
Package ‘htmltools’
August 25, 2021

Type Package

Title Tools for HTML

Version 0.5.2

Description Tools for HTML generation and output.

Depends R (>= 2.14.1)

Imports utils, digest, grDevices, base64enc, rlang (>= 0.4.10),
fastmap

Suggests markdown, testthat, withr, Cairo, ragg, shiny

Enhances knitr

License GPL (>= 2)

URL https://github.com/rstudio/htmltools

BugReports https://github.com/rstudio/htmltools/issues

RoxygenNote 7.1.1

Encoding UTF-8

Collate 'colors.R' 'html_dependency.R' 'html_escape.R' 'html_print.R'
'images.R' 'known_tags.R' 'selector.R' 'shim.R' 'tag_query.R'
'utils.R' 'tags.R' 'template.R'

NeedsCompilation yes

Author Joe Cheng [aut],
Carson Sievert [aut, cre] (<https://orcid.org/0000-0002-4958-2844>),
Barret Schloerke [aut] (<https://orcid.org/0000-0001-9986-114X>),
Winston Chang [aut] (<https://orcid.org/0000-0002-1576-2126>),
Yihui Xie [aut],
Jeff Allen [aut],
RStudio [cph]

Maintainer Carson Sievert <carson@rstudio.com>

Repository CRAN

Date/Publication 2021-08-25 13:50:02 UTC

1

https://github.com/rstudio/htmltools
https://github.com/rstudio/htmltools/issues
https://orcid.org/0000-0002-4958-2844
https://orcid.org/0000-0001-9986-114X
https://orcid.org/0000-0002-1576-2126

2 R topics documented:

R topics documented:

as.tags . 3
browsable . 3
builder . 4
capturePlot . 6
copyDependencyToDir . 7
css . 8
defaultPngDevice . 9
findDependencies . 10
HTML . 10
htmlDependencies . 11
htmlDependency . 12
htmlEscape . 14
htmlPreserve . 14
htmlTemplate . 15
html_print . 16
include . 17
knitr_methods . 18
makeDependencyRelative . 18
parseCssColors . 19
plotTag . 20
print.shiny.tag . 21
renderDependencies . 22
renderDocument . 23
renderTags . 23
resolveDependencies . 24
save_html . 25
singleton . 25
singleton_tools . 26
subtractDependencies . 26
suppressDependencies . 27
tagAddRenderHook . 28
tagAppendAttributes . 29
tagAppendChild . 30
tagFunction . 31
tagList . 32
tagQuery . 33
urlEncodePath . 35
validateCssUnit . 35
withTags . 36

Index 38

as.tags 3

as.tags Convert a value to tags

Description

An S3 method for converting arbitrary values to a value that can be used as the child of a tag or
tagList. The default implementation simply calls as.character().

Usage

as.tags(x, ...)

Arguments

x Object to be converted.

... Any additional parameters.

browsable Make an HTML object browsable

Description

By default, HTML objects display their HTML markup at the console when printed. browsable
can be used to make specific objects render as HTML by default when printed at the console.

Usage

browsable(x, value = TRUE)

is.browsable(x)

Arguments

x The object to make browsable or not.

value Whether the object should be considered browsable.

Details

You can override the default browsability of an HTML object by explicitly passing browse = TRUE
(or FALSE) to the print function.

Value

browsable returns x with an extra attribute to indicate that the value is browsable.

is.browsable returns TRUE if the value is browsable, or FALSE if not.

4 builder

builder Create HTML tags

Description

Create an R object that represents an HTML tag. For convenience, common HTML tags (e.g.,
<div>) can be created by calling for their tag name directly (e.g., div()). To create less common
HTML5 (or SVG) tags (e.g., <article>), use the tags list collection (e.g., tags$article()). To
create other non HTML/SVG tags, use the lower-level tag() constructor.

Usage

tags

p(..., .noWS = NULL, .renderHook = NULL)

h1(..., .noWS = NULL, .renderHook = NULL)

h2(..., .noWS = NULL, .renderHook = NULL)

h3(..., .noWS = NULL, .renderHook = NULL)

h4(..., .noWS = NULL, .renderHook = NULL)

h5(..., .noWS = NULL, .renderHook = NULL)

h6(..., .noWS = NULL, .renderHook = NULL)

a(..., .noWS = NULL, .renderHook = NULL)

br(..., .noWS = NULL, .renderHook = NULL)

div(..., .noWS = NULL, .renderHook = NULL)

span(..., .noWS = NULL, .renderHook = NULL)

pre(..., .noWS = NULL, .renderHook = NULL)

code(..., .noWS = NULL, .renderHook = NULL)

img(..., .noWS = NULL, .renderHook = NULL)

strong(..., .noWS = NULL, .renderHook = NULL)

em(..., .noWS = NULL, .renderHook = NULL)

hr(..., .noWS = NULL, .renderHook = NULL)

builder 5

tag(`_tag_name`, varArgs, .noWS = NULL, .renderHook = NULL)

Arguments

... Tag attributes (named arguments) and children (unnamed arguments). A named
argument with an NA value is rendered as a boolean attributes (see example).
Children may include any combination of:

• Other tags objects
• HTML() strings
• htmlDependency()s
• Single-element atomic vectors
• list()s containing any combination of the above

.noWS Character vector used to omit some of the whitespace that would normally
be written around this tag. Valid options include before, after, outside,
after-begin, and before-end. Any number of these options can be specified.

.renderHook A function (or list of functions) to call when the tag is rendered. This function
should have at least one argument (the tag) and return anything that can be
converted into tags via as.tags(). Additional hooks may also be added to a
particular tag via tagAddRenderHook().

_tag_name A character string to use for the tag name.

varArgs List of tag attributes and children.

Value

A list() with a shiny.tag class that can be converted into an HTML string via as.character()
and saved to a file with save_html().

