
Package ‘hexView’
March 13, 2019

Version 0.3-4

Title Viewing Binary Files

Depends R (>= 1.8.0)

Description Functions to view files in raw binary form like in a hex editor. Additional func-
tions to specify and read arbitrary binary formats.

License GPL-2

NeedsCompilation no

Author Paul Murrell [aut, cre],
Chao Bian [ctb]

Maintainer Paul Murrell <paul@stat.auckland.ac.nz>

Repository CRAN

Date/Publication 2019-03-13 06:20:15 UTC

R topics documented:
as.character.rawBlock . 2
as.character.rawFormat . 3
atomicBlock . 4
blockValue . 5
hexViewFile . 6
markedBlock . 7
memBlock . 8
memFormat . 9
mixedBlock . 9
print.rawBlock . 10
print.rawFormat . 11
readEViews . 13
readFormat . 14
readRaw . 15
vectorBlock . 16
viewFormat . 17
viewRaw . 18

Index 20

1

2 as.character.rawBlock

as.character.rawBlock Convert Block of Binary Data into Strings

Description

This function takes a "rawBlock" object and generates human-readable strings for displaying the
block. Each string contains a binary offset, the binary data in a raw machine format, and an inter-
pretation of the data in a human-readable format.

Usage

S3 method for class 'rawBlock'
as.character(x, width = NULL, machine = NULL,

sep1 = " : ", sep2 = " | ",
showOffset = TRUE, showHuman = TRUE, ...)

Arguments

x A "rawBlock" object.

width The number of bytes to display per string.

machine The machine format to display; either "hex" or "binary".

sep1 A separator to insert between the block offset and the machine format.

sep2 A separator to insert between the machine format and the human-readable for-
mat.

showOffset If FALSE, the column of offsets is not included in the strings.

showHuman If FALSE, the column of human-readable format is not included in the strings.

... Other arguments to as.character.

Details

If either width or machine is NULL, the relevant value is taken from the "rawBlock" object. The
human-readable format is taken from the "rawBlock" object.

Value

A character vector.

Author(s)

Paul Murrell

See Also

readRaw print.rawBlock

as.character.rawFormat 3

Examples

fileBlock <- readRaw(hexViewFile("rawTest.txt"), width=8)
as.character(fileBlock)

as.character.rawFormat

Convert Binary File Format into Strings

Description

This function takes a "rawFormat" object and generates human-readable strings for displaying the
format. Each string contains a binary offset, the binary data in a raw machine format, and an
interpretation of the data in a human-readable format. The format consists of one or more sub-
blocks and a heading line is added for each block.

Usage

S3 method for class 'rawFormat'
as.character(x, sep1 = " : ", sep2 = " | ",

blockHead = TRUE, blockChar = "=", ...)

Arguments

x A "rawFormat" object.

sep1 A separator to insert between the format offset and the machine format.

sep2 A separator to insert between the machine format and the human-readable for-
mat.

blockHead A logical indicating whether to print a header between blocks of the format.

blockChar The character used as a prefix to the block names for printing headers between
blocks.

... Other arguments to as.character.

Details

Information on the number of bytes on each line, the machine representation of each byte and
the human-readable format are all taken from the taken from the "rawBlock" elements of the
"rawFormat" object. Consequently each block can have a quite different appearance. Consider-
able effort is made to line up the separators across all blocks within the format.

Value

A character vector.

Author(s)

Paul Murrell

4 atomicBlock

See Also

readFormat print.rawFormat

Examples

fileFormat <- readFormat(hexViewFile("rawTest.int"),
memFormat(int1=integer4, int2=integer4))

as.character(fileFormat)

atomicBlock Create an atomicBlock Object

Description

This function creates an "atomicBlock" object, which is a description of a block of binary data.
This can be used as part of a description of a binary format.

Usage

atomicBlock(type = "char", width = NULL, machine = "hex",
size = switch(type, char = 1, int = 4, real = 8),
endian = "little", signed = TRUE)

Arguments

type How the block of binary data will be interpreted. either "char" (an ASCII
character), "int" (an integer), or "real" (a floating point number).

width The number of bytes to print per row when displaying the block.

machine How to print each byte when displaying; either "hex" or "binary".

size The number of bytes used to generate each value when interpreting the raw
binary as character or numeric data.

endian The endianness of the binary data; used when interpreting bytes as numeric
values.

signed Whether the bytes should be interpreted as a signed numeric value.

