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annualflows Data-sample

Description

Total annual flow, expressed in mm, of 47 stations in Piemonte (Italy).

Usage

annualflows

Format

Data.frame containing annual flow data of 47 stations.

Examples

data(annualflows)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
split(x,cod)
sapply(split(x,cod),mean)
sapply(split(x,cod),median)
sapply(split(x,cod),quantile)
sapply(split(x,cod),Lmoments)

GEV Three parameter generalized extreme value distribution and L-
moments

Description

GEV provides the link between L-moments of a sample and the three parameter generalized extreme
value distribution.

Usage

f.GEV (x, xi, alfa, k)
F.GEV (x, xi, alfa, k)
invF.GEV (F, xi, alfa, k)
Lmom.GEV (xi, alfa, k)
par.GEV (lambda1, lambda2, tau3)
rand.GEV (numerosita, xi, alfa, k)
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Arguments

x vector of quantiles

xi vector of GEV location parameters

alfa vector of GEV scale parameters

k vector of GEV shape parameters

F vector of probabilities

lambda1 vector of sample means

lambda2 vector of L-variances

tau3 vector of L-CA (or L-skewness)

numerosita numeric value indicating the length of the vector to be generated

Details

See http://en.wikipedia.org/wiki/Generalized_extreme_value_distribution for an in-
troduction to the GEV distribution.

Definition
Parameters (3): ξ (location), α (scale), k (shape).

Range of x: −∞ < x ≤ ξ + α/k if k > 0; −∞ < x <∞ if k = 0; ξ + α/k ≤ x <∞ if k < 0.

Probability density function:
f(x) = α−1e−(1−k)y−e−y

where y = −k−1 log{1− k(x− ξ)/α} if k 6= 0, y = (x− ξ)/α if k = 0.

Cumulative distribution function:
F (x) = e−e

−y

Quantile function: x(F ) = ξ+α[1− (− logF )k]/k if k 6= 0, x(F ) = ξ−α log(− logF ) if k = 0.

k = 0 is the Gumbel distribution; k = 1 is the reverse exponential distribution.

L-moments
L-moments are defined for k > −1.

λ1 = ξ + α[1− Γ(1 + k)]/k

λ2 = α(1− 2−k)Γ(1 + k)]/k

τ3 = 2(1− 3−k)/(1− 2−k)− 3

τ4 = [5(1− 4−k)− 10(1− 3−k) + 6(1− 2−k)]/(1− 2−k)

Here Γ denote the gamma function

Γ(x) =

∫ ∞
0

tx−1e−tdt

Parameters

http://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
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To estimate k, no explicit solution is possible, but the following approximation has accurancy better
than 9× 10−4 for −0.5 ≤ τ3 ≤ 0.5:

k ≈ 7.8590c+ 2.9554c2

where

c =
2

3 + τ3
− log 2

log 3

The other parameters are then given by

α =
λ2k

(1− 2−k)Γ(1 + k)

ξ = λ1 − α[1− Γ(1 + k)]/k

Value

f.GEV gives the density f , F.GEV gives the distribution function F , invF.GEV gives the quantile
function x, Lmom.GEV gives the L-moments (λ1, λ2, τ3, τ4), par.GEV gives the parameters (xi,
alfa, k), and rand.GEV generates random deviates.

Note

Lmom.GEV and par.GEV accept input as vectors of equal length. In f.GEV, F.GEV, invF.GEV and
rand.GEV parameters (xi, alfa, k) must be atomic.

Author(s)

Alberto Viglione, e-mail: <alviglio@tiscali.it>.

References

Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-
moments, Cambridge University Press, Cambridge, UK.

See Also

rnorm, runif, KAPPA, Lmoments.

GUMBEL Two parameter Gumbel distribution and L-moments

Description

GUMBEL provides the link between L-moments of a sample and the two parameter Gumbel distribu-
tion.
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Usage

f.gumb (x, xi, alfa)
F.gumb (x, xi, alfa)
invF.gumb (F, xi, alfa)
Lmom.gumb (xi, alfa)
par.gumb (lambda1, lambda2)
rand.gumb (numerosita, xi, alfa)

Arguments

x vector of quantiles
xi vector of gumb location parameters
alfa vector of gumb scale parameters
F vector of probabilities
lambda1 vector of sample means
lambda2 vector of L-variances
numerosita numeric value indicating the length of the vector to be generated

Details

See http://en.wikipedia.org/wiki/Fisher-Tippett_distribution for an introduction to the
Gumbel distribution.

