert strings to lowercase

Description

Convert strings to lowercase

Usage

h2o.tolower(x)

Arguments

x An H2OFrame object whose strings should be lower cased

Value

An H2OFrame with all entries in lowercase format

Examples

## Not run:
library(h2o)
h2o.init()
string_to_lower <- as.h2o("ABCDE")
lowered_string <- h2o.tolower(string_to_lower)

## End(Not run)



h2o.topBottomN 369

h2o.topBottomN H2O topBottomN

Description

topBottomN function will will grab the top N percent or botom N percent of values of a column and
return it in a H2OFrame.

Usage

h2o.topBottomN(x, column, nPercent, grabTopN)

Arguments

x an H2OFrame

column is a column name or column index to grab the top N percent value from

nPercent a top percentage values to grab

grabTopN if -1 grab bottom percentage, 1 grab top percentage

Value

An H2OFrame with 2 columns: first column is the original row indices, second column contains
the values

h2o.topN H2O topN

Description

Extract the top N percent of values of a column and return it in a H2OFrame.

Usage

h2o.topN(x, column, nPercent)

Arguments

x an H2OFrame

column is a column name or column index to grab the top N percent value from

nPercent is a top percentage value to grab

Value

An H2OFrame with 2 columns. The first column is the original row indices, second column contains
the topN values



370 h2o.totss

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/jira/TopBottomNRep4.csv.zip"
dataset <- h2o.importFile(f)
frameNames <- names(dataset)
nPercent <- c(1, 2, 3, 4)
nP <- nPercent[sample(1:length(nPercent), 1, replace = FALSE)]
colIndex <- sample(1:length(frameNames), 1, replace = FALSE)
h2o.topN(dataset, frameNames[colIndex], nP)

## End(Not run)

h2o.totss Get the total sum of squares.

Description

If "train", "valid", and "xval" parameters are FALSE (default), then the training totss value is re-
turned. If more than one parameter is set to TRUE, then a named vector of totss’ are returned, where
the names are "train", "valid" or "xval".

Usage

h2o.totss(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OClusteringModel object.

train Retrieve the training total sum of squares

valid Retrieve the validation total sum of squares

xval Retrieve the cross-validation total sum of squares

Examples

## Not run:
library(h2o)
h2o.init()

fr <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv")
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
km <- h2o.kmeans(x = predictors, training_frame = fr, k = 3, nfolds = 3)
h2o.totss(km, train = TRUE)

## End(Not run)



h2o.tot_withinss 371

h2o.tot_withinss Get the total within cluster sum of squares.

Description

If "train", "valid", and "xval" parameters are FALSE (default), then the training tot_withinss value
is returned. If more than one parameter is set to TRUE, then a named vector of tot_withinss’ are
returned, where the names are "train", "valid" or "xval".

Usage

h2o.tot_withinss(object, train = FALSE, valid = FALSE, xval = FALSE)

Arguments

object An H2OClusteringModel object.

train Retrieve the training total within cluster sum of squares

valid Retrieve the validation total within cluster sum of squares

xval Retrieve the cross-validation total within cluster sum of squares

Examples

## Not run:
library(h2o)
h2o.init()

fr <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_train.csv")
predictors <- c("sepal_len", "sepal_wid", "petal_len", "petal_wid")
km <- h2o.kmeans(x = predictors, training_frame = fr, k = 3, nfolds = 3)
h2o.tot_withinss(km, train = TRUE)

## End(Not run)

h2o.toupper Convert strings to uppercase

Description

Convert strings to uppercase

Usage

h2o.toupper(x)



372 h2o.train_segments

Arguments

x An H2OFrame object whose strings should be upper cased

Value

An H2OFrame with all entries in uppercase format

Examples

## Not run:
library(h2o)
h2o.init()
string_to_upper <- as.h2o("abcde")
upper_string <- h2o.toupper(string_to_upper)

## End(Not run)

h2o.train_segments H2O Segmented-Data Bulk Model Training

Description

Provides a set of functions to train a group of models on different segments (subpopulations) of the
training set.

Usage

h2o.train_segments(
algorithm,
segment_columns,
segment_models_id,
parallelism = 1,
...

)

Arguments

algorithm Name of algorithm to use in training segment models (gbm, randomForest,
kmeans, glm, deeplearning, naivebayes, psvm, xgboost, pca, svd, targetencoder,
aggregator, word2vec, coxph, isolationforest, kmeans, stackedensemble, glrm,
gam, anovaglm, modelselection).

segment_columns

A list of columns to segment-by. H2O will group the training (and validation)
dataset by the segment-by columns and train a separate model for each segment
(group of rows).

segment_models_id

Identifier for the returned collection of Segment Models. If not specified it will
be automatically generated.



h2o.transform 373

parallelism Level of parallelism of bulk model building, it is the maximum number of mod-
els each H2O node will be building in parallel, defaults to 1.

... Use to pass along training_frame parameter, x, y, and all non-default parame-
ter values to the algorithm Look at the specific algorithm - h2o.gbm, h2o.glm,
h2o.kmeans, h2o.deepLearning - for available parameters.

Details

Start Segmented-Data bulk Model Training for a given algorithm and parameters.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
models <- h2o.train_segments(algorithm = "gbm",

segment_columns = "Species",
x = c(1:3), y = 4,
training_frame = iris_hf,
ntrees = 5,
max_depth = 4)

as.data.frame(models)

## End(Not run)

h2o.transform Use H2O Transformation model and apply the underlying transforma-
tion

Description

Use H2O Transformation model and apply the underlying transformation

Usage

h2o.transform(model, ...)

Arguments

model A trained model representing the transformation strategy

... Transformation model-specific parameters

Value

Returns an H2OFrame object with data transformed.



374 h2o.transform,H2OTargetEncoderModel-method

h2o.transform,H2OTargetEncoderModel-method

Applies target encoding to a given dataset

Description

Applies target encoding to a given dataset

Usage

## S4 method for signature 'H2OTargetEncoderModel'
h2o.transform(
model,
data,
blending = NULL,
inflection_point = -1,
smoothing = -1,
noise = NULL,
as_training = FALSE,
...

)

Arguments

model A trained model representing the transformation strategy

data An H2OFrame with data to be transformed

blending Use blending during the transformation. Respects model settings when not set.

inflection_point

Blending parameter. Only effective when blending is enabled. By default, model
settings are respected, if not overridden by this setting.

smoothing Blending parameter. Only effective when blending is enabled. By default, model
settings are respected, if not overridden by this setting.

noise An amount of random noise added to the encoding, this helps prevent overfitting.
By default, model settings are respected, if not overridden by this setting.

as_training Must be set to True when encoding the training frame. Defaults to False.

... Mainly used for backwards compatibility, to allow deprecated parameters.

Value

Returns an H2OFrame object with data transformed.



h2o.transform,H2OWordEmbeddingModel-method 375

h2o.transform,H2OWordEmbeddingModel-method

Transform words (or sequences of words) to vectors using a word2vec
model.

Description

Transform words (or sequences of words) to vectors using a word2vec model.

Usage

## S4 method for signature 'H2OWordEmbeddingModel'
h2o.transform(model, words, aggregate_method = c("NONE", "AVERAGE"))

Arguments

model A word2vec model.

words An H2OFrame made of a single column containing source words.

aggregate_method

Specifies how to aggregate sequences of words. If method is ‘NONE‘ then no
aggregation is performed and each input word is mapped to a single word-vector.
If method is ’AVERAGE’ then input is treated as sequences of words delimited
by NA. Each word of a sequences is internally mapped to a vector and vectors
belonging to the same sentence are averaged and returned in the result.

Examples

## Not run:
h2o.init()

# Build a simple word2vec model
data <- as.character(as.h2o(c("a", "b", "a")))
w2v_model <- h2o.word2vec(data, sent_sample_rate = 0, min_word_freq = 0, epochs = 1, vec_size = 2)

# Transform words to vectors without aggregation
sentences <- as.character(as.h2o(c("b", "c", "a", NA, "b")))
h2o.transform(w2v_model, sentences) # -> 5 rows total, 2 rows NA ("c" is not in the vocabulary)

# Transform words to vectors and return average vector for each sentence
h2o.transform(w2v_model, sentences, aggregate_method = "AVERAGE") # -> 2 rows

## End(Not run)



376 h2o.transform_word2vec

h2o.transform_word2vec

Transform words (or sequences of words) to vectors using a word2vec
model.

Description

Transform words (or sequences of words) to vectors using a word2vec model.

Usage

h2o.transform_word2vec(
word2vec,
words,
aggregate_method = c("NONE", "AVERAGE")

)

Arguments

word2vec A word2vec model.

words An H2OFrame made of a single column containing source words.
aggregate_method

Specifies how to aggregate sequences of words. If method is ‘NONE‘ then no
aggregation is performed and each input word is mapped to a single word-vector.
If method is ’AVERAGE’ then input is treated as sequences of words delimited
by NA. Each word of a sequences is internally mapped to a vector and vectors
belonging to the same sentence are averaged and returned in the result.

Examples

## Not run:
h2o.init()

# Build a dummy word2vec model
data <- as.character(as.h2o(c("a", "b", "a")))
w2v_model <- h2o.word2vec(data, sent_sample_rate = 0, min_word_freq = 0, epochs = 1, vec_size = 2)

# Transform words to vectors without aggregation
sentences <- as.character(as.h2o(c("b", "c", "a", NA, "b")))
h2o.transform(w2v_model, sentences) # -> 5 rows total, 2 rows NA ("c" is not in the vocabulary)

# Transform words to vectors and return average vector for each sentence
h2o.transform(w2v_model, sentences, aggregate_method = "AVERAGE") # -> 2 rows

## End(Not run)



h2o.trim 377

h2o.trim Trim Space

Description

Trim Space

Usage

h2o.trim(x)

Arguments

x The column whose strings should be trimmed.

Examples

## Not run:
library(h2o)
h2o.init()
string_to_trim <- as.h2o("r tutorial")
trim_string <- h2o.trim(string_to_trim)

## End(Not run)

h2o.trunc Truncate values in x toward 0

Description

trunc takes a single numeric argument x and returns a numeric vector containing the integers formed
by truncating the values in x toward 0.

Usage

h2o.trunc(x)

Arguments

x An H2OFrame object.

See Also

Round for the base R implementation, trunc().



378 h2o.unique

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

h2o.trunc(frame["C1"])

## End(Not run)

h2o.unique H2O Unique

Description

Extract unique values in the column.

Usage

h2o.unique(x, include_nas = FALSE)

Arguments

x An H2OFrame object.

include_nas If set to TRUE, NAs are included. FALSE (turned off) by default.

Value

Returns an H2OFrame object.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv"
iris <- h2o.importFile(f)
h2o.unique(iris["class"])

## End(Not run)



h2o.upliftRandomForest 379

h2o.upliftRandomForest

Build a Uplift Random Forest model

Description

Builds a Uplift Random Forest model on an H2OFrame.

Usage

h2o.upliftRandomForest(
x,
y,
training_frame,
treatment_column,
model_id = NULL,
validation_frame = NULL,
score_each_iteration = FALSE,
score_tree_interval = 0,
ignore_const_cols = TRUE,
ntrees = 50,
max_depth = 20,
min_rows = 1,
nbins = 20,
nbins_top_level = 1024,
nbins_cats = 1024,
max_runtime_secs = 0,
seed = -1,
mtries = -2,
sample_rate = 0.632,
sample_rate_per_class = NULL,
col_sample_rate_change_per_level = 1,
col_sample_rate_per_tree = 1,
histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal",
"RoundRobin"),

categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma",
"tweedie", "laplace", "quantile", "huber"),

check_constant_response = TRUE,
uplift_metric = c("AUTO", "KL", "Euclidean", "ChiSquared"),
auuc_type = c("AUTO", "qini", "lift", "gain"),
auuc_nbins = -1,
verbose = FALSE

)



380 h2o.upliftRandomForest

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.

training_frame Id of the training data frame.
treatment_column

Define the column which will be used for computing uplift gain to select best
split for a tree. The column has to divide the dataset into treatment (value 1) and
control (value 0) groups. Defaults to treatment.

model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

score_tree_interval

Score the model after every so many trees. Disabled if set to 0. Defaults to 0.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.

ntrees Number of trees. Defaults to 50.

max_depth Maximum tree depth (0 for unlimited). Defaults to 20.

min_rows Fewest allowed (weighted) observations in a leaf. Defaults to 1.

nbins For numerical columns (real/int), build a histogram of (at least) this many bins,
then split at the best point Defaults to 20.

nbins_top_level

For numerical columns (real/int), build a histogram of (at most) this many bins
at the root level, then decrease by factor of two per level Defaults to 1024.

nbins_cats For categorical columns (factors), build a histogram of this many bins, then split
at the best point. Higher values can lead to more overfitting. Defaults to 1024.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

mtries Number of variables randomly sampled as candidates at each split. If set to -1,
defaults to sqrtp for classification and p/3 for regression (where p is the # of
predictors Defaults to -2.

sample_rate Row sample rate per tree (from 0.0 to 1.0) Defaults to 0.632.



h2o.upliftRandomForest 381

sample_rate_per_class

A list of row sample rates per class (relative fraction for each class, from 0.0 to
1.0), for each tree

col_sample_rate_change_per_level

Relative change of the column sampling rate for every level (must be > 0.0 and
<= 2.0) Defaults to 1.

col_sample_rate_per_tree

Column sample rate per tree (from 0.0 to 1.0) Defaults to 1.

histogram_type What type of histogram to use for finding optimal split points Must be one of:
"AUTO", "UniformAdaptive", "Random", "QuantilesGlobal", "RoundRobin".
Defaults to AUTO.

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

distribution Distribution function Must be one of: "AUTO", "bernoulli", "multinomial",
"gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber". De-
faults to AUTO.

check_constant_response

Logical. Check if response column is constant. If enabled, then an exception
is thrown if the response column is a constant value.If disabled, then model will
train regardless of the response column being a constant value or not. Defaults
to TRUE.

uplift_metric Divergence metric used to find best split when building an uplift tree. Must be
one of: "AUTO", "KL", "Euclidean", "ChiSquared". Defaults to AUTO.

auuc_type Metric used to calculate Area Under Uplift Curve. Must be one of: "AUTO",
"qini", "lift", "gain". Defaults to AUTO.

auuc_nbins Number of bins to calculate Area Under Uplift Curve. Defaults to -1.

verbose Logical. Print scoring history to the console (Metrics per tree). Defaults to
FALSE.

Value

Creates a H2OModel object of the right type.

See Also

predict.H2OModel for prediction



382 h2o.upload_mojo

h2o.upload_model Upload a binary model from the provided local path to the H2O clus-
ter. (H2O model can be saved in a binary form either by saveModel()
or by download_model() function.)