Details

An "atomicBlock" object describes a binary block representing a single value.

Several standard binary types are predefined (with common C type equivalents in brackets): ASCIIchar
(char), integer1 (signed char), integer2 (short), integer3, integer4 (int, long), integer8 (long
long), real4 (float), real8 (double).

Value

An "atomicBlock" object.

blockValue 5

Author(s)

Paul Murrell

See Also

memFormat readFormat memBlock vectorBlock lengthBlock mixedBlock markedBlock

Examples

A C long
atomicBlock("int", size=4)
integer4

blockValue Extract the Value of a Binary Block

Description

The blockValue function returns the interpreted value of a block of binary data (a "rawBlock"
object).

The blockString function returns a null-terminated string from a block of binary data that is inter-
preted as a character data.

Usage

blockValue(block)

blockString(block)

Arguments

block A "rawBlock" object.

Details

The type of the value returned is determined when the binary block is created (e.g., by readRaw)
not when the value is extracted by the blockValue function.

The blockString function is useful for extracting a value from a binary block which is a string
padded with null characters.

The blockString function throws an error if the block is not interpreted as a character value.

Value

Either a character, or numeric vector depending on how the binary block should be interpreted.

6 hexViewFile

Author(s)

Paul Murrell

See Also

readRaw readFormat

Examples

charBlock <- readRaw(hexViewFile("rawTest.txt"), width=8)
blockValue(charBlock)
blockString(charBlock)

intBlock <- readRaw(hexViewFile("rawTest.int"), human="int")
blockValue(intBlock)

hexViewFile Specify an Example File

Description

This is just a convenience function for specifying one of the example files contained in the hexView
package. It is used in examples in hexView help pages.

Usage

hexViewFile(filename)

Arguments

filename The name of the example file.

Value

The full path to the appropriate example file.

Author(s)

Paul Murrell

Examples

hexViewFile("rawTest.txt")

markedBlock 7

markedBlock Create a markedBlock Object

Description

This function creates a "markedBlock" object, which is a description of a block of binary data.
This can be used as part of a description of a binary format.

Usage

markedBlock(marker=integer4,
switch=function(marker) { ASCIIchar },
markerLabel="marker", blockLabel="block")

Arguments

marker A "memBlock" object.

switch A function that returns a "memBlock" object, or NULL.

markerLabel A label to name the marker component of the "markedBlock" object.

blockLabel A label to name the component that is read after the marker component of the
"markedBlock" object.

Details

A "markedBlock" object describes a block of binary data that consists of a “marker” block con-
taining information on further blocks. The marker block is read first, then this block is passed to
the switch function. The switch function can look at the contents of the marker block and decide
what sort of block should be read next (the blockValue() function may be useful here). The result
of the switch function is read from the end of the marker block. The marker block and the result of
the switch function can be any type of "memBlock" object. If the result of the switch() function
is NULL then only the marker block is returned (no further memory is read).

Value

A "markedBlock" object.

Author(s)

Paul Murrell

See Also

memFormat readFormat memBlock atomicBlock vectorBlock lengthBlock mixedBlock blockValue

8 memBlock

Examples

A single-byte integer which dictates how many
subsequent four-byte reals to read
markedBlock(integer1,

function(marker) {
lengthBlock(real4, blockValue(marker))

})

memBlock Create a memBlock Object

Description

This function creates a "memBlock" object, which is a description of a block of binary data. This
can be used as part of a description of a binary format.

Usage

memBlock(nbytes = 1, width = NULL, machine = "hex")

Arguments

nbytes The number of bytes in the block.
width The number of bytes to print per row when displaying the block.
machine How to print each byte when displaying; either "hex" or "binary".

Details

A binary block that is read in from a file using this description is interpreted as nbytes single-byte
characters.

The description includes parameters controlling how a block of data should be displayed if this
description is used to read in a block of binary data.

Value

A "memBlock" object.

Author(s)

Paul Murrell

See Also

memFormat readFormat atomicBlock vectorBlock lengthBlock mixedBlock markedBlock

Examples

memBlock(8)

memFormat 9

memFormat Create a memFormat Object

Description

This function creates a "memFormat" object which is a description of a binary file format.

Usage

memFormat(...)

Arguments

... One or more "memBlock" objects.

Details

A "memFormat" object is made up of one or more "memBlock" objects.

Value

A "memFormat" object.