Definition
Parameters (2): ξ (location), α (scale).

Range of x: −∞ < x <∞.

Probability density function:

f(x) = α−1 exp[−(x− ξ)/α] exp{− exp[−(x− ξ)/α]}

Cumulative distribution function:

F (x) = exp[− exp(−(x− ξ)/α)]

Quantile function: x(F ) = ξ − α log(− logF ).

L-moments

λ1 = ξ + αγ

λ2 = α log 2

τ3 = 0.1699 = log(9/8)/ log 2

τ4 = 0.1504 = (16 log 2− 10 log 3)/ log 2

Here γ is Euler’s constant, 0.5772...

Parameters

α = λ2/ log 2

ξ = λ1 − γα

http://en.wikipedia.org/wiki/Fisher-Tippett_distribution
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Value

f.gumb gives the density f , F.gumb gives the distribution function F , invF.gumb gives the quantile
function x, Lmom.gumb gives the L-moments (λ1, λ2, τ3, τ4)), par.gumb gives the parameters (xi,
alfa), and rand.gumb generates random deviates.

Note

Lmom.gumb and par.gumb accept input as vectors of equal length. In f.gumb, F.gumb, invF.gumb
and rand.gumb parameters (xi, alfa) must be atomic.

Author(s)

Alberto Viglione, e-mail: <alviglio@tiscali.it>.

References

Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-
moments, Cambridge University Press, Cambridge, UK.

See Also

rnorm, runif, GEV, Lmoments.

HOMTESTS Homogeneity tests

Description

Homogeneity tests for Regional Frequency Analysis.

Usage

ADbootstrap.test (x, cod, Nsim=500, index=2)
HW.tests (x, cod, Nsim=500)
DK.test (x, cod)

Arguments

x vector representing data from many samples defined with cod

cod array that defines the data subdivision among sites

Nsim number of regions simulated with the bootstrap of the original region

index if index=1 samples are divided by their average value; if index=2 (default)
samples are divided by their median value
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Details

The Hosking and Wallis heterogeneity measures
The idea underlying Hosking and Wallis (1993) heterogeneity statistics is to measure the sample
variability of the L-moment ratios and compare it to the variation that would be expected in a
homogeneous region. The latter is estimated through repeated simulations of homogeneous regions
with samples drawn from a four parameter kappa distribution (see e.g., Hosking and Wallis, 1997,
pp. 202-204). More in detail, the steps are the following: with regards to the k samples belonging
to the region under analysis, find the sample L-moment ratios (see, Hosking and Wallis, 1997)
pertaining to the i-th site: these are the L-coefficient of variation (L-CV),

t(i) =

1
ni

∑ni

j=1

(
2(j−1)
(ni−1) − 1

)
Yi,j

1
ni

∑ni

j=1 Yi,j

the coefficient of L-skewness,

t
(i)
3 =

1
ni

∑ni

j=1

(
6(j−1)(j−2)

(ni−1)(ni−2) −
6(j−1)
(ni−1) + 1

)
Yi,j

1
ni

∑ni

j=1

(
2(j−1)
(ni−1) − 1

)
Yi,j

and the coefficient of L-kurtosis

t
(i)
4 =

1
ni

∑ni

j=1

(
20(j−1)(j−2)(j−3)

(ni−1)(ni−2)(ni−3) −
30(j−1)(j−2)
(ni−1)(ni−2) + 12(j−1)

(ni−1) − 1
)
Yi,j

1
ni

∑ni

j=1

(
2(j−1)
(ni−1) − 1

)
Yi,j

Note that the L-moment ratios are not affected by the normalization by the index value, i.e. it is the
same to use Xi,j or Yi,j in Equations.

Define the regional averaged L-CV, L-skewness and L-kurtosis coefficients,

tR =

∑k
i=1 nit

(i)∑k
i=1 ni

tR3 =

∑k
i=1 nit

(i)
3∑k

i=1 ni

tR4 =

∑k
i=1 nit

(i)
4∑k

i=1 ni

and compute the statistic

V =

{
k∑
i=1

ni(t
(i) − tR)2/

k∑
i=1

ni

}1/2

Fit the parameters of a four-parameters kappa distribution to the regional averaged L-moment ratios
tR, tR3 and tR4 , and then generate a large number Nsim of realizations of sets of k samples. The
i-th site sample in each set has a kappa distribution as its parent and record length equal to ni. For
each simulated homogeneous set, calculate the statistic V , obtainingNsim values. On this vector of
V values determine the mean µV and standard deviation σV that relate to the hypothesis of homo-
geneity (actually, under the composite hypothesis of homogeneity and kappa parent distribution).
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An heterogeneity measure, which is called here HW1, is finally found as