Description

Upload a binary model from the provided local path to the H2O cluster. (H2O model can be saved
in a binary form either by saveModel() or by download_model() function.)

Usage

h2o.upload_model(path)

Arguments

path A path on the machine this python session is currently connected to, specifying
the location of the model to upload.

Value

Returns a new H2OModel object.

See Also

h2o.saveModel, h2o.download_model

h2o.upload_mojo Imports a MOJO from a local filesystem, creating a Generic model
with it.

Description

Usage example: mojo_model <- h2o.upload_mojo(model_file_path = "/path/to/local/mojo.zip")
predictions <- h2o.predict(mojo_model, dataset)

Usage

h2o.upload_mojo(mojo_local_file_path, model_id = NULL)

Arguments

mojo_local_file_path

Filesystem path to the model imported

model_id Model ID, default is NULL



h2o.var 383

Value

Returns H2O Generic Model embedding given MOJO model

Examples

## Not run:

# Import default Iris dataset as H2O frame
data <- as.h2o(iris)

# Train a very simple GBM model
features <- c("Sepal.Length", "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
original_model <- h2o.gbm(x = features, y = "Species", training_frame = data)

# Download the trained GBM model as MOJO (temporary directory used in this example)
mojo_original_name <- h2o.download_mojo(model = original_model, path = tempdir())
mojo_original_path <- paste0(tempdir(), "/", mojo_original_name)

# Upload the MOJO from local filesystem and obtain a Generic model
mojo_model <- h2o.upload_mojo(mojo_original_path)

# Perform scoring with the generic model
predictions <- h2o.predict(mojo_model, data)

## End(Not run)

h2o.var Variance of a column or covariance of columns.

Description

Compute the variance or covariance matrix of one or two H2OFrames.

Usage

h2o.var(x, y = NULL, na.rm = FALSE, use)

var(x, y = NULL, na.rm = FALSE, use)

Arguments

x An H2OFrame object.
y NULL (default) or an H2OFrame. The default is equivalent to y = x.
na.rm logical. Should missing values be removed?
use An optional character string indicating how to handle missing values. This must

be one of the following: "everything" - outputs NaNs whenever one of its con-
tributing observations is missing "all.obs" - presence of missing observations
will throw an error "complete.obs" - discards missing values along with all ob-
servations in their rows so that only complete observations are used



384 h2o.varimp

See Also

cor for the base R implementation, var(). h2o.sd for standard deviation.

Examples

## Not run:
library(h2o)
h2o.init()

prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
var(prostate$AGE)

## End(Not run)

h2o.varimp Retrieve the variable importance.

Description

Retrieve the variable importance.

Usage

h2o.varimp(object, ...)

Arguments

object An H2O object.

... Additional arguments for specific use-cases.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip"
pros <- h2o.importFile(f)
response <- "GLEASON"
predictors <- c("ID", "AGE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS")
aml <- h2o.automl(x = predictors, y = response, training_frame = pros, max_runtime_secs = 60)

h2o.varimp(aml, top_n = 20) # get variable importance matrix for the top 20 models

h2o.varimp(aml@leader) # get variable importance for the leader model

## End(Not run)



h2o.varimp,H2OAutoML-method 385

h2o.varimp,H2OAutoML-method

Retrieve the variable importance.

Description

Retrieve the variable importance.

Usage

## S4 method for signature 'H2OAutoML'
h2o.varimp(object, top_n = 20)

Arguments

object An H2OAutoML object.

top_n Show at most top_n models

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip"
pros <- h2o.importFile(f)
response <- "GLEASON"
predictors <- c("ID", "AGE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS")
aml <- h2o.automl(x = predictors, y = response, training_frame = pros, max_runtime_secs = 60)
h2o.varimp(aml)

## End(Not run)

h2o.varimp,H2OFrame-method

Retrieve the variable importance.

Description

Retrieve the variable importance.

Usage

## S4 method for signature 'H2OFrame'
h2o.varimp(object)



386 h2o.varimp,H2OModel-method

Arguments

object A leaderboard frame.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip"
pros <- h2o.importFile(f)
response <- "GLEASON"
predictors <- c("ID", "AGE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS")
aml <- h2o.automl(x = predictors, y = response, training_frame = pros, max_runtime_secs = 60)
h2o.varimp(aml@leaderboard[1:5,])

## End(Not run)

h2o.varimp,H2OModel-method

Retrieve the variable importance.

Description

Retrieve the variable importance.

Usage

## S4 method for signature 'H2OModel'
h2o.varimp(object)

Arguments

object An H2OModel object.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip"
pros <- h2o.importFile(f)
response <- "GLEASON"
predictors <- c("ID", "AGE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS")
model <- h2o.glm(x = predictors, y = response, training_frame = pros)
h2o.varimp(model)

## End(Not run)



h2o.varimp_heatmap 387

h2o.varimp_heatmap Variable Importance Heatmap across multiple models

Description

Variable importance heatmap shows variable importance across multiple models. Some models
in H2O return variable importance for one-hot (binary indicator) encoded versions of categori-
cal columns (e.g. Deep Learning, XGBoost). In order for the variable importance of categorical
columns to be compared across all model types we compute a summarization of the the variable im-
portance across all one-hot encoded features and return a single variable importance for the original
categorical feature. By default, the models and variables are ordered by their similarity.

Usage

h2o.varimp_heatmap(object, top_n = 20)

Arguments

object A list of H2O models, an H2O AutoML instance, or an H2OFrame with a
’model_id’ column (e.g. H2OAutoML leaderboard).

top_n Integer specifying the number models shown in the heatmap (based on leader-
board ranking). Defaults to 20.

Value

A ggplot2 object.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)

# Set the response
response <- "quality"

# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]

# Build and train the model:
aml <- h2o.automl(y = response,

training_frame = train,
max_models = 10,



388 h2o.varimp_plot

seed = 1)

# Create the variable importance heatmap
varimp_heatmap <- h2o.varimp_heatmap(aml)
print(varimp_heatmap)

## End(Not run)

h2o.varimp_plot Plot Variable Importances

Description

Plot Variable Importances

Usage

h2o.varimp_plot(model, num_of_features = NULL)

Arguments

model A trained model (accepts a trained random forest, GBM, or deep learning model,
will use h2o.std_coef_plot for a trained GLM

num_of_features

The number of features shown in the plot (default is 10 or all if less than 10).

See Also

h2o.std_coef_plot for GLM.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, training_frame = prostate, distribution = "bernoulli")
h2o.varimp_plot(model)

# for deep learning set the variable_importance parameter to TRUE
iris_hf <- as.h2o(iris)
iris_dl <- h2o.deeplearning(x = 1:4, y = 5, training_frame = iris_hf,
variable_importances = TRUE)
h2o.varimp_plot(iris_dl)

## End(Not run)



h2o.varsplits 389

h2o.varsplits Retrieve per-variable split information for a given Isolation For-
est model. Output will include: - count - The number of times a
variable was used to make a split. - aggregated_split_ratios - The
split ratio is defined as "abs(#left_observations - #right_observations)
/ #before_split". Even splits (#left_observations approx the same
as #right_observations) contribute less to the total aggregated split
ratio value for the given feature; highly imbalanced splits (eg.
#left_observations » #right_observations) contribute more. - aggre-
gated_split_depths - The sum of all depths of a variable used to make
a split. (If a variable is used on level N of a tree, then it contributes
with N to the total aggregate.)

Description

Retrieve per-variable split information for a given Isolation Forest model. Output will include:
- count - The number of times a variable was used to make a split. - aggregated_split_ratios -
The split ratio is defined as "abs(#left_observations - #right_observations) / #before_split". Even
splits (#left_observations approx the same as #right_observations) contribute less to the total ag-
gregated split ratio value for the given feature; highly imbalanced splits (eg. #left_observations »
#right_observations) contribute more. - aggregated_split_depths - The sum of all depths of a vari-
able used to make a split. (If a variable is used on level N of a tree, then it contributes with N to the
total aggregate.)

Usage

h2o.varsplits(object)

Arguments

object An Isolation Forest model represented by H2OModel object.

h2o.week Convert Milliseconds to Week of Week Year in H2O Datasets

Description

Converts the entries of an H2OFrame object from milliseconds to weeks of the week year (starting
from 1).



390 h2o.weights

Usage

h2o.week(x)

week(x)

## S3 method for class 'H2OFrame'
week(x)

Arguments

x An H2OFrame object.

Value

An H2OFrame object containing the entries of x converted to weeks of the week year.

See Also

h2o.month

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/jira/v-11-eurodate.csv"
hdf <- h2o.importFile(f)
h2o.week(hdf["ds9"])

## End(Not run)

h2o.weights Retrieve the respective weight matrix

Description

Retrieve the respective weight matrix

Usage

h2o.weights(object, matrix_id = 1)

Arguments

object An H2OModel or H2OModelMetrics

matrix_id An integer, ranging from 1 to number of layers + 1, that specifies the weight
matrix to return.



h2o.which 391

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/chicago/chicagoCensus.csv"
census <- h2o.importFile(f)
census[, 1] <- as.factor(census[, 1])
dl_model <- h2o.deeplearning(x = c(1:3), y = 4, training_frame = census,

hidden = c(17, 191),
epochs = 1,
balance_classes = FALSE,
export_weights_and_biases = TRUE)

h2o.weights(dl_model, matrix_id = 1)

## End(Not run)

h2o.which Which indices are TRUE?

Description

Give the TRUE indices of a logical object, allowing for array indices.

Usage

h2o.which(x)

Arguments

x An H2OFrame object.

Value

Returns an H2OFrame object.

See Also

which for the base R method.

Examples

## Not run:
library(h2o)
h2o.init()

iris_hf <- as.h2o(iris)
h2o.which(iris_hf[, 1] == 4.4)

## End(Not run)



392 h2o.which_max

h2o.which_max Which indice contains the max value?

Description

Get the index of the max value in a column or row

Usage

h2o.which_max(x, na.rm = TRUE, axis = 0)

which.max.H2OFrame(x, na.rm = TRUE, axis = 0)

which.min.H2OFrame(x, na.rm = TRUE, axis = 0)

Arguments

x An H2OFrame object.

na.rm logical. Indicate whether missing values should be removed.

axis integer. Indicate whether to calculate the mean down a column (0) or across a
row (1).

Value

Returns an H2OFrame object.

See Also

which.min for the base R method, which.max().

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/chicago/chicagoCensus.csv"
census <- h2o.importFile(f)
census[, 1] <- as.factor(census[, 1])
dl_model <- h2o.deeplearning(x = c(1:3), y = 4, hidden = c(17, 191),

epochs = 1, training_frame = census,
balance_classes = FALSE,
export_weights_and_biases = TRUE)

h2o.which_max(census["PER CAPITA INCOME "], na.rm = FALSE, axis = 0)

## End(Not run)



h2o.which_min 393

h2o.which_min Which index contains the min value?

Description

Get the index of the min value in a column or row

Usage

h2o.which_min(x, na.rm = TRUE, axis = 0)

Arguments

x An H2OFrame object.

na.rm logical. Indicate whether missing values should be removed.

axis integer. Indicate whether to calculate the mean down a column (0) or across a
row (1).

Value

Returns an H2OFrame object.

See Also

which.min for the base R method.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/chicago/chicagoCensus.csv"
census <- h2o.importFile(f)
dl_model <- h2o.deeplearning(x = c(1:3), y = 4, hidden = c(17, 191),

epochs = 1, training_frame = census,
balance_classes = FALSE,
export_weights_and_biases = TRUE)

h2o.which_min(census["PER CAPITA INCOME "], na.rm = FALSE, axis = 0)

## End(Not run)



394 h2o.word2vec

h2o.withinss Get the Within SS

Description

Get the Within SS

Usage

h2o.withinss(object)

Arguments

object An H2OClusteringModel object.

h2o.word2vec Trains a word2vec model on a String column of an H2O data frame

Description

Trains a word2vec model on a String column of an H2O data frame

Usage

h2o.word2vec(
training_frame = NULL,
model_id = NULL,
min_word_freq = 5,
word_model = c("SkipGram", "CBOW"),
norm_model = c("HSM"),
vec_size = 100,
window_size = 5,
sent_sample_rate = 0.001,
init_learning_rate = 0.025,
epochs = 5,
pre_trained = NULL,
max_runtime_secs = 0,
export_checkpoints_dir = NULL

)



h2o.word2vec 395

Arguments

training_frame Id of the training data frame.

model_id Destination id for this model; auto-generated if not specified.

min_word_freq This will discard words that appear less than <int> times Defaults to 5.

word_model The word model to use (SkipGram or CBOW) Must be one of: "SkipGram",
"CBOW". Defaults to SkipGram.

norm_model Use Hierarchical Softmax Must be one of: "HSM". Defaults to HSM.

vec_size Set size of word vectors Defaults to 100.

window_size Set max skip length between words Defaults to 5.

sent_sample_rate

Set threshold for occurrence of words. Those that appear with higher frequency
in the training data will be randomly down-sampled; useful range is (0, 1e-5)
Defaults to 0.001.

init_learning_rate

Set the starting learning rate Defaults to 0.025.

epochs Number of training iterations to run Defaults to 5.

pre_trained Id of a data frame that contains a pre-trained (external) word2vec model

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

export_checkpoints_dir

Automatically export generated models to this directory.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the CraigslistJobTitles dataset
job_titles <- h2o.importFile(

"https://s3.amazonaws.com/h2o-public-test-data/smalldata/craigslistJobTitles.csv",
col.names = c("category", "jobtitle"), col.types = c("String", "String"), header = TRUE

)

# Build and train the Word2Vec model
words <- h2o.tokenize(job_titles, " ")
vec <- h2o.word2vec(training_frame = words)
h2o.findSynonyms(vec, "teacher", count = 20)

## End(Not run)



396 h2o.xgboost

h2o.xgboost Build an eXtreme Gradient Boosting model

Description

Builds a eXtreme Gradient Boosting model using the native XGBoost backend.