Author(s)

Paul Murrell

See Also

readFormat memBlock atomicBlock vectorBlock lengthBlock mixedBlock markedBlock

Examples

memFormat(int1=integer4, int2=integer4)

mixedBlock Create a mixedBlock Object

Description

This function creates a "mixedBlock" object, which is a description of a block of binary data. This
can be used as part of a description of a binary format.

Usage

mixedBlock(...)

10 print.rawBlock

Arguments

... One or more "memBlock" objects.

Details

A "mixedBlock" object describes a block of binary data that consists of a series of sub-blocks.
Each sub-block can be any type of "memBlock" object.

Value

A "mixedBlock" object.

Author(s)

Paul Murrell

See Also

memFormat readFormat memBlock atomicBlock vectorBlock lengthBlock markedBlock

Examples

A line of text followed by a four-byte integer
mixedBlock(ASCIIline, integer4)

print.rawBlock Print Method for Block of Binary Data

Description

This function displays a "rawBlock" object. Each line of output contains a binary offset, the binary
data in a raw machine format, and an interpretation of the data in a human-readable format. The
object contains parameters controlling the format of the display, some of which may be overridden
in the call to print.

Usage

S3 method for class 'rawBlock'
print(x, width = NULL, machine = NULL,

sep1 = " : ", sep2 = " | ",
showOffset = TRUE, showHuman = TRUE,
page = FALSE, ...)

print.rawFormat 11

Arguments

x A "rawBlock" object.

width The number of bytes to display per line of output.

machine The machine format to display; either "hex" or "binary".

sep1 A separator to insert between the block offset and the machine format.

sep2 A separator to insert between the machine format and the human-readable for-
mat.

showOffset If FALSE, the column of offsets is not printed.

showHuman If FALSE, the column of human-readable format is not printed.

page If TRUE the output is sent to the file viewer specified by getOption("pager").

... Other arguments to print.

Details

If either width or machine is NULL, the relevant value is taken from the "rawBlock" object. The
human-readable format is taken from the "rawBlock" object.

Author(s)

Paul Murrell

See Also

readRaw as.character.rawBlock

Examples

fileBlock <- readRaw(hexViewFile("rawTest.txt"))
print(fileBlock)
print(fileBlock, width=8)
print(fileBlock, machine="binary", width=4)

print.rawFormat Print Method for Binary File Format

Description

This function displays a "rawFormat" object. Each line of output contains a binary offset, the
binary data in a raw machine format, and an interpretation of the data in a human-readable format.
The format consists of one or more sub-blocks and a heading line is added for each block. The
object contains parameters controlling the format of the display, some of which may be overridden
in the call to print.

12 print.rawFormat

Usage

S3 method for class 'rawFormat'
print(x, sep1 = " : ", sep2 = " | ",

blockHead = TRUE, blockChar = "=", page = FALSE, ...)

Arguments

x A "rawFormat" object.

sep1 A separator to insert between the format offset and the machine format.

sep2 A separator to insert between the machine format and the human-readable for-
mat.

blockHead A logical indicating whether to print a header between blocks of the format.

blockChar The character used as a prefix to the block names for printing headers between
blocks.

page If TRUE the output is sent to the file viewer specified by getOption("pager").

... Other arguments to print.

Details

Information on the number of bytes on each line, the machine representation of each byte and
the human-readable format are all taken from the taken from the "rawBlock" elements of the
"rawFormat" object. Consequently each block can have a quite different appearance. Consider-
able effort is made to line up the separators across all blocks within the format.

Author(s)

Paul Murrell

See Also

readFormat as.character.rawFormat

Examples

fileFormat <- readFormat(hexViewFile("rawTest.int"),
memFormat(int1=integer4, int2=integer4))

print(fileFormat)
print(fileFormat, sep2=":")

readEViews 13

readEViews Read an Eviews File

Description

This function reads a file in Eviews format (Eviews is an econometrics package).

Usage

readEViews(filename, time.stamp=TRUE, as.data.frame = TRUE)

Arguments

filename The name of the file.

time.stamp A logical indicating whether to include a Date column in the result.

as.data.frame If TRUE the result is a data frame; otherwise a list of variables is returned.

Details

This function is just a demonstration of how the functions in this package can be used to read
a complex binary format. It has been tested on a few sample files (and works), but there is no
guarantee it will work for all Eviews files (this is not helped by the fact that it is based on reverse-
engineering information about the Eviews format, NOT an official description of the format.