θHW1
=
V − µV
σV

θHW1 can be approximated by a normal distributed with zero mean and unit variance: follow-
ing Hosking and Wallis (1997), the region under analysis can therefore be regarded as ‘acceptably
homogeneous’ if θHW1

< 1, ‘possibly heterogeneous’ if 1 ≤ θHW1
< 2, and ‘definitely hetero-

geneous’ if θHW1
≥ 2. Hosking and Wallis (1997) suggest that these limits should be treated as

useful guidelines. Even if the θHW1 statistic is constructed like a significance test, significance
levels obtained from such a test would in fact be accurate only under special assumptions: to have
independent data both serially and between sites, and the true regional distribution being kappa.

Hosking and Wallis (1993) also give an alternative heterogeneity measure (that we call HW2), in
which V is replaced by:

V2 =

k∑
i=1

ni

{
(t(i) − tR)2 + (t

(i)
3 − tR3 )2

}1/2

/

k∑
i=1

ni

The test statistic in this case becomes

θHW2
=
V2 − µV2

σV2

with similar acceptability limits as the HW1 statistic. Hosking and Wallis (1997) judge θHW2
to

be inferior to θHW1
and say that it rarely yields values larger than 2 even for grossly heterogeneous

regions.

The bootstrap Anderson-Darling test
A test that does not make any assumption on the parent distribution is the Anderson-Darling (AD)
rank test (Scholz and Stephens, 1987). The AD test is the generalization of the classical Anderson-
Darling goodness of fit test (e.g., D’Agostino and Stephens, 1986), and it is used to test the hypoth-
esis that k independent samples belong to the same population without specifying their common
distribution function.

The test is based on the comparison between local and regional empirical distribution functions.
The empirical distribution function, or sample distribution function, is defined by F (x) = j

η , x(j) ≤
x < x(j+1), where η is the size of the sample and x(j) are the order statistics, i.e. the observations
arranged in ascending order. Denote the empirical distribution function of the i-th sample (local) by
F̂i(x), and that of the pooled sample of all N = n1 + ... + nk observations (regional) by HN (x).
The k-sample Anderson-Darling test statistic is then defined as

θAD =

k∑
i=1

ni

∫
all x

[F̂i(x)−HN (x)]2

HN (x)[1−HN (x)]
dHN (x)

If the pooled ordered sample is Z1 < ... < ZN , the computational formula to evaluate θAD is:

θAD =
1

N

k∑
i=1

1

ni

N−1∑
j=1

(NMij − jni)2

j(N − j)

where Mij is the number of observations in the i-th sample that are not greater than Zj . The ho-
mogeneity test can be carried out by comparing the obtained θAD value to the tabulated percentage
points reported by Scholz and Stephens (1987) for different significance levels.
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The statistic θAD depends on the sample values only through their ranks. This guarantees that the
test statistic remains unchanged when the samples undergo monotonic transformations, an impor-
tant stability property not possessed by HW heterogeneity measures. However, problems arise in
applying this test in a common index value procedure. In fact, the index value procedure corre-
sponds to dividing each site sample by a different value, thus modifying the ranks in the pooled
sample. In particular, this has the effect of making the local empirical distribution functions much
more similar to the other, providing an impression of homogeneity even when the samples are
highly heterogeneous. The effect is analogous to that encountered when applying goodness-of-fit
tests to distributions whose parameters are estimated from the same sample used for the test (e.g.,
D’Agostino and Stephens, 1986; Laio, 2004). In both cases, the percentage points for the test
should be opportunely redetermined. This can be done with a nonparametric bootstrap approach
presenting the following steps: build up the pooled sample S of the observed non-dimensional data.
Sample with replacement from S and generate k artificial local samples, of size n1, . . . , nk. Divide
each sample for its index value, and calculate θ(1)

AD. Repeat the procedure forNsim times and obtain
a sample of θ(j)

AD, j = 1, . . . , Nsim values, whose empirical distribution function can be used as
an approximation of GH0

(θAD), the distribution of θAD under the null hypothesis of homogene-
ity. The acceptance limits for the test, corresponding to any significance level α, are then easily
determined as the quantiles of GH0

(θAD) corresponding to a probability (1− α).