Usage

h2o.xgboost(
x,
y,
training_frame,
model_id = NULL,
validation_frame = NULL,
nfolds = 0,
keep_cross_validation_models = TRUE,
keep_cross_validation_predictions = FALSE,
keep_cross_validation_fold_assignment = FALSE,
score_each_iteration = FALSE,
fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
fold_column = NULL,
ignore_const_cols = TRUE,
offset_column = NULL,
weights_column = NULL,
stopping_rounds = 0,
stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE",
"AUC", "AUCPR", "lift_top_group", "misclassification", "mean_per_class_error",
"custom", "custom_increasing"),

stopping_tolerance = 0.001,
max_runtime_secs = 0,
seed = -1,
distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma",

"tweedie", "laplace", "quantile", "huber"),
tweedie_power = 1.5,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),

quiet_mode = TRUE,
checkpoint = NULL,
export_checkpoints_dir = NULL,
ntrees = 50,
max_depth = 6,
min_rows = 1,
min_child_weight = 1,
learn_rate = 0.3,
eta = 0.3,
sample_rate = 1,



h2o.xgboost 397

subsample = 1,
col_sample_rate = 1,
colsample_bylevel = 1,
col_sample_rate_per_tree = 1,
colsample_bytree = 1,
colsample_bynode = 1,
max_abs_leafnode_pred = 0,
max_delta_step = 0,
monotone_constraints = NULL,
interaction_constraints = NULL,
score_tree_interval = 0,
min_split_improvement = 0,
gamma = 0,
nthread = -1,
save_matrix_directory = NULL,
build_tree_one_node = FALSE,
calibrate_model = FALSE,
calibration_frame = NULL,
max_bins = 256,
max_leaves = 0,
sample_type = c("uniform", "weighted"),
normalize_type = c("tree", "forest"),
rate_drop = 0,
one_drop = FALSE,
skip_drop = 0,
tree_method = c("auto", "exact", "approx", "hist"),
grow_policy = c("depthwise", "lossguide"),
booster = c("gbtree", "gblinear", "dart"),
reg_lambda = 1,
reg_alpha = 0,
dmatrix_type = c("auto", "dense", "sparse"),
backend = c("auto", "gpu", "cpu"),
gpu_id = NULL,
gainslift_bins = -1,
auc_type = c("AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO",
"WEIGHTED_OVO"),

scale_pos_weight = 1,
verbose = FALSE

)

Arguments

x (Optional) A vector containing the names or indices of the predictor variables to
use in building the model. If x is missing, then all columns except y are used.

y The name or column index of the response variable in the data. The response
must be either a numeric or a categorical/factor variable. If the response is
numeric, then a regression model will be trained, otherwise it will train a classi-
fication model.



398 h2o.xgboost

training_frame Id of the training data frame.
model_id Destination id for this model; auto-generated if not specified.
validation_frame

Id of the validation data frame.
nfolds Number of folds for K-fold cross-validation (0 to disable or >= 2). Defaults to

0.
keep_cross_validation_models

Logical. Whether to keep the cross-validation models. Defaults to TRUE.
keep_cross_validation_predictions

Logical. Whether to keep the predictions of the cross-validation models. De-
faults to FALSE.

keep_cross_validation_fold_assignment

Logical. Whether to keep the cross-validation fold assignment. Defaults to
FALSE.

score_each_iteration

Logical. Whether to score during each iteration of model training. Defaults to
FALSE.

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not specified. The
’Stratified’ option will stratify the folds based on the response variable, for clas-
sification problems. Must be one of: "AUTO", "Random", "Modulo", "Strati-
fied". Defaults to AUTO.

fold_column Column with cross-validation fold index assignment per observation.
ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.
offset_column Offset column. This will be added to the combination of columns before apply-

ing the link function.
weights_column Column with observation weights. Giving some observation a weight of zero

is equivalent to excluding it from the dataset; giving an observation a relative
weight of 2 is equivalent to repeating that row twice. Negative weights are not
allowed. Note: Weights are per-row observation weights and do not increase
the size of the data frame. This is typically the number of times a row is re-
peated, but non-integer values are supported as well. During training, rows with
higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is
incorrect. To get an accurate prediction, remove all rows with weight == 0.

stopping_rounds

Early stopping based on convergence of stopping_metric. Stop if simple moving
average of length k of the stopping_metric does not improve for k:=stopping_rounds
scoring events (0 to disable) Defaults to 0.

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification, deviance
for regression and anonomaly_score for Isolation Forest). Note that custom
and custom_increasing can only be used in GBM and DRF with the Python
client. Must be one of: "AUTO", "deviance", "logloss", "MSE", "RMSE",
"MAE", "RMSLE", "AUC", "AUCPR", "lift_top_group", "misclassification",
"mean_per_class_error", "custom", "custom_increasing". Defaults to AUTO.



h2o.xgboost 399

stopping_tolerance

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much) Defaults to 0.001.

max_runtime_secs

Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to 0.

seed Seed for random numbers (affects certain parts of the algo that are stochastic
and those might or might not be enabled by default). Defaults to -1 (time-based
random number).

distribution Distribution function Must be one of: "AUTO", "bernoulli", "multinomial",
"gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber". De-
faults to AUTO.

tweedie_power Tweedie power for Tweedie regression, must be between 1 and 2. Defaults to
1.5.

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-
ByResponse", "EnumLimited". Defaults to AUTO.

quiet_mode Logical. Enable quiet mode Defaults to TRUE.

checkpoint Model checkpoint to resume training with.
export_checkpoints_dir

Automatically export generated models to this directory.

ntrees (same as n_estimators) Number of trees. Defaults to 50.

max_depth Maximum tree depth (0 for unlimited). Defaults to 6.

min_rows (same as min_child_weight) Fewest allowed (weighted) observations in a leaf.
Defaults to 1.

min_child_weight

(same as min_rows) Fewest allowed (weighted) observations in a leaf. Defaults
to 1.

learn_rate (same as eta) Learning rate (from 0.0 to 1.0) Defaults to 0.3.

eta (same as learn_rate) Learning rate (from 0.0 to 1.0) Defaults to 0.3.

sample_rate (same as subsample) Row sample rate per tree (from 0.0 to 1.0) Defaults to 1.

subsample (same as sample_rate) Row sample rate per tree (from 0.0 to 1.0) Defaults to 1.
col_sample_rate

(same as colsample_bylevel) Column sample rate (from 0.0 to 1.0) Defaults to
1.

colsample_bylevel

(same as col_sample_rate) Column sample rate (from 0.0 to 1.0) Defaults to 1.
col_sample_rate_per_tree

(same as colsample_bytree) Column sample rate per tree (from 0.0 to 1.0) De-
faults to 1.

colsample_bytree

(same as col_sample_rate_per_tree) Column sample rate per tree (from 0.0 to
1.0) Defaults to 1.



400 h2o.xgboost

colsample_bynode

Column sample rate per tree node (from 0.0 to 1.0) Defaults to 1.
max_abs_leafnode_pred

(same as max_delta_step) Maximum absolute value of a leaf node prediction
Defaults to 0.0.

max_delta_step (same as max_abs_leafnode_pred) Maximum absolute value of a leaf node pre-
diction Defaults to 0.0.

monotone_constraints

A mapping representing monotonic constraints. Use +1 to enforce an increasing
constraint and -1 to specify a decreasing constraint.

interaction_constraints

A set of allowed column interactions.
score_tree_interval

Score the model after every so many trees. Disabled if set to 0. Defaults to 0.
min_split_improvement

(same as gamma) Minimum relative improvement in squared error reduction for
a split to happen Defaults to 0.0.

gamma (same as min_split_improvement) Minimum relative improvement in squared
error reduction for a split to happen Defaults to 0.0.

nthread Number of parallel threads that can be used to run XGBoost. Cannot exceed
H2O cluster limits (-nthreads parameter). Defaults to maximum available De-
faults to -1.

save_matrix_directory

Directory where to save matrices passed to XGBoost library. Useful for debug-
ging.

build_tree_one_node

Logical. Run on one node only; no network overhead but fewer cpus used.
Suitable for small datasets. Defaults to FALSE.

calibrate_model

Logical. Use Platt Scaling to calculate calibrated class probabilities. Cali-
bration can provide more accurate estimates of class probabilities. Defaults to
FALSE.

calibration_frame

Calibration frame for Platt Scaling

max_bins For tree_method=hist only: maximum number of bins Defaults to 256.

max_leaves For tree_method=hist only: maximum number of leaves Defaults to 0.

sample_type For booster=dart only: sample_type Must be one of: "uniform", "weighted".
Defaults to uniform.

normalize_type For booster=dart only: normalize_type Must be one of: "tree", "forest". Defaults
to tree.

rate_drop For booster=dart only: rate_drop (0..1) Defaults to 0.0.

one_drop Logical. For booster=dart only: one_drop Defaults to FALSE.

skip_drop For booster=dart only: skip_drop (0..1) Defaults to 0.0.

tree_method Tree method Must be one of: "auto", "exact", "approx", "hist". Defaults to auto.



h2o.xgboost 401

grow_policy Grow policy - depthwise is standard GBM, lossguide is LightGBM Must be one
of: "depthwise", "lossguide". Defaults to depthwise.

booster Booster type Must be one of: "gbtree", "gblinear", "dart". Defaults to gbtree.

reg_lambda L2 regularization Defaults to 1.0.

reg_alpha L1 regularization Defaults to 0.0.

dmatrix_type Type of DMatrix. For sparse, NAs and 0 are treated equally. Must be one of:
"auto", "dense", "sparse". Defaults to auto.

backend Backend. By default (auto), a GPU is used if available. Must be one of: "auto",
"gpu", "cpu". Defaults to auto.

gpu_id Which GPU(s) to use.

gainslift_bins Gains/Lift table number of bins. 0 means disabled.. Default value -1 means
automatic binning. Defaults to -1.

auc_type Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR",
"WEIGHTED_OVR", "MACRO_OVO", "WEIGHTED_OVO". Defaults to AUTO.

scale_pos_weight

Controls the effect of observations with positive labels in relation to the ob-
servations with negative labels on gradient calculation. Useful for imbalanced
problems. Defaults to 1.0.

verbose Logical. Print scoring history to the console (Metrics per tree). Defaults to
FALSE.

Examples

## Not run:
library(h2o)
h2o.init()

# Import the titanic dataset
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv"
titanic <- h2o.importFile(f)

# Set predictors and response; set response as a factor
titanic['survived'] <- as.factor(titanic['survived'])
predictors <- setdiff(colnames(titanic), colnames(titanic)[2:3])
response <- "survived"

# Split the dataset into train and valid
splits <- h2o.splitFrame(data = titanic, ratios = .8, seed = 1234)
train <- splits[[1]]
valid <- splits[[2]]

# Train the XGB model
titanic_xgb <- h2o.xgboost(x = predictors, y = response,

training_frame = train, validation_frame = valid,
booster = "dart", normalize_type = "tree",
seed = 1234)

## End(Not run)



402 h2o.year

h2o.xgboost.available Determines whether an XGBoost model can be built

Description

Ask the H2O server whether a XGBoost model can be built. (Depends on availability of native
backend.) Returns True if a XGBoost model can be built, or False otherwise.

Usage

h2o.xgboost.available()

h2o.year Convert Milliseconds to Years in H2O Datasets

Description

Convert the entries of an H2OFrame object from milliseconds to years, indexed starting from 1900.

Usage

h2o.year(x)

year(x)

## S3 method for class 'H2OFrame'
year(x)

Arguments

x An H2OFrame object.

Details

This method calls the function of the MutableDateTime class in Java.

Value

An H2OFrame object containing the entries of x converted to years

See Also

h2o.month



H2OAutoML-class 403

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/jira/v-11-eurodate.csv"
hdf <- h2o.importFile(f)
h2o.year(hdf["ds9"])

## End(Not run)

H2OAutoML-class The H2OAutoML class

Description

This class represents an H2OAutoML object

H2OClusteringModel-class

The H2OClusteringModel object.

Description

This virtual class represents a clustering model built by H2O.

Details

This object has slots for the key, which is a character string that points to the model key existing in
the H2O cluster, the data used to build the model (an object of class H2OFrame).

Slots

model_id A character string specifying the key for the model fit in the H2O cluster’s key-value
store.

algorithm A character string specifying the algorithm that was used to fit the model.
parameters A list containing the parameter settings that were used to fit the model that differ

from the defaults.
allparameters A list containing all parameters used to fit the model.
model A list containing the characteristics of the model returned by the algorithm.

size The number of points in each cluster.
totss Total sum of squared error to grand mean.
withinss A vector of within-cluster sum of squared error.
tot_withinss Total within-cluster sum of squared error.
betweenss Between-cluster sum of squared error.



404 H2OConnection-class

H2OConnection-class The H2OConnection class.

Description

This class represents a connection to an H2O cluster.

Usage

## S4 method for signature 'H2OConnection'
show(object)

Arguments

object an H2OConnection object.

Details

Because H2O is not a master-slave architecture, there is no restriction on which H2O node is used
to establish the connection between R (the client) and H2O (the server).

A new H2O connection is established via the h2o.init() function, which takes as parameters the ‘ip‘
and ‘port‘ of the machine running an instance to connect with. The default behavior is to connect
with a local instance of H2O at port 54321, or to boot a new local instance if one is not found at
port 54321.

Slots

ip A character string specifying the IP address of the H2O cluster.

port A numeric value specifying the port number of the H2O cluster.

name A character value specifying the name of the H2O cluster.

proxy A character specifying the proxy path of the H2O cluster.

https Set this to TRUE to use https instead of http.

cacert Path to a CA bundle file with root and intermediate certificates of trusted CAs.

insecure Set this to TRUE to disable SSL certificate checking.

username Username to login with.

password Password to login with.

use_spnego Set this to TRUE to use SPNEGO authentication.

cookies Cookies to add to request

context_path Context path which is appended to H2O server location.

mutable An H2OConnectionMutableState object to hold the mutable state for the H2O connec-
tion.



H2OConnectionMutableState 405

H2OConnectionMutableState

The H2OConnectionMutableState class

Description

This class represents the mutable aspects of a connection to an H2O cluster.

Slots

session_id A character string specifying the H2O session identifier.

key_count A integer value specifying count for the number of keys generated for the session_id.

H2OCoxPHModel-class The H2OCoxPHModel object.

Description

Virtual object representing H2O’s CoxPH Model.

Usage

## S4 method for signature 'H2OCoxPHModel'
show(object)

## S3 method for class 'H2OCoxPHModel'
coef(object, ...)

## S3 method for class 'H2OCoxPHModel'
extractAIC(fit, scale, k = 2, ...)

## S3 method for class 'H2OCoxPHModel'
logLik(object, ...)

survfit.H2OCoxPHModel(formula, newdata, ...)

## S3 method for class 'H2OCoxPHModel'
vcov(object, ...)

Arguments

object an H2OCoxPHModel object.

... additional arguments to pass on.

fit an H2OCoxPHModel object.



406 H2OFrame-class

scale optional numeric specifying the scale parameter of the model.

k numeric specifying the weight of the equivalent degrees of freedom.

formula an H2OCoxPHModel object.

newdata an optional H2OFrame or data.frame with the same variable names as those that
appear in the H2OCoxPHModel object.