Value

Either a data frame or a list of variables.

Author(s)

Paul Murrell

References

http://www.eviews.com/ and http://www.ecn.wfu.edu/~cottrell/eviews_format/

Examples

readEViews(hexViewFile("data4-1.wf1"))

http://www.eviews.com/
http://www.ecn.wfu.edu/~cottrell/eviews_format/

14 readFormat

readFormat Read a Binary File

Description

Read the raw binary content of a file using a description of the binary format.

Usage

readFormat(file, format, width = NULL, offset = 0, machine = "hex",
flatten = TRUE)

Arguments

file The name of a file or a connection.

format A "memFormat" object.

width The number of bytes to print per row when displaying the file.

offset An offset within the file to start reading.

machine How to print each byte when displaying the file; either "hex" or "binary".

flatten If TRUE the list of blocks created from the "memFormat" description are flattened
to a list of depth 1.

Details

This function uses a "memFormat" description to read the raw binary content of a file and interpret
sub-blocks of the file as distinct (blocks of) values.

The "memFormat" can described a nested structure of blocks. The flatten argument is used to
convert nested format structures to a flat (depth of one) structure.

The format is always flattened for display, but extracting

Value

A "rawFormat" object, which is a list:

blocks A list (of lists) of "rawBlock" objects.

offset The offset in the file where reading began.

nbytes The number of bytes read from the file.

Author(s)

Paul Murrell

See Also

viewFormat memFormat as.character.rawFormat print.rawFormat readRaw readBin

readRaw 15

Examples

fileFormat <- readFormat(hexViewFile("rawTest.int"),
memFormat(int1=integer4, int2=integer4))

blockValue(fileFormat$blocks$int2)

fileFormat <- readFormat(hexViewFile("rawTest.int"),
memFormat(integers=vectorBlock(integer4, 20)))

blockValue(fileFormat$blocks$integers)

readRaw Read the Raw Binary Content of a File

Description

Read the contents of a file as bytes and create an object containing the raw data, plus optionally an
interpretation of the bytes as numeric values, plus parameters controlling how to display the data.

Usage

readRaw(file, width = NULL, offset = 0, nbytes = NULL,
machine = "hex", human = "char",
size = switch(human, char = 1, int = 4, real = 8),
endian = .Platform$endian, signed = TRUE)

Arguments

file The name of a file or a connection.

width The number of bytes to print per row when displaying the data.

offset An offset within the file to start reading.

nbytes The number of bytes to read from the file. NULL means read the whole file.

machine How to print each byte when displaying; either "hex" or "binary".

human How to print a human-readable form of the data; either "char" (an ASCII char-
acter), "int" (an integer), or "real" (a floating point number).

size The number of bytes used to generate each value when interpreting the raw
binary as character or numeric data.

endian The endianness of the binary data; used when interpreting bytes as numeric
values.

signed Whether the bytes should be interpreted as a signed numeric value.

Details

Each individual byte is printed in the appropriate machine format, but there is only one value printed
in the appropriate human format for every size bytes. Consequently, the width must be a multiple
of the size.

16 vectorBlock

Value

An object of class "rawBlock".

Author(s)

Paul Murrell

See Also

viewRaw readBin as.character.rawBlock print.rawBlock blockValue readFormat

Examples

readLines(hexViewFile("rawTest.txt"))

fileBlock <- readRaw(hexViewFile("rawTest.txt"), width=8)
blockValue(fileBlock)

fileBlock <- readRaw(hexViewFile("rawTest.int"), human="int")
blockValue(fileBlock)

vectorBlock Create a vectorBlock Object

Description

These functions create a "vectorBlock" or lengthBlock object, which are a descriptions of a
block of binary data. These can be used as part of a description of a binary format.

Usage

vectorBlock(block = ASCIIchar, length = 1)
lengthBlock(length = integer4, block = ASCIIchar, blockLabel = "block")

Arguments

block An object derived from the "memBlock" class, e.g., an "atomicBlock" object.

length The number of block objects in the overall binary block.

blockLabel A label to name the block component of the "lengthBlock" object.

Details

These objects describe a block of binary data that consists of a repeating sub-block. The sub-block
can be any type of "memBlock" object.

There is also a predefined ASCIIline block, which is a block of single-byte characters terminated
by a newline character.

viewFormat 17

Value

A "vectorBlock" or lengthBlock object.