See Also

tagList(), withTags(), tagAppendAttributes(), tagQuery()

Examples

tags$html(
tags$head(

tags$title('My first page')
),
tags$body(
h1('My first heading'),
p('My first paragraph, with some ', strong('bold'), ' text.'),
div(

id = 'myDiv', class = 'simpleDiv',
'Here is a div with some attributes.'
)

)
)

6 capturePlot

html5 <audio> with boolean control attribute
https://www.w3.org/TR/html5/infrastructure.html#sec-boolean-attributes
tags$audio(

controls = NA,
tags$source(
src = "myfile.wav",
type = "audio/wav"

)
)

suppress the whitespace between tags
tags$span(

tags$strong("I'm strong", .noWS="outside")
)

capturePlot Capture a plot as a saved file

Description

Easily generates a .png file (or other graphics file) from a plotting expression.

Usage

capturePlot(
expr,
filename = tempfile(fileext = ".png"),
device = defaultPngDevice(),
width = 400,
height = 400,
res = 72,
...

)

Arguments

expr A plotting expression that generates a plot (or yields an object that generates a
plot when printed, like a ggplot2). We evaluate this expression after activating
the graphics device (device).

filename The output filename. By default, a temp file with .png extension will be used;
you should provide a filename with a different extension if you provide a non-
PNG graphics device function.

device A graphics device function; by default, this will be either grDevices::png(),
ragg::agg_png(), or Cairo::CairoPNG(), depending on your system and con-
figuration. See defaultPngDevice().

width, height, res, ...

Additional arguments to the device function.

copyDependencyToDir 7

See Also

plotTag() saves plots as a self-contained tag.

Examples

Default settings
res <- capturePlot(plot(cars))

View result
if (interactive()) browseURL(res)

Clean up
unlink(res)

Custom width/height
pngpath <- tempfile(fileext = ".png")
capturePlot(plot(pressure), pngpath, width = 800, height = 375)
if (interactive()) browseURL(pngpath)
unlink(pngpath)

Use a custom graphics device (e.g., SVG)
if (capabilities("cairo")) {

svgpath <- capturePlot(
plot(pressure),
tempfile(fileext = ".svg"),
grDevices::svg,
width = 8, height = 3.75

)
if (interactive()) browseURL(svgpath)
unlink(svgpath)

}

copyDependencyToDir Copy an HTML dependency to a directory

Description

Copies an HTML dependency to a subdirectory of the given directory. The subdirectory name will
be name-version (for example, "outputDir/jquery-1.11.0"). You may set options(htmltools.dir.version
= FALSE) to suppress the version number in the subdirectory name.

Usage

copyDependencyToDir(dependency, outputDir, mustWork = TRUE)

8 css

Arguments

dependency A single HTML dependency object.

outputDir The directory in which a subdirectory should be created for this dependency.

mustWork If TRUE and dependency does not point to a directory on disk (but rather a URL
location), an error is raised. If FALSE then non-disk dependencies are returned
without modification.

Details

In order for disk-based dependencies to work with static HTML files, it’s generally necessary to
copy them to either the directory of the referencing HTML file, or to a subdirectory of that directory.
This function makes it easier to perform that copy.

Value

The dependency with its src value updated to the new location’s absolute path.

See Also

makeDependencyRelative() can be used with the returned value to make the path relative to a
specific directory.

css CSS string helper

Description

Convenience function for building CSS style declarations (i.e. the string that goes into a style
attribute, or the parts that go inside curly braces in a full stylesheet).

Usage

css(..., collapse_ = "")

Arguments

... Named style properties, where the name is the property name and the argument
is the property value. See Details for conversion rules.

collapse_ (Note that the parameter name has a trailing underscore character.) Character
to use to collapse properties into a single string; likely "" (the default) for style
attributes, and either "\n" or NULL for style blocks.

defaultPngDevice 9

Details

CSS uses '-' (minus) as a separator character in property names, but this is an inconvenient char-
acter to use in an R function argument name. Instead, you can use '.' (period) and/or '_' (under-
score) as separator characters. For example, css(font.size = "12px") yields "font-size:12px;".

To mark a property as !important, add a '!' character to the end of the property name. (Since
'!' is not normally a character that can be used in an identifier in R, you’ll need to put the name in
double quotes or backticks.)

Argument values will be converted to strings using paste(collapse = " "). Any property with a
value of NULL or "" (after paste) will be dropped.

Examples

padding <- 6
css(

font.family = "Helvetica, sans-serif",
margin = paste0(c(10, 20, 10, 20), "px"),
"padding!" = if (!is.null(padding)) padding

)

defaultPngDevice Determine the best PNG device for your system

Description

Returns the best PNG-based graphics device for your system, in the opinion of the htmltools
maintainers. On Mac, grDevices::png() is used; on all other platforms, either ragg::agg_png()
or Cairo::CairoPNG() are used if their packages are installed. Otherwise, grDevices::png() is
used.

Usage

defaultPngDevice()

Value

A graphics device function.

10 HTML

findDependencies Collect attached dependencies from HTML tag object

Description

Walks a hierarchy of tags looking for attached dependencies.

Usage

findDependencies(tags, tagify = TRUE)

Arguments

tags A tag-like object to search for dependencies.

tagify Whether to tagify the input before searching for dependencies.

Value

A list of htmlDependency() objects.

HTML Mark Characters as HTML

Description

Marks the given text as HTML, which means the tag functions will know not to perform HTML
escaping on it.

Usage

HTML(text, ..., .noWS = NULL)

Arguments

text The text value to mark with HTML

... Any additional values to be converted to character and concatenated together

.noWS Character vector used to omit some of the whitespace that would normally be
written around this HTML. Valid options include before, after, and outside
(equivalent to before and end).

Value

The input text, but marked as HTML.

htmlDependencies 11

Examples

el <- div(HTML("I like <u>turtles</u>"))
cat(as.character(el))

htmlDependencies HTML dependency metadata

Description

Gets or sets the HTML dependencies associated with an object (such as a tag).

Usage

htmlDependencies(x)

htmlDependencies(x) <- value

attachDependencies(x, value, append = FALSE)

Arguments

x An object which has (or should have) HTML dependencies.

value An HTML dependency, or a list of HTML dependencies.

append If FALSE (the default), replace any existing dependencies. If TRUE, add the
new dependencies to the existing ones.

Details

attachDependencies provides an alternate syntax for setting dependencies. It is similar to local({htmlDependencies(x)
<-value; x}), except that if there are any existing dependencies, attachDependencies will add
to them, instead of replacing them.