H2OCoxPHModelSummary-class

The H2OCoxPHModelSummary object.

Description

Wrapper object for summary information compatible with survival package.

Usage

## S4 method for signature 'H2OCoxPHModelSummary'
show(object)

## S3 method for class 'H2OCoxPHModelSummary'
coef(object, ...)

Arguments

object An H2OCoxPHModelSummary object.

... additional arguments to pass on.

Slots

summary A list containing the a summary compatible with CoxPH summary used in the survival
package.

H2OFrame-class The H2OFrame class

Description

This class represents an H2OFrame object



H2OFrame-Extract 407

H2OFrame-Extract Extract or Replace Parts of an H2OFrame Object

Description

Operators to extract or replace parts of H2OFrame objects.

Usage

## S3 method for class 'H2OFrame'
data[row, col, drop = TRUE]

## S3 method for class 'H2OFrame'
x$name

## S3 method for class 'H2OFrame'
x[[i, exact = TRUE]]

## S3 method for class 'H2OFrame'
x$name

## S3 method for class 'H2OFrame'
x[[i, exact = TRUE]]

## S3 replacement method for class 'H2OFrame'
data[row, col, ...] <- value

## S3 replacement method for class 'H2OFrame'
data$name <- value

## S3 replacement method for class 'H2OFrame'
data[[name]] <- value

Arguments

data object from which to extract element(s) or in which to replace element(s).

row index specifying row element(s) to extract or replace. Indices are numeric or
character vectors or empty (missing) or will be matched to the names.

col index specifying column element(s) to extract or replace.

drop Unused

x An H2OFrame

name a literal character string or a name (possibly backtick quoted).

i index

exact controls possible partial matching of [[ when extracting a character

... Further arguments passed to or from other methods.



408 H2OGrid-class

value To be assigned

H2OGrid-class H2O Grid

Description

A class to contain the information about grid results

Usage

## S4 method for signature 'H2OGrid'
show(object)

Arguments

object an H2OGrid object.

Slots

grid_id the final identifier of grid

model_ids list of model IDs which are included in the grid object

hyper_names list of parameter names used for grid search

failed_params list of model parameters which caused a failure during model building, it can
contain a null value

failure_details list of detailed messages which correspond to failed parameters field

failure_stack_traces list of stack traces corresponding to model failures reported by failed_params
and failure_details fields

failed_raw_params list of failed raw parameters

summary_table table of models built with parameters and metric information.

See Also

H2OModel for the final model types.



H2OInfogram 409

H2OInfogram wrapper function for instantiating H2OInfogram

Description

wrapper function for instantiating H2OInfogram

Usage

H2OInfogram(model_id, ...)

Arguments

model_id is string of H2OModel object

... parameters to algorithm, admissible_features, ...

Value

A H2OInfogram object

H2OInfogram-class H2OInfogram class

Description

H2OInfogram class contains a subset of what a normal H2OModel will return

Slots

model_id string returned as part of every H2OModel

algorithm string denoting the algorithm used to build infogram

admissible_features string array denoting all predictor names which pass the cmi and relelvance
threshold

admissible_features_valid string array denoting all predictor names which pass the cmi and
relelvance threshold from validation frame

admissible_features_xval string array denoting all predictor names which pass the cmi and
relelvance threshold from cv holdout set

net_information_threshold numeric value denoting threshold used for predictor selection

total_information_threshold numeric value denoting threshold used for predictor selection

safety_index_threshold numeric value denoting threshold used for predictor selection

relevance_index_threshold numeric value denoting threshold used for predictor selection

admissible_score H2OFrame that contains columns, admissible, admissible_index, relevance,
cmi, cmi_raw



410 H2OModel-class

admissible_score_valid H2OFrame that contains columns, admissible, admissible_index, rele-
vance, cmi, cmi_raw from validation frame

admissible_score_xval H2OFrame that contains averages of columns, admissible, admissible_index,
relevance, cmi, cmi_raw from cv hold-out

H2OLeafNode-class The H2OLeafNode class.

Description

This class represents a single leaf node in an H2OTree.

Details

#’ @aliases H2OLeafNode

H2OModel-class The H2OModel object.

Description

This virtual class represents a model built by H2O.

Usage

## S4 method for signature 'H2OModel'
show(object)

Arguments

object an H2OModel object.

Details

This object has slots for the key, which is a character string that points to the model key existing in
the H2O cluster, the data used to build the model (an object of class H2OFrame).



H2OModelFuture-class 411

Slots

model_id A character string specifying the key for the model fit in the H2O cluster’s key-value
store.

algorithm A character string specifying the algorithm that were used to fit the model.

parameters A list containing the parameter settings that were used to fit the model that differ
from the defaults.

allparameters A list containg all parameters used to fit the model.

have_pojo A logical indicating whether export to POJO is supported

have_mojo A logical indicating whether export to MOJO is supported

model A list containing the characteristics of the model returned by the algorithm.

H2OModelFuture-class H2O Future Model

Description

A class to contain the information for background model jobs.

Slots

job_key a character key representing the identification of the job process.

model_id the final identifier for the model

See Also

H2OModel for the final model types.

H2OModelMetrics-class The H2OModelMetrics Object.

Description

A class for constructing performance measures of H2O models.



412 H2ONode-class

Usage

## S4 method for signature 'H2OModelMetrics'
show(object)

## S4 method for signature 'H2OBinomialMetrics'
show(object)

## S4 method for signature 'H2OBinomialUpliftMetrics'
show(object)

## S4 method for signature 'H2OMultinomialMetrics'
show(object)

## S4 method for signature 'H2OOrdinalMetrics'
show(object)

## S4 method for signature 'H2ORegressionMetrics'
show(object)

## S4 method for signature 'H2OClusteringMetrics'
show(object)

## S4 method for signature 'H2OAutoEncoderMetrics'
show(object)

## S4 method for signature 'H2ODimReductionMetrics'
show(object)

## S4 method for signature 'H2OAnomalyDetectionMetrics'
show(object)

Arguments

object An H2OModelMetrics object

H2ONode-class The H2ONode class.

Description

The H2ONode class.

Usage

## S4 method for signature 'H2ONode'
show(object)



H2OSegmentModels-class 413

Arguments

object an H2ONode object.

Slots

id An integer representing node’s unique identifier. Generated by H2O.
levels A character representing categorical levels on split from parent’s node belonging into

this node. NULL for root node or non-categorical splits.
#’ @aliases H2ONode

H2OSegmentModels-class

H2O Segment Models

Description

A class to contain the information for segment models.

Usage

## S4 method for signature 'H2OSegmentModels'
show(object)

Arguments

object an H2OModel object.

Slots

segment_models_id the identifier for the segment models collections

H2OSegmentModelsFuture-class

H2O Future Segment Models

Description

A class to contain the information for background segment models jobs.

Slots

job_key a character key representing the identification of the job process.
segment_models_id the final identifier for the segment models collections

See Also

H2OSegmentModels for the final segment models types.



414 H2OTree-class

H2OSplitNode-class The H2OSplitNode class.

Description

This class represents a single non-terminal node in an H2OTree.

Slots

threshold A numeric split threshold, typically when the split column is numerical.

left_child A H2ONodeOrNULL representing the left child node, if a node has one.

right_child A H2ONodeOrNULL representing the right child node, if a node has one.

split_feature A character representing the name of the column this node splits on.

left_levels A character representing the levels of a categorical feature heading to the left child
of this node. NA for non-categorical split.

right_levels A character representing the levels of a categorical feature heading to the right
child of this node. NA for non-categorical split.

na_direction A character representing the direction of NA values. LEFT means NA values go
to the left child node, RIGH means NA values go to the right child node.

H2OTree-class The H2OTree class.

Description

This class represents a model of a Tree built by one of H2O’s algorithms (GBM, Random Forest).

Usage

## S4 method for signature 'H2OTree'
show(object)

Arguments

object an H2OTree object.

Slots

root_node A H2ONode representing the beginning of the tree behind the model. Allows further
tree traversal.

left_children An integer vector with left child nodes of tree’s nodes

right_children An integer vector with right child nodes of tree’s nodes



housevotes 415

node_ids An integer representing identification number of a node. Node IDs are generated by
H2O.

descriptions A character vector with descriptions for each node to be found in the tree. Con-
tains split threshold if the split is based on numerical column. For cactegorical splits, it con-
tains list of categorical levels for transition from the parent node.

model_id A character with the name of the model this tree is related to.

tree_number An integer representing the order in which the tree has been built in the model.

tree_class A character representing name of tree’s class. Number of tree classes equals to the
number of levels in categorical response column. As there is exactly one class per categorical
level, name of tree’s class equals to the corresponding categorical level of response column.
In case of regression and binomial, the name of the categorical level is ignored can be omitted,
as there is exactly one tree built in both cases.

thresholds A numeric split thresholds. Split thresholds are not only related to numerical splits,
but might be present in case of categorical split as well.

features A character with names of the feature/column used for the split.

levels A character representing categorical levels on split from parent’s node belonging into
this node. NULL for root node or non-categorical splits.

nas A character representing if NA values go to the left node or right node. May be NA if node
is a leaf.

predictions A numeric representing predictions for each node in the graph.

tree_decision_path A character, plain language rules representation of a trained decision tree

decision_paths A character representing plain language rules that were used in a particular
prediction.

left_cat_split A character list of categorical levels leading to the left child node. Only present
when split is categorical, otherwise none.

right_cat_split A character list of categorical levels leading to the right child node. Only
present when split is categorical, otherwise none.

housevotes United States Congressional Voting Records 1984

Description

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16
key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired
for, and announced for (these three simplified to yea), voted against, paired against, and announced
against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and
did not vote or otherwise make a position known (these three simplified to an unknown disposition).

Format

A data frame with 435 rows and 17 columns



416 iris

Source

Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: Congressional
Quarterly Inc., Washington, D.C., 1985

References

Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine
learning databases [https://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University
of California, Department of Information and Computer Science.

initialize,H2OInfogram-method

Method on H2OInfogram object which in this case is to instantiate and
initialize it

Description

Method on H2OInfogram object which in this case is to instantiate and initialize it

Usage

## S4 method for signature 'H2OInfogram'
initialize(.Object, model_id, ...)

Arguments

.Object An H2OInfogram object

model_id string returned as part of every H2OModel

... additional arguments to pass on

Value

A H2OInfogram object

iris Edgar Anderson’s Iris Data

Description

Measurements in centimeters of the sepal length and width and petal length and width, respectively,
for three species of iris flowers.

Format

A data frame with 150 rows and 5 columns



is.character 417

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7, Part II, 179-188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of
the American Iris Society, 59, 2-5.

is.character Check if character

Description

Check if character

Usage

is.character(x)

Arguments

x An H2OFrame object

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/coxph_test/heart.csv"
heart <- h2o.importFile(f)

heart["transplant"] <- as.character(heart["transplant"])
is.character(heart["transplant"])

## End(Not run)

is.factor Check if factor

Description

Check if factor

Usage

is.factor(x)



418 is.numeric

Arguments

x An H2OFrame object

is.h2o Is H2O Frame object

Description

Test if object is H2O Frame.

Usage

is.h2o(x)

Arguments

x An R object.

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

is.h2o(frame)

## End(Not run)

is.numeric Check if numeric

Description

Check if numeric

Usage

is.numeric(x)

Arguments

x An H2OFrame object



Keyed-class 419

Keyed-class Virtual Keyed class

Description

Base class for all objects having a persistent representation on backend.

length,H2OTree-method Overrides the behavior of length() function on H2OTree class. Returns
number of nodes in an H2OTree

Description

Overrides the behavior of length() function on H2OTree class. Returns number of nodes in an
H2OTree

Usage

## S4 method for signature 'H2OTree'
length(x)

Arguments

x An H2OTree to count nodes for.

Logical-or Logical or for H2OFrames

Description

Logical or for H2OFrames

Usage

`||`(x, y)

Arguments

x An H2OFrame object

y An H2OFrame object



420 ModelAccessors

ModelAccessors Accessor Methods for H2OModel Object

Description

Function accessor methods for various H2O output fields.

Usage

getParms(object)

## S4 method for signature 'H2OModel'
getParms(object)

getCenters(object)

getCentersStd(object)

getWithinSS(object)

getTotWithinSS(object)

getBetweenSS(object)

getTotSS(object)

getIterations(object)

getClusterSizes(object)

## S4 method for signature 'H2OClusteringModel'
getCenters(object)

## S4 method for signature 'H2OClusteringModel'
getCentersStd(object)

## S4 method for signature 'H2OClusteringModel'
getWithinSS(object)

## S4 method for signature 'H2OClusteringModel'
getTotWithinSS(object)

## S4 method for signature 'H2OClusteringModel'
getBetweenSS(object)

## S4 method for signature 'H2OClusteringModel'
getTotSS(object)



model_cache-class 421

## S4 method for signature 'H2OClusteringModel'
getIterations(object)

## S4 method for signature 'H2OClusteringModel'
getClusterSizes(object)

Arguments

object an H2OModel class object.

model_cache-class Needed to be able to memoise the models

Description

Needed to be able to memoise the models

names.H2OFrame Column names of an H2OFrame

Description

Column names of an H2OFrame

Usage

## S3 method for class 'H2OFrame'
names(x)

Arguments

x An H2OFrame

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

names(frame)

## End(Not run)



422 Ops.H2OFrame

Ops.H2OFrame S3 Group Generic Functions for H2O

Description

Methods for group generic functions and H2O objects.

Usage

## S3 method for class 'H2OFrame'
Ops(e1, e2)

## S3 method for class 'H2OFrame'
Math(x, ...)

## S3 method for class 'H2OFrame'
Math(x, ...)

## S3 method for class 'H2OFrame'
Math(x, ...)

## S3 method for class 'H2OFrame'
Summary(x, ..., na.rm)

## S3 method for class 'H2OFrame'
!x

## S3 method for class 'H2OFrame'
is.na(x)

## S3 method for class 'H2OFrame'
t(x)

log(x, ...)

log10(x)

log2(x)

log1p(x)

trunc(x, ...)

x %*% y

nrow.H2OFrame(x)



plot.H2OInfogram 423

ncol.H2OFrame(x)

## S3 method for class 'H2OFrame'
length(x)

h2o.length(x)

## S3 replacement method for class 'H2OFrame'
names(x) <- value

colnames(x) <- value

Arguments

e1 object

e2 object

x object

... Further arguments passed to or from other methods.

na.rm logical. whether or not missing values should be removed

y object

value To be assigned

plot.H2OInfogram Plot an H2O Infogram

Description

Plots the Infogram for an H2OInfogram object.