Author(s)

Paul Murrell

See Also

memFormat readFormat memBlock atomicBlock mixedBlock markedBlock

Examples

A block of 20 four-byte blocks
which are interpreted as integer values
vectorBlock(integer4, 20)

viewFormat View a Binary File

Description

Displays the raw bytes of a file like a hex editor, showing offsets within the file, raw bytes in
binary or hexadecimal form, and a human-readable representation of the bytes as either ASCII
characters, integers, or real values. The file is broken up into blocks according to a supplied file
format specification.

Usage

viewFormat(..., page = FALSE)

Arguments

... Arguments passed to the function readFormat, most importantly, a "memFormat"
describing the file format.

page If TRUE, the output is sent to the application set up to display text files as per
getOption("pager").

Details

This function is only called for its side-effect, which is to display the file.

Author(s)

Paul Murrell

18 viewRaw

See Also

readFormat viewRaw

Examples

viewFormat(hexViewFile("rawTest.int"),
memFormat(int1=integer4, int2=integer4))

viewFormat(hexViewFile("rawTest.int"),
memFormat(integers=vectorBlock(integer4, 20)))

viewRaw View the Raw Binary Content of a File

Description

Displays the raw bytes of a file like a hex editor, showing offsets within the file, raw bytes in binary
or hexadecimal form, and a human-readable representation of the bytes as either ASCII characters,
integers, or real values.

Usage

viewRaw(..., page = FALSE)

Arguments

... Arguments passed to the function readRaw.

page If TRUE, the output is sent to the application set up to display text files as per
getOption("pager").

Details

This function is only called for its side-effect, which is to display the file.

Author(s)

Paul Murrell

See Also

readRaw viewFormat

viewRaw 19

Examples

viewRaw(hexViewFile("rawTest.txt"), width=8)
viewRaw(hexViewFile("rawTest.txt"), machine="binary", width=4)

UNICODE text
rawTest.unicode created using Notepad on Windows
viewRaw(hexViewFile("rawTest.unicode"), width=8)

viewRaw(hexViewFile("rawTest.int"), human="int")
viewRaw(hexViewFile("rawTest.real"), human="real", width=8, endian="big")

Index

∗Topic character
as.character.rawBlock, 2
as.character.rawFormat, 3

∗Topic classes
blockValue, 5

∗Topic connection
readFormat, 14
readRaw, 15
viewFormat, 17
viewRaw, 18

∗Topic file
atomicBlock, 4
hexViewFile, 6
markedBlock, 7
memBlock, 8
memFormat, 9
mixedBlock, 9
readEViews, 13
readFormat, 14
readRaw, 15
vectorBlock, 16
viewFormat, 17
viewRaw, 18

∗Topic print
print.rawBlock, 10
print.rawFormat, 11

as.character.rawBlock, 2, 11, 16
as.character.rawFormat, 3, 12, 14
ASCIIchar (atomicBlock), 4
ASCIIline (vectorBlock), 16
atomicBlock, 4, 7–10, 17

blockString (blockValue), 5
blockValue, 5, 7, 16

hexViewFile, 6

integer1 (atomicBlock), 4
integer2 (atomicBlock), 4

integer3 (atomicBlock), 4
integer4 (atomicBlock), 4
integer8 (atomicBlock), 4

lengthBlock, 5, 7–10
lengthBlock (vectorBlock), 16

markedBlock, 5, 7, 8–10, 17
memBlock, 5, 7, 8, 9, 10, 17
memFormat, 5, 7, 8, 9, 10, 14, 17
mixedBlock, 5, 7–9, 9, 17

print.rawBlock, 2, 10, 16
print.rawFormat, 4, 11, 14

readBin, 14, 16
readEViews, 13
readFormat, 4–10, 12, 14, 16–18
readRaw, 2, 6, 11, 14, 15, 18
real4 (atomicBlock), 4
real8 (atomicBlock), 4

vectorBlock, 5, 7–10, 16
viewFormat, 14, 17, 18
viewRaw, 16, 18, 18

20

	as.character.rawBlock
	as.character.rawFormat
	atomicBlock
	blockValue
	hexViewFile
	markedBlock
	memBlock
	memFormat
	mixedBlock
	print.rawBlock
	print.rawFormat
	readEViews
	readFormat
	readRaw
	vectorBlock
	viewFormat
	viewRaw
	Index