We will call the test obtained with the above procedure the bootstrap Anderson-Darling test, here-
after referred to as AD.

Durbin and Knott test
The last considered homogeneity test derives from a goodness-of-fit statistic originally proposed
by Durbin and Knott (1971). The test is formulated to measure discrepancies in the dispersion of
the samples, without accounting for the possible presence of discrepancies in the mean or skewness
of the data. Under this aspect, the test is similar to the HW1 test, while it is analogous to the
AD test for the fact that it is a rank test. The original goodness-of-fit test is very simple: suppose
to have a sample Xi, i = 1, ..., n, with hypothetical distribution F (x); under the null hypothesis
the random variable F (Xi) has a uniform distribution in the (0, 1) interval, and the statistic D =∑n
i=1 cos[2πF (Xi)] is approximately normally distributed with mean 0 and variance 1 (Durbin and

Knott, 1971). D serves the purpose of detecting discrepancy in data dispersion: if the variance of
Xi is greater than that of the hypothetical distribution F (x), D is significantly greater than 0, while
D is significantly below 0 in the reverse case. Differences between the mean (or the median) of Xi

and F (x) are instead not detected by D, which guarantees that the normalization by the index value
does not affect the test.

The extension to homogeneity testing of the Durbin and Knott (DK) statistic is straightforward:
we substitute the empirical distribution function obtained with the pooled observed data, HN (x),
for F (x) in D, obtaining at each site a statistic

Di =

ni∑
j=1

cos[2πHN (Xj)]

which is normal under the hypothesis of homogeneity. The statistic θDK =
∑k
i=1D

2
i has then a chi-

squared distribution with k−1 degrees of freedom, which allows one to determine the acceptability
limits for the test, corresponding to any significance level α.

Comparison among tests
The comparison (Viglione et al, 2007) shows that the Hosking and Wallis heterogeneity measure
HW1 (only based on L-CV) is preferable when skewness is low, while the bootstrap Anderson-
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Darling test should be used for more skewed regions. As for HW2, the Hosking and Wallis hetero-
geneity measure based on L-CV and L-CA, it is shown once more how much it lacks power.

Our suggestion is to guide the choice of the test according to a compromise between power and
Type I error of the HW1 and AD tests. The L-moment space is divided into two regions: if the
tR3 coefficient for the region under analysis is lower than 0.23, we propose to use the Hosking
and Wallis heterogeneity measure HW1; if tR3 > 0.23, the bootstrap Anderson-Darling test is
preferable.

Value

ADbootstrap.test and DK.test test gives its test statistic and its distribution value P . If P is, for
example, 0.92, samples shouldn’t be considered heterogeneous with significance level minor of 8

HW.tests gives the two Hosking and Wallis heterogeneity measures HW1 and HW2; following
Hosking and Wallis (1997), the region under analysis can therefore be regarded as ‘acceptably ho-
mogeneous’ ifHW < 1, ‘possibly heterogeneous’ if 1 ≤ HW < 2, and ‘definitely heterogeneous’
if HW ≥ 2.

Author(s)

Alberto Viglione, e-mail: <alviglio@tiscali.it>.

References

D’Agostino R., Stephens M. (1986) Goodness-of-Fit Techniques, chapter Tests based on EDF statis-
tics. Marcel Dekker, New York.

Durbin J., Knott M. (1971) Components of Cramer-von Mises statistics. London School of Eco-
nomics and Political Science, pp. 290-307.

Hosking J., Wallis J. (1993) Some statistics useful in regional frequency analysis. Water Resources
Research, 29 (2), pp. 271-281.

Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-
moments, Cambridge University Press, Cambridge, UK.

Laio, F., Cramer-von Mises and Anderson-Darling goodness of fit tests for extreme value distribu-
tions with unknown parameters, Water Resour. Res., 40, W09308, doi:10.1029/2004WR003204.

Scholz F., Stephens M. (1987) K-sample Anderson-Darling tests. Journal of American Statistical
Association, 82 (399), pp. 918-924.

Viglione A., Laio F., Claps P. (2007) “A comparison of homogeneity tests for regional frequency
analysis”, Water Resources Research, 43, W03428, doi:10.1029/2006WR005095.

Viglione A. (2007) Metodi statistici non-supervised per la stima di grandezze idrologiche in siti non
strumentati, PhD thesis, Politecnico di Torino.

