Package 'hdm'

January 18, 2019

Type Package
Title High-Dimensional Metrics
Version 0.3.1
Date 2018-12-19
Depends R (>=3.0.0)
Description Implementation of selected high-dimensional statistical and econometric methods for estimation and inference. Efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/ structural parameters are provided which appear in high-dimensional approximately sparse models. Including functions for fitting heteroscedastic robust Lasso regressions with non-Gaussian errors and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference and rely on a theoretically grounded, data-driven choice of the penalty. Chernozhukov, Hansen, Spindler (2016) arXiv:1603.01700.
License MIT + file LICENSE
LazyData TRUE
Imports MASS, glmnet, ggplot2, checkmate, Formula, methods
Suggests testthat, knitr, xtable, mvtnorm
VignetteBuilder knitr
RoxygenNote 6.1.0
Author Martin Spindler [cre, aut], Victor Chernozhukov [aut], Christian Hansen [aut], Philipp Bach [ctb]
Maintainer Martin Spindler martin.spindler@gmx.de
Repository CRAN
Repository/R-Forge/Project hdm
Repository/R-Forge/Revision 160
Repository/R-Forge/DateTimeStamp 2019-01-18 15:08:29
Date/Publication 2019-01-18 21:50:17 UTC
NeedsCompilation no

R topics documented:

hdm-package 2
AJR 3
BLP 4
coef.rlassoEffects 5
cps2012 6
EminentDomain 7
Growth Data 8
lambdaCalculation 9
LassoShooting.fit 10
pension 11
predict.rlassologit 12
print.rlasso 13
print.rlassoEffects 14
print.rlassoIV 15
print.rlassoIVselectX 15
print.rlassoIVselectZ 16
print.rlassologitEffects 17
print.rlassoTE 18
print.tsls 19
print_coef 19
p_adjust 20
rlasso 22
rlassoATE 24
rlassoEffects 26
rlassoIV 28
rlassoIVselectX 30
rlassoIVselectZ 32
rlassologit 33
rlassologitEffects 35
summary.rlassoEffects 37
tsls 38
Index 40
hdm-package hdm: High-Dimensional Metrics

Description

This package implements methods for estimation and inference in a high-dimensional setting.

Details

Package:	hdm
Type:	Package
Version:	0.1
Date:	$2015-05-25$
License:	GPL-3

This package provides efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/structural parameters appearing in high-dimensional approximately sparse models. The package includes functions for fitting heteroskedastic robust Lasso regressions with non-Gaussian erros and for instrumental variable (IV) and treatment effect estimation in a highdimensional setting. Moreover, the methods enable valid post-selection inference. Moreover, a theoretically grounded, data-driven choice of the penalty level is provided.

Author(s)

Victor Chernozhukov, Christian Hansen, Martin Spindler

Maintainer: Martin Spindler spindler@mea.mpisoc.mpg.de

References

A. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica 80 (6), 2369-2429.
A. Belloni, V. Chernozhukov and C. Hansen (2013). Inference for high-dimensional sparse econometric models. In Advances in Economics and Econometrics: 10th World Congress, Vol. 3: Econometrics, Cambirdge University Press: Cambridge, 245-295.
A. Belloni, V. Chernozhukov, C. Hansen (2014). Inference on treatment effects after selection among high-dimensional controls. The Review of Economic Studies 81(2), 608-650.

AJR AJR data set

Description

Dataset on settler mortality.

Format

Mort Settler mortality
logMort logarithm of Mort
Latitude Latitude
Latitude2 Latitude^2

Africa Africa

Asia Asia
Namer North America
Samer South America
Neo Neo-Europes
GDP GDP
Exprop Average protection against expropriation risk

Details

Data set was analysed in Acemoglu et al. (2001). A detailed description of the data can be found at http://economics.mit.edu/faculty/acemoglu/data/ajr2001

References

D. Acemoglu, S. Johnson, J. A. Robinson (2001). Colonial origins of comparative development: an empirical investigation. American Economic Review, 91, 1369-1401.

Examples

```
    data(AJR)
```

 BLP BLP data set

Description

Automobile data set from the US.

Format

model.name model name
model.id model id
firm.id firm id
cdid cdid
id id
price \log price
mpg miles per gallon
mpd miles per dollar
hpwt horse power per weight
air air conditioning (binary variable)
space size of the car
share market share
outshr share s0
y outcome variable defined as \log (share) $-\log$ (outshr)
trend time trend

Details

Data set was analysed in Berry, Levinsohn and Pakes (1995). The data stem from annual issues of the Automotive News Market Data Book. The data set inlcudes information on all models marketed during the the period beginning 1971 and ending in 1990 cotaining 2217 model/years from 997 distinct models. A detailed description is given in BLP (1995, 868-871). The internal function constructIV constructs instrumental variables along the lines described and used in BLP (1995).

References

S. Berry, J. Levinsohn, A. Pakes (1995). Automobile Prices in Market EquilibriumD. Econometrica, 63(4), 841-890.

Examples

```
data(BLP)
```

```
coef.rlassoEffects Coefficients from S3 objects rlassoEffects
```


Description

Method to extract coefficients from objects of class rlassoEffects

Usage

\#\# S3 method for class 'rlassoEffects'
coef(object, complete = TRUE,
selection.matrix $=$ FALSE, include.targets $=$ FALSE, ...)

Arguments

object an object of class rlassoEffects, usually a result of a call rlassoEffect or rlassoEffects.
complete general option of the function coef.
selection.matrix
if TRUE, a selection matrix is returned that indicates the selected variables from each auxiliary regression. Default is set to FALSE.
include.targets
if FALSE (by default) only the selected control variables are listed in the selection.matrix.
If set to TRUE, the selection matrix will also indicate the selection of the target coefficients that are specified in the rlassoEffects call.
... further arguments passed to functions coef or print.

Details

Printing coefficients and selection matrix for S3 object rlassoEffects

```
cps2012 cps2012 data set
```


Description

Census data from the US for the year 2012.

Format

Inw \log of hourly wage (annual earnings / annual hours)
female female indicator
married status six indicators: widowed, divorced, separated, nevermarried, and married (omitted)
education attainment six indicators: hsd08, hsd911, hsg, cg , ad, and sc (omitted)
region indicators four indicators: mw , so, we, and ne (omitted)
potential experience (max[0, age - years of education - 7]): exp1, exp2 (divided by 100), exp3 (divided by 1000), exp4 (divided by 10000)
weight March Supplement sampling weight
year CPS year

Details

The CPS is a monthly U.S. household survey conducted jointly by the U.S. Census Bureau and the Bureau of Labor Statistics. The data comprise the year 2012. This data set was used in Mulligan and Rubinstein (2008). The sample comprises white non-hipanic, ages 25-54, working full time full year (35+ hours per week at least 50 weeks), exclude living in group quarters, self-employed, military, agricultural, and private household sector, allocated earning, inconsistent report on earnings and employment, missing data.

References

C. B. Mulligan and Y. Rubinstein (2008). Selection, investment, and women's relative wages over time. The Quarterly Journal of Economics, 1061-1110.