As of htmltools 0.3.4, HTML dependencies can be attached without using attachDependencies.
Instead, they can be added inline, like a child object of a tag or tagList().

Examples

Create a JavaScript dependency
dep <- htmlDependency("jqueryui", "1.11.4", c(href="shared/jqueryui"),

script = "jquery-ui.min.js")

A CSS dependency
htmlDependency(

"font-awesome", "4.5.0", c(href="shared/font-awesome"),
stylesheet = "css/font-awesome.min.css"

)

12 htmlDependency

A few different ways to add the dependency to tag objects:
Inline as a child of the div()
div("Code here", dep)
Inline in a tagList
tagList(div("Code here"), dep)
With attachDependencies
attachDependencies(div("Code here"), dep)

htmlDependency Define an HTML dependency

Description

Define an HTML dependency (i.e. CSS and/or JavaScript bundled in a directory). HTML depen-
dencies make it possible to use libraries like jQuery, Bootstrap, and d3 in a more composable and
portable way than simply using script, link, and style tags.

Usage

htmlDependency(
name,
version,
src,
meta = NULL,
script = NULL,
stylesheet = NULL,
head = NULL,
attachment = NULL,
package = NULL,
all_files = TRUE

)

Arguments

name Library name

version Library version

src Unnamed single-element character vector indicating the full path of the library
directory. Alternatively, a named character string with one or more elements,
indicating different places to find the library; see Details.

meta Named list of meta tags to insert into document head

script Script(s) to include within the document head (should be specified relative to the
src parameter).

stylesheet Stylesheet(s) to include within the document (should be specified relative to the
src parameter).

head Arbitrary lines of HTML to insert into the document head

htmlDependency 13

attachment Attachment(s) to include within the document head. See Details.

package An R package name to indicate where to find the src directory when src is a
relative path (see resolveDependencies()).

all_files Whether all files under the src directory are dependency files. If FALSE, only
the files specified in script, stylesheet, and attachment are treated as de-
pendency files.

Details

Each dependency can be located on the filesystem, at a relative or absolute URL, or both. The loca-
tion types are indicated using the names of the src character vector: file for filesystem directory,
href for URL. For example, a dependency that was both on disk and at a URL might use src =
c(file=filepath,href=url).

script can be given as one of the following:

• a character vector specifying various scripts to include relative to the value of src. Each is
expanded into its own <script> tag

• A named list with any of the following fields:

– src,
– integrity, &
– crossorigin,
– any other valid <script> attributes.

allowing the use of SRI to ensure the integrity of packages downloaded from remote servers.
Eg: script = list(src = "min.js",integrity = "hash")

• An unamed list, containing a combination of named list with the fields mentioned previously,
and strings. Eg:

– script = list(list(src = "min.js"),"util.js",list(src = "log.js"))

– script = "pkg.js" is equivalent to
– script = list(src = "pkg.js").

attachment can be used to make the indicated files available to the JavaScript on the page via URL.
For each element of attachment, an element <link id="DEPNAME-ATTACHINDEX-attachment" rel="attachment" href="...">
is inserted, where DEPNAME is name. The value of ATTACHINDEX depends on whether attachment is
named or not; if so, then it’s the name of the element, and if not, it’s the 1-based index of the element.
JavaScript can retrieve the URL using something like document.getElementById(depname + "-
" + index + "-attachment").href. Note that depending on the rendering context, the runtime value of
the href may be an absolute, relative, or data URI.

htmlDependency should not be called from the top-level of a package namespace with absolute
paths (or with paths generated by system.file()) and have the result stored in a variable. This is
because, when a binary package is built, R will run htmlDependency and store the path from the
building machine’s in the package. This path is likely to differ from the correct path on a machine
that downloads and installs the binary package. If there are any absolute paths, instead of calling
htmlDependency at build-time, it should be called at run-time. This can be done by wrapping the
htmlDependency call in a function.

14 htmlPreserve

Value

An object that can be included in a list of dependencies passed to attachDependencies().

See Also

Use attachDependencies() to associate a list of dependencies with the HTML it belongs with.

htmlEscape Escape HTML entities

Description

Escape HTML entities contained in a character vector so that it can be safely included as text or an
attribute value within an HTML document

Usage

htmlEscape(text, attribute = FALSE)

Arguments

text Text to escape

attribute Escape for use as an attribute value

Value

Character vector with escaped text.

htmlPreserve Preserve HTML regions

Description

Use "magic" HTML comments to protect regions of HTML from being modified by text processing
tools.

Usage

htmlPreserve(x)

extractPreserveChunks(strval)

restorePreserveChunks(strval, chunks)

htmlTemplate 15

Arguments

x A character vector of HTML to be preserved.

strval Input string from which to extract/restore chunks.

chunks The chunks element of the return value of extractPreserveChunks.

Details

Text processing tools like markdown and pandoc are designed to turn human-friendly markup into
common output formats like HTML. This works well for most prose, but components that generate
their own HTML may break if their markup is interpreted as the input language. The htmlPreserve
function is used to mark regions of an input document as containing pure HTML that must not be
modified. This is achieved by substituting each such region with a benign but unique string before
processing, and undoing those substitutions after processing.

Value

htmlPreserve returns a single-element character vector with "magic" HTML comments surround-
ing the original text (unless the original text was empty, in which case an empty string is returned).

extractPreserveChunks returns a list with two named elements: value is the string with the
regions replaced, and chunks is a named character vector where the names are the IDs and the
values are the regions that were extracted.

restorePreserveChunks returns a character vector with the chunk IDs replaced with their original
values.

Examples

htmlPreserve will prevent "<script>alert(10*2*3);</script>"
from getting an tag inserted in the middle
markup <- paste(sep = "\n",

"This is *emphasized* text in markdown.",
htmlPreserve("<script>alert(10*2*3);</script>"),
"Here is some more *emphasized text*."

)
extracted <- extractPreserveChunks(markup)
markup <- extracted$value
Just think of this next line as Markdown processing
output <- gsub("*(.*?)*", "\\1", markup)
output <- restorePreserveChunks(output, extracted$chunks)
output

htmlTemplate Process an HTML template

16 html_print

Description

Process an HTML template and return a tagList object. If the template is a complete HTML doc-
ument, then the returned object will also have class html_document, and can be passed to the
function renderDocument() to get the final HTML text.