Usage

## S3 method for class 'H2OInfogram'
plot(x, ...)

Arguments

x A fitted H2OInfogram object.

... additional arguments to pass on.

Value

A ggplot2 object.

See Also

h2o.infogram



424 plot.H2OModel

Examples

## Not run:
h2o.init()

# Convert iris dataset to an H2OFrame
train <- as.h2o(iris)

# Create and plot infogram
ig <- h2o.infogram(y = "Species", training_frame = train)
plot(ig)

## End(Not run)

plot.H2OModel Plot an H2O Model

Description

Plots training set (and validation set if available) scoring history for an H2O Model

Usage

## S3 method for class 'H2OModel'
plot(x, timestep = "AUTO", metric = "AUTO", ...)

Arguments

x A fitted H2OModel object for which the scoring history plot is desired.

timestep A unit of measurement for the x-axis.

metric A unit of measurement for the y-axis.

... additional arguments to pass on.

Details

This method dispatches on the type of H2O model to select the correct scoring history. The
timestep and metric arguments are restricted to what is available in the scoring history for a
particular type of model.

Value

Returns a scoring history plot.

See Also

h2o.deeplearning, h2o.gbm, h2o.glm, h2o.randomForest for model generation in h2o.



plot.H2OTabulate 425

Examples

## Not run:
if (requireNamespace("mlbench", quietly=TRUE)) {

library(h2o)
h2o.init()

df <- as.h2o(mlbench::mlbench.friedman1(10000, 1))
rng <- h2o.runif(df, seed = 1234)
train <- df[rng < 0.8,]
valid <- df[rng >= 0.8,]

gbm <- h2o.gbm(x = 1:10, y = "y", training_frame = train, validation_frame = valid,
ntrees = 500, learn_rate = 0.01, score_each_iteration = TRUE)

plot(gbm)
plot(gbm, timestep = "duration", metric = "deviance")
plot(gbm, timestep = "number_of_trees", metric = "deviance")
plot(gbm, timestep = "number_of_trees", metric = "rmse")
plot(gbm, timestep = "number_of_trees", metric = "mae")

}

## End(Not run)

plot.H2OTabulate Plot an H2O Tabulate Heatmap

Description

Plots the simple co-occurrence based tabulation of X vs Y as a heatmap, where X and Y are two
Vecs in a given dataset. This function requires suggested ggplot2 package.

Usage

## S3 method for class 'H2OTabulate'
plot(x, xlab = x$cols[1], ylab = x$cols[2], base_size = 12, ...)

Arguments

x An H2OTabulate object for which the heatmap plot is desired.

xlab A title for the x-axis. Defaults to what is specified in the given H2OTabulate
object.

ylab A title for the y-axis. Defaults to what is specified in the given H2OTabulate
object.

base_size Base font size for plot.

... additional arguments to pass on.

Value

Returns a ggplot2-based heatmap of co-occurance.



426 predict.H2OAutoML

See Also

h2o.tabulate

Examples

## Not run:
library(h2o)
h2o.init()
df <- as.h2o(iris)
tab <- h2o.tabulate(data = df, x = "Sepal.Length", y = "Petal.Width",

weights_column = NULL, nbins_x = 10, nbins_y = 10)
plot(tab)

## End(Not run)

predict.H2OAutoML Predict on an AutoML object

Description

Obtains predictions from an AutoML object.

Usage

## S3 method for class 'H2OAutoML'
predict(object, newdata, ...)

## S3 method for class 'H2OAutoML'
h2o.predict(object, newdata, ...)

Arguments

object a fitted H2OAutoML object for which prediction is desired

newdata An H2OFrame object in which to look for variables with which to predict.

... additional arguments to pass on.

Details

This method generated predictions on the leader model from an AutoML run. The order of the rows
in the results is the same as the order in which the data was loaded, even if some rows fail (for
example, due to missing values or unseen factor levels).

Value

Returns an H2OFrame object with probabilites and default predictions.



predict.H2OModel 427

predict.H2OModel Predict on an H2O Model

Description

Obtains predictions from various fitted H2O model objects.

Usage

## S3 method for class 'H2OModel'
predict(object, newdata, ...)

## S3 method for class 'H2OModel'
h2o.predict(object, newdata, ...)

Arguments

object a fitted H2OModel object for which prediction is desired

newdata An H2OFrame object in which to look for variables with which to predict.

... additional arguments to pass on.

Details

This method dispatches on the type of H2O model to select the correct prediction/scoring algorithm.
The order of the rows in the results is the same as the order in which the data was loaded, even if
some rows fail (for example, due to missing values or unseen factor levels).

Value

Returns an H2OFrame object with probabilites and default predictions.

See Also

h2o.deeplearning, h2o.gbm, h2o.glm, h2o.randomForest for model generation in h2o.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/glm_test/insurance.csv"
insurance <- h2o.importFile(f)
predictors <- colnames(insurance)[1:4]
response <- "Claims"
insurance['Group'] <- as.factor(insurance['Group'])
insurance['Age'] <- as.factor(insurance['Age'])
splits <- h2o.splitFrame(data = insurance, ratios = 0.8, seed = 1234)



428 predict_contributions.H2OModel

train <- splits[[1]]
valid <- splits[[2]]
insurance_gbm <- h2o.gbm(x = predictors, y = response,

training_frame = train,
validation_frame = valid,
distribution = "huber",
huber_alpha = 0.9, seed = 1234)

h2o.predict(insurance_gbm, newdata = insurance)

## End(Not run)

predict_contributions.H2OModel

Predict feature contributions - SHAP values on an H2O Model (only
DRF, GBM, XGBoost models and equivalent imported MOJOs).

Description

Default implemntation return H2OFrame shape (#rows, #features + 1) - there is a feature contri-
bution column for each input feature, the last column is the model bias (same value for each row).
The sum of the feature contributions and the bias term is equal to the raw prediction of the model.
Raw prediction of tree-based model is the sum of the predictions of the individual trees before the
inverse link function is applied to get the actual prediction. For Gaussian distribution the sum of the
contributions is equal to the model prediction.

Usage

predict_contributions.H2OModel(
object,
newdata,
output_format = c("original", "compact"),
top_n = 0,
bottom_n = 0,
compare_abs = FALSE,
...

)

h2o.predict_contributions(
object,
newdata,
output_format = c("original", "compact"),
top_n = 0,
bottom_n = 0,
compare_abs = FALSE,
...

)



predict_contributions.H2OModel 429

Arguments

object a fitted H2OModel object for which prediction is desired

newdata An H2OFrame object in which to look for variables with which to predict.

output_format Specify how to output feature contributions in XGBoost - XGBoost by default
outputs contributions for 1-hot encoded features, specifying a compact output
format will produce a per-feature contribution. Defaults to original.

top_n Return only #top_n highest contributions + bias If top_n<0 then sort all SHAP
values in descending order If top_n<0 && bottom_n<0 then sort all SHAP val-
ues in descending order

bottom_n Return only #bottom_n lowest contributions + bias If top_n and bottom_n are
defined together then return array of #top_n + #bottom_n + bias If bottom_n<0
then sort all SHAP values in ascending order If top_n<0 && bottom_n<0 then
sort all SHAP values in descending order

compare_abs True to compare absolute values of contributions

... additional arguments to pass on.

Details

Note: Multinomial classification models are currently not supported.

Value

Returns an H2OFrame contain feature contributions for each input row.

See Also

h2o.gbm and h2o.randomForest for model generation in h2o.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate_gbm <- h2o.gbm(3:9, "AGE", prostate)
h2o.predict(prostate_gbm, prostate)
# Compute SHAP
h2o.predict_contributions(prostate_gbm, prostate)
# Compute SHAP and pick the top two highest
h2o.predict_contributions(prostate_gbm, prostate, top_n=2)
# Compute SHAP and pick the top two lowest
h2o.predict_contributions(prostate_gbm, prostate, bottom_n=2)
# Compute SHAP and pick the top two highest regardless of the sign
h2o.predict_contributions(prostate_gbm, prostate, top_n=2, compare_abs=TRUE)
# Compute SHAP and pick the top two lowest regardless of the sign
h2o.predict_contributions(prostate_gbm, prostate, bottom_n=2, compare_abs=TRUE)
# Compute SHAP values and show them all in descending order
h2o.predict_contributions(prostate_gbm, prostate, top_n=-1)



430 predict_leaf_node_assignment.H2OModel

# Compute SHAP and pick the top two highest and top two lowest
h2o.predict_contributions(prostate_gbm, prostate, top_n=2, bottom_n=2)

## End(Not run)

predict_leaf_node_assignment.H2OModel

Predict the Leaf Node Assignment on an H2O Model

Description

Obtains leaf node assignment from fitted H2O model objects.

Usage

predict_leaf_node_assignment.H2OModel(
object,
newdata,
type = c("Path", "Node_ID"),
...

)

h2o.predict_leaf_node_assignment(
object,
newdata,
type = c("Path", "Node_ID"),
...

)

Arguments

object a fitted H2OModel object for which prediction is desired

newdata An H2OFrame object in which to look for variables with which to predict.

type choice of either "Path" when tree paths are to be returned (default); or "Node_ID"
when the output

... additional arguments to pass on.

Details

For every row in the test set, return the leaf placements of the row in all the trees in the model.
Placements can be represented either by paths to the leaf nodes from the tree root or by H2O’s
internal identifiers. The order of the rows in the results is the same as the order in which the data
was loaded

Value

Returns an H2OFrame object with categorical leaf assignment identifiers for each tree in the model.



print.H2OFrame 431

See Also

h2o.gbm and h2o.randomForest for model generation in h2o.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
prostate_gbm <- h2o.gbm(3:9, "CAPSULE", prostate)
h2o.predict(prostate_gbm, prostate)
h2o.predict_leaf_node_assignment(prostate_gbm, prostate)

## End(Not run)

print.H2OFrame Print An H2OFrame

Description

Print An H2OFrame

Usage

## S3 method for class 'H2OFrame'
print(x, n = 6L, m = 200L, ...)

Arguments

x An H2OFrame object

n An (Optional) A single integer. If positive, number of rows in x to return. If
negative, all but the n first/last number of rows in x. Anything bigger than 20
rows will require asking the server (first 20 rows are cached on the client).

m An (Optional) A single integer. If positive, number of columns in x to return. If
negative, all but the m first/last number of columns in x.

... Further arguments to be passed from or to other methods.

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
print(cars, n = 8)



432 print.H2OTable

## End(Not run)

print.H2OTable Print method for H2OTable objects

Description

This will print a truncated view of the table if there are more than 20 rows.

Usage

## S3 method for class 'H2OTable'
print(x, header = TRUE, ...)

Arguments

x An H2OTable object

header A logical value dictating whether or not the table name should be printed.

... Further arguments passed to or from other methods.

Value

The original x object

Examples

## Not run:
library(h2o)
h2o.init()

f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv"
cars <- h2o.importFile(f)
print(cars, header = TRUE)

## End(Not run)



prostate 433

prostate Prostate Cancer Study

Description

Baseline exam results on prostate cancer patients from Dr. Donn Young at The Ohio State Univer-
sity Comprehensive Cancer Center.

Format

A data frame with 380 rows and 9 columns

Source

Hosmer and Lemeshow (2000) Applied Logistic Regression: Second Edition.

range.H2OFrame Range of an H2O Column

Description

Range of an H2O Column

Usage

## S3 method for class 'H2OFrame'
range(..., na.rm = TRUE)

Arguments

... An H2OFrame object.

na.rm ignore missing values

Examples

## Not run:
library(h2o)
h2o.init()

frame <- h2o.createFrame(rows = 6, cols = 2,
categorical_fraction = 0.0,
missing_fraction = 0.7,
seed = 123)

range(frame, na.rm = TRUE)

## End(Not run)



434 show,H2OAutoML-method

scale Scaling and Centering of an H2OFrame

Description

Centers and/or scales the columns of an H2O dataset.

Usage

## S3 method for class 'H2OFrame'
scale(x, center = TRUE, scale = TRUE)

Arguments

x An H2OFrame object.
center either a logical value or numeric vector of length equal to the number of

columns of x.
scale either a logical value or numeric vector of length equal to the number of

columns of x.

Examples

## Not run:
library(h2o)
h2o.init()
iris_hf <- as.h2o(iris)
summary(iris_hf)

# Scale and center all the numeric columns in iris data set
iris_scaled <- scale(iris_hf[, 1:4])

## End(Not run)

show,H2OAutoML-method Format AutoML object in user-friendly way

Description

Format AutoML object in user-friendly way

Usage

## S4 method for signature 'H2OAutoML'
show(object)

Arguments

object an H2OAutoML object.



staged_predict_proba.H2OModel 435

staged_predict_proba.H2OModel

Predict class probabilities at each stage of an H2O Model

Description

The output structure is analogous to the output of h2o.predict_leaf_node_assignment. For each tree
t and class c there will be a column Tt.Cc (eg. T3.C1 for tree 3 and class 1). The value will be
the corresponding predicted probability of this class by combining the raw contributions of trees
T1.Cc,..,TtCc. Binomial models build the trees just for the first class and values in columns Tx.C1
thus correspond to the the probability p0.

Usage

staged_predict_proba.H2OModel(object, newdata, ...)

h2o.staged_predict_proba(object, newdata, ...)

Arguments

object a fitted H2OModel object for which prediction is desired

newdata An H2OFrame object in which to look for variables with which to predict.

... additional arguments to pass on.

Value

Returns an H2OFrame object with predicted probability for each tree in the model.

See Also

h2o.gbm and h2o.randomForest for model generation in h2o.

Examples

## Not run:
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
prostate_gbm <- h2o.gbm(3:9, "CAPSULE", prostate)
h2o.predict(prostate_gbm, prostate)
h2o.staged_predict_proba(prostate_gbm, prostate)

## End(Not run)



436 summary,H2OAutoML-method

str.H2OFrame Display the structure of an H2OFrame object

Description

Display the structure of an H2OFrame object

Usage

## S3 method for class 'H2OFrame'
str(object, ..., cols = FALSE)

Arguments

object An H2OFrame.

... Further arguments to be passed from or to other methods.

cols Print the per-column str for the H2OFrame

summary,H2OAutoML-method

Format AutoML object in user-friendly way

Description

Format AutoML object in user-friendly way

Usage

## S4 method for signature 'H2OAutoML'
summary(object)

Arguments

object an H2OAutoML object.



summary,H2OCoxPHModel-method 437

summary,H2OCoxPHModel-method

Summary method for H2OCoxPHModel objects

Description

Summary method for H2OCoxPHModel objects

Usage

## S4 method for signature 'H2OCoxPHModel'
summary(object, conf.int = 0.95, scale = 1)

Arguments

object an H2OCoxPHModel object.

conf.int a specification of the confidence interval.

scale a scale.

summary,H2OGrid-method

Format grid object in user-friendly way

Description

Format grid object in user-friendly way

Usage

## S4 method for signature 'H2OGrid'
summary(object, show_stack_traces = FALSE)

Arguments

object an H2OGrid object.

show_stack_traces

a flag to show stack traces for model failures



438 use.package

summary,H2OModel-method

Print the Model Summary

Description

Print the Model Summary

Usage

## S4 method for signature 'H2OModel'
summary(object, ...)

Arguments

object An H2OModel object.