Examples

```
data(BLP)
```


Description

Dataset on judicial eminent domain decisions.

Format

y economic outcome variable
\mathbf{x} set of exogenous variables
d eminent domain decisions
z set of potential instruments

Details

Data set was analyzed in Belloni et al. (2012). They estimate the effect of judicial eminent domain decisions on economic outcomes with instrumental variables (IV) in a setting high a large set of potential IVs. A detailed decription of the data can be found at https://www.econometricsociety. org/publications/econometrica/2012/11/01/sparse-models-and-methods-optimal-instruments-application The data set contains four "sub-data sets" which differ mainly in the dependent variables: repeatsales FHFA/OFHEO house price index for metro (FHFA) and non-metro (NM) area, the CaseShiller home price index (CS), and state-level GDP from the Bureau of Economic Analysis - all transformed with the logarithm. The structure of each subdata set is given above. In the data set the following variables and name conventions are used: "numpanelskx_.." is the number of panels with at least k members with the characteristic following the "_". The probability controls (names start with "F_prob_") follow a similar naming convention and give the probability of observing a panel with characteristic given following second "_" given the characteristics of the pool of judges available to be assigned to the case.
Characteristics in the data for the control variables or instruments:
noreligion judge reports no religious affiliation
jd_public judge's law degree is from a public university
dem judge reports being a democrat
female judge is female
nonwhite judge is nonwhite (and not black)
black judge is black
jewish judge is Jewish
catholic judge is Catholic
mainline baseline religion
protestant belongs to a protestant church
evangelical belongs to an evangelical church
instate_ba judge's undergraduate degree was obtained within state
ba_public judge's undergraduate degree was obtained at a public university
elev judge was elevated from a district court
year year dummy (reference category is one year before the earliest year in the data set (excluded))
circuit dummy for the circuit level (reference category excluded)
missing_cy_12 a dummy for whether there were no cases in that circuit-year
numcasecat_12 the number of takings appellate decisions

References

D. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica 80 (6), 2369-2429.

Examples

```
data(EminentDomain)
```

```
Growth Data Growth data set
```


Description

Data set of growth compiled by Barro Lee.

Format

Dataframe with the following variables:
outcome dependent variable: national growth rates in GDP per capita for the periods 1965-1975 and 1975-1985
\mathbf{x} covariates which might influence growth

Details

The data set contains growth data of Barro-Lee. The Barro Lee data consists of a panel of 138 countries for the period 1960 to 1985. The dependent variable is national growth rates in GDP per capita for the periods 1965-1975 and 1975-1985. The growth rate in GDP over a period from t_{1} to t_{2} is commonly defined as $\log \left(G D P_{t_{1}} / G D P_{t_{2}}\right)$. The number of covariates is $\mathrm{p}=62$. The number of complete observations is 90 .

Source

The full data set and further details can be found at http://www.nber.org/pub/barro.lee, http: //www.barrolee.com, and, http://www.bristol.ac.uk//Depts//Economics//Growth//barlee. htm.

References

R.J. Barro, J.W. Lee (1994). Data set for a panel of 139 countries. NBER.
R.J. Barro, X. Sala-i-Martin (1995). Economic Growth. McGrwa-Hill, New York.

Examples

```
data(GrwothData)
```

lambdaCalculation Function for Calculation of the penalty parameter

Description

This function implements different methods for calculation of the penalization parameter λ. Further details can be found under rlasso.

Usage

lambdaCalculation(penalty = list(homoscedastic = FALSE, X.dependent.lambda = FALSE, lambda.start = NULL, $c=1.1$, gamma $=0.1$), $\mathrm{y}=$ NULL, $\mathrm{x}=\mathrm{NULL}$)

Arguments

penalty list with options for the calculation of the penalty.

- c and gamma constants for the penalty with default $c=1.1$ and gamma=0.1
- homoscedastic logical, if homoscedastic errors are considered (default FALSE). Option none is described below.
- X.dependent.lambda if independent or dependent design matrix X is assumed for calculation of the parameter λ
- numSim number of simulations for the X-dependent methods
- lambda.start initial penalization value, compulsory for method "none"
y residual which is used for calculation of the variance or the data-dependent loadings
$x \quad$ matrix of regressor variables

Value

The functions returns a list with the penalty lambda which is the product of lambda0 and Ups0. Ups0 denotes either the variance (independent case) or the data-dependent loadings for the regressors. method gives the selected method for the calculation.

Description

Implementation of the Shooting Lasso (Fu, 1998) with variable dependent penalization weights.

Usage

LassoShooting.fit(x, y, lambda, control = list(maxIter = 1000, optTol = $10^{\wedge}(-5)$, zeroThreshold $\left.=10^{\wedge}(-6)\right), X X=$ NULL, $X y=$ NULL, beta.start = NULL)

Arguments

$x \quad$ matrix of regressor variables (n times p where n denotes the number of observations and p the number of regressors)
$y \quad$ dependent variable (vector or matrix)
lambda vector of length p of penalization parameters for each regressor
control list with control parameters: maxIter maximal number of iterations, optTol tolerance for parameter precision, zeroThreshold threshold applied to the estimated coefficients for numerical issues.
XX optional, precalculated matrix $t(X) * X$
$\mathrm{Xy} \quad$ optional, precalculated matrix $t(X) * y$
beta.start start value for beta

Details

The function implements the Shooting Lasso (Fu, 1998) with variable dependent penalization. The arguments $X X$ and $X y$ are optional and allow to use precalculated matrices which might improve performance.

Value

coefficients estimated coefficients by the Shooting Lasso Algorithm
coef.list matrix of coefficients from each iteration
num.it number of iterations run

References

Fu, W. (1998). Penalized regressions: the bridge vs the lasso. Journal of Computational and Graphical Software 7, 397-416.

Description

Data set on financial wealth and $401(\mathrm{k})$ plan participation

Format

Dataframe with the following variables (amongst others):
p401 participation in 401(k)
e401 eligibility for 401(k)
a401 401(k) assets
tw total wealth (in US \$)
tfa financial assets (in US \$)
net_tfa net financial assets (in US \$)
nifa non-401k financial assets (in US \$)
net_nifa net non-401k financial assets
net_n401 net non-401(k) assets (in US \$)
ira individual retirement account (IRA)
inc income (in US \$)
age age
fsize family size
marr married
pira participation in IRA
db defined benefit pension
hown home owner
educ education (in years)
male male
twoearn two earners
nohs, hs, smcol, col dummies for education: no high-school, high-school, some college, college
hmort home mortage (in US \$)
hequity home equity (in US \$)
hval home value (in US \$)

Details

The sample is drawn from the 1991 Survey of Income and Program Participation (SIPP) and consists of 9,915 observations. The observational units are household reference persons aged 25-64 and spouse if present. Households are included in the sample if at least one person is employed and no one is self-employed. The data set was analysed in Chernozhukov and Hansen (2004) and Belloni et al. (2014) where further details can be found. They examine the effects of $401(\mathrm{k})$ plans on wealth using data from the Survey of Income and Program Participation using 401(k) eligibility as an instrument for 401(k) participation.