Usage

htmlTemplate(filename = NULL, ..., text_ = NULL, document_ = "auto")

Arguments

filename Path to an HTML template file. Incompatible with text_.
... Variable values to use when processing the template.
text_ A string to use as the template, instead of a file. Incompatible with filename.
document_ Is this template a complete HTML document (TRUE), or a fragment of HTML

that is to be inserted into an HTML document (FALSE)? With "auto" (the de-
fault), auto-detect by searching for the string "<HTML>" within the template.

See Also

renderDocument()

html_print Implementation of the print method for HTML

Description

Convenience method that provides an implementation of the base::print() method for HTML
content.

Usage

html_print(
html,
background = "white",
viewer = getOption("viewer", utils::browseURL)

)

Arguments

html HTML content to print
background Background color for web page
viewer A function to be called with the URL or path to the generated HTML page. Can

be NULL, in which case no viewer will be invoked.

Value

Invisibly returns the URL or path of the generated HTML page.

include 17

include Include Content From a File

Description

Load HTML, text, or rendered Markdown from a file and turn into HTML.

Usage

includeHTML(path)

includeText(path)

includeMarkdown(path)

includeCSS(path, ...)

includeScript(path, ...)

Arguments

path The path of the file to be included. It is highly recommended to use a relative
path (the base path being the Shiny application directory), not an absolute path.

... Any additional attributes to be applied to the generated tag.

Details

These functions provide a convenient way to include an extensive amount of HTML, textual, Mark-
down, CSS, or JavaScript content, rather than using a large literal R string.

Note

includeText escapes its contents, but does no other processing. This means that hard breaks and
multiple spaces will be rendered as they usually are in HTML: as a single space character. If you
are looking for preformatted text, wrap the call with pre(), or consider using includeMarkdown
instead.

The includeMarkdown function requires the markdown package.

18 makeDependencyRelative

knitr_methods Knitr S3 methods

Description

These S3 methods are necessary to allow HTML tags to print themselves in knitr/rmarkdown doc-
uments.

Usage

knit_print.shiny.tag(x, ...)

knit_print.html(x, ...)

knit_print.shiny.tag.list(x, ...)

Arguments

x Object to knit_print

... Additional knit_print arguments

makeDependencyRelative

Make an absolute dependency relative

Description

Change a dependency’s absolute path to be relative to one of its parent directories.

Usage

makeDependencyRelative(dependency, basepath, mustWork = TRUE)

Arguments

dependency A single HTML dependency with an absolute path.

basepath The path to the directory that dependency should be made relative to.

mustWork If TRUE and dependency does not point to a directory on disk (but rather a URL
location), an error is raised. If FALSE then non-disk dependencies are returned
without modification.

Value

The dependency with its src value updated to the new location’s relative path.

If baspath did not appear to be a parent directory of the dependency’s directory, an error is raised
(regardless of the value of mustWork).

parseCssColors 19

See Also

copyDependencyToDir()

parseCssColors Parse CSS color strings

Description

Parses/normalizes CSS color strings, and returns them as strings in "#RRGGBB" and/or "#RRGGBBAA"
format. Understands hex colors in 3, 4, 6, and 8 digit forms, rgb()/rgba(), hsl()/hsla(), and
color keywords.

Usage

parseCssColors(str, mustWork = TRUE)

Arguments

str CSS color strings

mustWork If true, invalid color strings will cause an error; if false, then the result will
contain NA for invalid colors.

Details

Note that parseCssColors may return colors in #RRGGBBAA format. Such values are not under-
stood by Internet Explorer, and must be converted to rgba(red,green,blue,alpha) format to be
safe for the web.

Value

A vector of strings in #RRGGBB or #RRGGBBAA format (the latter is only used for colors whose
alpha values are less than FF), or NA for invalid colors when mustWork is false. Such strings are
suitable for use in plots, or parsing with col2rgb() (be sure to pass alpha = TRUE to prevent the
alpha channel from being discarded).

Examples

parseCssColors(c(
"#0d6efd",
"#DC35457F",
"rgb(32,201,151)",
" rgba(23 , 162 , 184 , 0.5) ",
"hsl(261, 51%, 51%)",
"cornflowerblue"

))

20 plotTag

plotTag Capture a plot as a self-contained tag

Description

Capture a plot as a self-contained tag

Usage

plotTag(
expr,
alt,
device = defaultPngDevice(),
width = 400,
height = 400,
pixelratio = 2,
mimeType = "image/png",
deviceArgs = list(),
attribs = list(),
suppressSize = c("none", "x", "y", "xy")

)

Arguments

expr A plotting expression that generates a plot (or yields an object that generates a
plot when printed, like a ggplot2).

alt A single-element character vector that contains a text description of the image.
This is used by accessibility tools, such as screen readers for vision impaired
users.

device A graphics device function; by default, this will be either grDevices::png(),
ragg::agg_png(), or Cairo::CairoPNG(), depending on your system and con-
figuration. See defaultPngDevice().

width, height The width/height that the generated tag should be displayed at, in logical (browser)
pixels.

pixelratio Indicates the ratio between physical and logical units of length. For PNGs that
may be displayed on high-DPI screens, use 2; for graphics devices that express
width/height in inches (like grDevices::svg(), try 1/72 or 1/96.

mimeType The MIME type associated with the device. Examples are image/png, image/tiff,
image/svg+xml.

deviceArgs A list of additional arguments that should be included when the device function
is invoked.

attribs A list of additional attributes that should be included on the generated
(e.g. id, class).

print.shiny.tag 21

suppressSize By default, plotTag will include a style attribute with width and height prop-
erties specified in pixels. If you’d rather specify the image size using other meth-
ods (like responsive CSS rules) you can use this argument to suppress width
("x"), height ("y"), or both ("xy") properties.

Value

A browsable() HTML tag object. Print it at the console to preview, or call as.character()
on it to view the HTML source.

See Also

capturePlot() saves plots as an image file.