... further arguments to be passed on (currently unimplemented)

use.package Use optional package

Description

Testing availability of optional package, its version, and extra global default. This function is used
internally. It is exported and documented because user can control behavior of the function by
global option.

Usage

use.package(
package,
version = "1.9.8"[package == "data.table"],
use = getOption("h2o.use.data.table", TRUE)[package == "data.table"]

)

Arguments

package character scalar name of a package that we Suggests or Enhances on.

version character scalar required version of a package.

use logical scalar, extra escape option, to be used as global option.



walking 439

Details

We use this function to control csv read/write with optional data.table package. Currently data.table
is enabled by default for some operations, to disable it set options("h2o.use.data.table"=FALSE).
It is possible to control just fread or fwrite with options("h2o.fread"=FALSE,"h2o.fwrite"=FALSE).
h2o.fread and h2o.fwrite options are not handled in this function but next to fread and fwrite
calls.

See Also

as.h2o.data.frame, as.data.frame.H2OFrame

Examples

op <- options("h2o.use.data.table" = TRUE)
if (use.package("data.table")) {

cat("optional package data.table 1.9.8+ is available\n")
} else {

cat("optional package data.table 1.9.8+ is not available\n")
}
options(op)

walking Muscular Actuations for Walking Subject

Description

The musculoskeletal model, experimental data, settings files, and results for three-dimensional,
muscle-actuated simulations at walking speed as described in Hamner and Delp (2013). Simulations
were generated using OpenSim 2.4. The data is available from https://simtk.org/frs/index.
php?group_id=603.

Format

A data frame with 151 rows and 124 columns

References

Hamner, S.R., Delp, S.L. Muscle contributions to fore-aft and vertical body mass center accelera-
tions over a range of running speeds. Journal of Biomechanics, vol 46, pp 780-787. (2013)

https://simtk.org/frs/index.php?group_id=603
https://simtk.org/frs/index.php?group_id=603


440 zzz

with_no_h2o_progress Suppresses h2o progress output from expr

Description

Suppresses h2o progress output from expr

Usage

with_no_h2o_progress(expr)

Arguments

expr expression

Value

result of expr

zzz Shutdown H2O cluster after examples run

Description

Shutdown H2O cluster after examples run

Examples

## Not run:
library(h2o)
h2o.init()
h2o.shutdown(prompt = FALSE)
Sys.sleep(3)

## End(Not run)



&& 441

&& Logical and for H2OFrames

Description

Logical and for H2OFrames

Usage

`&&`(x, y)

Arguments

x An H2OFrame object

y An H2OFrame object



Index

!.H2OFrame (Ops.H2OFrame), 422
∗ datasets

.h2o.__ALL_CAPABILITIES, 25

.h2o.__CREATE_FRAME, 25

.h2o.__DECRYPTION_SETUP, 26

.h2o.__DKV, 26

.h2o.__FRAMES, 27

.h2o.__IMPORT, 27

.h2o.__JOBS, 27

.h2o.__LOGANDECHO, 28

.h2o.__MODELS, 28

.h2o.__PARSE_SETUP, 29

.h2o.__RAPIDS, 29

.h2o.__REST_API_VERSION, 30

.h2o.__W2V_SYNONYMS, 31

.h2o.primitives, 24

.pkg.env, 35
australia, 48
housevotes, 415
iris, 416
prostate, 433
walking, 439

∗ package
h2o-package, 12

.addParm, 13

.check_for_ggplot2, 14

.collapse, 14

.consolidate_varimps, 15

.create_leaderboard, 15

.customized_call, 16

.find_appropriate_column_name, 16

.get_algorithm, 17

.get_domain_mapping, 17

.get_feature_count, 18

.get_first_of_family, 18

.h2o.__ALL_CAPABILITIES, 25

.h2o.__CREATE_FRAME, 25

.h2o.__DECRYPTION_SETUP, 26

.h2o.__DKV, 26

.h2o.__EXPORT_FILES, 26

.h2o.__FRAMES, 27

.h2o.__IMPORT, 27

.h2o.__JOBS, 27

.h2o.__LOGANDECHO, 28

.h2o.__MODELS, 28

.h2o.__MODEL_BUILDERS, 28

.h2o.__MODEL_METRICS, 29

.h2o.__PARSE_SETUP, 29

.h2o.__RAPIDS, 29

.h2o.__REST_API_VERSION, 30

.h2o.__SEGMENT_MODELS_BUILDERS, 30

.h2o.__W2V_SYNONYMS, 31

.h2o.__checkConnectionHealth, 25

.h2o.doGET, 19

.h2o.doPOST, 19

.h2o.doRawGET, 20

.h2o.doRawPOST, 21

.h2o.doSafeGET, 22

.h2o.doSafePOST, 22

.h2o.is_progress, 23

.h2o.locate, 23

.h2o.perfect_auc, 24

.h2o.primitives, 24

.has_varimp, 31

.interpretable, 32

.is_h2o_model, 32

.is_h2o_tree_model, 33

.is_plotting_to_rnotebook, 33

.leaderboard_for_row, 34

.min_max, 34

.model_cache (model_cache-class), 421

.model_ids, 35

.pkg.env, 35

.plot_varimp, 36

.process_models_or_automl, 36

.shorten_model_ids, 37

.skip_if_not_developer, 38

.uniformize, 38

442



INDEX 443

.varimp, 39

.verify_dataxy, 39
[,H2OFrame-method (H2OFrame-Extract),

407
[.H2OFrame (H2OFrame-Extract), 407
[<-.H2OFrame (H2OFrame-Extract), 407
[[.H2OFrame (H2OFrame-Extract), 407
[[<-.H2OFrame (H2OFrame-Extract), 407
$.H2OFrame (H2OFrame-Extract), 407
$<-.H2OFrame (H2OFrame-Extract), 407
%*% (Ops.H2OFrame), 422
%in% (h2o.match), 238
&&, 441

aaa, 40
all, 58, 64
apply, 40, 40
as.character.H2OFrame, 41
as.data.frame.H2OFrame, 42, 439
as.data.frame.H2OSegmentModels, 43
as.factor, 43, 44
as.h2o, 44
as.h2o.data.frame, 439
as.matrix.H2OFrame, 46
as.numeric, 46
as.vector.H2OFrame, 47
australia, 48

cbind, 81, 309
character, 213
coef.H2OCoxPHModel

(H2OCoxPHModel-class), 405
coef.H2OCoxPHModelSummary

(H2OCoxPHModelSummary-class),
406

colnames, 48, 89
colnames<- (Ops.H2OFrame), 422
colSums, 240
cor, 384
cor (h2o.cor), 93
cumsum, 104–106
cut.H2OFrame (h2o.cut), 107

data.table, 439
day (h2o.day), 108
dayOfWeek (h2o.dayOfWeek), 109
dim, 49, 122
dim.H2OFrame, 49
dimnames, 123

dimnames.H2OFrame, 49

extractAIC.H2OCoxPHModel
(H2OCoxPHModel-class), 405

Extremes, 239, 248

factor, 67, 214
feature_frequencies.H2OModel, 50
fread, 42, 439
fwrite, 45, 439

generate_col_ind, 51
get_seed.H2OModel, 51
getBetweenSS (ModelAccessors), 420
getBetweenSS,H2OClusteringModel-method

(ModelAccessors), 420
getCenters (ModelAccessors), 420
getCenters,H2OClusteringModel-method

(ModelAccessors), 420
getCentersStd (ModelAccessors), 420
getCentersStd,H2OClusteringModel-method

(ModelAccessors), 420
getClusterSizes (ModelAccessors), 420
getClusterSizes,H2OClusteringModel-method

(ModelAccessors), 420
getIterations (ModelAccessors), 420
getIterations,H2OClusteringModel-method

(ModelAccessors), 420
getParms (ModelAccessors), 420
getParms,H2OModel-method

(ModelAccessors), 420
getTotSS (ModelAccessors), 420
getTotSS,H2OClusteringModel-method

(ModelAccessors), 420
getTotWithinSS (ModelAccessors), 420
getTotWithinSS,H2OClusteringModel-method

(ModelAccessors), 420
getWithinSS (ModelAccessors), 420
getWithinSS,H2OClusteringModel-method

(ModelAccessors), 420

h2o (h2o-package), 12
h2o-package, 12
h2o.abs, 52
h2o.accuracy (h2o.metric), 246
h2o.acos, 53
h2o.aecu, 53
h2o.aecu_table, 54
h2o.aggregated_frame, 55



444 INDEX

h2o.aggregator, 56
h2o.aic, 57
h2o.all, 58
h2o.anomaly, 59
h2o.anovaglm, 60
h2o.any, 64
h2o.anyFactor, 64
h2o.api, 65
h2o.arrange, 66
h2o.as_date, 69
h2o.ascharacter, 67
h2o.asfactor, 67
h2o.asnumeric, 68
h2o.assign, 69, 318
h2o.auc, 70, 171, 178, 247, 261, 318
h2o.aucpr, 71
h2o.automl, 72
h2o.auuc, 77
h2o.auuc_table, 78
h2o.betweenss, 78, 222
h2o.biases, 79
h2o.bottomN, 80
h2o.cbind, 81
h2o.ceiling, 82
h2o.centers, 82, 222
h2o.centersSTD, 83, 222
h2o.centroid_stats, 83
h2o.clearLog, 84, 275, 347, 349
h2o.cluster_sizes, 86, 222
h2o.clusterInfo, 85
h2o.clusterIsUp, 85
h2o.clusterStatus, 85
h2o.coef, 87
h2o.coef_norm, 88
h2o.colnames, 89
h2o.columns_by_type, 89
h2o.computeGram, 90
h2o.confusionMatrix, 91, 178
h2o.confusionMatrix,H2OModel-method

(h2o.confusionMatrix), 91
h2o.confusionMatrix,H2OModelMetrics-method

(h2o.confusionMatrix), 91
h2o.connect, 92
h2o.cor, 93
h2o.cos, 94
h2o.cosh, 95
h2o.coxph, 96
h2o.createFrame, 98

h2o.cross_validation_fold_assignment,
100

h2o.cross_validation_holdout_predictions,
101

h2o.cross_validation_models, 102
h2o.cross_validation_predictions, 103
h2o.cummax, 104
h2o.cummin, 104
h2o.cumprod, 105
h2o.cumsum, 106
h2o.cut, 107
h2o.day, 108, 109, 191
h2o.dayOfWeek, 109
h2o.dct, 109
h2o.ddply, 110
h2o.decryptionSetup, 111, 195, 277, 278
h2o.deepfeatures, 112
h2o.deeplearning, 59, 113, 113, 424, 427
h2o.describe, 121
h2o.difflag1, 121
h2o.dim, 122
h2o.dimnames, 123
h2o.distance, 123
h2o.download_model, 125, 382
h2o.download_mojo, 126
h2o.download_pojo, 127
h2o.downloadAllLogs, 124
h2o.downloadCSV, 125
h2o.drop_duplicates, 128
h2o.entropy, 129
h2o.error (h2o.metric), 246
h2o.exp, 129
h2o.explain, 130
h2o.explain_row, 132
h2o.exportFile, 133
h2o.exportHDFS, 135
h2o.extendedIsolationForest, 135
h2o.F0point5 (h2o.metric), 246
h2o.F1 (h2o.metric), 246
h2o.F2 (h2o.metric), 246
h2o.fallout (h2o.metric), 246
h2o.feature_frequencies

(feature_frequencies.H2OModel),
50

h2o.feature_interaction, 137
h2o.fillna, 138
h2o.filterNACols, 139
h2o.find_row_by_threshold, 140



INDEX 445

h2o.find_threshold_by_max_metric, 141
h2o.findSynonyms, 140
h2o.floor, 142
h2o.flow, 143
h2o.fnr (h2o.metric), 246
h2o.fpr (h2o.metric), 246
h2o.gainsLift, 143, 223
h2o.gainsLift,H2OModel-method

(h2o.gainsLift), 143
h2o.gainsLift,H2OModelMetrics-method

(h2o.gainsLift), 143
h2o.gam, 144
h2o.gbm, 50, 150, 424, 427, 429, 431, 435
h2o.generic, 156
h2o.genericModel, 157
h2o.get_automl, 166
h2o.get_best_model, 166
h2o.get_best_model_predictors, 168
h2o.get_best_r2_values, 168
h2o.get_leaderboard, 169
h2o.get_ntrees_actual, 170
h2o.get_seed (get_seed.H2OModel), 51
h2o.get_segment_models, 170
h2o.getAlphaBest, 158
h2o.getAutoML (h2o.get_automl), 166
h2o.getConnection, 158
h2o.getFrame, 158
h2o.getGLMFullRegularizationPath, 159
h2o.getGrid, 160
h2o.getId, 161
h2o.getLambdaBest, 161
h2o.getLambdaMax, 162
h2o.getLambdaMin, 162
h2o.getModel, 163
h2o.getModelTree, 163
h2o.getTimezone, 164
h2o.getTypes, 165
h2o.getVersion, 165
h2o.giniCoef, 70, 71, 171, 171, 178, 247,

262, 263
h2o.glm, 13, 172, 424, 427
h2o.glrm, 178, 290, 294, 310
h2o.grep, 182
h2o.grid, 183
h2o.group_by, 185
h2o.gsub, 186
h2o.h, 187
h2o.head, 188

h2o.HGLMMetrics, 189
h2o.hist, 189
h2o.hit_ratio_table, 190
h2o.hour, 191
h2o.ice_plot, 191
h2o.ifelse, 192
h2o.import_hive_table, 196
h2o.import_mojo, 197
h2o.import_sql_select, 196, 198
h2o.import_sql_table, 196, 199
h2o.importFile, 112, 193, 277
h2o.importFolder (h2o.importFile), 193
h2o.importHDFS (h2o.importFile), 193
h2o.impute, 200
h2o.infogram, 201, 423
h2o.init, 13, 85, 206, 340
h2o.insertMissingValues, 210
h2o.interaction, 211
h2o.is_client, 218
h2o.isax, 212
h2o.ischaracter, 213
h2o.isfactor, 214
h2o.isnumeric, 215
h2o.isolationForest, 215
h2o.keyof, 218
h2o.keyof,H2OAutoML-method (h2o.keyof),