References

V. Chernohukov, C. Hansen (2004). The impact of $401(\mathrm{k})$ participation on the wealth distribution: An instrumental quantile regression analysis. The Review of Economic and Statistics 86 (3), 735751.
A. Belloni, V. Chernozhukov, I. Fernandez-Val, and C. Hansen (2014). Program evaluation with high-dimensional data. Working Paper.

Examples

data(pension)

```
predict.rlassologit Methodsfor S3 object rlassologit
```


Description

Objects of class rlassologit are constructed by rlassologit. print.rlassologit prints and displays some information about fitted rlassologit objects. summary. rlassologit summarizes information of a fitted rlassologit object. predict. rlassologit predicts values based on a rlassologit object. model. matrix. rlassologit constructs the model matrix of a lasso object.

Usage

```
## S3 method for class 'rlassologit'
predict(object, newdata = NULL, type = "response",
    ...)
    ## S3 method for class 'rlassologit'
    model.matrix(object, ...)
    ## S3 method for class 'rlassologit'
    print(x, all = TRUE, digits = max(3L,
        getOption("digits") - 3L), ...)
    ## S3 method for class 'rlassologit'
    summary(object, all = TRUE, digits = max(3L,
    getOption("digits") - 3L), ...)
```


Arguments

object newdata	an object of class rlassologit new data set for prediction
type	type of prediction required. The default ('response) is on the scale of the re- sponse variable; the alternative 'link' is on the scale of the linear predictors.
\ldots	arguments passed to the print function and other methods
x	an object of class rlassologit all
logical, indicates if coefficients of all variables (TRUE) should be displayed or	
only the non-zero ones (FALSE)	
digits	significant digits in printout

print.rlasso Methods for S3 object rlasso

Description

Objects of class rlasso are constructed by rlasso. print.rlasso prints and displays some information about fitted rlasso objects. summary.rlasso summarizes information of a fitted rlasso object. predict.rlasso predicts values based on a rlasso object. model.matrix.rlasso constructs the model matrix of a rlasso object.

Usage

```
## S3 method for class 'rlasso'
print(x, all = TRUE, digits = max(3L, getOption("digits") -
    3L), ...)
    ## S3 method for class 'rlasso'
    summary(object, all = TRUE, digits = max(3L,
        getOption("digits") - 3L), ...)
    ## S3 method for class 'rlasso'
    model.matrix(object, ...)
    ## S3 method for class 'rlasso'
    predict(object, newdata = NULL, ...)
```


Arguments

x
all
digits
an object of class rlasso
logical, indicates if coefficients of all variables (TRUE) should be displayed or only the non-zero ones (FALSE)
significant digits in printout arguments passed to the print function and other methods

```
object an object of class rlasso
newdata new data set for prediction. An optional data frame in which to look for variables
    with which to predict. If omitted, the fitted values are returned.
```

 print.rlassoEffects Methods for S3 object rlassoEffects

Description

Objects of class rlassoEffects are constructed by rlassoEffects. print.rlassoEffects prints and displays some information about fitted rlassoEffect objects. summary.rlassoEffects summarizes information of a fitted rlassoEffect object and is described at summary.rlassoEffects. confint.rlassoEffects extracts the confidence intervals. plot.rlassoEffects plots the estimates with confidence intervals.

Usage

\#\# S3 method for class 'rlassoEffects'
print(x, digits $=\max (3 \mathrm{~L}$, getOption("digits") -3 L),
...)
\#\# S3 method for class 'rlassoEffects'
confint(object, parm, level = 0.95, joint $=$ FALSE,
...)
\#\# S3 method for class 'rlassoEffects'
plot(x, joint = FALSE, level = 0.95, main = "",
xlab = "coef", ylab = "", xlim = NULL, ...)

Arguments

x
digits
. . .
object
parm
level
joint
main
$x \mathrm{lab} \quad$ a title for the x axis
$y l a b \quad a$ title for the y axis
$x \lim \quad$ vector of length two giving lower and upper bound of x axis

```
print.rlassoIV Methods for S3 object rlassoIV
```


Description

Objects of class rlassoIV are constructed by rlassoIV. print.rlassoIV prints and displays some information about fitted rlassoIV objects. summary. rlassoIV summarizes information of a fitted rlassoIV object. confint.rlassoIV extracts the confidence intervals.

Usage

```
## S3 method for class 'rlassoIV'
    print(x, digits = max(3L, getOption("digits") - 3L), ...)
    ## S3 method for class 'rlassoIV'
    summary(object, digits = max(3L, getOption("digits") - 3L),
        ...)
    ## S3 method for class 'rlassoIV'
    confint(object, parm, level = 0.95, ...)
```


Arguments

x
digits significant digits in printout
... arguments passed to the print function and other methods
object An object of class rlassoIV
parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level confidence level required.
print.rlassoIVselectX Methods for S3 object rlassoIVselectX

Description

Objects of class rlassoIVselectX are constructed by rlassoIVselectX. print.rlassoIVselectX prints and displays some information about fitted rlassoIVselectX objects. summary.rlassoIVselectX summarizes information of a fitted rlassoIVselectX object. confint.rlassoIVselectX extracts the confidence intervals.

Usage

```
\#\# S3 method for class 'rlassoIVselectX'
print(x, digits = max(3L, getOption("digits") - 3L),
    ...)
\#\# S3 method for class 'rlassoIVselectX'
summary (object, digits \(=\max (3 \mathrm{~L}\), getOption("digits")
    - 3L), ...)
\#\# S3 method for class 'rlassoIVselectX'
confint (object, parm, level \(=0.95, \ldots\) )
```


Arguments

x
an object of class rlassoIVselectX
digits
...
object
parm
level
significant digits in printout
arguments passed to the print function and other methods an object of class rlassoIVselectX ered.
the confidence level required.
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are consid-
print.rlassoIVselectZ Methods for S3 object rlassoIVselectZ

Description

Objects of class rlassoIVselectZ are constructed by rlassoIVselectZ. print.rlassoIVselectZ prints and displays some information about fitted rlassoIVselectZ objects. summary.rlassoIVselectZ summarizes information of a fitted rlassoIVselectZ object. confint.rlassoIVselectZ extracts the confidence intervals.

Usage

```
## S3 method for class 'rlassoIVselectZ'
print(x, digits = max(3L, getOption("digits") - 3L),
    ...)
    ## S3 method for class 'rlassoIVselectZ'
    summary(object, digits = max(3L, getOption("digits")
    - 3L), ...)
    ## S3 method for class 'rlassoIVselectZ'
    confint(object, parm, level = 0.95, ...)
```


Arguments

X
digits
...
object
parm
level
an object of class rlassoIVselectZ
significant digits in printout
arguments passed to the print function and other methods
an object of class rlassoIVselectZ
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
confidence level required.

```
print.rlassologitEffects
```

 Methods for S3 object rlassologitEffects

Description

Objects of class rlassologitEffects are construced by rlassologitEffects or rlassologitEffect. print.rlassologitEffects prints and displays some information about fitted rlassologitEffect objects. summary.rlassologitEffects summarizes information of a fitted rlassologitEffects object. confint.rlassologitEffects extracts the confidence intervals.