Examples

img <- plotTag({
plot(cars)

}, "A plot of the 'cars' dataset", width = 375, height = 275)

if (interactive()) img

if (interactive() && capabilities("cairo")) {
plotTag(
plot(pressure), "A plot of the 'pressure' dataset",
device = grDevices::svg, width = 375, height = 275, pixelratio = 1/72,
mimeType = "image/svg+xml"

)
}

print.shiny.tag Print method for HTML/tags

Description

S3 method for printing HTML that prints markup or renders HTML in a web browser.

Usage

S3 method for class 'shiny.tag'
print(x, browse = is.browsable(x), ...)

S3 method for class 'html'
print(x, ..., browse = is.browsable(x))

22 renderDependencies

Arguments

x The value to print.

browse If TRUE, the HTML will be rendered and displayed in a browser (or possibly
another HTML viewer supplied by the environment via the viewer option). If
FALSE then the HTML object’s markup will be rendered at the console.

... Additional arguments passed to print.

renderDependencies Create HTML for dependencies

Description

Create the appropriate HTML markup for including dependencies in an HTML document.

Usage

renderDependencies(
dependencies,
srcType = c("href", "file"),
encodeFunc = urlEncodePath,
hrefFilter = identity

)

Arguments

dependencies A list of htmlDependency objects.

srcType The type of src paths to use; valid values are file or href.

encodeFunc The function to use to encode the path part of a URL. The default should gener-
ally be used.

hrefFilter A function used to transform the final, encoded URLs of script and stylesheet
files. The default should generally be used.

Value

An HTML() object suitable for inclusion in the head of an HTML document.

renderDocument 23

renderDocument Render an html_document object

Description

This function renders html_document objects, and returns a string with the final HTML content. It
calls the renderTags() function to convert any shiny.tag objects to HTML. It also finds any any
web dependencies (created by htmlDependency()) that are attached to the tags, and inserts those.
To do the insertion, this function finds the string "<!--HEAD_CONTENT -->" in the document, and
replaces it with the web dependencies.

Usage

renderDocument(x, deps = NULL, processDep = identity)

Arguments

x An object of class html_document, typically generated by the htmlTemplate()
function.

deps Any extra web dependencies to add to the html document. This can be an object
created by htmlDependency(), or a list of such objects. These dependencies
will be added first, before other dependencies.

processDep A function that takes a "raw" html_dependency object and does further process-
ing on it. For example, when renderDocument is called from Shiny, the function
shiny::createWebDependency() is used; it modifies the href and tells Shiny
to serve a particular path on the filesystem.

Value

An HTML() string, with UTF-8 encoding.

renderTags Render tags into HTML

Description

Renders tags (and objects that can be converted into tags using as.tags()) into HTML. (Generally
intended to be called from web framework libraries, not directly by most users–see print.html()
for higher level rendering.)

Usage

renderTags(x, singletons = character(0), indent = 0)

doRenderTags(x, indent = 0)

24 resolveDependencies

Arguments

x Tag object(s) to render

singletons A list of singleton signatures to consider already rendered; any matching single-
tons will be dropped instead of rendered. (This is useful (only?) for incremental
rendering.)

indent Initial indent level, or FALSE if no indentation should be used.

Details

doRenderTags is intended for very low-level use; it ignores render hooks, singletons, head, and
dependency handling, and simply renders the given tag objects as HTML. Please use renderTags()
if x has not already handled its dependencies and render hooks.

Value

renderTags returns a list with the following variables:

• head: An HTML() string that should be included in <head>.

• singletons: Character vector of singleton signatures that are known after rendering.

• dependencies: A list of resolved htmlDependency() objects.

• html: An HTML() string that represents the main HTML that was rendered.

doRenderTags returns a simple HTML() string.

resolveDependencies Resolve a list of dependencies

Description

Given a list of dependencies, removes any redundant dependencies (based on name equality). If
multiple versions of a dependency are found, the copy with the latest version number is used.

Usage

resolveDependencies(dependencies, resolvePackageDir = TRUE)

Arguments

dependencies A list of htmlDependency() objects.
resolvePackageDir

Whether to resolve the relative path to an absolute path via system.file()
when the package attribute is present in a dependency object.

Value

dependencies A list of htmlDependency() objects with redundancies removed.

save_html 25

save_html Save an HTML object to a file

Description

Save the specified HTML object to a file, copying all of it’s dependencies to the directory specified
via libdir.

Usage

save_html(html, file, background = "white", libdir = "lib", lang = "en")

Arguments

html HTML content to print

file File path or connection. If a file path containing a sub-directory, the sub-directory
must already exist.

background Background color for web page

libdir Directory to copy dependencies to

lang Value of the <html> lang attribute

singleton Include content only once

Description

Use singleton to wrap contents (tag, text, HTML, or lists) that should be included in the generated
document only once, yet may appear in the document-generating code more than once. Only the
first appearance of the content (in document order) will be used.

Usage

singleton(x, value = TRUE)

is.singleton(x)

Arguments

x A tag(), text, HTML(), or list.

value Whether the object should be a singleton.

26 subtractDependencies

singleton_tools Singleton manipulation functions

Description

Functions for manipulating singleton() objects in tag hierarchies. Intended for framework au-
thors.

Usage

surroundSingletons(ui)

takeSingletons(ui, singletons = character(0), desingleton = TRUE)

Arguments

ui Tag object or lists of tag objects. See builder topic.

singletons Character vector of singleton signatures that have already been encountered (i.e.
returned from previous calls to takeSingletons).

desingleton Logical value indicating whether singletons that are encountered should have
the singleton attribute removed.

Value

surroundSingletons preprocesses a tag object by changing any singleton X into <!--SHINY.SINGLETON[sig]-
->X'<!--/SHINY.SINGLETON[sig]--> where sig is the sha1 of X, and X’ is X minus the singleton
attribute.

takeSingletons returns a list with the elements ui (the processed tag objects with any duplicate
singleton objects removed) and singletons (the list of known singleton signatures).

subtractDependencies Subtract dependencies

Description

Remove a set of dependencies from another list of dependencies. The set of dependencies to remove
can be expressed as either a character vector or a list; if the latter, a warning can be emitted if the
version of the dependency being removed is later than the version of the dependency object that is
causing the removal.