See Also

KAPPA, Lmoments.
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Examples

data(annualflows)
annualflows[1:10,]
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
split(x,cod)

#ADbootstrap.test(x,cod,Nsim=100) # it takes some time
#HW.tests(x,cod) # it takes some time
DK.test(x,cod)

fac <- factor(annualflows["cod"][,],levels=c(34:38))
x2 <- annualflows[!is.na(fac),"dato"]
cod2 <- annualflows[!is.na(fac),"cod"]
split(x2,cod2)
sapply(split(x2,cod2),Lmoments)
regionalLmoments(x2,cod2)

ADbootstrap.test(x2,cod2)
ADbootstrap.test(x2,cod2,index=1)
HW.tests(x2,cod2)
DK.test(x2,cod2)

KAPPA Four parameter kappa distribution and L-moments

Description

KAPPA provides the link between L-moments of a sample and the four parameter kappa distribution.

Usage

f.kappa (x, xi, alfa, k, h)
F.kappa (x, xi, alfa, k, h)
invF.kappa (F, xi, alfa, k, h)
Lmom.kappa (xi, alfa, k, h)
par.kappa (lambda1, lambda2, tau3, tau4)
rand.kappa (numerosita, xi, alfa, k, h)

Arguments

x vector of quantiles

xi vector of kappa location parameters

alfa vector of kappa scale parameters

k vector of kappa third parameters

h vector of kappa fourth parameters
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F vector of probabilities
lambda1 vector of sample means
lambda2 vector of L-variances
tau3 vector of L-CA (or L-skewness)
tau4 vector of L-kurtosis
numerosita numeric value indicating the length of the vector to be generated

Details

Definition
Parameters (4): ξ (location), α (scale), k, h.

Range of x: upper bound is ξ + α/k if k > 0, ∞ if k ≤ 0; lower bound is ξ + α(1 − h−k)/k if
h > 0, ξ + α/k if h ≤ 0 and k < 0 and −∞ if h ≤ 0 and k ≥ 0

Probability density function:

f(x) = α−1[1− k(x− ξ)/α]1/k−1[F (x)]1−h

Cumulative distribution function:

F (x) = {1− h[1− k(x− ξ)/α]1/k}1/h

Quantile function:

x(F ) = ξ +
α

k

[
1−

(
1− Fh

h

)k]
h = −1 is the generalized logistic distribution; h = 0 is the generalized eztreme value distribution;
h = 1 is the generalized Pareto distribution.

L-moments
L-moments are defined for h ≥ 0 and k > −1, or if h < 0 and −1 < k < −1/h.

λ1 = ξ + α(1− g1)/k

λ2 = α(g1 − g2)/k

τ3 = (−g1 + 3g2 − 2g3)/(g1 − g2)

τ4 = (−g1 + 6g2 − 10g3 + 5g4)/(g1 − g2)

where gr = rΓ(1+k)Γ(r/h)
h1+kΓ(1+k+r/h)

if h > 0; gr = rΓ(1+k)Γ(−k−r/h)
(−h)1+kΓ(1−r/h)

if h < 0;

Here Γ denote the gamma function

Γ(x) =

∫ ∞
0

tx−1e−tdt

Parameters
There are no simple expressions for the parameters in terms of the L-moments. However they can
be obtained with a numerical algorithm considering the formulations of τ3 and τ4 in terms of k and
h. Here we use the function optim to minimize (t3 − τ3)2 + (t4 − τ4)2 where t3 and t4 are the
sample L-moment ratios.



KAPPA 13

Value

f.kappa gives the density f , F.kappa gives the distribution function F , invFkappa gives the quan-
tile function x, Lmom.kappa gives the L-moments (λ1, λ2, τ3, τ4), par.kappa gives the parameters
(xi, alfa, k, h), and rand.kappa generates random deviates.

Note

Lmom.kappa and par.kappa accept input as vectors of equal length. In f.kappa, F.kappa, invF.kappa
and rand.kappa parameters (xi, alfa, k, h) must be atomic.

Author(s)

Alberto Viglione, e-mail: <alviglio@tiscali.it>.

References

Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-
moments, Cambridge University Press, Cambridge, UK.

See Also

HOMTESTS, rnorm, runif.