Usage

```
## S3 method for class 'rlassologitEffects'
print(x, digits = max(3L, getOption("digits") -
    3L), ...)
    ## S3 method for class 'rlassologitEffects'
    summary(object, digits = max(3L,
        getOption("digits") - 3L), ...)
    ## S3 method for class 'rlassologitEffects'
    confint(object, parm, level = 0.95,
    joint = FALSE, ...)
```


Arguments

x
an object of class rlassologitEffects
digits number of significant digits in printout
... arguments passed to the print function and other methods
object an object of class rlassologitEffects
parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level confidence level required.
joint logical, if joint confidence intervals should be clalculated

```
print.rlassoTE Methods for S3 object rlassoTE
```


Description

Objects of class rlassoTE are constructed by rlassoATE, rlassoATET, rlassoLATE, rlassoLATET. print.rlassoTE prints and displays some information about fitted rlassoTE objects. summary.rlassoTE summarizes information of a fitted rlassoTE object. confint.rlassoTE extracts the confidence intervals.

Usage

```
## S3 method for class 'rlassoTE'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'rlassoTE'
summary(object, digits = max(3L, getOption("digits") - 3L),
    ...)
## S3 method for class 'rlassoTE'
confint(object, parm, level = 0.95, ...)
```


Arguments

x
digits number of significant digits in printout
... arguments passed to the print function and other methods
object an object of class rlassote
parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level confidence level required.

```
print.tsls Methods for S3 object tsls
```


Description

Objects of class tsls are constructed by tsls. print.tsls prints and displays some information about fitted tsls objects. summary.tsls summarizes information of a fitted tsls object.

```
Usage
    ## S3 method for class 'tsls'
    print(x, digits = max(3L, getOption("digits") - 3L), ...)
    ## S3 method for class 'tsls'
    summary(object, digits = max(3L, getOption("digits") - 3L),
        ...)
```


Arguments

x an object of class tsls
digits significant digits in printout
... arguments passed to the print function and other methods
object an object of class tsls

```
print_coef Printing coefficients from S3 objects rlassoEffects
```


Description

Printing coefficients for class rlassoEffects

Usage

```
print_coef(x, ...)
```

\#\# S3 method for class 'rlassoEffects'
print_coef(x, complete = TRUE,
selection.matrix = FALSE, include.targets = TRUE, ...)

Arguments

```
X
    an object of class rlassoEffects, usually a result of a call rlassoEffect or
    rlassoEffects.
... further arguments passed to functions coef or print.
complete general option of the function coef.
selection.matrix
    if TRUE, a selection matrix is returned that indicates the selected variables from
    each auxiliary regression. Default is set to FALSE.
include.targets
    if FALSE (by default) only the selected control variables are listed in the selection.matrix.
    If set to TRUE, the selection matrix will also indicate the selection of the target
    coefficients that are specified in the rlassoEffects call.
```


Details

Printing coefficients and selection matrix for S3 object rlassoEffects

p_adjust	Multiple Testing Adjustment of p-values for S3 objects
rlassoEffects and lm	

Description

Multiple hypotheses testing adjustment of p -values from a high-dimensional linear model.

Usage

```
p_adjust(x, ...)
## S3 method for class 'rlassoEffects'
p_adjust(x, method = "RW", B = 1000, ...)
## S3 method for class 'lm'
p_adjust(x, method = "RW", B = 1000, test.index = NULL, ...)
```


Arguments

$x \quad$ an object of S3 class rlassoEffects or lm.
... further arguments passed on to methods.
method the method of p-value adjustment for multiple testing. Romano-Wolf stepdown ('RW') is chosen by default.
B number of bootstrap repetitions (default 1000).
test.index vector of integers, logicals or variables names indicating the position of coefficients (integer case), logical vector of length of the coefficients (TRUE or FALSE) or the coefficient names of x which should be tested simultaneously (only for S3 class lm). If missing, all coefficients are considered.

Details

Multiple testing adjustment is performed for S 3 objects of class rlassoEffects and lm. Implemented methods for multiple testing adjustment are Romano-Wolf stepdown 'RW' (default) and the adjustment methods available in the p.adjust function of the stats package, including the Bonferroni, Bonferroni-Holm, and Benjamini-Hochberg corrections, see p.adjust.methods.
Objects of class rlassoEffects are constructed by rlassoEffects.

Value

A matrix with the estimated coefficients and the p-values that are adjusted according to the specified method.

Methods (by class)

- rlassoEffects: rlassoEffects.
- lm: lm.

References

J.P. Romano, M. Wolf (2005). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association, 100(469), 94-108.
J.P. Romano, M. Wolf (2016). Efficient computation of adjusted p-values for resampling-based stepdown multiple testing. Statistics and Probability Letters, (113), 38-40.
A. Belloni, V. Chernozhukov, K. Kato (2015). Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems. Biometrika, 102(1), 77-94.

Examples

```
library(hdm);
set.seed(1)
n = 100 #sample size
p = 25 # number of variables
s = 3 # nubmer of non-zero variables
X = matrix(rnorm(n*p), ncol=p)
colnames(X) <- paste("X", 1:p, sep="")
beta = c(rep(3,s), rep(0,p-s))
y = 1 + X%*%beta + rnorm(n)
data = data.frame(cbind(y,X))
colnames(data)[1] <- "y"
lasso.effect = rlassoEffects(X, y, index=c(1:20))
pvals.lasso.effect = p_adjust(lasso.effect, method = "RW", B = 1000)
ols = lm(y ~ -1 + X, data)
pvals.ols = p_adjust(ols, method = "RW", B = 1000)
pvals.ols = p_adjust(ols, method = "RW", B = 1000, test.index = c(1,2,5))
pvals.ols = p_adjust(ols, method = "RW", B = 1000, test.index = c(rep(TRUE, 5), rep(FALSE, p-5)))
```

rlasso	rlasso: Function for Lasso estimation under homoscedastic and het-
eroscedastic non-Gaussian disturbances	

Description

The function estimates the coefficients of a Lasso regression with data-driven penalty under homoscedasticity and heteroscedasticity with non-Gaussian noise and X-dependent or X-independent design. The method of the data-driven penalty can be chosen. The object which is returned is of the S3 class rlasso.

Usage

rlasso(x, ...)
\#\# S3 method for class 'formula'
rlasso(formula, data $=$ NULL, post $=$ TRUE, intercept = TRUE, model = TRUE, penalty = list(homoscedastic = FALSE, X. dependent.lambda $=$ FALSE, lambda.start $=$ NULL, $c=1.1$, gamma $=0.1 / \log (n)$), control $=$ list(numIter $=15$, tol $=10^{\wedge}-5$, threshold $=$ NULL), \ldots)
\#\# S3 method for class 'character'
rlasso(x, data $=$ NULL, post $=$ TRUE, intercept $=$ TRUE,
model = TRUE, penalty = list(homoscedastic = FALSE, X.dependent.lambda =
FALSE, lambda.start = NULL, c = 1.1, gamma = 0.1/log(n)),
control = list(numIter = 15, tol = 10^-5, threshold = NULL), ...)
\#\# Default S3 method:
rlasso(x, y, post = TRUE, intercept = TRUE, model $=$ TRUE, penalty $=$ list(homoscedastic $=$ FALSE, X.dependent.lambda $=$ FALSE, lambda.start $=$ NULL, $c=1.1$, gamma $=0.1 / \log (n))$, control $=$ list(numIter $=15$, tol $=10^{\wedge}-5$, threshold $=$ NULL), \ldots)

Arguments

x
... further arguments (only for consistent defintion of methods)
formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted in the form $y^{\sim} \mathrm{x}$
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlasso is called.
post logical. If TRUE, post-Lasso estimation is conducted.
intercept logical. If TRUE, intercept is included which is not penalized.