Usage

subtractDependencies(dependencies, remove, warnOnConflict = TRUE)

suppressDependencies 27

Arguments

dependencies A list of htmlDependency() objects from which dependencies should be re-
moved.

remove A list of htmlDependency() objects indicating which dependencies should be
removed, or a character vector indicating dependency names.

warnOnConflict If TRUE, a warning is emitted for each dependency that is removed if the corre-
sponding dependency in remove has a lower version number. Has no effect if
remove is provided as a character vector.

Value

A list of htmlDependency() objects that don’t intersect with remove.

suppressDependencies Suppress web dependencies

Description

This suppresses one or more web dependencies. It is meant to be used when a dependency (like a
JavaScript or CSS file) is declared in raw HTML, in an HTML template.

Usage

suppressDependencies(...)

Arguments

... Names of the dependencies to suppress. For example, "jquery" or "bootstrap".

See Also

htmlTemplate() for more information about using HTML templates.

htmlDependency()

28 tagAddRenderHook

tagAddRenderHook Modify a tag prior to rendering

Description

Adds a hook to call on a tag() object when it is is rendered as HTML (with, for example, print(),
renderTags(), as.tags(), etc).

Usage

tagAddRenderHook(tag, func, replace = FALSE)

Arguments

tag A tag() object.

func A function (hook) to call when the tag is rendered. This function should have at
least one argument (the tag) and return anything that can be converted into tags
via as.tags().

replace If TRUE, the previous hooks will be removed. If FALSE, func is appended to the
previous hooks.

Details

The primary motivation for tagAddRenderHook() is to create tags that can change their attributes
(e.g., change CSS classes) depending upon the context in which they’re rendered (e.g., use one set
of CSS classes in one a page layout, but a different set in another page layout). In this situation,
tagAddRenderHook() is preferable to tagFunction() since the latter is more a "black box" in the
sense that you don’t know anything about the tag structure until it’s rendered.

Value

A tag() object with a .renderHooks field containing a list of functions (e.g. func). When the
return value is rendered (such as with as.tags()), these functions will be called just prior to writing
the HTML.

See Also

tagFunction()

Examples

Have a place holder div and return a span instead
obj <- div("example", .renderHook = function(x) {

x$name <- "span"
x

})
obj$name # "div"
print(obj) # Prints as a `span`

tagAppendAttributes 29

Add a class to the tag
Should print a `span` with class `"extra"`
spanExtra <- tagAddRenderHook(obj, function(x) {

tagAppendAttributes(x, class = "extra")
})
spanExtra

Replace the previous render method
Should print a `div` with class `"extra"`
divExtra <- tagAddRenderHook(obj, replace = TRUE, function(x) {

tagAppendAttributes(x, class = "extra")
})
divExtra

Add more child tags
spanExtended <- tagAddRenderHook(obj, function(x) {

tagAppendChildren(x, " ", tags$strong("bold text"))
})
spanExtended

Add a new html dependency
newDep <- tagAddRenderHook(obj, function(x) {

fa <- htmlDependency(
"font-awesome", "4.5.0", c(href="shared/font-awesome"),
stylesheet = "css/font-awesome.min.css")

attachDependencies(x, fa, append = TRUE)
})
Also add a jqueryui html dependency
htmlDependencies(newDep) <- htmlDependency(

"jqueryui", "1.11.4", c(href="shared/jqueryui"),
script = "jquery-ui.min.js")

At render time, both dependencies will be found
renderTags(newDep)$dependencies

Ignore the original tag and return something completely new.
newObj <- tagAddRenderHook(obj, function(x) {

tags$p("Something else")
})
newObj

tagAppendAttributes Append tag attributes

Description

Append (tagAppendAttributes()), check existence (tagHasAttribute()), and obtain the value
(tagGetAttribute()) of HTML attribute(s).

30 tagAppendChild

Usage

tagAppendAttributes(tag, ..., .cssSelector = NULL)

tagHasAttribute(tag, attr)

tagGetAttribute(tag, attr)

Arguments

tag a tag object.
... a collection of attributes.
.cssSelector A character string containing a CSS selector for targeting particular (inner) tags

of interest. At the moment, only a combination of type (e.g, div), class (e.g.,
.my-class), id (e.g., #myID), and universal (*) selectors within a given simple
selector is supported. Note, if .cssSelector is used, the returned tags will have
their $children fields flattened to a single list() via tagQuery().

attr The name of an attribute.

See Also

tagAppendChildren(), tagQuery()

Examples

html <- div(a())
tagAppendAttributes(html, class = "foo")
tagAppendAttributes(html, .cssSelector = "a", class = "bar")

tagHasAttribute(div(foo = "bar"), "foo")
tagGetAttribute(div(foo = "bar"), "foo")

tagAppendChild Modify tag contents

Description

Modify the contents (aka children) of a tag object.

Usage

tagAppendChild(tag, child, .cssSelector = NULL)

tagAppendChildren(tag, ..., .cssSelector = NULL, list = NULL)

tagSetChildren(tag, ..., .cssSelector = NULL, list = NULL)

tagInsertChildren(tag, after, ..., .cssSelector = NULL, list = NULL)

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors
https://www.w3.org/TR/CSS22/selector.html#type-selectors
https://www.w3.org/TR/CSS22/selector.html#class-html
https://www.w3.org/TR/CSS22/selector.html#id-selectors
https://www.w3.org/TR/CSS22/selector.html#universal-selector
https://www.w3.org/TR/CSS22/selector.html#selector-syntax
https://www.w3.org/TR/CSS22/selector.html#selector-syntax

tagFunction 31

Arguments

tag a tag object.

child A child element to append to a parent tag.

.cssSelector A character string containing a CSS selector for targeting particular (inner) tags
of interest. At the moment, only a combination of type (e.g, div), class (e.g.,
.my-class), id (e.g., #myID), and universal (*) selectors within a given simple
selector is supported. Note, if .cssSelector is used, the returned tags will have
their $children fields flattened to a single list() via tagQuery().

... a collection of child elements.

list Deprecated. Use !!! instead to splice into

after an integer value (i.e., subscript) referring to the child position to append after.