Examples

data(annualflows)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)

camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.kappa(ll[1],ll[2],ll[4],ll[5])
f.kappa(1800,parameters$xi,parameters$alfa,parameters$k,parameters$h)
F.kappa(1800,parameters$xi,parameters$alfa,parameters$k,parameters$h)
invF.kappa(0.771088,parameters$xi,parameters$alfa,parameters$k,parameters$h)
Lmom.kappa(parameters$xi,parameters$alfa,parameters$k,parameters$h)
rand.kappa(100,parameters$xi,parameters$alfa,parameters$k,parameters$h)

Rll <- regionalLmoments(x,fac); Rll
parameters <- par.kappa(Rll[1],Rll[2],Rll[4],Rll[5])
Lmom.kappa(parameters$xi,parameters$alfa,parameters$k,parameters$h)
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Lmoments Hosking and Wallis sample L-moments

Description

Lmoments provides the estimate of L-moments of a sample or regional L-moments of a region.

Usage

Lmoments (x)
regionalLmoments (x,cod)
LCV (x)
LCA (x)
Lkur (x)

Arguments

x vector representing a data-sample (or data from many samples defined with cod
in the case of regionalLmoments)

cod array that defines the data subdivision among sites

Details

The estimation of L-moments is based on a sample of size n, arranged in ascending order. Let
x1:n ≤ x2:n ≤ . . . ≤ xn:n be the ordered sample. An unbiased estimator of the probability
weighted moments βr is:

br = n−1
n∑

j=r+1

(j − 1)(j − 2) . . . (j − r)
(n− 1)(n− 2) . . . (n− r)

xj:n

The sample L-moments are defined by:
l1 = b0

l2 = 2b1 − b0

l3 = 6b2 − 6b1 + b0

l4 = 20b3 − 30b2 + 12b1 − b0

and in general

lr+1 =

r∑
k=0

(−1)r−k(r + k)!

(k!)2(r − k)!
bk

where r = 0, 1, . . . , n− 1.

The sample L-moment ratios are defined by

tr = lr/l2
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and the sample L-CV by
t = l2/l1

Sample regional L-CV, L-skewness and L-kurtosis coefficients are defined as

tR =

∑k
i=1 nit

(i)∑k
i=1 ni

tR3 =

∑k
i=1 nit

(i)
3∑k

i=1 ni

tR4 =

∑k
i=1 nit

(i)
4∑k

i=1 ni

Value

Lmoments gives the L-moments (l1, l2, t, t3, t4), regionalLmoments gives the regional weighted
L-moments (lR1 , lR2 , tR, tR3 , tR4 ), LCV gives the coefficient of L-variation, LCA gives the L-skewness
and Lkur gives the L-kurtosis of x.

Author(s)

Alberto Viglione, e-mail: <alviglio@tiscali.it>.

References

Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-
moments, Cambridge University Press, Cambridge, UK.

See Also

mean, var, sd, HOMTESTS.

Examples

x <- rnorm(30,10,2)
Lmoments(x)

data(annualflows)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
split(x,cod)
camp <- split(x,cod)$"45"
Lmoments(camp)
sapply(split(x,cod),Lmoments)

regionalLmoments(x,cod)



Index

∗Topic datasets
annualflows, 2

∗Topic distribution
GEV, 2
GUMBEL, 4
KAPPA, 11

∗Topic htest
HOMTESTS, 6

∗Topic univar
Lmoments, 14

ADbootstrap.test (HOMTESTS), 6
annualflows, 2

DK.test (HOMTESTS), 6

F.GEV (GEV), 2
f.GEV (GEV), 2
F.gumb (GUMBEL), 4
f.gumb (GUMBEL), 4
F.kappa (KAPPA), 11
f.kappa (KAPPA), 11

GEV, 2, 6
GUMBEL, 4

HOMTESTS, 6, 13, 15
HW.tests (HOMTESTS), 6

invF.GEV (GEV), 2
invF.gumb (GUMBEL), 4
invF.kappa (KAPPA), 11

KAPPA, 4, 10, 11

LCA (Lmoments), 14
LCV (Lmoments), 14
Lkur (Lmoments), 14
Lmom.GEV (GEV), 2
Lmom.gumb (GUMBEL), 4
Lmom.kappa (KAPPA), 11

Lmoments, 4, 6, 10, 14

mean, 15

par.GEV (GEV), 2
par.gumb (GUMBEL), 4
par.kappa (KAPPA), 11

rand.GEV (GEV), 2
rand.gumb (GUMBEL), 4
rand.kappa (KAPPA), 11
regionalLmoments (Lmoments), 14
rnorm, 4, 6, 13
runif, 4, 6, 13

sd, 15

var, 15

16


	annualflows
	GEV
	GUMBEL
	HOMTESTS
	KAPPA
	Lmoments
	Index