Details

The function estimates the coefficients of a Lasso regression with data-driven penalty under homoscedasticity / heteroscedasticity and non-Gaussian noise. The options homoscedastic is a logical with FALSE by default. Moreover, for the calculation of the penalty parameter it can be chosen, if the penalization parameter depends on the design matrix (X. dependent.lambda=TRUE) or independent (default, X. dependent. lambda=FALSE). The default value of the constant c is 1.1 in the post-Lasso case and 0.5 in the Lasso case. A special option is to set homoscedastic to none and to supply a values lambda.start. Then this value is used as penalty parameter with independent design and heteroscedastic errors to weight the regressors. For details of the implementation of the Algorithm for estimation of the data-driven penalty, in particular the regressorindependent loadings, we refer to Appendix A in Belloni et al. (2012). When the option "none" is chosen for homoscedastic (together with lambda.start), lambda is set to lambda. start and the regressor-independent loadings und heteroscedasticity are used. The options "X-dependent" and "X-independent" under homoscedasticity are described in Belloni et al. (2013).
The option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables.

Value

rlasso returns an object of class rlasso. An object of class "rlasso" is a list containing at least the following components:

coefficients	parameter estimates
beta	parameter estimates (named vector of coefficients without intercept) intercept
value of the intercept index	index of selected variables (logical vector) lambda parameter) and the loadings
lambda0	penalty term

loadings	loading for each regressor
residuals	residuals, response minus fitted values
sigma	root of the variance of the residuals
iter	number of iterations
call	function call
options	options
model	model matrix (if model = TRUE in function call)

References

A. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica 80 (6), 2369-2429.
A. Belloni, V. Chernozhukov and C. Hansen (2013). Inference for high-dimensional sparse econometric models. In Advances in Economics and Econometrics: 10th World Congress, Vol. 3: Econometrics, Cambirdge University Press: Cambridge, 245-295.

Examples

```
set.seed(1)
n = 100 #sample size
p = 100 # number of variables
s = 3 # nubmer of variables with non-zero coefficients
X = Xnames = matrix(rnorm(n*p), ncol=p)
colnames(Xnames) <- paste("V", 1:p, sep="")
beta = c(rep(5,s), rep(0,p-s))
Y = X%*%beta + rnorm(n)
reg.lasso <- rlasso(Y~Xnames)
Xnew = matrix(rnorm(n*p), ncol=p) # new X
colnames(Xnew) <- paste("V", 1:p, sep="")
Ynew = Xnew%*%beta + rnorm(n) #new Y
yhat = predict(reg.lasso, newdata = Xnew)
```

rlassoATE Functions for estimation of treatment effects

Description

This class of functions estimates the average treatment effect (ATE), the ATE of the tretated (ATET), the local average treatment effects (LATE) and the LATE of the tretated (LATET). The estimation methods rely on immunized / orthogonal moment conditions which guarantee valid post-selection inference in a high-dimensional setting. Further details can be found in Belloni et al. (2014).

Usage

```
rlassoATE(x, ...)
## Default S3 method:
rlassoATE(x, d, y, bootstrap = "none", nRep = 500, ...)
## S3 method for class 'formula'
rlassoATE(formula, data, bootstrap = "none", nRep = 500,
    ...)
rlassoATET(x, ...)
## Default S3 method:
rlassoATET(x, d, y, bootstrap = "none", nRep = 500, ...)
## S3 method for class 'formula'
rlassoATET(formula, data, bootstrap = "none", nRep = 500,
    ...)
rlassoLATE(x, ...)
## Default S3 method:
rlassoLATE(x, d, y, z, bootstrap = "none", nRep = 500,
    post = TRUE, intercept = TRUE, always_takers = TRUE,
    never_takers = TRUE, ...)
## S3 method for class 'formula'
rlassoLATE(formula, data, bootstrap = "none", nRep = 500,
    post = TRUE, intercept = TRUE, always_takers = TRUE,
    never_takers = TRUE, ...)
rlassoLATET(x, ...)
## Default S3 method:
rlassoLATET(x, d, y, z, bootstrap = "none", nRep = 500,
    post = TRUE, intercept = TRUE, always_takers = TRUE, ...)
## S3 method for class 'formula'
rlassoLATET(formula, data, bootstrap = "none", nRep = 500,
    post = TRUE, intercept = TRUE, always_takers = TRUE, ...)
```


Arguments

x exogenous variables
...
arguments passed, e.g. intercept and post
d treatment variable (binary)
y outcome variable / dependent variable
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { bootstrap } \\
\text { nRep } \\
\text { formula }\end{array} & \begin{array}{l}\text { boostrap method which should be employed: 'none', 'Bayes', 'normal', 'wild' } \\
\text { number of replications for the bootstrap }\end{array}
$$

An object of class Formula of the form " \mathrm{y} \sim \mathrm{x}+\mathrm{d} \mid \mathrm{x} " with y the outcome

variable, d treatment variable, and x exogenous variables.\end{array}\right\}\)| An optional data frame, list or environment (or object coercible by as.data.frame |
| :--- |
| to a data frame) containing the variables in the model. If not found in data, the |
| variables are taken from environment(formula), typically the environment from |
| which rlassoATE is called. |

Details

Details can be found in Belloni et al. (2014).

Value

Functions return an object of class rlassoTE with estimated effects, standard errors and individual effects in the form of a list.

References

A. Belloni, V. Chernozhukov, I. Fernandez-Val, and C. Hansen (2014). Program evaluation with high-dimensional data. Working Paper.

```
rlassoEffects rigorous Lasso for Linear Models: Inference
```


Description

Estimation and inference of (low-dimensional) target coefficients in a high-dimensional linear model.