218
h2o.keyof,H2OFrame-method (h2o.keyof),

218
h2o.keyof,H2OGrid-method (h2o.keyof),

218
h2o.keyof,H2OModel-method (h2o.keyof),

218
h2o.keyof,Keyed-method (h2o.keyof), 218
h2o.kfold_column, 219
h2o.killMinus3, 220
h2o.kmeans, 181, 220
h2o.kolmogorov_smirnov, 222
h2o.kolmogorov_smirnov,H2OModel-method

(h2o.kolmogorov_smirnov), 222
h2o.kolmogorov_smirnov,H2OModelMetrics-method

(h2o.kolmogorov_smirnov), 222
h2o.kurtosis, 223
h2o.learning_curve_plot, 224
h2o.length (Ops.H2OFrame), 422
h2o.levels, 225
h2o.list_all_extensions, 226
h2o.list_api_extensions, 227



446 INDEX

h2o.list_core_extensions, 227
h2o.list_jobs, 227
h2o.list_models, 228
h2o.listTimezones, 226
h2o.load_frame, 230
h2o.loadGrid, 228
h2o.loadModel, 229, 326
h2o.log, 231
h2o.log10, 231
h2o.log1p, 232
h2o.log2, 233
h2o.logAndEcho, 233
h2o.logloss, 178, 234
h2o.ls, 235, 318
h2o.lstrip, 235
h2o.mae, 236
h2o.make_metrics, 237
h2o.makeGLMModel, 237
h2o.match, 238
h2o.max, 239
h2o.maxPerClassError (h2o.metric), 246
h2o.mcc (h2o.metric), 246
h2o.mean, 240
h2o.mean_per_class_accuracy

(h2o.metric), 246
h2o.mean_per_class_error, 241
h2o.mean_residual_deviance, 242
h2o.median, 243
h2o.melt, 244
h2o.merge, 244
h2o.metric, 70, 71, 171, 241, 246, 261–263,

318
h2o.min, 248
h2o.missrate (h2o.metric), 246
h2o.mktime, 248
h2o.model_correlation, 255
h2o.model_correlation_heatmap, 256
h2o.modelSelection, 249
h2o.mojo_predict_csv, 258
h2o.mojo_predict_df, 259
h2o.month, 108, 109, 260, 390, 402
h2o.mse, 70, 71, 178, 241, 247, 260, 261–263,

318
h2o.multinomial_auc_table, 262
h2o.multinomial_aucpr_table, 261
h2o.na_omit, 267
h2o.nacnt, 263
h2o.naiveBayes, 264

h2o.names, 266
h2o.nchar, 268
h2o.ncol, 269
h2o.networkTest, 269
h2o.nlevels, 270
h2o.no_progress, 270
h2o.nrow, 271
h2o.null_deviance, 272
h2o.null_dof, 273
h2o.num_iterations, 222, 273
h2o.num_valid_substrings, 274
h2o.openLog, 84, 275, 347, 349
h2o.parseRaw, 195, 196, 275, 278
h2o.parseSetup, 112, 277, 277
h2o.partialPlot, 279
h2o.pd_multi_plot, 281
h2o.pd_plot, 282
h2o.performance, 70, 71, 91, 144, 171, 178,

241, 247, 261–263, 283, 318
h2o.permutation_importance, 285
h2o.permutation_importance_plot, 286
h2o.pivot, 287
h2o.pr_auc (h2o.aucpr), 71
h2o.prcomp, 181, 288
h2o.precision (h2o.metric), 246
h2o.predict, 290
h2o.predict.H2OAutoML

(predict.H2OAutoML), 426
h2o.predict.H2OModel

(predict.H2OModel), 427
h2o.predict_contributions

(predict_contributions.H2OModel),
428

h2o.predict_json, 291
h2o.predict_leaf_node_assignment, 435
h2o.predict_leaf_node_assignment

(predict_leaf_node_assignment.H2OModel),
430

h2o.predict_rules, 292
h2o.print, 293
h2o.prod, 293
h2o.proj_archetypes, 294
h2o.psvm, 295
h2o.qini, 297
h2o.quantile, 298
h2o.r2, 299
h2o.randomForest, 50, 300, 424, 427, 429,

431, 435



INDEX 447

h2o.range, 305
h2o.rank_within_group_by, 306
h2o.rapids, 308
h2o.rbind, 309
h2o.recall (h2o.metric), 246
h2o.reconstruct, 309
h2o.relevel, 310
h2o.removeAll, 311
h2o.removeVecs, 312
h2o.rep_len, 312
h2o.reset_threshold, 313
h2o.residual_analysis_plot, 314
h2o.residual_deviance, 315
h2o.residual_dof, 316
h2o.resume, 316
h2o.resumeGrid, 317
h2o.rm, 312, 317
h2o.rmse, 318
h2o.rmsle, 319
h2o.round, 320
h2o.rstrip, 321
h2o.rulefit, 321
h2o.runif, 324
h2o.save_frame, 328
h2o.save_mojo, 329
h2o.save_to_hive, 330
h2o.saveGrid, 324
h2o.saveModel, 229, 326, 328, 329, 382
h2o.saveModelDetails, 327
h2o.saveMojo, 327
h2o.scale, 330
h2o.scoreHistory, 178, 331
h2o.scoreHistoryGAM, 332
h2o.screeplot, 332
h2o.sd, 333, 384
h2o.sdev, 333
h2o.sensitivity (h2o.metric), 246
h2o.set_s3_credentials, 335
h2o.setLevels, 334
h2o.setTimezone, 335
h2o.shap_explain_row_plot, 336
h2o.shap_summary_plot, 337
h2o.show_progress, 338
h2o.shutdown, 209, 339
h2o.signif, 340
h2o.sin, 341
h2o.skewness, 342
h2o.specificity (h2o.metric), 246

h2o.splitFrame, 342
h2o.sqrt, 343
h2o.stackedEnsemble, 344
h2o.staged_predict_proba

(staged_predict_proba.H2OModel),
435

h2o.startLogging, 84, 275, 347, 349
h2o.std_coef_plot, 348, 388
h2o.stopLogging, 84, 275, 347, 349
h2o.str, 349
h2o.stringdist, 350
h2o.strsplit, 351
h2o.sub, 352
h2o.substr (h2o.substring), 352
h2o.substring, 352
h2o.sum, 353
h2o.summary, 354
h2o.svd, 181, 290, 355
h2o.table, 357
h2o.tabulate, 358, 426
h2o.tail (h2o.head), 188
h2o.tan, 359
h2o.tanh, 359
h2o.target_encode_apply, 362, 365
h2o.target_encode_create, 363, 364
h2o.targetencoder, 360
h2o.tf_idf, 365
h2o.thresholds_and_metric_scores, 366
h2o.tnr (h2o.metric), 246
h2o.toFrame, 367
h2o.tokenize, 367
h2o.tolower, 368
h2o.topBottomN, 369
h2o.topN, 369
h2o.tot_withinss, 222, 371
h2o.totss, 222, 370
h2o.toupper, 371
h2o.tpr (h2o.metric), 246
h2o.train_segments, 372
h2o.transform, 373
h2o.transform,H2OTargetEncoderModel-method,

374
h2o.transform,H2OWordEmbeddingModel-method,

375
h2o.transform_word2vec, 376
h2o.trim, 377
h2o.trunc, 377
h2o.unique, 378



448 INDEX

h2o.upliftRandomForest, 379
h2o.upload_model, 382
h2o.upload_mojo, 382
h2o.uploadFile (h2o.importFile), 193
h2o.var, 333, 383
h2o.varimp, 178, 384
h2o.varimp,H2OAutoML-method, 385
h2o.varimp,H2OFrame-method, 385
h2o.varimp,H2OModel-method, 386
h2o.varimp_heatmap, 387
h2o.varimp_plot, 348, 388
h2o.varsplits, 389
h2o.week, 389
h2o.weights, 390
h2o.which, 391
h2o.which_max, 392
h2o.which_min, 393
h2o.withinss, 222, 394
h2o.word2vec, 394
h2o.xgboost, 396
h2o.xgboost.available, 402
h2o.year, 260, 402
H2OAnomalyDetectionMetrics-class

(H2OModelMetrics-class), 411
H2OAnomalyDetectionModel-class

(H2OModel-class), 410
H2OAutoEncoderMetrics-class

(H2OModelMetrics-class), 411
H2OAutoEncoderModel, 59
H2OAutoEncoderModel-class

(H2OModel-class), 410
H2OAutoML, 76, 166, 385, 426
H2OAutoML-class, 403
H2OBinomialMetrics, 70, 71, 91, 143, 171,

223, 234, 241, 247, 261, 318
H2OBinomialMetrics-class

(H2OModelMetrics-class), 411
H2OBinomialModel, 177, 266
H2OBinomialModel-class

(H2OModel-class), 410
H2OBinomialUpliftMetrics, 53, 54, 77, 78,

297, 366
H2OBinomialUpliftMetrics-class

(H2OModelMetrics-class), 411
H2OBinomialUpliftModel-class

(H2OModel-class), 410
H2OClusteringMetrics-class

(H2OModelMetrics-class), 411

H2OClusteringModel, 55, 79, 82–84, 86, 222,
274, 370, 371, 394

H2OClusteringModel-class, 403
H2OConnection, 85, 158
H2OConnection (H2OConnection-class), 404
H2OConnection-class, 404
H2OConnectionMutableState, 405
H2OCoxPHMetrics-class

(H2OModelMetrics-class), 411
H2OCoxPHModel (H2OCoxPHModel-class), 405
H2OCoxPHModel-class, 405
H2OCoxPHModelSummary

(H2OCoxPHModelSummary-class),
406

H2OCoxPHModelSummary-class, 406
H2ODimReductionMetrics-class

(H2OModelMetrics-class), 411
H2ODimReductionModel, 181, 290, 294, 310,

334, 356
H2ODimReductionModel-class

(H2OModel-class), 410
H2OFrame, 24
H2OFrame-class, 406
H2OFrame-Extract, 407
H2OGrid, 325
H2OGrid (H2OGrid-class), 408
H2OGrid-class, 408
H2OInfogram, 409, 423
H2OInfogram-class, 409
H2OLeafNode-class, 410
H2OModel, 50, 51, 58, 79, 87, 88, 90, 91,

100–103, 112, 135, 143, 144, 158,
159, 161–163, 170, 177, 190, 223,
229, 236, 237, 242, 272, 273, 279,
284, 299, 304, 313, 315, 316, 319,
326–329, 331, 332, 381, 382, 386,
389, 390, 408, 411, 421, 424, 427,
429, 430, 435, 438

H2OModel (H2OModel-class), 410
H2OModel-class, 410
H2OModelFuture-class, 411
H2OModelMetrics, 58, 79, 91, 143, 144, 223,

234, 238, 247, 260, 261, 272, 273,
284, 315, 316, 318, 390

H2OModelMetrics
(H2OModelMetrics-class), 411

H2OModelMetrics-class, 411
H2OMultinomialMetrics, 70, 91, 234, 261,



INDEX 449

262, 318
H2OMultinomialMetrics-class

(H2OModelMetrics-class), 411
H2OMultinomialModel, 266
H2OMultinomialModel-class

(H2OModel-class), 410
H2ONode-class, 412
H2OOrdinalMetrics-class

(H2OModelMetrics-class), 411
H2OOrdinalModel-class (H2OModel-class),

410
H2ORegressionMetrics, 261, 318
H2ORegressionMetrics-class

(H2OModelMetrics-class), 411
H2ORegressionModel, 177
H2ORegressionModel-class

(H2OModel-class), 410
H2OSegmentModels, 43, 170, 413
H2OSegmentModels-class, 413
H2OSegmentModelsFuture-class, 413
H2OSplitNode (H2OSplitNode-class), 414
H2OSplitNode-class, 414
H2OTargetEncoderMetrics-class

(H2OModelMetrics-class), 411
H2OTargetEncoderModel-class

(H2OModel-class), 410
H2OTree (H2OTree-class), 414
H2OTree-class, 414
H2OUnknownMetrics-class

(H2OModelMetrics-class), 411
H2OUnknownModel-class (H2OModel-class),

410
H2OWordEmbeddingMetrics-class

(H2OModelMetrics-class), 411
H2OWordEmbeddingModel-class

(H2OModel-class), 410
head.H2OFrame (h2o.head), 188
hour (h2o.hour), 191
housevotes, 415
Hyperbolic, 95, 360

ifelse (h2o.ifelse), 192
initialize,H2OInfogram-method, 416
iris, 416
is.character, 417
is.factor, 417
is.h2o, 418
is.na.H2OFrame (Ops.H2OFrame), 422
is.numeric, 418

Keyed-class, 419
kurtosis.H2OFrame (h2o.kurtosis), 223

length,H2OTree-method, 419
length.H2OFrame (Ops.H2OFrame), 422
levels, 226
Log, 130, 231–233
log (Ops.H2OFrame), 422
log10 (Ops.H2OFrame), 422
log1p (Ops.H2OFrame), 422
log2 (Ops.H2OFrame), 422
Logical-or, 419
logLik.H2OCoxPHModel

(H2OCoxPHModel-class), 405

match, 239
match.H2OFrame (h2o.match), 238
Math.H2OFrame (Ops.H2OFrame), 422
MathFun, 52, 343
mean.H2OFrame (h2o.mean), 240
median.H2OFrame (h2o.median), 243
model_cache-class, 421
ModelAccessors, 420
month (h2o.month), 260

names, 267
names.H2OFrame, 421
names<-.H2OFrame (Ops.H2OFrame), 422
ncol.H2OFrame (Ops.H2OFrame), 422
nlevels, 270
nrow, 269, 271
nrow.H2OFrame (Ops.H2OFrame), 422
numeric, 68, 215

Ops.H2OFrame, 422

plot.H2OInfogram, 423
plot.H2OModel, 424
plot.H2OTabulate, 425
predict, 91, 144
predict.H2OAutoML, 426
predict.H2OModel, 120, 155, 178, 304, 381,

427
predict_contributions.H2OModel, 428
predict_leaf_node_assignment.H2OModel,

430
print.H2OFrame, 431
print.H2OTable, 432
prod, 294



450 INDEX

prostate, 433

quantile, 298
quantile.H2OFrame (h2o.quantile), 298

range, 305
range.H2OFrame, 433
Round, 82, 142, 240, 320, 340, 377
round (h2o.round), 320

scale, 434
sd, 333
sd (h2o.sd), 333
show,H2OAnomalyDetectionMetrics-method

(H2OModelMetrics-class), 411
show,H2OAutoEncoderMetrics-method

(H2OModelMetrics-class), 411
show,H2OAutoML-method, 434
show,H2OBinomialMetrics-method