See Also

tagAppendAttributes(), tagQuery()

Examples

html <- div(a(), h1())
tagAppendChild(html, span())
tagAppendChild(html, .cssSelector = "a", span())

tagAppendChildren(html, span(), p())
tagAppendChildren(html, .cssSelector = "a", span(), p())

tagSetChildren(html, span(), p())

tagInsertChildren(html, after = 1, span(), p())

tagFunction Tag function

Description

Create ’lazily’ rendered HTML tags (and/or htmlDependencies()).

Usage

tagFunction(func)

Arguments

func a function with no arguments that returns HTML tags and/or dependencies.

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors
https://www.w3.org/TR/CSS22/selector.html#type-selectors
https://www.w3.org/TR/CSS22/selector.html#class-html
https://www.w3.org/TR/CSS22/selector.html#id-selectors
https://www.w3.org/TR/CSS22/selector.html#universal-selector
https://www.w3.org/TR/CSS22/selector.html#selector-syntax
https://www.w3.org/TR/CSS22/selector.html#selector-syntax

32 tagList

Details

When possible, use tagAddRenderHook() to provide both a tag structure and utilize a render func-
tion.

See Also

tagAddRenderHook()

Examples

myDivDep <- tagFunction(function() {
if (isTRUE(getOption("useDep", TRUE))) {
htmlDependency(

name = "lazy-dependency",
version = "1.0", src = ""

)
}

})
myDiv <- attachDependencies(div(), myDivDep)
renderTags(myDiv)
withr::with_options(list(useDep = FALSE), renderTags(myDiv))

tagList Create a list of tags

Description

Create a list() of tags with methods for print(), as.character(), etc.

Usage

tagList(...)

Arguments

... A collection of tags.

Examples

tagList(
h1("Title"),
h2("Header text"),
p("Text here")

)

tagQuery 33

tagQuery Query and modify HTML tags

Description

[Experimental]

tagQuery() provides a jQuery inspired interface for querying and modifying tag() (and tagList())
objects.

Usage

tagQuery(tags)

Arguments

tags A tag(), tagList(), or list() of tags.

Value

A class with methods that are described below. This class can’t be used directly inside other tag()
or a renderTags() context, but underlying HTML tags may be extracted via $allTags() or $se-
lectedTags(). Note: The returned tags will have their $children fields flattened to a single list(),
which may not be the same shape that was provided to tagQuery().

Vignette

To get started with using tagQuery(), visit https://rstudio.github.io/htmltools/articles/
tagQuery.html.

Methods

Unless otherwise stated, tagQuery() methods accept a character vector as input.

Query methods:
Query methods identify particular subsets of the root tag using CSS selectors (or R functions).

Children:
• $find(cssSelector): Get the descendants of each selected tag, filtered by a cssSelector.
• $children(cssSelector = NULL): Get the direct children of each selected tag, optionally

filtered by a cssSelector.

Siblings:
• siblings(cssSelector = NULL): Get the siblings of each selected tag, optionally filtered

by a cssSelector.

Parents:
• $parent(cssSelector = NULL): Get the parent of each selected tag, optionally filtered by a
cssSelector.

https://jquery.com/
https://rstudio.github.io/htmltools/articles/tagQuery.html
https://rstudio.github.io/htmltools/articles/tagQuery.html

34 tagQuery

• $parents(cssSelector = NULL): Get the ancestors of each selected tag, optionally filtered by
a cssSelector.

• $closest(cssSelector = NULL): For each selected tag, get the closest ancestor tag (includ-
ing itself) satisfying a cssSelector. If cssSelector = NULL, it is equivalent to calling
$selectedTags().

Custom filter:
• $filter(fn): Filter the selected tags to those for which fn(x,i) returns TRUE. In addition to

an R function with two arguments (the selected tag x and the index i), fn may also be a
valid CSS selector.

Length:
• $length(): Number of tags that have been selected.

Reset:
• $resetSelected(): Reset selected tags to the $root() tag. Useful in combination with $re-

placeWith() since it empties the selection.

Modify methods:
Unlike query methods, modify methods modify the tagQuery() object.

Attributes:
• $addClass(class): Adds class(es) to each selected tag.
• $removeClass(class): Removes class(es) to each selected tag.
• $toggleClass(class): Adds class(es) that don’t already exist and removes class(es) that do

already exist (for each selected tag).
• $hasClass(class): Does each selected tag have all the provided class(es)?
• $addAttrs(...): Add a set of attributes to each selected tag.
• $removeAttrs(attrs): Remove a set of attributes from each selected tag.
• $hasAttrs(attr): Do each selected tags have all of the attributes?

Children:
• $append(...): For each selected tag, insert ... after any existing children.
• $prepend(...): For each selected tag, insert ... before any existing children.

Siblings:
• $after(...): Add all ... objects as siblings after each of the selected tags.
• $before(...): Add all ... objects as siblings before each of the selected tags.

Custom:
• $each(fn): Modify each selected tag with a function fn. fn should accept two arguments:

the first is the selected tag and second is the selected tags position index. Since the selected
tag is a reference, any modifications to it will also modify the tagQuery() object.

Replace methods:
• $replaceWith(...): Replace all selected tags with ... in the root tag and clear the selection.
• $remove(...): Remove all selected tags from the root tag and clear the current selection.
• $empty(): Remove any children of each selected tag. Use this method before calling $ap-

pend(...) to replace the children of each selected tag, with other content.

Extract HTML tags:
• $allTags(): Return the (possibly modified) root tags.
• $selectedTags(): Return a tagList() of the currently selected tags.

urlEncodePath 35

Examples

tagQ <- tagQuery(div(a()))
tagQ$find("a")$addClass("foo")
tagQ

To learn more, visit https://rstudio.github.io/htmltools/articles/tagQuery.html

urlEncodePath Encode a URL path

Description

Encode characters in a URL path. This is the same as utils::URLencode() with reserved = TRUE
except that / is preserved.

Usage

urlEncodePath(x)

Arguments

x A character vector.

validateCssUnit Validate proper CSS formatting of a unit

Description

Checks that the argument is valid for use as a CSS unit of length.

Usage

validateCssUnit(x)

Arguments

x The unit to validate. Will be treated as a number of pixels if a unit is not speci-
fied.