Usage

```
    rlassoEffects(x, ...)
    \#\# Default S3 method:
    rlassoEffects(x, y, index = c(1:ncol(x)),
        method = "partialling out", I3 = NULL, post = TRUE, ...)
```

```
## S3 method for class 'formula'
rlassoEffects(formula, data, I, method = "partialling out",
    included = NULL, post = TRUE, ...)
rlassoEffect(x, y, d, method = "double selection", I3 = NULL, post = TRUE,
    ...)
```


Arguments

x	matrix of regressor variables serving as controls and potential treatments. For rlassoEffect it contains only controls, for rlassoEffects both controls and potential treatments. For rlassoEffects it must have at least two columns. parameters passed to the rlasso function.
y	outcome variable (vector or matrix)
index	vector of integers, logicals or variables names indicating the position (column) of variables (integer case), logical vector of length of the variables (TRUE or FALSE) or the variable names of x which should be used for inference / as treatment variables.
method	method for inference, either 'partialling out' (default) or 'double selection'.
I3	For the 'double selection'-method the logical vector I3 has same length as the number of variables in x; indicates if variables (TRUE) should be included in any case to the model and they are exempt from selection. These variables should not be included in the index; hence the intersection with index must be the empty set. In the case of partialling out it is ignored.
post	logical, if post Lasso is conducted with default TRUE.
formula	An element of class formula specifying the linear model.
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
I	An one-sided formula specifying the variables for which inference is conducted.
included	One-sided formula of variables which should be included in any case (only for method="double selection").
d	variable for which inference is conducted (treatment variable)

Details

The functions estimates (low-dimensional) target coefficients in a high-dimensional linear model. An application is e.g. estimation of a treatment effect α_{0} in a setting of high-dimensional controls. The user can choose between the so-called post-double-selection method and partialling-out. The idea of the double selection method is to select variables by Lasso regression of the outcome variable on the control variables and the treatment variable on the control variables. The final estimation is done by a regression of the outcome on the treatment effect and the union of the selected variables in the first two steps. In partialling-out first the effect of the regressors on the outcome and the treatment variable is taken out by Lasso and then a regression of the residuals is conducted. The resulting estimator for α_{0} is normal distributed which allows inference on the treatment effect. It presents a wrap function for rlassoEffect which does inference for a single variable.

Value

The function returns an object of class rlassoEffects with the following entries:

coefficients	vector with estimated values of the coefficients for each selected variable
se	standard error (vector)
t	t-statistic
pval	p-value
samplesize	sample size of the data set
index	index of the variables for which inference is performed

References

A. Belloni, V. Chernozhukov, C. Hansen (2014). Inference on treatment effects after selection among high-dimensional controls. The Review of Economic Studies 81(2), 608-650.

Examples

```
library(hdm); library(ggplot2)
set.seed(1)
n = 100 #sample size
p = 100 # number of variables
s = 3 # nubmer of non-zero variables
X = matrix(rnorm(n*p), ncol=p)
colnames(X) <- paste("X", 1:p, sep="")
beta = c(rep(3,s), rep(0,p-s))
y = 1 + X%*%beta + rnorm(n)
data = data.frame(cbind(y,X))
colnames(data)[1] <- "y"
fm = paste("y ~", paste(colnames(X), collapse="+"))
fm = as.formula(fm)
lasso.effect = rlassoEffects(X, y, index=c(1,2,3,50))
lasso.effect = rlassoEffects(fm, I = ~ X1 + X2 + X3 + X50, data=data)
print(lasso.effect)
summary(lasso.effect)
confint(lasso.effect)
plot(lasso.effect)
```


Description

The function estimates a treatment effect in a setting with very many controls and very many instruments (even larger than the sample size).

Usage

```
rlassoIV(x, ...)
\#\# Default S3 method:
rlassoIV(x, d, y, z, select.Z = TRUE, select. \(X=\) TRUE,
        post \(=\) TRUE, ...)
\#\# S3 method for class 'formula'
rlassoIV(formula, data, select.Z = TRUE, select.X = TRUE,
        post \(=\) TRUE, ...)
    rlassoIVmult(x, d, y, z, select.Z = TRUE, select.X = TRUE, ...)
```


Arguments

x	matrix of exogenous variables
	arguments passed to the function rlasso
d	endogenous variable
y	outcome / dependent variable (vector or matrix)
z	matrix of instrumental variables
select.Z	logical, indicating selection on the instruments.
select. X	logical, indicating selection on the exogenous variables.
post	logical, wheter post-Lasso should be conducted (default=TRUE)
formula	An object of class Formula of the form " $\mathrm{y} \sim \mathrm{x}+\mathrm{d} \mathrm{I} \mathrm{x}+\mathrm{z}$ " with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassoIV is called.

Details

The implementation for selection on x and z follows the procedure described in Chernozhukov et al. (2015) and is built on 'triple selection' to achieve an orthogonal moment function. The function returns an object of S 3 class rlassoIV. Moreover, it is wrap function for the case that selection should be done only with the instruments Z (rlassoIVselectZ) or with the control variables X (rlassoIVselectX) or without selection (tsls). Exogenous variables x are automatically used as instruments and added to the instrument set z.

Value

an object of class rlassoIV containing at least the following components:

```
coefficients estimated parameter value
se variance-covariance matrix
```


References

V. Chernozhukov, C. Hansen, M. Spindler (2015). Post-selection and post-regularization inference in linear models with many controls and instruments. American Economic Review: Paper \& Proceedings 105(5), 486-490.

Examples

```
## Not run:
data(EminentDomain)
z <- EminentDomain$logGDP$z # instruments
x <- EminentDomain$logGDP$x # exogenous variables
y <- EminentDomain$logGDP$y # outcome varialbe
d <- EminentDomain$logGDP$d # treatment / endogenous variable
lasso.IV.Z = rlassoIV(x=x, d=d, y=y, z=z, select.X=FALSE, select.Z=TRUE)
summary(lasso.IV.Z)
confint(lasso.IV.Z)
## End(Not run)
```

rlassoIVselectX Instrumental Variable Estimation with Selection on the exogenous Variables by Lasso

Description

This function estimates the coefficient of an endogenous variable by employing Instrument Variables in a setting where the exogenous variables are high-dimensional and hence selection on the exogenous variables is required. The function returns an element of class rlassoIVselectX

Usage

```
rlassoIVselectX(x, ...)
## Default S3 method:
rlassoIVselectX(x, d, y, z, post = TRUE, ...)
## S3 method for class 'formula'
rlassoIVselectX(formula, data, post = TRUE, ...)
```


Arguments

x
d
z
... arguments passed to the function rlasso
$y \quad$ outcome or dependent variable in the structural equation (vector or matrix)
exogenous variables in the structural equation (matrix)
endogenous variables in the structural equation (vector or matrix)
set of potential instruments for the endogenous variables.

post	logical. If TRUE, post-lasso estimation is conducted.
formula	An object of class Formula of the form " $\mathrm{y} \sim \mathrm{x}+\mathrm{dI} \mathrm{x}+\mathrm{z}$ " with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous vari- ables.
data	An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassoIVselectX is called.

Details

The implementation is a special case of of Chernozhukov et al. (2015). The option post=TRUE conducts post-lasso estimation for the Lasso estimations, i.e. a refit of the model with the selected variables. Exogenous variables x are automatically used as instruments and added to the instrument set z.

Value

An object of class rlassoIVselectX containing at least the following components:

```
coefficients estimated parameter vector
vcov variance-covariance matrix
residuals residuals
samplesize sample size
```


References

Chernozhukov, V., Hansen, C. and M. Spindler (2015). Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments American Economic Review, Papers and Proceedings 105(5), 486-490.