(H2OModelMetrics-class), 411
show,H2OBinomialUpliftMetrics-method

(H2OModelMetrics-class), 411
show,H2OClusteringMetrics-method

(H2OModelMetrics-class), 411
show,H2OConnection-method

(H2OConnection-class), 404
show,H2OCoxPHModel-method

(H2OCoxPHModel-class), 405
show,H2OCoxPHModelSummary-method

(H2OCoxPHModelSummary-class),
406

show,H2ODimReductionMetrics-method
(H2OModelMetrics-class), 411

show,H2OGrid-method (H2OGrid-class), 408
show,H2OModel-method (H2OModel-class),

410
show,H2OModelMetrics-method

(H2OModelMetrics-class), 411
show,H2OMultinomialMetrics-method

(H2OModelMetrics-class), 411
show,H2ONode-method (H2ONode-class), 412
show,H2OOrdinalMetrics-method

(H2OModelMetrics-class), 411
show,H2ORegressionMetrics-method

(H2OModelMetrics-class), 411
show,H2OSegmentModels-method

(H2OSegmentModels-class), 413
show,H2OTree-method (H2OTree-class), 414
signif (h2o.signif), 340

skewness.H2OFrame (h2o.skewness), 342
staged_predict_proba.H2OModel, 435
str.H2OFrame, 436
sum, 353
summary, 354
summary,H2OAutoML-method, 436
summary,H2OCoxPHModel-method, 437
summary,H2OGrid-method, 437
summary,H2OModel-method, 438
Summary.H2OFrame (Ops.H2OFrame), 422
summary.H2OFrame (h2o.summary), 354
survfit.H2OCoxPHModel

(H2OCoxPHModel-class), 405

t.H2OFrame (Ops.H2OFrame), 422
table.H2OFrame (h2o.table), 357
tail.H2OFrame (h2o.head), 188
Trig, 53, 94, 341, 359
trunc (Ops.H2OFrame), 422

use.package, 42, 45, 438

var (h2o.var), 383
vcov.H2OCoxPHModel

(H2OCoxPHModel-class), 405

walking, 439
week (h2o.week), 389
which, 391
which.max.H2OFrame (h2o.which_max), 392
which.min, 392, 393
which.min.H2OFrame (h2o.which_max), 392
with_no_h2o_progress, 440

year (h2o.year), 402

zzz, 440


	h2o-package
	.addParm
	.check_for_ggplot2
	.collapse
	.consolidate_varimps
	.create_leaderboard
	.customized_call
	.find_appropriate_column_name
	.get_algorithm
	.get_domain_mapping
	.get_feature_count
	.get_first_of_family
	.h2o.doGET
	.h2o.doPOST
	.h2o.doRawGET
	.h2o.doRawPOST
	.h2o.doSafeGET
	.h2o.doSafePOST
	.h2o.is_progress
	.h2o.locate
	.h2o.perfect_auc
	.h2o.primitives
	.h2o.__ALL_CAPABILITIES
	.h2o.__checkConnectionHealth
	.h2o.__CREATE_FRAME
	.h2o.__DECRYPTION_SETUP
	.h2o.__DKV
	.h2o.__EXPORT_FILES
	.h2o.__FRAMES
	.h2o.__IMPORT
	.h2o.__JOBS
	.h2o.__LOGANDECHO
	.h2o.__MODELS
	.h2o.__MODEL_BUILDERS
	.h2o.__MODEL_METRICS
	.h2o.__PARSE_SETUP
	.h2o.__RAPIDS
	.h2o.__REST_API_VERSION
	.h2o.__SEGMENT_MODELS_BUILDERS
	.h2o.__W2V_SYNONYMS
	.has_varimp
	.interpretable
	.is_h2o_model
	.is_h2o_tree_model
	.is_plotting_to_rnotebook
	.leaderboard_for_row
	.min_max
	.model_ids
	.pkg.env
	.plot_varimp
	.process_models_or_automl
	.shorten_model_ids
	.skip_if_not_developer
	.uniformize
	.varimp
	.verify_dataxy
	aaa
	apply
	as.character.H2OFrame
	as.data.frame.H2OFrame
	as.data.frame.H2OSegmentModels
	as.factor
	as.h2o
	as.matrix.H2OFrame
	as.numeric
	as.vector.H2OFrame
	australia
	colnames
	dim.H2OFrame
	dimnames.H2OFrame
	feature_frequencies.H2OModel
	generate_col_ind
	get_seed.H2OModel
	h2o.abs
	h2o.acos
	h2o.aecu
	h2o.aecu_table
	h2o.aggregated_frame
	h2o.aggregator
	h2o.aic
	h2o.all
	h2o.anomaly
	h2o.anovaglm
	h2o.any
	h2o.anyFactor
	h2o.api
	h2o.arrange
	h2o.ascharacter
	h2o.asfactor
	h2o.asnumeric
	h2o.assign
	h2o.as_date
	h2o.auc
	h2o.aucpr
	h2o.automl
	h2o.auuc
	h2o.auuc_table
	h2o.betweenss
	h2o.biases
	h2o.bottomN
	h2o.cbind
	h2o.ceiling
	h2o.centers
	h2o.centersSTD
	h2o.centroid_stats
	h2o.clearLog
	h2o.clusterInfo
	h2o.clusterIsUp
	h2o.clusterStatus
	h2o.cluster_sizes
	h2o.coef
	h2o.coef_norm
	h2o.colnames
	h2o.columns_by_type
	h2o.computeGram
	h2o.confusionMatrix
	h2o.connect
	h2o.cor
	h2o.cos
	h2o.cosh
	h2o.coxph
	h2o.createFrame
	h2o.cross_validation_fold_assignment
	h2o.cross_validation_holdout_predictions
	h2o.cross_validation_models
	h2o.cross_validation_predictions
	h2o.cummax
	h2o.cummin
	h2o.cumprod
	h2o.cumsum
	h2o.cut
	h2o.day
	h2o.dayOfWeek
	h2o.dct
	h2o.ddply
	h2o.decryptionSetup
	h2o.deepfeatures
	h2o.deeplearning
	h2o.describe
	h2o.difflag1
	h2o.dim
	h2o.dimnames
	h2o.distance
	h2o.downloadAllLogs
	h2o.downloadCSV
	h2o.download_model
	h2o.download_mojo
	h2o.download_pojo
	h2o.drop_duplicates
	h2o.entropy
	h2o.exp
	h2o.explain
	h2o.explain_row
	h2o.exportFile
	h2o.exportHDFS
	h2o.extendedIsolationForest
	h2o.feature_interaction
	h2o.fillna
	h2o.filterNACols
	h2o.findSynonyms
	h2o.find_row_by_threshold
	h2o.find_threshold_by_max_metric
	h2o.floor
	h2o.flow
	h2o.gainsLift
	h2o.gam
	h2o.gbm
	h2o.generic
	h2o.genericModel
	h2o.getAlphaBest
	h2o.getConnection
	h2o.getFrame
	h2o.getGLMFullRegularizationPath
	h2o.getGrid
	h2o.getId
	h2o.getLambdaBest
	h2o.getLambdaMax
	h2o.getLambdaMin
	h2o.getModel
	h2o.getModelTree
	h2o.getTimezone
	h2o.getTypes
	h2o.getVersion
	h2o.get_automl
	h2o.get_best_model
	h2o.get_best_model_predictors
	h2o.get_best_r2_values
	h2o.get_leaderboard
	h2o.get_ntrees_actual
	h2o.get_segment_models
	h2o.giniCoef
	h2o.glm
	h2o.glrm
	h2o.grep
	h2o.grid
	h2o.group_by
	h2o.gsub
	h2o.h
	h2o.head
	h2o.HGLMMetrics
	h2o.hist
	h2o.hit_ratio_table
	h2o.hour
	h2o.ice_plot
	h2o.ifelse
	h2o.importFile
	h2o.import_hive_table
	h2o.import_mojo
	h2o.import_sql_select
	h2o.import_sql_table
	h2o.impute
	h2o.infogram
	h2o.init
	h2o.insertMissingValues
	h2o.interaction
	h2o.isax
	h2o.ischaracter
	h2o.isfactor
	h2o.isnumeric
	h2o.isolationForest
	h2o.is_client
	h2o.keyof
	h2o.kfold_column
	h2o.killMinus3
	h2o.kmeans
	h2o.kolmogorov_smirnov
	h2o.kurtosis
	h2o.learning_curve_plot
	h2o.levels
	h2o.listTimezones
	h2o.list_all_extensions
	h2o.list_api_extensions
	h2o.list_core_extensions
	h2o.list_jobs
	h2o.list_models
	h2o.loadGrid
	h2o.loadModel
	h2o.load_frame
	h2o.log
	h2o.log10
	h2o.log1p
	h2o.log2
	h2o.logAndEcho
	h2o.logloss
	h2o.ls
	h2o.lstrip
	h2o.mae
	h2o.makeGLMModel
	h2o.make_metrics
	h2o.match
	h2o.max
	h2o.mean
	h2o.mean_per_class_error
	h2o.mean_residual_deviance
	h2o.median
	h2o.melt
	h2o.merge
	h2o.metric
	h2o.min
	h2o.mktime
	h2o.modelSelection
	h2o.model_correlation
	h2o.model_correlation_heatmap
	h2o.mojo_predict_csv
	h2o.mojo_predict_df
	h2o.month
	h2o.mse
	h2o.multinomial_aucpr_table
	h2o.multinomial_auc_table
	h2o.nacnt
	h2o.naiveBayes
	h2o.names
	h2o.na_omit
	h2o.nchar
	h2o.ncol
	h2o.networkTest
	h2o.nlevels
	h2o.no_progress
	h2o.nrow
	h2o.null_deviance
	h2o.null_dof
	h2o.num_iterations
	h2o.num_valid_substrings
	h2o.openLog
	h2o.parseRaw
	h2o.parseSetup
	h2o.partialPlot
	h2o.pd_multi_plot
	h2o.pd_plot
	h2o.performance
	h2o.permutation_importance
	h2o.permutation_importance_plot
	h2o.pivot
	h2o.prcomp
	h2o.predict
	h2o.predict_json
	h2o.predict_rules
	h2o.print
	h2o.prod
	h2o.proj_archetypes
	h2o.psvm
	h2o.qini
	h2o.quantile
	h2o.r2
	h2o.randomForest
	h2o.range
	h2o.rank_within_group_by
	h2o.rapids
	h2o.rbind
	h2o.reconstruct
	h2o.relevel
	h2o.removeAll
	h2o.removeVecs
	h2o.rep_len
	h2o.reset_threshold
	h2o.residual_analysis_plot
	h2o.residual_deviance
	h2o.residual_dof
	h2o.resume
	h2o.resumeGrid
	h2o.rm
	h2o.rmse
	h2o.rmsle
	h2o.round
	h2o.rstrip
	h2o.rulefit
	h2o.runif
	h2o.saveGrid
	h2o.saveModel
	h2o.saveModelDetails
	h2o.saveMojo
	h2o.save_frame
	h2o.save_mojo
	h2o.save_to_hive
	h2o.scale
	h2o.scoreHistory
	h2o.scoreHistoryGAM
	h2o.screeplot
	h2o.sd
	h2o.sdev
	h2o.setLevels
	h2o.setTimezone
	h2o.set_s3_credentials
	h2o.shap_explain_row_plot
	h2o.shap_summary_plot
	h2o.show_progress
	h2o.shutdown
	h2o.signif
	h2o.sin
	h2o.skewness
	h2o.splitFrame
	h2o.sqrt
	h2o.stackedEnsemble
	h2o.startLogging
	h2o.std_coef_plot
	h2o.stopLogging
	h2o.str
	h2o.stringdist
	h2o.strsplit
	h2o.sub
	h2o.substring
	h2o.sum
	h2o.summary
	h2o.svd
	h2o.table
	h2o.tabulate
	h2o.tan
	h2o.tanh
	h2o.targetencoder
	h2o.target_encode_apply
	h2o.target_encode_create
	h2o.tf_idf
	h2o.thresholds_and_metric_scores
	h2o.toFrame
	h2o.tokenize
	h2o.tolower
	h2o.topBottomN
	h2o.topN
	h2o.totss
	h2o.tot_withinss
	h2o.toupper
	h2o.train_segments
	h2o.transform
	h2o.transform,H2OTargetEncoderModel-method
	h2o.transform,H2OWordEmbeddingModel-method
	h2o.transform_word2vec
	h2o.trim
	h2o.trunc
	h2o.unique
	h2o.upliftRandomForest
	h2o.upload_model
	h2o.upload_mojo
	h2o.var
	h2o.varimp
	h2o.varimp,H2OAutoML-method
	h2o.varimp,H2OFrame-method
	h2o.varimp,H2OModel-method
	h2o.varimp_heatmap
	h2o.varimp_plot
	h2o.varsplits
	h2o.week
	h2o.weights
	h2o.which
	h2o.which_max
	h2o.which_min
	h2o.withinss
	h2o.word2vec
	h2o.xgboost
	h2o.xgboost.available
	h2o.year
	H2OAutoML-class
	H2OClusteringModel-class
	H2OConnection-class
	H2OConnectionMutableState
	H2OCoxPHModel-class
	H2OCoxPHModelSummary-class
	H2OFrame-class
	H2OFrame-Extract
	H2OGrid-class
	H2OInfogram
	H2OInfogram-class
	H2OLeafNode-class
	H2OModel-class
	H2OModelFuture-class
	H2OModelMetrics-class
	H2ONode-class
	H2OSegmentModels-class
	H2OSegmentModelsFuture-class
	H2OSplitNode-class
	H2OTree-class
	housevotes
	initialize,H2OInfogram-method
	iris
	is.character
	is.factor
	is.h2o
	is.numeric
	Keyed-class
	length,H2OTree-method
	Logical-or
	ModelAccessors
	model_cache-class
	names.H2OFrame
	Ops.H2OFrame
	plot.H2OInfogram
	plot.H2OModel
	plot.H2OTabulate
	predict.H2OAutoML
	predict.H2OModel
	predict_contributions.H2OModel
	predict_leaf_node_assignment.H2OModel
	print.H2OFrame
	print.H2OTable
	prostate
	range.H2OFrame
	scale
	show,H2OAutoML-method
	staged_predict_proba.H2OModel
	str.H2OFrame
	summary,H2OAutoML-method
	summary,H2OCoxPHModel-method
	summary,H2OGrid-method
	summary,H2OModel-method
	use.package
	walking
	with_no_h2o_progress
	zzz
	&&
	Index