36 withTags

Details

NULL and NA are returned unchanged.

Single element numeric vectors are returned as a character vector with the number plus a suffix of
"px".

Single element character vectors must be "auto", "fit-content" or "inherit", a number, or a
length calculated by the "calc" CSS function. If the number has a suffix, it must be valid: px, \%,
ch, em, rem, pt, in, cm, mm, ex, pc, vh, vw, vmin, or vmax. If the number has no suffix, the suffix
"px" is appended.

Any other value will cause an error to be thrown.

Value

A properly formatted CSS unit of length, if possible. Otherwise, will throw an error.

Examples

validateCssUnit("10%")
validateCssUnit(400) #treated as '400px'

withTags Evaluate an expression using tags

Description

This function makes it simpler to write HTML-generating code. Instead of needing to specify tags
each time a tag function is used, as in tags$div() and tags$p(), code inside withTags is evaluated
with tags searched first, so you can simply use div() and p().

Usage

withTags(code, .noWS = NULL)

Arguments

code A set of tags.

.noWS Default whitespace behavior for all tags within this call to withTags(). Setting
.noWS on an individual tag fuction inside withTags() will override the default.
See tag() for complete options.

Details

If your code uses an object which happens to have the same name as an HTML tag function, such
as source() or summary(), it will call the tag function. To call the intended (non-tags function),
specify the namespace, as in base::source() or base::summary().

withTags 37

Examples

Using tags$ each time
tags$div(class = "myclass",

tags$h3("header"),
tags$p("text")

)

Equivalent to above, but using withTags
withTags(

div(class = "myclass",
h3("header"),
p("text")

)
)

Setting .noWS for all tags in withTags()
withTags(

div(
class = "myclass",
h3("header"),
p("One", strong(span("two")), "three")

),
.noWS = c("outside", "inside")

)

Index

a (builder), 4
as.character(), 3, 21, 32
as.tags, 3
as.tags(), 5, 23, 28
attachDependencies (htmlDependencies),

11
attachDependencies(), 14

base::print(), 16
br (builder), 4
browsable, 3
browsable(), 21
builder, 4, 26

Cairo::CairoPNG(), 6, 9, 20
capturePlot, 6
capturePlot(), 21
code (builder), 4
col2rgb(), 19
copyDependencyToDir, 7
copyDependencyToDir(), 19
css, 8

defaultPngDevice, 9
defaultPngDevice(), 6, 20
div (builder), 4
doRenderTags (renderTags), 23

em (builder), 4
extractPreserveChunks (htmlPreserve), 14

findDependencies, 10

grDevices::png(), 6, 9, 20
grDevices::svg(), 20

h1 (builder), 4
h2 (builder), 4
h3 (builder), 4
h4 (builder), 4
h5 (builder), 4

h6 (builder), 4
hr (builder), 4
HTML, 10
HTML(), 5, 22–25
html_print, 16
htmlDependencies, 11
htmlDependencies(), 31
htmlDependencies<- (htmlDependencies),

11
htmlDependency, 12
htmlDependency(), 5, 10, 23, 24, 27
htmlEscape, 14
htmlPreserve, 14
htmlTemplate, 15
htmlTemplate(), 23, 27

img (builder), 4
include, 17
includeCSS (include), 17
includeHTML (include), 17
includeMarkdown (include), 17
includeScript (include), 17
includeText (include), 17
is.browsable (browsable), 3
is.singleton (singleton), 25

knit_print.html (knitr_methods), 18
knit_print.shiny.tag (knitr_methods), 18
knitr_methods, 18

list(), 33

makeDependencyRelative, 18
makeDependencyRelative(), 8

p (builder), 4
parseCssColors, 19
plotTag, 20
plotTag(), 7
pre (builder), 4
pre(), 17

38

INDEX 39

print(), 28, 32
print.html (print.shiny.tag), 21
print.html(), 23
print.shiny.tag, 21

ragg::agg_png(), 6, 9, 20
renderDependencies, 22
renderDocument, 23
renderDocument(), 16
renderTags, 23
renderTags(), 23, 28, 33
resolved, 24
resolveDependencies, 24
resolveDependencies(), 13
restorePreserveChunks (htmlPreserve), 14

save_html, 25
shiny::createWebDependency(), 23
singleton, 24, 25
singleton(), 26
singleton_tools, 26
span (builder), 4
strong (builder), 4
subtractDependencies, 26
suppressDependencies, 27
surroundSingletons (singleton_tools), 26
system.file(), 24

tag, 10, 30–32
tag (builder), 4
tag(), 25, 28, 33, 36
tagAddRenderHook, 28
tagAddRenderHook(), 5, 28, 32
tagAppendAttributes, 29
tagAppendAttributes(), 5, 31
tagAppendChild, 30
tagAppendChildren (tagAppendChild), 30
tagAppendChildren(), 30
tagFunction, 31
tagFunction(), 28
tagGetAttribute (tagAppendAttributes),

29
tagHasAttribute (tagAppendAttributes),

29
tagInsertChildren (tagAppendChild), 30
tagList, 32
tagList(), 5, 11, 33, 34
tagQuery, 33
tagQuery(), 5, 30, 31

tags, 31
tags (builder), 4
tagSetChildren (tagAppendChild), 30
takeSingletons (singleton_tools), 26

urlEncodePath, 35
utils::URLencode(), 35

validateCssUnit, 35

withTags, 36
withTags(), 5

	as.tags
	browsable
	builder
	capturePlot
	copyDependencyToDir
	css
	defaultPngDevice
	findDependencies
	HTML
	htmlDependencies
	htmlDependency
	htmlEscape
	htmlPreserve
	htmlTemplate
	html_print
	include
	knitr_methods
	makeDependencyRelative
	parseCssColors
	plotTag
	print.shiny.tag
	renderDependencies
	renderDocument
	renderTags
	resolveDependencies
	save_html
	singleton
	singleton_tools
	subtractDependencies
	suppressDependencies
	tagAddRenderHook
	tagAppendAttributes
	tagAppendChild
	tagFunction
	tagList
	tagQuery
	urlEncodePath
	validateCssUnit
	withTags
	Index