Examples

```
library(hdm)
data(AJR); y = AJR$GDP; d = AJR$Exprop; z = AJR$logMort
x = model.matrix(~ -1 + (Latitude + Latitude2 + Africa +
    Asia + Namer + Samer)^2, data=AJR)
dim(x)
    #AJR.Xselect = rlassoIV(x=x, d=d, y=y, z=z, select.X=TRUE, select.Z=FALSE)
    AJR.Xselect = rlassoIV(GDP ~ Exprop + (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2 |
            logMort + (Latitude + Latitude2 + Africa + Asia + Namer + Samer)^2,
            data=AJR, select.X=TRUE, select.Z=FALSE)
summary(AJR.Xselect)
confint(AJR.Xselect)
```


Description

This function selects the instrumental variables in the first stage by Lasso. First stage predictions are then used in the second stage as optimal instruments to estimate the parameter vector. The function returns an element of class rlassoIVselectZ

```
Usage
    rlassoIVselectZ(x, ...)
    ## Default S3 method:
    rlassoIVselectZ(x, d, y, z, post = TRUE, intercept = TRUE,
        ...)
    ## S3 method for class 'formula'
    rlassoIVselectZ(formula, data, post = TRUE,
        intercept = TRUE, ...)
```


Arguments

x
... arguments passed to the function rlasso.
d endogenous variables in the structural equation (vector or matrix)
$y \quad$ outcome or dependent variable in the structural equation (vector or matrix)
z set of potential instruments for the endogenous variables. Exogenous variables serve as their own instruments.
post logical. If TRUE, post-lasso estimation is conducted.
intercept
formula An object of class Formula of the form " $\mathrm{y} \sim \mathrm{x}+\mathrm{d} \mathrm{I} \mathrm{x}+\mathrm{z}$ " with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which rlassoIVselectZ is called.

Details

The implementation follows the procedure described in Belloni et al. (2012). Option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables, to estimate the optimal instruments. The parameter vector of the structural equation is then fitted by two-stage least square (tsls) estimation.

Value

An object of class rlassoIVselectZ containing at least the following components:
coefficients estimated parameter vector
vcov variance-covariance matrix
residuals residuals
samplesize sample size
selected matrix of selected variables in the first stage for each endogenous variable

References

D. Belloni, D. Chen, V. Chernozhukov and C. Hansen (2012). Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica 80 (6), 2369-2429.

```
rlassologit rlassologit: Function for logistic Lasso estimation
```


Description

The function estimates the coefficients of a logistic Lasso regression with data-driven penalty. The method of the data-driven penalty can be chosen. The object which is returned is of the S3 class rlassologit

Usage

rlassologit(x, ...)
\#\# S3 method for class 'formula'
rlassologit(formula, data = NULL, post = TRUE, intercept $=$ TRUE, model $=$ TRUE, penalty $=$ list(lambda $=$ NULL, $c=1.1$, gamma $=0.1 / \log (n))$, control $=$ list(threshold $=$ NULL), \ldots)
\#\# S3 method for class 'character'
rlassologit(x, data = NULL, post = TRUE, intercept $=$ TRUE, model $=$ TRUE, penalty $=$ list(lambda $=$ NULL, $c=1.1$, gamma $=0.1 / \log (n))$, control $=$ list(threshold $=$ NULL), \ldots)
\#\# Default S3 method:
rlassologit(x, y, post = TRUE, intercept = TRUE, model $=$ TRUE, penalty $=\operatorname{list}(\operatorname{lambda}=$ NULL, $c=1.1$, gamma $=0.1 / \log (n))$, control $=$ list(threshold $=$ NULL), ...)

Arguments

x
... further parameters passed to glmnet
formula an object of class 'formula' (or one that can be coerced to that class): a symbolic description of the model to be fitted in the form $y^{\sim} \mathrm{x}$.
data an optional data frame, list or environment.
post logical. If TRUE, post-lasso estimation is conducted.
intercept logical. If TRUE, intercept is included which is not penalized.
model logical. If TRUE (default), model matrix is returned.
penalty list with options for the calculation of the penalty. c and gamma constants for the penalty.
control list with control values. threshold is applied to the final estimated lasso coefficients. Absolute values below the threshold are set to zero.
$y \quad$ dependent variable (vector or matrix)

Details

The function estimates the coefficients of a Logistic Lasso regression with data-driven penalty. The option post=TRUE conducts post-lasso estimation, i.e. a refit of the model with the selected variables.

Value

rlassologit returns an object of class rlassologit. An object of class rlassologit is a list containing at least the following components:

coefficients	parameter estimates
beta	parameter estimates (without intercept)
intercept	value of intercept
index	index of selected variables (logicals)
lambda	penalty term
residuals	residuals
sigma	root of the variance of the residuals
call	function call
options	options

References

Belloni, A., Chernozhukov and Y. Wei (2013). Honest confidence regions for logistic regression with a large number of controls. arXiv preprint arXiv:1304.3969.

Examples

```
## Not run:
library(hdm)
## DGP
set.seed(2)
n <- 250
p<- 100
px <- 10
X <- matrix(rnorm(n*p), ncol=p)
beta <- c(rep(2,px), rep(0,p-px))
intercept <- 1
P <- exp(intercept + X %*% beta)/(1+exp(intercept + X %*% beta))
y <- rbinom(length(y), size=1, prob=P)
## fit rlassologit object
rlassologit.reg <- rlassologit(y~X)
## methods
summary(rlassologit.reg, all=F)
print(rlassologit.reg)
predict(rlassologit.reg, type='response')
X3 <- matrix(rnorm(n*p), ncol=p)
predict(rlassologit.reg, newdata=X3)
## End(Not run)
```


Description

The function estimates (low-dimensional) target coefficients in a high-dimensional logistic model.

Usage

```
rlassologitEffects(x, ...)
## Default S3 method:
rlassologitEffects(x, y, index = c(1:ncol(x)), I3 = NULL,
        post = TRUE, ...)
    ## S3 method for class 'formula'
    rlassologitEffects(formula, data, I, included = NULL,
        post = TRUE, ...)
    rlassologitEffect(x, y, d, I3 = NULL, post = TRUE)
```


Arguments

X

	rlassologitEffect it contains only controls, for rlassologitEffects both controls and potential treatments. For rlassologitEffects it must have at least two columns. additional parameters
y	outcome variable
index	vector of integers, logical or names indicating the position (column) or name of variables of x which should be used as treatment variables.
I3	logical vector with same length as the number of controls; indicates if variables (TRUE) should be included in any case.
post	logical. If TRUE, post-Lasso estimation is conducted.
formula	An element of class formula specifying the linear model.
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
I	An one-sided formula specifying the variables for which inference is conducted.
included d	One-sided formula of variables which should be included in any case. variable for which inference is conducted (treatment variable)

additional parameters
$y \quad$ outcome variable
index vector of integers, logical or names indicating the position (column) or name of variables of x which should be used as treatment variables.
logical vector with same length as the number of controls; indicates if variables (TRUE) should be included in any case.
logical. If TRUE, post-Lasso estimation is conducted.
an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.

I
One-sided formula of variables which should be included in any case. variable for which inference is conducted (treatment variable)

Details

The functions estimates (low-dimensional) target coefficients in a high-dimensional logistic model. An application is e.g. estimation of a treatment effect α_{0} in a setting of high-dimensional controls. The function is a wrap function for rlassologitEffect which does inference for only one variable (d).

Value

The function returns an object of class rlassologitEffects with the following entries:
coefficients estimated value of the coefficients
se standard errors
t t-statistics
pval p-values
samplesize sample size of the data set
I
index of variables of the union of the lasso regressions

References

A. Belloni, V. Chernozhukov, Y. Wei (2013). Honest confidence regions for a regression parameter in logistic regression with a loarge number of controls. cemmap working paper CWP67/13.

Examples

```
## Not run:
library(hdm)
## DGP
set.seed(2)
n <- 250
p <- 100
px <- 10
X <- matrix(rnorm(n*p), ncol=p)
colnames(X) = paste("V", 1:p, sep="")
beta <- c(rep(2,px), rep(0,p-px))
intercept <- 1
P <- exp(intercept + X %*% beta)/(1+exp(intercept + X %*% beta))
y <- rbinom(n, size=1, prob=P)
xd <- X[,2:50]
d<- X[,1]
logit.effect <- rlassologitEffect(x=xd, d=d, y=y)
logit.effects <- rlassologitEffects(X,y, index=c(1, 2,40))
logit.effects.f <- rlassologitEffects(y ~ X, I = ~ V1 + V2)
## End(Not run)
```

summary.rlassoEffects Summarizing rlassoEffects fits

Description

Summary method for class rlassoEffects

Usage

\#\# S3 method for class 'rlassoEffects'
summary(object, ...)
\#\# S3 method for class 'summary.rlassoEffects'
print(x, digits $=\max (3 \mathrm{~L}$, getOption("digits")

- 3L), ...)

Arguments

object an object of class rlassoEffects, usually a result of a call to rlassoEffects
... further arguments passed to or from other methods.
x an object of class summary.rlassoEffects, usually a result of a call or summary.rlassoEffects
digits the number of significant digits to use when printing.

Details

Summary of objects of class rlassoEffects

Description

The function does Two-Stage Least Squares Estimation (TSLS).

Usage

```
tsls(x, ...)
    \#\# Default S3 method:
    tsls(x, d, y, z, intercept = TRUE, homoscedastic = TRUE,
        ...)
    \#\# S3 method for class 'formula'
    tsls(formula, data, intercept = TRUE,
        homoscedastic = TRUE, ...)
```


Arguments

x
... further arguments (only for consistent defintion of methods)
d
y outcome variable
z instruments
intercept logical, if intercept should be included
homoscedastic logical, if homoscedastic (TRUE, default) or heteroscedastic erros (FALSE) should be calculated.
formula An object of class Formula of the form " $\mathrm{y} \sim \mathrm{x}+\mathrm{d} \mathrm{I} \mathrm{x}+\mathrm{z}$ " with y the outcome variable, d endogenous variable, z instrumental variables, and x exogenous variables.
data An optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which tsls is called.

Details

The function computes tsls estimate (coefficients) and variance-covariance-matrix assuming homoskedasticity for outcome variable y where d are endogenous variables in structural equation, x are exogensous variables in structural equation and z are instruments. It returns an object of class tsls for which the methods print and summary are provided.

Value

The function returns a list with the following elements
coefficients coefficients
vcov variance-covariance matrix
residuals outcome minus predicted values
call function call
samplesize sample size
se
standard error

Index

*Topic 401(k)
pension, 11
*Topic GDP
Growth Data, 8
$*$ Topic Grwoth
Growth Data, 8
$*$ Topic datasets
AJR, 3
BLP, 4
cps2012, 6
EminentDomain, 7
Growth Data, 8
pension, 11
*Topic lasso
rlassologit, 33
$*$ Topic logistic
rlassologit, 33
$*$ Topic pension
pension, 11
*Topic regression
rlassologit, 33
AJR, 3
ATE (rlassoATE), 24
ate (rlassoATE), 24
ATET (rlassoATE), 24
atet (rlassoATE), 24
BLP, 4
coef.rlassoEffects, 5
confint.rlassoEffects (print.rlassoEffects), 14
confint.rlassoIV (print.rlassoIV), 15
confint.rlassoIVselectX (print.rlassoIVselectX), 15
confint.rlassoIVselectZ (print.rlassoIVselectZ), 16
confint.rlassologitEffects (print.rlassologitEffects), 17

```
confint.rlassoTE (print.rlassoTE), 18
cps2012,6
data(pension), 11
EminentDomain, 7
Example (Growth Data), 8
GDP (Growth Data), 8
Growth (Growth Data), }
Growth Data, }
GrowthData (Growth Data), }
hdm (hdm-package), 2
hdm-package, 2
lambdaCalculation, }
LassoShooting.fit,10
LATE (rlassoATE), 24
late (rlassoATE), 24
LATET (rlassoATE), 24
latet(rlassoATE), 24
lm,21
methods.rlasso(print.rlasso),13
methods.rlassoEffects
        (print.rlassoEffects), 14
methods.rlassoIV (print.rlassoIV),15
methods.rlassoIVselectX
        (print.rlassoIVselectX), 15
methods.rlassoIVselectZ
        (print.rlassoIVselectZ),16
methods.rlassologit
        (predict.rlassologit), 12
methods.rlassologitEffects
        (print.rlassologitEffects), 17
methods.rlassoTE (print.rlassoTE), 18
methods.tsls(print.tsls),19
model.matrix.rlasso(print.rlasso), 13
model.matrix.rlassologit
        (predict.rlassologit), 12
```

```
p.adjust.methods,21
p_adjust,20
pension, 11
plans(pension),11
plot.rlassoEffects
    (print.rlassoEffects), 14
predict.rlasso(print.rlasso),13
predict.rlassologit,12
print.rlasso, 13
print.rlassoEffects,14
print.rlassoIV,15
print.rlassoIVselectX, 15
print.rlassoIVselectZ,16
print.rlassologit
    (predict.rlassologit),12
print.rlassologitEffects,17
print.rlassoTE, 18
print.summary.rlassoEffects
    (summary.rlassoEffects), 37
print.tsls,19
print_coef,19
rlasso, 9, 22
rlassoATE,24
rlassoATET (rlassoATE), 24
rlassoEffect (rlassoEffects),26
rlassoEffects, 21,26
rlassoIV,28
rlassoIVmult (rlassoIV), 28
rlassoIVselectX, 30
rlassoIVselectZ, 32
rlassoLATE (rlassoATE), 24
rlassoLATET (rlassoATE), 24
rlassologit,33
rlassologitEffect(rlassologitEffects),
    35
rlassologitEffects,35
summary.rlasso (print.rlasso), 13
summary.rlassoEffects, 14, 37
summary.rlassoIV (print.rlassoIV), }1
summary.rlassoIVselectX
    (print.rlassoIVselectX),15
summary.rlassoIVselectZ
    (print.rlassoIVselectZ), 16
summary.rlassologit
    (predict.rlassologit), 12
summary.rlassologitEffects
    (print.rlassologitEffects),17
```

summary.rlassoTE (print.rlassoTE), 18
summary.tsls(print.tsls), 19
tsls, 38
wealth (pension), 11

